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This thesis investigates the application of Bayesian Optimization (BO) for the weight minimization of
macrostructural systems, focusing on a cantilever beam, a truss, and two gridshells as case studies.
Traditional structural optimization methods often struggle with high-dimensional, non-convex design
spaces while being constrained by expensive function evaluations due to repeated finite element analyses.
BO addresses these challenges through surrogate modelling with Gaussian Processes (GPs) and
probabilistic acquisition functions that balance exploration and exploitation. The study integrates BO with
the finite element package RFEM®6, enabling automated optimization workflows subject to Eurocode-based
strength, stiffness, and stability constraints.

Four case studies of increasing complexity are implemented:

6))] 1D cantilever beam with a varying size variable

(i1) 2D cantilever truss with varying shape and size variables
(i) 3D 4x4 gridshell with varying size variables

(iv) 3D 9%9 gridshell with varying size variables

The achieved results via the constrained BO algorithm for the 4x4 gridshell show a 7.67x lighter
structure than the reference design and 2.54 x lighter structure than the reference design for the 9x9
gridshell confirming that BO can converge towards feasible and lightweight structural designs. The
efficiency of the algorithm is further demonstrated by its ability to converge /8 times faster to a
design that is only 0.5% heavier than the reference design for the cantilever truss case study.

Furthermore, the 1D case demonstrated robustness and integration feasibility between the Python
implementation and the RFEM6 software. The 2D truss highlighted the benefits of embedding structural
knowledge in the sampling strategy and showed that using multiple GPs per member improved reliability
compared to aggregated models. For high-dimensional 3D gridshells, the optimizer maintained feasibility
but faced some scalability issues. Principal Component Analysis (PCA) is introduced to mitigate the “curse
of dimensionality” by exploiting the underlying pattern of the cross-sections that depends on the internal
forces while reducing computational cost. However, it is found that excessive dimensionality reduction
degrade the solution quality, indicating a trade-off between efficiency and accuracy. Therefore, it has to be
applied carefully to retain enough structural variance.

Two other key findings can be emphasized. First, increasing the number of surrogate models to approximate
the structural constraints for each element in the system improves accuracy but increases the computational
cost. Second, informative initialization and structural-domain knowledge can enhance the convergence rate.

The thesis concludes that Bayesian optimisation either with or without applying the PCA, is a viable and
sample-efficient strategy for structural weight minimization under realistic structural constraints, capable
of being integrated with industry-standard FEM software. Future work should explore the scalability of the
BO framework in higher dimensional feature space, the implementation of multi-objective BO and apply it
to case studies with broader structural typologies such as moment frames composed of different cross-
section types.

Finally, a basic version of an interactive tool is developed that integrates the knowledge discussed in this
thesis and that can be used by the structural engineers to explore various design options in the early design
phase of a project.

Keywords: Bayesian Optimization, Surrogate Modelling, Structural Optimization, Gridshells, Finite
Element Analysis (FEM), Principal Component Analysis (PCA)
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Bayesian optimization (BO) - sequential optimization technique for finding the minimum or
maximum of expensive, black-box functions. It builds a probabilistic model (typically a Gaussian
Process) of the objective function and uses this model to select promising points to evaluate,
balancing exploration and exploitation to efficiently converge to the optimum.

Gaussian process (GP) - a Gaussian probability density over functions. In practice, this manifests
as any arbitrary number of points in the function being jointly Gaussian.

Kernel function - defines the covariance (similarity) between any two input points (features) in a
Gaussian process. The notation is k(x,x’), where x,x’ € RP and D is the number of input
dimensions.

Acquisition function — a strategy used in Bayesian optimization to determine the next point to
evaluate by balancing exploration and exploitation of the design space based on the surrogate
model’s predictions. Examples include Expected Improvement (EI) and Upper Confidence Bound
(UCB).

Surrogate model - an approximate model used to mimic the behaviour of an expensive or complex
function, enabling efficient optimization by providing predictions for the behaviour of this function.

Hyperparameter - a configuration variable whose value is set before the learning process begins
and governs the behaviour or capacity of a machine learning algorithm, such as kernel length-scale.

Size optimization — the process of selecting the cross-sections of structural members to minimize
an objective (e.g., total structural weight) while satisfying performance and safety constraints.

Shape optimization - The process of modifying the geometry of a structure to minimize an
objective (e.g. total structural weight) while satisfying design constraints.

O(N) — Big O notation is a mathematical notation used to describe the upper bound of an
algorithm’s growth rate, expressing how the runtime or computational complexity scales with the
size of the input.

API - (Application Programming Interface) is a defined set of rules and protocols that allows
different software systems or components to communicate and exchange data with each other.
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Nowadays, it is crucial for structural engineers and builders to implement strategies to minimize
the use of new steel components in their projects. Steel ranks as the second most frequently used
material in building construction after concrete (Chen et al., 2022). According to a 2024 report
from the World Steel Association the building and infrastructure sectors accounted for 52% of
global steel use in 2023 (WSA, 2024). Additionally, it is reported that on average 1.92 tonnes of
CO2 are emitted for every tonne of steel produced which amounts to 7-9% of global and 5% of
EU CO2 emissions (Somers J., 2021). Furthermore, it has been estimated by Allwood et al. (2010)
that the demand for buildings materials is expected to double by 2050. Meanwhile, the IPCC report
(Fischer et al., 2007) recommends that global carbon emissions need to be cut by at least 50% by
2050 in order to limit global warming to 1.5 °C compared to pre-industrial levels as stipulated in
the Paris Agreement in 2015 (UNFCCC, 2015). Specifically, the European Union has set a target
to reduce emissions by 55% by 2030 (Somers J., 2021). Similarly, the Netherlands has set the
ambitious goal to be a net-zero country by 2050 in the Dutch Climate Act (Klimaatwet, 2019).

To address these issues, one strategy is to minimize the use of raw steel material early in the design
stages of a project. In this thesis, the focus is on steel gridshell structures as they are considered as
one of the most efficient structures. Driven by the demand for environmentally sustainable
solutions, their relevance has grown, owing to their efficient use of materials (Dyvik et al., 2021)
and capacity to span large distances (Grande et al., 2017a). They own this capacity to their shape
because membrane forces (axial compression and tension) are mainly active, while bending
moments are ideally zero (Adriaenssens et al., 2014). This enables the use of smaller cross-sections
relative to other structures that fulfil the same purpose such as frames.

The optimization process of such structures is subject to several mechanical and fabrication
requirements such as physical, environmental and economic constraints which often lead to single
or multi-objective optimizations algorithms (Grande et al., 2017a). These techniques are often
time-consuming and have high computational costs. Despite being powerful tools, optimization
routines can pose significant challenges for designers. Small errors can only be identified and
corrected after the process is finished, which can take a significant amount of time (e.g. hours or
days).

This thesis aims to use Bayesian optimization for optimizing the design of gridshells by efficiently
navigating the complex design space to identify optimal configurations with minimal
computational effort. The potential of this approach for high-dimensional non-convex multi-
objective optimization problems has been suggested by Shende et al., (2021) and Mathern et al.
(2020), even though they applied the procedure for different problems in the structural engineering
field. Gridshell design involves numerous parameters, such as geometry, boundary conditions,
load conditions and connection/joint stiffness design, which can create a vast and intricate design
landscape that traditional optimization methods may struggle to explore effectively. Bayesian
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optimization, however, excels in such scenarios by using a probabilistic model to predict and select
promising design candidates that balance exploration and exploitation. By doing so, it requires
fewer evaluations of the design space, which is particularly advantageous given the high
computational cost of structural simulations via finite element modelling. Additionally, Bayesian
optimization's ability to incorporate prior knowledge can further streamline the search for optimal
gridshell designs. This characteristic is especially beneficial when dealing with constraints and
complex structural performance criteria, enabling designers to efficiently converge on cost-
efficient solutions that optimize material use and structural performance.

A basic version of a design tool can be developed based on this research that supports decision-
making in the early stages of projects, particularly for complex structures such as gridshells. This
industrial need forms the background of the present thesis and motivates the research questions on
how Bayesian optimization can be applied to support feasible and efficient steel construction. Such
a tool would bridge the gap between computational optimization, structural efficiency, and
sustainability, contributing to a more responsible approach to steel construction.

This research project aims to determine to what extent the Bayesian optimization framework can
be applied to efficiently optimize the layout and cross-sections of truss and gridshell structures,
made from steel elements, focusing on the minimization of the structural weight. The outcome
must be a structurally sound and feasible structure. The developed workflow must have the
possibility of being implemented into a structural engineer’s practice by integrating it with
industry-standard tools like RFEM6. Throughout the thesis “optimization framework™ and
“optimization algorithm” are used interchangeably.

The objectives of this research are the following:

1. Investigate how to streamline the data exchange between RFEM6 and a Python
implementation of the Bayesian optimization framework. For this purpose, problems with
lower complexity are used such as a cantilever beam and a cantilever truss case discussed
in Chapter 5.

2. Implement the structural constraints in order to optimize for the shape, size of the 2D
cantilever truss case, 4x4 and 9x9 gridshells and how are possible scalability issues
addressed.

3. Investigate ways of improving the performance of the framework given the dimensions of
the different test cases.



The main research question that this thesis aims to answer is the following:

“To what extent can Bayesian optimization be applied to efficiently optimize the shape and
cross-sections of structures in terms of minimizing structural weight, while ensuring structural

integrity and integration with industry-standard tools like RFEM6?”

To answer this research question effectively a set of sub-questions is defined. They are split into
two categories that relate to the development of the Bayesian optimization framework and to the
understanding of the gridshell as a structure and how to model it in RFEM6.

RQ1: How can the Bayesian optimization be used in the weight optimization of macrostructures?

I.1.

1.2.

1.3.

1.4.

L.5.

1.6.

1.7.

1.8.

1.9.

What are the current state-of-the-art shape and size optimization algorithms for structural
design given a set of spatial & structural constraints?

How can the Bayesian optimization framework be used to optimize the shape and size of
structures (e.g. truss and gridshell)?

1.2.1. What restrictions in the design space should be made to facilitate the convergence

of the algorithm to a solution?
How can the key structural performance metrics be included effectively in the Bayesian
framework?

1.3.1. What surrogate models should be used to approximate the relationship between

design variables (e.g. node coordinates & cross-sectional dimensions) and objectives
(e.g. minimization of the structural weight)?
What will be an appropriate acquisition function that, in combination with the surrogate
model, will allow for a balanced exploration versus exploitation approach to avoid local
optimal solutions?
What should be the size of the initial training set?
Which hyperparameters are the most influential in the optimization algorithm based on a
sensitivity analysis and how often do they need to be updated to obtain the optimal solution
without significantly increasing the computational cost of the algorithm?
What should the stopping criteria of the Bayesian optimization framework be to arrive at
useful and computationally efficient results?
What techniques can be used to reduce the dimensionality of the optimization problem in
case the computational cost is too high?
How many finite element evaluations are needed and are the obtained optimal results
consistent?

1.10. How do the results of the Bayesian optimization framework compare to other

optimization algorithms from literature in terms of results, computational time and model
evaluations?

RQ2: How can a gridshell be modelled in RFEM6 and what is the structural behaviour?

2.1.
2.2.

What is the structural behaviour of a gridshell under uniformly distributed load?
How can the geometry of the gridshell be generated to obtain the desired structural
behaviour?



2.3. How can the structural model be created in a finite element software such as RFEM6?

2.3.1. What is the governing load combination that should be considered in the analysis?

2.3.2. What are the boundary conditions of the model?

2.3.1. What cross-section types are suitable (e.g. standardized vs parametric, open vs
closed)?

2.4. What are the key structural performance metrics that must be calculated to evaluate the

structural feasibility in terms of strength, stiftness and stability and guide the optimization
process?

To make the aim and objectives (outlined in the previous section) of this thesis feasible the research
scope is defined within the following boundary conditions:

Symmetric load cases and load combinations.

Symmetric and asymmetric boundary conditions.

The structural requirements are element based (e.g. stress, buckling).

The detailed design of the connections is not considered.

Connections are modelled as pinned.

Geometrically linear static analysis is considered as the main analysis of obtaining the
internal forces of members and resulting stresses.

Global stability analysis is excluded from the BO framework, due to the nonlinear second-
order (P- A) calculations that are necessary to be performed.

For this research, a mixed-method research strategy is employed such as FEM modelling and
expert elicitation. Integration of computational modelling and data analysis is used to explore the
optimization of a truss and gridshell structures. The primary method involves using a Bayesian
optimization framework to analyse and enhance design parameters, providing an efficient
exploration and exploitation of the design space. The FEM software package RFEM6 is utilized
for the structural analysis. It is integrated with Python as the base programming language to
facilitate the development of the optimization algorithm. This combination allows for precise
modelling and evaluation of structural performance under various scenarios with subsequent data
analysis of the results.



As discussed by Shende et al. (2021) the potential of Bayesian optimization for higher dimensional
structural design problems remains largely unexplored.

In Chapter 2 the literature has been analysed with the overview that mainly metaheuristic
algorithms are used for those types of problems. In some cases, they have high computational cost
(e.g. genetic algorithms), and the results in other cases (e.g. harmony search) are not as optimal as
they have been found to be by the more accurate but even more time-consuming deterministic
optimization algorithms.

This thesis aims to address the research gap concerning the application of probabilistic Bayesian
optimization to higher-dimensional, non-convex shape and size optimization of structures. The
study focuses on gridshell geometries, with the objective of minimizing structural weight while
ensuring compliance with strength and stability constraints.

The report structure linking the research questions to the methods used to answer them is shown
in Figure 1.

RQ1

Chapter 2.2-2.3 Chapter 5.1-5.4

¥

Chapter 3.1-3.9

Y

RQ2

Chapter 2.1 »| Chapter 4-4.3 »| Chapter 5.1-5.4

Figure 1: Structure of the thesis.



2. Literature review

In this chapter a literature study is presented covering the important topics relevant to the thesis
questions and objectives outlined in the previous chapter. First, the mechanical behaviour and
design considerations such as form-finding of gridshell structures is discussed to establish an
understanding of how these structures work which will help in validating the RFEM6 models for
the gridshell case studies discussed in Chapter 5. Next, to establish a reference frame, an overview
of the most commonly used algorithms for shape and size optimization in the structural
engineering field are presented. A detailed analysis of the pros and cons of each of the referenced
papers outlined in Table 14 in Appendix A. Finally, some known and recent papers are discussed
on the topic of Bayesian optimization and its successful application in different fields of
engineering.

2.1.  Structural principles of gridshell structures

Shells are thin single or double curved structures (Williams, 2014). They have been used for
centuries in architecture and engineering, providing efficient, lightweight solutions for spanning
large spaces. One historical example is the Roman Pantheon (Figure 2), with its vast concrete dome
spanning almost 44m. In the 20th century, the development of reinforced concrete and advanced
computational methods enabled the construction of even more complex shell structures, such as
Pier Luigi Nervi’s reinforced concrete dome Palazzetto dello Sport (Figure 3) and Felix Candela’s
thin concrete shells such as the hypar shell L'Oceanografic in Valencia, Spain, (Figure 4). A good
example for the efficiency of shell structures is the elliptic paraboloid built by Ove Arup as the
new concrete roof for the Smithfield Poultry Market in London (Figure 5). The structure spans
almost 70m while the thickness of the concrete is mainly 7cm in the middle part and is increased
to 15cm towards the edges due to the bending moments (Ahm & Perry, 1965).

Figure 3: Pier Luigi Nervi - Palazzetto dello
Figure 2: The Pantheon, Rome, Italy. Bult in Sport, Rome, Italy. Built in 1957. (Source:
126 AD. (Source: Ravisetti, 2023). Structurae).



Figure 4:Felix Candela - L'Oceanografic, City of Figure S Ove Arup - Concrete shell roof for the
Arts and Sciences, Valencia, Spain. Built in Smithfield Poultry Market, London, UK.
2003. (Source:Ldzaro. 2023). (Source: Julian Harrap Architects).

To achieve this slenderness the load transfer mechanism of shell structures is fundamentally
different from that of beam or frame systems. Rather than resisting loads primarily through
bending, shells rely on in-plane forces or “membrane action” to efficiently distribute loads
(Borgart, 2024b). This allows shells to achieve remarkable structural efficiency, as forces flow
smoothly through their curved geometry toward supports. The shell behaviour is compared to the
plate behaviour in Figure 6.

{b) (e}

Figure 6: Shell behaviour. (a) Internal forces of a curved (shell) element; (b) Membrane action; (c) Plate
behaviour. (Source: Borgart, 2024b).

A key characteristic to consider in the design of shell structures is their deformation. There are two
types: extensional and inextensional deformation (Figure 7). In the former when a load is applied
the middle part of the shell is stretching to accommodate the bending deformation. The load is
mainly carried by membrane forces and the structure remains stiff. The case of inextensional
deformation refers to the ability of shells to change shape without significant stretching or



compression of their surface. Here the load is carried by bending forces and there are large
displacements. Therefore, thin shells have to be designed such that they do not undergo
inextensional deformation when a certain load is applied (e.g. snow) because then the bending
stresses are very large. However, when there is imposed displacement (e.g. foundation settlement)
it is good to allow inextensional deformation to occur since it gives lower stresses in the shell
(P.C.J. Hoogenboom, 2024).

(a) (b)

Figure 7: Shell deformations. (a) extensional deformation; (b) inextensional deformation.

The design of shell structures often involves form-finding, a process that determines the optimal
shape of a structure based on a given load, force flow or stress field and boundary conditions. In
traditional construction, form-finding is achieved through physical models using hanging chains
or soap films, as seen in the work of Antoni Gaudi (Figure 8) and Frei Otto (Figure 9).Today,
computational tools such as Grasshopper’s Kangaroo physics engine (Castro & Song, 2024),
which uses the dynamic relaxation method, enable engineers to simulate and refine shell
geometries digitally (Figure 10). This method is used to form find the gridshell geometries
discussed in subchapters 5.3 & 5.4.

Figure 8: Antoni Gaudi - Hanging Chain Model Figure 9: Frei Otto - Soap film model for the
for La Sagrada Familia, Barcelona, Spain. Munich Olympic Stac'hum, M‘}nlcha Germany.
(Source: Zexin & Mei, 2017). (Source: Zexin & Mei, 2017).



Figure 10: Concrete shell form found using Kangaroo/Grasshopper. (Source: Tamplin, R & luorio,

Ornella., 2018).

Techniques for designing 2D curves and 3D surfaces can be categorized as either physics-based
or mathematics-based. A summary is provided in Figure 11. By using these methods, designers
can create shell structures that are not only aesthetically pleasing but also structurally optimized
to withstand applied loads efficiently.

_C

Physics-based
Techniques

)

Hanging chain

(Hooke, 1675)

Hanging cloth

(Isler, 1959)

Soap film

(ca. 1960s)

Dynamic relaxation
(Day, 1985)

{n

athematics-based
Technigues

Catenary curve

(ca. 1690s)

Graphic statics

(Maxwell, 1864)

Pucher's equation

(Pucher, 1934)

Force density
{Schek, 1974)

Figure 11: Classification of form-finding methods. (Source: Chiang, 2022).

This thesis focuses on gridshells, which are a subset of shells. Both share a fundamental structural
principle: they rely on their curved geometry to efficiently transfer loads primarily through
membrane action, minimizing bending stresses. However, while shells are continuous, thin-
surfaced structures made from mainly concrete, gridshells are composed of a network of
interconnected linear elements (often timber, steel, or composite materials) that form a flexible
lattice capable of assuming a shell-like shape. They can be single layered or double layered (Figure
12). This distinction allows gridshells to be lighter and more adaptable, as they can be assembled
flat and then deformed into their final shape, a technique seen in projects like the Mannheim
Multihalle by Frei Otto (Figure 13).



/
(a)
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Figure 12: Structural scheme for (a) continuous Figure 13:Frei Otto - Multihalle,
shell; (b) single-layered gridshell; (c) double- Herzogriedenpark, Mannheim, Germany. (a)
layered gridshell. (Source: Adriaenssens et al., inside photo; (b) outside photo. (Source:
2014) Adriaenssens et al., 2014)

One additional point of attention relating to gridshells that is not necessarily required for
continuous shells is form stability. It refers to their ability to maintain structural integrity and resist
excessive deformations under applied loads, including self-weight, wind, and snow. Instability can
happen when considering the structure as a whole (Figure 14) or in-plane (Figure 15). This
phenomenon is inherently linked to factors such as curvature, nodal connections, boundary
conditions, and the load-bearing capacity of individual elements. By not making a gridshell form-
stable out-of-plane bending moments and in-plane bending moments can be developed depending
on the load case. Achieving form stability requires a balance between geometry, joint and
connection design, material properties, and structural optimization to create efficient, durable, and
aesthetically compelling structures.
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(a) (6] fc)

Figure 14: Form-stability of the whole structure. Figure 15: Form-stability in-plane. (a) Unstable
(Source: Grande et al., 2017b). configuration; (b) deformed state; (c) stable
configuration.

Several remarkable gridshell structures showcase the versatility and efficiency of this construction
method. The British Museum gridshell, designed by Foster + Partners with structural engineering
by Buro Happold, was completed in 2000 and covers the Great Court with a striking steel and glass
gridshell (Figure 16). Its flowing, doubly curved form maximizes natural light while creating a
seamless architectural connection between historic and modern elements. Another outstanding
example is the courtyard roof of the Museum of Hamburg History, built by Jorg Schlaich and
completed in 2020. This lightweight steel-glass gridshell provides a transparent yet protective
canopy over the museum’s courtyard, blending contemporary engineering with historic
preservation. The Dutch maritime museum gridshell, completed in 2011, features a spectacular
glass and steel lattice structure that covers the museum’s central courtyard. Inspired by 17% century
nautical maps, its geometric pattern mimics compass lines, adding both structural efficiency and
symbolic meaning to the design (Sigrid Adriaenssens. 2019). These examples highlight how
gridshells can be adapted for different boundary conditions, creating visually striking, structurally
efficient, and sustainable architectural solutions.

- e
e g
VP

Figure 16: Queen Elizabeth II Great Court, The Figure 17: Courtyard Roof of the Museum of
British Museum, London, UK. (Source.: Buro Hamburg (Source: Ermias Y., 2013)
Happold, 2019)
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Figure 18: Glass Roof Dutch Maritime Museum. (Source: Ney & Partners 2011).

In recent years, the research done on gridshells has been steadily increasing from only 10
publications in 2011 to 327 in total in 2021 (Dyvik et al., 2021) as shown in Figure 19a. The right
bar chart categorizes research contributions by discipline, showing that Structural Engineering
dominates the field with 278 publications, far surpassing other areas. This indicates that gridshell
research is primarily concerned with load-bearing capacity, stability, and optimization rather than
aesthetic or material innovations.

300

278

< a00 200

T 100

. 0 25
201 2012 2013 2014 2015 2016 2017 2018 2018 2020 2021 Structural Mechanical
Publication Year Engineering Engineering

(a) (b)

Material Science  Architecture Other

Figure 19: (a) gridshell publications per year; (b) research contribution per year. (Source: Dyvik et al.,
2021)

Structural optimization techniques can typically be classified in three main categories depending
on the design variables considered: shape, size and topology optimization (Gythiel & Schevenels,
2022). Shape optimization in this thesis focuses on refining the form (z-coordinates of the nodes)
of the gridshell and the in-plane position of the nodes on the obtained surface (x- and y- coordinates
of the nodes) to enhance structural performance (e.g. minimal bending moments, deflections). Size
optimization involves adjusting the cross-sectional dimensions of the individual members in the
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grid to balance material use and structural strength while ensuring compliance with constraints
such as buckling resistance and maximum deflection.

In the past different researchers have studied how to optimize the design of gridshells using various
strategies and algorithms. For example, Wang et al. (2019) have developed a physically-based
bubble-packing model and a geometry edge operation to achieve triangular grids for complex free-
form surfaces. Grande et al. (2017a) have shown the potential for combining different optimization
strategies such as form finding, sizing optimization and topologic optimization using genetic
algorithms to obtain light structural solutions for gridshells. On the other hand, Gythiel &
Schevenels (2022) have used gradient-based algorithm to optimize the size, shape and topology of
a single-layer reticulated (i.e. grid) shell under a distributed load. Furthermore, Saka (2007) has
analysed the optimum geometry design for geodesic domes which is a type of gridshell by
employing harmony search algorithms. Finally, Richardson et al. (2013) developed a coupled
form-finding and grid optimization approach to design efficient gridshell structures by integrating
geometric form-finding with structural and performance-based optimization using a genetic
algorithm.

In the next subchapter, an overview of the current state-of-the-art algorithms used in structural
engineering field for optimization problems is provided. Also, a case is made that Bayesian
optimization can serve as an efficient framework for optimizing gridshells by leveraging
uncertainty modelling to guide exploration of the design space, reducing computational costs
through informed sampling, and improving convergence toward optimal structural configurations.
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2.2.  Common optimization algorithms in structural engineering

In recent years, the integration of artificial intelligence (AI) and machine learning (ML) with
structural engineering (SE) has gained significant momentum, as seen by the increasing number
of publications in this area. Figure 20 illustrates a notable rise in the number of articles published
annually between 2011 and 2020, covering various intersections between structural engineering
and advanced computational techniques. This surge underscores the growing interest and
advancements in applying Al tools like neural networks, decision trees, and genetic algorithms to
enhance structural analysis and design.
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Figure 20: Number of publications from 2011 to 2020 (Tapeh & Naser, 2023).

Furthermore, Figure 21 highlights some of the journals frequently publishing these advancements,
with titles such as "Computer-Aided Civil and Infrastructure Engineering" and "Construction and
Building Materials" leading the distribution of this innovative research. These figures emphasize
the pivotal role that Al and ML play in driving forward the future of structural engineering through
interdisciplinary collaboration and exploration of potential areas of application for these
techniques.
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Figure 21: Journals publishing about Al and the structural engineering field (Tapeh & Naser, 2023).
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In general, on a high level the hierarchical relationship between Al, machine learning (ML) and
deep learning (DL) can be represented as shown in Figure 22 (Atul, 2025).

Artificial Intelligence (Al)

&

Machine Learning (ML)

Deep Learning (DL}
FOX

Figure 22: Hierarchical relationship between Al, ML and DL.

Al is the field of computer science focused on creating systems capable of performing tasks that
typically require human intelligence. These tasks include reasoning, learning, problem-solving,
language understanding, and decision-making.

ML is a subset of artificial intelligence that involves training algorithms to learn patterns from data
and make decisions or predictions without being explicitly programmed for specific tasks. It
enables systems to improve their performance as they are exposed to more data over time.

DL is a subset of machine learning that uses neural networks with multiple layers to model
complex patterns in data. It is very good at tasks involving large amounts of structured or
unstructured data, such as image and speech recognition.

15



Furthermore, these three areas can split into several subcategories. Figure 23 gives a non-
exhaustive list of some examples. Bayesian regression has been highlighted by the red outline.
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Figure 23: Subcategories of AI, ML and DL.

Supervised learning is used when both the outcome and the governing variables are known, such
as a structural member and its cross section. This learning type can be categorized into regression
(when predicting a quantity) or classification (when identifying a label or class). In contrast,
unsupervised learning is applied when data is unlabelled, helping engineers discover the
underlying structure, such as determining whether a signal from an onsite sensor indicates a
structural crack. Deep learning methods are not used often in the field of structural engineering yet
(Tapeh & Naser, 2023), although there are some recent examples of physics-informed NN being
used for complex beam systems (Kapoor et al., 2023).

This thesis focuses on optimization of macro structures, namely trusses and gridshells.
Optimization algorithms that aim to search for the best result for a set of variables under given
constraints to achieve a given goal/objective are analysed. The following paragraphs include a
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brief description of current state-of-the-art methods that are commonly used in practice and in
literature.

An overview of most commonly used optimization algorithms is given in Figure 24.
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Figure 24: Overview of optimization algorithms. (Zavala et al., 2013).

The deterministic SIMPLEX method efficiently solves linear programming problems by traversing
the vertices of the feasible region, while Branch & Bound systematically explores and prunes a
search tree to find optimal solutions in integer and combinatorial optimization.

Gradient-based methods such as gradient descent are widely applied to continuous optimization
problems with differentiable objective functions and are efficient and scalable for convex functions.
However, they are prone to getting stuck in local maxima or minima when the function is multi-
peak (non-convex).



On the other hand, stochastic algorithms, divided further into heuristic and metaheuristic methods,
are well-suited for non-convex objective functions which could be known or unknown (black-box),
where the solution landscape is more complex and varied. They are more likely to find the global
optimum of a given function due to the random component inherent in their structure. However,
this can be computationally expensive. The difference between convex and non-convex functions
is illustrated in Figure 25.

Heuristic methods include approaches like Hill Climbing and Greedy Algorithms, which focus on
finding approximately optimal solutions quickly in lower dimensional solution space utilizing the
gradients of the functions if they are available.

Metaheuristic methods, such as Genetic Algorithms, Tabu search, and Particle Swarm
Optimization, provide more robust solutions by exploring the solution space more thoroughly,
making them ideal for challenging optimization scenarios such as constrained multi-objective non-
convex problems in higher dimensional solution space (Blum & Roli, 2001). Another advantage
is that they can be applied to a wide variety of problems without requiring domain specific
information which makes them task independent. Nevertheless, this flexibility comes at the cost
of fine tuning a lot of parameters to achieve good results which can increase the computational
cost.

Convex function Non-Convex function

Figure 25: Convex and non-convex functions.

Furthermore, metaheuristic algorithms are often combined into hybrid approaches to achieve a
good balance between the exploration and exploitation of the solution space of a given problem.

As discussed in a paper by Saka (2009) the nature-inspired optimization algorithms are beneficial
in the optimization of combinatorial problems in terms of computational costs and near optimal
results. A description of some algorithms is provided below. A summary of some of the papers
that used them for structural optimization problems are provided in Table 14 in Appendix A.

Genetic Algorithms (GA): Simulate the Darwinian natural selection by evolving a population of
candidate solutions through operations like selection, crossover, and mutation. They are well-

suited for complex optimization problems with discrete variables and intricate constraints.
Examples include shape and size optimization of trusses using parallel genetic algorithm (Wei et
al., 2011), improved genetic algorithm (Tang et al., 2005), Cellular Genetic Algorithm
(Rajasekaran, 2001).
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Differential Evolution (DE): It works by iteratively improving candidate solutions using
mechanisms similar to genetic algorithms, such as mutation and crossover, and is known for
solving complex, real-valued optimization problems robustly and efficiently. Structural problems
that have been optimized using this algorithm or a hybrid version of it include but are not limited
to truss optimization with frequency constraints (Pham, 2016), improved DE (Ho-Huu et al., 2016),
hybrid DE with symbiotic organisms search (Nguyen-Van et al., 2021), adaptive elitist DE -acDE
(Ho-Huu, Nguyen-Thoi, et al., 2016).

