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Abstract 
This thesis investigates the application of Bayesian Optimization (BO) for the weight minimization of 

macrostructural systems, focusing on a cantilever beam, a truss, and two gridshells as case studies. 

Traditional structural optimization methods often struggle with high-dimensional, non-convex design 

spaces while being constrained by expensive function evaluations due to repeated finite element analyses. 

BO addresses these challenges through surrogate modelling with Gaussian Processes (GPs) and 

probabilistic acquisition functions that balance exploration and exploitation. The study integrates BO with 

the finite element package RFEM6, enabling automated optimization workflows subject to Eurocode-based 

strength, stiffness, and stability constraints. 

Four case studies of increasing complexity are implemented:  

(i) 1D cantilever beam with a varying size variable 

(ii) 2D cantilever truss with varying shape and size variables  

(iii) 3D 4×4 gridshell with varying size variables 

(iv) 3D 9×9 gridshell with varying size variables  

The achieved results via the constrained BO algorithm for the 4x4 gridshell show a 1.67× lighter 

structure than the reference design and  2.54 × lighter structure than the reference design for the 9x9 

gridshell confirming that BO can converge towards feasible and lightweight structural designs. The 

efficiency of the algorithm is further demonstrated by its ability to converge 18 times faster to a 

design that is only 0.5% heavier than the reference design for the cantilever truss case study. 

Furthermore, the 1D case demonstrated robustness and integration feasibility between the Python 

implementation and the RFEM6 software. The 2D truss highlighted the benefits of embedding structural 

knowledge in the sampling strategy and showed that using multiple GPs per member improved reliability 

compared to aggregated models. For high-dimensional 3D gridshells, the optimizer maintained feasibility 

but faced some scalability issues. Principal Component Analysis (PCA) is introduced to mitigate the “curse 

of dimensionality” by exploiting the underlying pattern of the cross-sections that depends on the internal 

forces while reducing computational cost. However, it is found that excessive dimensionality reduction 

degrade the solution quality, indicating a trade-off between efficiency and accuracy. Therefore, it has to be 

applied carefully to retain enough structural variance. 

Two other key findings can be emphasized. First, increasing the number of surrogate models to approximate 

the structural constraints for each element in the system improves accuracy but increases the computational 

cost. Second, informative initialization and structural-domain knowledge can enhance the convergence rate.  

The thesis concludes that Bayesian optimisation either with or without applying the PCA, is a viable and 

sample-efficient strategy for structural weight minimization under realistic structural constraints, capable 

of being integrated with industry-standard FEM software. Future work should explore the scalability of the 

BO framework in higher dimensional feature space, the implementation of multi-objective BO and apply it 

to case studies with broader structural typologies such as moment frames composed of different cross-

section types. 

Finally, a basic version of an interactive tool is developed that integrates the knowledge discussed in this 

thesis and that can be used by the structural engineers to explore various design options in the early design 

phase of a project.  

Keywords: Bayesian Optimization, Surrogate Modelling, Structural Optimization, Gridshells, Finite 

Element Analysis (FEM), Principal Component Analysis (PCA)  
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Terminology 
Bayesian optimization (BO) - sequential optimization technique for finding the minimum or 

maximum of expensive, black-box functions. It builds a probabilistic model (typically a Gaussian 

Process) of the objective function and uses this model to select promising points to evaluate, 

balancing exploration and exploitation to efficiently converge to the optimum. 

Gaussian process (GP) - a Gaussian probability density over functions. In practice, this manifests 

as any arbitrary number of points in the function being jointly Gaussian. 

Kernel function - defines the covariance (similarity) between any two input points (features) in a 

Gaussian process. The notation is k(x,xʹ), where x,xʹ ∈ ℝD and D is the number of input 

dimensions.  

Acquisition function – a strategy used in Bayesian optimization to determine the next point to 

evaluate by balancing exploration and exploitation of the design space based on the surrogate 

model’s predictions. Examples include Expected Improvement (EI) and Upper Confidence Bound 

(UCB).  

Surrogate model - an approximate model used to mimic the behaviour of an expensive or complex 

function, enabling efficient optimization by providing predictions for the behaviour of this function.  

Hyperparameter - a configuration variable whose value is set before the learning process begins 

and governs the behaviour or capacity of a machine learning algorithm, such as kernel length-scale.  

Size optimization – the process of selecting the cross-sections of structural members to minimize 

an objective (e.g., total structural weight) while satisfying performance and safety constraints. 

Shape optimization -   The process of modifying the geometry of a structure to minimize an 

objective (e.g. total structural weight) while satisfying design constraints. 

O(N) – Big O notation is a mathematical notation used to describe the upper bound of an 

algorithm’s growth rate, expressing how the runtime or computational complexity scales with the 

size of the input. 

API - (Application Programming Interface) is a defined set of rules and protocols that allows 

different software systems or components to communicate and exchange data with each other. 
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1. Introduction 

1.1. Research Problem/Background 
Nowadays, it is crucial for structural engineers and builders to implement strategies to minimize 

the use of new steel components in their projects. Steel ranks as the second most frequently used 

material in building construction after concrete (Chen et al., 2022). According to a 2024 report 

from the World Steel Association the building and infrastructure sectors accounted for 52% of 

global steel use in 2023 (WSA, 2024). Additionally, it is reported that on average 1.92 tonnes of 

CO2 are emitted for every tonne of steel produced which amounts to 7-9% of global and 5% of 

EU CO2 emissions (Somers J., 2021). Furthermore, it has been estimated by Allwood et al. (2010) 

that the demand for buildings materials is expected to double by 2050. Meanwhile, the IPCC report 

(Fischer et al., 2007) recommends that global carbon emissions need to be cut by at least 50% by 

2050 in order to limit global warming to 1.5 °C compared to pre-industrial levels as stipulated in 

the Paris Agreement in 2015 (UNFCCC, 2015). Specifically, the European Union has set a target 

to reduce emissions by 55% by 2030 (Somers J., 2021). Similarly, the Netherlands has set the 

ambitious goal to be a net-zero country by 2050 in the Dutch Climate Act (Klimaatwet, 2019).  

To address these issues, one strategy is to minimize the use of raw steel material early in the design 

stages of a project. In this thesis, the focus is on steel gridshell structures as they are considered as 

one of the most efficient structures. Driven by the demand for environmentally sustainable 

solutions, their relevance has grown, owing to their efficient use of materials (Dyvik et al., 2021) 

and capacity to span large distances (Grande et al., 2017a). They own this capacity to their shape 

because membrane forces (axial compression and tension) are mainly active, while bending 

moments are ideally zero (Adriaenssens et al., 2014). This enables the use of smaller cross-sections 

relative to other structures that fulfil the same purpose such as frames.   

The optimization process of such structures is subject to several mechanical and fabrication 

requirements such as physical, environmental and economic constraints which often lead to single 

or multi-objective optimizations algorithms (Grande et al., 2017a). These techniques are often 

time-consuming and have high computational costs. Despite being powerful tools, optimization 

routines can pose significant challenges for designers. Small errors can only be identified and 

corrected after the process is finished, which can take a significant amount of time (e.g. hours or 

days).  

1.2. Research Context 
This thesis aims to use Bayesian optimization for optimizing the design of gridshells by efficiently 

navigating the complex design space to identify optimal configurations with minimal 

computational effort. The potential of this approach for high-dimensional non-convex multi-

objective optimization problems has been suggested by Shende et al., (2021) and Mathern et al. 

(2020), even though they applied the procedure for different problems in the structural engineering 

field. Gridshell design involves numerous parameters, such as geometry, boundary conditions, 

load conditions and connection/joint stiffness design, which can create a vast and intricate design 

landscape that traditional optimization methods may struggle to explore effectively. Bayesian 
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optimization, however, excels in such scenarios by using a probabilistic model to predict and select 

promising design candidates that balance exploration and exploitation. By doing so, it requires 

fewer evaluations of the design space, which is particularly advantageous given the high 

computational cost of structural simulations via finite element modelling. Additionally, Bayesian 

optimization's ability to incorporate prior knowledge can further streamline the search for optimal 

gridshell designs. This characteristic is especially beneficial when dealing with constraints and 

complex structural performance criteria, enabling designers to efficiently converge on cost-

efficient solutions that optimize material use and structural performance. 

A basic version of a design tool can be developed based on this research that supports decision-

making in the early stages of projects, particularly for complex structures such as gridshells. This 

industrial need forms the background of the present thesis and motivates the research questions on 

how Bayesian optimization can be applied to support feasible and efficient steel construction. Such 

a tool would bridge the gap between computational optimization, structural efficiency, and 

sustainability, contributing to a more responsible approach  to steel construction. 

1.3. Research Objectives 
This research project aims to determine to what extent the Bayesian optimization framework can 

be applied to efficiently optimize the layout and cross-sections of truss and gridshell structures, 

made from steel elements, focusing on the minimization of the structural weight. The outcome 

must be a structurally sound and feasible structure. The developed workflow must have the 

possibility of being implemented into a structural engineer’s practice by integrating it with 

industry-standard tools like RFEM6. Throughout the thesis “optimization framework” and 

“optimization algorithm” are used interchangeably.  

The objectives of this research are the following:  

1. Investigate how to streamline the data exchange between RFEM6 and a Python 

implementation of the Bayesian optimization framework. For this purpose, problems with 

lower complexity are used such as a cantilever beam and a cantilever truss case discussed 

in Chapter 5.  

2. Implement the structural constraints in order to optimize for the shape, size of the 2D 

cantilever truss case, 4x4 and 9x9 gridshells and how are possible scalability issues 

addressed. 

3. Investigate ways of improving the performance of the framework given the dimensions of 

the different test cases.  
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1.4. Research Questions 
The main research question that this thesis aims to answer is the following: 

“To what extent can Bayesian optimization be applied to efficiently optimize the shape and 

cross-sections of structures in terms of minimizing structural weight, while ensuring structural 

integrity and integration with industry-standard tools like RFEM6?” 

To answer this research question effectively a set of sub-questions is defined. They are split into 

two categories that relate to the development of the Bayesian optimization framework and to the 

understanding of the gridshell as a structure and how to model it in RFEM6.  

RQ1: How can the Bayesian optimization be used in the weight optimization of macrostructures? 

1.1. What are the current state-of-the-art shape and size optimization algorithms for structural 

design given a set of spatial & structural constraints?  

1.2. How can the Bayesian optimization framework be used to optimize the shape and size of 

structures (e.g. truss and gridshell)?  

1.2.1. What restrictions in the design space should be made to facilitate the convergence 

of the algorithm to a solution?  

1.3. How can the key structural performance metrics be included effectively in the Bayesian 

framework? 

1.3.1. What surrogate models should be used to approximate the relationship between 

design variables (e.g. node coordinates & cross-sectional dimensions) and objectives 

(e.g. minimization of the structural weight)?  

1.4. What will be an appropriate acquisition function that, in combination with the surrogate 

model, will allow for a balanced exploration versus exploitation approach to avoid local 

optimal solutions?  

1.5. What should be the size of the initial training set?  

1.6. Which hyperparameters are the most influential in the optimization algorithm based on a 

sensitivity analysis and how often do they need to be updated to obtain the optimal solution 

without significantly increasing the computational cost of the algorithm? 

1.7. What should the stopping criteria of the Bayesian optimization framework be to arrive at 

useful and computationally efficient results?  

1.8. What techniques can be used to reduce the dimensionality of the optimization problem in 

case the computational cost is too high?  

1.9. How many finite element evaluations are needed and are the obtained optimal results 

consistent? 

1.10. How do the results of the Bayesian optimization framework compare to other 

optimization algorithms from literature in terms of results, computational time and model 

evaluations?  

RQ2: How can a gridshell be modelled in RFEM6 and what is the structural behaviour?   

2.1. What is the structural behaviour of a gridshell under uniformly distributed load? 

2.2. How can the geometry of the gridshell be generated to obtain the desired structural 

behaviour? 
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2.3. How can the structural model be created in a finite element software such as RFEM6? 

2.3.1. What is the governing load combination that should be considered in the analysis?  

2.3.2. What are the boundary conditions of the model? 

2.3.1. What cross-section types are suitable (e.g. standardized vs parametric, open vs 

closed)?  

2.4. What are the key structural performance metrics that must be calculated to evaluate the 

structural feasibility in terms of strength, stiffness and stability and guide the optimization 

process? 

1.5. Research Scope 
To make the aim and objectives (outlined in the previous section) of this thesis feasible the research 

scope is defined within the following boundary conditions: 

• Symmetric load cases and load combinations. 

• Symmetric and asymmetric boundary conditions.  

• The structural requirements are element based (e.g. stress, buckling). 

• The detailed design of the connections is not considered. 

• Connections are modelled as pinned. 

• Geometrically linear static analysis is considered as the main analysis of obtaining the 

internal forces of members and resulting stresses.  

• Global stability analysis is excluded from the BO framework, due to the nonlinear second-

order (P- Δ) calculations that are necessary to be performed.  

1.6. Research Methods & Software  
For this research, a mixed-method research strategy is employed such as FEM modelling and 

expert elicitation. Integration of computational modelling and data analysis is used to explore the 

optimization of a truss and gridshell structures. The primary method involves using a Bayesian 

optimization framework to analyse and enhance design parameters, providing an efficient 

exploration and exploitation of the design space. The FEM software package RFEM6 is utilized 

for the structural analysis. It is integrated with Python as the base programming language to 

facilitate the development of the optimization algorithm. This combination allows for precise 

modelling and evaluation of structural performance under various scenarios with subsequent data 

analysis of the results. 
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1.7. Research Gap and Report Structure 
As discussed by Shende et al. (2021) the potential of Bayesian optimization for higher dimensional 

structural design problems remains largely unexplored. 

In Chapter 2 the literature has been analysed with the overview that mainly metaheuristic 

algorithms are used for those types of problems. In some cases, they have high computational cost 

(e.g. genetic algorithms), and the results in other cases (e.g. harmony search) are not as optimal as 

they have been found to be by the more accurate but even more time-consuming deterministic 

optimization algorithms.  

This thesis aims to address the research gap concerning the application of probabilistic Bayesian 

optimization to higher-dimensional, non-convex shape and size optimization of structures. The 

study focuses on gridshell geometries, with the objective of minimizing structural weight while 

ensuring compliance with strength and stability constraints. 

The report structure linking the research questions to the methods used to answer them is shown 

in Figure 1.  

 

Figure 1: Structure of the thesis. 
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2. Literature review 
In this chapter a literature study is presented covering the important topics relevant to the thesis 

questions and objectives outlined in the previous chapter. First, the mechanical behaviour and 

design considerations such as form-finding of gridshell structures is discussed to establish an 

understanding of how these structures work which will help in validating the RFEM6 models for 

the gridshell case studies discussed in Chapter 5. Next, to establish a reference frame, an overview 

of the most commonly used algorithms for shape and size optimization in the structural 

engineering field are presented. A detailed analysis of the pros and cons of each of the referenced 

papers outlined in Table 14 in Appendix A. Finally, some known and recent papers are discussed 

on the topic of Bayesian optimization and its successful application in different fields of 

engineering.  

2.1. Structural principles of gridshell structures 
Shells are thin single or double curved structures (Williams, 2014). They have been used for 

centuries in architecture and engineering, providing efficient, lightweight solutions for spanning 

large spaces. One historical example is the Roman Pantheon (Figure 2), with its vast concrete dome 

spanning almost 44m. In the 20th century, the development of reinforced concrete and advanced 

computational methods enabled the construction of even more complex shell structures, such as 

Pier Luigi Nervi’s reinforced concrete dome Palazzetto dello Sport (Figure 3) and Felix Candela’s 

thin concrete shells such as the hypar shell L'Oceanogràfic in Valencia, Spain, (Figure 4). A good 

example for the efficiency of shell structures is the elliptic paraboloid built by Ove Arup as the 

new concrete roof for the Smithfield Poultry Market in London (Figure 5). The structure spans 

almost 70m while the thickness of the concrete is mainly 7cm in the middle part and is increased 

to 15cm towards the edges due to the bending moments (Ahm & Perry, 1965).  

 

Figure 2: The Pantheon, Rome, Italy. Bult in 

126 AD. (Source: Ravisetti, 2023). 

 

Figure 3: Pier Luigi Nervi - Palazzetto dello 

Sport, Rome, Italy. Built in 1957. (Source: 
Structurae).
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Figure 4:Felix Candela - L'Oceanogràfic, City of 

Arts and Sciences, Valencia, Spain. Built in 

2003. (Source:Lázaro. 2023). 

 

Figure 5: Ove Arup - Concrete shell roof for the 
Smithfield Poultry Market, London, UK. 

(Source: Julian Harrap Architects). 

To achieve this slenderness the load transfer mechanism of shell structures is fundamentally 

different from that of beam or frame systems. Rather than resisting loads primarily through 

bending, shells rely on in-plane forces or “membrane action” to efficiently distribute loads 

(Borgart, 2024b). This allows shells to achieve remarkable structural efficiency, as forces flow 

smoothly through their curved geometry toward supports. The shell behaviour is compared to the 

plate behaviour in Figure 6. 

 

Figure 6: Shell behaviour. (a) Internal forces of a curved (shell) element; (b) Membrane action; (c) Plate 

behaviour. (Source: Borgart, 2024b). 

A key characteristic to consider in the design of shell structures is their deformation. There are two 

types: extensional and inextensional deformation (Figure 7). In the former when a load is applied 

the middle part of the shell is stretching to accommodate the bending deformation. The load is 

mainly carried by membrane forces and the structure remains stiff. The case of inextensional 

deformation refers to the ability of shells to change shape without significant stretching or 
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compression of their surface. Here the load is carried by bending forces and there are large 

displacements. Therefore, thin shells have to be designed such that they do not undergo 

inextensional deformation when a certain load is applied (e.g. snow) because then the bending 

stresses are very large. However, when there is imposed displacement (e.g. foundation settlement) 

it is good to allow inextensional deformation to occur since it gives lower stresses in the shell 

(P.C.J. Hoogenboom, 2024). 

 

Figure 7: Shell deformations. (a) extensional deformation; (b) inextensional deformation. 

The design of shell structures often involves form-finding, a process that determines the optimal 

shape of a structure based on a given load, force flow or stress field and boundary conditions. In 

traditional construction, form-finding is achieved through physical models using hanging chains 

or soap films, as seen in the work of Antoni Gaudí (Figure 8) and Frei Otto (Figure 9).Today, 

computational tools such as Grasshopper’s Kangaroo physics engine (Castro & Song, 2024), 

which uses the dynamic relaxation method, enable engineers to simulate and refine shell 

geometries digitally (Figure 10). This method is used to form find the gridshell geometries 

discussed in subchapters 5.3 & 5.4. 

 

Figure 8: Antoni Gaudi - Hanging Chain Model 

for La Sagrada Familia, Barcelona, Spain. 

(Source: Zexin & Mei, 2017). 

 

 

 

Figure 9: Frei Otto - Soap film model for the 

Munich Olympic Stadium, Munich, Germany. 

(Source: Zexin & Mei, 2017). 
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Figure 10: Concrete shell form found using Kangaroo/Grasshopper. (Source: Tamplin, R & Iuorio, 

Ornella., 2018). 

Techniques for designing 2D curves and 3D surfaces can be categorized as either physics-based 

or mathematics-based. A summary is provided in Figure 11. By using these methods, designers 

can create shell structures that are not only aesthetically pleasing but also structurally optimized 

to withstand applied loads efficiently. 

 

Figure 11: Classification of form-finding methods. (Source: Chiang, 2022). 

This thesis focuses on gridshells, which are a subset of shells. Both share a fundamental structural 

principle: they rely on their curved geometry to efficiently transfer loads primarily through 

membrane action, minimizing bending stresses. However, while shells are continuous, thin-

surfaced structures made from mainly concrete, gridshells are composed of a network of 

interconnected linear elements (often timber, steel, or composite materials) that form a flexible 

lattice capable of assuming a shell-like shape. They can be single layered or double layered (Figure 

12). This distinction allows gridshells to be lighter and more adaptable, as they can be assembled 

flat and then deformed into their final shape, a technique seen in projects like the Mannheim 

Multihalle by Frei Otto (Figure 13). 
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Figure 12: Structural scheme for (a) continuous 

shell; (b) single-layered gridshell; (c) double-

layered gridshell. (Source: Adriaenssens et al., 

2014) 

 

Figure 13:Frei Otto - Multihalle, 
Herzogriedenpark, Mannheim, Germany. (a) 

inside photo; (b) outside photo. (Source: 
Adriaenssens et al., 2014)

 

One additional point of attention relating to gridshells that is not necessarily required for 

continuous shells is form stability. It refers to their ability to maintain structural integrity and resist 

excessive deformations under applied loads, including self-weight, wind, and snow. Instability can 

happen when considering the structure as a whole (Figure 14) or in-plane (Figure 15). This 

phenomenon is inherently linked to factors such as curvature, nodal connections, boundary 

conditions, and the load-bearing capacity of individual elements. By not making a gridshell form-

stable out-of-plane bending moments and in-plane bending moments can be developed depending 

on the load case. Achieving form stability requires a balance between geometry, joint and 

connection design, material properties, and structural optimization to create efficient, durable, and 

aesthetically compelling structures. 
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Figure 14: Form-stability of the whole structure. 

(Source: Grande et al., 2017b). 

 

 

 

 

 

Figure 15: Form-stability in-plane. (a) Unstable 
configuration; (b) deformed state; (c) stable 

configuration.

 

Several remarkable gridshell structures showcase the versatility and efficiency of this construction 

method. The British Museum gridshell, designed by Foster + Partners with structural engineering 

by Buro Happold, was completed in 2000 and covers the Great Court with a striking steel and glass 

gridshell (Figure 16). Its flowing, doubly curved form maximizes natural light while creating a 

seamless architectural connection between historic and modern elements. Another outstanding 

example is the courtyard roof of the Museum of Hamburg History, built by Jörg Schlaich and 

completed in 2020. This lightweight steel-glass gridshell provides a transparent yet protective 

canopy over the museum’s courtyard, blending contemporary engineering with historic 

preservation. The Dutch maritime museum gridshell, completed in 2011, features a spectacular 

glass and steel lattice structure that covers the museum’s central courtyard. Inspired by 17th century 

nautical maps, its geometric pattern mimics compass lines, adding both structural efficiency and 

symbolic meaning to the design (Sigrid Adriaenssens. 2019). These examples highlight how 

gridshells can be adapted for different boundary conditions, creating visually striking, structurally 

efficient, and sustainable architectural solutions. 

 

Figure 16: Queen Elizabeth II Great Court, The 

British Museum, London, UK. (Source: Buro 

Happold, 2019) 

 

Figure 17: Courtyard Roof of the Museum of 

Hamburg (Source: Ermias Y., 2013) 
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Figure 18: Glass Roof Dutch Maritime Museum. (Source: Ney & Partners 2011). 

In recent years, the research done on gridshells has been steadily increasing from only 10 

publications in 2011 to 327 in total in 2021 (Dyvik et al., 2021) as shown in Figure 19a. The right 

bar chart categorizes research contributions by discipline, showing that Structural Engineering 

dominates the field with 278 publications, far surpassing other areas. This indicates that gridshell 

research is primarily concerned with load-bearing capacity, stability, and optimization rather than 

aesthetic or material innovations. 

 

Figure 19: (a) gridshell publications per year; (b) research contribution per year. (Source: Dyvik et al., 

2021) 

Structural optimization techniques can typically be classified in three main categories depending 

on the design variables considered: shape, size and topology optimization (Gythiel & Schevenels, 

2022). Shape optimization in this thesis focuses on refining the form (z-coordinates of the nodes) 

of the gridshell and the in-plane position of the nodes on the obtained surface (x- and y- coordinates 

of the nodes) to enhance structural performance (e.g. minimal bending moments, deflections). Size 

optimization involves adjusting the cross-sectional dimensions of the individual members in the 
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grid to balance material use and structural strength while ensuring compliance with constraints 

such as buckling resistance and maximum deflection.  

In the past different researchers have studied how to optimize the design of gridshells using various 

strategies and algorithms. For example, Wang et al. (2019) have developed a physically-based 

bubble-packing model and a geometry edge operation to achieve triangular grids for complex free-

form surfaces. Grande et al. (2017a) have shown the potential for combining different optimization 

strategies such as form finding, sizing optimization and topologic optimization using genetic 

algorithms to obtain light structural solutions for gridshells. On the other hand, Gythiel & 

Schevenels (2022) have used gradient-based algorithm to optimize the size, shape and topology of 

a single-layer reticulated (i.e. grid) shell under a distributed load. Furthermore, Saka (2007) has 

analysed the optimum geometry design for geodesic domes which is a type of gridshell by 

employing harmony search algorithms. Finally, Richardson et al. (2013) developed a coupled 

form-finding and grid optimization approach to design efficient gridshell structures by integrating 

geometric form-finding with structural and performance-based optimization using a genetic 

algorithm.   

In the next subchapter, an overview of the current state-of-the-art algorithms used in structural 

engineering field for optimization problems is provided. Also, a case is made that Bayesian 

optimization can serve as an efficient framework for optimizing gridshells by leveraging 

uncertainty modelling to guide exploration of the design space, reducing computational costs 

through informed sampling, and improving convergence toward optimal structural configurations. 
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2.2. Common optimization algorithms in structural engineering 
In recent years, the integration of artificial intelligence (AI) and machine learning (ML) with 

structural engineering (SE) has gained significant momentum, as seen by the increasing number 

of publications in this area. Figure 20 illustrates a notable rise in the number of articles published 

annually between 2011 and 2020, covering various intersections between structural engineering 

and advanced computational techniques. This surge underscores the growing interest and 

advancements in applying AI tools like neural networks, decision trees, and genetic algorithms to 

enhance structural analysis and design.  

 

Figure 20: Number of publications from 2011 to 2020 (Tapeh & Naser, 2023). 

Furthermore, Figure 21 highlights some of the journals frequently publishing these advancements, 

with titles such as "Computer-Aided Civil and Infrastructure Engineering" and "Construction and 

Building Materials" leading the distribution of this innovative research. These figures emphasize 

the pivotal role that AI and ML play in driving forward the future of structural engineering through 

interdisciplinary collaboration and exploration of potential areas of application for these 

techniques. 

 

Figure 21: Journals publishing about AI and the structural engineering field (Tapeh & Naser, 2023). 

 



15 

 

In general, on a high level the hierarchical relationship between AI, machine learning (ML) and 

deep learning (DL) can be represented as shown in Figure 22 (Atul, 2025). 

 

Figure 22: Hierarchical relationship between AI, ML and DL. 

AI is the field of computer science focused on creating systems capable of performing tasks that 

typically require human intelligence. These tasks include reasoning, learning, problem-solving, 

language understanding, and decision-making. 

ML is a subset of artificial intelligence that involves training algorithms to learn patterns from data 

and make decisions or predictions without being explicitly programmed for specific tasks. It 

enables systems to improve their performance as they are exposed to more data over time. 

DL is a subset of machine learning that uses neural networks with multiple layers to model 

complex patterns in data. It is very good at tasks involving large amounts of structured or 

unstructured data, such as image and speech recognition. 

 

 

 

 

 

 

 

 



16 

 

Furthermore, these three areas can split into several subcategories. Figure 23 gives a non-

exhaustive list of some examples. Bayesian regression has been highlighted by the red outline. 

 

Figure 23: Subcategories of AI, ML and DL. 

 

Supervised learning is used when both the outcome and the governing variables are known, such 

as a structural member and its cross section. This learning type can be categorized into regression 

(when predicting a quantity) or classification (when identifying a label or class). In contrast, 

unsupervised learning is applied when data is unlabelled, helping engineers discover the 

underlying structure, such as determining whether a signal from an onsite sensor indicates a 

structural crack. Deep learning methods are not used often in the field of structural engineering yet 

(Tapeh & Naser, 2023), although there are some recent examples of physics-informed NN being 

used for complex beam systems (Kapoor et al., 2023).  

This thesis focuses on optimization of macro structures, namely trusses and gridshells. 

Optimization algorithms that aim to search for the best result for a set of variables under given 

constraints to achieve a given goal/objective are analysed. The following paragraphs include a 
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brief description of current state-of-the-art methods that are commonly used in practice and in 

literature. 

An overview of most commonly used optimization algorithms is given in Figure 24. 

 

Figure 24: Overview of optimization algorithms. (Zavala et al., 2013). 

 

The deterministic SIMPLEX method efficiently solves linear programming problems by traversing 

the vertices of the feasible region, while Branch & Bound systematically explores and prunes a 

search tree to find optimal solutions in integer and combinatorial optimization.  

Gradient-based methods such as gradient descent are widely applied to continuous optimization 

problems with differentiable objective functions and are efficient and scalable for convex functions. 

However, they are prone to getting stuck in local maxima or minima when the function is multi-

peak (non-convex).  
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On the other hand, stochastic algorithms, divided further into heuristic and metaheuristic methods, 

are well-suited for non-convex objective functions which could be known or unknown (black-box), 

where the solution landscape is more complex and varied. They are more likely to find the global 

optimum of a given function due to the random component inherent in their structure. However, 

this can be computationally expensive. The difference between convex and non-convex functions 

is illustrated in Figure 25. 

Heuristic methods include approaches like Hill Climbing and Greedy Algorithms, which focus on 

finding approximately optimal solutions quickly in lower dimensional solution space utilizing the 

gradients of the functions if they are available.  

Metaheuristic methods, such as Genetic Algorithms, Tabu search, and Particle Swarm 

Optimization, provide more robust solutions by exploring the solution space more thoroughly, 

making them ideal for challenging optimization scenarios such as constrained multi-objective non-

convex problems in higher dimensional solution space (Blum & Roli, 2001). Another advantage 

is that they can be applied to a wide variety of problems without requiring domain specific 

information which makes them task independent. Nevertheless, this flexibility comes at the cost 

of fine tuning a lot of parameters to achieve good results which can increase the computational 

cost. 

 

Figure 25: Convex and non-convex functions. 

Furthermore, metaheuristic algorithms are often combined into hybrid approaches to achieve a 

good balance between the exploration and exploitation of the solution space of a given problem. 

As discussed in a paper by Saka (2009) the nature-inspired optimization algorithms are beneficial 

in the optimization of combinatorial problems in terms of computational costs and near optimal 

results. A description of some algorithms is provided below. A summary of some of the papers 

that used them for structural optimization problems are provided in Table 14 in Appendix A.  

Genetic Algorithms (GA): Simulate the Darwinian natural selection by evolving a population of 

candidate solutions through operations like selection, crossover, and mutation. They are well-

suited for complex optimization problems with discrete variables and intricate constraints. 

Examples include shape and size optimization of trusses using parallel genetic algorithm (Wei et 

al., 2011), improved genetic algorithm (Tang et al., 2005), Cellular Genetic Algorithm 

(Rajasekaran, 2001). 
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Differential Evolution (DE): It works by iteratively improving candidate solutions using 

mechanisms similar to genetic algorithms, such as mutation and crossover, and is known for 

solving complex, real-valued optimization problems robustly and efficiently. Structural problems 

that have been optimized using this algorithm or a hybrid version of it include but are not limited 

to truss optimization with frequency constraints (Pham, 2016), improved DE (Ho-Huu et al., 2016), 

hybrid DE with symbiotic organisms search (Nguyen-Van et al., 2021), adaptive elitist DE -aeDE 

(Ho-Huu, Nguyen-Thoi, et al., 2016). 

Harmony Search (HS): This algorithm simulates the creative process of musical harmony 

improvisation, adjusting solution vectors through memory consideration, randomization, and pitch 

adjustment to find optimal solutions. Studies that have used this technique (or variation of it) for 

optimization problems in structural engineering include improved harmony search (Degertekin, 

2012), hybrid harmony search (Cheng et al., 2016), HS and firefly algorithm (Miguel & Miguel, 

2012). 

The following two algorithms are often classified under the agent-based models.  

Particle Swarm Optimization (PSO): Inspired by the flocking behaviour of birds (agents) and 

schooling of fish, PSO optimizes a problem by iteratively updating candidate solutions (particles) 

based on their personal and collective best experiences. It is widely accepted for its simplicity and 

ability to quickly converge to good solutions. Some notable studies on layout optimization of 

trusses under various constraints have been published such as Cellular PSO (Gholizadeh, 2013), 

integrated particle swarm optimizer (Mortazavi & Toğan, 2016), particle swarm algorithm (Gomes, 

2011), binary PSO (Luh & Lin, 2011), heuristic PSO (Li et al., 2007). 

Ant Colony Optimization (ACO): ACO is inspired by the behaviour of ants (agents), using virtual 

pheromone trails to guide a population of solutions toward optimal paths. It is effective in solving 

routing and scheduling problems. Papers where variations of this algorithm have been used for 

structure optimization problems include space truss design (Camp & Bichon, 2004), streel frames 

including elemental warping effect (Aydoğdu & Saka, 2011).  

2.3. Bayesian optimization 
The algorithms outlined in the previous sub chapter are widely used in structural optimization 

problems as analysed by Hasançebi et al. (2009). However, this thesis focuses on the 

implementation of a Bayesian optimization framework for the shape and size optimization of two 

structural typologies - truss and gridshell, with the goal of minimizing the total weight of the 

structure given a set of spatial and structural constraints. As mentioned before, this approach has 

been used successfully in the fields of structural health monitoring (Huang et al., 2022), material 

microstructure optimization (Coelho et al., 2025), hyperparameter tuning (Snoek et al., 2012), and 

design of auxetic metamaterials (Tran et al., 2019). However, to the best of the author’s knowledge 

it has not been used for the optimization of macrostructures. Its use in the optimization of global 

structural models is still underexplored with one recent example from literature on the design of 

origami folding structures that discusses the potential of the approach and recommends its use for 

higher dimensional design problems (Shende et al., 2021). It was concluded that Bayesian 

optimization requires fewer finite element solutions compared to traditional methods, making it a 
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promising choice for such non-convex optimization problems (presence of multiple local optima). 

Additionally, it consistently outperforms the other methods analysed in the paper, delivering 

previously undiscovered designs for the origami structure. More details about the paper are 

provided in Table 15 in Appendix A. Similar conclusions and recommendations about the potential 

of Bayesian optimization were reached by Mathern et al. (2020) who were able to achieve optimal 

results for the design of a concrete beam by leveraging the cheap evaluation cost of the objective 

function while modelling the constraints using Gaussian Processes due to their expensive 

computational evaluations.  

Another very recent paper has shown significant improvements in performance and quality, 

especially in nonlinear settings, through various design scenarios employing Bayesian 

optimization. It reduces the number of required experiments and demonstrates its potential to 

enhance design methodologies in both material and structural engineering compared to established 

data-driven approaches. The paper has implemented Principal Component Analysis (PCA) for 

dimensionality reduction which further enhances efficiency and reduces computational burden 

(Coelho et al., 2025). The benefits are particularly notable in complex scenarios with geometric or 

material non-linearity, where it reduces the number of experiments needed to achieve target 

objectives. The authors have focused on both single-objective and multi-objective optimization 

and in both scenarios Bayesian optimization has been shown to perform well.  

On the other hand, Moriconi et al., (2020) discusses potential limitation of the Bayesian 

optimization in higher dimensions (D > 20) due to the response surface learning and optimal input 

selection via the acquisition function being computationally heavy. However, the paper suggests 

that high dimensional data often can be represented via its lower intrinsic dimensionality 

representing a certain underlaying pattern in the data, which can be exploited by the optimization 

framework.  

Bayesian Optimization (BO) can be classified under Stochastic Metaheuristic methods as shown 

in Figure 24 by the red highlight. It is stochastic because it relies on probabilistic models (usually 

Gaussian Processes) to guide the search for optimal solutions. It can be considered metaheuristic, 

as it is a high-level strategy designed to explore the search space efficiently, often outperforming 

traditional heuristics in black-box optimization problems as mentioned in the previous paragraphs. 

However, it is not explicitly nature-inspired but it can be classified under general probabilistic 

search methods. 
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3. Theory of Bayesian Optimization for macrostructures 
This chapter introduces the theoretical foundations of Bayesian Optimization (BO) in the context 

of macrostructural design. The chapter begins with a general definition and background of the 

method, followed by a detailed discussion of its core components, including kernels, acquisition 

functions, and the exploration–exploitation trade-off. Practical considerations such as 

hyperparameter tuning and sampling strategies are then addressed, highlighting their role in 

ensuring robust and efficient optimization. Finally, the chapter presents Principal Component 

Analysis (PCA) as a dimensionality reduction technique that can enhance the performance of BO 

in high-dimensional structural design problems. Together, these sections provide the theoretical 

basis for the subsequent application of BO to structural case studies. 

3.1. Definition/Background 
Bayesian optimization is a probabilistic model-based approach for optimizing objective functions 

that are expensive to evaluate, or lack analytic expressions. Its foundation lies in the principles of 

Bayesian inference, which allow the incorporation of prior knowledge and the systematic update 

of beliefs about an uncertain quantity as new information is acquired. The core of this approach is 

Bayes’ Theorem, which describes how to update the probability of a hypothesis as more evidence 

becomes available. Mathematically, Bayes’ Theorem is expressed as: 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 

where 𝑃(𝜃|𝐷) is the posterior probability of the parameters θ given observed data D, 𝑃(𝐷|𝜃) is 

the likelihood of the data under the parameters, 𝑃(𝜃) is the prior probability of the parameters, and 

𝑃(𝐷) is the marginal likelihood.  

In the context of optimization, Bayesian optimization treats the unknown objective function as a 

random function and places a prior over it which is commonly a Gaussian Process (GP) completely 

defined by its mean and covariance: 

𝑦(𝑥̅) ≈ 𝐺𝑃(𝑚(𝑥̅), 𝑘(𝑥̅, 𝑥̅′)) 

where 𝑚(𝑥̅) is a mean function and 𝑘(𝑥̅, 𝑥̅′) is a kernel function that defines the covariance 

between any two points 𝑥̅ and 𝑥̅′. In the next subchapter the discussion about kernel functions is 

extended. 

As function evaluations are performed, these results constitute the data D, and the posterior 

distribution over the objective function is updated according to Bayes’ Theorem. This probabilistic 

surrogate model captures both the current understanding of the function and the associated 

uncertainty in regions that have not yet been explored.  

 

 

 

 



22 

 

An  example of a fictious function 𝑓(𝑥) = sin(𝑥) + 0.2 cos(3𝑥) is presented in Figure 26 below. 

 

 

 

 

 

 

 

Figure 26: Example of a Gaussian Process used in a regression problem.  

The optimization process leverages this surrogate model to make intelligent decisions about where 

to evaluate the objective function next. This is achieved through the use of an acquisition function 

(see subchapter 3.3), which balances the exploration of uncertain regions with the exploitation of 

areas likely to yield optimal values. In subchapter 3.4 how to achieve this balance is discussed. 

The acquisition function is computed using the posterior distribution, ensuring that each new 

evaluation provides the maximum expected improvement or utility given the current knowledge. 

As such, Bayesian optimization provides an efficient and principled framework for solving 

challenging black-box optimization problems by iteratively refining its probabilistic model and 

strategically selecting new sample points. 

3.2. Kernels 
Kernels play a central role in the theory and application of Gaussian processes and other machine 

learning algorithms such as Kernel Logistic Regression used for classification of data that is not 

linearly separable. A kernel function defines a measure of similarity or correlation between data 

points in a possibly high-dimensional feature space, enabling nonlinear modelling while 

maintaining computational efficiency. By selecting an appropriate kernel, prior knowledge about 

the underlying structure can be encoded such as the smoothness of the function to be learned, thus 

shaping the model’s flexibility and generalization capabilities. The choice and design of kernel 

functions are therefore fundamental in capturing complex patterns and ensuring robust predictive 

performance in both regression and classification tasks. 
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In Figure 27 the Matérn kernel is shown. The effect of the smoothness determined by the 

hyperparameter ν in the kernel is highlighted. Larger values of ν correspond to smoother functions 

while smaller values produce functions with limited degree of differentiability, i.e. choppy 

functions. In the first row, with ν=∞,  the Matérn kernel reduces to the squared exponential (RBF) 

kernel (shown in the first row in Figure 28), yielding samples that are infinitely differentiable and 

thus smooth. The covariance matrix is shown on the left and darker tones represent lower values 

and lighter tones higher values. In this case it displays gradual transitions, and the process samples 

exhibit minimal variation and high regularity meaning that the input data points/features are highly 

correlated. For the intermediate case (ν=1.5), as shown in the second row, the functions become 

less smooth, i.e. only once differentiable with more pronounced fluctuations and moderately 

rougher samples, as reflected in both the covariance structure and the diversity of process samples. 

In the third row, with ν=0.5, the kernel generates the least smooth samples. These functions are 

continuous but nowhere differentiable, resulting in highly erratic behaviour and a rapidly decaying 

covariance structure. Overall, the figure demonstrates that as ν decreases, the Matérn kernel 

produces samples with increasing roughness, making it a flexible tool for modelling functions with 

varying degrees of smoothness in the Bayesian optimization used in chapter 5. More examples of 

different combinations of hyperparameters are shown in Figure 165 in Appendix D.  

 

Figure 27: Matérn kernel and samples.  
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In Figure 28 the squared exponential (SE) kernel is shown. This is one of the most widely used 

covariance functions in Gaussian Process modelling due to its smoothness and flexibility. In 

literature it is equivalent to the radial basis function (RBF) kernel with infinite number of basis 

functions. In the definition of the SE kernel the d=∣∣x−x′∣∣ is the Euclidean distance between 

inputs points, ℓ is the length-scale parameter, and σf denotes the variance/amplitude of the samples. 

The length-scale parameter ℓ controls the smoothness of the resulting functions: larger values of 

ℓ correspond to broader correlations between points, resulting in smoother sample functions with 

gentle variation, as seen in the first row. As ℓ decreases (middle and bottom rows), the kernel 

function becomes increasingly localized, and the resulting samples display higher-frequency 

fluctuations and rougher behaviour, as the covariance decays more rapidly with distance. This 

property is reflected in both the structure of the covariance matrix and the increasing complexity 

of the drawn samples. Overall, the SE kernel is infinitely differentiable, making it suitable for 

modelling processes that are expected to be very smooth, with the length-scale parameter 

providing a direct means of tuning the modelled smoothness. 

 

Figure 28: Squared Exponential/RBF kernel and samples.  

Given the basic kernels above, they can serve as the building blocks of hybrid kernels such as the 

one shown Figure 29. Hybrid kernels can be a result of linear combination of different kernels as 

long as the covariance for any set of function values is positive definite. This property ensures that 

all variances are positive, all pairwise relationships are consistent, and, in probabilistic models, 
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guarantees that the associated multivariate distribution is well-defined and that the matrix is 

invertible. 

Figure 29 presents the characteristics of a hybrid kernel constructed as a linear combination of a 

Matérn kernel and a squared exponential (RBF) kernel. This formulation allows the model to 

capture a richer class of functions by blending the distinct properties of each component. The 

Matérn kernel, parameterized by its smoothness ν and length-scale ℓ1, provides control over 

function roughness, while the RBF kernel, governed by ℓ2, ensures smooth and infinitely 

differentiable behaviour. In the first example, where the Matérn component is dominant due to the 

constant C1 = 1, the resulting functions are relatively smooth but exhibit some moderate variability 

due to the contribution of the RBF term (ℓ2 =0.3). In the second example, the process samples 

display a bit more complexity and more pronounced local fluctuations, as evidenced by both the 

covariance structure and the sample paths. The third example, where the Matérn kernel has both a 

higher weight (C1=1.5) and a smaller length-scale (ℓ1 = 0.2), produces functions that are even 

rougher and exhibit higher frequency variations. Overall, the hybrid kernel’s flexibility enables it 

to model data exhibiting both global smoothness and local irregularities, as controlled by the 

relative weights and length-scales of its constituent kernels.  

 

Figure 29: Hybrid kernel and samples.  
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3.3. Acquisition function 
In Bayesian optimization, the acquisition function is the function that guides the selection of the 

next query point to evaluate the expensive objective function at. After constructing a surrogate 

probabilistic model, commonly a Gaussian Process as discussed in the previous subchapter, the 

acquisition function quantifies the utility or potential benefit of evaluating the objective at each 

point in the design space, balancing exploration (uncertainty reduction) and exploitation 

(searching near the current optimum). A widely used acquisition function is Expected Improvement 

(EI), which measures the expected gain in objective value over the current best observation. It is 

defined with the following equations Brochu et al. (2010): 

𝛼𝐸𝐼(𝑥̅) = {
(𝜇(𝑥̅) − 𝑓(𝑥̅)𝑏𝑒𝑠𝑡 − 𝜉)𝛷(𝑍̅) + 𝜎(𝑥̅)ɸ(𝑍̅) 𝑖𝑓𝜎(𝑥̅) > 0

0                                                                         𝑖𝑓𝜎(𝑥̅) = 0
                    (3.3.1) 

𝑍̅ =
𝜇(𝑥̅)−𝑓(𝑥̅)𝑏𝑒𝑠𝑡−𝜉

𝜎(𝑥̅)
                                                     (3.3.2) 

where where the Φ(·) and the ɸ(·) denote the CDF and PDF of the standard normal distribution 

respectively and ξ  is the exploration-exploitation trade-off parameter which is discussed in more 

details in the following subchapter.  

EI is particularly effective in unconstrained optimization, as it naturally trades off between 

sampling where the surrogate model predicts high values and where the uncertainty is large. 

However, many real-world problems involve constraints especially in the structural engineering 

field. The Constrained Expected Improvement (cEI) acquisition function extends EI by 

incorporating the feasibility probability that a candidate point satisfies all constraints, enabling 

optimization in feasible regions only. It is defined by the following equations: 

𝛼𝑐𝐸𝐼(𝑥̅) = 𝛼𝐸𝐼(𝑥̅) × ∏ 𝑃(𝑓𝑖(𝑥̅) ≤ 𝑐𝑜𝑛𝑠𝑡𝑟𝑖)
𝑀𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
𝑖=1                        (3.3.3) 

where 𝑃(𝑓𝑖(𝑥̅) ≤ 𝑐𝑜𝑛𝑠𝑡𝑟𝑖) = 𝛷 (
𝑐𝑜𝑛𝑠𝑡𝑟𝑖−𝜇(𝑥̅)𝑖

𝜎(𝑥̅)𝑖
) and 𝜇(𝑥̅)𝑖, 𝜎(𝑥̅)𝑖 are the mean and uncertainty for 

the GPs trained on every element. 

While EI is computationally efficient and well-suited for noiseless, unconstrained scenarios, it 

cannot handle constraints directly. On the other hand, cEI handles constraints very well but 

typically requires additional surrogate models for the constraints and can be more computationally 

intensive. Overall, the choice between EI and cEI depends on whether the problem includes 

constraints or not. In addition, some studies in the literature (Ament et al. 2024) apply the logarithm 

of the Expected Improvement (EI) to mitigate numerical instabilities that can arise in its standard 

implementation, specifically when EI values become very small, making it difficult to effectively 

maximize the acquisition function. 

Another widely used acquisition function in Bayesian optimization is the Upper Confidence Bound 

(UCB). The UCB acquisition function selects the next evaluation point by maximizing a sum of 

the surrogate model’s predictive mean and a scaled version of its uncertainty (standard deviation). 

Formally, UCB is defined as 𝑈𝐶𝐵(𝑥) =  𝜇(𝑥) + 𝜅𝜎(𝑥), where μ(x) and σ(x) are the posterior 

mean and standard deviation of the surrogate model at point x, and κ ≥ 0  is a parameter controlling 

the trade-off between exploration and exploitation. Larger values of κ encourage exploration of 
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uncertain regions, while smaller values focus more on exploitation near the current optimum. UCB 

is especially useful when an explicit balance between risk-taking and reward is desired, or when 

theoretical regret bounds are important. However, UCB does not naturally handle constraints, and 

its performance can be sensitive to the choice of κ. 

 

Finally, the Probability of Improvement (PI) is sometimes used for optimization problems. Its 

definition is similar to the EI, but it is considered to exploit rather than explore the design space 

Brochu et al. (2010): 

𝛼𝑃𝐼(𝑥̅) = 𝛷(
𝜇(𝑥̅)−𝑓(𝑥̅)𝑏𝑒𝑠𝑡

𝜎(𝑥̅)
)                                            (3.3.4) 

A comparison between all of the acquisition functions mentioned above is shown in Figure 30. 

The emphasis is on the difference in how the next point is picked going from one iteration to the 

next.  

 

Figure 30: Acquisition function comparison for the choice of the next sampling point.  

(Source: Coelho, 2025) 

In this thesis constraints on structural performance metrics are essential to achieve the desired 

objectives for the different cases studied in Chapter 5. Therefore, the Constrained Expected 

Improvement (cEI) acquisition function is chosen as it provides the most benefits in these scenarios.  
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3.4. Exploration vs Exploitation 
In Bayesian Optimization, an effective balance between exploration and exploitation is vital for discovering 

high-performing solutions within a limited evaluation budget. Exploration refers to the investigation of 

unsampled or poorly understood regions of the design space, while exploitation targets areas that the 

surrogate model already predicts to be promising. A successful optimization strategy must dynamically 

adjust this balance as more information becomes available. 

This trade-off is typically controlled by acquisition functions such as Expected Improvement (EI) or 

Constrained Expected Improvement (CEI) which are explained in the previous section. Both of which can 

be tuned using an exploration parameter ξ. To adaptively manage this parameter throughout the 

optimization process, dynamic schedules for ξ can be employed based on the current iteration n and the 

total number of allowed iterations nmax. Two commonly used adaptive formulations are the linear and 

exponential decay strategies, defined as follows: 

Linear adaptative ξ: 

𝜉 = 𝜉𝑚𝑎𝑥 − (𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛) ∗
𝑛

n𝑚𝑎𝑥
    (3.4.1)  

Exponential adaptive ξ:  

𝜉 = 𝜉𝑚𝑖𝑛 − (𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛) ∗ exp (−𝜆 ∗
𝑛

n𝑚𝑎𝑥
)   (3.4.2) 

 

where, n – current iteration, nmax – maximum number of predefined iterations and λ – decay rate.  

In the linear scheme, ξ is interpolated from an initial high value to a lower bound in direct 

proportion to the current iteration, ensuring that a smooth and predictable transition from 

exploration to exploitation is enforced. In the exponential-decay function, ξ is decreased following 

an exponential law, resulting in rapid early reduction of exploration that than transitions to 

exploitation of the best known region in the design space. 

3.5. Hyperparameter tuning 
Hyperparameter tuning for the kernels used in Gaussian processes is a crucial step in constructing 

accurate surrogate models for Bayesian optimization. The kernel hyperparameters, such as the 

length scale and variance, govern the smoothness, amplitude, and overall flexibility of the 

Gaussian process, directly influencing its ability to capture the underlying structure of the objective 

function. In practice, these hyperparameters are typically optimized by maximizing the marginal 

likelihood P(D) of the observed data: 

𝑃(𝐷) = 𝒩(𝐷|𝟎, 𝐾(𝑿, 𝑿) + 𝛽−1𝑰)                                                 (3.5.1)  

where 𝐾 = (𝑿, 𝑿) is an N×N matrix where each element is given by 𝐾𝑖𝑗 = 𝑘(𝒙𝒊, 𝒙𝒋)  with 

representing the chosen kernel function (such as the squared exponential/RBF kernel), 𝛽−1𝑰 is 

added observation noise and N is the number of training samples. The added observation noise 

term can be removed in applications where the observations are noiseless. Since the observations 

of the weight of the structure are obtained deterministically from RFEM6, the observation noise is 

assumed to be negligible. To prevent numerical instabilities, however, during the fitting of the 
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Gaussian process a small value for β is added to ensure a positive definite covariance matrix K 

(Rasmussen & Williams, 2005, p.80). This matrix encodes the prior assumptions about the 

similarity and correlation between all pairs of inputs and forms the covariance structure of the 

multivariate normal (Gaussian) distribution over the observed targets. 

For efficient optimization, it is common to re-tune the kernel hyperparameters periodically during 

the Bayesian optimization loop. To do that the values of the hyperparameters that maximize the 

log-marginal likelihood according to Eq. 3.5.2 & 3.5.3 are calculated.  

ln(𝑃(𝐷)) = −
1

2
ln(𝐾 + 𝛽−1𝐼)̅ −

1

2
𝐷̅𝑇(𝐾 + 𝛽−1𝐼)̅−1𝐷̅ −

𝑁

2
ln (2𝜋)               (3.5.2) 

where N is the number of training samples (observations).  

ℎ̅ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑛(𝑃(𝐷̅|ℎ̅))                                                      (3.5.3) 

where h is a vector containing the hyperparameters depending on the used kernels such as ℓ, σf 

and ν. The mathematical derivations related eq. 3.5.2 are outside the scope of this thesis. For further 

details, the reader is referred to the books of Rasmussen & Williams (2005) on Gaussian processes 

for Machine Learning and Pattern Recognition and Machine Learning by Bishop (2006). 

To achieve this, the Python package SciPy and its implementation of the L-Broyden-Fletcher-

Goldfarb-Shanno-B (L-BFGS-B) algorithm based on the paper of Byrd et al. (1995) is used. This 

step is necessary since no closed-form solution exists due to the hyperparameters being inside the 

kernel matrix K which has to be inverted. As a result there could be multiple local optima which 

cannot be maximized analytically with respect to the hyperparameters. 

The logarithmic scale and reasonable bounds for the hyperparameters are essential to achieve good 

results. This approach ensures that the surrogate model remains well-calibrated as new data is 

acquired.  

Additionally, for problems involving multiple input dimensions, automatic relevance 

determination (ARD) kernel variants are often employed. In ARD kernels, each input dimension 

is assigned its own separate length scale hyperparameter, allowing the Gaussian process to 

automatically identify and adapt to the most relevant features of the input space. An example of 

the squared exponential kernel is given below: 

                                        𝑘(𝑥̅, 𝑥̅′) = 𝜎𝑓
2exp (−

1

2
∑

1

ℓ𝑖
2 ||𝑥̅ − 𝑥̅′||

2𝐷
𝑖 )                                       (3.5.4) 

where ℓi  is the length scale for every input dimension D of the vector x. 

This enhances model flexibility and interpretability, particularly in high-dimensional settings, but 

also increases the complexity of the optimization problem for hyperparameter learning.  
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3.6. Sampling strategies 
In selecting sample points from the design space, a practical approach is to employ hypercube 

sampling, which ensures a well-distributed set of candidate points. Conceptually, a line represents 

a one-dimensional space, a square corresponds to two dimensions, and a cube extends this notion 

to three dimensions. By analogy, design spaces with four or more dimensions can be represented 

as hypercubes. One straightforward strategy for generating representative samples is to select 

points located at the corners of the hypercube, as well as at the midpoints of its edges, faces, 

volumes, and higher-dimensional analogues as shown in Figure 31. 

An alternative approach is to apply the space-filling Latin hypercube sampling (Figure 32) which 

ensures that a single point is selected from each row and column of the design space, in a manner 

analogous to the structure of a sudoku puzzle.  

 

 

Figure 31: Hypercube sampling the vertices, 

edges and faces. (Source: Debney, 2021) 

 

Figure 32: Latin hypercube sampling. (Source: 

Debney, 2021) 

In Chapter 5, the Latin hypercube sampling strategy is chosen for the application of the 

constrained BO algorithm described in Chapter 4. 
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3.7. Data standardization 
Standard preprocessing steps like scaling the inputs and outputs are often applied before running 

Bayesian optimization to ensure that all input features and hyperparameters live on comparable 

scales (Rasmussen & Williams, 2005). The standard scaler applies the following formula:  

𝑥′ =
𝑥−𝜇

𝜎
      (3.7.1) 

where μ and σ are the feature-wise mean and standard deviation (in this case the areas of the 

member), while the robust scaler uses 

𝑥′ =
𝑥−𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)

𝑄3−𝑄1
    (3.7.2) 

(with Q1 and Q3 the 25th and 75th percentiles) to reduce the influence of the outliers since for some 

areas picked by the algorithm the resulting stresses and displacements are significantly higher than 

for the rest of the profiles. When these scaled inputs are fed into a Gaussian process in the Bayesian 

optimization, the kernel’s ability to measure similarity and speed convergence are greatly 

improved. The reason is that the optimizer’s acquisition function can more reliably compare effects 

across dimensions that have been normalized to roughly the same range. In all of the case studies 

the standard scaler is used.  
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3.8. Principle Component Analysis (PCA) 
Principal Component Analysis (PCA) is used as part of the extended constrained BO algorithm 

discussed in subchapter 4.2. In its deterministic formulation can be understood as a method for 

projecting high-dimensional data onto a lower-dimensional linear subspace, with the objective of 

either maximizing the variance of the projected data or minimizing the reconstruction error after 

projection (Bishop, 2006). For a dataset in D-dimensional space, PCA seeks an optimal subspace 

of dimension M≪D,  which can be interpreted geometrically as a line for M=1, a plane for M=2, 

or a hyperplane for higher values of M. In the maximum variance view, the goal is to identify a 

projection matrix U that maximizes the spread of the projected data, such that the directions of 

largest variance correspond to the eigenvectors of the sample covariance matrix. This ensures that 

the subspace captures the most informative features of the data distribution as shown in Figure 33. 

 

 

Figure 33: Optimal latent space maximizing the variance of the dataset. (Source: DSAI, 2024) 

Alternatively, in the minimum error formulation, the projected data points are mapped back into 

the original space, and the subspace is chosen to minimize the reconstruction error between the 

original and reconstructed data (Figure 34).  

 

 

Figure 34: Optimal latent space minimizing the error between original and projected datasets.  

(Source: DSAI, 2024) 

Interestingly, both approaches lead to the same optimal solution, as the subspace spanned by the 

principal eigenvectors of the covariance matrix simultaneously maximizes variance and 

minimizes reconstruction error. 
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4. Research Methodology 
The objective of this chapter is to introduce the two versions of the constrained BO algorithm that 

are used in the analysis of the case studies described in Chapter 5. They are developed based on 

the literature review discussed in Chapter 3.  

The Python implementation of the presented algorithms and their integration with RFEM6 can be 

found in the following GitHub repository: https://github.com/GeorgeNikolov/BO-Tool.  

4.1. Constrained BO algorithm  
The following pseudo-code outlines the procedure for constrained Bayesian optimization used in 

this thesis. The goal of it is to minimize a given objective function such as structural weight while 

enforcing performance constraints, such as stress and stability limits. 

Algorithm 1: Constrained Bayesian Optimization for Structural Steel Design 

Input  : d ∈ ℕ (number of design variables), m ∈ ℕ (number of elements),  

              bounds  ℓ, u ∈ ℝd (lower/upper bounds for each variable), 

              ninit (number of initial samples), Tmax (max iterations), ε > 0 (improvement tolerance),  

Output : best design inputs x*, total structural weight f(x*) and structural constraints 

                g(x*) = [g₁(x*), …, gm(x*)]ᵀ  

1      # Problem setup 

2      𝒳 ← {x ∈ ℝd  : ℓi≤xi≤ui, i = 1…d}                    ▷ Design domain 

3      Define objective f: 𝒳 → ℝ                                ▷ total structural weight 

4      Define constraints gj: 𝒳 → ℝ,  j = 1,…,m         ▷ governing stress and buckling unity 

                                                                                        checks per element 

 

5     #Initial sampling  

6     S₀ ← LHS(ninit, 𝒳)                               ▷ Latin Hypercube samples 

7     D ← ∅                                                  ▷ Dataset D = { (xi, fi, gi) } 

8     for each x ∈ S₀ do 

9          (fx, gx) ← RFEM(x) 

10        D ← D ∪ {(x, fx, gx)}  

11        F ← { (x,f,g) ∈ D : gj ≤ 1 ∀j }        ▷ Subset with only feasible designs, 1 is the unity 

                                                                         check threshold value per element.  

12   end for 

13   #Data normalization 

14   Fit standard scalers Tx, Tf, Tgj  on {xi}, {fi}, {g{j,i}} respectively 

15   Transform  x̃i ← Tx(xi),   fĩ ← Tf(fi),   ĝ{j,i} ← Tgj(g{j,i})  for all i,j 

16    

17    Initialize GPf with kernel kf(θf) using {(x̃i, fĩ)}, where θ is the set of hyperparameters of the  

        kernel 

18    For j = 1..m: initialize GPgj with kernel kg(θgj) using {(x̃i, ĝ{j,i})}  

19    #Optimization loop 

20    f* ← argmin{(x,f,g) ∈ F} f  (best valid design);  x* ← xbest (xbest corresponds to the inputs to  

        obtain f*; no_improve ← 0 

 

https://github.com/GeorgeNikolov/BO-Tool
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21    for t = 1 … Tmax do 

22         if (t = 1) or (t mod 5 = 0) then 

23            Re-optimize θf, {θgj} by maximizing GP log-marginal likelihood 

24         end if 

 

25        Define acquisition α(x) on x̃ = T_x(x): 

26             μf, σf² ← GPf(x̃)                                      ▷ predictive mean/variance 

27             For j:  μgj, σgj² ← GPgj(x̃) 

28             pfeas(x) ← ∏{j=1}
m Φ((1− μgj)/σgj )          ▷ probability of feasibility,  

                                                                                      and 1 is the unity check threshold 

29             EI(x) ← ExpectedImprovement(μf, σf²; best f)̃  

30             α(x) ← EI(x) · pfeas(x)                            ▷ constrained EI 

31        xnext ← argmax{x∈𝒳} α(x)  via Differential Evolution (global search) with L-BFGS-B 

                                                      for local refinement (optional)       

32         xreal ← xnext                                 ▷ (already in real space if α used x; else denormalize) 

33        (fnew, gnew) ← RFEM(xreal) 

34        Append (xreal, fnew, gnew) to D 

35        Update transforms:  x̃new ← Tx(xreal),  fñew ← Tf(fnew),  ĝnew ← Tgj(gnew) 

36        Update GPf and {GPgj} with the new normalized point 

37        if gnew,j ≤ 1 ∀j then                                         ▷ Are all the constraints below 1? 

38          if fnew < f* − ε then 

39              x* ← xreal ; f* ← fnew ; no_improve ← 0 

40          else 

41              no_improve ← no_improve + 1 

42          end if 

43        else 

44          no_improve ← no_improve + 1 

45        end if 

 

46        if no_improve ≥ p then break         ▷ early termination due no improvement  

                                                                          in number of iterations  p 

47  end for 

48  # Result extraction 

49  return (x*, f*, g(x*))                               ▷ Best feasible design, total structural weight, and  

                                                                           the array of constraints per element 

 

To enhance the understanding of the algorithm also the theoretical framework of the constrained 

BO framework is shown in Figure 35 on the next page. Also, a written description of the 

algorithm is included in Appendix E: Supplementary Material. 
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Figure 35: Theoretical framework of the Bayesian optimization without PCA. 