Harmony Search (HS): This algorithm simulates the creative process of musical harmony
improvisation, adjusting solution vectors through memory consideration, randomization, and pitch
adjustment to find optimal solutions. Studies that have used this technique (or variation of it) for
optimization problems in structural engineering include improved harmony search (Degertekin,
2012), hybrid harmony search (Cheng et al., 2016), HS and firefly algorithm (Miguel & Miguel,
2012).

The following two algorithms are often classified under the agent-based models.

Particle Swarm Optimization (PSO): Inspired by the flocking behaviour of birds (agents) and
schooling of fish, PSO optimizes a problem by iteratively updating candidate solutions (particles)
based on their personal and collective best experiences. It is widely accepted for its simplicity and
ability to quickly converge to good solutions. Some notable studies on layout optimization of
trusses under various constraints have been published such as Cellular PSO (Gholizadeh, 2013),
integrated particle swarm optimizer (Mortazavi & Togan, 2016), particle swarm algorithm (Gomes,
2011), binary PSO (Luh & Lin, 2011), heuristic PSO (Li et al., 2007).

Ant Colony Optimization (ACO): ACO is inspired by the behaviour of ants (agents), using virtual
pheromone trails to guide a population of solutions toward optimal paths. It is effective in solving
routing and scheduling problems. Papers where variations of this algorithm have been used for
structure optimization problems include space truss design (Camp & Bichon, 2004), streel frames
including elemental warping effect (Aydogdu & Saka, 2011).

The algorithms outlined in the previous sub chapter are widely used in structural optimization
problems as analysed by Hasangebi et al. (2009). However, this thesis focuses on the
implementation of a Bayesian optimization framework for the shape and size optimization of two
structural typologies - truss and gridshell, with the goal of minimizing the total weight of the
structure given a set of spatial and structural constraints. As mentioned before, this approach has
been used successfully in the fields of structural health monitoring (Huang et al., 2022), material
microstructure optimization (Coelho et al., 2025), hyperparameter tuning (Snoek et al., 2012), and
design of auxetic metamaterials (Tran et al., 2019). However, to the best of the author’s knowledge
it has not been used for the optimization of macrostructures. Its use in the optimization of global
structural models is still underexplored with one recent example from literature on the design of
origami folding structures that discusses the potential of the approach and recommends its use for
higher dimensional design problems (Shende et al., 2021). It was concluded that Bayesian
optimization requires fewer finite element solutions compared to traditional methods, making it a
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promising choice for such non-convex optimization problems (presence of multiple local optima).
Additionally, it consistently outperforms the other methods analysed in the paper, delivering
previously undiscovered designs for the origami structure. More details about the paper are
provided in Table 15 in Appendix A. Similar conclusions and recommendations about the potential
of Bayesian optimization were reached by Mathern et al. (2020) who were able to achieve optimal
results for the design of a concrete beam by leveraging the cheap evaluation cost of the objective
function while modelling the constraints using Gaussian Processes due to their expensive
computational evaluations.

Another very recent paper has shown significant improvements in performance and quality,
especially in nonlinear settings, through various design scenarios employing Bayesian
optimization. It reduces the number of required experiments and demonstrates its potential to
enhance design methodologies in both material and structural engineering compared to established
data-driven approaches. The paper has implemented Principal Component Analysis (PCA) for
dimensionality reduction which further enhances efficiency and reduces computational burden
(Coelho et al., 2025). The benefits are particularly notable in complex scenarios with geometric or
material non-linearity, where it reduces the number of experiments needed to achieve target
objectives. The authors have focused on both single-objective and multi-objective optimization
and in both scenarios Bayesian optimization has been shown to perform well.

On the other hand, Moriconi et al., (2020) discusses potential limitation of the Bayesian
optimization in higher dimensions (D > 20) due to the response surface learning and optimal input
selection via the acquisition function being computationally heavy. However, the paper suggests
that high dimensional data often can be represented via its lower intrinsic dimensionality
representing a certain underlaying pattern in the data, which can be exploited by the optimization
framework.

Bayesian Optimization (BO) can be classified under Stochastic Metaheuristic methods as shown
in Figure 24 by the red highlight. It is stochastic because it relies on probabilistic models (usually
Gaussian Processes) to guide the search for optimal solutions. It can be considered metaheuristic,
as it is a high-level strategy designed to explore the search space efficiently, often outperforming
traditional heuristics in black-box optimization problems as mentioned in the previous paragraphs.
However, it is not explicitly nature-inspired but it can be classified under general probabilistic
search methods.
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This chapter introduces the theoretical foundations of Bayesian Optimization (BO) in the context
of macrostructural design. The chapter begins with a general definition and background of the
method, followed by a detailed discussion of its core components, including kernels, acquisition
functions, and the exploration—exploitation trade-off. Practical considerations such as
hyperparameter tuning and sampling strategies are then addressed, highlighting their role in
ensuring robust and efficient optimization. Finally, the chapter presents Principal Component
Analysis (PCA) as a dimensionality reduction technique that can enhance the performance of BO
in high-dimensional structural design problems. Together, these sections provide the theoretical
basis for the subsequent application of BO to structural case studies.

Bayesian optimization is a probabilistic model-based approach for optimizing objective functions
that are expensive to evaluate, or lack analytic expressions. Its foundation lies in the principles of
Bayesian inference, which allow the incorporation of prior knowledge and the systematic update
of beliefs about an uncertain quantity as new information is acquired. The core of this approach is
Bayes’ Theorem, which describes how to update the probability of a hypothesis as more evidence
becomes available. Mathematically, Bayes’ Theorem is expressed as:

P(D|68)P(6)

P(OID) = =5

where P(6|D) is the posterior probability of the parameters 0 given observed data D, P(D|0) is
the likelihood of the data under the parameters, P(8) is the prior probability of the parameters, and
P (D) is the marginal likelihood.

In the context of optimization, Bayesian optimization treats the unknown objective function as a
random function and places a prior over it which is commonly a Gaussian Process (GP) completely
defined by its mean and covariance:

y(x) = GP(m(x),k(x,x"))

where m(x) is a mean function and k(x,x") is a kernel function that defines the covariance
between any two points X and X'. In the next subchapter the discussion about kernel functions is
extended.

As function evaluations are performed, these results constitute the data D, and the posterior
distribution over the objective function is updated according to Bayes’ Theorem. This probabilistic
surrogate model captures both the current understanding of the function and the associated
uncertainty in regions that have not yet been explored.
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An example of a fictious function f(x) = sin(x) + 0.2 cos(3x) is presented in Figure 26 below.
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Figure 26: Example of a Gaussian Process used in a regression problem.

The optimization process leverages this surrogate model to make intelligent decisions about where
to evaluate the objective function next. This is achieved through the use of an acquisition function
(see subchapter 3.3), which balances the exploration of uncertain regions with the exploitation of
areas likely to yield optimal values. In subchapter 3.4 how to achieve this balance is discussed.
The acquisition function is computed using the posterior distribution, ensuring that each new
evaluation provides the maximum expected improvement or utility given the current knowledge.
As such, Bayesian optimization provides an efficient and principled framework for solving
challenging black-box optimization problems by iteratively refining its probabilistic model and
strategically selecting new sample points.

Kernels play a central role in the theory and application of Gaussian processes and other machine
learning algorithms such as Kernel Logistic Regression used for classification of data that is not
linearly separable. A kernel function defines a measure of similarity or correlation between data
points in a possibly high-dimensional feature space, enabling nonlinear modelling while
maintaining computational efficiency. By selecting an appropriate kernel, prior knowledge about
the underlying structure can be encoded such as the smoothness of the function to be learned, thus
shaping the model’s flexibility and generalization capabilities. The choice and design of kernel
functions are therefore fundamental in capturing complex patterns and ensuring robust predictive
performance in both regression and classification tasks.
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In Figure 27 the Matérn kernel is shown. The effect of the smoothness determined by the
hyperparameter v in the kernel is highlighted. Larger values of v correspond to smoother functions
while smaller values produce functions with limited degree of differentiability, i.e. choppy
functions. In the first row, with v=c0, the Matérn kernel reduces to the squared exponential (RBF)
kernel (shown in the first row in Figure 28), yielding samples that are infinitely differentiable and
thus smooth. The covariance matrix is shown on the left and darker tones represent lower values
and lighter tones higher values. In this case it displays gradual transitions, and the process samples
exhibit minimal variation and high regularity meaning that the input data points/features are highly
correlated. For the intermediate case (v=1.5), as shown in the second row, the functions become
less smooth, i.e. only once differentiable with more pronounced fluctuations and moderately
rougher samples, as reflected in both the covariance structure and the diversity of process samples.
In the third row, with v=0.5, the kernel generates the least smooth samples. These functions are
continuous but nowhere differentiable, resulting in highly erratic behaviour and a rapidly decaying
covariance structure. Overall, the figure demonstrates that as v decreases, the Matérn kernel
produces samples with increasing roughness, making it a flexible tool for modelling functions with
varying degrees of smoothness in the Bayesian optimization used in chapter 5. More examples of
different combinations of hyperparameters are shown in Figure 165 in Appendix D.
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Figure 27: Matérn kernel and samples.
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In Figure 28 the squared exponential (SE) kernel is shown. This is one of the most widely used
covariance functions in Gaussian Process modelling due to its smoothness and flexibility. In
literature it is equivalent to the radial basis function (RBF) kernel with infinite number of basis
functions. In the definition of the SE kernel the d=[|x—x'|| is the Euclidean distance between
inputs points, Zis the length-scale parameter, and ordenotes the variance/amplitude of the samples.
The length-scale parameter ¢ controls the smoothness of the resulting functions: /arger values of
Z correspond to broader correlations between points, resulting in smoother sample functions with
gentle variation, as seen in the first row. As # decreases (middle and bottom rows), the kernel
function becomes increasingly localized, and the resulting samples display higher-frequency
fluctuations and rougher behaviour, as the covariance decays more rapidly with distance. This
property is reflected in both the structure of the covariance matrix and the increasing complexity
of the drawn samples. Overall, the SE kernel is infinitely differentiable, making it suitable for
modelling processes that are expected to be very smooth, with the length-scale parameter
providing a direct means of tuning the modelled smoothness.
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Figure 28: Squared Exponential/RBF kernel and samples.

Given the basic kernels above, they can serve as the building blocks of hybrid kernels such as the
one shown Figure 29. Hybrid kernels can be a result of linear combination of different kernels as
long as the covariance for any set of function values is positive definite. This property ensures that
all variances are positive, all pairwise relationships are consistent, and, in probabilistic models,
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guarantees that the associated multivariate distribution is well-defined and that the matrix is
invertible.

Figure 29 presents the characteristics of a hybrid kernel constructed as a linear combination of a
Matérn kernel and a squared exponential (RBF) kernel. This formulation allows the model to
capture a richer class of functions by blending the distinct properties of each component. The
Matérn kernel, parameterized by its smoothness v and length-scale 1, provides control over
function roughness, while the RBF kernel, governed by ¢z, ensures smooth and infinitely
differentiable behaviour. In the first example, where the Matérn component is dominant due to the
constant C; = 1, the resulting functions are relatively smooth but exhibit some moderate variability
due to the contribution of the RBF term (£2=0.3). In the second example, the process samples
display a bit more complexity and more pronounced local fluctuations, as evidenced by both the
covariance structure and the sample paths. The third example, where the Matérn kernel has both a
higher weight (Ci=1.5) and a smaller length-scale (£1 = 0.2), produces functions that are even
rougher and exhibit higher frequency variations. Overall, the hybrid kernel’s flexibility enables it
to model data exhibiting both global smoothness and local irregularities, as controlled by the
relative weights and length-scales of its constituent kernels.
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Figure 29: Hybrid kernel and samples.
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In Bayesian optimization, the acquisition function is the function that guides the selection of the
next query point to evaluate the expensive objective function at. After constructing a surrogate
probabilistic model, commonly a Gaussian Process as discussed in the previous subchapter, the
acquisition function quantifies the utility or potential benefit of evaluating the objective at each
point in the design space, balancing exploration (uncertainty reduction) and exploitation
(searching near the current optimum). A widely used acquisition function is Expected Improvement
(El), which measures the expected gain in objective value over the current best observation. It is
defined with the following equations Brochu et al. (2010):

_y _ (@) = f@pest = P(Z) + a(D)P(Z) ifo(x) > 0
g (%) = {0 ’ ifo(®) = 0
7 = HE) = (D) pest=¢ (3.3.2)

o(x)

(3.3.1)

where where the @(-) and the ¢(-) denote the CDF and PDF of the standard normal distribution
respectively and & 1is the exploration-exploitation trade-off parameter which is discussed in more
details in the following subchapter.

El is particularly effective in unconstrained optimization, as it naturally trades off between
sampling where the surrogate model predicts high values and where the uncertainty is large.
However, many real-world problems involve constraints especially in the structural engineering
field. The Constrained Expected Improvement (cEI) acquisition function extends EI by
incorporating the feasibility probability that a candidate point satisfies all constraints, enabling
optimization in feasible regions only. It is defined by the following equations:

Aep (X) = ag (X) X Hﬁelleme”tsP(ﬁ-(f) < constr;) (3.3.3)

constri—u(x);

(%)

where P(f;(x) < constr;) = @ ( ) and u(x);, o(x); are the mean and uncertainty for

the GPs trained on every element.

While EI is computationally efficient and well-suited for noiseless, unconstrained scenarios, it
cannot handle constraints directly. On the other hand, cEI handles constraints very well but
typically requires additional surrogate models for the constraints and can be more computationally
intensive. Overall, the choice between EI and cEI depends on whether the problem includes
constraints or not. In addition, some studies in the literature (Ament et al. 2024) apply the logarithm
of the Expected Improvement (EI) to mitigate numerical instabilities that can arise in its standard
implementation, specifically when EI values become very small, making it difficult to effectively
maximize the acquisition function.

Another widely used acquisition function in Bayesian optimization is the Upper Confidence Bound
(UCB). The UCB acquisition function selects the next evaluation point by maximizing a sum of
the surrogate model’s predictive mean and a scaled version of its uncertainty (standard deviation).
Formally, UCB is defined as UCB(x) = u(x) + ko (x), where u(x) and o(x) are the posterior
mean and standard deviation of the surrogate model at point x, and x > 0 is a parameter controlling
the trade-off between exploration and exploitation. Larger values of x encourage exploration of
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uncertain regions, while smaller values focus more on exploitation near the current optimum. UCB
is especially useful when an explicit balance between risk-taking and reward is desired, or when
theoretical regret bounds are important. However, UCB does not naturally handle constraints, and
its performance can be sensitive to the choice of «.

Finally, the Probability of Improvement (PI) is sometimes used for optimization problems. Its
definition is similar to the EI, but it is considered to exploit rather than explore the design space
Brochu et al. (2010):
=\ _ w(X)—f (X pest
ap () = @ (ML Dty (3.3.4)
A comparison between all of the acquisition functions mentioned above is shown in Figure 30.

The emphasis is on the difference in how the next point is picked going from one iteration to the
next.
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Figure 30: Acquisition function comparison for the choice of the next sampling point.
(Source: Coelho, 2025)

In this thesis constraints on structural performance metrics are essential to achieve the desired
objectives for the different cases studied in Chapter 5. Therefore, the Constrained Expected
Improvement (cEI) acquisition function is chosen as it provides the most benefits in these scenarios.
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In Bayesian Optimization, an effective balance between exploration and exploitation is vital for discovering
high-performing solutions within a limited evaluation budget. Exploration refers to the investigation of
unsampled or poorly understood regions of the design space, while exploitation targets areas that the
surrogate model already predicts to be promising. A successful optimization strategy must dynamically
adjust this balance as more information becomes available.

This trade-off is typically controlled by acquisition functions such as Expected Improvement (EI) or
Constrained Expected Improvement (CEI) which are explained in the previous section. Both of which can
be tuned using an exploration parameter & To adaptively manage this parameter throughout the
optimization process, dynamic schedules for £ can be employed based on the current iteration # and the
total number of allowed iterations 7nu... Two commonly used adaptive formulations are the /inear and
exponential decay strategies, defined as follows:

Linear adaptative &:

& = &max — Cmax — &min) *—— (3.4.1)

n
Nmax
Exponential adaptive &:

§ = &min — (Emax — Smin) * €xp (=4 * = ) (3.4.2)

Nmax

where, n— current iteration, 17,2x— maximum number of predefined iterations and A — decay rate.

In the linear scheme, € is interpolated from an initial high value to a lower bound in direct
proportion to the current iteration, ensuring that a smooth and predictable transition from
exploration to exploitation is enforced. In the exponential-decay function, & is decreased following
an exponential law, resulting in rapid early reduction of exploration that than transitions to
exploitation of the best known region in the design space.

Hyperparameter tuning for the kernels used in Gaussian processes is a crucial step in constructing
accurate surrogate models for Bayesian optimization. The kernel hyperparameters, such as the
length scale and variance, govern the smoothness, amplitude, and overall flexibility of the
Gaussian process, directly influencing its ability to capture the underlying structure of the objective
function. In practice, these hyperparameters are typically optimized by maximizing the marginal
likelihood P(D) of the observed data:

P(D) = N(D|0,K(X,X) + B~1I) (3.5.1)

where K = (X,X)is an NxN matrix where each element is given by K;; = k(x;, x;) with
representing the chosen kernel function (such as the squared exponential/RBF kernel), 8711 is
added observation noise and N is the number of training samples. The added observation noise
term can be removed in applications where the observations are noiseless. Since the observations
of the weight of the structure are obtained deterministically from RFEM®6, the observation noise is
assumed to be negligible. To prevent numerical instabilities, however, during the fitting of the
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Gaussian process a small value for 8 is added to ensure a positive definite covariance matrix K
(Rasmussen & Williams, 2005, p.80). This matrix encodes the prior assumptions about the
similarity and correlation between all pairs of inputs and forms the covariance structure of the
multivariate normal (Gaussian) distribution over the observed targets.

For efficient optimization, it is common to re-tune the kernel hyperparameters periodically during
the Bayesian optimization loop. To do that the values of the hyperparameters that maximize the
log-marginal likelihood according to Eq. 3.5.2 & 3.5.3 are calculated.

In(P(D)) = —-In(K + 1) = D" (K + 707D — ZIn (2m) (3.5.2)
where N is the number of training samples (observations).
h = argmax In(P(D|h)) (3.5.3)

where h is a vector containing the hyperparameters depending on the used kernels such as Z or
and v. The mathematical derivations related eq. 3.5.2 are outside the scope of this thesis. For further
details, the reader is referred to the books of Rasmussen & Williams (2005) on Gaussian processes
for Machine Learning and Pattern Recognition and Machine Learning by Bishop (2006).

To achieve this, the Python package SciPy and its implementation of the L-Broyden-Fletcher-
Goldfarb-Shanno-B (L-BFGS-B) algorithm based on the paper of Byrd et al. (1995) is used. This
step is necessary since no closed-form solution exists due to the hyperparameters being inside the
kernel matrix K which has to be inverted. As a result there could be multiple local optima which
cannot be maximized analytically with respect to the hyperparameters.

The logarithmic scale and reasonable bounds for the hyperparameters are essential to achieve good
results. This approach ensures that the surrogate model remains well-calibrated as new data is
acquired.

Additionally, for problems involving multiple input dimensions, automatic relevance
determination (ARD) kernel variants are often employed. In ARD kernels, each input dimension
is assigned its own separate length scale hyperparameter, allowing the Gaussian process to
automatically identify and adapt to the most relevant features of the input space. An example of

the squared exponential kernel is given below:
2

) (3.5.4)

p1
L 2
1

k(x,x") = afexp (—% |12 — x'|

where #; is the length scale for every input dimension D of the vector x.

This enhances model flexibility and interpretability, particularly in high-dimensional settings, but
also increases the complexity of the optimization problem for hyperparameter learning.
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3.6. Sampling strategies

In selecting sample points from the design space, a practical approach is to employ hypercube
sampling, which ensures a well-distributed set of candidate points. Conceptually, a line represents
a one-dimensional space, a square corresponds to two dimensions, and a cube extends this notion
to three dimensions. By analogy, design spaces with four or more dimensions can be represented
as hypercubes. One straightforward strategy for generating representative samples is to select
points located at the corners of the hypercube, as well as at the midpoints of its edges, faces,
volumes, and higher-dimensional analogues as shown in Figure 31.

An alternative approach is to apply the space-filling Latin hypercube sampling (Figure 32) which
ensures that a single point is selected from each row and column of the design space, in a manner
analogous to the structure of a sudoku puzzle.

Figure 31: Hypercube sampling the vertices, Figure 32: Latin hypercube sampling. (Source:
edges and faces. (Source. Debney, 2021) Debney, 2021)

In Chapter 5, the Latin hypercube sampling strategy is chosen for the application of the
constrained BO algorithm described in Chapter 4.
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Standard preprocessing steps like scaling the inputs and outputs are often applied before running
Bayesian optimization to ensure that all input features and hyperparameters live on comparable
scales (Rasmussen & Williams, 2005). The standard scaler applies the following formula:

x' ==t (3.7.1)

ag

where u and o are the feature-wise mean and standard deviation (in this case the areas of the
member), while the robust scaler uses

; _ x—median(x)
Q3-0Q

X (3.7.2)

(with Q1 and Qs the 25™ and 75™ percentiles) to reduce the influence of the outliers since for some
areas picked by the algorithm the resulting stresses and displacements are significantly higher than
for the rest of the profiles. When these scaled inputs are fed into a Gaussian process in the Bayesian
optimization, the kernel’s ability to measure similarity and speed convergence are greatly
improved. The reason is that the optimizer’s acquisition function can more reliably compare effects
across dimensions that have been normalized to roughly the same range. In all of the case studies
the standard scaler is used.
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Principal Component Analysis (PCA) is used as part of the extended constrained BO algorithm
discussed in subchapter 4.2. In its deterministic formulation can be understood as a method for
projecting high-dimensional data onto a lower-dimensional linear subspace, with the objective of
either maximizing the variance of the projected data or minimizing the reconstruction error after
projection (Bishop, 2006). For a dataset in D-dimensional space, PCA seeks an optimal subspace
of dimension M <D, which can be interpreted geometrically as a line for M=1, a plane for M=2,
or a hyperplane for higher values of M. In the maximum variance view, the goal is to identify a
projection matrix U that maximizes the spread of the projected data, such that the directions of
largest variance correspond to the eigenvectors of the sample covariance matrix. This ensures that
the subspace captures the most informative features of the data distribution as shown in Figure 33.

T2

low variance

T2

€1 T

Figure 33: Optimal latent space maximizing the variance of the dataset. (Source: DSAI, 2024)

Alternatively, in the minimum error formulation, the projected data points are mapped back into
the original space, and the subspace is chosen to minimize the reconstruction error between the
original and reconstructed data (Figure 34).

high error

T T

Figure 34: Optimal latent space minimizing the error between original and projected datasets.

(Source: DSAI 2024)

Interestingly, both approaches lead to the same optimal solution, as the subspace spanned by the
principal eigenvectors of the covariance matrix simultaneously maximizes variance and
minimizes reconstruction error.
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The objective of this chapter is to introduce the two versions of the constrained BO algorithm that
are used in the analysis of the case studies described in Chapter 5. They are developed based on
the literature review discussed in Chapter 3.

The Python implementation of the presented algorithms and their integration with RFEM6 can be
found in the following GitHub repository: https://github.com/GeorgeNikolov/BO-Tool.

The following pseudo-code outlines the procedure for constrained Bayesian optimization used in
this thesis. The goal of it is to minimize a given objective function such as structural weight while
enforcing performance constraints, such as stress and stability limits.

Algorithm 1: Constrained Bayesian Optimization for Structural Steel Design
Input : d € N (number of design variables), m € N (number of elements),

bounds ¢, u € RY (lower/upper bounds for each variable),

ninit (number of initial samples), Tmax (Max iterations), € > 0 (improvement tolerance),
Output : best design inputs x*, total structural weight f(x*) and structural constraints

g(x*) = [gi(x¥), ..., gm(x®)]"

1 #Problem setup

2 X« {xeRY:ti<xi<ui,i=1...d} > Design domain

3 Define objective f: X’ — R D> total structural weight

4  Define constraints gi; X — R, j=1,....m D> governing stress and buckling unity

checks per element

5 #Initial sampling

6  So «— LHS(ninit, X) D> Latin Hypercube samples

7 D<@ D> Dataset D = { (xi, fi, gi) }

8 for each x € Sodo

9 (fx, gx) < RFEM(x)

10 D —DuU {(x, f, g}

11 F—{(xf,g€D:g<1Vj} D> Subset with only feasible designs, 1 is the unity

check threshold value per element.
12 end for

13 #Data normalization
14 Fit standard scalers Tx, Tr, Tgj on {xi}, {fi}, {g} respectively
15 Transform X; «— Tx(xi), fi <« Tdfi), &y < Tei(gyiiy) forall i,

17 Initialize GPs with kernel kf0r) using {(X;, f))}, where 0 is the set of hyperparameters of the
kernel

18 Forj = 1..m: initialize GPg with kernel kq(0gj) using {(Xi, £.i})}

19 #Optimization loop

20 f* « argminyxfg er; f (best valid design); X* «— Xoest (Xvest corresponds to the inputs to
obtain f*; no_improve « 0
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21 fort=1... Tmax do
22 if t=1) or (t mod 5= 0) then

23 Re-optimize O, {6g} by maximizing GP log-marginal likelihood
24 end if
25 Define acquisition a(x) on X =T x(x):
26 s, o «— GPy(X) D> predictive mean/variance
27 For j: gj, 0gi? < GPg(X)
28 preas(X) < [[=1,™ P((1— pgj)/og ) > probability of feasibility,
and 1 is the unity check threshold
29 EI(x) « ExpectedImprovement(js, o7; best )
30 a(x) «— EI(X) * preas(X) D> constrained EI

31 Xnext <— argmaxxex; 0(x) via Differential Evolution (global search) with L-BFGS-B

for local refinement (optional)

32 Xreal «— Xnext D> (already in real space if a used x; else denormalize)

33 (faew, Znew) <— RFEM(Xreal)

34 Append (Xreal, fnew, gnew) to D

35 Update transforms: Xnew «— Tx(Xreal), frow — TH(fhew), Enew «— Tgj(Znew)
36 Update GPrand {GPg} with the new normalized point

37 if gnewj <1 V] then D> Are all the constraints below 1?
38 if fhew < f* — € then

39 X* «— Xreal ; T «— fhew ; NO_1improve «— 0

40 else

41 no_improve <— no_improve + 1

42 end if

43 else

44 no_improve <— no_improve + 1

45 end if

46 if no_improve > p then break D> early termination due no improvement

in number of iterations p
47 end for
48 # Result extraction

49 return (x*, *, g(x*)) D> Best feasible design, total structural weight, and

the array of constraints per element

To enhance the understanding of the algorithm also the theoretical framework of the constrained

BO framework is shown in Figure 35 on the next page. Also, a written description of the
algorithm is included in Appendix E: Supplementary Material.
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Figure 35: Theoretical framework of the Bayesian optimization without PCA.
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Figure 36: Theoretical framework of the Bayesian optimization with PCA. Changes compared to Figure 35 are highlighted in yellow.
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The following pseudo-code highlights the differences between the algorithm for the constrained
BO and constrained BO combined with PCA for dimensionality reduction. This algorithm is used
as an additional analysis in the gridshell case studies in subchapter 5.3 & 5.4.

Algorithm 2: Constrained Bayesian Optimization with PCA for Structural Steel Design
Input : d € N (number of design variables), m € N (number of elements),
bounds £, u € RY (lower/upper bounds for each variable),
ninit (number of initial samples), Tmax (Max iterations), € > 0 (improvement tolerance),
T € (0,1] (target explained variance for PCA)
Output : best design inputs x*, total structural weight f(x*) and structural constraints

g(x*) = [gi1(x¥), ..., gm(x*)]"

1 #Problem setup

2 X« {x€eRY:tixi<uw,i=1...d} > Design domain

3 Define objective f: X’ — R D> total structural weight

4  Define constraints gi; X — R, j=1,....m D> governing stress and buckling unity

checks per element

5  #Initial sampling

6  So «— LHS(Ninit, X) D> Latin Hypercube samples

7 D<@ D> Dataset D = { (xi, fi, gi) }

8 for each x € Sodo

9 (fx, gx) < RFEM(x)

10 D «— D U {(x, fx, g0}

11 F—{(xfigg€D:g<1Vj} D> Subset with only feasible designs, 1 is the unity
check threshold value per element.

12 end for

13 #Data normalization

14 Fit standard scalers Tx, T, Tgj on {xi}, {fi}, {gy.i}} respectively

15 Transform X« Tu(xi), fi < THE), &y < Tgi(gyiy) forall iy

16 Choose PCA dimension q = min{ k : cumulative explained variance(k) > 1 }

17 Fit PCA on {X;} to obtain mean p and loading matrix U € R%4

18 Map all scaled samples to latent space: z; < UTx (X; — )

19 Define latent search domain Z as a bounded box covering {zi}

20 [Initialize GPrwith kernel ke(0r) using {(zi, f})}, where 0 is the set of hyperparameters of the
kernel

21 Forj=1..m: initialize GPg with kernel kq(0gj) using {(zi, &1.i;)}

22 #Optimization loop

23 f* «— argminx g er; ' (best valid design); x* «— Xpest (Xvest cOrresponds to the inputs to
obtain f*; no_improve « 0

24 fort=1... Tmax do

25 if(t=1) or (t mod 5=0) then

26 Re-optimize O, {0g} by maximizing GP log-marginal likelihood

27 end if

28 Define acquisition a(z) on latent z € Z:

29 | ui(z), 6(z) < GP{z) D> predictive mean/variance
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30 For j: Wgj(2), 04%(z) < GPqj(2)
31 preas(z) «— [ [=1:™ @((1— pgj(z))/og(z)) B probability of feasibility,
and 1 is the unity check threshold
32 El(z) < ExpectedImprovement(p(z), 6(z); best )
33 a(x) < EI(2) * preas(2) > constrained EI
34 Znext <— argmaxzezy o(z) via Differential Evolution (global search) with L-BFGS-B
for local refinement (optional)
35 Knext <— Pt UXZnext > inverse PCA to scaled space
36 Xnext <— Tx'(Xnext) D> denormalize to real values in real space
37 (fnew, gnew) «— RFEM(Xnext)
# normalize and update models
fhew «— Tf(fnew); gnew «— ng(gnew); Znew <— UT (Tx(Xnext) - }l)
Augment GPr with (Znew, frew); For j: augment GPgj with (Znew, Eijnew})
38 if gnewj <1 Vj then D> Are all the constraints below 1?
39 if frew < f* — & then
40 X* «— Xreal ; T* «— fhew ; NO_1improve «— 0
41 else
42 no_improve <— no_improve + 1
43 end if
44 else
45 no_improve «<— no_improve + 1
46 end if
47 if no_improve > p then break D> early termination due no improvement
in number of iterations p
48 end for
49 # Result extraction
50 return (x*, f*, g(x*)) D> Best feasible design, total structural weight, and

the array of constraints per element

The theoretical framework of the constrained BO framework with PCA is shown in Figure 36 on
the previous page and the highlighted blocks outline the difference with the previous
implementation. Also, a written description of the algorithm is included in Appendix E:
Supplementary Material.