Figure 36: Theoretical framework of the Bayesian optimization with PCA. Changes compared to Figure 35 are highlighted in yellow. 
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4.2. Constrained BO with PCA algorithm  
The following pseudo-code highlights the differences between the algorithm for the constrained 

BO and constrained BO combined with PCA for dimensionality reduction. This algorithm is used 

as an additional analysis in the gridshell case studies in subchapter 5.3 & 5.4.  

Algorithm 2: Constrained Bayesian Optimization with PCA for Structural Steel Design 

Input  : d ∈ ℕ (number of design variables), m ∈ ℕ (number of elements),  

              bounds  ℓ, u ∈ ℝd (lower/upper bounds for each variable), 

              ninit (number of initial samples), Tmax (max iterations), ε > 0 (improvement tolerance), 

              τ ∈ (0,1] (target explained variance for PCA)  

Output : best design inputs x*, total structural weight f(x*) and structural constraints 

                g(x*) = [g₁(x*), …, gm(x*)]ᵀ  

1      # Problem setup 

2      𝒳 ← {x ∈ ℝd  : ℓi≤xi≤ui, i = 1…d}                    ▷ Design domain 

3      Define objective f: 𝒳 → ℝ                                ▷ total structural weight 

4      Define constraints gj: 𝒳 → ℝ,  j = 1,…,m         ▷ governing stress and buckling unity 

                                                                                        checks per element 

5     #Initial sampling  

6     S₀ ← LHS(ninit, 𝒳)                               ▷ Latin Hypercube samples 

7     D ← ∅                                                  ▷ Dataset D = { (xi, fi, gi) } 

8     for each x ∈ S₀ do 

9          (fx, gx) ← RFEM(x) 

10        D ← D ∪ {(x, fx, gx)}  

11        F ← { (x,f,g) ∈ D : gj ≤ 1 ∀j }        ▷ Subset with only feasible designs, 1 is the unity 

                                                                         check threshold value per element.  

12   end for 

13   #Data normalization 

14   Fit standard scalers Tx, Tf, Tgj  on {xi}, {fi}, {g{j,i}} respectively 

15   Transform  x̃i ← Tx(xi),   fĩ ← Tf(fi),   ĝ{j,i} ← Tgj(g{j,i})  for all i,j 

16    Choose PCA dimension q = min{ k : cumulative explained variance(k) ≥ τ } 

17    Fit PCA on {x̃i} to obtain mean μ and loading matrix U ∈ ℝd×q 

18    Map all scaled samples to latent space:  zi ← Uᵀ× (x̃i − μ) 

19    Define latent search domain ℤ as a bounded box covering {zi} 

20    Initialize GPf with kernel kf(θf) using {(zi, fĩ)}, where θ is the set of hyperparameters of the  

        kernel 

21    For j = 1..m: initialize GPgj with kernel kg(θgj) using {(zi, ĝ{j,i})}  

 

22    #Optimization loop 

23    f* ← argmin{(x,f,g) ∈ F} f  (best valid design);  x* ← xbest (xbest corresponds to the inputs to  

        obtain f*; no_improve ← 0 

24    for t = 1 … Tmax do 

25         if (t = 1) or (t mod 5 = 0) then 

26            Re-optimize θf, {θgj} by maximizing GP log-marginal likelihood 

27         end if 

28        Define acquisition α(z) on latent z ∈ ℤ: 

29             μf(z), σf²(z) ← GPf(z)                                      ▷ predictive mean/variance 
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30             For j:  μgj(z), σgj²(z) ← GPgj(z) 

31             pfeas(z) ← ∏{j=1}
m Φ((1− μgj(z))/σgj(z))       ▷ probability of feasibility,  

                                                                                     and 1 is the unity check threshold 

32             EI(z) ← ExpectedImprovement(μf(z), σf²(z); best f)̃  

33             α(x) ← EI(z) · pfeas(z)                            ▷ constrained EI 

 

34        znext ← argmax{z∈ℤ} α(z)  via Differential Evolution (global search) with L-BFGS-B 

                                                                 for local refinement (optional)   

35        x̂next ← μ+ U×znext                       ▷ inverse PCA to scaled space     

36        xnext ← Tx
-1(x̂next)                         ▷ denormalize to real values in real space 

37        (fnew, gnew) ← RFEM(xnext) 

            # normalize and update models 

            fn̂ew ← Tf(fnew);  ĝnew ← Tgj(gnew);  znew ← Uᵀ (Tx(xnext) − μ) 

            Augment GPf with (znew, f̂new);  For j: augment GPgj with (znew, ĝ{j,new}) 

38        if gnew,j ≤ 1 ∀j then                                         ▷ Are all the constraints below 1? 

39          if fnew < f* − ε then 

40              x* ← xreal ; f* ← fnew ; no_improve ← 0 

41          else 

42              no_improve ← no_improve + 1 

43          end if 

44        else 

45          no_improve ← no_improve + 1 

46        end if 

 

47        if no_improve ≥ p then break         ▷ early termination due no improvement  

                                                                          in number of iterations  p 

48  end for 

49  # Result extraction 

50  return (x*, f*, g(x*))                               ▷ Best feasible design, total structural weight, and  

                                                                           the array of constraints per element 

 

The theoretical framework of the constrained BO framework with PCA is shown in Figure 36 on 

the previous page and the highlighted blocks outline the difference with the previous 

implementation. Also, a written description of the algorithm is included in Appendix E: 

Supplementary Material. 
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4.3. Integration with RFEM6 
The structural finite element models in RFEM6 used in this thesis are formulated using two distinct 

element types: truss elements and beam elements. Each element type embodies specific mechanical 

assumptions and is employed based on the expected load transfer mechanisms within the structural 

system. 

Truss elements, illustrated in Figure 37, are idealized as members capable of sustaining only axial 

forces. These elements are defined by two nodes, denoted as i and j, and are formulated under the 

assumption that the member can transmit forces exclusively along its longitudinal axis. The 

kinematic constraints restrict each node to a single translational degree of freedom aligned with 

the element axis (the local x-direction). Consequently, rotational effects, shear deformations, and 

flexural actions are inherently neglected in this element. The internal forces are limited to axial 

forces, represented by Ni and Nj at the respective nodes. These elements are used in the modelling 

of the pin-connected cantilever truss structure in subchapter 5.2 where members are primarily 

subjected to tensile or compressive forces. This simplification yields computational efficiency but 

limits the representation of more complex structural phenomena, such as bending or torsional 

effects, however, these are not expected to occur in the studied case due to the fundamental 

characteristics of a truss structure. 

Beam elements, shown in Figure 38, provide a more comprehensive representation of structural 

behaviour. Unlike truss elements, beam elements have six degrees of freedom per node: three 

translational (along the x, y, and z axes) and three rotational (about the x, y, and z axes). This 

formulation enables the simulation of axial, shear, bending, and torsional responses. At each node, 

the element can transmit not only axial forces (Ni, Nj), but also shear forces (Vy,i, Vz,I ,Vy,j ,Vz,j), 

torsional moments (Mx,i, Mx,j), and bending moments about the local axes (My,i, Mz,i, My,j, Mz,j). 

Beam elements are well-suited for the analysis of members in frames and continuous structures 

where combinations of axial force, bending moment, shear force, and torsion are significant. The 

enhanced formulation of beam elements enables the accurate modelling of a wide range of 

structural systems, including beams, columns, and frames, capturing the complex interplay of 

internal forces and deformations. These elements are used in the analysis of the various case studies 

in Chapter 5. 

 

Figure 37: RFEM6 - Truss element. 

 

Figure 38: RFEM6 - Beam element.
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In the following subchapters all the material-specific unity checks according to the common EN 

1993-1-1:2005 that are used to model the constraints in the optimisation problems outlined in 

Chapter 5 are discussed. These checks are calculated per element by the RFEM6 software package.  

4.3.1. Cross-section classification  
First all of the cross-sections have to be classified according to Table 5.2 in EN 1993-1-1:2005; 

5.6 shown below. The cross-sections typologies mostly used in this thesis are the rectangular 

hollow sections (RHS) and circular hollow sections (CHS). The relevant parts of Table 5.2 are 

shown in Figure 39 and Figure 40. The lowest class of a subpanel determines the classification of 

the complete cross-section. For, example in an RHS profile if a one subpanel is classified in class 

1 and another in class 3, the complete cross-section is classified in class 3. In case the subpanels 

fall outside the classes they are considered in class 4 and the reduced effective properties of the 

cross-section must be calculated according to EN 1993-1-5 Table 4.1 & 4.2 due to local buckling 

of the cross-section. This classification determines if the cross-sectional resistance to compression, 

bending and combination of the two are determined according to their plastic or elastic properties 

(e.g. area, section modulus). The general recommendation according to the Eurocode is the 

following: 

• Class 1 - Plastic resistance 

• Class 2 - Plastic resistance 

• Class 3 - Elastic resistance  

• Class 4 - Elastic resistance with effective properties  
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Figure 39: Classification of internal sub-panels. (Source: EN 1993-1-1:2005) 

 

Figure 40: Classification of tubular sections. (Source: EN 1993-1-1:2005) 
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After the cross-section is classified the checks for strength, stiffness and stability have to be 

calculated. They are outlined in subchapter 4.2 to 4.4.  

4.3.2. Strength checks (ULS) 
In this subchapter the checks that determine the strength of the cross-section under the Ultimate 

Limit State combinations are shown. The general formulas are shown for clarity, however, the 

cross-sectional properties are axis dependent and should be calculated in the major principle y-

axis and minor principle z-axis of any given cross-section.  

Compression & Tension 

𝑁𝑐,𝑅𝑑 =
𝐴∗𝑓𝑦

𝛾𝑀0
  

for class 1,2 and 3 under compression/tension 

 

𝑁𝑐,𝑅𝑑 =
𝐴𝑒𝑓𝑓∗𝑓𝑦

𝛾𝑀0
 for class 4 under compression 

 
𝑁𝐸𝑑

𝑁𝑐,𝑅𝑑
≤ 1.0 

where 

NEd is the applied design compression force. 

Nc,Rd is the design resistance of the cross-section. 

γM0 is the partial factor for the cross-sectional 

resistance and is equal to 1 for steel.  

Aeff is the reduced cross-sectional area due to local 

buckling effects. 

 

Shear 

𝑉𝑝𝑙,𝑅𝑑 =
𝐴𝑣 ∗ (𝑓𝑦 √3⁄ )

𝛾𝑀0
 

where  

Vpl,Rd is the design plastic shear resistance 

Av is the shear area calculated as: 

𝐴𝑣 = 𝐴ℎ (𝑏 + ℎ)⁄  for RHS with uniform thickness 

and load parallel to the depth. 

𝐴𝑣 = 2𝐴/𝜋 for CHS with uniform thickness. 

 
𝑉𝐸𝑑

𝑉𝑝𝑙.𝑅𝑑
≤ 1.0 

where  

VEd is the applied design shear force. 

 

Shear & Torsion 

In the analysis of the gridshells in subchapter 5.3 

and 5.4 often some small torsional moments are 

observed. This is accounted for with following 

 

EN 1993-1-1:2005; 6.2.3, 6.2.4; Eq. (6.6 & 

6.10) 

 

 

EN 1993-1-1:2005; 6.2.4; Eq. (6.11) 

 

 

EN 1993-1-1:2005; 6.2.4; Eq. (6.9) 

 

 

 

 

 

 

 

 

 

 

 

EN 1993-1-1:2005; 6.2.6; Eq. (6.18) 

 

 

 

 

 

 

 

 

EN 1993-1-1:2005; 6.2.6; Eq. (6.17) 
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reduction to the design plastic shear resistance for 

hollow sections: 

𝑉𝑝𝑙,𝑇,𝑅𝑑 = [1 −
𝜏𝑡,𝐸𝑑

(𝑓𝑦 √3⁄ ) 𝛾𝑀0⁄
]𝑉𝑝𝑙,𝑅𝑑 

where  

τt,Ed is the design shear stresses due to St. Venant 

torsion. 

 
𝑉𝐸𝑑

𝑉𝑝𝑙.𝑇,𝑅𝑑
≤ 1.0 

 

Bending moment 

𝑀𝑐,𝑅𝑑 = 𝑀𝑝𝑙,𝑅𝑑 =
𝑊𝑝𝑙𝑓𝑦

𝛾𝑀0
 for class 1 and 2  

 

𝑀𝑐,𝑅𝑑 = 𝑀𝑒𝑙,𝑅𝑑 =
𝑊𝑒𝑙,𝑚𝑖𝑛𝑓𝑦

𝛾𝑀0
 for class 3 

𝑀𝑐,𝑅𝑑 =
𝑊𝑒𝑓𝑓,𝑚𝑖𝑛𝑓𝑦

𝛾𝑀0
 for class 4 

where 

Wpl is the plastic section modulus 

Wel,min and Weff,min are elastic section modulus 

corresponding to the maximum elastic stress 
𝑀𝐸𝑑

𝑀𝑐,𝑅𝑑
≤ 1.0 

 

 

 

Bending moment & shear 

Acc. to 6.2.8(2) or 6.2.10(2), the effect of the shear 

force/stress in the y-, z- principle axes of the cross-

section can be neglected if it is less than half of the 

shear resistance. 

Otherwise, the moment resistance should be 

calculated with a reduced yield strength by:  
(1 − 𝜌)𝑓𝑦  

where 

𝜌 = (
2𝑉𝐸𝑑

𝑉𝑝𝑙,𝑅𝑑
− 1)2 𝑜𝑟 (

2𝑉𝐸𝑑

𝑉𝑝𝑙,𝑇,𝑅𝑑
− 1)2  if torsion is 

present.  

 

Axial & shear stress 

For the elastic verification the following yield 

criterion can be used: 

 

 

 

EN 1993-1-1:2005; 6.2.7; Eq. (6.28) 

 

 

 

 

 

EN 1993-1-1:2005; 6.2.7; Eq. (6.25) 

 

 

 

EN 1993-1-1:2005; 6.2.5; Eq. (6.13) 

 

EN 1993-1-1:2005; 6.2.5; Eq. (6.14) 

 

EN 1993-1-1:2005; 6.2.5; Eq. (6.15) 

 

 

 

 

 

EN 1993-1-1:2005; 6.2.5; Eq. (6.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

EN 1993-1-1:2005; 6.2.8; Eq. (6.29) 
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(
𝜎𝑥,𝐸𝑑

𝑓𝑦 𝛾𝑀0⁄
)

2

+ (
𝜎𝑧,𝐸𝑑

𝑓𝑦 𝛾𝑀0⁄
)

2

− (
𝜎𝑥,𝐸𝑑

𝑓𝑦 𝛾𝑀0⁄
) (

𝜎𝑧,𝐸𝑑

𝑓𝑦 𝛾𝑀0⁄
)

+ 3 (
𝜏𝑥,𝐸𝑑

𝑓𝑦 𝛾𝑀0⁄
)

2

≤ 1.0 

 

 

Biaxial bending & axial force & shear force 

Acc. to 6.2.8(2) or 6.2.10(2), the effect of the shear 

force/stress in the y-, z- principle axes of the cross-

section can be neglected if it is less than half of the 

shear resistance.  Otherwise, refer to the Bending 

moment & shear section above.  

 

Allowance for the effect of the axial force on the 

plastic moment resistance does not have to be made 

when both of the following criteria are satisfied: 

𝑁𝐸𝑑 ≤ 0.25𝑁𝑝𝑙,𝑅𝑑 

 

𝑁𝐸𝑑 ≤
0.5ℎ𝑤𝑡𝑤𝑓𝑦

𝛾𝑀0
 

In case allowance has to be made:  

 

𝑎𝑤 = (𝐴 − 2𝑏𝑡)/𝐴  

but aw ≤ 0.5 for hollow sections  

𝑎𝑓 = (𝐴 − 2ℎ𝑡)/𝐴 

but af ≤ 0.5 for hollow sections  

 

𝑛 =  
𝑁𝐸𝑑

𝑁𝑝𝑙,𝑅𝑑
 

 

𝑀𝑁,𝑦,𝑅𝑑 =
𝑀𝑝𝑙,𝑦,𝑅𝑑(1 − 𝑛)

1 − 0.5𝑎𝑤
 𝑏𝑢𝑡 𝑀𝑁,𝑦,𝑅𝑑 ≤ 𝑀𝑝𝑙,𝑦,𝑅𝑑  

 

 

𝑀𝑁,𝑧,𝑅𝑑 =
𝑀𝑝𝑙,𝑧,𝑅𝑑(1 − 𝑛)

1 − 0.5𝑎𝑓
 𝑏𝑢𝑡 𝑀𝑁,𝑧,𝑅𝑑 ≤ 𝑀𝑝𝑙,𝑧,𝑅𝑑 

 

 

[
𝑀𝑦,𝐸𝑑

𝑀𝑁,𝑦,𝑅𝑑
]𝛼 + [

𝑀𝑧,𝐸𝑑

𝑀𝑁,𝑧,𝑅𝑑
]𝛽 ≤ 1.0 

in which α and β are constants which may be taken 

conservatively as  1 or calculated as: 

 

α  = 2; β = 2 for circular hollow sections 

EN 1993-1-1:2005; 6.2.1; Eq. (6.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EN 1993-1-1:2005; 6.2.9; Eq. (6.33) 

 

 

EN 1993-1-1:2005; 6.2.9; Eq. (6.34) 

 

 

 

 

 

 

 

EN 1993-1-1:2005; 6.2.9; Eq. (6.39) 

 

 

 

EN 1993-1-1:2005; 6.2.9; Eq. (6.40) 

 

 

 

EN 1993-1-1:2005; 6.2.9; Eq. (6.41) 
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𝛼 = 𝛽 =
1.66

1 − 1.13𝑛2
 𝑏𝑢𝑡 𝛼 = 𝛽 ≤ 6 

 

 

4.3.3. Stability checks (ULS) 
In addition to checks for strength, flexural buckling is evaluated for each element around both its 

major and minor axes according to EN 1993-1-1:2005. The calculations are performed by the 

RFEM6 software package and discussed below for completeness.  

Flexural buckling 

 

𝑁𝑐𝑟,𝑦 = 𝜋2 ∗ 𝐸 ∗
𝐼𝑦

𝐿𝑐𝑟,𝑦
2

 

𝑁𝑐𝑟,𝑧 = 𝜋2 ∗ 𝐸 ∗
𝐼𝑧

𝐿𝑐𝑟,𝑧
2

 

where  

Ncr,y  is the elastic critical force around the 

major y-axis 

Ncr,z  is the elastic critical force around the 

minor z-axis 

E is the modulus of elasticity 

Iy is the moment of inertia around the major y-

axis  

Iz is the moment of inertia around the minor z-

axis  

Lcr,y is the buckling length for pin-pin support 

conditions in the major y-axis. It is equal to the 

length of the element.  

Lcr,z is the buckling length for pin-pin support 

conditions in the minor z-axis. It is equal to the 

length of the element. 

 

𝜆𝑦
̅̅ ̅ = √

𝐴𝑓𝑦

𝑁𝑐𝑟,𝑦
  𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 1,2, 𝑎𝑛𝑑 3 

𝜆𝑧
̅̅̅ = √

𝐴𝑓𝑦

𝑁𝑐𝑟,𝑧
  𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 1,2, 𝑎𝑛𝑑 3 

 

𝜆̅ = √
𝐴𝑒𝑓𝑓𝑓𝑦

𝑁𝑐𝑟
  𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 4 

 

where  
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𝜆̅  is the non-dimensional slenderness around 

the corresponding axis 

 

Buckling effects can be neglected for  

𝜆̅ ≤ 0.2 𝑜𝑟 
𝑁𝐸𝑑

𝑁𝑐𝑟
≤ 0.04 

 

The following calculations are axis dependent 

but are written only once for brevity.  

 

𝛷 = 0.5[1 + 𝛼(𝜆̅ − 0.2) + 𝜆̅2] 
where  

Φ is a value to determine reduction factor χ 

α is the imperfection factor depending on the 

buckling curve (see Figure 42) for the cross-

section. This is determined according to Table 

6.1 and 6.2 shown in Figure 41 and Figure 43, 

respectively.  

 

𝜒 =
1

𝛷 + √𝛷2 − 𝜆̅2
 𝑏𝑢𝑡 𝜒 ≤ 1.0 

 

Then: 

𝑁𝑏,𝑅𝑑 =
𝜒𝐴𝑓𝑦

𝛾𝑀1
 𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 1,2 𝑎𝑛𝑑 3 

 

𝑁𝑏,𝑅𝑑 =
𝜒𝐴𝑒𝑓𝑓𝑓𝑦

𝛾𝑀1
 𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 4 

 

Finally,  
𝑁𝐸𝑑

𝑁𝑏,𝑅𝑑
≤ 1.0 

is checked for both the major y-axis and minor 

z-axis 
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Figure 41: Table 6.1 for imperfection factors. (Source: EN 1993-1-1:2005) 

 

 

Figure 42: Buckling curves used to determine the reduction factor χ. (Source: EN 1993-1-1:2005) 
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Figure 43: Table 6.2 used for selection of the buckling curved depending on the cross-section and 

material. (Source: EN 1993-1-1:2005) 
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5. Application of Bayesian optimization  

In this chapter, different cases are described that show the application of the constrained Bayesian 

optimization algorithms discussed in Chapter 4 to the weight optimisation of macrostructures. 

Each case increases in number of elements analysed and complexity of the optimization problem 

with the objective of ultimately analyse the 3D symmetric 9x9 gridshell discussed in subchapter 

5.4. The goal of the optimization in all of the case studies is to minimize the total structural weight 

expressed by the following formula: 

𝑊 = ∑ 𝜌𝑖𝑖 𝐴𝑖𝐿𝑖                                                         (5.1) 

where 𝑊 is the total weight of the gridshell [kg], ρ is the material density [kg/m³], 𝐴𝑖 is the 

cross-sectional area of element i [m²] and 𝐿𝑖 is the length of element i [m]. 

Furthermore, for all of the studied cases discussed in this chapter the update of the hyperparameters 

is chosen to be every 5th iteration as a balance between computation cost and prediction quality. 

Similar suggestion is given by Shende et al. (2021) who state that estimating the hyperparameters 

every iteration might lead to overfitting of the data. 

The computer processor used in this thesis is 11th Gen Intel(R) Core(TM) i7-14700K, 3.40 GHz 

which coupled with the time necessary to communicate between the Python script and RFEM6 

determines the total calculation time for all the analysed cases.  
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5.1. 1D optimization case: Cantilever Beam with size variables  

The objective of this first case study is to evaluate the performance of the BO framework, described 

in the previous chapter, on a simple 1D structural system with a database of 516 most commonly 

used standardized profiles as a starting point. This case also serves as a proof-of-concept for 

integrating a Python-based BO framework with the RFEM6 software via its dedicated Python-

based API.  

5.1.1. Problem Definition & Analysis 

In this test case, a basic structural system is considered: a single-bar cantilever beam, illustrated in 

Figure 44. The corresponding RFEM6 model with beam element is shown in Figure 45. The 

member has a total length of L=4 m and is fully restrained at node 1, where all translations and 

rotations in the x-, y-, and z-directions are fixed. At the free end at node 2, a concentrated point 

load of F=10 kN is applied, creating a load case for analysis. 

 

Figure 44: Case study: Cantilever beam - 

Structural layout. 

 

Figure 45: Case study: Cantilever beam - 

RFEM6 model. 

The beam is assumed to be made of structural steel grade S235, with a yield strength of 𝑓𝑦 =

235𝑀𝑃𝑎. The material strength introduces a clear constraint which is that the maximum stress 

within the element must remain below this threshold. In addition to the strength requirement, 

deflection requirements are also considered for this case study. The maximum vertical deflection 

at the free end must not exceed L/250 which, for the present case, results in a deflection limit of 

16 mm. This is a conservative choice, since in practice often 2L/250 is used as a constraint for 

cantilever structures. In this way the optimisation task becomes more challenging for the BO 

framework. 

The optimization problem is formulated as a size optimization task, where the cross-sectional 

profile of the beam is selected from a database of standardised or in mathematical terms - discrete 

profiles provided in Table 16, Appendix B: 1D optimization problem: Cantilever Beam. The 

objective is to minimize the self-weight of the structure while satisfying both the stress and 

deflection constraints. 
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To validate the outcomes of the optimization process, the results obtained from the finite element 

analysis in RFEM6 are compared with the best-performing cross-sections derived from the 

analytical solution.  

After calculating the unity check for strength and stiffness for the case above the valid results are 

sorted based on the area in ascending order. Table 1 shows the results of the top 10 most optimal 

cross sections out of the total 516 elements based on an analytical solution using the formulas (Eq. 

5.1.1 and Eq. 5.1.2) below. From the values it becomes clear that the deflection of the beam 

governs the design.  

𝜎 =
𝑁

𝐴
+

𝑀𝑦

𝑊𝑦
+

𝑀𝑧

𝑊𝑧
≤ 𝑓𝑦 = 235 𝑀𝑃𝑎    (5.1.1) 

𝛿 =
1

3

𝐹𝑙3

𝐸𝐼𝑦
≤

𝐿

250
= 16𝑚𝑚     (5.1.2) 

Table 1: Cantilever beam case: Optimal cross-sections in terms of weight. Analytical solution. 

Profile Area [mm2] Weight [kg] U.C strength U.C stiffness 

CHS 323.9x5 5009,0 157,28 0,433 0,997 
IPE 300 5381,0 168,93 0,306 0,760 
UNP 300 5880,0 184,63 0,318 0,791 
RHS 300x200x6.3 6099,0 191,54 0,326 0,811 
CHS 323.9x6.3 6286,0 197,38 0,348 0,801 
IPE 330 6261,0 198,76 0,239 0,539 
SHS 260x6.3 6351,0 199,39 0,326 0,935 
RHS 260x180x8 6715,0 206,11 0,346 0,994 
CHS 355.6x6.3 6913,0 216,97 0,287 0,602 
IPE 360 7273,0 226,39 0,188 0,390 

 

For this case study, the following kernels with their respective hyperparameter settings have been 

found empirically to produce good results. Noteworthy is that an Automatic Relevance 

Determination (ARD) kernel version has been used for both RBF and Matérn kernels) in which 

each input dimension is equipped with its own length–scale hyperparameter that is updated every 

5th iteration: 

• Gaussian process for the weight:  

o Matérn (ℓ, ν=0.5) + RBF(ℓ), ℓ ∈ [0.01, 1000]∈ RD, D = 1 dimension 

• Gaussian process for the stress constraint:  

o Matérn (ℓ, ν=0.5), ℓ ∈ [0.01, 10] ∈ RD, D = 1 dimension 

• Gaussian process for the displacement constraint:  

o Matérn(ℓ, ν=0.5), ℓ ∈ [0.01, 10] ∈ RD, D = 1 dimension 
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In Figure 46 the optimization progress is shown. It can be seen that the algorithm converges around 

the 4th iteration to a stable solution which is the third most optimal profile – UNP 300 for the given 

test case when compared to the analytical solution in Table 1. The maximum stress is 74.75 MPa 

due to bending around the y-axis and the maximum deflection is 12.8mm both of which are within 

the constraint limits. The FEM results are shown in Figure 125 and Figure 126 in Appendix B: 1D 

optimization problem: Cantilever Beam. 

 

Figure 46: Bayesian optimization progress based on the full database of 516 profiles. Median objective 

function values and corresponding 95% confidence interval. 

It is found that for this case, the optimal result is not reached due to the use of the many diverse 

cross-section types that are included in the analysis. This diversity introduces a lot of variability 

for the moments of inertia around the principle axes of the cross-sections which poses a challenge 

for the Gaussian process to model the functions for the constraints in a reasonable way. For 

example, symmetric cross-sections such as CHS have the same moment of inertia in both the weak 

and strong axes whereas the asymmetric ones such as HEA, RHS etc. have different values 

depending on the principal direction. Also, when a new design point is picked by the algorithm to 

be evaluated in RFEM6, it might be translated to a different cross-section due to similar areas. For 

example, CHS 323.9x6.3, IPE 330, SHS 260x6.3 in Table 1 have areas corresponding to 6286.0, 

6261.0, 6351.0 mm2 which leads to similar weight of the structure. A further challenge lies in 

distinguishing between open and closed cross-sections. Open sections are generally more prone to 

lateral torsional buckling, whereas closed sections provide greater resistance against it. More 

insights into the behaviour of the algorithm is presented in Figure 106 - Figure 124 in Appendix 

B: 1D optimization problem: Cantilever Beam.  
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To put the result in perspective the best analytical weight and the one obtained by the algorithm in 

relation to all possible weights in the design domain are shown in Figure 47. This represents the 

objective function for the total weight of the structure.  

 

Figure 47: Optimal weight in relation to the full dataset of cross-sections. 
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In Figure 48 the same chart is shown but this time resulting from the BO process and the found 

optimal profile is highlighted. The Gaussian process is correctly approximating a linear function 

where the samples have been fitted. In the region where there are no samples the mean prediction 

with an increasing uncertainty is plotted as the function moves away from the samples. 

 

Figure 48: 1D Gaussian process for the weight objective function. 

The choice for the adaptive ξ function is based on the functions presented in Chapter 3.4 each of 

which is designed to introduce ξ in a distinct manner over the course of the optimization. Although, 

exponential decay enables aggressive early exploration in this case is not optimal. It is found that 

the linear adaptive function delivered the best behaviour and the most reliable convergence in this 

application. Consequently, the linear version is used in all of the remaining case studies in this 

chapter.  

Furthermore, since this is a minimization problem the ξmax and ξmin values should be negative since 

the scaled best weight and the scaled predicted mu value are both negative. If this would be a 

maximization problem, then all of these variables would be positive. The values of ξmax = -1 and 

ξmin = -0.01 are found to be the best for reliable convergence. These values have also been 

suggested in the PhD thesis by Lizotte D. (2008), who argues that an adaptive cooling schedule 

for the ξ parameter going from exploration (higher values of ξ) to exploitation (smaller values of 

ξ) slightly improves the performance for short runs (smaller than 30 iterations). 

In conclusion for this case study, the integration of the Python of implementation of the 

constrained BO with the RFEM6 API proved to be successful. Furthermore, using a diverse set 

of cross-sections is undesirable because of the large variability in moments of inertia about their 

principal axes. Therefore, for the subsequent case studies, a single cross-section type is adopted.   
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5.2.  2D optimization case: Cantilever Truss with shape and size variables  
This chapter presents the transition from the one-dimensional to the two-dimensional case study. 

The purpose is to investigate a more complex structural system for which reference solutions are 

available in literature, thereby enabling a rigorous evaluation of the performance of the BO 

framework.  

5.2.1. Problem Definition & analysis  

The 18-bar cantilever truss introduced by Gholizadeh (2013) is considered (Figure 49). The 

corresponding model in RFEM6 is set up using the truss elements (see Chapter 4.3 for more 

information) and shown in Figure 50.  

This theoretical benchmark problem is frequently employed in the structural optimization literature 

and therefore provides a reliable basis for comparison with existing studies. The truss spans a total 

length of 1,250 inches (31.75 m) with a height of 250 inches (6.35 m). Its established role as a 

reference case makes it an appropriate choice for validating the optimization methodology 

introduced in Chapter 4. 