37



The structural finite element models in RFEM®6 used in this thesis are formulated using two distinct
element types: truss elements and beam elements. Each element type embodies specific mechanical
assumptions and is employed based on the expected load transfer mechanisms within the structural
system.

Truss elements, illustrated in Figure 37, are idealized as members capable of sustaining only axial
forces. These elements are defined by two nodes, denoted as i and j, and are formulated under the
assumption that the member can transmit forces exclusively along its longitudinal axis. The
kinematic constraints restrict each node to a single translational degree of freedom aligned with
the element axis (the local x-direction). Consequently, rotational effects, shear deformations, and
flexural actions are inherently neglected in this element. The internal forces are limited to axial
forces, represented by N; and N at the respective nodes. These elements are used in the modelling
of the pin-connected cantilever truss structure in subchapter 5.2 where members are primarily
subjected to tensile or compressive forces. This simplification yields computational efficiency but
limits the representation of more complex structural phenomena, such as bending or torsional
effects, however, these are not expected to occur in the studied case due to the fundamental
characteristics of a truss structure.

Beam elements, shown in Figure 38, provide a more comprehensive representation of structural
behaviour. Unlike truss elements, beam elements have six degrees of freedom per node: three
translational (along the X, y, and z axes) and three rotational (about the x, y, and z axes). This
formulation enables the simulation of axial, shear, bending, and torsional responses. At each node,
the element can transmit not only axial forces (V;, N;), but also shear forces (V,,i, V=1 ,Vy; ,Vz)),
torsional moments (M., M,;), and bending moments about the local axes (M,,;, M-;, M, , M.;).
Beam elements are well-suited for the analysis of members in frames and continuous structures
where combinations of axial force, bending moment, shear force, and torsion are significant. The
enhanced formulation of beam elements enables the accurate modelling of a wide range of
structural systems, including beams, columns, and frames, capturing the complex interplay of
internal forces and deformations. These elements are used in the analysis of the various case studies
in Chapter 5.

Figure 37: RFEM6 - Truss element. Figure 38: RFEM6 - Beam element.



In the following subchapters all the material-specific unity checks according to the common EN
1993-1-1:2005 that are used to model the constraints in the optimisation problems outlined in
Chapter 5 are discussed. These checks are calculated per element by the RFEM6 software package.

First all of the cross-sections have to be classified according to Table 5.2 in EN 1993-1-1:2005;
5.6 shown below. The cross-sections typologies mostly used in this thesis are the rectangular
hollow sections (RHS) and circular hollow sections (CHS). The relevant parts of Table 5.2 are
shown in Figure 39 and Figure 40. The lowest class of a subpanel determines the classification of
the complete cross-section. For, example in an RHS profile if a one subpanel is classified in class
1 and another in class 3, the complete cross-section is classified in class 3. In case the subpanels
fall outside the classes they are considered in class 4 and the reduced effective properties of the
cross-section must be calculated according to EN 1993-1-5 Table 4.1 & 4.2 due to local buckling
of the cross-section. This classification determines if the cross-sectional resistance to compression,
bending and combination of the two are determined according to their plastic or elastic properties
(e.g. area, section modulus). The general recommendation according to the Eurocode is the
following:

e C(lass 1 - Plastic resistance
e (lass 2 - Plastic resistance
e (lass 3 - Elastic resistance
e C(lass 4 - Elastic resistance with effective properties
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Table 5.2 (sheet 1 of 3): Maximum width-to-thickness ratios for compression

parts
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Figure 39: Classification of internal sub-panels. (Source: EN 1993-1-1:2005)
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Figure 40: Classification of tubular sections. (Source: EN 1993-1-1:2005)
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After the cross-section is classified the checks for strength, stiffness and stability have to be
calculated. They are outlined in subchapter 4.2 to 4.4.

In this subchapter the checks that determine the strength of the cross-section under the Ultimate
Limit State combinations are shown. The general formulas are shown for clarity, however, the
cross-sectional properties are axis dependent and should be calculated in the major principle y-
axis and minor principle z-axis of any given cross-section.

N =4y EN 1993-1-1:2005; 6.2.3, 6.2.4; Eq. (6.6 &
¢,Rd
¥Mo . . 6.10)
for class 1,2 and 3 under compression/tension
Nera = A";ff*fy for class 4 under compression EN 1993-1-1:2005; 6.2.4; Eq. (6.11)
Mo
Ngq
<1.0 EN 1993-1-1:2005; 6.2.4; Eq. (6.9)

Nc,Rd

where

NEq 1s the applied design compression force.

Nc,rd 1s the design resistance of the cross-section.
Mo 1s the partial factor for the cross-sectional
resistance and is equal to 1 for steel.

Acrr 1s the reduced cross-sectional area due to local
buckling effects.

_ Ay (f,/V3)

PLRE = o EN 1993-1-1:2005; 6.2.6; Eq. (6.18)
where
Vopird 18 the design plastic shear resistance
Ay is the shear area calculated as:
A, = Ah/(b + h) for RHS with uniform thickness
and load parallel to the depth.
A, = 2A/m for CHS with uniform thickness.

Vea _ 10
Voira = EN 1993-1-1:2005; 6.2.6; Eq. (6.17)

where
V4 1s the applied design shear force.

In the analysis of the gridshells in subchapter 5.3
and 5.4 often some small torsional moments are
observed. This is accounted for with following
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reduction to the design plastic shear resistance for

hollow sections:
TtEd

5, /V3) Yo

Vpl,T,Rd =[1 ]Vpl,Rd

where
T4 1S the design shear stresses due to St. Venant
torsion.

Woify

M¢ra = My pa = e for class 1 and 2

Welminf
M;rqg = Mg pq = —ey'mm 2 for class 3
Mo

w inf;
M pa = %omy for class 4

where

Wiiis the plastic section modulus

Welmin and Wesrmin are elastic section modulus
corresponding to the maximum elastic stress

M
Fd <10

c,Rd

Acc. t0 6.2.8(2) or 6.2.10(2), the effect of the shear
force/stress in the y-, z- principle axes of the cross-
section can be neglected if it is less than half of the
shear resistance.

Otherwise, the moment resistance should be
calculated with a reduced yield strength by:

(1- P)fy
where
— (VZV_Ed —1)2or (Vzﬂ —1)2 if torsion is
plLRd pLT,Rd
present.

For the elastic verification the following yield
criterion can be used:

EN 1993-1-1:2005; 6.2.7; Eq. (6.28)

EN 1993-1-1:2005; 6.2.7; Eq. (6.25)

EN 1993-1-1:2005; 6.2.5; Eq. (6.13)

EN 1993-1-1:2005; 6.2.5; Eq. (6.14)

EN 1993-1-1:2005; 6.2.5; Eq. (6.15)

EN 1993-1-1:2005; 6.2.5; Eq. (6.12)

EN 1993-1-1:2005; 6.2.8; Eq. (6.29)
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( Gx,Ed )2 +< Gz,Ed )2 _< O_x,Ed )( O-Z,Ed >
fy/VMo fy/)’Mo fy/YMo fy/VMo

2
Ty Ed
+3 : <1.0
<fy/yM0>

Acc. t0 6.2.8(2) or 6.2.10(2), the effect of the shear
force/stress in the y-, z- principle axes of the cross-
section can be neglected if it is less than half of the
shear resistance. Otherwise, refer to the Bending
moment & shear section above.

Allowance for the effect of the axial force on the

plastic moment resistance does not have to be made

when both of the following criteria are satisfied:
Ngg < 0.25Np; g

0.5h,,t
Npg SM

Ymo
In case allowance has to be made:

a, = (A—2bt)/A
but aw < 0.5 for hollow sections
ar = (A— 2ht)/A
but ar< 0.5 for hollow sections

"= Ngq
Npl,Rd
My, ra(1 —n)
My yra = ply_ 0.5a, but My ra < Mpj .y ra
My, ,ra(1 —n)

My zra = 1-05a but My ; ra < Mp; 7 ra

M M
[2E e 4+ [ 256 < 1.0
M,y ra My z,ra
in which a and B are constants which may be taken

conservatively as 1 or calculated as:

o =2; B =2 for circular hollow sections

EN 1993-1-1:2005; 6.2.1; Eq. (6.1)

EN 1993-1-1:2005; 6.2.9; Eq. (6.33)

EN 1993-1-1:2005; 6.2.9; Eq. (6.34)

EN 1993-1-1:2005; 6.2.9; Eq. (6.39)

EN 1993-1-1:2005; 6.2.9; Eq. (6.40)

EN 1993-1-1:2005; 6.2.9; Eq. (6.41)
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1.66

=P =1 g uta=F=6

In addition to checks for strength, flexural buckling is evaluated for each element around both its
major and minor axes according to EN 1993-1-1:2005. The calculations are performed by the
RFEMG6 software package and discussed below for completeness.

I

2 Yy

Nepy =T *E*L2
cr,y

2 I

Ney,=m *E*L2

where

Nery 1s the elastic critical force around the
major y-axis

Nerz 1s the elastic critical force around the
minor z-axis

E is the modulus of elasticity

Iy is the moment of inertia around the major y-
axis

I, is the moment of inertia around the minor z-
axis

Lecry 1s the buckling length for pin-pin support
conditions in the major y-axis. It is equal to the
length of the element.

L, 1s the buckling length for pin-pin support
conditions in the minor z-axis. It is equal to the
length of the element.

_ A
Ay = Iy for Class 1,2,and 3
Ncr,y
_ A
A, = Iy for Class 1,2,and 3
NCT,Z
_ A
A= ;’;—ffy for Class 4
cr
where

EN 1993-1-1:2005; 6.3.1.2(1)

EN 1993-1-1:2005; 6.3.1.2(1)

EN 1993-1-1:2005; 6.3.1.3(1); Eq. 6.50

EN 1993-1-1:2005; 6.3.1.3(1); Eq. 6.50

EN 1993-1-1:2005; 6.3.1.3(1); Eq. 6.51
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A is the non-dimensional slenderness around
the corresponding axis

Buckling effects can be neglected for

_ N
1<020r 22 <0.04

cr

The following calculations are axis dependent
but are written only once for brevity.

® =0.5[1+a(1-02) + 2%
where
® is a value to determine reduction factor y
a is the imperfection factor depending on the
buckling curve (see Figure 42) for the cross-
section. This is determined according to Table
6.1 and 6.2 shown in Figure 41 and Figure 43,
respectively.

but y < 1.0

1
X = —
®+ 2 - 12

Then:
XAf,

M1

Nppra = for Class 1,2 and 3

A
Nyra = X;;fffy for Class 4

M1

Finally,

N
P <10
Ny ra
is checked for both the major y-axis and minor
Z-axis

EN 1993-1-1:2005; 6.3.1.2(4)

EN 1993-1-1:2005; 6.3.1.2(1)

EN 1993-1-1:2005; 6.3.1.2(1); Eq. 6.49

EN 1993-1-1:2005; 6.3.1.1(3); Eq. 6.47

EN 1993-1-1:2005; 6.3.1.1(3); Eq. 6.48

EN 1993-1-1:2005; 6.3.1.1(1); Eq. 6.46
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Table 6.1: Imperfection factors for buckling curves

Buckling curve a a b c d
Imperfection factor o 0,13 0,21 0,34 0,49 0,76

Figure 41: Table 6.1 for imperfection factors. (Source: EN 1993-1-1:2005)
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Figure 6.4: Buckling curves

Figure 42: Buckling curves used to determine the reduction factor . (Source: EN 1993-1-1:2005)



Table 6.2: Selection of buckling curve for a cross-section

Buckling curve
Buckling | S 235
Cross section Limits about S 275
axis S 355 S 460
S 420
o o~ tr <40 mm y=y 2
O] - zZ—Z b ay
A
£z 2 y-y b a
2 = | 40 mm < t:< 100
3 nl y , zZ—7Z c a
W
-U —
= o | <100 mm y—y b A
S i z—-2Z [ a
i \
Z 2| 4> 100mm y-y d ¢
zZ—-Z d c
- 3ty tr < 40 mm yoy b b
Qg z-Z [ c
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¥
s
T 2
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2 t
——
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Figure 43: Table 6.2 used for selection of the buckling curved depending on the cross-section and
material. (Source: EN 1993-1-1:2005)



In this chapter, different cases are described that show the application of the constrained Bayesian
optimization algorithms discussed in Chapter 4 to the weight optimisation of macrostructures.
Each case increases in number of elements analysed and complexity of the optimization problem
with the objective of ultimately analyse the 3D symmetric 9x9 gridshell discussed in subchapter
5.4. The goal of the optimization in all of the case studies is to minimize the total structural weight
expressed by the following formula:

W = %ipi AiL; (5.1)

where W is the total weight of the gridshell [kg], p is the material density [kg/m?], A; is the
cross-sectional area of element i [m?] and L; is the length of element 7 [m].

Furthermore, for all of the studied cases discussed in this chapter the update of the hyperparameters
is chosen to be every 5th iteration as a balance between computation cost and prediction quality.
Similar suggestion is given by Shende et al. (2021) who state that estimating the hyperparameters
every iteration might lead to overfitting of the data.

The computer processor used in this thesis is 11th Gen Intel(R) Core(TM) 17-14700K, 3.40 GHz

which coupled with the time necessary to communicate between the Python script and RFEM6
determines the total calculation time for all the analysed cases.
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The objective of this first case study is to evaluate the performance of the BO framework, described
in the previous chapter, on a simple 1D structural system with a database of 516 most commonly
used standardized profiles as a starting point. This case also serves as a proof-of-concept for
integrating a Python-based BO framework with the RFEM6 software via its dedicated Python-
based API.

In this test case, a basic structural system is considered: a single-bar cantilever beam, illustrated in
Figure 44. The corresponding RFEM6 model with beam element is shown in Figure 45. The
member has a total length of L=4 m and is fully restrained at node 1, where all translations and
rotations in the x-, y-, and z-directions are fixed. At the free end at node 2, a concentrated point
load of F=10 kN is applied, creating a load case for analysis.

F Z/ ,
\x
(1)
() (] 10.000
4m
1 |
) 1
| : L
Figure 44: Case study: Cantilever beam - Figure 45: Case study: Cantilever beam -
Structural layout. RFEM6 model.

The beam is assumed to be made of structural steel grade S235, with a yield strength of f, =
235MPa. The material strength introduces a clear constraint which is that the maximum stress
within the element must remain below this threshold. In addition to the strength requirement,
deflection requirements are also considered for this case study. The maximum vertical deflection
at the free end must not exceed L/250 which, for the present case, results in a deflection limit of
16 mm. This is a conservative choice, since in practice often 21./250 is used as a constraint for
cantilever structures. In this way the optimisation task becomes more challenging for the BO
framework.

The optimization problem is formulated as a size optimization task, where the cross-sectional
profile of the beam is selected from a database of standardised or in mathematical terms - discrete
profiles provided in Table 16, Appendix B: 1D optimization problem: Cantilever Beam. The
objective is to minimize the self-weight of the structure while satisfying both the stress and
deflection constraints.
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To validate the outcomes of the optimization process, the results obtained from the finite element
analysis in RFEM6 are compared with the best-performing cross-sections derived from the
analytical solution.

After calculating the unity check for strength and stiffness for the case above the valid results are
sorted based on the area in ascending order. Table 1 shows the results of the top 10 most optimal
cross sections out of the total 516 elements based on an analytical solution using the formulas (Eq.
5.1.1 and Eq. 5.1.2) below. From the values it becomes clear that the deflection of the beam
governs the design.

_N_ My M _
0=+ s fy =235 MPa (5.1.1)
3
§=22 <L —16mm (5.1.2)
3ElL, — 250

Table 1: Cantilever beam case: Optimal cross-sections in terms of weight. Analytical solution.

Profile Area [mm?] Weight [kg] U.C strength U.C stiffness
CHS 323.9x5 5009,0 157,28 0,433 0,997
IPE 300 5381,0 168,93 0,306 0,760
UNP 300 5880,0 184,63 0,318 0,791
RHS 300x200x6.3 6099,0 191,54 0,326 0,811
CHS 323.9x6.3 6286,0 197,38 0,348 0,801
IPE 330 6261,0 198,76 0,239 0,539
SHS 260x6.3 6351,0 199,39 0,326 0,935
RHS 260x180x8 6715,0 206,11 0,346 0,994
CHS 355.6x6.3 6913,0 216,97 0,287 0,602
IPE 360 7273,0 226,39 0,188 0,390

For this case study, the following kernels with their respective hyperparameter settings have been
found empirically to produce good results. Noteworthy is that an Automatic Relevance
Determination (ARD) kernel version has been used for both RBF and Matérn kernels) in which
each input dimension is equipped with its own length—scale hyperparameter that is updated every
51 iteration:

e Gaussian process for the weight:

o Matérn (¢, v=0.5) + RBF(£), £ € [0.01, 1000] € RP, D = I dimension
e Gaussian process for the stress constraint:

o Matérn (¢, v=0.5), ¢ €[0.01, 10] €RP, D = I dimension
e Gaussian process for the displacement constraint:

o Matérn(t, v=0.5), ¢ €[0.01, 10] ERP, D = I dimension
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In Figure 46 the optimization progress is shown. It can be seen that the algorithm converges around
the 4™ iteration to a stable solution which is the third most optimal profile — UNP 300 for the given
test case when compared to the analytical solution in Table 1. The maximum stress is 74.75 MPa
due to bending around the y-axis and the maximum deflection is 12.8mm both of which are within
the constraint limits. The FEM results are shown in Figure 125 and Figure 126 in Appendix B: 1D
optimization problem: Cantilever Beam.

—— 1D Kemnel; 1GP; Average weight: 184.63kg
450 - ——- Best analytical weight: 157.28kg

400

350 A

300 -

250 A

200 A

150 +

0 3 6 9 12 15 18 21

Figure 46: Bayesian optimization progress based on the full database of 516 profiles. Median objective
function values and corresponding 95% confidence interval.

It is found that for this case, the optimal result is not reached due to the use of the many diverse
cross-section types that are included in the analysis. This diversity introduces a lot of variability
for the moments of inertia around the principle axes of the cross-sections which poses a challenge
for the Gaussian process to model the functions for the constraints in a reasonable way. For
example, symmetric cross-sections such as CHS have the same moment of inertia in both the weak
and strong axes whereas the asymmetric ones such as HEA, RHS etc. have different values
depending on the principal direction. Also, when a new design point is picked by the algorithm to
be evaluated in RFEM6, it might be translated to a different cross-section due to similar areas. For
example, CHS 323.9x6.3, IPE 330, SHS 260x6.3 in Table 1 have areas corresponding to 6286.0,
6261.0, 6351.0 mm? which leads to similar weight of the structure. A further challenge lies in
distinguishing between open and closed cross-sections. Open sections are generally more prone to
lateral torsional buckling, whereas closed sections provide greater resistance against it. More
insights into the behaviour of the algorithm is presented in Figure 106 - Figure 124 in Appendix
B: 1D optimization problem: Cantilever Beam.
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To put the result in perspective the best analytical weight and the one obtained by the algorithm in
relation to all possible weights in the design domain are shown in Figure 47. This represents the
objective function for the total weight of the structure.

Cantilever beam: W(A4)

4000 - =
——- Best weight: 184.63kg

=== Best analytical weight: 157.28kg
3500 4

3000 A

2500 ~

2000 A

1500 A

Total weight [kg]

1000 A

500 A

0 20000 40000 60000 80000 100000 120000

Cross-sectional area (mm?)

Figure 47: Optimal weight in relation to the full dataset of cross-sections.
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In Figure 48 the same chart is shown but this time resulting from the BO process and the found
optimal profile is highlighted. The Gaussian process is correctly approximating a linear function
where the samples have been fitted. In the region where there are no samples the mean prediction
with an increasing uncertainty is plotted as the function moves away from the samples.

Cantilever beam: W(A4)

—— Mean prediction
95% confidence interval
® Initial Samples
@® Samples

Scaled total weight [kg]

/.' UNP 300 -184,63 kg

T T T T T T
1 [ 1 2 3 4

Scaled cross-sectional area (mm?)

Figure 48: 1D Gaussian process for the weight objective function.

The choice for the adaptive & function is based on the functions presented in Chapter 3.4 each of
which is designed to introduce & in a distinct manner over the course of the optimization. Although,
exponential decay enables aggressive early exploration in this case is not optimal. It is found that
the linear adaptive function delivered the best behaviour and the most reliable convergence in this
application. Consequently, the linear version is used in all of the remaining case studies in this
chapter.

Furthermore, since this is a minimization problem the max and Emin values should be negative since
the scaled best weight and the scaled predicted mu value are both negative. If this would be a
maximization problem, then all of these variables would be positive. The values of max = -1 and
Emin = -0.01 are found to be the best for reliable convergence. These values have also been
suggested in the PhD thesis by Lizotte D. (2008), who argues that an adaptive cooling schedule
for the & parameter going from exploration (higher values of &) to exploitation (smaller values of
€) slightly improves the performance for short runs (smaller than 30 iterations).

In conclusion for this case study, the integration of the Python of implementation of the
constrained BO with the RFEM6 API proved to be successful. Furthermore, using a diverse set
of cross-sections is undesirable because of the large variability in moments of inertia about their
principal axes. Therefore, for the subsequent case studies, a single cross-section type is adopted.
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5.2. 2D optimization case: Cantilever Truss with shape and size variables

This chapter presents the transition from the one-dimensional to the two-dimensional case study.
The purpose is to investigate a more complex structural system for which reference solutions are
available in literature, thereby enabling a rigorous evaluation of the performance of the BO
framework.

5.2.1. Problem Definition & analysis

The 18-bar cantilever truss introduced by Gholizadeh (2013) is considered (Figure 49). The
corresponding model in RFEM6 is set up using the truss elements (see Chapter 4.3 for more
information) and shown in Figure 50.

This theoretical benchmark problem is frequently employed in the structural optimization literature
and therefore provides a reliable basis for comparison with existing studies. The truss spans a total
length of 1,250 inches (31.75 m) with a height of 250 inches (6.35 m). Its established role as a
reference case makes it an appropriate choice for validating the optimization methodology
introduced in Chapter 4.

20 kips 20 Kips 20 kips 20 Kips 20 Kips

250in

10 @ O @
L 250 in § 250 in L 250 in L 20in__} 2340 1n |
] 1 1 1 1

Figure 49: Case study: Cantilever truss - Structural layout. (Source: Gholizadeh, 2013)

88.960 88.960 88.960 88.960 88.960
10 6 2 1
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11 9 17 5 3
— 18 14 K 10—l e Ik

Figure 50: Case study: Cantilever truss - RFEM6 model.
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For the numerical study, the truss is subjected to a test load case consisting of a point force of F =
20 kips (88.96 kN ) applied at nodes nr. 8, 6, 4, 2, and 1. In order to maintain consistency with
the benchmark formulation, the self-weight of the structure is neglected in this case study.

The boundary conditions are defined such that nodes nr. 10 and 11 are fully restrained in translation
along the x-, y-, and z-directions, while their rotational degrees of freedom remain unconstrained.
All other nodes are restricted only in the out-of-plane y-direction, ensuring sufficient stability of
the structure while allowing realistic deformations to occur. This configuration provides the
necessary constraints for a stable analysis and enables the accurate calculation of internal forces.

The material properties of the truss are defined in accordance with the description of Gholizadeh
(2013). A density of p = 0.1 1b/in3(2767.99 kg/m?>) is adopted, together with a modulus of
elasticity of E = 10* m3(68,947.57 MPa). These parameters provide the basis for evaluating the
structural response under the prescribed loading conditions.

The reference study does not specify the cross-sectional profiles of the truss members. Based on
the observations of the previous case study, a single type of cross-section is used for all of the steel
elements of the structure. Therefore, a standardized (discrete) database of 216 circular hollow
sections (CHS) profiles is used for the optimization process. The complete database can be found
as a subset in Table 16 in Appendix B. This closed profile is chosen due to its symmetric
configuration leading to the same moment of inertia around both principle axes of the cross-
section. This provides a linear relationship between the area of the cross-section and the moments
of inertia, namely as the area increases the moment of inertia increases proportionally.
Furthermore, to account for the continuous nature of the Gaussian processes used for the modelling
of the objective and constraint functions, a parametric CHS profile is introduced with a fixed
standard thickness of t = 10mm and a variable diameter. This parametrization is required because
the cross-sectional area is the only input in the algorithm, which can be used to determine only one
of the two defining parameters of the section. Naturally, the designer can choose a different
thickness or a different parametrization approach.

The first set of constraints is outlined below:

e Geometry (layout variables):

(19.685m)775 in. < x5 < 1225 in.(31.115m)
(13.335m)525 in. < x5 < 975 in. (24.765m)
(6.985m)275 in. < x, £ 725 in.(18.415m)
(0.635m)25 in. < x¢ < 475 in. (12.065m)

(=5.715m) — 225 in. < y3,¥5,V7Y,9 < 245 in.(6.223m)
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e Cross-sections:

A1 = As= As= A12= Ass.

Ar=Ae¢= Ar0= A1a= As.

As=A7=An = As.

As=A9=A13= An.

A; € {2.00, 2.25, 2.50, ..., 21.25, 21.50, 21.75} (in.2) for the i element.

Aj € {1290.32, 1451.61, 1612.90, ..., 13709.65, 13870.94, 14032.23} (mm?)
for the i™ element. The groups of cross-sections are shown in Figure 51.

“

'f—> N

Figure 51: Cantilever truss: Cross-section groups.

Additionally, two sets of structural constraints are imposed to ensure structural safety and stability.
First, strength requirements are enforced by limiting the axial stress in all members to within
+20 ksi (137.895 MPa). Second, stability is addressed through adapted Euler buckling limits for
slender members as described in Gholizadeh (2013). The critical buckling strength of each element
is defined as 4EA/L?, where E is the elastic modulus, A is the cross-sectional area, and L is the
member length. These constraints collectively ensure that the optimized truss design remains both
structurally efficient and stable under the applied loading conditions. Since RFEM6 does not
support a customizable buckling strength calculation required for this case study, the necessary
structural values are instead computed using a Python script.

It must be noted that by relying only on the cross-sectional area rather than the moment of inertia

2
as in the standard Euler buckling formula 0% = nALb;I

to characterize each element’s buckling
strength, the formulation in the reference paper inherently treats all directions of bending resistance
as equivalent. In practical terms, this simplification discards the different stiffness properties that
arise from asymmetric profiles. A profile that is, for example, much deeper than it is wide would
buckle more easily in the “weak” axis if moment of inertia are accounted for. Therefore, implicit
in this choice is the assumption of a symmetric cross section whose second moments are identical
about all principal axes even though the specific geometry is not defined in the reference paper.
This is another motivation for the choice of the CHS profiles since RFEM6 does not work with
unspecified cross-sectional geometry. These assumptions make the problem more theoretical than
practical, understanding that directional buckling vulnerabilities have been neglected.

The optimization objective is minimize the weight of the truss via two distinct components as
outlined in Gholizadeh (2013). Size optimization is performed by varying the cross-sectional
properties of the truss members to minimize the overall structural weight. Second, shape
optimization is introduced by adjusting the x- and y-coordinates of selected nodes (nodes 3, 5, 7,
and 9), denoted as (x3,ys3), (x5, ys), (x7,¥7), (xq, ¥9). Through the combination of size and shape
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optimization, the design space is broadened, allowing for more efficient structural configurations
while maintaining compliance with the imposed constraints. This can be considered as an
extension of the previous case study where only size optimization is performed which shows the
potential of the constrained BO to be used for the simultaneous size and shape optimization of
structural systems.

Two different approaches for the set-up of the GPs are adopted to represent the structural metrics
as functions in the 12-dimensional input design space. In the first approach, 4 GPs are used to
model the weight of the structure, maximum compressive stress across all elements, maximum
tensile stress across all elements and maximum buckling unity check across all elements.

In the second approach, the number of GPs is increased to 18 to independently model the
compressive, tensile stress and buckling unity check for each individual structural member.
Noteworthy, is that a member can only experience tension or compression. In the first case a simple
unity check for the cross-section under tension is recorded while in the second case the maximum
utilization ratio based on the compressive stress and buckling is recorded for each member.

For the first approach, the kernels with their respective hyperparameters are shown in Table 2.
Noteworthy is that Automatic Relevance Determination (ARD) is used for the Constant, RBF and
Matérn kernels as explained in subchapter 3.5.

Table 2: 4 GP approach: Surrogate model kernels for each 12-dimensional function.

Function Kernels
Weight of the structure ConstantKernel(value=1) * Matérn (€, v=1.5) +
ConstantKernel(value=1) * RBF(f), where
t /0. 01,10]ERD, D = 12 dimensions

Max compressive stress across all elements ConstantKernel(value=1) * Matérn (€, v=1.5) +
ConstantKernel(value=1) * RBF(f), where

14 E[O,OI,IO]ERD, D = 12 dimensions

Max tensile stress across all elements ConstantKernel(value=1) * Matérn (£, v=1.5) +
ConstantKernel(value=1) * RBF (), where

4 E[O,OI,IO]ERD, D = 12 dimensions

Max buckling unity checks across all elements | ConstantKernel(value =1) * Matérn (€, v=2.5) +
ConstantKernel(value=1) * RBF(€) , where

4 E[O,OI,IO]ERD, D = 12 dimensions

For the second approach, the kernels for the weight and the surrogate models for the utilization
ratio of each member that yield the best results are shown in Table 3 below. The ARD is used
again for the used kernels.

Table 3: 18 GP approach: Surrogate model kernels for each 12-dimensional function.

Function Kernels

Welght Of the structure Matérn (€, v=2.5) + RBF({ = 10), where
l E[O.O],]O]ERD, D = 12 dimensions

Utilization ratio of each element Matérn (£, v=1.5), where
'3 E[O.O],]O]ERD, D = 12 dimensions
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Due to the stochastic nature of the initial samples, the design shown in Figure 49 is added in the
initial samples population to prevent the absence of any acceptable designs from stopping the
optimization loop. In this way, the optimization gains a valid reference point for the weight based
on which subsequent samples can be generated via the acquisition function described in subchapter
3.3.

Another point of attention, in the implementation for the 4GP approach is that the critical element
is determined by explicitly iterating over every member, computing its buckling ratio, and tracking
the maximum value—while simultaneously recording the elements experiencing the most extreme
tensile and compressive stresses. Although straightforward, this approach incurs an O(N)
computational cost (linear cost) per optimization iteration (where N is the total number of
elements), so as more elements are introduced, the time spent in this calculation loop grows in
proportion.