 

 

Figure 49: Case study: Cantilever truss - Structural layout. (Source: Gholizadeh, 2013)  

 

Figure 50: Case study: Cantilever truss - RFEM6 model. 
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For the numerical study, the truss is subjected to a test load case consisting of a point force of 𝐹 =
20 𝑘𝑖𝑝𝑠 (88.96 𝑘𝑁) applied at nodes nr. 8, 6, 4, 2, and 1. In order to maintain consistency with 

the benchmark formulation, the self-weight of the structure is neglected in this case study. 

The boundary conditions are defined such that nodes nr. 10 and 11 are fully restrained in translation 

along the x-, y-, and z-directions, while their rotational degrees of freedom remain unconstrained. 

All other nodes are restricted only in the out-of-plane y-direction, ensuring sufficient stability of 

the structure while allowing realistic deformations to occur. This configuration provides the 

necessary constraints for a stable analysis and enables the accurate calculation of internal forces. 

The material properties of the truss are defined in accordance with the description of Gholizadeh 

(2013). A density of 𝜌 = 0.1 𝑙𝑏/𝑖𝑛3(2767.99 𝑘𝑔/𝑚³) is adopted, together with a modulus of 

elasticity of 𝐸 = 104 𝑚3(68,947.57 𝑀𝑃𝑎). These parameters provide the basis for evaluating the 

structural response under the prescribed loading conditions. 

The reference study does not specify the cross-sectional profiles of the truss members. Based on 

the observations of the previous case study, a single type of cross-section is used for all of the steel 

elements of the structure. Therefore, a standardized (discrete) database of 216 circular hollow 

sections (CHS) profiles is used for the optimization process. The complete database can be found 

as a subset in Table 16 in Appendix B. This closed profile is chosen due to its symmetric 

configuration leading to the same moment of inertia around both principle axes of the cross-

section. This provides a linear relationship between the area of the cross-section and the moments 

of inertia, namely as the area increases the moment of inertia increases proportionally. 

Furthermore, to account for the continuous nature of the Gaussian processes used for the modelling 

of the objective and constraint functions, a parametric CHS profile is introduced with a fixed 

standard thickness of 𝑡 = 10𝑚𝑚 and a variable diameter. This parametrization is required because 

the cross-sectional area is the only input in the algorithm, which can be used to determine only one 

of the two defining parameters of the section. Naturally, the designer can choose a different 

thickness or a different parametrization approach.  

The first set of constraints is outlined below: 

• Geometry (layout variables): 

(19.685𝑚)775 𝑖𝑛. ≤ 𝑥3 ≤ 1225 𝑖𝑛. (31.115𝑚) 
(13.335𝑚)525 𝑖𝑛. ≤ 𝑥5 ≤ 975 𝑖𝑛. (24.765𝑚) 
(6.985𝑚)275 𝑖𝑛. ≤ 𝑥7 ≤ 725 𝑖𝑛. (18.415𝑚)  
(0.635𝑚)25 𝑖𝑛. ≤ 𝑥9 ≤ 475 𝑖𝑛. (12.065𝑚) 
(−5.715𝑚) − 225 𝑖𝑛. ≤ 𝑦3, 𝑦5, 𝑦7𝑦,9 ≤ 245 𝑖𝑛. (6.223𝑚)  
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• Cross-sections: 

A1 = A4 = A8 = A12 = A16. 

A2 = A6 = A10 = A14 = A18. 

A3 = A7 = A11 = A15. 

A5 = A9 = A13 = A17. 

Ai ∈ {2.00, 2.25, 2.50, …, 21.25, 21.50, 21.75} (in.2) for the ith element. 

Ai ∈ {1290.32, 1451.61, 1612.90, …, 13709.65, 13870.94, 14032.23} (mm²) 

for the ith element. The groups of cross-sections are shown in Figure 51. 

 

Figure 51: Cantilever truss: Cross-section groups. 

Additionally, two sets of structural constraints are imposed to ensure structural safety and stability. 

First, strength requirements are enforced by limiting the axial stress in all members to within 

±20 𝑘𝑠𝑖 (137.895 𝑀𝑃𝑎). Second, stability is addressed through adapted Euler buckling limits for 

slender members as described in Gholizadeh (2013). The critical buckling strength of each element 

is defined as 4𝐸𝐴/𝐿2, where E is the elastic modulus, A is the cross-sectional area, and L is the 

member length. These constraints collectively ensure that the optimized truss design remains both 

structurally efficient and stable under the applied loading conditions. Since RFEM6 does not 

support a customizable buckling strength calculation required for this case study, the necessary 

structural values are instead computed using a Python script. 

It must be noted that by relying only on the cross-sectional area rather than the moment of inertia 

as in the standard Euler buckling formula 𝜎2 =
𝜋2𝐸𝐼

𝐴𝐿2  to characterize each element’s buckling 

strength, the formulation in the reference paper inherently treats all directions of bending resistance 

as equivalent. In practical terms, this simplification discards the different stiffness properties that 

arise from asymmetric profiles. A profile that is, for example, much deeper than it is wide would 

buckle more easily in the “weak” axis if moment of inertia are accounted for. Therefore, implicit 

in this choice is the assumption of a symmetric cross section whose second moments are identical 

about all principal axes even though the specific geometry is not defined in the reference paper. 

This is another motivation for the choice of the CHS profiles since RFEM6 does not work with 

unspecified cross-sectional geometry. These assumptions make the problem more theoretical than 

practical, understanding that directional buckling vulnerabilities have been neglected. 

The optimization objective is minimize the weight of the truss via two distinct components as 

outlined in Gholizadeh (2013). Size optimization is performed by varying the cross-sectional 

properties of the truss members to minimize the overall structural weight. Second, shape 

optimization is introduced by adjusting the x- and y-coordinates of selected nodes (nodes 3, 5, 7, 

and 9), denoted as (𝑥3, 𝑦3), (𝑥5, 𝑦5), (𝑥7, 𝑦7), (𝑥9, 𝑦9). Through the combination of size and shape 
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optimization, the design space is broadened, allowing for more efficient structural configurations 

while maintaining compliance with the imposed constraints. This can be considered as an 

extension of the previous case study where only size optimization is performed which shows the 

potential of the constrained BO to be used for the simultaneous size and shape optimization of 

structural systems.  

Two different approaches for the set-up of the GPs are adopted to represent the structural metrics 

as functions in the 12-dimensional input design space. In the first approach, 4 GPs are used to 

model the weight of the structure, maximum compressive stress across all elements, maximum 

tensile stress across all elements and maximum buckling unity check across all elements. 

In the second approach, the number of GPs is increased to 18 to independently model the 

compressive, tensile stress and buckling unity check for each individual structural member. 

Noteworthy, is that a member can only experience tension or compression. In the first case a simple 

unity check for the cross-section under tension is recorded while in the second case the maximum 

utilization ratio based on the compressive stress and buckling is recorded for each member.  

For the first approach, the kernels with their respective hyperparameters are shown in  Table 2. 

Noteworthy is that Automatic Relevance Determination (ARD) is used for the Constant, RBF and 

Matérn kernels as explained in subchapter 3.5.   

Table 2: 4 GP approach: Surrogate model kernels for each 12-dimensional function. 

Function Kernels 

Weight of the structure ConstantKernel(value=1) * Matérn (ℓ, ν=1.5) + 
ConstantKernel(value=1) * RBF(ℓ), where  

ℓ ∈ [0.01,10]∈ RD, D = 12 dimensions 

 

Max compressive stress across all elements ConstantKernel(value=1) * Matérn (ℓ, ν=1.5) + 
ConstantKernel(value=1) * RBF(ℓ), where  

ℓ ∈ [0.01,10]∈ RD, D = 12 dimensions 
Max tensile stress across all elements ConstantKernel(value=1) * Matérn (ℓ, ν=1.5)  + 

ConstantKernel(value=1) * RBF(ℓ), where  

ℓ ∈ [0.01,10]∈ RD, D = 12 dimensions 
Max buckling unity checks across all elements ConstantKernel(value =1) * Matérn (ℓ, ν=2.5) + 

ConstantKernel(value=1) * RBF(ℓ) , where  

ℓ ∈ [0.01,10]∈ RD, D = 12 dimensions 

 

For the second approach, the kernels for the weight and the surrogate models for the utilization 

ratio of each member that yield the best results are shown in Table 3 below. The ARD is used 

again for the used kernels. 

Table 3: 18 GP approach: Surrogate model kernels for each 12-dimensional function. 

Function Kernels 

Weight of the structure Matérn (ℓ, ν=2.5) + RBF(ℓ = 10), where  

ℓ ∈ [0.01,10]∈ RD, D = 12 dimensions 

 

Utilization ratio of each element  Matérn (ℓ, ν=1.5), where  

ℓ ∈ [0.01,10]∈ RD, D = 12 dimensions 
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Due to the stochastic nature of the initial samples, the design shown in Figure 49 is added in the 

initial samples population to prevent the absence of any acceptable designs from stopping the 

optimization loop. In this way, the optimization gains a valid reference point for the weight based 

on which subsequent samples can be generated via the acquisition function described in subchapter 

3.3. 

Another point of attention, in the implementation for the 4GP approach is that the critical element 

is determined by explicitly iterating over every member, computing its buckling ratio, and tracking 

the maximum value—while simultaneously recording the elements experiencing the most extreme 

tensile and compressive stresses. Although straightforward, this approach incurs an O(N) 

computational cost (linear cost) per optimization iteration (where N is the total number of 

elements), so as more elements are introduced, the time spent in this calculation loop grows in 

proportion. 

The convergence progress for the 4GP & 18GP approach is presented in Figure 52.  

 

 

Figure 52: BO progress based on the discrete CHS database and parametric CHS profile. 4GP & 18GP 

approach. Median objective function values and corresponding 95% confidence interval. 

Clearly, increasing the number of GPs from 4 to 18 leads to a substantial improvement in 

optimization efficiency for the discrete CHS case: the average structural weight decreases from 

approximately 3179 kg to 2162 kg. This demonstrates the benefit of element-wise surrogate 

modelling in high-dimensional design spaces, where multiple GPs can better capture the 

underlying constraint landscapes for each element. 

Furthermore, introducing parametric CHS cross-sections further reduces the average weight to 

2091 kg, which is much closer to the reference benchmark weight of 2046.77 kg reported by 

Gholizadeh (2013). This indicates that parametric representations enhance the flexibility of the 
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optimization process, enabling the algorithm to exploit the continuous nature of the Gaussian 

process models more effectively compared to purely discrete choices. 

Finally, the shaded confidence regions show that parametric CHS not only achieves lower weights 

but also exhibits narrower variability in the final solutions, highlighting a greater robustness of this 

formulation. By contrast, discrete CHS with fewer GPs shows both higher mean weights and larger 

variance, reflecting less reliable convergence behaviour. 

An image of the optimal layout and cross-sectional dimensions for the cantilever truss as found by 

Gholizadeh are reproduced in RFEM6 and are shown in Figure 53. The results of the two 

approaches for the Bayesian optimization are shown in Figure 54 and Figure 55 using discrete 

CHS profiles. As can be seen the results deviate largely from the optimal geometry found by 

Gholizadeh (2013). The result seen in Figure 56 for the parametric CHS with 18GPs shows a good 

similarity with the reference solution.  

 

Figure 53: Optimal shape and size truss 

configuration according to Gholizadeh (2013).  

 

Figure 54: BO optimal shape and size truss 
configuration: 4GPs approach.  

Discrete CHS cross-sections. 

 

Figure 55: BO optimal shape and size truss 

configuration: 18GPs approach.  

Discrete CHS cross-sections. 

 

Figure 56: BO optimal shape and size truss 

configuration: 18GPs approach.  

Parametric CHS cross-sections. 

 

A summary of the optimized design variables obtained by Gholizadeh (2013) next to the ones 

produced by the two approaches are presented in Table 4. The best areas for the different truss 

member groups are converted to the closest areas outlined in the problem definition and the 

differences are shown in brackets below the areas. The complete list of areas converted from in2 

to mm2 and the corresponding parametric CHS profiles are given in Table 17 in Appendix C.  
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Noteworthy, is that the proposed algorithm achieves these updated parameter values with only 250 

FEM evaluations (including the 150 initial samples) which is 1/18 of the 4500 FEM evaluations 

reported by Gholizadeh, thereby demonstrating a dramatic improvement in computational 

efficiency. This efficiency gain is accompanied by a small increase in total mass, rising from 

2046.77kg to 2057kg (0.5% increase) for the 18 GP approach with parametric CHS cross-sections 

and 16% increase for the discrete CHS cross-sections. This increase is even larger for the 4GPs 

with discrete CHS cross-sections, namely 37%, demonstrating the efficiency of the element-wise 

modelling of the constraints in the 18GP approach. This highlights a trade-off between evaluation 

cost and weight minimization in the two optimization strategies. Moreover, on average the 250 

FEM evaluations took 50 minutes and 70 minutes to complete for the 4GPs and 18 GPs approach, 

respectively. This improvement in computational efficiency when compared to the reference paper 

is crucial for the dynamic environment in which practicing engineers have to deal with numerous 

design changes in tight deadlines. 

Table 4: Comparison between best results (Gholizadeh, 2013) and two approaches. 18 bar truss structure. 

8 shape variables and 4 size variables. 

Variables (Gholizadeh, 2013) 

Parametric CHS 

cross-sections 

4GPs  

Discrete CHS cross-

sections 

18GPs  

Discrete CHS 

cross-sections 

18GPs  

Parametric CHS 

cross-sections 

A1 [mm2] 8064.50 

(CHS 267.3x10) 

7370.0 

(CHS 244.5x10) 

 5651.10 

(CHS 193.7x10) 

5468.98 

(CHS 184.6x10) 

A2 [mm2] 11290.30  

(CHS 369.4x10) 

13500.0 

(CHS 355.6x12.5) 

12894.27  

CHS 273x16 

12164.52 

(CHS 400.2x10) 

A3 [mm2] 3709.67  

(CHS 128.1x10) 

7920.0 

(CHS 406.4x6.3) 

4934.46 

 (CHS 168.3x10) 

5046.34 

(CHS 174.3x10)  

A4 [mm2] 2419.35  

(CHS 87x10) 

6491.0 

(CHS 177.8x12.5) 

2949.08 

 (CHS 193.7x5) 

3548.05  

(CHS 122.9x10) 

x3 [m] 23.04 26.46 22.15 24.60 

y3 [m] 4.57 3.78 2.36 5.33 

x5 [m] 16.17 16.99 17.97   17.97 

y5 [m] 3.60 2.12 2.14 4.19 

x7 [m] 10.36 9.69 10.89 11.65 

y7 [m] 2.39 1.85 2.05 1.83 

x9 [m] 5.05 5.54 5.01 5.47 

y9 [m] 0.75 0.07 -0.14 -0.085 

Number of FEM 

evaluations 

4500 250 250 250 

Number of violated 

constraints 

0 0 0 0 

Best Weight [kg] 2046.77  2797.00 2119.49 2057.00 

Worst [kg] - 3829.56 2186.84 2155.19 

Mean [kg] - 3179.41 2162.05 2091.59 

Standard deviation [kg] - 443.75 29.91 44.15 

 

The two proposed approaches are run 10 times with the same hyperparameters to obtain a 

distribution of results for the weight of the truss. The best, worst, mean and the standard deviation 

are presented. The 18GP approach yields a lower best weight, a significantly better worst-case 

performance, and a lower mean weight when compared to the 4GPs approach. Additionally, the 
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18GP approach exhibits much lower variability in both cases compared to the 4GPs approach. 

These results further indicate that the 18GP approach delivers more reliable and consistent 

solutions. The statistics reported by Gholizadeh (2013) are not included since they are generated 

using a different optimization algorithm than BO.  

Clearly, the algorithm converges to a very similar value for the area of the bottom chords which is 

critical for the constraints on the compression stresses and buckling to be fulfilled. For the top 

chords, where tensile stresses are dominant the BO framework has identified a smaller area to be 

sufficient in accommodating the developed stresses which results in decrease in the weight. 

The corresponding structural metrics for the best-found configurations are presented in Table 5. It 

is evident that the Bayesian optimization algorithm has a bit more material efficient results for the 

profiles experiencing the maximum tensile stresses and the buckling unity check compared to the 

values obtained when analysing the structure proposed by Gholizadeh (2013). The stresses 

calculated based on a first-order static analysis are shown in Figure 127 - Figure 129, respectively 

in Appendix C: 2D optimization problem: Cantilever Truss. In Table 6 the maximum utilization 

ratios for every member are shown when the 18GPs approach is used with discrete CHS cross-

sections and continuous parametric CHS cross-sections.   

Table 5: Structural metrics comparison between the 4GP & 18 GP approach: 8 layout + 4 size variables. 

Structural metric (Gholizadeh, 

2013) 

Parametric CHS 

cross-sections 

4GPs  

Discrete CHS 

cross-sections 

18GPs 

Discrete 

CHS cross-

sections 

18GPs 

Parametric 

CHS cross-

sections 

Max tensile stress 

[MPa] 

137.846 134.547 135.229 137.868 

Max compressive 

stress [MPa] 

-119.494 -99.188 -109.163 -118.011 

Max Buckling U.C. 0.95 0.82 0.99 0.95 

 

Table 6: Member utilization ratios. 18GPs approach. 

Member 

no. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

18 GPs – Discrete CHS cross-sections 

Util. 

ratio 

0.21 0.37 0.31 0.29 0.29 0.29 0.56 0.48 0.59   0.80 0.89 0.95 0.01 0.91 0.36 0.98 0.88 0.99 

18 GPs – Parametric CHS cross-sections  
Util. 

ratio 

0.43 0.44 0.39 0.54 0.42 0.58  0.81 0.79 0.32 0.72 0.99 0.96 0.08 0.81 0.95 0.99 0.99 0.95 

 

After the Bayesian framework has been validated with the reference paper of Gholizadeh (2013), 

several modifications are implemented in order to transition from the original theoretical problem 

formulation to a revised setup which is closer to engineering practice and serves as a building 

block towards the gridshell cases in subchapters 5.3 & 5.4. The changes are outlined in the 

following paragraph. 
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The symmetric circular hollow section (CHS) cross-section dataset used previously is replaced by 

the asymmetric rectangular hollow section (RHS) dataset to emphasize the difference in buckling 

strength around the weak and strong axis of the structural profiles which are implemented as design 

constraints. This type is chosen because the gridshell cases studied in subchapters 5.3 & 5.4 are 

composed of this type of cross-section. The reason is that in practice this type of closed cross-

section is widely used for this type of structures due to their greater resistance to lateral torsional 

buckling and torsion load cases.  

Furthermore, the material properties are updated to reflect those of structural steel S235, increasing 

the density from 2767.99 kg/m³ to 7850 kg/m³.  

Additionally, the structural constraints for the strength and stability are calculated according to EN 

1993-1-1 as described in Chapter 4 instead of the adapted theoretical formulas mentioned 

previously. The calculations are done by RFEM6 rather than a Python script as for the more 

theoretical version of this case study.  

To validate the new setup of the problem, first a simple case where all the 18 elements share the 

same cross-section is used to compare the BO performance to the analytical solution for a given 

set of RHS cross-sections. This reduces the dimensionality of the optimization problem to 1D.  

To achieve this, the geometry of the 18-bar cantilever truss is now fixed to the coordinates found 

by Gholizadeh (2013). This allows for a good comparison of the outcomes with the analytical 

solution for this simplified case (see Figure 57) and allows for plotting the progression of the 

algorithm as shown from Figure 131 to Figure 150 in Appendix B.    
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RHS 350x250x6.3 

Figure 57: Analytical solution. 1 size variable problem. RHS cross-section dataset. 
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The final optimal values are shown in Table 7. As expected, the flexural buckling around the weak 

axis is governing in the design. 

Table 7: BO optimal structural metrics for the cantilever truss: 1 size variable. RHS cross-section dataset. 

Structural metric 18GPs – 1D 

 Parametric RHS cross-sections 

Area [mm2] 7359.0 

(RHS 350x250x6.3) 

Tensile Stress U.C. 0.644 

Compressive Stress U.C. 0.867 

Buckling Strong Axis U.C. 0.905 

Buckling Weak Axis U.C. 0.936 

Weight [kg] 5975.38 

 

It can be seen that RHS 350x250x6.3 is the optimal cross-section with 0 violated constraints and 

lowest total weight of the truss equal to 5975.38kg which coincides with the result in Figure 57. 

This outcome suggests that the new setup is implemented correctly. 

In the extended formulation of the optimization problem, additional modifications are introduced 

to increase design flexibility.  

The geometry of the truss is no longer held constant, instead, the coordinates of the bottom nodes 

are allowed to vary, enabling a more representative exploration of feasible configurations. The 

structural members are divided into the same four distinct groups again, each assigned an 

independent parametric RHS cross-section, thereby increasing the dimensionality of the design 

space. The parametric RHS cross-sections are assigned a standard thickness 𝑡 = 10𝑚𝑚 and a ratio 

of 𝑤𝑖𝑑𝑡ℎ ℎ𝑒𝑖𝑔ℎ𝑡⁄ = 1 2⁄ . This parametrisation is chosen since the only input is the area of the 

cross-section which allows for solving only one out of the two variables that define the cross-

section. This introduces a linear dependency of both buckling capacities as a function of the area. 

In other words, as the area of the cross-section increases both the buckling capacity around the 

strong and weak principal axis also increase and vice versa. The ratio of 1:2 is selected as it 

represents the first rounded integer proportion that characterizes an asymmetric RHS. A ratio of 

1:1 would instead correspond to a symmetric square hollow section (SHS), which possesses 

identical moments of inertia about its principal axes and therefore exhibits structural behaviour 

comparable to that of a symmetric CHS. This would undermine the intended purpose of the 

extended formulation of the case study, which is to evaluate the performance of the constrained 

BO algorithm for a structural system with cross-sections with different buckling strengths in both 

principal axes of the cross-section. Both parametric values, thickness and ratio, can be changed by 

the designer.  

In addition, parametric CHS cross-sections are used for comparison since their buckling capacity 

does not depend on the principal axes of the cross-section.  
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Table 8 summarizes the optimal BO results, considering both parametric CHS and RHS. The 

weight is noticeably lower (33%) than the single size variable case shown in Table 7, namely 

4017.67kg, as is expected when the additional degrees of freedom are introduced which increase 

the flexibility of the design. RHS designs are more consistent across optimization runs but result 

in a slightly heavier structure. 

Table 8: BO optimal results for the cantilever truss: 8 layout variables and 4 size variables; CHS and RHS 

parametric cross-sections. 

Variables 18GPs 

Parametric CHS  

cross-sections 

18GPs  

 Parametric RHS 

cross-sections 

A1 [mm2] 3795.10 
(CHS 130.8/10) 

4036.93 
(RHS 151x76x10) 

A2 [mm2] 6991.03 

(CHS 232.5/10) 

8032.59   

(RHS 285x142x10) 

A3 [mm2] 2482.22 
(CHS 89.0/10) 

2815.02 
(RHS 111x55x10) 

A4 [mm2] 3061.94 

(CHS 107.5/10) 

2884.96 

(RHS 113x57x10) 

x3 [m] 24.47 24.17 

y3 [m] 5.46 5.40   

x5 [m] 17.43 20.39 

y5 [m] 3.94 4.93 

x7 [m] 11.86 11.23   

y7 [m] 2.22 2.15 

x9 [m] 5.46 5.14 

y9 [m] -0.46 -0.24 

Number of FEM 

evaluations 

250 250 

Number of violated 

constraints 

0 0 

Best Weight [kg] 3677.54 4017.67 

Average weight [kg] 3700.09 4048.54 

Standard deviation [kg] 31.90 17.37 
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As can be seen in Figure 58 and Figure 59 both CHS and RHS design have a very similar geometry 

to each other despite the fact that the latter has a different buckling capacity in two directions. In 

Table 9 the utilization ratios for the parametric CHS and RHS cross-sections based on the 18GPs 

approach are shown.  

 

 

Figure 58: Optimal shape and size truss 

configuration resulting from BO. Parametric 

CHS profiles. 18GPs approach. 

 

Figure 59: Optimal shape and size truss 

configuration resulting from BO. Parametric 

RHS profiles. 18GPs approach. 

 

Table 9: Member utilization ratios. 18GPs approach. CHS and RHS parametric cross-sections. 

Member 

no. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Parametric CHS cross-sections 

Util. 

ratio 

0.82 0.67 0.24   0.92 0.26 0.75 0.31 0.99 0.01 0.70 0.45 1 0.14   0.82 0.97 0.99 0.99 0.99 

Parametric RHS cross-sections 

Util. 

ratio 

0.75 0.59 0.24   0.87 0.36 0.77 0.31 0.99 0.37 0.90 0.31 0.98 0.06   0.78 0.62 0.99 0.95 1 

 

The results of this case study highlight two important aspects for the subsequent gridshell 

optimization problems First, parametric cross-sections are employed in all subsequent cases to 

better exploit the capability of Gaussian processes in modelling continuous functions to achieve 

better and consistent results. Second, the calculation of the structural constraints is performed as 

outlined in Chapter 4, ensuring that all final designs remain feasible with respect to strength and 

buckling limitations throughout the optimization process. Together, these elements establish a 

robust framework for extending the Bayesian Optimization methodology to more complex 

gridshell structures with 3D geometry analysed in the following subchapters. 
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5.3.  3D optimization case: Symmetric 4x4 Grid with size variables  
In this subchapter a transition is made from the 2D geometry to a 3D structural system. The 

performance of the BO framework is tested on the symmetric 4x4 grid optimization case with 

asymmetric boundary conditions which serves as a building block towards the last case study in 

subchapter 5.4.  

5.3.1. Problem Definition & analysis  

The structural model is defined as a regular grid configuration consisting of 4  4 nodes. The plan 

dimensions are set to a length and width of 4 m, while the overall height of the structure is 1.43 m 

with a total of 28 elements. The geometry is fixed throughout the analysis and is illustrated in 

Figure 60 and Figure 61.  

 

Figure 60: 4x4 gridshell layout. Member and 

node enumeration. 

 

 

 

 

 

 

 

Figure 61: 4x4 gridshell. Side view. 

Two load combinations are considered in the analysis: 

• Validation load combination:   selft-weight + imposed load of 1 kN/m2 

• Test load combination:  1.35 * selft-weight + 1.35 * 50 * imposed load of 1kN/m2 

This test load is not derived from Eurocode recommendations, but rather represents a fictitious 

scenario developed empirically to evaluate the effectiveness of the BO framework. The validation 

and test load combinations are illustrated in Figure 151 and Figure 152 in Appendix D1. 4x4 

Gridshell Additional Figures, respectively. 

The boundary conditions applied to the structure are illustrated in Figure 62 to Figure 65. In these 

figures, arrows indicate the directions in which the supports are permitted to move, thereby 

defining the degrees of freedom at each support location. This representation provides a clear 
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overview of the structural restraints considered in the analysis. The choice of boundary conditions 

is adopted to enhance the realism of the gridshell model where the structure is allowed to freely 

expand and contract due to varying temperature loads. 

 

 

Figure 62: Supports: Translation in x-free, y-free, 

z-fixed. Rotations in x-,y-,z- directions are free. 

 

Figure 63: Supports: Translation in x-fixed, y-
fixed, z-fixed. Rotations in x-,y-,z- directions are 

free.

 

Figure 64: Supports: Translation in x-fixed, y-

free, z-fixed. Rotations in x-,y-,z- directions are 

free. 

 

Figure 65: Supports: Translation in x-free, y-
fixed, z-fixed. Rotations in x-,y-,z- directions are 

free.
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The structure is modelled using steel grade S235, which is characterized by a yield strength of 

𝑓𝑦 = 𝜎𝑚𝑎𝑥 = 235𝑁/𝑚𝑚2. This material specification is applied to all members of the model. 

The structural members are modelled using parametric Rectangular Hollow Sections (RHS). For 

each element i, the axial cross-sectional area is constrained within the bounds 1892𝑚𝑚2 ≤ 𝐴𝑖 ≤
21692𝑚𝑚2, as illustrated in Figure 66 and Figure 67, respectively. The rationale for selecting 

these bounds is provided in the following paragraphs. 

Lower area bound is kept at 1892 mm2 when a thickness of t = 10mm is assumed and the inner 

and outer radius of the cross-section are accounted for by the following two equations according 

to EN 10210-2 for hot finished cross-sections, respectively:  𝑟𝑜 = 1.5 ∗ 𝑡 and  𝑟𝑖 = 1.0 ∗ 𝑡. Upper 

area bound is set at 21692mm2 due to the limit for hw/tw for plates that require stiffeners which is 

set at 𝜆𝑙𝑖𝑚 = 72 ∗ √235/𝑓𝑦 according to EN 1993-1-5:2006; 6.2.6(2); Eq. 6.22. Therefore, the 

height of the RHS cross-section must not exceed 740 mm when accounting for a thickness of 

10mm. Otherwise, a web stiffener must be modelled for the cross-section and shear buckling 

considered. The same ratio for 𝑤𝑖𝑑𝑡ℎ ℎ𝑒𝑖𝑔ℎ𝑡⁄ = 1 2⁄   is kept as in the cantilever truss case 

described in previous subchapter to account for the different buckling capacity depending on the 

direction. This parameter can be changed by the designer depending on project requirements. 

 

Figure 66: Lower bound for the area of the RHS 

profiles (A = 1892mm2). 

 

 

Figure 67: Upper bound for the area of the RHS 

profiles (A = 21692 mm2). 
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The structural constraints are outlined below: 

• Strength: 

o Stress constraints are selected to be 𝜎𝑚𝑎𝑥 − |𝜎𝑖| ≥ 0 , where the σmax is the 

maximum allowable yield stress of the material, and σi is the stress in the ith element 

and are calculated as described in Chapter 4.3.2.  

• Stability: 

o The flexural buckling capacity of each beam element is calculated according to the 

EN 1993-1-1, section 6.3.1 as described in Chapter 4.3.3 in RFEM6. The effective 

buckling length factor is chosen as 1 (conservatively) for the pin-pin condition since 

the optimization takes place in the preliminary design phase when the rigidity of 

the joints is unknown.  

The optimization task is formulated as a size optimization problem, in which the parametric cross-

sections of the structural members are adjusted with the objective of minimizing the overall weight 

of the structure. 

The validation is performed by introducing a load case with low values called “validation load 

combination” such that the lower bound for the cross-sectional area of the RHS profiles is 

sufficient to satisfy the constraints. This way the optimal profiles are known prior to optimizing 

the structure. The results of the BO framework are then compared to this baseline in Figure 70.   

Two designs are chosen for the analysis based on a 1 dimensional and 17 dimensional input feature 

space. In the former (Figure 68) all structural members share the same cross-sectional profile and 

in the second case (Figure 69) each group of members is assigned an independent cross-section. 

The highlighted members illustrate the number of degrees of freedom considered in the 

optimization.  

 

 

Figure 68: 4x4 Gridshell. 1D design space. 

 

Figure 69: 4x4 Gridshell. 17D design space. 
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Figure 70 shows the convergence behaviour of the BO algorithm for both cases. The adopted 

heuristic is 1 point per input dimension resulting in 10 initial samples and 17 initial samples for 

the 1D case and the 17D, respectively. The 1D case converges to the known analytical optimum 

of 606.35kg within the first 5 iterations while the 17D case converges around the 10th iteration. 

For the 17D problem, the optimization converges to a solution with a total weight of 655.38 kg. 

This corresponds to a difference of approximately 8%, which is deemed acceptable considering 

the complexity of the high-dimensional search space and the limited number of iterations.  