The convergence progress for the 4GP & 18GP approach is presented in Figure 52.

—— 12D Kernel; 4GPs; Discrete CHS; Average weight: 3179.41kg
12D Kernel; 18GPs; Discrete CHS; Average weight: 2162.05kg

4500 1 —— 12D Kernel: 18GPs; Parametric CHS; Average weight: 2091.59kg
—-—- Reference weight by Gholizadeh (2013): 2046.77kg

4000 4

3500 ~

3000 ~

2500 ~

P e e

Figure 52: BO progress based on the discrete CHS database and parametric CHS profile. 4GP & 18GP
approach. Median objective function values and corresponding 95% confidence interval.

Clearly, increasing the number of GPs from 4 to 18 leads to a substantial improvement in
optimization efficiency for the discrete CHS case: the average structural weight decreases from
approximately 3179 kg to 2162 kg. This demonstrates the benefit of element-wise surrogate
modelling in high-dimensional design spaces, where multiple GPs can better capture the
underlying constraint landscapes for each element.

Furthermore, introducing parametric CHS cross-sections further reduces the average weight to
2091 kg, which is much closer to the reference benchmark weight of 2046.77 kg reported by
Gholizadeh (2013). This indicates that parametric representations enhance the flexibility of the
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optimization process, enabling the algorithm to exploit the continuous nature of the Gaussian
process models more effectively compared to purely discrete choices.

Finally, the shaded confidence regions show that parametric CHS not only achieves lower weights
but also exhibits narrower variability in the final solutions, highlighting a greater robustness of this
formulation. By contrast, discrete CHS with fewer GPs shows both higher mean weights and larger
variance, reflecting less reliable convergence behaviour.

An image of the optimal layout and cross-sectional dimensions for the cantilever truss as found by
Gholizadeh are reproduced in RFEM6 and are shown in Figure 53. The results of the two
approaches for the Bayesian optimization are shown in Figure 54 and Figure 55 using discrete
CHS profiles. As can be seen the results deviate largely from the optimal geometry found by
Gholizadeh (2013). The result seen in Figure 56 for the parametric CHS with 18GPs shows a good

similarity with the reference solution.
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Figure 53: Optimal shape and size truss
configuration according to Gholizadeh (2013).
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Figure 55: BO optimal shape and size truss
configuration: 18GPs approach.
Discrete CHS cross-sections.
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Figure 54: BO optimal shape and size truss
configuration: 4GPs approach.
Discrete CHS cross-sections.
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Figure 56: BO optimal shape and size truss
configuration: 18GPs approach.
Parametric CHS cross-sections.

A summary of the optimized design variables obtained by Gholizadeh (2013) next to the ones
produced by the two approaches are presented in Table 4. The best areas for the different truss
member groups are converted to the closest areas outlined in the problem definition and the
differences are shown in brackets below the areas. The complete list of areas converted from in?
to mm? and the corresponding parametric CHS profiles are given in Table 17 in Appendix C.
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Noteworthy, is that the proposed algorithm achieves these updated parameter values with only 250
FEM evaluations (including the 150 initial samples) which is /18 of the 4500 FEM evaluations
reported by Gholizadeh, thereby demonstrating a dramatic improvement in computational
efficiency. This efficiency gain is accompanied by a small increase in total mass, rising from
2046.77kg to 2057kg (0.5% increase) for the 18 GP approach with parametric CHS cross-sections
and 16% increase for the discrete CHS cross-sections. This increase is even larger for the 4GPs
with discrete CHS cross-sections, namely 37%, demonstrating the efficiency of the element-wise
modelling of the constraints in the 18GP approach. This highlights a trade-off between evaluation
cost and weight minimization in the two optimization strategies. Moreover, on average the 250
FEM evaluations took 50 minutes and 70 minutes to complete for the 4GPs and 18 GPs approach,
respectively. This improvement in computational efficiency when compared to the reference paper
is crucial for the dynamic environment in which practicing engineers have to deal with numerous
design changes in tight deadlines.

Table 4: Comparison between best results (Gholizadeh, 2013) and two approaches. 18 bar truss structure.
8 shape variables and 4 size variables.

Variables (Gholizadeh, 2013) 4GPs 18GPs 18GPs
Parametric CHS Discrete CHS cross- Discrete CHS Parametric CHS
cross-sections sections cross-sections cross-sections
A [mm?] 8064.50 7370.0 5651.10 5468.98
(CHS 267.3x10) (CHS 244.5x10) (CHS 193.7x10) (CHS 184.6x10)
Ay [mm?] 11290.30 13500.0 12894.27 12164.52
(CHS 369.4x10) (CHS 355.6x12.5) CHS 273x16 (CHS 400.2x10)
Az [mm?] 3709.67 7920.0 4934.46 5046.34
(CHS 128.1x10) (CHS 406.4x6.3) (CHS 168.3x10) (CHS 174.3x10)
A4 [mm?] 2419.35 6491.0 2949.08 3548.05
(CHS 87x10) (CHS 177.8x12.5) (CHS 193.7x5) (CHS 122.9x10)
X3 [m] 23.04 26.46 22.15 24.60
y3; [m] 4.57 3.78 2.36 5.33
X5 [m] 16.17 16.99 17.97 17.97
ys [m] 3.60 2.12 2.14 4.19
X7 [m] 10.36 9.69 10.89 11.65
y7 [m] 2.39 1.85 2.05 1.83
X9 [m] 5.05 5.54 5.01 5.47
yo [m] 0.75 0.07 -0.14 -0.085
Number of FEM 4500 250 250 250
evaluations
Number of violated 0 0 0 0
constraints
Best Weight [kg] 2046.77 2797.00 2119.49 2057.00
Worst [kg] - 3829.56 2186.84 2155.19
Mean [kg] - 3179.41 2162.05 2091.59
Standard deviation [kg] - 443.75 29.91 4415

The two proposed approaches are run 10 times with the same hyperparameters to obtain a
distribution of results for the weight of the truss. The best, worst, mean and the standard deviation
are presented. The 18GP approach yields a lower best weight, a significantly better worst-case
performance, and a lower mean weight when compared to the 4GPs approach. Additionally, the
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18GP approach exhibits much lower variability in both cases compared to the 4GPs approach.
These results further indicate that the 18GP approach delivers more reliable and consistent
solutions. The statistics reported by Gholizadeh (2013) are not included since they are generated
using a different optimization algorithm than BO.

Clearly, the algorithm converges to a very similar value for the area of the bottom chords which is
critical for the constraints on the compression stresses and buckling to be fulfilled. For the top
chords, where tensile stresses are dominant the BO framework has identified a smaller area to be
sufficient in accommodating the developed stresses which results in decrease in the weight.

The corresponding structural metrics for the best-found configurations are presented in Table 5. It
is evident that the Bayesian optimization algorithm has a bit more material efficient results for the
profiles experiencing the maximum tensile stresses and the buckling unity check compared to the
values obtained when analysing the structure proposed by Gholizadeh (2013). The stresses
calculated based on a first-order static analysis are shown in Figure 127 - Figure 129, respectively
in Appendix C: 2D optimization problem: Cantilever Truss. In Table 6 the maximum utilization
ratios for every member are shown when the 18GPs approach is used with discrete CHS cross-
sections and continuous parametric CHS cross-sections.

Table 5: Structural metrics comparison between the 4GP & 18 GP approach: 8 layout + 4 size variables.

Structural metric (Gholizadeh, 4GPs 18GPs 18GPs
2013) Discrete CHS Discrete Parametric
Parametric CHS cross-sections CHS cross- CHS cross-
cross-sections sections sections
Max tensile stress 137.846 134.547 135.229 137.868
[MPa]
Max compressive -119.494 -99.188 -109.163 -118.011
stress [MPa]
Max Buckling U.C. 0.95 0.82 0.99 0.95

Table 6: Member utilization ratios. 18GPs approach.
1 ‘2 ‘3 |4 |5 |6 |7 |8 |9 |1o |11 |12 |13 |14|15|16‘17‘18
18 GPs — Discrete CHS cross-sections

Util. ‘ 0.21 ‘ 0.37 ‘ 0.31 ‘ 0.29 ‘ 0.29 | 0.29 | 0.56 | 0.48 | 0.59 | 0.80 | 0.89 l 0.95 l 0.01 ‘ 0.91 ‘ 0.36 ‘ 0.98 ‘ 0.88 ‘ 0.99
ratio

Member
no.

18 GPs — Parametric CHS cross-sections
Util. ‘ 0.43 ‘ 0.44 ‘ 0.39 ‘ 0.54 ‘ 0.42 | 0.58 | 0.81 | 0.79 | 0.32 | 0.72 | 0.99 l 0.96 l 0.08 ‘ 0.81 ‘ 0.95 ‘ 0.99 ‘ 0.99 ‘ 0.95
ratio

After the Bayesian framework has been validated with the reference paper of Gholizadeh (2013),
several modifications are implemented in order to transition from the original theoretical problem
formulation to a revised setup which is closer to engineering practice and serves as a building
block towards the gridshell cases in subchapters 5.3 & 5.4. The changes are outlined in the
following paragraph.
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The symmetric circular hollow section (CHS) cross-section dataset used previously is replaced by
the asymmetric rectangular hollow section (RHS) dataset to emphasize the difference in buckling
strength around the weak and strong axis of the structural profiles which are implemented as design
constraints. This type is chosen because the gridshell cases studied in subchapters 5.3 & 5.4 are
composed of this type of cross-section. The reason is that in practice this type of closed cross-
section is widely used for this type of structures due to their greater resistance to lateral torsional
buckling and torsion load cases.

Furthermore, the material properties are updated to reflect those of structural steel S235, increasing
the density from 2767.99 kg/m? to 7850 kg/m?.

Additionally, the structural constraints for the strength and stability are calculated according to EN
1993-1-1 as described in Chapter 4 instead of the adapted theoretical formulas mentioned
previously. The calculations are done by RFEM6 rather than a Python script as for the more
theoretical version of this case study.

To validate the new setup of the problem, first a simple case where all the 18 elements share the
same cross-section is used to compare the BO performance to the analytical solution for a given
set of RHS cross-sections. This reduces the dimensionality of the optimization problem to 1D.

To achieve this, the geometry of the 18-bar cantilever truss is now fixed to the coordinates found
by Gholizadeh (2013). This allows for a good comparison of the outcomes with the analytical
solution for this simplified case (see Figure 57) and allows for plotting the progression of the
algorithm as shown from Figure 131 to Figure 150 in Appendix B.
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The final optimal values are shown in Table 7. As expected, the flexural buckling around the weak
axis is governing in the design.

Table 7: BO optimal structural metrics for the cantilever truss: 1 size variable. RHS cross-section dataset.

Structural metric 18GPs — 1D
Parametric RHS cross-sections
Area [mm?] 7359.0
(RHS 350x250x6.3)
Tensile Stress U.C. 0.644
Compressive Stress U.C. 0.867
Buckling Strong Axis U.C. 0.905
Buckling Weak Axis U.C. 0.936
Weight [kg] 5975.38

It can be seen that RHS 350x250x6.3 is the optimal cross-section with 0 violated constraints and
lowest total weight of the truss equal to 5975.38kg which coincides with the result in Figure 57.
This outcome suggests that the new setup is implemented correctly.

In the extended formulation of the optimization problem, additional modifications are introduced
to increase design flexibility.

The geometry of the truss is no longer held constant, instead, the coordinates of the bottom nodes
are allowed to vary, enabling a more representative exploration of feasible configurations. The
structural members are divided into the same four distinct groups again, each assigned an
independent parametric RHS cross-section, thereby increasing the dimensionality of the design
space. The parametric RHS cross-sections are assigned a standard thickness ¢ = 10mm and a ratio
of width/height = 1/2. This parametrisation is chosen since the only input is the area of the
cross-section which allows for solving only one out of the two variables that define the cross-
section. This introduces a linear dependency of both buckling capacities as a function of the area.
In other words, as the area of the cross-section increases both the buckling capacity around the
strong and weak principal axis also increase and vice versa. The ratio of 1:2 is selected as it
represents the first rounded integer proportion that characterizes an asymmetric RHS. A ratio of
1:1 would instead correspond to a symmetric square hollow section (SHS), which possesses
identical moments of inertia about its principal axes and therefore exhibits structural behaviour
comparable to that of a symmetric CHS. This would undermine the intended purpose of the
extended formulation of the case study, which is to evaluate the performance of the constrained
BO algorithm for a structural system with cross-sections with different buckling strengths in both
principal axes of the cross-section. Both parametric values, thickness and ratio, can be changed by
the designer.

In addition, parametric CHS cross-sections are used for comparison since their buckling capacity
does not depend on the principal axes of the cross-section.
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Table 8 summarizes the optimal BO results, considering both parametric CHS and RHS. The
weight is noticeably lower (33%) than the single size variable case shown in Table 7, namely
4017.67kg, as is expected when the additional degrees of freedom are introduced which increase
the flexibility of the design. RHS designs are more consistent across optimization runs but result
in a slightly heavier structure.

Table 8: BO optimal results for the cantilever truss: 8 layout variables and 4 size variables; CHS and RHS
parametric cross-sections.

Variables 18GPs 18GPs
Parametric CHS Parametric RHS
cross-sections cross-sections
A [mm?] 3795.10 4036.93
(CHS 130.8/10) (RHS 151x76x10)
A, [mm?] 6991.03 8032.59
(CHS 232.5/10) (RHS 285x142x10)
Az [mm?] 2482.22 2815.02
(CHS 89.0/10) (RHS 111x55x10)
Aq[mm?] 3061.94 2884.96
(CHS 107.5/10) (RHS 113x57x10)
x3 [m] 24 .47 24.17
y3 [m] 5.46 5.40
Xs [m] 17.43 20.39
ys [m] 3.94 493
x7[m] 11.86 11.23
y7[m] 2.22 2.15
X9 [m] 5.46 5.14
yo [m] -0.46 -0.24
Number of FEM 250 250
evaluations
Number of violated 0 0
constraints
Best Weight [kg] 3677.54 4017.67
Average weight [kg] 3700.09 4048.54
Standard deviation [kg] 31.90 17.37

65



As can be seen in Figure 58 and Figure 59 both CHS and RHS design have a very similar geometry
to each other despite the fact that the latter has a different buckling capacity in two directions. In
Table 9 the utilization ratios for the parametric CHS and RHS cross-sections based on the 18GPs
approach are shown.
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Figure 58: Optimal shape and size truss Figure 59: Optimal shape and size truss
configuration resulting from BO. Parametric configuration resulting from BO. Parametric
CHS profiles. 18GPs approach. RHS profiles. 18GPs approach.

Table 9: Member utilization ratios. 18GPs approach. CHS and RHS parametric cross-sections.

Member | | ’2 ’3 ’4 ’5 |6 |7 |8 |9 |10 |11 |12 |13 ‘14 ‘15 ‘16 ‘17 ‘18
no.

Parametric CHS cross-sections
Util. ‘ 0.82 ‘ 0.67 ‘ 0.24 ‘ 0.92 ‘ 0.26 | 0.75 | 0.31 | 0.99 | 0.01 | 0.70 | 0.45 | 1 | 0.14 ‘ 0.82 ‘ 0.97 ‘ 0.99 ‘ 0.99 ‘ 0.99
ratio

Parametric RHS cross-sections
Util. ‘ 0.75 ‘ 0.59 ‘ 0.24 ‘ 0.87 ‘ 0.36 | 0.77 | 031 | 0.99 | 0.37 | 0.90 | 031 | 0.98 | 0.06 ‘ 0.78 ‘ 0.62 ‘ 0.99 ‘ 0.95 ‘ 1
ratio

The results of this case study highlight two important aspects for the subsequent gridshell
optimization problems First, parametric cross-sections are employed in all subsequent cases to
better exploit the capability of Gaussian processes in modelling continuous functions to achieve
better and consistent results. Second, the calculation of the structural constraints is performed as
outlined in Chapter 4, ensuring that all final designs remain feasible with respect to strength and
buckling limitations throughout the optimization process. Together, these elements establish a
robust framework for extending the Bayesian Optimization methodology to more complex
gridshell structures with 3D geometry analysed in the following subchapters.
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In this subchapter a transition is made from the 2D geometry to a 3D structural system. The
performance of the BO framework is tested on the symmetric 4x4 grid optimization case with
asymmetric boundary conditions which serves as a building block towards the last case study in
subchapter 5.4.

The structural model is defined as a regular grid configuration consisting of 4 x 4 nodes. The plan
dimensions are set to a length and width of 4 m, while the overall height of the structure is 1.43 m
with a total of 28 elements. The geometry is fixed throughout the analysis and is illustrated in
Figure 60 and Figure 61.
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Figure 60: 4x4 gridshell layout. Member and Figure 61: 4x4 gridshell. Side view.
node enumeration.
Two load combinations are considered in the analysis:
e Validation load combination: selft-weight + imposed load of 1 kN/m?
e Test load combination: 1.35 * selft-weight + 1.35 * 50 * imposed load of 1kN/m’

This test load is not derived from Eurocode recommendations, but rather represents a fictitious
scenario developed empirically to evaluate the effectiveness of the BO framework. The validation
and test load combinations are illustrated in Figure 151 and Figure 152 in Appendix DI. 4x4
Gridshell Additional Figures, respectively.

The boundary conditions applied to the structure are illustrated in Figure 62 to Figure 65. In these
figures, arrows indicate the directions in which the supports are permitted to move, thereby
defining the degrees of freedom at each support location. This representation provides a clear
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overview of the structural restraints considered in the analysis. The choice of boundary conditions
is adopted to enhance the realism of the gridshell model where the structure is allowed to freely
expand and contract due to varying temperature loads.

Figure 62: Supports: Translation in x-free, y-free, Figure 63: Supports: Translation in x-fixed, y-
z-fixed. Rotations in x-,y-,z- directions are free. fixed, z-fixed. Rotations in x-,y-,z- directions are
free.
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Figure 64: Supports: Translation in x-fixed, y- Figure 65: Supports: Translation in x-free, y-
free, z-fixed. Rotations in x-,y-,z- directions are fixed, z-fixed. Rotations in x-,y-,z- directions are
free. free.
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The structure is modelled using steel grade S235, which is characterized by a yield strength of
fy = 0™ = 235N /mm?. This material specification is applied to all members of the model.

The structural members are modelled using parametric Rectangular Hollow Sections (RHS). For
each element i, the axial cross-sectional area is constrained within the bounds 1892mm? < 4; <
21692mm?, as illustrated in Figure 66 and Figure 67, respectively. The rationale for selecting
these bounds is provided in the following paragraphs.

Lower area bound is kept at 1892 mm? when a thickness of t = 10mm is assumed and the inner
and outer radius of the cross-section are accounted for by the following two equations according
to EN 10210-2 for hot finished cross-sections, respectively: 7, = 1.5* t and r; = 1.0 * t. Upper
area bound is set at 21692mm? due to the limit for hw/ty for plates that require stiffeners which is
set at Ay, = 72 * ,/235/f, according to EN 1993-1-5:2006; 6.2.6(2); Eq. 6.22. Therefore, the
height of the RHS cross-section must not exceed 740 mm when accounting for a thickness of
10mm. Otherwise, a web stiffener must be modelled for the cross-section and shear buckling
considered. The same ratio for width/height = 1/2 is kept as in the cantilever truss case
described in previous subchapter to account for the different buckling capacity depending on the
direction. This parameter can be changed by the designer depending on project requirements.
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Figure 66: Lower bound for the area of the RHS Figure 67: Upper bound for the area of the RHS
profiles (A = 1892mm?). profiles (A = 21692 mm?).
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The structural constraints are outlined below:

o Strength:
o Stress constraints are selected to be ¢™** — |g;| = 0, where the o™ is the

maximum allowable yield stress of the material, and o; is the stress in the i™ element
and are calculated as described in Chapter 4.3.2.
o Stability:

o The flexural buckling capacity of each beam element is calculated according to the
EN 1993-1-1, section 6.3.1 as described in Chapter 4.3.3 in RFEM®6. The effective
buckling length factor is chosen as 1 (conservatively) for the pin-pin condition since
the optimization takes place in the preliminary design phase when the rigidity of
the joints is unknown.

The optimization task is formulated as a size optimization problem, in which the parametric cross-
sections of the structural members are adjusted with the objective of minimizing the overall weight
of the structure.

The validation is performed by introducing a load case with low values called “validation load
combination” such that the lower bound for the cross-sectional area of the RHS profiles is
sufficient to satisfy the constraints. This way the optimal profiles are known prior to optimizing
the structure. The results of the BO framework are then compared to this baseline in Figure 70.

Two designs are chosen for the analysis based on a 1 dimensional and 17 dimensional input feature
space. In the former (Figure 68) all structural members share the same cross-sectional profile and
in the second case (Figure 69) each group of members is assigned an independent cross-section.
The highlighted members illustrate the number of degrees of freedom considered in the
optimization.
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Figure 69: 4x4 Gridshell. 17D design space.

Figure 68: 4x4 Gridshell. 1D design space.
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Figure 70 shows the convergence behaviour of the BO algorithm for both cases. The adopted
heuristic is 1 point per input dimension resulting in 10 initial samples and 17 initial samples for
the 1D case and the 17D, respectively. The 1D case converges to the known analytical optimum
of 606.35kg within the first 5 iterations while the 17D case converges around the 10" iteration.
For the 17D problem, the optimization converges to a solution with a total weight of 655.38 kg.
This corresponds to a difference of approximately 8%, which is deemed acceptable considering
the complexity of the high-dimensional search space and the limited number of iterations.

2200 7 —— 1D Kemnel; 28GPs; Average weight: 606.35kg

17D Kernel; 28GPs; Average weight: 655.38kg
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Figure 70: Bayesian optimization progress: 1D & 17D Gridshell model validation. Median objective
function values and corresponding 95% confidence interval.

The corresponding optimized structures for 1D case and the 17D case are presented in Figure 71
and Figure 72. The 1D case converges exactly to the analytical solution, confirming the validity
of the BO framework in a reduced design domain. In contrast, the 17D case results in slightly
oversized members in certain regions, which accounts for the deviation from the theoretical
optimum. Nonetheless, the BO approach demonstrates its capability to efficiently navigate a high-
dimensional, constrained design space and approximate the global optimum within a small margin
of error which can be corrected for with small amount of post-processing.

Overall, these results validate the robustness of the proposed BO framework for structural size
optimization in a this 3D 4x4 gridshell case study. The method is able to reproduce analytical
solutions in low-dimensional problems while providing near-optimal designs in high-dimensional
cases, where traditional methods such as the ones discussed in Chapter 2 may require larger
number of iterations to achieve similar results leading to increased computational cost.
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Figure 71: 4x4 Gridshell. Analytical optimal
solution & optimal solution in 1D input design
space. Unit of the cross-sections is [mm)].

Figure 72: 4x4 Gridshell. Optimal solution in
17D input design space. Unit of the cross-
sections is [mm].

Table 10 summarizes the results of the validation study under the simplified load combination.
The table reports the optimal cross-sectional areas obtained from three approaches.

For the 1D Bayesian Optimization case, all members converge to the same cross-sectional area of
1892 mm?, confirming the correctness of the BO framework when applied to a reduced problem.
In contrast, the 17D case yields a distribution of cross-sectional areas across the members,
reflecting the increased flexibility of the design space. While some members remain close to the
analytical solution, others adopt larger profiles (e.g., Ais, A9, A27), leading to an overall higher
structural weight. Some of the values are very close to each other such as the Aj.12 and Ai3. The
recurring similarity among some of the elements creates a recognizable pattern, as illustrated in
Figure 72. This observation coupled with low standard deviation of 4.76 kg for the 17D case
indicates the presence of an inherent lower-dimensional structure within the design space, which
can be exploited through dimensionality reduction methods such as PCA, as outlined in Chapter
3.8 to reduce the computational cost of the optimization. This analysis is investigated more in
depth for the test load combination where the pattern is more explicit.

The summary statistics at the bottom of the table highlight the performance differences between
the cases.
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Table 10: Validation load combination: Optimal areas and 28 GPs with 17D kernels.

Variables Analytical solution 28 GPs-1D 28 GPs-17D
Parametric RHS Parametric RHS Parametric RHS
cross-sections cross-sections cross-sections

Ai12[mm?] 1892 1892 1919.19
Az [mm?] 1892 1892 1920.56
Ais[mm?] 1892 1892 1897.17
Ais[mm?] 1892 1892 2198.04
Ais[mm?] 1892 1892 1967.04
A7 [mm?] 1892 1892 2073.86
Ais[mm?] 1892 1892 2160.77
Ao [mm?] 1892 1892 2252.69
Az [mm?] 1892 1892 1958.73
Azi [mm?] 1892 1892 2044.33
Az [mm?] 1892 1892 1901.50
Az [mm?] 1892 1892 1947.98
Azs[mm?] 1892 1892 2368.73
Azs [mm?] 1892 1892 2129.13
Azs [mm?] 1892 1892 1976.27
A7 [mm?] 1892 1892 2854.56
Az [mm?] 1892 1892 2058.54

Average Number of - 12 117

FEM evaluations

Number of violated 0 0 0

constraints
Best Weight [kg] 606.35 606.35 648.29

Worst [kg] 606.35 606.35 661.11
Mean [kg] 606.35 606.35 655.382

Standard deviation 0 0 4.76

[kg]
* Note: The corresponding cross-sections are shown in the legend of Figure 71 and Figure 72.
The cross-section groups are formed based on the similarity of the area.

After being evaluated under the validation load case, the BO framework is then tested under the
increased load combination which represents a more practical use case for an optimization
routine.

The results for the weight optimization of the 4x4 gridshell for the test load combination are shown
in Figure 74. It can be seen that when increasing the complexity or the degrees of freedom in the
system the weight reduces from the 1D case to the 17D case by 16.7%. The maximum complexity
for this problem is achieved by allowing all the 28 elements to have their own cross-section. This
means that the analysis is performed in 28-dimensional input design space which is above the
empirically derived limit (~20D) of the Bayesian optimization framework as discussed in Chapter
2. The results show that the average optimal weight is increased to 973.61kg making it slightly
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better than the 1D optimization results, but worse than the 17D results. Upon further investigation
to establish the level of complexity at which the optimal weight starts to deteriorate it is found that
this happens at 18D feature space. To clarify the degrees of freedom, the configuration is shown
in Figure 73. The average weight of the structure increases by 1% which shows the limitation of
the Bayesian optimization framework for this case study which is similar to what is stated in
Moriconi et al., (2020). Therefore, the 17D design space is chosen for the rest of the analyses
performed in this case study.
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Figure 73: 4x4 Gridshell. 18D design space.

Bayesian optimization progression

1D Kernel; 28GPs; Average weight: 997.32kg
17D Kernel; 28GPs; Average weight: 830.16kg
18D Kernel; 28GPs; Average weight: 837.66kg
28D Kernel; 28GPs; Average weight: 973.614kg
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Figure 74: Bayesian optimization progress: 17D Gridshell model validation. Median objective function
values and corresponding 95% confidence interval.

Table 11 presents the optimized cross-sectional areas and the corresponding cross-sections
obtained under the test load combination for three design space configurations namely .

In the 1D case, all members converge to a uniform cross-section of 3117.99 mm?, resulting in a
total structural weight of 997.32 kg. This solution satisfies all constraints but is overly conservative,
as members are over-dimensioned for the given load combination.
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Table 11: Test load combination: Optimal areas for the 1D, 17D and 28D kernels.

Variables 28 GPs- 1D 28 GPs— 17D 28 GPs — 28D
Parametric RHS cross- Parametric RHS cross- Parametric RHS
sections sections cross-sections
Aj.12 [mm?] 3117.99 2762.63 shown below*
(RHS 121/60/10) (RHS 109/54/10)
A3 [mm?] 3117.99 2057.88 1937.66
(RHS 121/60/10) (RHS 86/43/10) (RHS 91/45/10)
A4 [mm?] 3117.99 3424.22 3980.54
(RHS 121/60/10) (RHS 131/66/10) (RHS 178/89/10)
A5 [mm?] 3117.99 2145.76 2109.78
(RHS 121/60/10) (RHS 88/44/10) (RHS 118/59/10)
A6 [mm?] 3117.99 3091.81 4461.66
(RHS 121/60/10) (RHS 120/60/10) (RHS 115/58/10/)
A7 [mm?] 3117.99 1967.23 2868.86
(RHS 121/60/10) (RHS 82/41/10) (RHS 95/48/10)
Ajg [mm?] 3117.99 2557.73 2465.08
(RHS 121/60/10) (RHS 102/51/10) (RHS 103/52/10)
Ao [mm?] 3117.99 2298.61 2947.79
(RHS 121/60/10) (RHS 94/47/10) (RHS 143/71/10)
Ao [mm?] 3117.99 2508.59 2697.70
(RHS 121/60/10) (RHS 101/50/10) (RHS 113/56/10)
Ay [mm?] 3117.99 2497.58 3878.22
(RHS 121/60/10) (RHS 100/50/10) (RHS 100/50/10)
Az [mm?] 3117.99 2294.89 2900.36
(RHS 121/60/10) (RHS 93/47/10) (RHS 118/59/10)
Az [mm?] 3117.99 2249.69 4658.60
(RHS 121/60/10) (RHS 92/46/10) (RHS 103/51/10)
Ay [mm?] 3117.99 2109.90 2191.26
(RHS 121/60/10) (RHS 87/44/10) (RHS 126/63/10)
Ags [mm?] 3117.99 2297.62 2171.62
(RHS 121/60/10) (RHS 93/47/10) (RHS 109/54/10)
Age [mm?] 3117.99 2477.11 2456.31
(RHS 121/60/10) (RHS 99/50/10) (RHS 117/58/10)
Ay7 [mm?] 3117.99 1995.09 2603.96
(RHS 121/60/10) (RHS 83/42/10) (RHS 85/43/10/)
Ao [mm?] 3117.99 3068.87 3246.99
(RHS 121/60/10) (RHS 119/60/10) (RHS 134/67/10)
Average Number of FEM 10 210 300
evaluations
Number of violated 0 0 0
constraints
Best Weight [kg] 997.32 824.82 953.67
Worst [kg] 997.32 839.93 986.10
Mean [kg] 997.32 830.16 973.62
Standard deviation [kg] 0 4.77 12.79

* The areas for the first 12 elements in the 28D case are the following:
Ai.12 €[4182.40; 3315.41; 3524.95; 2748.51; 3103.82; 2014.73; 4388.95; 2349.72; 2097.41; 2747.40;
3308.21; 3640.72] with corresponding cross-sections [RHS 138/69/10, RHS 146/73/10, RHS 130/65/10, RHS

108/54/10, RHS 96/48/10, RHS 90/45/10, RHS 100/50/10, RHS 89/44/10, RHS 98/49/10, RHS 159/80/10, RHS

93/46/10, RHS 139/70/10 ]
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The influence of the number of initial samples for the 17D kernels with the test load combination,
is shown in Figure 75. As a reference a random search is also performed to showcase the efficiency
of the Bayesian optimization framework. The adopted heuristic is 1 point and 10 points per input
dimension resulting in 17 and 170 initial samples, respectively. It can be concluded that the latter
produces better results in terms average weight and reduced variance between runs. However, this
comes at a higher computational cost due to the increased number of data points N and the O(N°)
scalability of the Gaussian processes. The difference in the final average weight between the two
cases is 3.6%. Based on this sensitivity analysis, the balance between what number of initial
samples to use and the computational cost is left to the user.

Bayesian optimization progression

4000
—— 17D Kernel; 28GPs; 17 initial samples; Average weight: 860.57kg

3500 —— 17D Kernel; 28GPs; 170 initial samples; Average weight: 830.16kg
—— Random search; Average weight: 2328.74kg
3000 A

2500

2000

Total weight [kg]

1500 4

1000 4

20 30 40 50

o
=
o

Iterations
Figure 75: Bayesian optimization progress: 17D GPs & Random Search. Median objective function
values and corresponding 95% confidence interval.

Further details on the influence of the number of initial samples on the hyperparameters of the
Gaussian processes for 17D and 28D input space are shown in the heatmaps in Figure 152 to
Figure 155 in Appendix D1.
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The design shown in Figure 76 is obtained from a common rule of thumb of (1/25) * span for
the height of the cross-section of all of the elements in the gridshell. It provides a reasonable
design for comparison with the optimized design obtained from the BO framework in the 17D
design space shown in Figure 77.

[/ RHS 160/80/10

Figure 76: 4x4 Gridshell. Initial rule of thumb design. Span is 4m. Unit of the cross-sections is [mm)].

RHS 83/42/10

RHS 88/44/10
[0 RHS 94/47/10
W RHS 102/51/10
W RHS 109/54/10
MRHS 120/60/10
M RHS 131/66/10

Figure 77: 4x4 Gridshell. Best optimal solution in 17D input design space.
Unit of the cross-sections is [mm].

The total structural weight of the first design is 1376 kg while the optimized one has a weight of
824.82 kg. This results in a /.67 x reduction of steel material which reduces the cost and makes the gridshell
more sustainable by reducing the CO; emissions for the production of the profiles.
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As illustrated in Figure 77 and outlined in Table 11, the resulting design exhibits similarities between the
areas of members and forms, suggesting the presence of an underlying low-dimensional structure. In
practice, this means that the effective dimensionality of the problem is smaller than the nominal 17 design
variables, since certain cross-sections evolve in a correlated manner to accommodate the load transfer
within the gridshell.

Principal Component Analysis (PCA) as discussed in subchapter 3.8 offers a systematic means to exploit
this redundancy by identifying the most influential directions of variation in the design space. By projecting
the original 17D problem onto a reduced set of uncorrelated principal components, it becomes possible to
retain the dominant structural patterns while eliminating redundant or weakly contributing variables. This
dimensionality reduction can mitigate some of the computational burden of Bayesian Optimization while
producing close to the found optimal designs in the original design space. As mentioned before 17D is
chosen as the original complexity on which the PCA is applied.

The initial samples that are generated with the Latin Hypercube sampling strategy in the design domain for
the areas of the cross-sections follow the pattern shown in Figure 77. This approach spreads samples across
the entire input space in a space-filling manner on which the PCA is later fitted on. This approach can be
regarded as an analogue to constructing multiple 4x4 gridshells produced by different manufacturers under
comparable loading and boundary conditions, with the aim of identifying underlying patterns in their
structural performance.

Table 12 present the results of applying Principal Component Analysis (PCA) to reduce the dimensionality
of the 17D gridshell design space prior to Bayesian Optimization. Two reduced representations are
considered, using 6 principal components (PCs) and 10 PCs, respectively. The rationale behind this choice
is discussed in the following paragraph.

The explained variance plot in Figure 78 shows that the first few principal components capture most of the
variability in the design space which is expected when there is a relatively clear pattern in the data.
Specifically, the first 6 components account for approximately 98% of the variance as shown in cumulative
variance plot Figure 79, while 10 components are sufficient to capture nearly the entire variance. This
indicates that the effective dimensionality of the design problem is substantially lower than the original 17
variables, which is a similar result to the 8 effective cross-sections shown in Figure 77.

Table 12: 4x4 Gridshell: Statistics for the PCA with different number of principle components.

PCA number of 6 principle 10 principle
components components components
Best Weight [kg] 1005.77 892.70
Worst Weight [kg] 1182.45 975.66
Mean [kg] 1062.23 928.42
Standard deviation [kg] 69.47 22.97
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Explained variance vs Number of components Cumulative Explained Variance vs Number of Components
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Figure 78: 4x4 Gridshell: Explained variance by Figure 79: 4x4 Gridshell: Cumulative explained
each principle component. variance by each principle component.

The optimization results summarized in Table 16 reveal a clear trade-off between accuracy and
computational efficiency. With 6 components, the best structural weight obtained is 1005.77 kg,
with a mean weight of 1062.23 kg and relatively large standard deviation of 69.47 kg. Increasing
the dimensionality to 10 components improves both accuracy and robustness: the best solution is
reduced to 892.70 kg, with a mean of 928.42 kg and a lower standard deviation of 22.97 kg.
However, both PCA cases remain above the best weight obtained without PCA of 824.82 kg,
indicating that dimensionality reduction introduces a small optimality gap.

The convergence histories in Figure 80 further illustrate these effects. The shaded regions indicate
the variance across the 10 runs, which is visibly larger for 6 components, highlighting reduced
reliability when fewer components are retained in this case study.

Bayesian optimization progression

—— PCA; 6 components; Average weight: 1062.23kg
PCA 10 components; Average weight: 928.42kg
—==- Without PCA Best weight: 824.82 kg

2500 A

2000 A

1500 A

Total weight [kg]

1000 A

0 20 40 60 80 100

Iterations

Figure 80: Bayesian optimization progress with PCA for 4x4 gridshell. Median objective function values
and corresponding 95% confidence interval for the different number of principal components. Test load

combination.
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Finally, Figure 81 reports the average convergence time. The use of PCA significantly reduces
computational effort: optimization with 6 components converges in approximately 20 minutes,
with 10 components requiring around 50 minutes, compared to more than 100 minutes for the
full 17D dimensional problem. This is due to the fact that both the maximisation of the
acquisition function and the fitting of the Gaussian processes happens in a reduced design space
leading to a faster execution of the algorithm per iteration..

Bayesian optimization - Average Convergence Time

100 ~ {

80

60 1

Time {min)

40 -

20 4

PCA - 6 components PCA - 10 components Without PCA

Figure 81: Average convergence time comparison between the runs with PCA and without PCA for the
4x4 gridshell.

Therefore, PCA provides a compromise between solution quality and computational efficiency.
While the full 17D optimization yields the best structural weight, PCA with 10 components
achieves a near-optimal solution at less than half the computational cost. The 6-component case is
computationally more efficient but suffers from reduced accuracy and higher variance, indicating
that too much dimensionality reduction may oversimplify the design space.
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5.4. 3D optimization case: Symmetric 9x9 Grid with size variables

In this subchapter the last case study of a 3D symmetric 9x9 grid optimization case with symmetric
boundary conditions and 288 steel elements is analysed to evaluate the performance of the BO
framework. The same setup of the BO framework as for the 4x4 gridshell is used. The case study
is inspired by the C30 gridshell designed and built by Octatube which serves to create the boundary
conditions, set the load combination, focus on a particular type of cross-section and determine the
material properties. This case is selected to assess the BO framework on a practical design
implemented in reality.

For context, a short description about the design and construction of the C30 shell is provided in
the following paragraphs. Afterwards, the optimization problem is defined and results are
evaluated.

5.4.1. C30 Gridshell

The aim of constructing this structure was to cover the inner courtyard of an office building which
had a monumental character due its resemblance to Dutch architecture of the 16%/17" century even
though the foundations were laid in the 1916 (Octatube, 2020). As a result of this status, some
design and building challenges emerged. An example was that no horizontal forces were allowed
to be transferred perpendicular to the fagcade. Also, in Figure 82 it can be seen that there are
polygonal towers in three of the edges of the enclosed space which makes the construction of
continuous straight edge beams unfeasible and in turn causes the loss of stiffness of the structure.
To overcome this challenge, pretension cables were used to keep the edges together (see Figure
83). This must be carried out with millimetre-level precision, as even slight deviations can lead to
a completely different distribution of forces.

Figure 83: C30 view from below the roof.
Figure 82: Overview of the C30 structure. Pretension cables in the corner.

(Source: Octatube, 2020) (Source: Octatube, 2020)

Another challenge during the construction of the grid shell was how to close the middle part of the
roof. To do this, the engineers developed an assembly technique based on the principle of
reciprocal frames which is a type of self-supporting structure. There are four ladder frames (orange
elements in Figure 84) in the middle, that do not rely on any scaffolding and in the end close the
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roof. Cranes were used to lift the frames into position (Figure 85). To achieve this, advanced
prefabrication techniques were used such as file-to-factory which sends data to a laser cutter
(instead of sawing) through a script in order to produce the profiles and connections.

Lastly, there was a challenge in determining the connection stiffness between the different
elements which ultimately influences how the stresses are distributed over the roof. To tackle this
the engineers developed two separate models that represented the lower and upper limit of the
connection stiffnesses. In the former a lot of deformations were found whereas in the latter the
deformations are more controlled.

Because of the structure's shape and the varying sizes and angles of the steel elements, a parametric
design approach was employed in order to design the shell efficiently.

Figure 85: Placing of the ladder frames using cranes. (Source: Octatube, 2020)
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5.4.2. Problem definition & analysis

The structural configuration is defined as a diagonal grid consisting of 9x9 nodes. The plan
dimensions are set to a length and width of 28 m, with a height of 3.84 m with a total of 288
elements. The geometry remains fixed throughout the analysis and is illustrated in Figure 86 and
Figure 87. The geometry is form-found using the Grasshopper script presented in Figure 163
(Appendix D2. 9x9 Gridshell Additional Figures). This script employs the dynamic relaxation
method via the Kangaroo 2 plugin, however, a detailed explanation of the method lies beyond the
scope of this thesis. For further information, the reader is referred to Shell Structures for
Architecture: Form Finding and Optimization by Adriaenssens et al. (2014). The geometry is
simplified to a square layout than the original C30 design to make the problem symmetric.
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Figure 86: 9x9 gridshell. Layout with member numbers.

28m

Figure 87: 9x9 gridshell. Side view.
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The test load combination is defined at the ultimate limit state (ULS) as 1.20 * self — weight +
1.20 = Glass + 1.50 * Wind . This formulation has been adapted from the original structural
report for the C30 gridshell. The load cases and resulting load combination are shown in Figure
156 to Figure 159 in Appendix D2.

The support conditions of the structure are illustrated in Figure 88 to Figure 90. In these
representations, arrows indicate the directions in which the supports are free to move, thereby
defining the degrees of freedom at each support location. The boundary conditions are inspired by
the C30 gridshell where the structure is allowed to move to accommodate any thermal loads that
might occur. There are also additional measures taken to prevent any horizontal forces developing
on the facade of the historic buildings, but they are addressed later in the text.
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Figure 88: Supports: Translation in x-free, y- Figure 89: Supports: Translation in x-free, y-
free, z-fixed. Rotations in x-,y-,z- directions are fixed, z-fixed. Rotations in x-,y-,z- are free.
free. ’ o

Figure 90: Supports: Translation in x-fixed, y-free, z-fixed. Rotations in x-,y-,z- are free.
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max —

The structure is modelled using steel grade S355, characterized by a yield strengthof f, = o

355 N/mm?. This material specification is applied to all structural members similar to the C30
gridshell.

The members are modelled using parametric Rectangular Hollow Sections (RHS). For each
element i, the axial cross-sectional area is constrained within the bounds 1723 < A4; <
10010mm?, as illustrated in Figure 91 and Figure 92. These values are derived from setting the
thickness of the cross-section t = 8mm and the ratio of width/height = 1/3. The choice for
these parametric values is made based on the structural report of the C30 gridshell.

RHS 96/32/8/12/8 RHS 484.6/161.5/8/12/8
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Figure 91: Lower bound for the area of the RHS Figure 92: Upper bound for the area of the RHS
profiles (A = 1723mm?2). profiles (A = 10010mm?2).

The constraints are outlined below:

e Strength:
o Stress constraints are selected to be a™** — |g;| = 0, where the ¢™* is the

maximum allowable yield stress of the material, and o is the stress in the i element
and are calculated as described in Chapter 4.3.2.
o Stability:
o Local buckling strength of each beam element is calculated according to the EN
1993-1-1, section 6.3.1 as described in Chapter 4.3.3. The effective buckling length
factor is chosen as 1 (conservatively) for the pin-pin condition since the
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optimization takes place in the preliminary design phase when the rigidity of the
joints is unknown.

Based on the results of the previous case study of the 4x4 gridshell, the analysis of the full
dimensionality of the 9x9 gridshell (288D) is prohibitively expensive to evaluate with the BO
framework.

Therefore, in this case study, two lines of symmetry are introduced in order to reduce the
dimensionality of the optimization problem to be below 20D. These symmetry conditions simplify
the dimensionality of the optimization problem while preserving the structural behaviour of the
system. The applied symmetry are illustrated in Figure 93.
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Figure 93: 9x9 gridshell: Lines of symmetry.
The optimization task is formulated as a size optimization problem, in which the parametric cross-

sections of the structural members are adjusted with the objective of minimizing the overall weight
of the structure.
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The design shown in Figure 94 illustrates the 17 dimensional input feature space. Each colour
represents the cross-section assigned to a group of steel elements. This is different from the 4x4
gridshell case where each individual element has its own cross-section. The edge beams (nr. 1-32)
share the same cross-section. Furthermore, 8 rod elements with solid circular cross-section with
diameter equal to 50mm are modelled as shown. They can only accommodate tension forces. This
addition is made based on the original C30 gridshell to prevent any horizontal forces developing
on the fagade of the historic buildings that support the structure. These 8 elements are excluded
from the optimization problem keeping the task 17D.
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7 Rod elements: d = 50mm

Figure 94: 9x9 Gridshell. 17D design space.
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The convergence history of the constrained BO framework compared against random search is
shown in Figure 95. Two BO runs are shown - one with 17 initial samples and another with 170
initial samples, both employing a 17-dimensional kernel with 288 Gaussian Process surrogate
models to handle the strength and stability constraints discussed in Chapter 4.3. The shaded regions
illustrate the variability across independent runs, while the solid lines indicate the median
performance.

Bayesian optimization progression

60000 - —— 17D Kernel; 288GPs; 17 initial samples; Average weight: 15383.46kg
——— 17D Kernel; 288GPs; 170 initial samples; Average weight: 15156.49kg
—— Random Search; Average weight: 27916.97kg
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Total weight [kg]
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Figure 95: Bayesian optimization progress: 17D 9x9 Gridshell model. Median objective function values

and corresponding 95% confidence interval.
It can be observed that both BO configurations significantly outperform random search. The BO
runs rapidly reduce the structural weight within the first 10—15 iterations, converging toward
feasible lightweight solutions. Increasing the number of initial samples improves convergence
stability and leads to a slightly lighter final design (15,156.49 kg compared to 15,383.46 kg on
average). In contrast, random search converges slowly and stagnates at higher weight levels with
higher variability, highlighting the efficiency of the proposed surrogate-assisted constrained
optimization approach.

In the following figures the effect of the optimization process on the gridshell structure is
visualized. Figure 96 shows the initial design, based on the uniform C30 gridshell cross-section
RHS 300/100/8 for all elements, with a total structural weight of 38.389 tons. The max utilization
ratio is 0.30 which leads to excessive material usage.

In contrast, Figure 98 displays the optimized configuration obtained through Bayesian
Optimization. The allocation reduces material consumption significantly, yielding a total structural
weight of 15.098 tons which corresponds to a 2.54 X lighter structure or a weight reduction of
approximately 60%.

88



v ,ﬁ‘,ﬁ " \/
/ /0‘

AVANANAVAN

is [mm)].
is [mm].

Unit of the cross-sections
of the cross-sections

Figure 97: 9x9 Gridshell. Optimized cross-sections
Unit

Figure 96: 9x9 Gridshell. Initial design based on the C30 gridshell cross-sections
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The max utilization ratios in the optimized design calculated in RFEM6 per cross-section are:

e RHS96/32/8 - 0.71 e RHS 132/44/8 - 0.92
e RHS 103/34/8 - 0.96 e RHS 262/87/8 = 0.90
e RHS 121/40/8 - 0.93 e RHS 294/98/8 - 0.80

e RHS 128/43/8 > 0.92

These values further validate the structural efficiency of the optimized design. Most of the cross-
sections operate very close to their capacity limits, demonstrating that the optimization framework
successfully exploited their load-bearing potential. The first cross-section RHS 96/32/8 has the
lowest utilization ratio but it is also the bottom boundary for the cross-sectional area which means
that given the problem definition it is the optimal result.

Furthermore, an observable pattern emerges in the cross-section distribution shown in Figure 97.
This mean that PCA can optionally be applied. The same procedure as for the 4x4 gridshell is
applied here to evaluate what the effect of the optimization in a reduced latent is in terms of quality
of the results and computational time.

Figure 98 shows the explained variance ratio as a function of the number of principal components.
The first principal component alone captures over 40% of the variance in the dataset, while the
second accounts for approximately 13%. Beyond the first few components, the marginal
contribution of additional components diminishes significantly, with components beyond the 10th
each contributing less than 2% to the overall variance. This indicates that much of the variability
in the 17-dimensional design space can be represented in a reduced subspace of lower
dimensionality. This is confirmed in the plot of the cumulative explained variance plot in Figure
99.
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Figure 98: 9x9 Gridshell: Explained variance by
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Figure 99: 9x9 Gridshell: Cumulative explained

variance by each principle component.
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The cases with 11 and 14 components are examined to assess the influence of PCA on the structure,
serving as a sensitivity study.

Table 13 presents statistical performance indicators for the optimization of the 9x9 gridshell using
PCA-reduced design spaces. The values indicate that increasing the number of principal
components not only yields lighter structures but also enhances robustness and consistency across
optimization runs.

Table 13: 9x9 Gridshell: Statistics for the PCA with different number of principle components.

PCA number of 11 principle 14 principle
components components components
Best Weight [kg] 20921.38 15827.2
Worst Weight [kg] 24225.74 15906.11
Mean [kg] 22193.87 15865.16
Standard deviation [kg] 1598.03 34.47

Furthermore, Figure 100 depicts the convergence histories for Bayesian Optimization with 11 and
14 PCA components, compared against the best solution obtained without PCA (red dashed line).
The optimization with 11 components stagnates around 22,000 kg on average, which is
substantially higher than the benchmark solution. On the other hand, the 14-component
configuration performs markedly better, steadily reducing the structural weight to an average of
15,865.16 kg, closely approaching the non-PCA best solution.

Bayesian optimization progression

32500 A —— PCA 11 components; Average weight: 22193.87kg
PCA 14 components; Average weight: 15865.16kg
30000 4 | ——~ Without PCA Best weight: 15098.08kg
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Figure 100: Bayesian optimization progress with PCA for 9x9 gridshell. Median objective function values
and corresponding 95% confidence interval for the different number of principal components.
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Finally, the convergence time comparison (Figure 101) provides further insight into the trade-off
between accuracy and efficiency. The 11-component PCA run converged in approximately 130
minutes, while the 14-component run required around 150 minutes. The non-PCA case took 200
minutes on average. This pattern is consistent with the earlier 4x4 gridshell study, where PCA
reduced computational cost but at the expense of solution quality.

Bayesian optimization - Average Convergence Time
240

220 1

200 4

180 A

Time (min)
]
1

160 A

140 4

120 A

1004 =

T T T
PCA - 11 components PCA - 14 components Without PCA

Figure 101: Average convergence time and 95% confidence interval comparison between the runs with
PCA and without PCA for the 9x9 gridshell.

The results highlight the trade-off between computational efficiency and accuracy. When fewer
components are retained (11 PCA), the optimization achieves faster convergence. However, this
comes at the cost of significantly reduced solution quality. Increasing the number of components
to 14 improves accuracy while still offering moderate computational savings compared to the full
design space. By contrast, conducting the optimization without PCA yields the highest-quality
solutions, albeit at the expense of the greatest computational cost.
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Figure 102: User interface of the BO Tool for cross-
section optimisation.

The basic version of the “BO Tool — Cross-
section Optimizer” shown in Figure 102 is
designed to help structural engineers automate
the selection of optimal cross-sections for
members in a structure, using the constrained
BO algorithm discussed in subchapter 4.1. Its
interface is structured in a way that allows
engineers to input key project information and
optimization parameters without needing to
handle the algorithmic details directly in the
Python code.

The workflow begins with specifying the
“RFEM6 Model Name”, where the user
enters the name of the structural model to be
optimized. Next, under “Optimization
parameters”, the wuser defines the
computational budget and tuning criteria. The
Evaluation budget sets the maximum number
of structural analyses the tool will perform.
The & max and & min parameters define the range
of acquisition function exploration values as
defined in subchapter 3.4 and have default
values of -0.01 and -1, while the Improvement
Threshold sets the minimum improvement
required to continue the optimization. The
Patience value indicates how many iterations
the tool will continue if no improvement is
found, and Number of initial samples
determines how many starting cross-section
configurations are tested before the Bayesian
Optimization loop begins.

The section “Problem size bounds” allows
engineer to describe the structural system
being optimized. Here, the number of
members and the available cross-sections must
be entered, along with upper and lower bounds
for the cross-sectional area. These inputs
ensure that the optimizer only searches within
feasible engineering limits. In a future version
of the tool these bounds can be extended to be
per element, instead of being the same for all
elements as it is currently.
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For record-keeping, the “Logging” section specifies where the results are stored, with a default
filename provided. Engineers can browse to select a different directory if needed. Once all
parameters are set, clicking “Optimize cross-sections” starts the optimization process. The “Run
output” panel then displays the progress of the optimization in real time, showing the tail of the
log as the tool iteratively searches for improved solutions.

Finally, the “Results” box summarizes the outcome of the optimization by reporting the best-
performing cross-sections (for the first nnn members) and the corresponding optimized structural
weight. In this way, the tool translates the complex Bayesian Optimization procedure into a user-
friendly interface, making it accessible for structural engineers who wish to efficiently minimize
weight while satisfying design requirements.

The BO tool’s user interface could be enhanced in future versions, and its functionality extended
by incorporating parametric cross-sections of various types, such as HEA, IPE, and others.
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Proof-of-concept integration of Python implementation of constrained BO with RFEM6

The successful implementation of this case study provides a proof-of-concept that the Python script
of the Bayesian optimization can be integrated within industry-standard software packages such
as RFEM6.

Disadvantages of using diverse cross-sections

A database of 516 diverse standardized cross-sections is used in the analysis of this problem, and
the results show that the BO framework is able to reach close to optimal results within reasonable
time. However, this diversity introduces a high degree of irregular (non-smooth) behaviour to the
Gaussian processes used to model them as evidenced by Figure 106 - Figure 124 in Appendix A.
As aresult, for the following case studies only a single type of cross-section is used in the analysis,
namely circular hollow sections (CHS) or rectangular hollow sections (RHS).

Advantages of using structural knowledge when shape optimization is considered

Unlike random search strategies, which rely solely on stochastic sampling, constrained BO
benefits significantly from incorporating structural knowledge to guide the search process more
effectively in tasks where shape (layout) of the structure is part of the optimization. For instance,
to create the initial samples, the z-coordinates in the examples analysed in subchapter 5.2 are
sampled in increasing order so that the resulting truss geometries are similar to a cantilever’s
moment diagram, with the truss height growing larger toward the supports. Therefore,
incorporating domain-specific knowledge, such as the expected optimal shape of a cantilever truss,
into the initial samples, the surrogate model’s ability to recognize promising regions of the design
space at an early stage of the optimization process is enhanced.

Advantages of using Gaussian processes per element

The results indicate that utilizing 18 GPs to model the constraint function for each steel element
consistently produced better and more reliable outcomes compared to the approach with 4 GPs.
The former is more effective in navigating the design space and managing constraint satisfaction
per member, leading to improved performance across optimization runs.

Disadvantages of using standardized (discrete) cross-sections

It is important to note that the use of a standardized dataset of cross-sections presents several
disadvantages in the context of constrained BO. The adoption of discrete area values, as dictated
by the available cross-section database mentioned in the cantilever beam and truss case studies
(described in subchapter 5.1 and 5.2, respectively) introduces discontinuities into the design space.
This lack of smoothness can affect the accuracy of the Gaussian process surrogate model, which
relies on the assumption of continuous objective and constraint functions.
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As a result, the surrogate’s predictions might produce results with higher variability due to the
rounding of the cross-sectional area during the optimization process.

The need to map continuous algorithmic suggestions to the nearest available discrete value may
introduce additional bias in a given design region, especially if the cross-section database is
sparse. Therefore, the use of as many available profiles from the same type of cross-section (e.g.
CHS, RHS) is recommended to approximate a continuous distribution of the area and avoid the
disadvantages of diverse cross-sections mentioned before.

Advantages of using parametric (continuous) cross-sections

Employing parametric cross-sections in RFEM6 with dynamically adjustable areas solves the
previous issue as it allows the continuous nature of the Gaussian processes to be more accurately
represented.

Dimensionality sensitivity analysis

In this case study different dimensionalities of the optimization problem are analysed such as 1D,
17D, 18D and 28D. The findings presented in subchapter 5.3 indicate that the BO framework
continues to reduce the structural weight up to 18D, which aligns with the empirically established
limit of approximately 20 dimensions as generally reported in literature (e.g. Moriconi et al., 2020).

Number of initial samples sensitivity analysis

Constrained BO achieves much lower average weight of 830.16kg with 170 initial samples and
860.57kg with 17 initial samples. Notably, increasing the number of initial samples accelerates
convergence, as reflected by the faster decline in structural weight during the early iterations.
While both BO settings eventually stabilize around a similar weight range, the configuration with
more initial samples demonstrates slightly better performance and reduced variance. This
highlights the effectiveness of incorporating a larger initial design in guiding the surrogate model,
thereby enabling the algorithm to explore the design space more efficiently and converge more
reliably to near-optimal solutions.

Effect of Dimensionality Reduction via PCA

In addition to exploring dimensionality, Principal Component Analysis (PCA) is investigated as a
dimensionality reduction technique to improve the scalability of the BO framework. The solution
found for the best final design in the original 17D input space suggests that a pattern of similar
cross-sections exists for groups of the structural elements. More details are given in subchapter
5.3.

Therefore, PCA is applied to decrease the complexity of the problem from the original 17D input
space to a lower complexity namely to a 6D and 10D latent space. This is due to the fact that the
cumulative explained variance analysis reveals that the first six principal components captured
approximately 95% of the data variance, while ten components are sufficient to capture nearly
100%.
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Based on the findings in subchapter 5.3 & 5.4 the trade-off between efficiency and solution
quality is highlighted:

o Fewer PCA components improve computational speed but degrade optimization
accuracy.

e More PCA components retain variance and yield closer-to-optimal results but reduce the
computational advantage.

o Without PCA, optimization achieves the best weight but requires more computational
effort.

The use of the BO framework in the original input feature space is recommended when the
underlying pattern of the structure is not well known as suggested also in the paper by Eriksson &
Jankowiak (2021).

Moreover, the inherent linearity of PCA may be limiting its effectiveness in supporting the
optimization process. Therefore, variational autoencoders can be used as a more advanced method.
This model allows mappings to and from the latent space to be arbitrarily non-linear (Bishop,
20006).

Scalability of the constrained BO algorithm

One of the key distinctions from the previous gridshell is that steel elements are grouped according
to two lines of symmetry, with a single cross-section assigned to each group rather than to
individual members. This approach brings the optimization problem closer to practical engineering
applications where adjacent elements in an arch share the same cross-section. Also, it reduces the
dimensionality from 288D to 17D which is within the ~20D limit for BO. This demonstrates, that
by grouping the elements based on their structural function can help in the optimization process.

Overall, the 9%9 gridshell study extends the earlier findings by demonstrating that Bayesian
Optimization can handle much larger structural systems, though with increased computational
demands. PCA can offer a practical tool for reducing runtime in such cases, but the dimensionality
threshold must be chosen carefully to avoid discarding key structural variance.
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In this chapter the main conclusions are presented. This is done by answering the sub-questions
outlined in Chapter 1.4 which help answer the main research question mentioned below:

“To what extent can Bayesian optimization be applied to efficiently optimize the shape and
cross-sections of structures in terms of minimizing structural weight, while ensuring structural
integrity and integration with industry-standard tools like RFEM6?”

RQ1: How can Bayesian optimization be used in the weight optimization of
macrostructures?

Based on the analysed cases in Chapter 5, the constrained Bayesian optimization framework
applied in this research is found to be performing well for weight minimization of macrostructures
under structural constraints. The total structural weight is treated as the objective function while
the structural performance requirements for strength and stability serve as the constraints. The
algorithm uses a probabilistic surrogate, namely a Gaussian process to predict both expected
improvement of the objective function and the feasibility probability of the sampled point
producing designs that have unity checks below the threshold values of the constraints. As a result,
this combination enables a sample-efficient search of the design space.

In order to identify the next most likely point the maximization of an acquisition function is a
critical step in the framework. Empirically it has been found that the constrained Expected
Improvement (cEI) acquisition function offers a balanced exploration—exploitation trade-off by
prioritizing candidate designs that promise weight reduction while maintaining a high predicted
probability of meeting all structural constraints as described in Chapter 4.

To start the optimization loop, initial training samples have to be generated using a space-filling
sampling strategy such as the Latin Hypercube Sampling explained in Chapter 3.6. The number of
initial samples can have an effect on the variance of the outcomes as was found during the analysis
of the high-dimensional gridshell cases. Larger number of initial samples, e.g. 10 points per input
dimension, reduces the variance of the results but increases the computational time because more
FE evaluations are necessary by default when compared to only 1 point per input dimension.