 

Figure 70: Bayesian optimization progress: 1D & 17D Gridshell model validation. Median objective 

function values and corresponding 95% confidence interval. 

The corresponding optimized structures for 1D case and the 17D case are presented in Figure 71 

and Figure 72. The 1D case converges exactly to the analytical solution, confirming the validity 

of the BO framework in a reduced design domain. In contrast, the 17D case results in slightly 

oversized members in certain regions, which accounts for the deviation from the theoretical 

optimum. Nonetheless, the BO approach demonstrates its capability to efficiently navigate a high-

dimensional, constrained design space and approximate the global optimum within a small margin 

of error which can be corrected for with small amount of post-processing. 

Overall, these results validate the robustness of the proposed BO framework for structural size 

optimization in a this 3D 4x4 gridshell case study. The method is able to reproduce analytical 

solutions in low-dimensional problems while providing near-optimal designs in high-dimensional 

cases, where traditional methods such as the ones discussed in Chapter 2 may require larger 

number of iterations to achieve similar results leading to increased computational cost.  
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Figure 71: 4x4 Gridshell. Analytical optimal 
solution & optimal solution in 1D input design 

space. Unit of the cross-sections is [mm].  

 

Figure 72: 4x4 Gridshell. Optimal solution in 

17D input design space. Unit of the cross-

sections is [mm]. 

 

Table 10 summarizes the results of the validation study under the simplified load combination. 

The table reports the optimal cross-sectional areas obtained from three approaches.  

For the 1D Bayesian Optimization case, all members converge to the same cross-sectional area of 

1892 mm², confirming the correctness of the BO framework when applied to a reduced problem. 

In contrast, the 17D case yields a distribution of cross-sectional areas across the members, 

reflecting the increased flexibility of the design space. While some members remain close to the 

analytical solution, others adopt larger profiles (e.g., A15, A19, A27), leading to an overall higher 

structural weight. Some of the values are very close to each other such as the A1-12 and A13. The 

recurring similarity among some of the elements creates a recognizable pattern, as illustrated in 

Figure 72. This observation coupled with low standard deviation of 4.76 kg for the 17D case 

indicates the presence of an inherent lower-dimensional structure within the design space, which 

can be exploited through dimensionality reduction methods such as PCA, as outlined in Chapter 

3.8 to reduce the computational cost of the optimization. This analysis is investigated more in 

depth for the test load combination where the pattern is more explicit. 

The summary statistics at the bottom of the table highlight the performance differences between 

the cases.  
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Table 10: Validation load combination: Optimal areas and 28 GPs with 17D kernels. 

Variables Analytical solution  

Parametric RHS 

cross-sections 

28 GPs – 1D  

Parametric RHS 

cross-sections 

28 GPs – 17D  

Parametric RHS 

cross-sections 

A1-12 [mm2] 1892 1892 1919.19 

A13 [mm2] 1892 1892 1920.56 

A14 [mm2] 1892 1892 1897.17 

A15 [mm2] 1892 1892 2198.04 

A16 [mm2] 1892 1892 1967.04 

A17 [mm2] 1892 1892 2073.86 

A18 [mm2] 1892 1892 2160.77 

A19 [mm2] 1892 1892 2252.69 

A20 [mm2] 1892 1892 1958.73 

A21 [mm2] 1892 1892 2044.33 

A22 [mm2] 1892 1892 1901.50 

A23 [mm2] 1892 1892 1947.98 

A24 [mm2] 1892 1892 2368.73 

A25 [mm2] 1892 1892 2129.13 

A26 [mm2] 1892 1892 1976.27 

A27 [mm2] 1892 1892 2854.56 

A28 [mm2] 1892 1892 2058.54 

Average Number of 

FEM evaluations 

- 12 117 

Number of violated 

constraints 

0 0 0 

Best Weight [kg] 606.35 606.35 648.29 

Worst [kg] 606.35 606.35 661.11 

Mean [kg] 606.35 606.35 655.382 

Standard deviation 

[kg] 

0 0 4.76 

* Note: The corresponding cross-sections are shown in the legend of Figure 71 and Figure 72. 

The cross-section groups are formed based on the similarity of the area. 

 

After being evaluated under the validation load case, the BO framework is then tested under the 

increased load combination which represents a more practical use case for an optimization 

routine. 

The results for the weight optimization of the 4x4 gridshell for the test load combination are shown 

in Figure 74. It can be seen that when increasing the complexity or the degrees of freedom in the 

system the weight reduces from the 1D case to the 17D case by 16.7%. The maximum complexity 

for this problem is achieved by allowing all the 28 elements to have their own cross-section. This 

means that the analysis is performed in 28-dimensional input design space which is above the 

empirically derived limit (~20D) of the Bayesian optimization framework as discussed in Chapter 

2. The results show that the average optimal weight is increased to 973.61kg making it slightly 
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better than the 1D optimization results, but worse than the 17D results. Upon further investigation 

to establish the level of complexity at which the optimal weight starts to deteriorate it is found that 

this happens at 18D feature space. To clarify the degrees of freedom, the configuration is shown 

in Figure 73. The average weight of the structure increases by 1% which shows the limitation of 

the Bayesian optimization framework for this case study which is similar to what is stated in 

Moriconi et al., (2020). Therefore, the 17D design space is chosen for the rest of the analyses 

performed in this case study. 

 

Figure 73: 4x4 Gridshell. 18D design space. 

 

Figure 74: Bayesian optimization progress: 17D Gridshell model validation. Median objective function 

values and corresponding 95% confidence interval.  

Table 11 presents the optimized cross-sectional areas and the corresponding cross-sections 

obtained under the test load combination for three design space configurations namely .  

In the 1D case, all members converge to a uniform cross-section of 3117.99 mm², resulting in a 

total structural weight of 997.32 kg. This solution satisfies all constraints but is overly conservative, 

as members are over-dimensioned for the given load combination.  
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Table 11: Test load combination: Optimal areas for the 1D, 17D and 28D kernels. 

Variables 28 GPs – 1D  

Parametric RHS cross-

sections 

28 GPs – 17D  

Parametric RHS cross-

sections 

28 GPs – 28D  

Parametric RHS 

cross-sections 

A1-12 [mm2] 3117.99  

(RHS 121/60/10) 

2762.63 

(RHS 109/54/10) 

shown below* 

A13 [mm2] 3117.99 

(RHS 121/60/10) 

2057.88 

(RHS 86/43/10) 

1937.66 

(RHS 91/45/10) 

A14 [mm2] 3117.99 
(RHS 121/60/10) 

3424.22 
(RHS 131/66/10) 

3980.54 
(RHS 178/89/10) 

A15 [mm2] 3117.99 

(RHS 121/60/10) 

2145.76 

(RHS 88/44/10) 

2109.78 

(RHS 118/59/10) 

A16 [mm2] 3117.99 

(RHS 121/60/10) 

3091.81 

(RHS 120/60/10) 

4461.66 

(RHS 115/58/10/) 

A17 [mm2] 3117.99 

(RHS 121/60/10) 

1967.23 

(RHS 82/41/10) 

2868.86 

(RHS 95/48/10) 

A18 [mm2] 3117.99 

(RHS 121/60/10) 

2557.73 

(RHS 102/51/10) 

2465.08 

(RHS 103/52/10) 

A19 [mm2] 3117.99 

(RHS 121/60/10) 

2298.61 

(RHS 94/47/10) 

2947.79 

(RHS 143/71/10) 

A20 [mm2] 3117.99 

(RHS 121/60/10) 

2508.59 

(RHS 101/50/10) 

2697.70 

(RHS 113/56/10) 

A21 [mm2] 3117.99 

(RHS 121/60/10) 

2497.58 

(RHS 100/50/10) 

3878.22 

(RHS 100/50/10) 

A22 [mm2] 3117.99 

(RHS 121/60/10) 

2294.89 

(RHS 93/47/10) 

2900.36 

(RHS 118/59/10) 

A23 [mm2] 3117.99 

(RHS 121/60/10) 

2249.69 

(RHS 92/46/10) 

4658.60 

(RHS 103/51/10) 

A24 [mm2] 3117.99 

(RHS 121/60/10) 

2109.90 

(RHS 87/44/10) 

2191.26 

(RHS 126/63/10) 

A25 [mm2] 3117.99 
(RHS 121/60/10) 

2297.62 
(RHS 93/47/10) 

2171.62 
(RHS 109/54/10) 

A26 [mm2] 3117.99 

(RHS 121/60/10) 

2477.11 

(RHS 99/50/10) 

2456.31 

(RHS 117/58/10) 

A27 [mm2] 3117.99 

(RHS 121/60/10) 

1995.09 

(RHS 83/42/10) 

2603.96 

(RHS 85/43/10/) 

A28 [mm2] 3117.99 

(RHS 121/60/10) 

3068.87 

(RHS 119/60/10) 

3246.99 

(RHS 134/67/10) 

Average Number of FEM 

evaluations 

10 210 300 

Number of violated 

constraints 

0 0 0 

Best Weight [kg] 997.32 824.82 953.67 

Worst [kg] 997.32 839.93 986.10 

Mean [kg] 997.32 830.16 973.62 

Standard deviation [kg] 0 4.77 12.79 

* The areas for the first 12 elements in the 28D case are the following:  

A1-12 ∈[4182.40;  3315.41;  3524.95;  2748.51;  3103.82;  2014.73;  4388.95;  2349.72;  2097.41;  2747.40;  

3308.21;  3640.72] with corresponding cross-sections [RHS 138/69/10, RHS 146/73/10, RHS 130/65/10, RHS 

108/54/10, RHS 96/48/10, RHS 90/45/10, RHS 100/50/10, RHS 89/44/10, RHS 98/49/10, RHS 159/80/10, RHS 

93/46/10, RHS 139/70/10 ] 
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The influence of the number of initial samples for the 17D kernels with the test load combination, 

is shown in Figure 75. As a reference a random search is also performed to showcase the efficiency 

of the Bayesian optimization framework. The adopted heuristic is 1 point and 10 points per input 

dimension resulting in 17 and 170 initial samples, respectively. It can be concluded that the latter 

produces better results in terms average weight and reduced variance between runs. However, this 

comes at a higher computational cost due to the increased number of data points N and the O(N3) 

scalability of the Gaussian processes. The difference in the final average weight between the two 

cases is 3.6%. Based on this sensitivity analysis, the balance between what number of initial 

samples to use and the computational cost is left to the user.   

 

Figure 75: Bayesian optimization progress: 17D GPs & Random Search. Median objective function 

values and corresponding 95% confidence interval.  

Further details on the influence of the number of initial samples on the hyperparameters of the 

Gaussian processes for 17D and 28D input space are shown in the heatmaps in Figure 152 to 

Figure 155  in Appendix D1.   
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The design shown in Figure 76 is obtained from a common rule of thumb of (1 25) ∗ 𝑠𝑝𝑎𝑛⁄  for 

the height of the cross-section of all of the elements in the gridshell. It provides a reasonable 

design for comparison with the optimized design obtained from the BO framework in the 17D 

design space shown in Figure 77.  

 

Figure 76: 4x4 Gridshell. Initial rule of thumb design. Span is 4m. Unit of the cross-sections is [mm].   

 

Figure 77: 4x4 Gridshell. Best optimal solution in 17D input design space.  

Unit of the cross-sections is [mm].   

The total structural weight of the first design is 1376 kg while the optimized one has a weight of  

824.82 kg. This results in a 1.67× reduction of steel material which reduces the cost and makes the gridshell 

more sustainable by reducing the CO2 emissions for the production of the profiles.  
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As illustrated in Figure 77 and outlined in Table 11, the resulting design exhibits similarities between the 

areas of members and forms, suggesting the presence of an underlying low-dimensional structure. In 

practice, this means that the effective dimensionality of the problem is smaller than the nominal 17 design 

variables, since certain cross-sections evolve in a correlated manner to accommodate the load transfer 

within the gridshell. 

Principal Component Analysis (PCA) as discussed in subchapter 3.8 offers a systematic means to exploit 

this redundancy by identifying the most influential directions of variation in the design space. By projecting 

the original 17D problem onto a reduced set of uncorrelated principal components, it becomes possible to 

retain the dominant structural patterns while eliminating redundant or weakly contributing variables. This 

dimensionality reduction can mitigate some of the computational burden of Bayesian Optimization while 

producing close to the found optimal designs in the original design space. As mentioned before 17D is 

chosen as the original complexity on which the PCA is applied. 

The initial samples that are generated with the Latin Hypercube sampling strategy in the design domain for 

the areas of the cross-sections follow the pattern shown in Figure 77. This approach spreads samples across 

the entire input space in a space-filling manner on which the PCA is later fitted on. This approach can be 

regarded as an analogue to constructing multiple 4×4 gridshells produced by different manufacturers under 

comparable loading and boundary conditions, with the aim of identifying underlying patterns in their 

structural performance.  

Table 12 present the results of applying Principal Component Analysis (PCA) to reduce the dimensionality 

of the 17D gridshell design space prior to Bayesian Optimization. Two reduced representations are 

considered, using 6 principal components (PCs) and 10 PCs, respectively. The rationale behind this choice 

is discussed in the following paragraph.  

The explained variance plot in Figure 78 shows that the first few principal components capture most of the 

variability in the design space which is expected when there is a relatively clear pattern in the data. 

Specifically, the first 6 components account for approximately 98% of the variance  as shown in cumulative 

variance plot Figure 79, while 10 components are sufficient to capture nearly the entire variance. This 

indicates that the effective dimensionality of the design problem is substantially lower than the original 17 

variables, which is a similar result to the 8 effective cross-sections shown in Figure 77.   

Table 12: 4x4 Gridshell: Statistics for the PCA with different number of principle components. 

PCA number of 

components 

6 principle 

components 

 

10 principle 

components 

 

Best Weight [kg] 1005.77 892.70 

Worst Weight [kg] 1182.45 975.66 

Mean [kg] 1062.23 928.42 

Standard deviation [kg] 69.47 22.97 
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Figure 78: 4x4 Gridshell: Explained variance by 

each principle component. 

 

Figure 79: 4x4 Gridshell: Cumulative explained 

variance by each principle component. 

The optimization results summarized in Table 16 reveal a clear trade-off between accuracy and 

computational efficiency. With 6 components, the best structural weight obtained is 1005.77 kg, 

with a mean weight of 1062.23 kg and relatively large standard deviation of 69.47 kg. Increasing 

the dimensionality to 10 components improves both accuracy and robustness: the best solution is 

reduced to 892.70 kg, with a mean of 928.42 kg and a lower standard deviation of 22.97 kg. 

However, both PCA cases remain above the best weight obtained without PCA of 824.82 kg, 

indicating that dimensionality reduction introduces a small optimality gap. 

The convergence histories in Figure 80 further illustrate these effects. The shaded regions indicate 

the variance across the 10 runs, which is visibly larger for 6 components, highlighting reduced 

reliability when fewer components are retained in this case study. 

 

Figure 80: Bayesian optimization progress with PCA for 4x4 gridshell. Median objective function values 

and corresponding 95% confidence interval for the different number of principal components. Test load 

combination. 
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Finally, Figure 81  reports the average convergence time. The use of PCA significantly reduces 

computational effort: optimization with 6 components converges in approximately 20 minutes, 

with 10 components requiring around 50 minutes, compared to more than 100 minutes for the 

full 17D dimensional problem. This is due to the fact that both the maximisation of the 

acquisition function and the fitting of the Gaussian processes happens in a reduced design space 

leading to a faster execution of the algorithm per iteration..   

 

 

Figure 81: Average convergence time comparison between the runs with PCA and without PCA for the 

4x4 gridshell. 

Therefore, PCA provides a compromise between solution quality and computational efficiency. 

While the full 17D optimization yields the best structural weight, PCA with 10 components 

achieves a near-optimal solution at less than half the computational cost. The 6-component case is 

computationally more efficient but suffers from reduced accuracy and higher variance, indicating 

that too much dimensionality reduction may oversimplify the design space.   
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5.4.  3D optimization case: Symmetric 9x9 Grid with size variables  
In this subchapter the last case study of a 3D symmetric 99 grid optimization case with symmetric 

boundary conditions and 288 steel elements is analysed to evaluate the performance of the BO 

framework. The same setup of the BO framework as for the 4x4 gridshell is used. The case study 

is inspired by the C30 gridshell designed and built by Octatube which serves to create the boundary 

conditions, set the load combination, focus on a particular type of cross-section and determine the 

material properties. This case is selected to assess the BO framework on a practical design 

implemented in reality. 

For context, a short description about the design and construction of the C30 shell is provided in 

the following paragraphs. Afterwards, the optimization problem is defined and results are 

evaluated.  

5.4.1. C30 Gridshell 
The aim of constructing this structure was to cover the inner courtyard of an office building which 

had a monumental character due its resemblance to Dutch architecture of the 16th/17th century even 

though the foundations were laid in the 1916 (Octatube, 2020). As a result of this status, some 

design and building challenges emerged. An example was that no horizontal forces were allowed 

to be transferred perpendicular to the façade. Also, in Figure 82 it can be seen that there are 

polygonal towers in three of the edges of the enclosed space which makes the construction of 

continuous straight edge beams unfeasible and in turn causes the loss of stiffness of the structure. 

To overcome this challenge, pretension cables were used to keep the edges together (see Figure 

83). This must be carried out with millimetre-level precision, as even slight deviations can lead to 

a completely different distribution of forces. 

 

 

Figure 82: Overview of the C30 structure. 

(Source: Octatube, 2020) 

 

 

 

Figure 83: C30 view from below the roof. 
Pretension cables in the corner.  

(Source: Octatube, 2020) 

 

Another challenge during the construction of the grid shell was how to close the middle part of the 

roof. To do this, the engineers developed an assembly technique based on the principle of 

reciprocal frames which is a type of self-supporting structure. There are four ladder frames (orange 

elements in Figure 84)  in the middle, that do not rely on any scaffolding and in the end close the 
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roof. Cranes were used to lift the frames into position (Figure 85). To achieve this, advanced 

prefabrication techniques were used such as file-to-factory which sends data to a laser cutter 

(instead of sawing) through a script in order to produce the profiles and connections.  

Lastly, there was a challenge in determining the connection stiffness between the different 

elements which ultimately influences how the stresses are distributed over the roof. To tackle this 

the engineers developed two separate models that represented the lower and upper limit of the 

connection stiffnesses. In the former a lot of deformations were found whereas in the latter the 

deformations are more controlled. 

Because of the structure's shape and the varying sizes and angles of the steel elements, a parametric 

design approach was employed in order to design the shell efficiently. 

 

Figure 84: Groups of prefabricated elements in the C30 shell. 

 
 

 

Figure 85: Placing of the ladder frames using cranes. (Source: Octatube, 2020)  
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5.4.2. Problem definition & analysis 

The structural configuration is defined as a diagonal grid consisting of 99 nodes. The plan 

dimensions are set to a length and width of 28 m, with a height of 3.84 m with a total of 288 

elements. The geometry remains fixed throughout the analysis and is illustrated in Figure 86 and 

Figure 87. The geometry is form-found using the Grasshopper script presented in Figure 163 

(Appendix D2. 9x9 Gridshell Additional Figures). This script employs the dynamic relaxation 

method via the Kangaroo 2 plugin, however, a detailed explanation of the method lies beyond the 

scope of this thesis. For further information, the reader is referred to Shell Structures for 

Architecture: Form Finding and Optimization by Adriaenssens et al. (2014). The geometry is 

simplified to a square layout than the original C30 design to make the problem symmetric. 

 

Figure 86: 9x9 gridshell. Layout with member numbers. 

 

 

Figure 87: 9x9 gridshell. Side view. 
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The test load combination is defined at the ultimate limit state (ULS) as 1.20 ∗ 𝑠𝑒𝑙𝑓 − 𝑤𝑒𝑖𝑔ℎ𝑡 +
1.20 ∗ 𝐺𝑙𝑎𝑠𝑠 + 1.50 ∗ 𝑊𝑖𝑛𝑑 . This formulation has been adapted from the original structural 

report for the C30 gridshell. The load cases and resulting load combination are shown in Figure 

156 to Figure 159 in Appendix D2. 

The support conditions of the structure are illustrated in Figure 88 to Figure 90. In these 

representations, arrows indicate the directions in which the supports are free to move, thereby 

defining the degrees of freedom at each support location. The boundary conditions are inspired by 

the C30 gridshell where the structure is allowed to move to accommodate any thermal loads that 

might occur. There are also additional measures taken to prevent any horizontal forces developing 

on the façade of the historic buildings, but they are addressed later in the text. 

 

 

Figure 88: Supports: Translation in x-free, y-

free, z-fixed. Rotations in x-,y-,z- directions are 

free. 

 

Figure 89: Supports: Translation in x-free, y-

fixed, z-fixed. Rotations in x-,y-,z- are free. 

 

 

Figure 90: Supports: Translation in x-fixed, y-free, z-fixed. Rotations in x-,y-,z- are free. 
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The structure is modelled using steel grade S355, characterized by a yield strength of 𝑓𝑦 = 𝜎𝑚𝑎𝑥 =

355 𝑁/𝑚𝑚2. This material specification is applied to all structural members similar to the C30 

gridshell. 

The members are modelled using parametric Rectangular Hollow Sections (RHS). For each 

element i, the axial cross-sectional area is constrained within the bounds 1723 ≤ 𝐴𝑖 ≤
10010𝑚𝑚2, as illustrated in Figure 91 and Figure 92. These values are derived from setting the 

thickness of the cross-section 𝑡 = 8𝑚𝑚 and the ratio of 𝑤𝑖𝑑𝑡ℎ ℎ𝑒𝑖𝑔ℎ𝑡 =  1 3⁄⁄ . The choice for 

these parametric values is made based on the structural report of the C30 gridshell.  

 

 

Figure 91: Lower bound for the area of the RHS 

profiles (A = 1723mm2). 

 

Figure 92: Upper bound for the area of the RHS 

profiles (A = 10010mm2). 

 

The constraints are outlined below: 

• Strength: 

o Stress constraints are selected to be 𝜎𝑚𝑎𝑥 − |𝜎𝑖| ≥ 0 , where the σmax  is the 

maximum allowable yield stress of the material, and σi is the stress in the ith element 

and are calculated as described in Chapter 4.3.2.  

• Stability: 

o Local buckling strength of each beam element is calculated according to the EN 

1993-1-1, section 6.3.1 as described in Chapter 4.3.3. The effective buckling length 

factor is chosen as 1 (conservatively) for the pin-pin condition since the 
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optimization takes place in the preliminary design phase when the rigidity of the 

joints is unknown.  

Based on the results of the previous case study of the 4x4 gridshell, the analysis of the full 

dimensionality of the 9x9 gridshell (288D) is prohibitively expensive to evaluate with the BO 

framework.   

Therefore, in this case study, two lines of symmetry are introduced in order to reduce the 

dimensionality of the optimization problem to be below 20D. These symmetry conditions simplify 

the dimensionality of the optimization problem while preserving the structural behaviour of the 

system. The applied symmetry are illustrated in Figure 93. 

 

Figure 93: 9x9 gridshell: Lines of symmetry. 

The optimization task is formulated as a size optimization problem, in which the parametric cross-

sections of the structural members are adjusted with the objective of minimizing the overall weight 

of the structure. 
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The design shown in Figure 94 illustrates the 17 dimensional input feature space. Each colour 

represents the cross-section assigned to a group of steel elements. This is different from the 4x4 

gridshell case where each individual element has its own cross-section. The edge beams (nr. 1-32) 

share the same cross-section. Furthermore, 8 rod elements with solid circular cross-section with 

diameter equal to 50mm are modelled as shown. They can only accommodate tension forces. This 

addition is made based on the original C30 gridshell to prevent any horizontal forces developing 

on the façade of the historic buildings that support the structure. These 8 elements are excluded 

from the optimization problem keeping the task 17D. 

 

Figure 94: 9x9 Gridshell. 17D design space. 
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The convergence history of the constrained BO framework compared against random search is 

shown in Figure 95. Two BO runs are shown - one with 17 initial samples and another with 170 

initial samples, both employing a 17-dimensional kernel with 288 Gaussian Process surrogate 

models to handle the strength and stability constraints discussed in Chapter 4.3. The shaded regions 

illustrate the variability across independent runs, while the solid lines indicate the median 

performance. 

 

Figure 95: Bayesian optimization progress: 17D 9x9 Gridshell model. Median objective function values 

and corresponding 95% confidence interval. 

It can be observed that both BO configurations significantly outperform random search. The BO 

runs rapidly reduce the structural weight within the first 10–15 iterations, converging toward 

feasible lightweight solutions. Increasing the number of initial samples improves convergence 

stability and leads to a slightly lighter final design (15,156.49 kg compared to 15,383.46 kg on 

average). In contrast, random search converges slowly and stagnates at higher weight levels with 

higher variability, highlighting the efficiency of the proposed surrogate-assisted constrained 

optimization approach. 

In the following figures the effect of the optimization process on the gridshell structure is 

visualized. Figure 96 shows the initial design, based on the uniform C30 gridshell cross-section 

RHS 300/100/8 for all elements, with a total structural weight of 38.389 tons. The max utilization 

ratio is 0.30 which leads to excessive material usage.  

In contrast, Figure 98 displays the optimized configuration obtained through Bayesian 

Optimization. The allocation reduces material consumption significantly, yielding a total structural 

weight of 15.098 tons which corresponds to a 2.54 × lighter structure or a weight reduction of 

approximately 60%.  
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Figure 96: 9x9 Gridshell. Initial design based on the C30 gridshell cross-sections. 

Unit of the cross-sections is [mm]. 

 

Figure 97: 9x9 Gridshell. Optimized cross-sections.  

Unit of the cross-sections is [mm]. 
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The max utilization ratios in the optimized design calculated in RFEM6 per cross-section are:  

• RHS 96/32/8    → 0.71 

• RHS 103/34/8  → 0.96 

• RHS 121/40/8  → 0.93 

• RHS 128/43/8  → 0.92 

• RHS 132/44/8  → 0.92 

• RHS 262/87/8  → 0.90 

• RHS 294/98/8  → 0.80 

 

These values further validate the structural efficiency of the optimized design. Most of the cross-

sections operate very close to their capacity limits, demonstrating that the optimization framework 

successfully exploited their load-bearing potential. The first cross-section RHS 96/32/8 has the 

lowest utilization ratio but it is also the bottom boundary for the cross-sectional area which means 

that given the problem definition it is the optimal result.  

Furthermore, an observable pattern emerges in the cross-section distribution shown in Figure 97. 

This mean that PCA can optionally be applied. The same procedure as for the 4x4 gridshell is 

applied here to evaluate what the effect of the optimization in a reduced latent is in terms of quality 

of the results and computational time.  

Figure 98 shows the explained variance ratio as a function of the number of principal components. 

The first principal component alone captures over 40% of the variance in the dataset, while the 

second accounts for approximately 13%. Beyond the first few components, the marginal 

contribution of additional components diminishes significantly, with components beyond the 10th 

each contributing less than 2% to the overall variance. This indicates that much of the variability 

in the 17-dimensional design space can be represented in a reduced subspace of lower 

dimensionality. This is confirmed in the plot of the cumulative explained variance plot in Figure 

99. 

 

 

Figure 98: 99 Gridshell: Explained variance by 

each principle component. 

 

Figure 99: 99 Gridshell: Cumulative explained 

variance by each principle component. 
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The cases with 11 and 14 components are examined to assess the influence of PCA on the structure, 

serving as a sensitivity study.  

Table 13 presents statistical performance indicators for the optimization of the 9×9 gridshell using 

PCA-reduced design spaces. The values indicate that increasing the number of principal 

components not only yields lighter structures but also enhances robustness and consistency across 

optimization runs. 

Table 13: 99 Gridshell: Statistics for the PCA with different number of principle components. 

PCA number of 

components 

11 principle 

components 

 

14 principle 

components 

 

Best Weight [kg] 20921.38 15827.2 

Worst Weight [kg] 24225.74 15906.11 

Mean [kg] 22193.87 15865.16 

Standard deviation [kg] 1598.03 34.47 

 

Furthermore, Figure 100 depicts the convergence histories for Bayesian Optimization with 11 and 

14 PCA components, compared against the best solution obtained without PCA (red dashed line). 

The optimization with 11 components stagnates around 22,000 kg on average, which is 

substantially higher than the benchmark solution. On the other hand, the 14-component 

configuration performs markedly better, steadily reducing the structural weight to an average of 

15,865.16 kg, closely approaching the non-PCA best solution. 

 

Figure 100: Bayesian optimization progress with PCA for 99 gridshell. Median objective function values 

and corresponding 95% confidence interval for the different number of principal components. 
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Finally, the convergence time comparison (Figure 101) provides further insight into the trade-off 

between accuracy and efficiency. The 11-component PCA run converged in approximately 130 

minutes, while the 14-component run required around 150 minutes. The non-PCA case took 200 

minutes on average. This pattern is consistent with the earlier 44 gridshell study, where PCA 

reduced computational cost but at the expense of solution quality. 

 

 

Figure 101: Average convergence time and 95% confidence interval comparison between the runs with 

PCA and without PCA for the 99 gridshell. 

The results highlight the trade-off between computational efficiency and accuracy. When fewer 

components are retained (11 PCA), the optimization achieves faster convergence. However, this 

comes at the cost of significantly reduced solution quality. Increasing the number of components 

to 14 improves accuracy while still offering moderate computational savings compared to the full 

design space. By contrast, conducting the optimization without PCA yields the highest-quality 

solutions, albeit at the expense of the greatest computational cost. 
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6. Bayesian Optimization Tool 

The basic version of the “BO Tool – Cross-

section Optimizer” shown in Figure 102 is 

designed to help structural engineers automate 

the selection of optimal cross-sections for 

members in a structure, using the constrained 

BO algorithm discussed in subchapter 4.1. Its 

interface is structured in a way that allows 

engineers to input key project information and 

optimization parameters without needing to 

handle the algorithmic details directly in the 

Python code. 

The workflow begins with specifying the 

“RFEM6 Model Name”, where the user 

enters the name of the structural model to be 

optimized. Next, under “Optimization 

parameters”, the user defines the 

computational budget and tuning criteria. The 

Evaluation budget sets the maximum number 

of structural analyses the tool will perform. 

The ξ max and ξ min parameters define the range 

of acquisition function exploration values as 

defined in subchapter 3.4 and have default 

values of -0.01 and -1, while the Improvement 

Threshold sets the minimum improvement 

required to continue the optimization. The 

Patience value indicates how many iterations 

the tool will continue if no improvement is 

found, and Number of initial samples 

determines how many starting cross-section 

configurations are tested before the Bayesian 

Optimization loop begins. 

The section “Problem size bounds” allows 

engineer to describe the structural system 

being optimized. Here, the number of 

members and the available cross-sections must 

be entered, along with upper and lower bounds 

for the cross-sectional area. These inputs 

ensure that the optimizer only searches within 

feasible engineering limits. In a future version 

of the tool these bounds can be extended to be 

per element, instead of being the same for all 

elements as it is currently. 

Figure 102: User interface of the BO Tool for cross-

section optimisation. 
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For record-keeping, the “Logging” section specifies where the results are stored, with a default 

filename provided. Engineers can browse to select a different directory if needed. Once all 

parameters are set, clicking “Optimize cross-sections” starts the optimization process. The “Run 

output” panel then displays the progress of the optimization in real time, showing the tail of the 

log as the tool iteratively searches for improved solutions. 

Finally, the “Results” box summarizes the outcome of the optimization by reporting the best-

performing cross-sections (for the first nnn members) and the corresponding optimized structural 

weight. In this way, the tool translates the complex Bayesian Optimization procedure into a user-

friendly interface, making it accessible for structural engineers who wish to efficiently minimize 

weight while satisfying design requirements. 

The BO tool’s user interface could be enhanced in future versions, and its functionality extended 

by incorporating parametric cross-sections of various types, such as HEA, IPE, and others.  



95 

 

7. Discussion  

7.1. 1D optimization case: Cantilever Beam with size variables 
Proof-of-concept integration of Python implementation of constrained BO with RFEM6 

The successful implementation of this case study provides a proof-of-concept that the Python script 

of the Bayesian optimization can be integrated within industry-standard software packages such 

as RFEM6. 

Disadvantages of using diverse cross-sections  

A database of 516 diverse standardized cross-sections is used in the analysis of this problem, and 

the results show that the BO framework is able to reach close to optimal results within reasonable 

time. However, this diversity introduces a high degree of irregular (non-smooth) behaviour to the 

Gaussian processes used to model them as evidenced by Figure 106 - Figure 124 in Appendix A. 

As a result, for the following case studies only a single type of cross-section is used in the analysis, 

namely circular hollow sections (CHS) or rectangular hollow sections (RHS).  

7.2. 2D optimization case: Cantilever Truss with shape and size variables 
Advantages of using structural knowledge when shape optimization is considered 

Unlike random search strategies, which rely solely on stochastic sampling, constrained BO 

benefits significantly from incorporating structural knowledge to guide the search process more 

effectively in tasks where shape (layout) of the structure is part of the optimization. For instance, 

to create the initial samples, the z-coordinates in the examples analysed in subchapter 5.2 are 

sampled in increasing order so that the resulting truss geometries are similar to a cantilever’s 

moment diagram, with the truss height growing larger toward the supports. Therefore, 

incorporating domain-specific knowledge, such as the expected optimal shape of a cantilever truss, 

into the initial samples, the surrogate model’s ability to recognize promising regions of the design 

space at an early stage of the optimization process is enhanced.  

Advantages of using Gaussian processes per element  

The results indicate that utilizing 18 GPs to model the constraint function for each steel element 

consistently produced better and more reliable outcomes compared to the approach with 4 GPs. 

The former is more effective in navigating the design space and managing constraint satisfaction 

per member, leading to improved performance across optimization runs.  

Disadvantages of using standardized (discrete) cross-sections  

It is important to note that the use of a standardized dataset of cross-sections presents several 

disadvantages in the context of constrained BO. The adoption of discrete area values, as dictated 

by the available cross-section database mentioned in the cantilever beam and truss case studies 

(described in subchapter 5.1 and 5.2, respectively) introduces discontinuities into the design space. 

This lack of smoothness can affect the accuracy of the Gaussian process surrogate model, which 

relies on the assumption of continuous objective and constraint functions.  
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As a result, the surrogate’s predictions might produce results with higher variability due to the 

rounding of the cross-sectional area during the optimization process.  

 

The need to map continuous algorithmic suggestions to the nearest available discrete value may 

introduce additional bias in a given design region, especially if the cross-section database is 

sparse. Therefore, the use of as many available profiles from the same type of cross-section (e.g. 

CHS, RHS) is recommended to approximate a continuous distribution of the area and avoid the 

disadvantages of diverse cross-sections mentioned before.  

Advantages of using parametric (continuous) cross-sections  

Employing parametric cross-sections in RFEM6 with dynamically adjustable areas solves the 

previous issue as it allows the continuous nature of the Gaussian processes to be more accurately 

represented. 

7.3. 3D optimization case: 4x4 gridshell with size variables 
Dimensionality sensitivity analysis 

In this case study different dimensionalities of the optimization problem are analysed such as 1D, 

17D, 18D and 28D. The findings presented in subchapter 5.3 indicate that the BO framework 

continues to reduce the structural weight up to 18D, which aligns with the empirically established 

limit of approximately 20 dimensions as generally reported in literature (e.g. Moriconi et al., 2020). 

Number of initial samples sensitivity analysis 

Constrained BO achieves much lower average weight of 830.16kg with 170 initial samples and 

860.57kg with 17 initial samples. Notably, increasing the number of initial samples accelerates 

convergence, as reflected by the faster decline in structural weight during the early iterations. 

While both BO settings eventually stabilize around a similar weight range, the configuration with 

more initial samples demonstrates slightly better performance and reduced variance. This 

highlights the effectiveness of incorporating a larger initial design in guiding the surrogate model, 

thereby enabling the algorithm to explore the design space more efficiently and converge more 

reliably to near-optimal solutions. 

Effect of Dimensionality Reduction via PCA 

In addition to exploring dimensionality, Principal Component Analysis (PCA) is investigated as a 

dimensionality reduction technique to improve the scalability of the BO framework. The solution 

found for the best final design in the original 17D input space suggests that a pattern of similar 

cross-sections exists for groups of the structural elements. More details are given in subchapter 

5.3. 

Therefore, PCA is applied to decrease the complexity of the problem from the original 17D input 

space to a lower complexity namely to a 6D and 10D latent space. This is due to the fact that the 

cumulative explained variance analysis reveals that the first six principal components captured 

approximately 95% of the data variance, while ten components are sufficient to capture nearly 

100%.  
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Based on the findings in subchapter 5.3 & 5.4 the trade-off between efficiency and solution 

quality is highlighted: 

• Fewer PCA components improve computational speed but degrade optimization 

accuracy. 

• More PCA components retain variance and yield closer-to-optimal results but reduce the 

computational advantage. 

• Without PCA, optimization achieves the best weight but requires more computational 

effort. 

The use of the BO framework in the original input feature space is recommended when the 

underlying pattern of the structure is not well known as suggested also in the paper by Eriksson & 

Jankowiak (2021).  

Moreover, the inherent linearity of PCA may be limiting its effectiveness in supporting the 

optimization process. Therefore, variational autoencoders can be used as a more advanced method. 

This model allows mappings to and from the latent space to be arbitrarily non-linear (Bishop, 

2006).  

7.4. 3D optimization case: 9x9 gridshell with size variables 
Scalability of the constrained BO algorithm 

One of the key distinctions from the previous gridshell is that steel elements are grouped according 

to two lines of symmetry, with a single cross-section assigned to each group rather than to 

individual members. This approach brings the optimization problem closer to practical engineering 

applications where adjacent elements in an arch share the same cross-section. Also, it reduces the 

dimensionality from 288D to 17D which is within the ~20D limit for BO. This demonstrates, that 

by grouping the elements based on their structural function can help in the optimization process.  

Overall, the 9×9 gridshell study extends the earlier findings by demonstrating that Bayesian 

Optimization can handle much larger structural systems, though with increased computational 

demands. PCA can offer a practical tool for reducing runtime in such cases, but the dimensionality 

threshold must be chosen carefully to avoid discarding key structural variance. 
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8. Conclusion 
In this chapter the main conclusions are presented. This is done by answering the sub-questions 

outlined in Chapter 1.4 which help answer the main research question mentioned below: 

“To what extent can Bayesian optimization be applied to efficiently optimize the shape and 

cross-sections of structures in terms of minimizing structural weight, while ensuring structural 

integrity and integration with industry-standard tools like RFEM6?” 

RQ1: How can Bayesian optimization be used in the weight optimization of 

macrostructures? 

Based on the analysed cases in Chapter 5, the constrained Bayesian optimization framework 

applied in this research is found to be performing well for weight minimization of macrostructures 

under structural constraints. The total structural weight is treated as the objective function while 

the structural performance requirements for strength and stability serve as the constraints. The 

algorithm uses a probabilistic surrogate, namely a Gaussian process to predict both expected 

improvement of the objective function and the feasibility probability of the sampled point 

producing designs that have unity checks below the threshold values of the constraints. As a result, 

this combination enables a sample-efficient search of the design space.  

In order to identify the next most likely point the maximization of an acquisition function is a 

critical step in the framework. Empirically it has been found that the constrained Expected 

Improvement (cEI) acquisition function offers a balanced exploration–exploitation trade-off by 

prioritizing candidate designs that promise weight reduction while maintaining a high predicted 

probability of meeting all structural constraints as described in Chapter 4.  

To start the optimization loop, initial training samples have to be generated using a space-filling 

sampling strategy such as the Latin Hypercube Sampling explained in Chapter 3.6. The number of 

initial samples can have an effect on the variance of the outcomes as was found during the analysis 

of the high-dimensional gridshell cases. Larger number of initial samples, e.g. 10 points per input 

dimension, reduces the variance of the results but increases the computational time because more 

FE evaluations are necessary by default when compared to only 1 point per input dimension.  

The relevant hyperparameters of the model are the length scale values for the weight and constraint 

kernels and the exploration-exploitation trade-off parameter ξ which is part of the acquisition 

function. The former is re-calculated every 5th iteration by maximizing the log marginal likelihood 

of the data using the maximum likelihood estimation (MLE) approach as explained in subchapter 

3.5. This frequency has been determined empirically by varying the frequency of the 

hyperparameter optimization. Notably, performing this operation every iteration sometimes 

yielded worse results because it caused the model to overfit the data. The computational cost also 

increases with the frequency of hyperparameter tuning. Similar findings have been reported by 

(Shende et al., 2021). The range of optimal values for the second hyperparameter ξ used in the 

adaptive linear function explained in subchapter 3.4 has been found to be between ξmin = 0.01 and 

ξmax = 1 but with a negative sign since the objective is the minimization of the total structural 

weight.  
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Regarding the stopping criteria, usually in applications of the Bayesian optimization framework 

there is a given evaluation budget that limits the number of experiments the practitioners or 

scientists can make. Since in this thesis the framework is used for the optimization of 

macrostructures there is no such requirement. The heuristic used to determine when the algorithm 

should stop is defined by a “patience” and an “improvement threshold” variables. The first one 

determines how many iterations the algorithm is allowed to continue without seeing any significant 

improvement of the weight of the structure. This value is set empirically to 30 iterations to allow 

for more exploration of the design space before stopping the algorithm while keeping the 

computational time within a reasonable limit. The improvement threshold is set empirically to a 

small value of 0.001, which ensures that any promising regions of the design space are not skipped 

by the algorithm but can be explored further before returning the previous design region. Both 

values can be adjusted by the user depending on the available time for the optimization task. Some 

general conclusion points that apply to all of the analysed cases with the standard constrained BO 

(subchapter 4.1) are discussed below.  

First, all runs converged to constraint-satisfying designs, confirming the reliability of the BO setup. 

An intermediate kernel dimensionality (e.g. 17D) yields clearly better solutions and stability (i.e. 

lower variance of results) than both an overly compressed (e.g. 1D)  and the full-dimensional 

kernel (e.g. 28D for the 4x4 gridshell). 

Second, a larger number of initial designs improves convergence quality and narrows variability 

compared with a small initial set and with random search. This is in contrast to the findings of 

Shende et al. (2021) who state that a larger initial training set does not seem to guarantee a better 

solution or faster convergence. Therefore, the sensitivity of BO to the number of initial samples 

can be considered as problem-specific and has to be checked depending on the data. 

Third, evaluation cost rises with kernel dimensionality while the quality of the final designs 

improves.  

When compared with literature case studies as done in subchapter 5.2, the Bayesian optimization 

framework delivers near-optimal results at dramatically lower FEM evaluation cost. For the 

cantilever truss case the convergence rate is 18 times faster than the reference solution found in 

literature with only a 0.5% increase in the total weight of the structure.  

All of the case studies analysed in the thesis demonstrate the broad applicability of the proposed 

method for structures with 1D, 2D and 3D geometry and its potential to solve complex design 

problems. The achieved results via the constrained BO algorithm for the 4x4 gridshell show a 

1.67× lighter structure than the reference design and  2.54 × lighter structure than the reference design 

for the 9x9 gridshell. 

Furthermore, a specific dimensionality reduction technique has been explored for the input feature 

space to determine their effectiveness in terms of computational time and obtained results. As 

discussed in subchapter 3.8 the linear deterministic Principle Component Analysis (PCA) has been 

used. It proves effective in reducing dimensionality for the 4x4 gridshell and the 9x9 gridshell 

cases analysed in subchapter 5.3 and subchapter 5.4, though its benefits depend strongly on the 
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number of components retained. A small number of components leads to faster runtimes but may 

introduce randomness and compromise both accuracy and consistency, particularly if the structural 

patterns underlying the cross-section distribution are not very clear. Retaining more components 

improves solution quality and stability but increases computational cost. Nevertheless, PCA still 

converges faster compared to working in the full design space, albeit at the expense of obtaining 

heavier designs. Therefore, it can be considered as an optional approach compared to the standard 

constrained BO.  

In addition, one limitation of the present thesis must be acknowledged. The constrained BO has 

been evaluated only under a single load case/combination for all of the analysed case studies. In 

practical structural engineering applications, members are typically subjected to a variety of load 

combinations representing different design situations and service conditions. The extension of the 

current approach to handle multiple or combined load combinations remains to be investigated, 

and its effectiveness in such scenarios is yet to be validated. 

In conclusion, the Bayesian optimization framework holds a large potential in the optimization of 

macrostructures designed with materials different from steel such as wood, concrete, glass etc. To 

achieve this all of the design checks that serve as the constraints for the strength and stability have 

to be adapted to the country specific code requirements for the given material. In addition, the 

library of cross-sections can be expanded to include open parametric profiles such as HEA, HEB, 

IPE etc. Furthermore, in the present thesis the global stability has been excluded from the 

constraints of the design due to implementation challenges, but in a future version of the BO 

framework it can be included as a separate Gaussian process that models this global constraint. 

Also, it is concluded that the effectiveness of the algorithm is dependent only on the distribution 

of the internal forces and the type of finite element used. Therefore, from a theoretical point of 

view, the proposed framework can be applied to any structure independent of the boundary 

conditions as long as the internal forces and the design checks can be calculated accurately by the 

FEM package. Further research is needed to evaluate the performance of the Bayesian optimization 

on various structural typologies such as moment frames and even bridges. 

In addition, the analysed cases can serve as a benchmark for researchers to compare different 

optimization approaches.  

RQ2: How can a gridshell be modelled in RFEM6 and what is the obtained structural 

behaviour?   

The geometry of the two gridshells is generated by employing form-finding methods that align the 

structural shape with the expected load-bearing behaviour. The Kangaroo2 plugin for Grasshopper 

is used, which implements one of the most popular form-finding techniques based on the dynamic 

relaxation principle. This approach iteratively adjusts the geometry by simulating the equilibrium 

of forces within the system, allowing the structure to naturally settle into a form that efficiently 

carries the applied loads through membrane actions. 

The structural model in RFEM6 is developed using beam elements, which provide a good 

representation of the gridshell’s members while capturing their axial, bending, and shear behaviour 

as explained in subchapter 4.3. The governing load combination considered in the analysis of the 
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larger 99 gridshell is defined in reference to the C30 gridshell project described briefly in 

subchapter 5.4.1. This example served as a guideline to establish realistic loading scenarios, 

ensuring that the model reflects comparable structural demands and environmental influences. The 

boundary conditions of the model are likewise derived from the C30 gridshell, allowing the 

numerical representation to reproduce the support conditions observed in practice. By adopting 

these boundary conditions, the FEM analysis ensures consistency with a realistic case study. 

Furthermore, rectangular hollow sections (RHS) are selected as the cross-sections for the analysis. 

These closed profiles are chosen due to their lower susceptibility to lateral torsional buckling when 

compared to open cross-sections and their suitability for gridshell applications as evidenced in the 

C30 case study. 

Finally, the strength and stability checks are calculated in RFEM6 and used in the Bayesian 

optimization algorithm according to the EN 19931-1-1 recommendations as described in Chapter 

4.3.2 & 4.3.3 which ensures the structural feasibility of the gridshells and their compliance with 

the design codes.  
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9. Recommendations for future research  
Given the efficiency of the Bayesian optimization framework for optimizing the design of 

macrostructures, some directions for future research are provided in this chapter. They focus on 

two goals: (i) scalability and computational acceleration of the BO framework in higher 

dimensional feature space and (ii) extending the framework from single-objective optimization to 

multi-objective optimization. Throughout the thesis, various recommendations for future research 

are also suggested. 

Scalability and computational acceleration of the BO framework in higher dimensional 

feature space 

For high-dimensional settings, scalability can be improved by methods that reduce the effective 

search space while preserving expressiveness. Sparse Axis-Aligned Subspace BO (SAASBO) can 

be adopted to infer sparse relevance patterns and prevent overfitting from fully-ARD kernels as 

discussed by (Eriksson & Jankowiak, 2021). They have used it for the hyperparameter tuning of a 

support vector machine (SVM) using the Matern kernel with 3 regularization parameters and  385 

length scales making the dimensionality D = 388. Similarly, the authors have benchmarked the 

approach against other BO variants that rely on low dimensional embedding of the high 

dimensional feature space such as REMBO and HeSBO on a real-world vehicle design problem 

in a crash test simulation called MOPTA08 shown in Figure 104 for weight optimization (pSeven, 

2018). The problem consists of 124 design variables normalized to [0,1] and 68 performance 

constraints. They report that SAASBO converges faster to a close value to the known optimum for 

both problems as shown by the blue line in Figure 103. 

 

Figure 103: SAASBO performance compared to other Bayesian optimization variants. (Source: Eriksson 

& Jankowiak, 2021) 
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Figure 104: MOPTA08 vehicle design problem. (Source: pSeven, 2018) 

Another direction for further investigation is the application of the Blackbox Matrix-Matrix 

Inference introduced by Gardner et al., 2018. The authors claim that their method reduces the 

computational complexity from O(N3) to O(N2) which can reduce the execution time significantly. 

They do this by calculating the marginal log likelihood mentioned in subchapter 3.5 in a stochastic 

manner instead of performing an exact calculation. By using the developed GPyTorch package 

and coupled with GPU acceleration, the authors claim it can scale the GP inference to thousands 

of data points and in the documentation of the package even millions of data points is mentioned.    

A final third recommendation is the use of trust regions (i.e. TuRBO) in the design space as 

proposed by Eriksson et al., 2019. Instead of relying on a single global GP model, TuRBO employs 

multiple local probabilistic models that focus search within trust regions of the objective function 

design space. These local searches can quickly uncover high-quality solutions, while a global 

sampling strategy decides how to distribute samples among the regions, ensuring an effective 

balance between exploration and exploitation. 

Multi-objective Bayesian optimization 

To further extend this research a modular Bayesian optimization (BO) framework can be 

developed. The different “modules” could focus on optimizing an objective function that is 

selected by the user. A few example functions are listed below: 

• Minimizing the weight of the structure based on the ULS combinations which is already 

demonstrated in this thesis.  

• Minimizing the total deflection of the structure based on the SLS combinations. 

• Minimizing the CO2 emissions of the structure. 

• Minimizing the construction cost of the structure by including the design of the connections. 

• Minimizing/Maximizing a particular geometry parameter such as height or width of a truss.  

The corresponding adaptations of the BO framework can be either single-objective or multi-

objective optimization routines by combining multiple of the above-mentioned functions. In the 

latter case, there is no single solution that represents the best design, but the result is a list of 

options to be considered and the trade-offs to be evaluated by the engineer. This is the so-called 

Pareto front shown in Figure 105.  
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Figure 105: Pareto front between objective 1 and objective 2. (Source:Rahman & Szabó, 2021) 

In the context of the BO framework the multi-objective optimization can be achieved by multi-

task GPs with multiple outputs or a combination of single-task GPs. This setup enables the 

Expected Hypervolume Improvement (EHVI) acquisition function which is the multi-objective 

analogue of Expected Improvement (Coelho, 2025).  

An example of such trade-offs can happen when the CO2 emissions of the building have to be 

minimized alongside the cost of construction. The main structural elements can be designed with 

less material if moment resistant connections are included in the design instead of the simpler pin 

connections. However, these are often more expensive to both design and produce leading to 

increased construction costs. Another example is when the weight of the structure is optimized 

with different profiles for the members as is done in Chapter 5 but often this increases the material 

costs because ordering many custom profiles is usually more expensive than ordering single 

profiles in bulk quantities.  

Therefore, a balance must be found by the structural engineer and the purpose of the BO 

optimization tool is to facilitate this decision-making process.    
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Appendix A: Literature review of optimization algorithms 
Table 14: Papers on metaheuristic optimization algorithms used for structural optimization problems. 

Paper Central Theme Main concept Theories & Methods Results Most important insight Pros Cons  

(Wei et al. , 
2011) 

Truss 
optimization on 
shape and sizing 
with frequency  
constraints 
based on parallel 
genetic 
algorithm 

The paper addresses 
the challenges in 
truss shape and 
sizing optimization 
under frequency 
constraints, which 
can lead to 
convergence issues 
and complex 
sensitivity analyses. 
It proposes a Niche 
Hybrid Parallel 
Genetic Algorithm 
(NHPGA) as an 
effective solution to 
these problems. 

The NHPGA combines the 
strengths of parallel 
computing, simplex 
search, and genetic 
algorithms with niche 
techniques to improve 
computational efficiency 
and solution quality. 
Unlike traditional 
methods, this approach 
uses global probabilistic 
population search and 
avoids reliance on 
gradient information. 

The NHPGA significantly 
reduces computational 
time and enhances the 
quality of solutions in truss 
optimization examples. It 
demonstrates the potential 
to effectively integrate 
genetic algorithm 
capabilities, simplex 
search exploitation, and 
the computational 
speedup offered by parallel 
computing. 

The algorithm's flexibility and 
adaptability allow it to address 
various structural optimization 
challenges with minimal prior 
knowledge, making it a 
promising architecture for 
high-performance parallel 
genetic algorithms. 

During the exploration, 
simplex synchronous 
searches first are applied 
to the potential niches. 
Then another sim- 
plex search is performed 
asynchronously for quickly 
discovering the global 
optimum in the located 
promising zones. The 
NHPGA performs the 
computationally expensive 
operation steps in parallel 
which reduces the total 
computational time of the 
method. 

The master process and 
slave processes in NHPGA 
need to wait each other in 
synchronous parallel stage, 
and this will have impact 
on the efficiency of 
NHPGA. Asynchronous 
parallel genetic algorithm 
development is needed to 
avoid the waiting process. 
The fitness function 
evaluation involved finite-
element analysis usually 
consumes more than 95% 
of total computational 
time. Better constraints 
handling methods are 
needed.  

(Tang et al., 

2005) 
Improved 

genetic algorithm 
for design 
optimization of 

truss 
structures with 
sizing, shape 

and topology 
variables 

The paper 

introduces an 
enhanced genetic 
algorithm (GA) 

designed to 
minimize the weight 
of truss structures by 

optimizing sizing, 
shape, and topology 
variables, utilizing a 

combination of 
discrete and 
continuous 

variables. 

The algorithm employs 

mixed coding schemes 
such as binary with float 
and integer with float 

coding. A surrogate 
function is used to 
consolidate constraints 

into a single form, and 
surrogate reproduction is 
utilized to select 

candidates for the mating 
pool based on constraint 
satisfaction and fitness. A 

novel strategy a 
competition between 
parent and offspring 

populations, based on 
their constraint adherence 
and fitness, enhancing 

gene longevity.  

Through various examples, 

the improved GA 
demonstrates feasible and 
effective results, showing 

significant advancements 
in numerical outcomes. 

This paper introduces a novel 

approach for generating the 
next population by having 
parent and offspring 

populations compete based on 
their constraint adherence and 
fitness values, thereby 

extending the lifespan of 
superior genes. 

Integer and mixed coding 

is used to represent the 
different variable types for 
topology, size and shape 

optimization. A surrogate 
function is applied to 
impose a penalty on all 

constraints. A surrogate 
reproduction, which 
considers both fitness 

value and degree of 
constraint violation, keeps 
the potential gene and 

keeps selective pressure.  

Large scale problems 

should be analyzed to 
evaluate the performance 
of the algorithm for higher 

dimensions.  
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Paper Central Theme Main concept Theories & Methods Results Most important insight Pros Cons  

(Rajasekaran, 
2001) 

Optimization of 
Large Scale  
Three 

Dimensional 
Reticulated  
Structures Using 

Cellular  
Genetics and 
Neural Networks 

The paper 
introduces the 
Cellular Genetic 

Algorithm (CGA), a 
novel optimization 
method combining 

Cellular Automata 
(CA) and Genetic 
Algorithm (GA) for 

optimizing large 
space structures by 
treating member 

areas as discrete 
variables. 

The CGA utilizes a 

structural analysis 
package (such as FEAST, 
ANSYS, or SAP) or neural 

networks to define 
objective functions for CA 
cells. Neural networks are 

trained with data from 
these packages to 
expedite the typically 

time-consuming analysis. 
A multilevel optimization 
strategy is applied to 

progressively narrow the 
search space for design 
variables. 

Numerical tests reveal the 
computational efficiency of 
the CGA, especially when 

combined with neural 
networks, making it 
particularly effective for 

large-scale optimization 
challenges. The study also 
examines the non-linear 

load deflection 
characteristics of optimized 
structures, highlighting the 

method's practical 
advantages. 

Multilevel optimization 
approach is implemented by 
reducing the size of the  

search space for individual 
design variables in each 
successive level of  

optimization process including 
the non-linear load deflection 
behaviour. 

It effectively manages 
discrete variables, which is 

crucial for optimizing the 
areas of members in space 
structures. Efficient with 

large scale problems.  

The integration of Cellular 
Automata, Genetic 
Algorithms, and neural 

networks may complicate 
the implementation and 
require careful tuning and 

understanding. Initial data 
training data is required for 
the neural networks. 

(Gholizadeh, 
2013) 

Layout 
optimization of 
truss structures 

by hybridizing 
cellular automata  
and particle 

swarm 
optimization 

The paper 
introduces an 
efficient hybrid 

optimization 
algorithm called 
Sequential Cellular 

Particle Swarm 
Optimization 
(SCPSO) for the 

layout optimization 
of truss structures. 
The algorithm 

combines the 
strengths of cellular 
automata (CA) and 

particle swarm 
optimization (PSO) 
to enhance 

performance. 

SCPSO integrates a CA-

based mechanism into the 
PSO framework by using 
it for velocity updating of 

the particles. This 
integration occurs within 
the context of sequential 

unconstrained 
minimization techniques. 
The hybrid approach 

leverages the collective 
computation strengths of 
CA and the global search 

capabilities of PSO to 
optimize truss layouts 
more effectively. 

The numerical results 
show that SCPSO 
achieves superior solutions 

and faster convergence 
rates compared to other 
optimization algorithms. 

This demonstrates the 
effectiveness of the hybrid 
approach in improving both 

the solution quality and 
computational efficiency for 
truss structure 

optimization. 

The proposed Sequential 
Cellular Particle Swarm 
Optimization (SCPSO) 

algorithm effectively balances 
exploration and exploitation 
through its novel CA-based 

PSO scheme and sequential 
framework. 

In order to evaluate the 
efficiency of the SCPSO 

algorithm, 4 
classical layout 
optimization problems of 

truss structures are  
solved. SCPSO is a 
powerful optimization 

algorithm with high global 
search ability  
at low computational cost 

and fast convergence rate. 

The paper used the 

exterior penalty function 
method (EPFM) for 
handling design constraints 

which can be 
computationally slow. The 
areas of the structural 

elements are optimized 
based on a selected 
discrete set. 
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Paper Central Theme Main concept Theories & Methods Results Most important 
insight 

Pros Cons  

(Gholizadeh, 2013) Layout optimization of 

truss structures by 

hybridizing cellular 

automata  

and particle swarm 

optimization 

The paper introduces an 

efficient hybrid 

optimization algorithm 

called Sequential 

Cellular Particle Swarm 

Optimization (SCPSO) 

for the layout 

optimization of truss 

structures. The algorithm 

combines the strengths 

of cellular automata 

(CA) and particle swarm 

optimization (PSO) to 

enhance performance. 

SCPSO integrates a CA-

based mechanism into the 

PSO framework by using 

it for velocity updating of 

the particles. This 

integration occurs within 

the context of sequential 

unconstrained 

minimization techniques. 

The hybrid approach 

leverages the collective 

computation strengths of 

CA and the global search 

capabilities of PSO to 

optimize truss layouts 

more effectively. 

The numerical results 

show that SCPSO 

achieves superior 

solutions and faster 

convergence rates 

compared to other 

optimization algorithms. 

This demonstrates the 

effectiveness of the hybrid 

approach in improving 

both the solution quality 

and computational 

efficiency for truss 

structure optimization. 

The proposed Sequential 

Cellular Particle Swarm 

Optimization (SCPSO) 

algorithm effectively 

balances exploration and 

exploitation through its 

novel CA-based PSO 

scheme and sequential 

framework. 

In order to evaluate the 

efficiency of the SCPSO 

algorithm, 4 

classical layout 

optimization problems of 

truss structures are  

solved. SCPSO is a 

powerful optimization 

algorithm with high global 

search ability  

at low computational cost 

and fast convergence rate. 

The paper used the exterior 

penalty function method 

(EPFM) for handling design 

constraints which can be 

computationally slow. The 

areas of the structural 

elements are optimized 

based on a selected discrete 

set. 

(Mortavazi et al., 
2016) 

Simultaneous size, 

shape, and topology 
optimization of truss  
structures using 
integrated particle 

swarm optimizer 

The study focuses on 
minimizing the weight 

of truss structures by 
simultaneously 
optimizing their shape, 

size, and topology. To 
achieve this, an 
algorithm called the 

integrated particle 
swarm optimizer 
(iPSO) is introduced 

as an effective 
optimization tool. 

The iPSO method 
enhances the standard 

particle swarm 
optimizer (PSO) by 
incorporating the 

concept of 'weighted 
particles' to boost 
performance. 

Additionally, an 
'improved fly-back' 
technique is used to 

effectively manage 
problem constraints. 
These innovations aim 

to streamline the 
optimization process 
while maintaining 

efficiency and 
effectiveness. 

The iPSO methodology 
was tested on various 
benchmark problems 

and demonstrated 
competitive results 
when compared to 

existing techniques for 
truss structure 
optimization. Its 

formulation is noted for 
its simplicity, making it 
an appealing option due 

to its effective 
performance and ease 
of implementation. 

The most important 
insight from this 
investigation is that 

the integrated Particle 
Swarm Optimizer 
(iPSO) is an effective 

and versatile algorithm 
for optimizing truss 
structures, capable of 
handling discrete, 

continuous, and 
combined search 
spaces, as well as 

multiple load 
conditions and design 
constraints. 

Simplicity of the method, 

because it builds upon 
the standard PSO, 
weighted particle and 
improved fly-back 

technique. 

Genetic Algorithms 
converge faster for certain 
benchmark problems. 
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Paper Central Theme Main concept Theories & Methods Results Most important 
insight 

Pros Cons  

(Gomes, 2011) 

Truss optimization with 
dynamic constraints 

using a particle swarm 
algorithm 

The paper explores 
the use of Particle 

Swarm Optimization 
(PSO) for optimizing 
the mass of structural 

trusses in terms of 
size and shape, while 
considering frequency 

constraints. Due to the 
inherent non-linear 
and dynamic nature of 

these optimization 
problems, the study 
focuses on the PSO 

algorithm as a suitable 
approach. 

The PSO algorithm is 
chosen for its proven 

effectiveness as a 
global optimizer in 
various fields and its 

capability to handle 
non-linear problems 
without relying on 

gradient-based 
methods. The paper 
briefly reviews the key 

features of PSO that 
make it suitable for 
addressing such 

optimization 
challenges. 