The relevant hyperparameters of the model are the length scale values for the weight and constraint
kernels and the exploration-exploitation trade-off parameter & which is part of the acquisition
function. The former is re-calculated every 5™ iteration by maximizing the log marginal likelihood
of the data using the maximum likelihood estimation (MLE) approach as explained in subchapter
3.5. This frequency has been determined empirically by varying the frequency of the
hyperparameter optimization. Notably, performing this operation every iteration sometimes
yielded worse results because it caused the model to overfit the data. The computational cost also
increases with the frequency of hyperparameter tuning. Similar findings have been reported by
(Shende et al., 2021). The range of optimal values for the second hyperparameter & used in the
adaptive linear function explained in subchapter 3.4 has been found to be between Emin = 0.01 and
Emax = 1 but with a negative sign since the objective is the minimization of the total structural
weight.
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Regarding the stopping criteria, usually in applications of the Bayesian optimization framework
there is a given evaluation budget that limits the number of experiments the practitioners or
scientists can make. Since in this thesis the framework is used for the optimization of
macrostructures there is no such requirement. The heuristic used to determine when the algorithm
should stop is defined by a “patience” and an “improvement threshold” variables. The first one
determines how many iterations the algorithm is allowed to continue without seeing any significant
improvement of the weight of the structure. This value is set empirically to 30 iterations to allow
for more exploration of the design space before stopping the algorithm while keeping the
computational time within a reasonable limit. The improvement threshold is set empirically to a
small value of 0.001, which ensures that any promising regions of the design space are not skipped
by the algorithm but can be explored further before returning the previous design region. Both
values can be adjusted by the user depending on the available time for the optimization task. Some
general conclusion points that apply to all of the analysed cases with the standard constrained BO
(subchapter 4.1) are discussed below.

First, all runs converged to constraint-satisfying designs, confirming the reliability of the BO setup.
An intermediate kernel dimensionality (e.g. 17D) yields clearly better solutions and stability (i.e.
lower variance of results) than both an overly compressed (e.g. 1D) and the full-dimensional
kernel (e.g. 28D for the 4x4 gridshell).

Second, a larger number of initial designs improves convergence quality and narrows variability
compared with a small initial set and with random search. This is in contrast to the findings of
Shende et al. (2021) who state that a larger initial training set does not seem to guarantee a better
solution or faster convergence. Therefore, the sensitivity of BO to the number of initial samples
can be considered as problem-specific and has to be checked depending on the data.

Third, evaluation cost rises with kernel dimensionality while the quality of the final designs
improves.

When compared with literature case studies as done in subchapter 5.2, the Bayesian optimization
framework delivers near-optimal results at dramatically lower FEM evaluation cost. For the
cantilever truss case the convergence rate is /8 times faster than the reference solution found in
literature with only a 0.5% increase in the total weight of the structure.

All of the case studies analysed in the thesis demonstrate the broad applicability of the proposed
method for structures with 1D, 2D and 3D geometry and its potential to solve complex design
problems. The achieved results via the constrained BO algorithm for the 4x4 gridshell show a

1.67 x lighter structure than the reference design and 2.54 X lighter structure than the reference design
for the 9x9 gridshell.

Furthermore, a specific dimensionality reduction technique has been explored for the input feature
space to determine their effectiveness in terms of computational time and obtained results. As
discussed in subchapter 3.8 the linear deterministic Principle Component Analysis (PCA) has been
used. It proves effective in reducing dimensionality for the 4x4 gridshell and the 9x9 gridshell
cases analysed in subchapter 5.3 and subchapter 5.4, though its benefits depend strongly on the
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number of components retained. A small number of components leads to faster runtimes but may
introduce randomness and compromise both accuracy and consistency, particularly if the structural
patterns underlying the cross-section distribution are not very clear. Retaining more components
improves solution quality and stability but increases computational cost. Nevertheless, PCA still
converges faster compared to working in the full design space, albeit at the expense of obtaining
heavier designs. Therefore, it can be considered as an optional approach compared to the standard
constrained BO.

In addition, one limitation of the present thesis must be acknowledged. The constrained BO has
been evaluated only under a single load case/combination for all of the analysed case studies. In
practical structural engineering applications, members are typically subjected to a variety of load
combinations representing different design situations and service conditions. The extension of the
current approach to handle multiple or combined load combinations remains to be investigated,
and its effectiveness in such scenarios is yet to be validated.

In conclusion, the Bayesian optimization framework holds a large potential in the optimization of
macrostructures designed with materials different from steel such as wood, concrete, glass etc. To
achieve this all of the design checks that serve as the constraints for the strength and stability have
to be adapted to the country specific code requirements for the given material. In addition, the
library of cross-sections can be expanded to include open parametric profiles such as HEA, HEB,
IPE etc. Furthermore, in the present thesis the global stability has been excluded from the
constraints of the design due to implementation challenges, but in a future version of the BO
framework it can be included as a separate Gaussian process that models this global constraint.

Also, it is concluded that the effectiveness of the algorithm is dependent only on the distribution
of the internal forces and the type of finite element used. Therefore, from a theoretical point of
view, the proposed framework can be applied to any structure independent of the boundary
conditions as long as the internal forces and the design checks can be calculated accurately by the
FEM package. Further research is needed to evaluate the performance of the Bayesian optimization
on various structural typologies such as moment frames and even bridges.

In addition, the analysed cases can serve as a benchmark for researchers to compare different
optimization approaches.

RQ2: How can a gridshell be modelled in RFEM6 and what is the obtained structural
behaviour?

The geometry of the two gridshells is generated by employing form-finding methods that align the
structural shape with the expected load-bearing behaviour. The Kangaroo2 plugin for Grasshopper
is used, which implements one of the most popular form-finding techniques based on the dynamic
relaxation principle. This approach iteratively adjusts the geometry by simulating the equilibrium
of forces within the system, allowing the structure to naturally settle into a form that efficiently
carries the applied loads through membrane actions.

The structural model in RFEM6 is developed using beam elements, which provide a good
representation of the gridshell’s members while capturing their axial, bending, and shear behaviour
as explained in subchapter 4.3. The governing load combination considered in the analysis of the
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larger 9x9 gridshell is defined in reference to the C30 gridshell project described briefly in
subchapter 5.4.1. This example served as a guideline to establish realistic loading scenarios,
ensuring that the model reflects comparable structural demands and environmental influences. The
boundary conditions of the model are likewise derived from the C30 gridshell, allowing the
numerical representation to reproduce the support conditions observed in practice. By adopting
these boundary conditions, the FEM analysis ensures consistency with a realistic case study.
Furthermore, rectangular hollow sections (RHS) are selected as the cross-sections for the analysis.
These closed profiles are chosen due to their lower susceptibility to lateral torsional buckling when
compared to open cross-sections and their suitability for gridshell applications as evidenced in the
C30 case study.

Finally, the strength and stability checks are calculated in RFEM6 and used in the Bayesian
optimization algorithm according to the EN 19931-1-1 recommendations as described in Chapter
4.3.2 & 4.3.3 which ensures the structural feasibility of the gridshells and their compliance with
the design codes.
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Given the efficiency of the Bayesian optimization framework for optimizing the design of
macrostructures, some directions for future research are provided in this chapter. They focus on
two goals: (i) scalability and computational acceleration of the BO framework in higher
dimensional feature space and (ii) extending the framework from single-objective optimization to
multi-objective optimization. Throughout the thesis, various recommendations for future research
are also suggested.

Scalability and computational acceleration of the BO framework in higher dimensional
feature space

For high-dimensional settings, scalability can be improved by methods that reduce the effective
search space while preserving expressiveness. Sparse Axis-Aligned Subspace BO (SAASBO) can
be adopted to infer sparse relevance patterns and prevent overfitting from fully-ARD kernels as
discussed by (Eriksson & Jankowiak, 2021). They have used it for the hyperparameter tuning of a
support vector machine (SVM) using the Matern kernel with 3 regularization parameters and 385
length scales making the dimensionality D = 388. Similarly, the authors have benchmarked the
approach against other BO variants that rely on low dimensional embedding of the high
dimensional feature space such as REMBO and HeSBO on a real-world vehicle design problem
in a crash test simulation called MOPTAOS shown in Figure 104 for weight optimization (pSeven,
2018). The problem consists of 124 design variables normalized to [0,1] and 68 performance
constraints. They report that SAASBO converges faster to a close value to the known optimum for
both problems as shown by the blue line in Figure 103.
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Figure 103: SAASBO performance compared to other Bayesian optimization variants. (Source: Eriksson
& Jankowiak, 2021)
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Figure 104: MOPTAOS vehicle design problem. (Source: pSeven, 2018)

Another direction for further investigation is the application of the Blackbox Matrix-Matrix
Inference introduced by Gardner et al., 2018. The authors claim that their method reduces the
computational complexity from O(N°) to O(N?) which can reduce the execution time significantly.
They do this by calculating the marginal log likelihood mentioned in subchapter 3.5 in a stochastic
manner instead of performing an exact calculation. By using the developed GPyTorch package
and coupled with GPU acceleration, the authors claim it can scale the GP inference to thousands
of data points and in the documentation of the package even millions of data points is mentioned.

A final third recommendation is the use of trust regions (i.e. TuURBO) in the design space as
proposed by Eriksson et al., 2019. Instead of relying on a single global GP model, TuRBO employs
multiple local probabilistic models that focus search within trust regions of the objective function
design space. These local searches can quickly uncover high-quality solutions, while a global
sampling strategy decides how to distribute samples among the regions, ensuring an effective
balance between exploration and exploitation.

Multi-objective Bayesian optimization

To further extend this research a modular Bayesian optimization (BO) framework can be
developed. The different “modules” could focus on optimizing an objective function that is
selected by the user. A few example functions are listed below:

e Minimizing the weight of the structure based on the ULS combinations which is already
demonstrated in this thesis.

e Minimizing the total deflection of the structure based on the SLS combinations.

e Minimizing the CO; emissions of the structure.

e Minimizing the construction cost of the structure by including the design of the connections.

e Minimizing/Maximizing a particular geometry parameter such as height or width of a truss.

The corresponding adaptations of the BO framework can be either single-objective or multi-
objective optimization routines by combining multiple of the above-mentioned functions. In the
latter case, there is no single solution that represents the best design, but the result is a list of
options to be considered and the trade-offs to be evaluated by the engineer. This is the so-called
Pareto front shown in Figure 105.
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Figure 105: Pareto front between objective 1 and objective 2. (Source:Rahman & Szabo, 2021)

In the context of the BO framework the multi-objective optimization can be achieved by multi-
task GPs with multiple outputs or a combination of single-task GPs. This setup enables the
Expected Hypervolume Improvement (EHVI) acquisition function which is the multi-objective
analogue of Expected Improvement (Coelho, 2025).

An example of such trade-offs can happen when the CO; emissions of the building have to be
minimized alongside the cost of construction. The main structural elements can be designed with
less material if moment resistant connections are included in the design instead of the simpler pin
connections. However, these are often more expensive to both design and produce leading to
increased construction costs. Another example is when the weight of the structure is optimized
with different profiles for the members as is done in Chapter 5 but often this increases the material
costs because ordering many custom profiles is usually more expensive than ordering single
profiles in bulk quantities.

Therefore, a balance must be found by the structural engineer and the purpose of the BO
optimization tool is to facilitate this decision-making process.
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Appendix A: Literature review of optimization algorithms

Table 14: Papers on metaheuristic optimization algorithms used for structural optimization problems.

Paper Central Theme Main concept Theories & Methods Results Most important insight Pros Cons
(Weietal., Truss The paper addresses | The NHPGA combines the | The NHPGA significantly The algorithm's flexibility and During the exploration, The master process and
2011) optimization on the challenges in strengths of parallel reduces computational adaptability allow it to address | simplex synchronous slave processes in NHPGA
shape and sizing | truss shape and computing, simplex time and enhances the various structural optimization | searches first are applied need to wait each other in
with frequency sizing optimization search, and genetic quality of solutions in truss | challenges with minimal prior to the potential niches. synchronous parallel stage,
constraints under frequency algorithms with niche optimization examples. It knowledge, making it a Then another sim- and this will have impact
based on parallel | constraints, which techniques to improve demonstrates the potential | promising architecture for plex search is performed on the efficiency of
genetic can lead to computational efficiency to effectively integrate high-performance parallel asynchronously for quickly | NHPGA. Asynchronous
algorithm convergence issues and solution quality. genetic algorithm genetic algorithms. discovering the global parallel genetic algorithm
and complex Unlike traditional capabilities, simplex optimum in the located development is needed to
sensitivity analyses. methods, this approach search exploitation, and promising zones. The avoid the waiting process.
It proposes a Niche uses global probabilistic the computational NHPGA performs the The fitness function
Hybrid Parallel population search and speedup offered by parallel computationally expensive | evaluation involved finite-
Genetic Algorithm avoids reliance on computing. operation steps in parallel element analysis usually
(NHPGA) as an gradient information. which reduces the total consumes more than 95%
effective solution to computational time of the of total computational
these problems. method. time. Better constraints
handling methods are
needed.
(Tang et al., Improved The paper The algorithm employs Through various examples, | This paper introduces a novel Integer and mixed coding Large scale problems
2005) genetic algorithm | introduces an mixed coding schemes the improved GA approach for generating the is used to represent the should be analyzed to
for design enhanced genetic such as binary with float demonstrates feasible and next population by having different variable types for evaluate the performance

optimization of
truss
structures with
sizing, shape
and topology
variables

algorithm (GA)
designed to
minimize the weight
of truss structures by
optimizing sizing,
shape, and topology
variables, utilizing a
combination of
discrete and
continuous
variables.

and integer with float
coding. A surrogate
function is used to
consolidate constraints
into a single form, and
surrogate reproduction is
utilized to select
candidates for the mating
pool based on constraint
satisfaction and fitness. A
novel strategy a
competition between
parent and offspring
populations, based on
their constraint adherence
and fitness, enhancing
gene longevity.

effective results, showing
significant advancements
in numerical outcomes.

parent and offspring
populations compete based on
their constraint adherence and
fitness values, thereby
extending the lifespan of
superior genes.

topology, size and shape
optimization. A surrogate
function is applied to
impose a penalty on all
constraints. A surrogate
reproduction, which
considers both fithess
value and degree of
constraint violation, keeps
the potential gene and
keeps selective pressure.

of the algorithm for higher
dimensions.
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Table 14: Papers on metaheuristic optimization algorithms used for structural optimization problems. (Continued)

Paper Central Theme Main concept Theories & Methods Results Most important insight Pros Cons
The CGA utilizes a
The paper structural analysis Numerical tests reveal the
introduces the package (such as FEAST, | computational efficiency of
Optimization of CeIIuI_ar Genetic ANSYS, or SAF.)) orneural | the C.GA’ es_peCIaIIy when Multilevel optimization The integration of Cellular
Algorithm (CGA), a networks to define combined with neural S .
Large Scale v " . L approach is implemented by . Automata, Genetic
novel optimization objective functions for CA networks, making it ) . It effectively manages .
Three . . f reducing the size of the . . L Algorithms, and neural
; . method combining cells. Neural networks are | particularly effective for o discrete variables, which is .
. Dimensional ] . L search space for individual ) S networks may complicate
(Rajasekaran, . Cellular Automata trained with data from large-scale optimization . . . crucial for optimizing the ) -
Reticulated ) design variables in each . the implementation and
2001) . (CA) and Genetic these packages to challenges. The study also . areas of members in space ) A
Structures Using . ; . . . successive level of -~ : require careful tuning and
Algorithm (GA) for expedite the typically examines the non-linear o . . structures. Efficient with : -,
Cellular s : . . . optimization process including understanding. Initial data
. optimizing large time-consuming analysis. load deflection . : large scale problems. s : .
Genetics and : AR L - the non-linear load deflection training data is required for
space structures by A multilevel optimization characteristics of optimized .
Neural Networks . . ; o behaviour. the neural networks.
treating member strategy is applied to structures, highlighting the
areas as discrete progressively narrow the method's practical
variables. search space for design advantages.
variables.
The paper
|ntro_duces an SCPSO integrates a CA-
efficient hybrid L
N based mechanism into the .
optimization ; The numerical results
. PSO framework by using In order to evaluate the
algorithm called itf loci dati f show that SCPSO fici f the SOPSO Th dth
Sequential Cellular itfor ve _00|ty upc ating o achieves superior solutions . efticiency o the © paper use the .
Layout . the particles. This The proposed Sequential algorithm, 4 exterior penalty function
L Particle Swarm h ; _ and faster convergence ; )
optimization of S integration occurs within Cellular Particle Swarm classical layout method (EPFM) for
Optimization ) rates compared to other R e . . .
truss structures the context of sequential i . Optimization (SCPSO) optimization problems of handling design constraints
. - (SCPSO) for the . optimization algorithms. : . A
(Gholizadeh, by hybridizing lavout optimization unconstrained This demonstrates the algorithm effectively balances truss structures are which can be
2013) cellular automata Y P minimization techniques. exploration and exploitation solved. SCPSQ is a computationally slow. The

and particle
swarm
optimization

of truss structures.
The algorithm
combines the
strengths of cellular
automata (CA) and
particle swarm
optimization (PSO)
to enhance
performance.

The hybrid approach
leverages the collective
computation strengths of
CA and the global search
capabilities of PSO to
optimize truss layouts
more effectively.

effectiveness of the hybrid
approach in improving both
the solution quality and
computational efficiency for
truss structure
optimization.

through its novel CA-based
PSO scheme and sequential
framework.

powerful optimization
algorithm with high global
search ability

at low computational cost
and fast convergence rate.

areas of the structural
elements are optimized
based on a selected
discrete set.
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(Gholizadeh, 2013) Layout optimization of The paper introduces an SCPSO integrates a CA- The numerical results The proposed Sequential | In order to evaluate the The paper used the exterior

truss structures by
hybridizing cellular
automata

and particle swarm
optimization

efficient hybrid
optimization algorithm
called Sequential
Cellular Particle Swarm
Optimization (SCPSO)
for the layout
optimization of truss
structures. The algorithm
combines the strengths
of cellular automata
(CA) and particle swarm
optimization (PSO) to
enhance performance.

based mechanism into the
PSO framework by using
it for velocity updating of
the particles. This
integration occurs within
the context of sequential
unconstrained
minimization techniques.
The hybrid approach
leverages the collective
computation strengths of
CA and the global search
capabilities of PSO to
optimize truss layouts
more effectively.

show that SCPSO
achieves superior
solutions and faster
convergence rates
compared to other
optimization algorithms.
This demonstrates the
effectiveness of the hybrid
approach in improving
both the solution quality
and computational
efficiency for truss
structure optimization.

Cellular Particle Swarm
Optimization (SCPSO)
algorithm effectively
balances exploration and
exploitation through its
novel CA-based PSO
scheme and sequential
framework.

efficiency of the SCPSO
algorithm, 4

classical layout
optimization problems of
truss structures are
solved. SCPSO is a
powerful optimization
algorithm with high global
search ability

at low computational cost
and fast convergence rate.

penalty function method
(EPFM) for handling design
constraints which can be
computationally slow. The
areas of the structural
elements are optimized
based on a selected discrete
set.

(Mortavazi et al.,
2016)

Simultaneous size,
shape, and topology
optimization of truss
structures using
integrated particle
swarm optimizer

The study focuses on
minimizing the weight
of truss structures by
simultaneously
optimizing their shape,
size, and topology. To
achieve this, an
algorithm called the
integrated particle
swarm optimizer
(iPSO) is introduced
as an effective
optimization tool.

The iPSO method
enhances the standard
particle swarm
optimizer (PSO) by
incorporating the
concept of 'weighted
particles' to boost
performance.
Additionally, an
'improved fly-back'
technique is used to
effectively manage
problem constraints.
These innovations aim
to streamline the
optimization process
while maintaining
efficiency and
effectiveness.

The iPSO methodology
was tested on various
benchmark problems
and demonstrated
competitive results
when compared to
existing techniques for
truss structure
optimization. Its
formulation is noted for
its simplicity, making it
an appealing option due
to its effective
performance and ease
of implementation.

The most important
insight from this
investigation is that
the integrated Particle
Swarm Optimizer
(iPSO) is an effective
and versatile algorithm
for optimizing truss
structures, capable of
handling discrete,
continuous, and
combined search
spaces, as well as
multiple load
conditions and design
constraints.

Simplicity of the method,
because it builds upon
the standard PSO,
weighted particle and
improved fly-back
technique.

Genetic Algorithms
converge faster for certain
benchmark problems.
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(Gomes, 2011)

Truss optimization with
dynamic constraints
using a particle swarm
algorithm

The paper explores
the use of Particle
Swarm Optimization
(PSO) for optimizing
the mass of structural
trusses in terms of
size and shape, while
considering frequency
constraints. Due to the
inherent non-linear
and dynamic nature of
these optimization
problems, the study
focuses on the PSO
algorithm as a suitable
approach.

The PSO algorithm is
chosen for its proven
effectiveness as a
global optimizer in
various fields and its
capability to handle
non-linear problems
without relying on
gradient-based
methods. The paper
briefly reviews the key
features of PSO that
make it suitable for
addressing such
optimization
challenges.

Through four
benchmark examples of
truss optimization with
shape and size
frequency constraints, it
was demonstrated that
the PSO algorithm
performed comparably
to other methods, and
in certain cases, it
outperformed them.
These results highlight
the potential of PSO in
effectively solving
complex structural
optimization problems.

The algorithm does
not require the
gradients of the
objective function, but
only the objective
function itself which
enables the method to
deal with symmetrical
trusses without any
modifications.

The algorithm used in
the paper has lower
number of parameters
necessary and is able to
optimize in the
continuous design space
of the variables. It works
with population and
random parameters that
balance between
exploration and
exploitation to escape
local minima/maxima in
the optimization process.

The constraints were
implemented with penalty
functions.

(Luh & Lin, 2011)

Optimal design of truss-
structures using particle
swarm optimization

The study applies a
two-stage Particle
Swarm Optimization
(PSO) approach to
optimize truss
structures with the aim
of minimizing weight
while considering
constraints like stress,
deflection, and
kinematic stability.

Initially, the truss
topology is optimized
using a modified Binary
Particle Swarm
Optimization (BPSO).
Following this, the size
and shape of the truss
members are further
refined using the
Attractive and
Repulsive Particle
Swarm Optimization
(ARPSOQ) technique.

The methodology was
tested on a two-tier, 39-
member, 12-node
ground structure and
demonstrated the
capability to identify
truss structures that are
more optimal than those
previously documented
in the literature.

Two-stage PSO based
optimization scheme
for

truss-structure is
developed. Better
truss structures are
found in less
calculation time
compared to one-
stage genetic
algorithm and two-
stage ant algorithms.

Introduces more
diversity in the optimized
shapes due the first
BPSO algorithm that
optimized the topology
of the algorithm.
Symmetry about the
central vertical axis is
employed to reduce the
number of variables.

Relatively large number of
calculations depending on
the case (ca. 260000).
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(Li et al.,, 2007)

A heuristic particle
swarm optimizer for
optimization

of pin connected
structures

The paper introduces
a heuristic particle
swarm optimizer
(HPSO) designed to
optimize the design of
pin-connected
structures by
integrating elements
of particle swarm
optimization and
harmony search.

The HPSO algorithm
incorporates the
particle swarm
optimizer with passive
congregation (PSOPC)
alongside a harmony
search scheme. It
employs a 'fly-back
mechanism'to address
problem-specific
constraints and utilizes
the harmony search for
managing variable
constraints.

The effectiveness of the
HPSO algorithm was
validated against PSO
and PSOPC algorithms
across five planar and
spatial truss design
cases. The findings
demonstrate that HPSO
significantly improves
convergence rates and
achieves optimal
designs more swiftly
than the other
algorithms.

The HPSO algorithm
manages variable
constraints through a
combination of the
harmony search
approach and the 'fly-
back mechanism' for
addressing problem-
specific constraints.
Unlike the PSO and
PSOPC algorithms,
HPSO ensures that
particles remain within
the variable
boundaries, fully
utilizing the particle's
movement capabilities
throughout the
optimization process.

HPSO algorithm
converge more quickly
than the PSO and the
PSOPC algorithms.

Convergence rate of the
HPSO algorithm will slow
down when the number of
iterations increase.

(Camp & Bichon,
2004)

Design of Space
Trusses Using Ant
Colony Optimization

The paper introduces
a design procedure
using Ant Colony
Optimization (ACO) for
the discrete
optimization of space
trusses. The primary
aim is to minimize the
total weight (or cost)
of the structure while
adhering to material
and performance
constraints such as
stress and deflection
limits.

The design translates
the optimization of
space trusses into a
modified Traveling
Salesman Problem
(TSP), where the TSP
network mirrors the
structural topology, and
the TSP tour length
represents the
structure's weight. The
ACO algorithm is
employed for this
purpose, utilizing
discrete variables, a
flexible constraint
format, and a penalty
function to ensure
constraints are met,
accommodating
multiple loading
scenarios.

The study compares the
ACO-based truss design
method with designs
achieved through a
genetic algorithm and
classical continuous
optimization
techniques, illustrating
the efficacy of the ACO
procedure in optimizing
truss structures under
the specified
constraints

While both ACO and
Genetic Algorithms
(GAs) utilize a
population of agents
to represent solutions,
ACO maintains
information through
artificial pheromone
trails, capturing the
memory of the entire
colony over
generations. In
contrast, GAs focus on
information from just
the current generation.
This allows ACO to
develop solutions in
each new search cycle
using the accumulated
collective information,
providing an
advantage over GAs.

ACO for space trusses is

less influenced by poor
initial solutions
compared to the genetic
algorithms (GAs).ACO
circumvents this issue
by integrating
information gathered by
the colony with a
nearest-neighbour
heuristic, which
prioritizes the shortest
path or, in this case, the
smallest cross-sectional
area. The reliability of
the method is good less
than 1% on average for
all examples.

The algorithm focuses on
optimization in the
discrete design space
instead of the continuous
design space which might
lead to suboptimal results
depending on the selected
discrete sets.
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The paper addresses

the S|gn‘|f|cant impact The study utilizes the .

of warping on the Warping causes a

. Ant Colony Several space frame o L L
S design of steel space R o significant amount of Sensitivity analysis is . .
Ant colony optimization . . Optimization (ACO) examples are optimized | : . The problem is solved in
. frames with thin- . . increase in the performed to select the . .
. of irregular steel . technique to solve the using the developed - ) ) the discrete design space

(Aydogdu & Saka, frames includin walled steel sections. design problem, takin algorithm, effectivel minimum weight of appropriate values for considering a list of
2011) 9 It aims to optimize the gnp ! 9 g ! y the designs for the parameters of the g

elemental warping
effect

design of these
frames by considering
warping effects
according to the LRFD-
AISC guidelines.

into account the
provision for warping in
the optimization
process.

illustrating the influence
of warping on achieving
optimal designs.

symmetrical and
unsymmetrical space
frames alike.

ant colony optimization
technique.

predefined cross-
sections.

(Degertekin, 2012)

Improved harmony
search algorithms for
sizing optimization of
truss structures

The paper focuses on
improving the
Harmony Search (HS)
algorithm, which is
inspired by music
improvisation, to
enhance its
application in the
optimization of truss
structures. The
original HS is known
for its sensitivity to
tuning parameters,
prompting the
development of new
variants to lessen this
dependency.

Two enhanced variants,
Efficient Harmony
Search (EHS) and Self-
Adaptive Harmony
Search (SAHS), are
introduced for the
sizing optimization of
truss structures. These
algorithms aim to
maintain robustness
while mitigating the
HS's reliance on
parameter tuning.

The performance of
EHS and SAHS is
evaluated through four
classical truss structure
weight minimization
problems. The study
compares their results
with those of the
standard HS and other
recent meta-heuristic
algorithms,
demonstrating the
robustness and
improved efficiency of
the proposed variants.

Improved designs can
be achieved by
progressively
decreasing the pitch
adjustment parameter
as the optimization
process advances.
Constraints have to be
normalized. EHS and
SAHS dynamically
update their internal
parameters during the
search process.

Both HS methods
presented in this paper
possess the inherent
ability of converging to a
nearly global

optimum design due to
low standard deviation

for the optimized weight.

Computational cost of
EHS and SAHS in terms of
structural analyses is
significantly higher when
compared to other meta-
heuristic algorithms.

(Cheng et al., 2016)

A Hybrid Harmony
Search algorithm for
discrete sizing
optimization of
truss structure

The paper introduces
a novel variant of the
Harmony Search (HS)
algorithm, called the
Hybrid Harmony
Search (HHS)
algorithm, designed to
improve optimization
outcomes by
integrating different
search strategies.

The HHS algorithm
retains the Harmony
Memory and pitch
adjustment functions
of the original HS
algorithm but replaces
its randomization
function with Global-
best Particle Swarm
Optimization (PSO) and
neighbourhood search
techniques.

The performance of the
HHS algorithm is
evaluated on six
discrete truss structure
optimization problems
across various loading
conditions. The results
indicate that the HHS
algorithm excels in
delivering optimal
solutions.

The HHS algorithm
uses memory
consideration and
pitch adjustment to
focus on global search
in the

early stage and Global-
best PSO search and
neighbourhood search
to focus on local
search in the later
stage.

The HHS algorithm
effectively achieves an
ideal balance between
exploration and
exploitation while also
reaching the optimal
solution much more
quickly than other
methods tested.

Analysis of HHS
effectiveness in dealing
with large-scale
optimization problems in
high-dimensional feature
space is needed.
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(Miguel & Miguel,
2012)

Shape and size
optimization of truss
structures considering
dynamic

constraints through
modern metaheuristic
algorithms

The paper focuses on
addressing the
complex issue of
mass optimization in
truss structures,
considering both
shape and sizing
under multiple natural
frequency constraints,
using novel
metaheuristic
algorithms.

It leverages Harmony
Search (HS) and Firefly
Algorithm (FA), both of
which are non-gradient-
based methods, to
circumvent the
challenges typically
associated with
dynamic sensitivity
analysis and the
convergence issues of
traditional gradient-
based approaches.

The application of these
algorithms to four
benchmark problems
demonstrated that both
HS and FA delivered
superior results within a
relatively short
computational time in
three cases and
performed on par with
the best solutions found
in literature for the
fourth case, highlighting
their robust
optimization
capabilities.

HS finds optimal
solutions quicker,
while FA tends to
achieve slightly better
solution quality,
highlighting their
respective strengths in
solving complex,
nonlinear optimization
problems.

HS and FA demonstrate
superior or comparable
results to existing
methods, and they
perform efficiently
without the need for
extensive parameter
tuning.

In 1 out of 4 cases the HS
and FA reached a reached
worse result that the ones
available in literature.

(Pham, 2016)

Truss optimization with
frequency constraints
using enhanced
differential evolution
based on adaptive
directional mutation
and

nearest neighbour
comparison

The article introduces
a novel differential
evolution algorithm,
ANDE, designed to
address the
challenging problem
of truss optimization
with dynamic
frequency constraints,
specifically focusing
on optimizing shape
and size.

ANDE incorporates
three modifications to
the conventional
differential evolution
approach: an adaptive
p-best strategy for
balancing global
exploration and local
exploitation, a
directional mutation
rule to enhance
solution improvement
chances, and a nearest
neighbour comparison
method for pre-
emptively skipping
unlikely solutions.
These modifications
streamline the process
without needing
additional parameter
adjustments.