Through four 
benchmark examples of 

truss optimization with 
shape and size 
frequency constraints, it 

was demonstrated that 
the PSO algorithm 
performed comparably 

to other methods, and 
in certain cases, it 
outperformed them. 

These results highlight 
the potential of PSO in 
effectively solving 

complex structural 
optimization problems. 

The algorithm does 
not require the 

gradients of the 
objective function, but 
only the objective 

function itself which 
enables the method to 
deal with symmetrical 

trusses without any 
modifications.  

The algorithm used in 

the paper has lower 
number of parameters 
necessary and is able to 

optimize in the 
continuous design space 
of the variables. It works 

with population and 
random parameters that 
balance between 

exploration and 
exploitation to escape 
local minima/maxima in 

the optimization process.  

The constraints were 
implemented with penalty 

functions. 

(Luh & Lin, 2011) 
Optimal design of truss-
structures using particle 

swarm optimization 

The study applies a 
two-stage Particle 
Swarm Optimization 

(PSO) approach to 
optimize truss 
structures with the aim 

of minimizing weight 
while considering 
constraints like stress, 

deflection, and 
kinematic stability. 

Initially, the truss 

topology is optimized 
using a modified Binary 
Particle Swarm 

Optimization (BPSO). 
Following this, the size 
and shape of the truss 

members are further 
refined using the 
Attractive and 

Repulsive Particle 
Swarm Optimization 
(ARPSO) technique. 

The methodology was 
tested on a two-tier, 39-
member, 12-node 

ground structure and 
demonstrated the 
capability to identify 

truss structures that are 
more optimal than those 
previously documented 

in the literature. 

Two-stage PSO based 

optimization scheme 
for 
truss-structure is 

developed. Better 
truss structures are 
found in less 

calculation time 
compared to one-
stage genetic 

algorithm and two-
stage ant algorithms. 

Introduces more 
diversity in the optimized 
shapes due the first 

BPSO algorithm that 
optimized the topology 
of the algorithm. 

Symmetry about the 
central vertical axis is 
employed to reduce the 

number of variables.  

Relatively large number of 
calculations depending on 

the case (ca. 260000).  
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Paper Central Theme Main concept Theories & Methods Results Most important 
insight 

Pros Cons  

(Li et al., 2007) 

A heuristic particle 
swarm optimizer for 
optimization  
of pin connected 
structures 

The paper introduces 
a heuristic particle 
swarm optimizer 
(HPSO) designed to 
optimize the design of 
pin-connected 
structures by 
integrating elements 
of particle swarm 
optimization and 
harmony search. 

The HPSO algorithm 
incorporates the 
particle swarm 
optimizer with passive 
congregation (PSOPC) 
alongside a harmony 
search scheme. It 
employs a 'fly-back 
mechanism' to address 
problem-specific 
constraints and utilizes 
the harmony search for 
managing variable 
constraints. 

The effectiveness of the 
HPSO algorithm was 
validated against PSO 
and PSOPC algorithms 
across five planar and 
spatial truss design 
cases. The findings 
demonstrate that HPSO 
significantly improves 
convergence rates and 
achieves optimal 
designs more swiftly 
than the other 
algorithms. 

The HPSO algorithm 
manages variable 
constraints through a 
combination of the 
harmony search 
approach and the 'fly-
back mechanism' for 
addressing problem-
specific constraints. 
Unlike the PSO and 
PSOPC algorithms, 
HPSO ensures that 
particles remain within 
the variable 
boundaries, fully 
utilizing the particle's 
movement capabilities 
throughout the 
optimization process. 

HPSO algorithm 
converge more quickly 
than the PSO and the 
PSOPC algorithms. 

Convergence rate of the 
HPSO algorithm will slow 
down when the number of 
iterations increase.  

(Camp & Bichon, 
2004) 

Design of Space 
Trusses Using Ant 
Colony Optimization 

The paper introduces 
a design procedure 
using Ant Colony 
Optimization (ACO) for 
the discrete 
optimization of space 
trusses. The primary 
aim is to minimize the 
total weight (or cost) 
of the structure while 
adhering to material 
and performance 
constraints such as 
stress and deflection 
limits. 

The design translates 
the optimization of 
space trusses into a 
modified Traveling 
Salesman Problem 
(TSP), where the TSP 
network mirrors the 
structural topology, and 
the TSP tour length 
represents the 
structure's weight. The 
ACO algorithm is 
employed for this 
purpose, utilizing 
discrete variables, a 
flexible constraint 
format, and a penalty 
function to ensure 
constraints are met, 
accommodating 
multiple loading 
scenarios. 

The study compares the 
ACO-based truss design 
method with designs 
achieved through a 
genetic algorithm and 
classical continuous 
optimization 
techniques, illustrating 
the efficacy of the ACO 
procedure in optimizing 
truss structures under 
the specified 
constraints 

While both ACO and 
Genetic Algorithms 
(GAs) utilize a 
population of agents 
to represent solutions, 
ACO maintains 
information through 
artificial pheromone 
trails, capturing the 
memory of the entire 
colony over 
generations. In 
contrast, GAs focus on 
information from just 
the current generation. 
This allows ACO to 
develop solutions in 
each new search cycle 
using the accumulated 
collective information, 
providing an 
advantage over GAs. 

ACO for space trusses is 
less influenced by poor 
initial solutions 
compared to the genetic 
algorithms (GAs).ACO 
circumvents this issue 
by integrating 
information gathered by 
the colony with a 
nearest-neighbour 
heuristic, which 
prioritizes the shortest 
path or, in this case, the 
smallest cross-sectional 
area. The reliability of 
the method is good less 
than 1% on average for 
all examples. 

The algorithm focuses on 
optimization in the 
discrete design space 
instead of the continuous 
design space which might 
lead to suboptimal results 
depending on the selected 
discrete sets.  
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Pros Cons  

(Aydoğdu & Saka, 
2011) 

Ant colony optimization 
of irregular steel 
frames including 
elemental warping 
effect 

The paper addresses 
the significant impact 
of warping on the 
design of steel space 
frames with thin-
walled steel sections. 
It aims to optimize the 
design of these 
frames by considering 
warping effects 
according to the LRFD-
AISC guidelines. 

The study utilizes the 
Ant Colony 
Optimization (ACO) 
technique to solve the 
design problem, taking 
into account the 
provision for warping in 
the optimization 
process. 

Several space frame 
examples are optimized 
using the developed 
algorithm, effectively 
illustrating the influence 
of warping on achieving 
optimal designs. 

Warping causes a 
significant amount of 
increase in the 
minimum weight of 
the designs for 
symmetrical and 
unsymmetrical space 
frames alike.  

Sensitivity analysis is 
performed to select the 
appropriate values for 
the parameters of the 
ant colony optimization 
technique. 

The problem is solved in 
the discrete design space 
considering a list of 
predefined cross-
sections.  

(Degertekin, 2012) 

Improved harmony 
search algorithms for 
sizing optimization of 
truss structures 

The paper focuses on 
improving the 
Harmony Search (HS) 
algorithm, which is 
inspired by music 
improvisation, to 
enhance its 
application in the 
optimization of truss 
structures. The 
original HS is known 
for its sensitivity to 
tuning parameters, 
prompting the 
development of new 
variants to lessen this 
dependency. 

Two enhanced variants, 
Efficient Harmony 
Search (EHS) and Self-
Adaptive Harmony 
Search (SAHS), are 
introduced for the 
sizing optimization of 
truss structures. These 
algorithms aim to 
maintain robustness 
while mitigating the 
HS's reliance on 
parameter tuning. 

The performance of 
EHS and SAHS is 
evaluated through four 
classical truss structure 
weight minimization 
problems. The study 
compares their results 
with those of the 
standard HS and other 
recent meta-heuristic 
algorithms, 
demonstrating the 
robustness and 
improved efficiency of 
the proposed variants. 

Improved designs can 
be achieved by 
progressively 
decreasing the pitch 
adjustment parameter 
as the optimization 
process advances. 
Constraints have to be 
normalized. EHS and 
SAHS dynamically 
update their internal 
parameters during the 
search process. 

Both HS methods 
presented in this paper 
possess the inherent 
ability of converging to a 
nearly global  
optimum design due to 
low standard deviation 
for the optimized weight. 

Computational cost of 
EHS and SAHS in terms of 
structural analyses is 
significantly higher when 
compared to other meta-
heuristic algorithms. 

(Cheng et al., 2016) 

A Hybrid Harmony 
Search algorithm for 
discrete sizing 
optimization of  
truss structure 

The paper introduces 
a novel variant of the 
Harmony Search (HS) 
algorithm, called the 
Hybrid Harmony 
Search (HHS) 
algorithm, designed to 
improve optimization 
outcomes by 
integrating different 
search strategies. 

The HHS algorithm 
retains the Harmony 
Memory and pitch 
adjustment functions 
of the original HS 
algorithm but replaces 
its randomization 
function with Global-
best Particle Swarm 
Optimization (PSO) and 
neighbourhood search 
techniques. 

The performance of the 
HHS algorithm is 
evaluated on six 
discrete truss structure 
optimization problems 
across various loading 
conditions. The results 
indicate that the HHS 
algorithm excels in 
delivering optimal 
solutions. 

The HHS algorithm 
uses memory 
consideration and 
pitch adjustment to 
focus on global search 
in the  
early stage and Global-
best PSO search and 
neighbourhood search 
to focus on local 
search in the later 
stage. 

The HHS algorithm 
effectively achieves an 
ideal balance between 
exploration and 
exploitation while also 
reaching the optimal 
solution much more 
quickly than other 
methods tested. 

Analysis of HHS 
effectiveness in dealing 
with large-scale 
optimization problems in 
high-dimensional feature 
space is needed. 
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Pros Cons  

(Miguel & Miguel, 
2012) 
 

Shape and size 
optimization of truss 
structures considering 
dynamic  
constraints through 
modern metaheuristic 
algorithms 

The paper focuses on 
addressing the 
complex issue of 
mass optimization in 
truss structures, 
considering both 
shape and sizing 
under multiple natural 
frequency constraints, 
using novel 
metaheuristic 
algorithms. 

It leverages Harmony 
Search (HS) and Firefly 
Algorithm (FA), both of 
which are non-gradient-
based methods, to 
circumvent the 
challenges typically 
associated with 
dynamic sensitivity 
analysis and the 
convergence issues of 
traditional gradient-
based approaches. 

The application of these 
algorithms to four 
benchmark problems 
demonstrated that both 
HS and FA delivered 
superior results within a 
relatively short 
computational time in 
three cases and 
performed on par with 
the best solutions found 
in literature for the 
fourth case, highlighting 
their robust 
optimization 
capabilities. 

HS finds optimal 
solutions quicker, 
while FA tends to 
achieve slightly better 
solution quality, 
highlighting their 
respective strengths in 
solving complex, 
nonlinear optimization 
problems. 

HS and FA demonstrate 
superior or comparable 
results to existing 
methods, and they 
perform efficiently 
without the need for 
extensive parameter 
tuning. 

In 1 out of 4 cases the HS 
and FA reached a reached 
worse result that the ones 
available in literature.  

(Pham, 2016) 

Truss optimization with 
frequency constraints 
using enhanced  
differential evolution 
based on adaptive 
directional mutation 
and  
nearest neighbour 
comparison  

The article introduces 
a novel differential 
evolution algorithm, 
ANDE, designed to 
address the 
challenging problem 
of truss optimization 
with dynamic 
frequency constraints, 
specifically focusing 
on optimizing shape 
and size. 

ANDE incorporates 
three modifications to 
the conventional 
differential evolution 
approach: an adaptive 
p-best strategy for 
balancing global 
exploration and local 
exploitation, a 
directional mutation 
rule to enhance 
solution improvement 
chances, and a nearest 
neighbour comparison 
method for pre-
emptively skipping 
unlikely solutions. 
These modifications 
streamline the process 
without needing 
additional parameter 
adjustments. 

Testing ANDE on five 
benchmark examples 
demonstrates that the 
algorithm delivers good 
and stable results, 
maintaining compliance 
with frequency 
constraints. ANDE's 
optimal designs are 
generally comparable to 
or better than those 
achieved by other 
advanced 
metaheuristics, with the 
added advantage of 
requiring fewer 
structural analyses. 

By incorporating three 
straightforward 
modifications into 
ANDE, it achieves a 
balance between 
global exploration and 
local exploitation while 
also reducing 
computational costs. 

ANDE provides a gradual 
transition from global 
exploration to local 
exploitation during the 
search of the design 
space. It incorporates 
prejudgment of a 
solution which reduces 
the number of FE 
evaluations. No 
additional parameters 
are needed.  

Application of ANDE to 
large-scale problems and 
different types of 
structures should be 
further studied.  
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(Ho-Huu et al., 2016) 

Optimal design of truss 
structures with 
frequency constraints 
using  
improved differential 
evolution algorithm 
based on an adaptive  
mutation scheme 

The paper discusses 
an improved 
Differential Evolution 
(IDE) algorithm 
designed for 
optimizing the shape 
and size of truss 
structures under 
frequency constraints, 
with enhancements 
primarily in the 
mutation and selection 
phases. 

The IDE introduces a 
new scheme in the 
mutation phase that 
adaptively uses 
multiple popular 
mutation strategies 
("rand/1," "rand/2," 
"best/1," and "best/2") 
to balance global 
exploration and local 
exploitation. 
Additionally, the 
selection phase 
incorporates an elitist 
selection technique to 
preserve better 
individuals for 
subsequent 
generations, thereby 
improving convergence 
rates. 

Tests on five 
benchmark problems 
demonstrate the IDE's 
efficiency and 
robustness, achieving 
optimal designs similar 
to those obtained by the 
standard DE but with 
significantly reduced 
computational costs. 
The IDE outperforms DE 
and other known 
methods in terms of 
efficiency. 

The improvements are 
carried on mutation 
and selection phases 
but mainly focused on 
the mutation phase. 

The new scheme 
effectively maintains a 
balance between global 
exploration and local 
exploitation during the 
search process of the 
Differential Evolution 
(DE) algorithm. In 
almost all problems, the 
number of structural 
analyses of the IDE is 
only approximately a 
haft of that of the 
original DE.  

The stability of the IDE 
method requires further 
improvements. Further 
work can investigate the 
performance of IDE for 
other types of structures 
such as shell structures.  

(Nguyen-Van et al., 
2021) 

A novel hybrid 
differential evolution 
and symbiotic 
organisms search  
algorithm for size and 
shape optimization of 
truss structures under 
multiple frequency 
constraints 

The article introduces 
a novel optimization 
algorithm called 
Hybrid Differential-
SOS (HDS), which 
combines elements of 
Differential Evolution 
(DE) and Symbiotic 
Organisms Search 
(SOS) to enhance the 
quality of solutions 
and speed of 
convergence in the 
optimization of truss 
structures with 
multiple frequency 
constraints. 

The HDS algorithm 
leverages newly 
developed operators 
from DE and SOS to 
boost both global and 
local search 
capabilities. It 
incorporates an 
automatically adapted 
parameter for 
balancing these search 
aspects. 

The algorithm's 
effectiveness is 
validated through the 
examination of 26 
benchmark 
mathematical functions 
and 5 numerical 
examples of truss 
structure optimization. 
The findings reveal that 
HDS achieves high-
quality optimal 
solutions with less 
computational effort 
compared to the 
original DE and SOS 
methods and other 
existing optimization 
paradigms. 

The approach employs 
an elitist scheme in 
the selection phase to 
retain the best 
solutions, facilitating 
improved solution 
quality and reduced 
computational effort. 

The results have shown 
that the HDS provides 
superior performance in 
terms of convergence 
speed and solution 
accuracy compared to 
DE, SOS, and many other 
methodologies.  
 
HDS is very promising in 
applications related to 
composite laminated 
and functionally graded 
beams, plates, shells 
and structural health 
monitoring.  

Further study in the 
discrete design space for 
different structures might 
be beneficial. 
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(Ho-Huu, Nguyen-Thoi, 
et al., 2016) 
 

An adaptive elitist 
differential evolution 
for optimization of 
truss  
structures with discrete 
design variables 

The paper introduces 
an adaptive elitist 
differential evolution 
(aeDE) algorithm 
aimed at optimizing 
truss structures with 
discrete design 
variables, featuring 
enhancements over 
the traditional 
differential evolution 
(DE) method. 

The aeDE algorithm 
incorporates three key 
modifications: an 
adaptive mutation 
technique that selects a 
mutation operator 
based on the deviation 
of the objective 
function among 
previous generations to 
maintain search 
balance, an elitist 
selection strategy to 
accelerate convergence 
by preserving top-
performing individuals, 
and a rounding 
technique to handle 
discrete design 
variables effectively. 

The efficiency and 
dependability of aeDE 
are validated through 
six truss structure 
optimization problems, 
showing that aeDE 
generally outperforms 
standard DE and several 
other methods found in 
the literature, offering 
superior solution quality 
and faster convergence. 

The adaptive elitist 
differential evolution 
(aeDE) algorithm 
significantly enhances 
the optimization of 
truss structures with 
discrete design 
variables. By 
incorporating three 
key modifications—
adaptive mutation for 
search balance, elitist 
selection for faster 
convergence, and a 
rounding technique for 
discrete variables—the 
aeDE reliably achieves 
optimal solutions 
more efficiently than 
the standard 
differential evolution 
(DE) and other 
methods 

Its effectiveness is 
particularly evident in 
large-scale problems, 
and its simplicity in 
design allows for easy 
extension to other 
engineering optimization 
challenges, making it a 
robust and versatile tool 
in computational 
optimization. 

Although it claims to be 
simple to implement, the 
introduction of adaptive 
techniques and elitist 
strategies could still 
require careful tuning and 
understanding for best 
performance in diverse 
scenarios. 
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Table 15: Papers on Bayesian optimization. 

Paper Central Theme Main concept Theories & Methods Results Most important 
insight 

Pros Cons  

(Shende et al., 2021) 

Bayesian topology 
optimization for 
efficient design of 
origami  
folding structures 

The paper explores the 
use of Bayesian 
optimization (BO) for 
solving structural 
optimization 
problems, specifically 
focusing on origami-
inspired design 
spaces, which are 
characterized by 
complex and non-
convex design 
possibilities. BO is 
proposed as an 
efficient method for 
optimizing these 
complex design 
spaces using fewer 
evaluations of 
expensive finite 
element objective 
function. 

Bayesian optimization 
is utilized with a 
Gaussian process (GP) 
surrogate model to 
mimic expensive 
objective function. 
Then it is compared to 
traditional optimization 
methods like gradient-
based techniques and 
genetic algorithms. The 
study also looks into 
hyperparameter tuning, 
sensitivity to the initial 
training set, and 
proposes heuristic 
methods to reduce 
overall computational 
costs. 

Bayesian optimization 
requires fewer finite 
element solutions 
compared to traditional 
methods, making it a 
promising choice for 
such non-convex 
optimization problems 
(presence of multiple 
local optima). 
Consistently 
outperforms the 
gradient-based method, 
delivering previously 
undiscovered designs 
for the structure. 

Bayesian optimization 
is less sensitive to the 
initial training set than 
the gradient-based 
approach. Based on 
the studies conducted, 
the Gaussian process 
(GP) surrogate model 
works well for origami 
optimization 
problems. The 
squared exponential 
covariance function as 
well as the  
Matern kernel are able 
to find good solutions 
to the  
optimization problems 
analysed in the paper. 

Good sensitivity analysis 
of the hyperparameter 
tuning and influence of 
the initial training set.  

Design space is relatively 
small. The kernels are 
stationary and isotropic. 
The use of nonstationary 
and anisotropic kernels 
might lead to new designs 
but increase the number 
of hyperparameters.  
 
Nonstationary kernels are 
good when modelling 
processes in which 
different regions of the 
input space show 
different characteristics 
e.g. change in 
smoothness or variability.  
 
Anisotropic kernels are 
useful when the input 
dimensions have different 
level of impact which can 
be modelled by using 
different length scale 
parameters for each input 
dimension. Example is the 
Automatic Relevance 
Determination (ARD) 
kernel which takes the 
square exponential kernel 
and assigns a single 
length scale per input 
dimension. However, 
there is a risk of 
overfitting.  
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insight 

Pros Cons  

(Coelho et al., 2025) 

A composite Bayesian 
optimization framework 
for material and  
structural design 

The paper presents a 
design framework 
using Bayesian 
optimization to 
improve efficiency and 
quality in material and 
structural design 
processes, focusing 
on reducing 
computational costs 
and effectively 
managing uncertainty. 

The framework involves 
an initial step of 
efficient design space 
exploration and a 
subsequent composite 
Bayesian optimization 
strategy to evaluate the 
objective function. It 
employs a surrogate 
model and techniques 
like Principal 
Component Analysis 
for dimensionality 
reduction, utilizing a 
dynamic, adaptive 
sampling strategy 
instead of traditional 
random sampling 
methods. 

The framework shows 
significant 
improvements in 
performance and 
quality, especially in 
nonlinear settings, 
through various design 
scenarios. It reduces 
the number of required 
experiments and 
demonstrates its 
potential to enhance 
design methodologies 
in both material and 
structural engineering 
compared to 
established data-driven 
approaches. 

This method allows 
the optimizer to (i) 
fully assess the 
numerical simulation's 
response, (ii) improve 
the surrogate model's 
predictive precision, 
and (iii) effortlessly 
incorporate the 
objective function's 
structure into the 
optimization 
framework. 

The BO framework 
effectively integrates 
elements such as 
reparameterization into 
a latent response space, 
surrogate model 
selection, and gradient-
enabled Monte Carlo 
acquisition functions. 
The framework's 
benefits are particularly 
notable in complex 
scenarios with 
geometric or material 
non-linearity, where it 
reduces the number of 
experiments needed to 
achieve target 
objectives. 

The method is not applied 
for larger structural 
engineering problems 
such as topology, shape 
and size truss 
optimization. 

(Moriconi et al., 2020) 

High-dimensional 
Bayesian optimization 
using low-dimensional 
feature spaces 

The paper addresses 
the challenge of 
scaling Bayesian 
Optimization (BO) for 
high-dimensional 
problems by 
introducing a method 
to optimize within a 
low-dimensional 
feature space. 

The approach involves 
learning a low-
dimensional feature 
space alongside joint 
optimization of the 
response surface and 
reconstruction 
mapping. This allows 
the optimization of 
BO's acquisition 
function in a simplified, 
lower-dimensional 
subspace. The method 
involves reconstructing 
the original parameter 
space from this 
subspace to evaluate 
the black-box function, 
while managing 
exploration through 
constrained 
optimization. 

This method effectively 
reduces the complexity 
of high-dimensional 
optimization problems, 
enabling the use of BO 
with a smaller 
evaluation budget, 
although the paper does 
not specify 
experimental outcomes. 

The framework 
enables efficient 
Bayesian optimization 
of intrinsically low-
dimensional black-box 
functions by 
leveraging nonlinear 
embeddings through a 
manifold Gaussian 
Process (GP), which 
provides low-
dimensional feature 
representations and 
reconstructs high-
dimensional data. 

The use of a nonlinear 
constraint based on 
Lipschitz continuity 
ensures exploration 
remains close to the 
training data, thus 
improving the reliability 
of predictions and 
maintaining optimization 
focus. 

The nonlinear constraint 
might cause the algorithm 
to get stuck in local 
optima.  
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(Mathern et al., 2021) 

Multi-objective 
constrained Bayesian 
optimization for 
structural design 

The study aims to 
address the 
complexity in planning 
and designing 
concrete structures by 
applying a Bayesian 
optimization 
framework to exploit 
multi-objective 
strategies, balancing 
sustainability, 
buildability, and 
performance within 
the constraints of 
structural design. 

The work develops a 
Bayesian optimization 
approach to tackle 
expensive, constrained 
structural design 
problems. This 
approach evaluates 
trade-offs between 
cost-effective 
objectives and 
expensive constraints, 
benchmarking its 
effectiveness against 
the Non-dominated 
Sorting Genetic 
Algorithm II (NSGA-II) 
and random search 
methods, focusing on a 
reinforced concrete 
beam's design. 

The Bayesian 
optimization framework 
demonstrated superior 
performance over 
NSGA-II and random 
search by showing 
improved rates of 
advancement, higher 
solution quality, and 
reduced variance in 
outcomes, indicating its 
suitability for multi-
objective constrained 
optimization issues in 
structural design. 

Unlike earlier methods, 
this work's Bayesian 
algorithm explicitly 
leverages the fact that 
evaluating objective 
functions is inexpensive, 
while constraint 
functions involve costly 
evaluations due to the 
extensive numerical 
computations typical in 
structural engineering 
design challenges. 
Therefore, the 
constraints are modelled 
using Gaussian 
Processes (GPs) which 
significantly reduce the 
total number of finite 
element evaluations by 
sampling strategic 
points where the 
expected improvement is 
maximum. 

Design constraints 
were established to 
guarantee that the 
beam's configuration 
was feasible for 
construction and met 
the necessary 
bending and shear 
capacity as outlined 
by structural design 
codes. 

The sensitivity of 
Bayesian optimization 
framework to higher 
dimensional problems 
should be explored 
further. They are sensitive 
to the curse-of-
dimensionality. How the 
algorithm performs with 
categorical variables 
should be examined. 

 

 

Table 15: Papers on Bayesian optimization. (Continued) 
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Appendix B: 1D optimization problem: Cantilever Beam 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 106: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 1. 
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Figure 107: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 2. 
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Figure 108: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 3. 
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Figure 109: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 4. 
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Figure 110: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 5. 
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Figure 111: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 6. 
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Figure 112: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 7. 
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Figure 113: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 8. 
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Figure 114: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 9. 
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Figure 115: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 10. 
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Figure 116: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 11. 
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Figure 117: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 12. 
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Figure 118: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 13. 
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Figure 119: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 14. 
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Figure 120: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 15. 
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Figure 121: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 16. 
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Figure 122: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 17. 
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Figure 123: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 18. 



142 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 124: Bayesian optimization progression: 1D Cantilever Beam; Full Dataset; 13 initial samples. Iteration 19. 
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Table 16: Full profile database sorted by area in ascending order. (Source: EurocodeApplied & Bouwen 

met Staal). 

ID Typology RFEM Member 
Area 
[mm2] Weight [kg] 

1 CHS CHS 21.3x2.3 137,0 4,31 

2 CHS CHS 21.3x2.6 153,0 4,80 

3 CHS CHS 26.9x2.3 178,0 5,58 

4 CHS CHS 21.3x3.2 182,0 5,71 

5 CHS CHS 26.9x2.6 198,0 6,22 

6 CHS CHS 26.9x3.2 238,0 7,47 

7 CHS CHS 33.7x2.6 254,0 7,98 

8 CHS CHS 33.7x3.2 307,0 9,64 

9 CHS CHS 42.4x2.6 325,0 10,21 

10 CHS CHS 33.7x4 373,0 11,72 

11 CHS CHS 48.3x2.6 373,0 11,71 

12 SHS SHS 40x2.6 382,0 11,99 

13 RHS RHS 50x30x2.6 382,0 11,99 

14 CHS CHS 42.4x3.2 394,0 12,37 

15 CHS CHS 48.3x3.2 453,0 14,22 

16 SHS SHS 40x3.2 460,0 14,44 

17 RHS RHS 50x30x3.2 460,0 14,44 

18 CHS CHS 60.3x2.6 471,0 14,79 

19 CHS CHS 42.4x4 483,0 15,17 

20 SHS SHS 50x2.6 486,0 15,26 

21 RHS RHS 60x40x2.6 486,0 15,26 

22 CHS CHS 48.3x4 557,0 17,49 

23 SHS SHS 40x4 559,0 17,55 

24 RHS RHS 50x30x4 559,0 16,80 

25 CHS CHS 60.3x3.2 574,0 18,02 

26 SHS SHS 50x3.2 588,0 18,46 

27 RHS RHS 60x40x3.2 588,0 18,46 

28 SHS SHS 60x2.6 590,0 18,53 

29 CHS CHS 76.1x2.6 600,0 18,85 

30 SHS SHS 40x5 673,0 21,13 

31 RHS RHS 50x30x5 673,0 21,13 

32 CHS CHS 48.3x5 680,0 21,36 

33 CHS CHS 60.3x4 707,0 22,20 

34 SHS SHS 60x3.2 716,0 22,48 

35 RHS RHS 80x40x3.2 716,0 22,48 

36 SHS SHS 50x4 719,0 22,58 

37 RHS RHS 60x40x4 719,0 21,82 

38 CHS CHS 76.1x3.2 733,0 23,02 

39 IPE IPE 80 764,0 24,00 
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40 SHS SHS 70x3.2 844,0 26,38 

41 RHS RHS 90x50x3.2 844,0 26,50 

42 CHS CHS 88.9x3.2 862,0 27,07 

43 CHS CHS 60.3x5 869,0 27,29 

44 SHS SHS 50x5 873,0 27,41 

45 RHS RHS 60x40x5 873,0 26,25 

46 SHS SHS 60x4 879,0 27,60 

47 RHS RHS 80x40x4 879,0 26,85 

48 UNP UNP 65 903,0 28,35 

49 CHS CHS 76.1x4 906,0 28,45 

50 RHS RHS 100x50x3.2 908,0 28,51 

51 SHS SHS 80x3.2 972,0 30,52 

52 RHS RHS 100x60x3.2 972,0 30,52 

53 CHS CHS 101.6x3.2 989,0 28,23 

54 IPE IPE 100 1032,0 32,34 

55 SHS SHS 70x4 1039,0 32,66 

56 RHS RHS 90x50x4 1039,0 31,87 

57 SHS SHS 50x6.3 1059,0 33,28 

58 RHS RHS 60x40x6.3 1059,0 33,28 

59 CHS CHS 88.9x4 1067,0 33,60 

60 SHS SHS 60x5 1073,0 33,60 

61 RHS RHS 80x40x5 1073,0 32,53 

62 UNP UNP 80 1100,0 34,54 

63 CHS CHS 76.1x5 1117,0 35,07 

64 CHS CHS 114.3x3.2 1117,0 31,71 

65 RHS RHS 100x50x4 1119,0 34,23 

66 SHS SHS 80x4 1199,0 37,68 

67 RHS RHS 100x60x4 1199,0 36,90 

68 CHS CHS 101.6x4 1226,0 38,62 

69 SHS SHS 70x5 1273,0 39,88 

70 RHS RHS 90x50x5 1273,0 38,81 

71 SHS SHS 60x6.3 1311,0 41,13 

72 RHS RHS 80x40x6.3 1311,0 41,13 

73 CHS CHS 88.9x5 1318,0 41,45 

74 IPE IPE 120 1321,0 41,45 

75 UNP UNP 100 1350,0 42,39 

76 SHS SHS 90x4 1359,0 42,70 

77 RHS RHS 120x60x4 1359,0 41,76 

78 RHS RHS 100x50x5 1373,0 42,08 

79 CHS CHS 114.3x4 1386,0 43,65 

80 SHS SHS 80x5 1473,0 46,16 

81 RHS RHS 100x60x5 1473,0 45,09 

82 CHS CHS 101.6x5 1517,0 47,73 
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83 SHS SHS 100x4 1519,0 47,73 

84 RHS RHS 120x80x4 1519,0 46,94 

85 SHS SHS 70x6.3 1563,0 48,98 

86 RHS RHS 90x50x6.3 1563,0 48,98 

87 SHS SHS 60x8 1595,0 50,24 

88 RHS RHS 80x40x8 1595,0 50,24 

89 CHS CHS 88.9x6.3 1635,0 51,34 

90 IPE IPE 140 1643,0 51,50 

91 SHS SHS 90x5 1673,0 52,44 

92 RHS RHS 120x60x5 1673,0 51,50 

93 RHS RHS 140x80x4 1679,0 51,97 

94 RHS RHS 100x50x6.3 1689,0 53,07 

95 UNP UNP 120 1700,0 53,38 

96 CHS CHS 139.7x4 1705,0 53,69 

97 CHS CHS 114.3x5 1717,0 54,01 

98 SHS SHS 80x6.3 1815,0 56,83 

99 RHS RHS 100x60x6.3 1815,0 56,83 

100 RHS RHS 160x80x4 1839,0 56,83 

101 SHS SHS 100x5 1873,0 58,72 

102 RHS RHS 120x80x5 1873,0 57,65 

103 CHS CHS 101.6x6.3 1886,0 59,22 

104 SHS SHS 70x8 1915,0 60,29 

105 RHS RHS 90x50x8 1915,0 60,29 

106 RHS RHS 150x100x4 1919,0 59,35 

107 IPE IPE 160 2009,0 63,11 

108 UNP UNP 140 2040,0 64,06 

109 CHS CHS 168.3x4 2065,0 64,84 

110 SHS SHS 90x6.3 2067,0 65,00 

111 RHS RHS 120x60x6.3 2067,0 65,00 

112 RHS RHS 140x80x5 2073,0 63,93 

113 RHS RHS 100x50x8 2075,0 65,31 

114 CHS CHS 139.7x5 2116,0 66,57 

115 HEA HEA 100 2124,0 66,69 

116 CHS CHS 114.3x6.3 2138,0 67,13 

117 RHS RHS 180x100x4 2159,0 67,04 

118 SHS SHS 80x8 2235,0 70,34 

119 RHS RHS 100x60x8 2235,0 70,34 

120 SHS SHS 120x5 2273,0 71,28 

121 RHS RHS 160x80x5 2273,0 70,34 

122 SHS SHS 100x6.3 2319,0 72,85 

123 RHS RHS 120x80x6.3 2319,0 72,85 

124 RHS RHS 200x100x4 2319,0 71,91 

125 CHS CHS 101.6x8 2352,0 68,77 
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126 RHS RHS 150x100x5 2373,0 73,48 