Testing ANDE on five
benchmark examples
demonstrates that the
algorithm delivers good
and stable results,
maintaining compliance
with frequency
constraints. ANDE's
optimal designs are
generally comparable to
or better than those
achieved by other
advanced
metaheuristics, with the
added advantage of
requiring fewer
structural analyses.

By incorporating three
straightforward
modifications into
ANDE, it achieves a
balance between
global exploration and
local exploitation while
also reducing
computational costs.

ANDE provides a gradual
transition from global
exploration to local
exploitation during the
search of the design
space. It incorporates
prejudgment of a
solution which reduces
the number of FE
evaluations. No
additional parameters
are needed.

Application of ANDE to
large-scale problems and
different types of
structures should be
further studied.
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(Ho-Huu et al., 2016)

Optimal design of truss
structures with
frequency constraints
using

improved differential
evolution algorithm
based on an adaptive
mutation scheme

The paper discusses
an improved
Differential Evolution
(IDE) algorithm
designed for
optimizing the shape
and size of truss
structures under
frequency constraints,
with enhancements
primarily in the
mutation and selection
phases.

The IDE introduces a
new scheme in the
mutation phase that
adaptively uses
multiple popular
mutation strategies
("rand/1," "rand/2,"
"best/1," and "best/2")
to balance global
exploration and local
exploitation.
Additionally, the
selection phase
incorporates an elitist
selection technique to
preserve better
individuals for
subsequent
generations, thereby
improving convergence
rates.

Tests on five
benchmark problems
demonstrate the IDE's
efficiency and
robustness, achieving
optimal designs similar
to those obtained by the
standard DE but with
significantly reduced
computational costs.
The IDE outperforms DE
and other known
methods in terms of
efficiency.

The improvements are
carried on mutation
and selection phases
but mainly focused on
the mutation phase.

The new scheme
effectively maintains a
balance between global
exploration and local
exploitation during the
search process of the
Differential Evolution
(DE) algorithm. In
almost all problems, the
number of structural
analyses of the IDE is
only approximately a
haft of that of the
original DE.

The stability of the IDE
method requires further
improvements. Further
work can investigate the
performance of IDE for
other types of structures
such as shell structures.

(Nguyen-Van et al.,
2021)

A novel hybrid
differential evolution
and symbiotic
organisms search
algorithm for size and
shape optimization of
truss structures under
multiple frequency
constraints

The article introduces
a novel optimization
algorithm called
Hybrid Differential-
SOS (HDS), which
combines elements of
Differential Evolution
(DE) and Symbiotic
Organisms Search
(SOS) to enhance the
quality of solutions
and speed of
convergence in the
optimization of truss
structures with
multiple frequency
constraints.

The HDS algorithm
leverages newly
developed operators
from DE and SOS to
boost both global and
local search
capabilities. It
incorporates an
automatically adapted
parameter for
balancing these search
aspects.

The algorithm's
effectiveness is
validated through the
examination of 26
benchmark
mathematical functions
and 5 numerical
examples of truss
structure optimization.
The findings reveal that
HDS achieves high-
quality optimal
solutions with less
computational effort
compared to the
original DE and SOS
methods and other
existing optimization
paradigms.

The approach employs
an elitist scheme in
the selection phase to
retain the best
solutions, facilitating
improved solution
quality and reduced
computational effort.

The results have shown
that the HDS provides
superior performance in
terms of convergence
speed and solution
accuracy compared to
DE, SOS, and many other
methodologies.

HDS is very promising in
applications related to
composite laminated
and functionally graded
beams, plates, shells
and structural health
monitoring.

Further study in the
discrete design space for
different structures might
be beneficial.
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(Ho-Huu, Nguyen-Thoi,
etal, 2016)

An adaptive elitist
differential evolution
for optimization of
truss

structures with discrete
design variables

The paper introduces
an adaptive elitist
differential evolution
(aeDE) algorithm
aimed at optimizing
truss structures with
discrete design
variables, featuring
enhancements over
the traditional
differential evolution
(DE) method.

The aeDE algorithm
incorporates three key
modifications: an
adaptive mutation
technique that selects a
mutation operator
based on the deviation
of the objective
function among
previous generations to
maintain search
balance, an elitist
selection strategy to
accelerate convergence
by preserving top-
performing individuals,
and a rounding
technique to handle
discrete design
variables effectively.

The efficiency and
dependability of aeDE
are validated through
six truss structure
optimization problems,
showing that aeDE
generally outperforms
standard DE and several
other methods found in
the literature, offering
superior solution quality
and faster convergence.

The adaptive elitist
differential evolution
(aeDE) algorithm
significantly enhances
the optimization of
truss structures with
discrete design
variables. By
incorporating three
key modifications—
adaptive mutation for
search balance, elitist
selection for faster
convergence, and a
rounding technique for
discrete variables—the
aeDE reliably achieves
optimal solutions
more efficiently than
the standard
differential evolution
(DE) and other
methods

Its effectiveness is
particularly evident in
large-scale problems,
and its simplicity in
design allows for easy
extension to other
engineering optimization
challenges, making it a
robust and versatile tool
in computational
optimization.

Although it claims to be
simple to implement, the
introduction of adaptive
techniques and elitist
strategies could still
require careful tuning and
understanding for best
performance in diverse
scenarios.
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(Shende et al., 2021)

Bayesian topology
optimization for
efficient design of
origami

folding structures

The paper explores the
use of Bayesian
optimization (BO) for
solving structural
optimization
problems, specifically
focusing on origami-
inspired design
spaces, which are
characterized by
complex and non-
convex design
possibilities. BO is
proposed as an
efficient method for
optimizing these
complex design
spaces using fewer
evaluations of
expensive finite
element objective
function.

Bayesian optimization
is utilized with a
Gaussian process (GP)
surrogate model to
mimic expensive
objective function.
Then it is compared to
traditional optimization
methods like gradient-
based techniques and
genetic algorithms. The
study also looks into
hyperparameter tuning,
sensitivity to the initial
training set, and
proposes heuristic
methods to reduce
overall computational
costs.

Bayesian optimization
requires fewer finite
element solutions
compared to traditional
methods, making it a
promising choice for
such non-convex
optimization problems
(presence of multiple
local optima).
Consistently
outperforms the
gradient-based method,
delivering previously
undiscovered designs
for the structure.

Bayesian optimization
is less sensitive to the
initial training set than
the gradient-based
approach. Based on
the studies conducted,
the Gaussian process
(GP) surrogate model
works well for origami
optimization
problems. The
squared exponential
covariance function as
well as the

Matern kernel are able
to find good solutions
to the

optimization problems
analysed in the paper.

Good sensitivity analysis
of the hyperparameter
tuning and influence of
the initial training set.

Design space is relatively
small. The kernels are
stationary and isotropic.
The use of nonstationary
and anisotropic kernels
might lead to new designs
but increase the number
of hyperparameters.

Nonstationary kernels are
good when modelling
processes in which
different regions of the
input space show
different characteristics
e.g. changein
smoothness or variability.

Anisotropic kernels are
useful when the input
dimensions have different
level of impact which can
be modelled by using
different length scale
parameters for each input
dimension. Example is the
Automatic Relevance
Determination (ARD)
kernel which takes the
square exponential kernel
and assigns a single
length scale per input
dimension. However,
there is a risk of
overfitting.
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(Coelho et al., 2025)

A composite Bayesian
optimization framework
for material and
structural design

The paper presents a
design framework
using Bayesian
optimization to
improve efficiency and
quality in material and
structural design
processes, focusing
on reducing
computational costs
and effectively
managing uncertainty.

The framework involves
an initial step of
efficient design space
exploration and a
subsequent composite
Bayesian optimization
strategy to evaluate the
objective function. It
employs a surrogate
model and techniques
like Principal
Component Analysis
for dimensionality
reduction, utilizing a
dynamic, adaptive
sampling strategy
instead of traditional
random sampling
methods.

The framework shows
significant
improvements in
performance and
quality, especially in
nonlinear settings,
through various design
scenarios. It reduces
the number of required
experiments and
demonstrates its
potential to enhance
design methodologies
in both material and
structural engineering
compared to
established data-driven
approaches.

This method allows
the optimizer to (i)
fully assess the
numerical simulation's
response, (ii) improve
the surrogate model's
predictive precision,
and (iii) effortlessly
incorporate the
objective function's
structure into the
optimization
framework.

The BO framework
effectively integrates
elements such as
reparameterization into
a latent response space,
surrogate model
selection, and gradient-
enabled Monte Carlo
acquisition functions.
The framework's
benefits are particularly
notable in complex
scenarios with
geometric or material
non-linearity, where it
reduces the number of
experiments needed to
achieve target
objectives.

The method is not applied
for larger structural
engineering problems
such as topology, shape
and size truss
optimization.

(Moriconi et al., 2020)

High-dimensional
Bayesian optimization
using low-dimensional
feature spaces

The paper addresses
the challenge of
scaling Bayesian
Optimization (BO) for
high-dimensional
problems by
introducing a method
to optimize within a
low-dimensional
feature space.

The approach involves
learning a low-
dimensional feature
space alongside joint
optimization of the
response surface and
reconstruction
mapping. This allows
the optimization of
BO's acquisition
function in a simplified,
lower-dimensional
subspace. The method
involves reconstructing
the original parameter
space from this
subspace to evaluate
the black-box function,
while managing
exploration through
constrained
optimization.

This method effectively
reduces the complexity
of high-dimensional
optimization problems,
enabling the use of BO
with a smaller
evaluation budget,
although the paper does
not specify
experimental outcomes.

The framework
enables efficient
Bayesian optimization
of intrinsically low-
dimensional black-box
functions by
leveraging nonlinear
embeddings through a
manifold Gaussian
Process (GP), which
provides low-
dimensional feature
representations and
reconstructs high-
dimensional data.

The use of a nonlinear
constraint based on
Lipschitz continuity
ensures exploration
remains close to the
training data, thus
improving the reliability
of predictions and

maintaining optimization

focus.

The nonlinear constraint
might cause the algorithm
to get stuck in local
optima.
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(Mathern et al., 2021)

Multi-objective
constrained Bayesian
optimization for
structural design

The study aims to
address the
complexity in planning
and designing
concrete structures by
applying a Bayesian
optimization
framework to exploit
multi-objective
strategies, balancing
sustainability,
buildability, and
performance within
the constraints of
structural design.

The work develops a
Bayesian optimization
approach to tackle
expensive, constrained
structural design
problems. This
approach evaluates
trade-offs between
cost-effective
objectives and
expensive constraints,
benchmarking its
effectiveness against
the Non-dominated
Sorting Genetic
Algorithm 1l (NSGA-II)
and random search
methods, focusing on a
reinforced concrete
beam's design.

The Bayesian
optimization framework
demonstrated superior
performance over
NSGA-Il and random
search by showing
improved rates of
advancement, higher
solution quality, and
reduced variance in
outcomes, indicating its
suitability for multi-
objective constrained
optimization issues in
structural design.

Unlike earlier methods,
this work's Bayesian
algorithm explicitly
leverages the fact that
evaluating objective
functions is inexpensive,
while constraint
functions involve costly
evaluations due to the
extensive numerical
computations typical in
structural engineering
design challenges.
Therefore, the
constraints are modelled
using Gaussian
Processes (GPs) which
significantly reduce the
total number of finite
element evaluations by
sampling strategic
points where the
expected improvement is
maximum.

Design constraints
were established to
guarantee that the
beam's configuration
was feasible for
construction and met
the necessary
bending and shear
capacity as outlined
by structural design
codes.

The sensitivity of
Bayesian optimization
framework to higher
dimensional problems
should be explored
further. They are sensitive
to the curse-of-
dimensionality. How the
algorithm performs with
categorical variables
should be examined.
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Appendix B: 1D optimization problem: Cantilever Beam
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Figure 106: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 1.
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Figure 107: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 2.
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Figure 108: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 3.
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Figure 109: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 4.
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Figure 110: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 5.
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Figure 111: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 6.
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Figure 112: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 7.
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Figure 113: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 8.
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Figure 114: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 9.
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Figure 115: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 10.

133



£l

;b 29 ——- Next Sample
@ Initial Samples
® Samples

. x —median(x)
1QR(x]

. x—median(x) Scaled stress (x):
IQR(x)

Scaled displacement (x):

Acquistion value

Scaled weight (x):

Iteration 11

T
—— Mean prediction
95% confidence interval

-
L

-1 0 1 2 3 4
Scaled area (x): X5£

Stress threshold (235MPa)

1
: —— Mean prediction
251 ! 95% confidence interval
>0 : === Next Sample
! — Othreshoid = 235 MPa
15 4 o : ® Initial Samples
® | ® Samples
‘ 1
10 Y=
54
1 - &
0 H <+ - . . 4 > ad
i
=51 I
1
1
-10 L T T T T T T
-1 0 1 2 3 4
XU
Scaled area (x): 5~
Displacement threshold (L/250 mm)
1
100 7 H —— Mean prediction
: 95% confidence interval
80 ! === Next Sample
I —— Displacement threshold = L/250 mm
: @® Initial samples
60 + 1
1 ® Samples
1
o |
40 1 ° :
. |
1
20 4 H
0 A0 ~ ~ — — — — — — —
L T T T T T T
-1 ] 1 2 3 4
Scaled area (x): 3£
Acquisition value
0.35 7
—— Acquisition function
0.30 1 === Next Sample
0.25 4
0.20 4
0.15
0.10 4
0.05 4
0.00
T T T T T T
-1 0 1 2 3 4
X
Scaled area (x): °

Figure 116: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 11.
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Figure 117: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 12.
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Figure 118: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 13.
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Figure 119: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 14.
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Figure 120: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 15.
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Figure 121: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 16.
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Figure 122: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 17.
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Figure 123: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 18.
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Figure 124: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 19.
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Table 16: Full profile database sorted by area in ascending order. (Source: EurocodeApplied & Bouwen

met Staal).
Area
ID Typology RFEM Member [mm2] Weight [kg]

1| CHS CHS 21.3x2.3 137,0 4,31

2 | CHS CHS 21.3x2.6 153,0 4,80

3 | CHS CHS 26.9x2.3 178,0 5,58

4 | CHS CHS 21.3x3.2 182,0 5,71

5| CHS CHS 26.9x2.6 198,0 6,22

6 | CHS CHS 26.9x3.2 238,0 7,47

7 | CHS CHS 33.7x2.6 254,0 7,98

8 | CHS CHS 33.7x3.2 307,0 9,64

9 | CHS CHS 42.4x2.6 325,0 10,21
10 | CHS CHS 33.7x4 373,0 11,72
11 | CHS CHS 48.3x2.6 373,0 11,71
12 | SHS SHS 40x2.6 382,0 11,99
13 | RHS RHS 50x30x2.6 382,0 11,99
14 | CHS CHS 42.4x3.2 394,0 12,37
15 | CHS CHS 48.3x3.2 453,0 14,22
16 | SHS SHS 40x3.2 460,0 14,44
17 | RHS RHS 50x30x3.2 460,0 14,44
18 | CHS CHS 60.3x2.6 471,0 14,79
19 | CHS CHS 42.4x4 483,0 15,17
20 | SHS SHS 50x2.6 486,0 15,26
21 | RHS RHS 60x40x2.6 486,0 15,26
22 | CHS CHS 48.3x4 557,0 17,49
23 | SHS SHS 40x4 559,0 17,55
24 | RHS RHS 50x30x4 559,0 16,80
25 | CHS CHS 60.3x3.2 574,0 18,02
26 | SHS SHS 50x3.2 588,0 18,46
27 | RHS RHS 60x40x3.2 588,0 18,46
28 | SHS SHS 60x2.6 590,0 18,53
29 | CHS CHS 76.1x2.6 600,0 18,85
30 | SHS SHS 40x5 673,0 21,13
31 | RHS RHS 50x30x5 673,0 21,13
32 | CHS CHS 48.3x5 680,0 21,36
33 | CHS CHS 60.3x4 707,0 22,20
34 | SHS SHS 60x3.2 716,0 22,48
35 | RHS RHS 80x40x3.2 716,0 22,48
36 | SHS SHS 50x4 719,0 22,58
37 | RHS RHS 60x40x4 719,0 21,82
38 | CHS CHS 76.1x3.2 733,0 23,02
39 | IPE IPE 80 764,0 24,00
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40 | SHS SHS 70x3.2 844,0 26,38
41 | RHS RHS 90x50x3.2 844,0 26,50
42 | CHS CHS 88.9x3.2 862,0 27,07
43 | CHS CHS 60.3x5 869,0 27,29
44 | SHS SHS 50x5 873,0 27,41
45 | RHS RHS 60x40x5 873,0 26,25
46 | SHS SHS 60x4 879,0 27,60
47 | RHS RHS 80x40x4 879,0 26,85
48 | UNP UNP 65 903,0 28,35
49 | CHS CHS 76.1x4 906,0 28,45
50 | RHS RHS 100x50x3.2 908,0 28,51
51 | SHS SHS 80x3.2 972,0 30,52
52 | RHS RHS 100x60x3.2 972,0 30,52
53 | CHS CHS 101.6x3.2 989,0 28,23
54 | IPE IPE 100 1032,0 32,34
55 | SHS SHS 70x4 1039,0 32,66
56 | RHS RHS 90x50x4 1039,0 31,87
57 | SHS SHS 50x6.3 1059,0 33,28
58 | RHS RHS 60x40x6.3 1059,0 33,28
59 | CHS CHS 88.9x4 1067,0 33,60
60 | SHS SHS 60x5 1073,0 33,60
61 | RHS RHS 80x40x5 1073,0 32,53
62 | UNP UNP 80 1100,0 34,54
63 | CHS CHS 76.1x5 1117,0 35,07
64 | CHS CHS 114.3x3.2 1117,0 31,71
65 | RHS RHS 100x50x4 1119,0 34,23
66 | SHS SHS 80x4 1199,0 37,68
67 | RHS RHS 100x60x4 1199,0 36,90
68 | CHS CHS 101.6x4 1226,0 38,62
69 | SHS SHS 70x5 1273,0 39,88
70 | RHS RHS 90x50x5 1273,0 38,81
71 | SHS SHS 60x6.3 1311,0 41,13
72 | RHS RHS 80x40x6.3 1311,0 41,13
73 | CHS CHS 88.9x5 1318,0 41,45
74 | IPE IPE 120 1321,0 41,45
75 | UNP UNP 100 1350,0 42,39
76 | SHS SHS 90x4 1359,0 42,70
77 | RHS RHS 120x60x4 1359,0 41,76
78 | RHS RHS 100x50x5 1373,0 42,08
79 | CHS CHS 114.3x4 1386,0 43,65
80 | SHS SHS 80x5 1473,0 46,16
81 | RHS RHS 100x60x5 1473,0 45,09
82 | CHS CHS 101.6x5 1517,0 47,73
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83 | SHS SHS 100x4 1519,0 47,73
84 | RHS RHS 120x80x4 1519,0 46,94
85 | SHS SHS 70x6.3 1563,0 48,98
86 | RHS RHS 90x50x6.3 1563,0 48,98
87 | SHS SHS 60x8 1595,0 50,24
88 | RHS RHS 80x40x8 1595,0 50,24
89 | CHS CHS 88.9x6.3 1635,0 51,34
90 | IPE IPE 140 1643,0 51,50
91 | SHS SHS 90x5 1673,0 52,44
92 | RHS RHS 120x60x5 1673,0 51,50
93 | RHS RHS 140x80x4 1679,0 51,97
94 | RHS RHS 100x50x6.3 1689,0 53,07
95 | UNP UNP 120 1700,0 53,38
96 | CHS CHS 139.7x4 1705,0 53,69
97 | CHS CHS 114.3x5 1717,0 54,01
98 | SHS SHS 80x6.3 1815,0 56,83
99 | RHS RHS 100x60x6.3 1815,0 56,83
100 | RHS RHS 160x80x4 1839,0 56,83
101 | SHS SHS 100x5 1873,0 58,72
102 | RHS RHS 120x80x5 1873,0 57,65
103 | CHS CHS 101.6x6.3 1886,0 59,22
104 | SHS SHS 70x8 1915,0 60,29
105 | RHS RHS 90x50x8 1915,0 60,29
106 | RHS RHS 150x100x4 1919,0 59,35
107 | IPE IPE 160 2009,0 63,11
108 | UNP UNP 140 2040,0 64,06
109 | CHS CHS 168.3x4 2065,0 64,84
110 | SHS SHS 90x6.3 2067,0 65,00
111 | RHS RHS 120x60x6.3 2067,0 65,00
112 | RHS RHS 140x80x5 2073,0 63,93
113 | RHS RHS 100x50x8 2075,0 65,31
114 | CHS CHS 139.7x5 2116,0 66,57
115 | HEA HEA 100 2124,0 66,69
116 | CHS CHS 114.3x6.3 2138,0 67,13
117 | RHS RHS 180x100x4 2159,0 67,04
118 | SHS SHS 80x8 2235,0 70,34
119 | RHS RHS 100x60x8 2235,0 70,34
120 | SHS SHS 120x5 2273,0 71,28
121 | RHS RHS 160x80x5 2273,0 70,34
122 | SHS SHS 100x6.3 2319,0 72,85
123 | RHS RHS 120x80x6.3 2319,0 72,85
124 | RHS RHS 200x100x4 2319,0 71,91
125 | CHS CHS 101.6x8 2352,0 68,77
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126 | RHS RHS 150x100x5 2373,0 73,48
127 | IPE IPE 180 2395,0 75,05
128 | UNP UNP 160 2400,0 75,36
129 | HEA HEA 120 2534,0 79,57
130 | SHS SHS 90x8 2555,0 80,38
131 | RHS RHS 120x60x8 2555,0 80,38
132 | CHS CHS 168.3x5 2565,0 80,54
133 | RHS RHS 140x80x6.3 2571,0 80,70
134 | HEB HEB 100 2604,0 81,77
135 | CHS CHS 139.7x6.3 2640,0 82,90
136 | CHS CHS 114.3x8 2672,0 83,89
137 | SHS SHS 140x5 2673,0 83,84
138 | RHS RHS 180x100x5 2673,0 82,77
139 | CHS CHS 177.8x5 2714,0 85,09
140 | UNP UNP 180 2800,0 87,92
141 | SHS SHS 120x6.3 2823,0 88,55
142 | RHS RHS 160x80x6.3 2823,0 88,55
143 | IPE IPE 200 2848,0 89,49
144 | SHS SHS 150x5 2873,0 90,12
145 | RHS RHS 200x100x5 2873,0 89,05
146 | SHS SHS 100x8 2875,0 90,43
147 | RHS RHS 120x80x8 2875,0 85,53
148 | CHS CHS 101.6x10 2878,0 90,36
RHS
149 | RHS 150x100x6.3 2949,0 92,63
150 | CHS CHS 193.7x5 2964,0 93,07
151 | SHS SHS 160x5 3073,0 96,40
152 | RHS RHS 120x60x10 3093,0 97,03
153 | HEA HEA 140 3142,0 98,66
154 | RHS RHS 140x80x8 3195,0 100,48
155 | CHS CHS 168.3x6.3 3206,0 100,67
156 | UNP UNP 200 3220,0 101,11
157 | CHS CHS 114.3x10 3277,0 102,89
158 | CHS CHS 139.7x8 3310,0 103,93
159 | SHS SHS 140x6.3 3327,0 104,56
RHS
160 | RHS 180x100x6.3 3327,0 104,56
161 | IPE IPE 220 3337,0 104,88
162 | CHS CHS 219.1x5 3363,0 105,60
163 | CHS CHS 177.8x6.3 3394,0 106,58
164 | HEB HEB 120 3401,0 106,79
165 | SHS SHS 180x5 3473,0 108,96
166 | SHS SHS 100x10 3493,0 109,59
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167 | RHS RHS 120x80x10 3493,0 102,27
168 | SHS SHS 120x8 3515,0 110,53
169 | RHS RHS 160x80x8 3515,0 105,63
170 | SHS SHS 150x6.3 3579,0 112,41
RHS
171 | RHS 200x100x6.3 3579,0 112,41
172 | RHS RHS 150x100x8 3675,0 110,65
173 | CHS CHS 193.7x6.3 3709,0 116,46
174 | UNP UNP 220 3740,0 117,44
175 | CHS CHS 244.5x5 3762,0 118,13
176 | SHS SHS 160x6.3 3831,0 120,26
RHS
177 | RHS 200x120x6.3 3831,0 120,26
178 | SHS SHS 200x5 3873,0 121,52
179 | HEA HEA 160 3877,0 121,74
180 | RHS RHS 140x80x10 3893,0 122,15
181 | IPE IPE 240 3912,0 122,77
182 | CHS CHS 168.3x8 4029,0 126,51
183 | CHS CHS 139.7x10 4075,0 127,96
184 | SHS SHS 140x8 4155,0 130,62
185 | RHS RHS 180x100x8 4155,0 125,73
186 | CHS CHS 273x5 4210,0 132,19
187 | CHS CHS 219.1x6.3 4212,0 132,26
188 | UNP UNP 240 4230,0 132,82
189 | CHS CHS 177.8x8 4268,0 134,00
190 | SHS SHS 120x10 4293,0 134,71
191 | RHS RHS 160x80x10 4293,0 127,39
192 | HEB HEB 140 4296,0 134,89
193 | SHS SHS 180x6.3 4335,0 135,96
194 | SHS SHS 150x8 4475,0 140,67
195 | RHS RHS 200x100x8 4475,0 135,65
196 | RHS RHS 150x100x10 4493,0 133,67
197 | HEA HEA 180 4525,0 142,09
198 | IPE IPE 270 4595,0 144,13
199 | CHS CHS 193.7x8 4667,0 146,54
200 | CHS CHS 244.5x6.3 4714,0 147,89
201 | SHS SHS 160x8 4795,0 150,72
202 | RHS RHS 200x120x8 4795,0 145,82
203 | UNP UNP 260 4830,0 151,66
204 | SHS SHS 200x6.3 4839,0 151,98
RHS
205 | RHS 250x150x6.3 4839,0 151,98
206 | CHS CHS 168.3x10 4973,0 156,16
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207 | CHS CHS 139.7x12.5 4995,0 156,85
208 | CHS CHS 323.9x5 5009,0 157,28
209 | SHS SHS 140x10 5093,0 159,83
210 | RHS RHS 180x100x10 5093,0 152,51
211 | SHS SHS 120x12.5 5207,0 163,59
RHS
212 | RHS 160x80x12.5 5207,0 163,59
213 | CHS CHS 177.8x10 5272,0 165,53
214 | CHS CHS 273x6.3 5279,0 165,76
215 | CHS CHS 219.1x8 5306,0 166,73
216 | UNP UNP 280 5330,0 167,36
217 | SHS SHS 220x6.3 5343,0 167,68
RHS
218 | RHS 260x180x6.3 5343,0 167,68
219 | IPE IPE 300 5381,0 168,93
220 | HEA HEA 200 5383,0 169,03
221 | HEB HEB 160 5425,0 170,35
222 | SHS SHS 180x8 5435,0 170,82
RHS
223 | RHS 150x100x12.5 5457,0 171,44
224 | SHS SHS 150x10 5493,0 172,39
225 | RHS RHS 200x100x10 5493,0 165,16
226 | CHS CHS 193.7x10 5771,0 181,21
227 | UNP UNP 300 5880,0 184,63
228 | SHS SHS 160x10 5893,0 184,95
229 | RHS RHS 200x120x10 5893,0 177,63
230 | CHS CHS 244.5x8 5944,0 186,64
231 | SHS SHS 200x8 6075,0 190,91
232 | RHS RHS 250x150x8 6075,0 185,89
233 | SHS SHS 250x6.3 6099,0 191,54
RHS
234 | RHS 300x200x6.3 6099,0 191,54
235 | CHS CHS 168.3x12.5 6118,0 192,17
236 | SHS SHS 140x12.5 6207,0 194,99
RHS
237 | RHS 180x100x12.5 6207,0 194,99
238 | IPE IPE 330 6261,0 198,76
239 | CHS CHS 323.9x6.3 6286,0 197,38
240 | SHS SHS 260x6.3 6351,0 199,39
241 | HEA HEA 220 6434,0 202,03
242 | CHS CHS 177.8x12.5 6491,0 203,83
243 | HEB HEB 180 6525,0 204,89
244 | CHS CHS 219.1x10 6569,0 206,30
245 | CHS CHS 273x8 6660,0 209,12
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246 | SHS SHS 180x10 6693,0 210,07
247 | SHS SHS 150x12.5 6707,0 210,69
RHS
248 | RHS 200x100x12.5 6707,0 194,81
249 | SHS SHS 220x8 6715,0 211,01
250 | RHS RHS 260x180x8 6715,0 206,11
251 | CHS CHS 355.6x6.3 6913,0 216,97
252 | CHS CHS 193.7x12.5 7116,0 223,44
253 | SHS SHS 160x12.5 7207,0 226,39
RHS
254 | RHS 200x120x12.5 7207,0 210,38
255 | IPE IPE 360 7273,0 226,39
256 | SHS SHS 300x6.3 7359,0 232,36
RHS
257 | RHS 350x250x6.3 7359,0 231,10
258 | CHS CHS 244.5x10 7367,0 231,32
259 | SHS SHS 200x10 7493,0 235,19
260 | RHS RHS 250x150x10 7493,0 227,96
261 | SHS SHS 150x14.2 7497,0 235,50
262 | UNP UNP 320 7580,0 238,01
263 | SHS SHS 250x8 7675,0 241,15
264 | RHS RHS 300x200x8 7675,0 236,25
265 | HEA HEA 240 7684,0 241,28
266 | UNP UNP 350 7730,0 242,72
267 | HEB HEB 200 7808,0 245,17
268 | CHS CHS 406.4x6.3 7919,0 248,69
269 | CHS CHS 323.9x8 7939,0 249,32
270 | SHS SHS 260x8 7995,0 251,20
271 | CHS CHS 193.7x14.2 8008,0 251,51
272 | UNP UNP 380 8040,0 252,46
273 | SHS SHS 160x14.2 8065,0 253,40
274 | CHS CHS 219.1x12.5 8113,0 254,75
275 | SHS SHS 180x12.5 8207,0 257,79
276 | CHS CHS 273x10 8262,0 259,43
277 | SHS SHS 220x10 8293,0 260,31
278 | RHS RHS 260x180x10 8293,0 252,99
279 | SHS SHS 150x16 8301,0 260,62
280 | RHS RHS 200x100x16 8301,0 260,62
281 | IPE IPE 400 8446,0 264,07
282 | HEA HEA 260 8682,0 272,61
283 | CHS CHS 355.6x8 8736,0 274,44
284 | CHS CHS 457x6.3 8920,0 280,10
285 | CHS CHS 193.7x16 8932,0 280,47

149



286 | SHS SHS 160x16 8941,0 280,72
287 | HEB HEB 220 9104,0 285,87
288 | CHS CHS 244.5x12.5 9111,0 286,09
289 | CHS CHS 219.1x14.2 9141,0 287,00
290 | UNP UNP 400 9150,0 287,31
291 | SHS SHS 180x14.2 9201,0 288,88
292 | SHS SHS 200x12.5 9207,0 289,19
RHS
293 | RHS 250x150x12.5 9207,0 273,31
294 | SHS SHS 300x8 9275,0 292,02
295 | RHS RHS 350x250x8 9275,0 291,39
296 | RHS RHS 400x200x8 9275,0 286,49
297 | SHS SHS 250x10 9493,0 297,99
298 | RHS RHS 300x200x10 9493,0 290,67
299 | HEA HEA 280 9726,0 305,40
300 | CHS CHS 323.9x10 9861,0 309,60
301 | IPE IPE 450 9882,0 309,29
302 | SHS SHS 260x10 9893,0 310,55
303 | CHS CHS 508x6.3 9930,0 311,79
304 | CHS CHS 406.4x8 10013,0 314,00
305 | SHS SHS 220x12.5 10207,0 320,28
RHS
306 | RHS 260x180x12.5 10207,0 320,28
307 | CHS CHS 219.1x16 10209,0 320,56
308 | SHS SHS 180x16 10221,0 320,28
309 | CHS CHS 273x12.5 10230,0 321,22
310 | CHS CHS 244.5x14.2 10274,0 323,42
311 | SHS SHS 200x14.2 10337,0 323,42
RHS
312 | RHS 250x150x14.2 10337,0 323,42
313 | HEB HEB 240 10599,0 332,84
314 | CHS CHS 355.6x10 10857,0 342,26
315 | SHS SHS 350x8 10875,0 342,26
316 | RHS RHS 450x250x8 10875,0 342,26
317 | HEA HEA 300 11253,0 353,25
318 | CHS CHS 457x8 11285,0 354,82
319 | SHS SHS 220x14.2 11473,0 361,10
RHS
320 | RHS 260x180x14.2 11473,0 361,10
321 | CHS CHS 244.5x16 11486,0 360,65
322 | SHS SHS 300x10 11493,0 361,10
323 | RHS RHS 350x250x10 11493,0 361,10
324 | RHS RHS 400x200x10 11493,0 353,47
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325 | SHS SHS 200x16 11501,0 361,10
326 | RHS RHS 250x150x16 11501,0 361,10
327 | CHS CHS 273x14.2 11545,0 362,52
328 | IPE IPE 500 11552,0 361,10
329 | SHS SHS 250x12.5 11707,0 367,38
RHS
330 | RHS 300x200x12.5 11707,0 351,81
331 | HEB HEB 260 11844,0 371,78
332 | CHS CHS 610x6.3 11948,0 375,18
333 | SHS SHS 260x12.5 12207,0 383,08
334 | CHS CHS 323.9x12.5 12229,0 383,99
335 | HEA HEA 320 12437,0 390,62
336 | CHS CHS 406.4x10 12453,0 392,50
337 | CHS CHS 219.1x20 12510,0 392,81
338 | CHS CHS 508x8 12566,0 395,64
339 | SHS SHS 220x16 12781,0 401,92
340 | RHS RHS 260x180x16 12781,0 401,92
341 | CHS CHS 273x16 12918,0 405,63
342 | HEB HEB 280 13136,0 412,60
343 | SHS SHS 250x14.2 13177,0 414,48
RHS
344 | RHS 300x200x14.2 13177,0 414,48
345 | HEA HEA 340 13347,0 419,19
346 | IPE IPE 550 13442,0 427,04
347 | CHS CHS 355.6x12.5 13474,0 423,90
348 | SHS SHS 350x10 13493,0 423,90
349 | RHS RHS 450x250x10 13493,0 423,90
350 | SHS SHS 260x14.2 13745,0 430,18
351 | CHS CHS 323.9x14.2 13816,0 433,32
352 | CHS CHS 711x6.3 13947,0 437,95
353 | CHS CHS 457x10 14043,0 439,60
354 | CHS CHS 244.5x20 14106,0 442,92
355 | SHS SHS 300x12.5 14207,0 445,88
RHS
356 | RHS 350x250x12.5 14207,0 445,88
RHS
357 | RHS 400x200x12.5 14207,0 430,31
358 | HEA HEA 360 14276,0 448,39
359 | SHS SHS 250x16 14701,0 461,58
360 | RHS RHS 300x200x16 14701,0 461,58
361 | HEB HEB 300 14908,0 468,17
362 | CHS CHS 762x6.3 14957,0 469,64
363 | CHS CHS 610x8 15130,0 475,08
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364 | CHS CHS 355.6x14.2 15230,0 477,28
365 | SHS SHS 260x16 15341,0 480,42
366 | CHS CHS 406.4x12.5 15468,0 486,70
367 | CHS CHS 323.9x16 15477,0 485,97
368 | SHS SHS 400x10 15493,0 486,70
369 | RHS RHS 500x300x10 15493,0 486,70
370 | IPE IPE 600 15598,0 483,56
371 | CHS CHS 508x10 15645,0 489,84
372 | CHS CHS 273x20 15896,0 499,15
373 | HEA HEA 400 15898,0 499,26
374 | SHS SHS 300x14.2 16017,0 502,40
RHS
375 | RHS 350x250x14.2 16017,0 502,40
RHS
376 | RHS 400x200x14.2 16017,0 502,40
377 | HEB HEB 320 16134,0 506,48
378 | SHS SHS 350x12.5 16707,0 524,38
RHS
379 | RHS 450x250x12.5 16707,0 524,38
380 | CHS CHS 355.6x16 17070,0 536,00
381 | HEB HEB 340 17090,0 536,63
382 | CHS CHS 244.5x25 17239,0 541,32
383 | CHS CHS 457x12.5 17455,0 548,10
384 | CHS CHS 406.4x14.2 17496,0 549,50
385 | CHS CHS 711x8 17668,0 554,79
386 | HEA HEA 450 17803,0 558,92
387 | SHS SHS 300x16 17901,0 562,06
388 | RHS RHS 350x250x16 17901,0 562,06
389 | RHS RHS 400x200x16 17901,0 562,06
390 | HEB HEB 360 18063,0 567,08
391 | CHS CHS 610x10 18850,0 591,88
392 | SHS SHS 350x14.2 18857,0 593,46
RHS
393 | RHS 450x250x14.2 18857,0 593,46
394 | CHS CHS 762x8 18950,0 595,03
395 | CHS CHS 323.9x20 19095,0 599,57
396 | SHS SHS 400x12.5 19207,0 602,88
RHS
397 | RHS 500x300x12.5 19207,0 602,88
398 | CHS CHS 508x12.5 19458,0 610,99
399 | CHS CHS 273x25 19478,0 611,61
400 | CHS CHS 406.4x16 19624,0 616,18
401 | HEA HEA 500 19754,0 620,15
402 | CHS CHS 457x14.2 19754,0 620,26
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403 | HEB HEB 400 19778,0 621,09
404 | CHS CHS 813x8 20232,0 635,28
405 | CHS CHS 355.6x20 21086,0 662,11
406 | SHS SHS 350x16 21101,0 662,54
407 | RHS RHS 450x250x16 21101,0 662,54
408 | HEA HEA 550 21176,0 665,05
409 | SHS SHS 400x14.2 21697,0 681,38
RHS
410 | RHS 500x300x14.2 21697,0 681,38
411 | HEB HEB 450 21798,0 684,52
412 | CHS CHS 711x10 22023,0 691,51
413 | CHS CHS 508x14.2 22029,0 691,70
414 | CHS CHS 457x16 22167,0 696,05
415 | HEA HEA 600 22646,0 711,21
416 | CHS CHS 914x8 22770,0 714,99
417 | CHS CHS 610x12.5 23464,0 736,76
418 | CHS CHS 323.9x25 23476,0 737,13
419 | CHS CHS 762x10 23625,0 741,82
420 | HEB HEB 500 23864,0 749,20
421 | HEA HEA 650 24164,0 758,62
422 | CHS CHS 406.4x20 24278,0 762,34
423 | SHS SHS 400x16 24301,0 763,02
424 | RHS RHS 500x300x16 24301,0 763,02
425 | CHS CHS 508x16 24731,0 776,54
426 | CHS CHS 813x10 25227,0 792,13
427 | CHS CHS 1016x8 25334,0 795,48
428 | HEB HEB 550 25406,0 797,87
429 | CHS CHS 355.6x25 25965,0 815,31
430 | HEA HEA 700 26048,0 817,97
431 | CHS CHS 610x14.2 26579,0 834,58
432 | HEB HEB 600 26996,0 847,80
433 | CHS CHS 711x12.5 27430,0 861,30
434 | CHS CHS 457x20 27458,0 862,17
435 | CHS CHS 914x10 28400,0 891,76
436 | HEA HEA 800 28583,0 897,41
437 | HEB HEB 650 28634,0 898,98
438 | CHS CHS 762x12.5 29433,0 924,19
439 | CHS CHS 610x16 29858,0 937,53
440 | CHS CHS 406.4x25 29955,0 940,59
441 | SHS SHS 400x20 29971,0 942,00
442 | RHS RHS 500x300x20 29971,0 942,00
443 | HEB HEB 700 30638,0 962,10
444 | CHS CHS 508x20 30662,0 962,79
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445 | CHS CHS 711x14.2 31085,0 976,06
446 | CHS CHS 813x12.5 31436,0 987,08
447 | CHS CHS 1016x10 31604,0 992,38
448 | HEA HEA 900 32053,0 1.006,37
449 | CHS CHS 1067x10 33207,0 1.042,69
450 | CHS CHS 762x14.2 33360,0 1.047,50
451 | HEB HEB 800 33418,0 1.049,39
452 | CHS CHS 457x25 33929,0 1.065,38
453 | HEA HEA 1000 34685,0 1.088,95
454 | CHS CHS 711x16 34935,0 1.096,94
455 | CHS CHS 914x12.5 35402,0 1.111,62
456 | CHS CHS 406.4x30 35475,0 1.113,91
457 | CHS CHS 813x14.2 35635,0 1.118,94
458 | CHS CHS 1168x10 36380,0 1.142,32
459 | CHS CHS 610x20 37071,0 1.164,02
460 | HEB HEB 900 37128,0 1.165,88
461 | CHS CHS 762x16 37498,0 1.177,44
462 | CHS CHS 508x25 37935,0 1.191,15
463 | CHS CHS 1219x10 37982,0 1.192,63
464 | CHS CHS 1016x12.5 39407,0 1.237,39
465 | HEB HEB 1000 40005,0 1.256,00
466 | CHS CHS 813x16 40062,0 1.257,93
467 | CHS CHS 914x14.2 40141,0 1.260,42
468 | CHS CHS 457x30 40244,0 1.263,66
469 | CHS CHS 1067x12.5 41410,0 1.300,28
470 | CHS CHS 711x20 43417,0 1.363,29
471 | CHS CHS 1016x14.2 44691,0 1.403,29
472 | CHS CHS 508x30 45050,0 1.414,58
473 | CHS CHS 914x16 45138,0 1.417,35
474 | CHS CHS 1168x12.5 45376,0 1.424,82
475 | CHS CHS 610x25 45946,0 1.442,70
476 | CHS CHS 406.4x40 46043,0 1.445,76
477 | CHS CHS 762x20 46621,0 1.463,91
478 | CHS CHS 1067x14.2 46966,0 1.474,73
479 | CHS CHS 1219x12.5 47379,0 1.487,71
480 | CHS CHS 813x20 49826,0 1.564,53
481 | CHS CHS 1016x16 50265,0 1.578,34
482 | CHS CHS 1168x14.2 51472,0 1.616,21
483 | CHS CHS 457x40 52402,0 1.645,42
484 | CHS CHS 1067x16 52829,0 1.658,83
485 | CHS CHS 1219x14.2 53747,0 1.687,65
486 | CHS CHS 711x25 53878,0 1.691,78
487 | CHS CHS 610x30 54664,0 1.716,44
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488 | CHS CHS 914x20 56172,0 1.763,79
489 | CHS CHS 762x25 57884,0 1.817,55
490 | CHS CHS 1168x16 57906,0 1.818,24
491 | CHS CHS 508x40 58811,0 1.846,65
492 | CHS CHS 1219x16 60469,0 1.898,74
493 | CHS CHS 813x25 61889,0 1.943,33
494 | CHS CHS 1016x20 62581,0 1.965,03
495 | CHS CHS 711x30 64183,0 2.015,34
496 | CHS CHS 1067x20 65785,0 2.065,65
497 | CHS CHS 762x30 68989,0 2.166,27
498 | CHS CHS 914x25 69822,0 2.192,41
499 | CHS CHS 610x40 71628,0 2.249,13
500 | CHS CHS 508x50 71942,0 2.258,99
501 | CHS CHS 1168x20 72131,0 2.264,91
502 | CHS CHS 813x30 73796,0 2.317,19
503 | CHS CHS 1219x20 75335,0 2.365,53
504 | CHS CHS 1016x25 77833,0 2.443,95
505 | CHS CHS 1067x25 81838,0 2.569,73
506 | CHS CHS 914x30 83315,0 2.616,09
507 | CHS CHS 711x40 84320,0 2.647,66
508 | CHS CHS 610x50 87965,0 2.762,09
509 | CHS CHS 1168x25 89771,0 2.818,81
510 | CHS CHS 762x40 90729,0 2.848,90
511 | CHS CHS 1016x30 92928,0 2.917,95
512 | CHS CHS 1219x25 93777,0 2.944,58
513 | CHS CHS 1067x30 97735,0 3.068,88
514 | CHS CHS 711x50 103830,0 3.260,25
515 | CHS CHS 762x50 111841,0 3.511,80
516 | CHS CHS 711x60 122711,0 3.853,11
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Static Analysis

A LCI: BASIC STRESSES ), LOADING, IN AXONOMETRIC DIRECTION Members |
Stresses | Basic
LC1 - Variable | Comment A : |
Loads [kN] ’ fresses
Static Analysis 0, [N/mm?]

Normal stress due to axial force 0, [N/mm?]

max Oy : 74.745 | min Oy : -74.745 N/mm?

Figure 125: 1D cantilever beam. UNP 300 stresses.

A LC1: GLOBAL DEFORMATIONS | U], LOADING, IN AXONOMETRIC DIRECTION Static Analysis
LC1 - Variable | Comment 4 In Axonometric Direction
Loads [kN]

Static Analysis 4 ¥

Displacements |u| [mm]

\ 10.000

y4 . :
Y . <

X
max |u| : 12.8 | min |u] : 0.0 mm

Figure 126: 1D cantilever beam. UNP 300 deflection.
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Appendix C: 2D optimization problem: Cantilever Truss

A LC1: ELASTIC STRESS COMPONENTS ox (N + My + M;), LOADING, IN DIRECTION +Y

LC1 - Variable | Comment

Loads [kN]

Static Analysis

Normal stress due to axial force and bending moments about y-axis and z-axis 0x (N + My + M) [N/mm?]

88.960 88.960

88.960

88.960 88.960

31.75m

5.000 m

max Ox (N + My + M;) : 137.846 | min Ox (N + My + M;) : -119.494 N/mm?

Static Analysis

In direction +Y

Members | Stresses
| Elastic Stress
Components

o, (N + M, +M,)
[N/mm?]

Figure 127: Optimal truss layout and cross-sections found by Gholizadeh. CHS dataset. Stresses based on

static analysis.
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A LC1: ELASTIC STRESS COMPONENTS Oy (N + My + M;), LOADING, IN DIRECTION +Y Static Analysis

LC1 - Variable | Comment In direction +Y | Members | Stresses
Loads [kN]

| Elastic Stress
Static Analysis Components
o, (N+ M, +M;)
[N/mm?]

Normal stress due to axial force and bending moments about y-axis and z-axis G, (N + My + M.) [N/mm?]

56.691 -
88.960 88.960 88.960 88.960 88.960 77940

10

: . 2 1
) - ‘ o 2
z 1 55/3*3/
15 9 >
6.35m \7 R/ §
11 9
< >
31.75m
Z
I—P X
5.000 m

max Ox (N + My + M) : 134.547 | min Ox (N + My + M;) : -99.188 N/mm?

Figure 128: Optimal truss layout and cross-sections found by Bayesian optimization algorithm. Discrete
CHS cross-sections. 4GPs approach.
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A LC1: ELASTIC STRESS COMPONENTS o, (N + My + M), LOADING, IN DIRECTION +Y

LC1 - Variable | Comment
Loads [kN]
Static Analysis

Normal siress due to axial force and bending moments about y-axis and z-axis 0, (N + My + M;) [N/mm?]

88.960 88.960 88.960 88.960 88.960

6.35m

31.75m

5.000 m

max Ox (N + My + M) : 135.229 | min Oy (N + My + M;) : -109.163 N/mm?

Static Analysis

In direction +Y | Members | Stresses

| Elastic Stress

| Components
‘o,‘(N+M,+M,)
[N/mm?]

-86.946 =
-109.163

Figure 129: Optimal truss layout and cross-sections found by Bayesian optimization algorithm. Discrete

CHS cross-sections. 18GPs approach.
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A LC1: ELASTIC STRESS COMPONENTS 0 (N + My + M), LOADING, IN DIRECTION +Y Static Analysis

LC1 - Variable | Comment
Loads [kN]
Static Analysis

In direction +Y | Members | Stresses
| Elastic Stress
Components

Ox (N + M, + M,)
[N/mm?]

Normal stress due to axial force and bending moments about y-axis and z-axis 0, (N + My + M;) [N/mm?]

88.960 88.960 88.960 88.960 88.960 94749

Z
6.35m T
¢

< >
31.75m

5.000 m
max Ox (N + My + M;) : 137.868 | min Oy (N + My + M;) :-118.011 N/mm?

Figure 130: Optimal truss layout and cross-sections found by Bayesian optimization algorithm.
Parametric CHS cross-sections. 18GPs approach.
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Table 17: Cantilever truss case study cross-sectional areas in in?,
mm? and the corresponding parametric CHS profile.

Area Area Parametric CHS profile
(in?®) (mm?)
2 1290.32 CHS 51.0/10
2.25 1451.61 CHS 56.0/10
2.5 1612.9 CHS 61.0/10
2.75 1774.19 CHS 66.0/10
3 1935.48 CHS 72.0/10
3.25 2096.77 CHS 77.0/10
3.5 2258.06 CHS 82.0/10
3.75 2419.35 CHS 87.0/10
4 2580.64 CHS 92.0/10
4.25 2741.93 CHS 97.0/10
4.5 2903.22 CHS 102.0/10
4.75 3064.51 CHS 108.0/10
5 3225.8 CHS 113.0/10
5.25 3387.09 CHS 118.0/10
5.5 3548.38 CHS 123.0/10
5.75 3709.67 CHS 128.0/10
6 3870.96 CHS 133.0/10
6.25 4032.25 CHS 138.0/10
6.5 4193.54 CHS 143.0/10
6.75 4354.83 CHS 149.0/10
7 4516.12 CHS 154.0/10
7.25 4677.41 CHS 159.0/10
7.5 4838.7 CHS 164.0/10
7.75 4999.99 CHS 169.0/10
8 5161.28 CHS 174.0/10

8.25 5322.57 CHS 179.0/10
8.5 5483.86 CHS 185.0/10
8.75 5645.15 CHS 190.0/10
9 5806.44 CHS 195.0/10
9.25 5967.73 CHS 200.0/10
9.5 6129.02 CHS 205.0/10
9.75 6290.31 CHS 210.0/10
10 6451.6 CHS 215.0/10
10.25 6612.89 CHS 220.0/10
10.5 6774.18 CHS 226.0/10
10.75 6935.47 CHS 231.0/10
11 7096.76 CHS 236.0/10
11.25 7258.05 CHS 241.0/10
11.5 7419.34 CHS 246.0/10
11.75 7580.63 CHS 251.0/10
12 7741.92 CHS 256.0/10
12.25 7903.21 CHS 262.0/10
12.5 8064.5 CHS 267.0/10
12.75 8225.79 CHS 272.0/10
13 8387.08 CHS 277.0/10
13.25 8548.37 CHS 282.0/10
13.5 8709.66 CHS 287.0/10
13.75 8870.95 CHS 292.0/10
14 9032.24 CHS 298.0/10
14.25 9193.53 CHS 303.0/10
14.5 9354.82 CHS 308.0/10
14.75 9516.11 CHS 313.0/10
15 9677.4 CHS 318.0/10
15.25 9838.69 CHS 323.0/10
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15.5 9999.98 CHS 328.0/10
15.75 10161.27 CHS 333.0/10
16 10322.56 CHS 339.0/10
16.25 10483.85 CHS 344.0/10
16.5 10645.14 CHS 349.0/10
16.75 10806.43 CHS 354.0/10
17 10967.72 CHS 359.0/10
17.25 11129.01 CHS 364.0/10
17.5 11290.3 CHS 369.0/10
17.75 11451.59 CHS 375.0/10
18 11612.88 CHS 380.0/10
18.25 11774.17 CHS 385.0/10
18.5 11935.46 CHS 390.0/10

18.75 12096.75 CHS 395.0/10
19 12258.04 CHS 400.0/10
19.25 12419.33 CHS 405.0/10
19.5 12580.62 CHS 410.0/10
19.75 12741.91 CHS 416.0/10
20 12903.2 CHS 421.0/10
20.25 13064.49 CHS 426.0/10
20.5 13225.78 CHS 431.0/10
20.75 13387.07 CHS 436.0/10
21 13548.36 CHS 441.0/10
21.25 13709.65 CHS 446.0/10
21.5 13870.94 CHS 452.0/10
21.75 14032.23 CHS 457.0/10
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Figure 131: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 1.
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Figure 132: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 2.
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Figure 133: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 3.
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Figure 134: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 4.
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Figure 135: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 5.
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Figure 150: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 20.
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Appendix D: 3D optimization problem: Gridshells

In the figures of D1 and D2, the load combinations used for the analysis in Chapter 5.3 and
Chapter 5.4 are shown. The load per surface is uniformly distributed over the profiles that
enclose the surface based on surface area divided by perimeter;

The load per profile is summed from the surfaces that it helps define (i.e., the surfaces to the left
and right of the line, where applicable).

The line load is determined with:

kN
2
kN Asurface [m ] * leass [W]

-

rmpose m P surface [m]
D1. 4x4 Gridshell Additional Figures
& LC2: LOADING, IN AXONOMETRIC DIRECTION
LC2 - Imposed Load | Comment In Axonometric Direction

Loads [kN/m]

Figure 151: Gridshell 4x4 node model: Validation load combination: self-weight + imposed load of 1kN/m?.
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A LC2:, LOADING, IN AXONOMETRIC DIRECTION Static Analysis

LC2 - Imposed Load | Comment In Axonometric Direction
Loads [kN/m]
Static Analysis

z
vq/'x

Figure 152: Gridshell 4x4 node model: Test load combination: 1.35 * self-weight + 1.35 * 50 * imposed load of 1kN/m?.
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The heatmaps in Figure 152 to Figure 155 present the learned lengthscales per input dimension for
multiple Gaussian Process kernels, evaluated in the original design space without applying PCA.
Each row corresponds to one kernel, and each column to one design dimension. The color intensity
encodes the log-scaled lengthscale values:

o Bright colors (yellow/green): short lengthscales — model is highly sensitive to changes
in that input dimension.

e Dark colors (blue/purple): long lengthscales — input dimension has little influence on
the predictive model.

The heatmaps are produced immediately after the first optimization of the hyperparameters for the
Gaussian processes following the fitting on the initial samples. In this way the effect of any
subsequent samples generated from the acquisition function is disregarded.

In Figure 152 it can be seen that the GPs are correctly registering the most influential input
dimension for each steel element. Since the first 12 elements share the same cross-section which
is the first in the input vector the length scales are the shortest at index 0 as expected. The diagonal
that forms from the kernel 13 to kernel 28 corresponds to the fact that each GP models the
constraints for an individual element rather than a group of elements.

Lengthscales per Dimension per Kernel
Bright = Sensitive | Dark = Less Sensitive

Kernel Index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Input Dimension

Figure 153: Heatmap of log-length scales across 17 input dimensions and 28 kernels. 17 initial samples.
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With 28 input dimensions and only 280 training samples, the heatmap in Figure 154 reveals a
sparse and somewhat noisy sensitivity pattern. The 28 individual GPs are able to form the expected
diagonal with the input dimensions, indicating that since there are no groups of elements each
structural element is dependent on the corresponding cross-sectional area. However, there is also
other random dependencies as well. This suggests that with limited data, the GP struggles to
robustly distinguish between relevant and irrelevant dimensions. In high-dimensional spaces, this
effect is expected due to the curse of dimensionality, where the number of samples needed to
represent the same part of the design space grows exponentially with every new dimension.
Nevertheless, even at this low data regime the BO framework is able to produce reasonable designs
leading to total weight reduction as discussed in subchapter 5.3.

Lengthscales per Dimension per Kernel
Bright = Sensitive | Dark = Less Sensitive

cG&adaTTARB

K
K11l
K12
K13
K14

Kernel Index
Fat
=
w

K16
K17

7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Input Dimension

Figure 154: Heatmap of log-length scales across 28 input dimensions and 28 kernels. 280 initial samples.

Increasing the number of samples by an order of magnitude drastically clarifies the sensitivity
structure. The heatmap in Figure 155 shows a much stronger diagonal dominance, where different
kernels consistently identify specific input dimensions as relevant, with relatively stable short
length scales. The noise observed in the 280-sample case is reduced, and irrelevant dimensions are
more uniformly assigned long length scales (dark regions). This demonstrates that sample size has
a direct impact on GP interpretability in high dimensions: with sufficient data, the model is better
able to disentangle the influence of individual variables and establish a coherent sensitivity profile.
However, the computational cost is substantially increased with execution time being around 15
hours compared to the ca. 1.6 hours as discussed in Figure 81 in subchapter 5.3.
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Figure 155: Heatmap of log-length scales across 28 input dimensions and 28 kernels. 2800 initial
samples.
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D2. 9x9 Gridshell Additional Figures
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Figure 156: Glass imposed load applied along the true length of the elements.



A LC3: LOADING, IN AXONOMETRIC DIRECTION
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Figure 157: Wind variable load applied along the true length of the elements.
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A LC4: LOADING, IN AXONOMETRIC DIRECTION
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Figure 158: Snow variable load applied along the true length of the elements.
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A CO1: LOADING, IN AXONOMETRIC DIRECTION

CO1-CO1 In Axonometric Direction
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Figure 159: ULS Load Combination: 1.20 * Self-weight + 1.20 * Glass + 1.50 * Wind
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Figure 160: 9x9 gridshell: von Mises equivalent stresses




A CO1: GLOBAL DEFORMATIONS |U|, IN DIRECTION -Z

CO1-COl1
Static Analysis
Displacements |u]| [mm]

max |u] : 96.5 | min |u] : 3.5 mm

Figure 161: Displacement due to LC1: Top view.
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A CO1: GLOBAL DEFORMATIONS |U|, IN DIRECTION +Y Static Analysis
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Figure 162: Displacement due to LC1: Side view.
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Figure 163: Gridshell 9x9. Grasshopper model using Kangaroo2 plugin for shape generation.
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Figure 164: Gridshell 9x9. Generated geometry.

196



Appendix E: Supplementary Material
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Figure 165: Matérn kernel samples based on different hyperparameter combinations.
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Constrained BO algorithm

Start Bavesian optimization

Problem Setup

o  Specify the number of design variables such as the geometry (shape) via the node coordinates
and/or the areas of individual elements or groups of elements.

e Define upper and lower bounds for each design variable.

o Establish the number of initial design samples.

o Specify the number and type of constraint functions (e.g., stresses, buckling, deflection).

Initial Sampling and Feasibility Check

e QGenerate an initial set of design samples using a space-filling sampling strategy (e.g., Latin
Hypercube Sampling).

o Ensure at least one initially feasible sample is included. If that is not achieved automatically, a
manual sample has to be added to serve as a starting point of the optimisation.

e For each sample:

o Evaluate the objective function and all constraints using the RFEM6 solver.

o Identify and retain the subset of samples that satisfy all constraints or have minimal constraint

violation.

Data Normalization

o Fit appropriate normalization or scaling transforms to the design variables, objective values, and
each constraint.
e Apply normalization to all sampled data to facilitate efficient modelling.

Surrogate Model Construction

o Initialize surrogate models (e.g., Gaussian Processes) for the objective function and each
constraint, with suitable kernel functions and corresponding starting hyperparameters.

Optimization Loop

For each optimization iteration:

1) Ifnecessary (e.g., at regular intervals), update or re-optimize surrogate model hyperparameters.

2) Define an acquisition function that combines expected improvement in the objective with the
probability of constraint satisfaction.

3) Maximize the acquisition function over the feasible domain using a global optimization
algorithm to select the next candidate design such as the differential evolution algorithm.

4) Denormalize the selected candidate to obtain real design variable values.

5) Evaluate the objective and constraint functions at the new candidate using the RFEM6 solver.

6) Normalize and incorporate the new data into the surrogate models.

7) Update the record of the best feasible solution found so far.

8) Check for improvement; if the objective does not improve sufficiently over a set number of
iterations, terminate early.

Result Extraction
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e Return the design variables, objective value, and constraint values corresponding to the best
feasible solution identified by the algorithm.

End Bavesian optimization

Constrained BO with PCA algorithm

The differences with the previous algorithm are outlined.

Data Normalization

e Fit appropriate normalization or scaling transforms to the design variables, objective values, and
each constraint.

e Apply normalization to all sampled data to facilitate efficient modelling.

e Choose a number of principle components based on the explained variance metric.

o Fit the PCA on all the scaled initial samples

Surrogate Model Construction

e Initialize surrogate models (e.g., Gaussian Processes) for the objective function and each
constraint, with suitable kernel functions and starting hyperparameters.
e Fit the GPs on the initial samples transformed in the PCA latent space.

Optimization Loop

For each optimization iteration:

1) Ifnecessary (e.g., at regular intervals), update or re-optimize surrogate model hyperparameters.

2) Define an acquisition function that combines expected improvement in the objective with the
probability of constraint satisfaction.

3) Maximize the acquisition function over the bounded domain in the PCA latent space using a
global optimization algorithm to select the next candidate design such as the differential
evolution algorithm.

4) Transform the sampled point from the PCA latent space back to the scaled space.

5) Denormalize the selected candidate to obtain real design variable values.

6) Evaluate the objective and constraint functions at the new candidate using the RFEM6 solver.

7) Normalize and incorporate the new data into the surrogate models.

8) Update the record of the best feasible solution found so far.

9) Check for improvement; if the objective does not improve sufficiently over a set number of
iterations, terminate early.
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