127 IPE IPE 180 2395,0 75,05 

128 UNP UNP 160 2400,0 75,36 

129 HEA HEA 120 2534,0 79,57 

130 SHS SHS 90x8 2555,0 80,38 

131 RHS RHS 120x60x8 2555,0 80,38 

132 CHS CHS 168.3x5 2565,0 80,54 

133 RHS RHS 140x80x6.3 2571,0 80,70 

134 HEB HEB 100 2604,0 81,77 

135 CHS CHS 139.7x6.3 2640,0 82,90 

136 CHS CHS 114.3x8 2672,0 83,89 

137 SHS SHS 140x5 2673,0 83,84 

138 RHS RHS 180x100x5 2673,0 82,77 

139 CHS CHS 177.8x5 2714,0 85,09 

140 UNP UNP 180 2800,0 87,92 

141 SHS SHS 120x6.3 2823,0 88,55 

142 RHS RHS 160x80x6.3 2823,0 88,55 

143 IPE IPE 200 2848,0 89,49 

144 SHS SHS 150x5 2873,0 90,12 

145 RHS RHS 200x100x5 2873,0 89,05 

146 SHS SHS 100x8 2875,0 90,43 

147 RHS RHS 120x80x8 2875,0 85,53 

148 CHS CHS 101.6x10 2878,0 90,36 

149 RHS 
RHS 
150x100x6.3 2949,0 92,63 

150 CHS CHS 193.7x5 2964,0 93,07 

151 SHS SHS 160x5 3073,0 96,40 

152 RHS RHS 120x60x10 3093,0 97,03 

153 HEA HEA 140 3142,0 98,66 

154 RHS RHS 140x80x8 3195,0 100,48 

155 CHS CHS 168.3x6.3 3206,0 100,67 

156 UNP UNP 200 3220,0 101,11 

157 CHS CHS 114.3x10 3277,0 102,89 

158 CHS CHS 139.7x8 3310,0 103,93 

159 SHS SHS 140x6.3 3327,0 104,56 

160 RHS 
RHS 
180x100x6.3 3327,0 104,56 

161 IPE IPE 220 3337,0 104,88 

162 CHS CHS 219.1x5 3363,0 105,60 

163 CHS CHS 177.8x6.3 3394,0 106,58 

164 HEB HEB 120 3401,0 106,79 

165 SHS SHS 180x5 3473,0 108,96 

166 SHS SHS 100x10 3493,0 109,59 
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167 RHS RHS 120x80x10 3493,0 102,27 

168 SHS SHS 120x8 3515,0 110,53 

169 RHS RHS 160x80x8 3515,0 105,63 

170 SHS SHS 150x6.3 3579,0 112,41 

171 RHS 
RHS 
200x100x6.3 3579,0 112,41 

172 RHS RHS 150x100x8 3675,0 110,65 

173 CHS CHS 193.7x6.3 3709,0 116,46 

174 UNP UNP 220 3740,0 117,44 

175 CHS CHS 244.5x5 3762,0 118,13 

176 SHS SHS 160x6.3 3831,0 120,26 

177 RHS 
RHS 
200x120x6.3 3831,0 120,26 

178 SHS SHS 200x5 3873,0 121,52 

179 HEA HEA 160 3877,0 121,74 

180 RHS RHS 140x80x10 3893,0 122,15 

181 IPE IPE 240 3912,0 122,77 

182 CHS CHS 168.3x8 4029,0 126,51 

183 CHS CHS 139.7x10 4075,0 127,96 

184 SHS SHS 140x8 4155,0 130,62 

185 RHS RHS 180x100x8 4155,0 125,73 

186 CHS CHS 273x5 4210,0 132,19 

187 CHS CHS 219.1x6.3 4212,0 132,26 

188 UNP UNP 240 4230,0 132,82 

189 CHS CHS 177.8x8 4268,0 134,00 

190 SHS SHS 120x10 4293,0 134,71 

191 RHS RHS 160x80x10 4293,0 127,39 

192 HEB HEB 140 4296,0 134,89 

193 SHS SHS 180x6.3 4335,0 135,96 

194 SHS SHS 150x8 4475,0 140,67 

195 RHS RHS 200x100x8 4475,0 135,65 

196 RHS RHS 150x100x10 4493,0 133,67 

197 HEA HEA 180 4525,0 142,09 

198 IPE IPE 270 4595,0 144,13 

199 CHS CHS 193.7x8 4667,0 146,54 

200 CHS CHS 244.5x6.3 4714,0 147,89 

201 SHS SHS 160x8 4795,0 150,72 

202 RHS RHS 200x120x8 4795,0 145,82 

203 UNP UNP 260 4830,0 151,66 

204 SHS SHS 200x6.3 4839,0 151,98 

205 RHS 
RHS 
250x150x6.3 4839,0 151,98 

206 CHS CHS 168.3x10 4973,0 156,16 
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207 CHS CHS 139.7x12.5 4995,0 156,85 

208 CHS CHS 323.9x5 5009,0 157,28 

209 SHS SHS 140x10 5093,0 159,83 

210 RHS RHS 180x100x10 5093,0 152,51 

211 SHS SHS 120x12.5 5207,0 163,59 

212 RHS 
RHS 
160x80x12.5 5207,0 163,59 

213 CHS CHS 177.8x10 5272,0 165,53 

214 CHS CHS 273x6.3 5279,0 165,76 

215 CHS CHS 219.1x8 5306,0 166,73 

216 UNP UNP 280 5330,0 167,36 

217 SHS SHS 220x6.3 5343,0 167,68 

218 RHS 
RHS 
260x180x6.3 5343,0 167,68 

219 IPE IPE 300 5381,0 168,93 

220 HEA HEA 200 5383,0 169,03 

221 HEB HEB 160 5425,0 170,35 

222 SHS SHS 180x8 5435,0 170,82 

223 RHS 
RHS 
150x100x12.5 5457,0 171,44 

224 SHS SHS 150x10 5493,0 172,39 

225 RHS RHS 200x100x10 5493,0 165,16 

226 CHS CHS 193.7x10 5771,0 181,21 

227 UNP UNP 300 5880,0 184,63 

228 SHS SHS 160x10 5893,0 184,95 

229 RHS RHS 200x120x10 5893,0 177,63 

230 CHS CHS 244.5x8 5944,0 186,64 

231 SHS SHS 200x8 6075,0 190,91 

232 RHS RHS 250x150x8 6075,0 185,89 

233 SHS SHS 250x6.3 6099,0 191,54 

234 RHS 
RHS 
300x200x6.3 6099,0 191,54 

235 CHS CHS 168.3x12.5 6118,0 192,17 

236 SHS SHS 140x12.5 6207,0 194,99 

237 RHS 
RHS 
180x100x12.5 6207,0 194,99 

238 IPE IPE 330 6261,0 198,76 

239 CHS CHS 323.9x6.3 6286,0 197,38 

240 SHS SHS 260x6.3 6351,0 199,39 

241 HEA HEA 220 6434,0 202,03 

242 CHS CHS 177.8x12.5 6491,0 203,83 

243 HEB HEB 180 6525,0 204,89 

244 CHS CHS 219.1x10 6569,0 206,30 

245 CHS CHS 273x8 6660,0 209,12 
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246 SHS SHS 180x10 6693,0 210,07 

247 SHS SHS 150x12.5 6707,0 210,69 

248 RHS 
RHS 
200x100x12.5 6707,0 194,81 

249 SHS SHS 220x8 6715,0 211,01 

250 RHS RHS 260x180x8 6715,0 206,11 

251 CHS CHS 355.6x6.3 6913,0 216,97 

252 CHS CHS 193.7x12.5 7116,0 223,44 

253 SHS SHS 160x12.5 7207,0 226,39 

254 RHS 
RHS 
200x120x12.5 7207,0 210,38 

255 IPE IPE 360 7273,0 226,39 

256 SHS SHS 300x6.3 7359,0 232,36 

257 RHS 
RHS 
350x250x6.3 7359,0 231,10 

258 CHS CHS 244.5x10 7367,0 231,32 

259 SHS SHS 200x10 7493,0 235,19 

260 RHS RHS 250x150x10 7493,0 227,96 

261 SHS SHS 150x14.2 7497,0 235,50 

262 UNP UNP 320 7580,0 238,01 

263 SHS SHS 250x8 7675,0 241,15 

264 RHS RHS 300x200x8 7675,0 236,25 

265 HEA HEA 240 7684,0 241,28 

266 UNP UNP 350 7730,0 242,72 

267 HEB HEB 200 7808,0 245,17 

268 CHS CHS 406.4x6.3 7919,0 248,69 

269 CHS CHS 323.9x8 7939,0 249,32 

270 SHS SHS 260x8 7995,0 251,20 

271 CHS CHS 193.7x14.2 8008,0 251,51 

272 UNP UNP 380 8040,0 252,46 

273 SHS SHS 160x14.2 8065,0 253,40 

274 CHS CHS 219.1x12.5 8113,0 254,75 

275 SHS SHS 180x12.5 8207,0 257,79 

276 CHS CHS 273x10 8262,0 259,43 

277 SHS SHS 220x10 8293,0 260,31 

278 RHS RHS 260x180x10 8293,0 252,99 

279 SHS SHS 150x16 8301,0 260,62 

280 RHS RHS 200x100x16 8301,0 260,62 

281 IPE IPE 400 8446,0 264,07 

282 HEA HEA 260 8682,0 272,61 

283 CHS CHS 355.6x8 8736,0 274,44 

284 CHS CHS 457x6.3 8920,0 280,10 

285 CHS CHS 193.7x16 8932,0 280,47 
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286 SHS SHS 160x16 8941,0 280,72 

287 HEB HEB 220 9104,0 285,87 

288 CHS CHS 244.5x12.5 9111,0 286,09 

289 CHS CHS 219.1x14.2 9141,0 287,00 

290 UNP UNP 400 9150,0 287,31 

291 SHS SHS 180x14.2 9201,0 288,88 

292 SHS SHS 200x12.5 9207,0 289,19 

293 RHS 
RHS 
250x150x12.5 9207,0 273,31 

294 SHS SHS 300x8 9275,0 292,02 

295 RHS RHS 350x250x8 9275,0 291,39 

296 RHS RHS 400x200x8 9275,0 286,49 

297 SHS SHS 250x10 9493,0 297,99 

298 RHS RHS 300x200x10 9493,0 290,67 

299 HEA HEA 280 9726,0 305,40 

300 CHS CHS 323.9x10 9861,0 309,60 

301 IPE IPE 450 9882,0 309,29 

302 SHS SHS 260x10 9893,0 310,55 

303 CHS CHS 508x6.3 9930,0 311,79 

304 CHS CHS 406.4x8 10013,0 314,00 

305 SHS SHS 220x12.5 10207,0 320,28 

306 RHS 
RHS 
260x180x12.5 10207,0 320,28 

307 CHS CHS 219.1x16 10209,0 320,56 

308 SHS SHS 180x16 10221,0 320,28 

309 CHS CHS 273x12.5 10230,0 321,22 

310 CHS CHS 244.5x14.2 10274,0 323,42 

311 SHS SHS 200x14.2 10337,0 323,42 

312 RHS 
RHS 
250x150x14.2 10337,0 323,42 

313 HEB HEB 240 10599,0 332,84 

314 CHS CHS 355.6x10 10857,0 342,26 

315 SHS SHS 350x8 10875,0 342,26 

316 RHS RHS 450x250x8 10875,0 342,26 

317 HEA HEA 300 11253,0 353,25 

318 CHS CHS 457x8 11285,0 354,82 

319 SHS SHS 220x14.2 11473,0 361,10 

320 RHS 
RHS 
260x180x14.2 11473,0 361,10 

321 CHS CHS 244.5x16 11486,0 360,65 

322 SHS SHS 300x10 11493,0 361,10 

323 RHS RHS 350x250x10 11493,0 361,10 

324 RHS RHS 400x200x10 11493,0 353,47 
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325 SHS SHS 200x16 11501,0 361,10 

326 RHS RHS 250x150x16 11501,0 361,10 

327 CHS CHS 273x14.2 11545,0 362,52 

328 IPE IPE 500 11552,0 361,10 

329 SHS SHS 250x12.5 11707,0 367,38 

330 RHS 
RHS 
300x200x12.5 11707,0 351,81 

331 HEB HEB 260 11844,0 371,78 

332 CHS CHS 610x6.3 11948,0 375,18 

333 SHS SHS 260x12.5 12207,0 383,08 

334 CHS CHS 323.9x12.5 12229,0 383,99 

335 HEA HEA 320 12437,0 390,62 

336 CHS CHS 406.4x10 12453,0 392,50 

337 CHS CHS 219.1x20 12510,0 392,81 

338 CHS CHS 508x8 12566,0 395,64 

339 SHS SHS 220x16 12781,0 401,92 

340 RHS RHS 260x180x16 12781,0 401,92 

341 CHS CHS 273x16 12918,0 405,63 

342 HEB HEB 280 13136,0 412,60 

343 SHS SHS 250x14.2 13177,0 414,48 

344 RHS 
RHS 
300x200x14.2 13177,0 414,48 

345 HEA HEA 340 13347,0 419,19 

346 IPE IPE 550 13442,0 427,04 

347 CHS CHS 355.6x12.5 13474,0 423,90 

348 SHS SHS 350x10 13493,0 423,90 

349 RHS RHS 450x250x10 13493,0 423,90 

350 SHS SHS 260x14.2 13745,0 430,18 

351 CHS CHS 323.9x14.2 13816,0 433,32 

352 CHS CHS 711x6.3 13947,0 437,95 

353 CHS CHS 457x10 14043,0 439,60 

354 CHS CHS 244.5x20 14106,0 442,92 

355 SHS SHS 300x12.5 14207,0 445,88 

356 RHS 
RHS 
350x250x12.5 14207,0 445,88 

357 RHS 
RHS 
400x200x12.5 14207,0 430,31 

358 HEA HEA 360 14276,0 448,39 

359 SHS SHS 250x16 14701,0 461,58 

360 RHS RHS 300x200x16 14701,0 461,58 

361 HEB HEB 300 14908,0 468,17 

362 CHS CHS 762x6.3 14957,0 469,64 

363 CHS CHS 610x8 15130,0 475,08 
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364 CHS CHS 355.6x14.2 15230,0 477,28 

365 SHS SHS 260x16 15341,0 480,42 

366 CHS CHS 406.4x12.5 15468,0 486,70 

367 CHS CHS 323.9x16 15477,0 485,97 

368 SHS SHS 400x10 15493,0 486,70 

369 RHS RHS 500x300x10 15493,0 486,70 

370 IPE IPE 600 15598,0 483,56 

371 CHS CHS 508x10 15645,0 489,84 

372 CHS CHS 273x20 15896,0 499,15 

373 HEA HEA 400 15898,0 499,26 

374 SHS SHS 300x14.2 16017,0 502,40 

375 RHS 
RHS 
350x250x14.2 16017,0 502,40 

376 RHS 
RHS 
400x200x14.2 16017,0 502,40 

377 HEB HEB 320 16134,0 506,48 

378 SHS SHS 350x12.5 16707,0 524,38 

379 RHS 
RHS 
450x250x12.5 16707,0 524,38 

380 CHS CHS 355.6x16 17070,0 536,00 

381 HEB HEB 340 17090,0 536,63 

382 CHS CHS 244.5x25 17239,0 541,32 

383 CHS CHS 457x12.5 17455,0 548,10 

384 CHS CHS 406.4x14.2 17496,0 549,50 

385 CHS CHS 711x8 17668,0 554,79 

386 HEA HEA 450 17803,0 558,92 

387 SHS SHS 300x16 17901,0 562,06 

388 RHS RHS 350x250x16 17901,0 562,06 

389 RHS RHS 400x200x16 17901,0 562,06 

390 HEB HEB 360 18063,0 567,08 

391 CHS CHS 610x10 18850,0 591,88 

392 SHS SHS 350x14.2 18857,0 593,46 

393 RHS 
RHS 
450x250x14.2 18857,0 593,46 

394 CHS CHS 762x8 18950,0 595,03 

395 CHS CHS 323.9x20 19095,0 599,57 

396 SHS SHS 400x12.5 19207,0 602,88 

397 RHS 
RHS 
500x300x12.5 19207,0 602,88 

398 CHS CHS 508x12.5 19458,0 610,99 

399 CHS CHS 273x25 19478,0 611,61 

400 CHS CHS 406.4x16 19624,0 616,18 

401 HEA HEA 500 19754,0 620,15 

402 CHS CHS 457x14.2 19754,0 620,26 
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403 HEB HEB 400 19778,0 621,09 

404 CHS CHS 813x8 20232,0 635,28 

405 CHS CHS 355.6x20 21086,0 662,11 

406 SHS SHS 350x16 21101,0 662,54 

407 RHS RHS 450x250x16 21101,0 662,54 

408 HEA HEA 550 21176,0 665,05 

409 SHS SHS 400x14.2 21697,0 681,38 

410 RHS 
RHS 
500x300x14.2 21697,0 681,38 

411 HEB HEB 450 21798,0 684,52 

412 CHS CHS 711x10 22023,0 691,51 

413 CHS CHS 508x14.2 22029,0 691,70 

414 CHS CHS 457x16 22167,0 696,05 

415 HEA HEA 600 22646,0 711,21 

416 CHS CHS 914x8 22770,0 714,99 

417 CHS CHS 610x12.5 23464,0 736,76 

418 CHS CHS 323.9x25 23476,0 737,13 

419 CHS CHS 762x10 23625,0 741,82 

420 HEB HEB 500 23864,0 749,20 

421 HEA HEA 650 24164,0 758,62 

422 CHS CHS 406.4x20 24278,0 762,34 

423 SHS SHS 400x16 24301,0 763,02 

424 RHS RHS 500x300x16 24301,0 763,02 

425 CHS CHS 508x16 24731,0 776,54 

426 CHS CHS 813x10 25227,0 792,13 

427 CHS CHS 1016x8 25334,0 795,48 

428 HEB HEB 550 25406,0 797,87 

429 CHS CHS 355.6x25 25965,0 815,31 

430 HEA HEA 700 26048,0 817,97 

431 CHS CHS 610x14.2 26579,0 834,58 

432 HEB HEB 600 26996,0 847,80 

433 CHS CHS 711x12.5 27430,0 861,30 

434 CHS CHS 457x20 27458,0 862,17 

435 CHS CHS 914x10 28400,0 891,76 

436 HEA HEA 800 28583,0 897,41 

437 HEB HEB 650 28634,0 898,98 

438 CHS CHS 762x12.5 29433,0 924,19 

439 CHS CHS 610x16 29858,0 937,53 

440 CHS CHS 406.4x25 29955,0 940,59 

441 SHS SHS 400x20 29971,0 942,00 

442 RHS RHS 500x300x20 29971,0 942,00 

443 HEB HEB 700 30638,0 962,10 

444 CHS CHS 508x20 30662,0 962,79 
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445 CHS CHS 711x14.2 31085,0 976,06 

446 CHS CHS 813x12.5 31436,0 987,08 

447 CHS CHS 1016x10 31604,0 992,38 

448 HEA HEA 900 32053,0 1.006,37 

449 CHS CHS 1067x10 33207,0 1.042,69 

450 CHS CHS 762x14.2 33360,0 1.047,50 

451 HEB HEB 800 33418,0 1.049,39 

452 CHS CHS 457x25 33929,0 1.065,38 

453 HEA HEA 1000 34685,0 1.088,95 

454 CHS CHS 711x16 34935,0 1.096,94 

455 CHS CHS 914x12.5 35402,0 1.111,62 

456 CHS CHS 406.4x30 35475,0 1.113,91 

457 CHS CHS 813x14.2 35635,0 1.118,94 

458 CHS CHS 1168x10 36380,0 1.142,32 

459 CHS CHS 610x20 37071,0 1.164,02 

460 HEB HEB 900 37128,0 1.165,88 

461 CHS CHS 762x16 37498,0 1.177,44 

462 CHS CHS 508x25 37935,0 1.191,15 

463 CHS CHS 1219x10 37982,0 1.192,63 

464 CHS CHS 1016x12.5 39407,0 1.237,39 

465 HEB HEB 1000 40005,0 1.256,00 

466 CHS CHS 813x16 40062,0 1.257,93 

467 CHS CHS 914x14.2 40141,0 1.260,42 

468 CHS CHS 457x30 40244,0 1.263,66 

469 CHS CHS 1067x12.5 41410,0 1.300,28 

470 CHS CHS 711x20 43417,0 1.363,29 

471 CHS CHS 1016x14.2 44691,0 1.403,29 

472 CHS CHS 508x30 45050,0 1.414,58 

473 CHS CHS 914x16 45138,0 1.417,35 

474 CHS CHS 1168x12.5 45376,0 1.424,82 

475 CHS CHS 610x25 45946,0 1.442,70 

476 CHS CHS 406.4x40 46043,0 1.445,76 

477 CHS CHS 762x20 46621,0 1.463,91 

478 CHS CHS 1067x14.2 46966,0 1.474,73 

479 CHS CHS 1219x12.5 47379,0 1.487,71 

480 CHS CHS 813x20 49826,0 1.564,53 

481 CHS CHS 1016x16 50265,0 1.578,34 

482 CHS CHS 1168x14.2 51472,0 1.616,21 

483 CHS CHS 457x40 52402,0 1.645,42 

484 CHS CHS 1067x16 52829,0 1.658,83 

485 CHS CHS 1219x14.2 53747,0 1.687,65 

486 CHS CHS 711x25 53878,0 1.691,78 

487 CHS CHS 610x30 54664,0 1.716,44 
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488 CHS CHS 914x20 56172,0 1.763,79 

489 CHS CHS 762x25 57884,0 1.817,55 

490 CHS CHS 1168x16 57906,0 1.818,24 

491 CHS CHS 508x40 58811,0 1.846,65 

492 CHS CHS 1219x16 60469,0 1.898,74 

493 CHS CHS 813x25 61889,0 1.943,33 

494 CHS CHS 1016x20 62581,0 1.965,03 

495 CHS CHS 711x30 64183,0 2.015,34 

496 CHS CHS 1067x20 65785,0 2.065,65 

497 CHS CHS 762x30 68989,0 2.166,27 

498 CHS CHS 914x25 69822,0 2.192,41 

499 CHS CHS 610x40 71628,0 2.249,13 

500 CHS CHS 508x50 71942,0 2.258,99 

501 CHS CHS 1168x20 72131,0 2.264,91 

502 CHS CHS 813x30 73796,0 2.317,19 

503 CHS CHS 1219x20 75335,0 2.365,53 

504 CHS CHS 1016x25 77833,0 2.443,95 

505 CHS CHS 1067x25 81838,0 2.569,73 

506 CHS CHS 914x30 83315,0 2.616,09 

507 CHS CHS 711x40 84320,0 2.647,66 

508 CHS CHS 610x50 87965,0 2.762,09 

509 CHS CHS 1168x25 89771,0 2.818,81 

510 CHS CHS 762x40 90729,0 2.848,90 

511 CHS CHS 1016x30 92928,0 2.917,95 

512 CHS CHS 1219x25 93777,0 2.944,58 

513 CHS CHS 1067x30 97735,0 3.068,88 

514 CHS CHS 711x50 103830,0 3.260,25 

515 CHS CHS 762x50 111841,0 3.511,80 

516 CHS CHS 711x60 122711,0 3.853,11 
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Figure 125: 1D cantilever beam. UNP 300 stresses. 

 

 

Figure 126: 1D cantilever beam. UNP 300 deflection.  
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Appendix C: 2D optimization problem: Cantilever Truss 
 

 

Figure 127: Optimal truss layout and cross-sections found by Gholizadeh. CHS dataset. Stresses based on 

static analysis. 
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Figure 128: Optimal truss layout and cross-sections found by Bayesian optimization algorithm. Discrete 

CHS cross-sections. 4GPs approach. 
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Figure 129: Optimal truss layout and cross-sections found by Bayesian optimization algorithm. Discrete 

CHS cross-sections. 18GPs approach. 
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Figure 130: Optimal truss layout and cross-sections found by Bayesian optimization algorithm. 

Parametric CHS cross-sections. 18GPs approach. 
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Table 17: Cantilever truss case study cross-sectional areas in in2, 

mm2 and the corresponding parametric CHS profile. 

Area 

(in²) 

Area 

(mm²) 

Parametric CHS profile 

2 1290.32 CHS 51.0/10 

2.25 1451.61 CHS 56.0/10 

2.5 1612.9 CHS 61.0/10 

2.75 1774.19 CHS 66.0/10 

3 1935.48 CHS 72.0/10 

3.25 2096.77 CHS 77.0/10 

3.5 2258.06 CHS 82.0/10 

3.75 2419.35 CHS 87.0/10 

4 2580.64 CHS 92.0/10 

4.25 2741.93 CHS 97.0/10 

4.5 2903.22 CHS 102.0/10 

4.75 3064.51 CHS 108.0/10 

5 3225.8 CHS 113.0/10 

5.25 3387.09 CHS 118.0/10 

5.5 3548.38 CHS 123.0/10 

5.75 3709.67 CHS 128.0/10 

6 3870.96 CHS 133.0/10 

6.25 4032.25 CHS 138.0/10 

6.5 4193.54 CHS 143.0/10 

6.75 4354.83 CHS 149.0/10 

7 4516.12 CHS 154.0/10 

7.25 4677.41 CHS 159.0/10 

7.5 4838.7 CHS 164.0/10 

7.75 4999.99 CHS 169.0/10 

8 5161.28 CHS 174.0/10 

8.25 5322.57 CHS 179.0/10 

8.5 5483.86 CHS 185.0/10 

8.75 5645.15 CHS 190.0/10 

9 5806.44 CHS 195.0/10 

9.25 5967.73 CHS 200.0/10 

9.5 6129.02 CHS 205.0/10 

9.75 6290.31 CHS 210.0/10 

10 6451.6 CHS 215.0/10 

10.25 6612.89 CHS 220.0/10 

10.5 6774.18 CHS 226.0/10 

10.75 6935.47 CHS 231.0/10 

11 7096.76 CHS 236.0/10 

11.25 7258.05 CHS 241.0/10 

11.5 7419.34 CHS 246.0/10 

11.75 7580.63 CHS 251.0/10 

12 7741.92 CHS 256.0/10 

12.25 7903.21 CHS 262.0/10 

12.5 8064.5 CHS 267.0/10 

12.75 8225.79 CHS 272.0/10 

13 8387.08 CHS 277.0/10 

13.25 8548.37 CHS 282.0/10 

13.5 8709.66 CHS 287.0/10 

13.75 8870.95 CHS 292.0/10 

14 9032.24 CHS 298.0/10 

14.25 9193.53 CHS 303.0/10 

14.5 9354.82 CHS 308.0/10 

14.75 9516.11 CHS 313.0/10 

15 9677.4 CHS 318.0/10 

15.25 9838.69 CHS 323.0/10 
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15.5 9999.98 CHS 328.0/10 

15.75 10161.27 CHS 333.0/10 

16 10322.56 CHS 339.0/10 

16.25 10483.85 CHS 344.0/10 

16.5 10645.14 CHS 349.0/10 

16.75 10806.43 CHS 354.0/10 

17 10967.72 CHS 359.0/10 

17.25 11129.01 CHS 364.0/10 

17.5 11290.3 CHS 369.0/10 

17.75 11451.59 CHS 375.0/10 

18 11612.88 CHS 380.0/10 

18.25 11774.17 CHS 385.0/10 

18.5 11935.46 CHS 390.0/10 

18.75 12096.75 CHS 395.0/10 

19 12258.04 CHS 400.0/10 

19.25 12419.33 CHS 405.0/10 

19.5 12580.62 CHS 410.0/10 

19.75 12741.91 CHS 416.0/10 

20 12903.2 CHS 421.0/10 

20.25 13064.49 CHS 426.0/10 

20.5 13225.78 CHS 431.0/10 

20.75 13387.07 CHS 436.0/10 

21 13548.36 CHS 441.0/10 

21.25 13709.65 CHS 446.0/10 

21.5 13870.94 CHS 452.0/10 

21.75 14032.23 CHS 457.0/10 
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Figure 131: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 1. 
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Figure 132: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 2. 
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Figure 133: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 3. 
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Figure 134: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 4. 
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Figure 135: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 5. 
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Figure 136: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 6. 
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Figure 137: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 7. 
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Figure 138: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 8. 
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Figure 139: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 9. 
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Figure 140: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 10. 
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Figure 141: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 11. 
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Figure 142: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 12. 
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Figure 143: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 13. 
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Figure 144: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 14. 
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Figure 145: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 15. 
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Figure 146: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 16. 
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Figure 147: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 17. 
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Figure 148: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 18. 
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Figure 149: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 19. 
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Figure 150: Bayesian optimization progression: 1D Cantilever Truss; RHS Dataset; Iteration 20. 
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Appendix D: 3D optimization problem: Gridshells 
In the figures of D1 and D2,  the load combinations used for the analysis in Chapter 5.3 and 

Chapter 5.4 are shown. The load per surface is uniformly distributed over the profiles that 

enclose the surface based on surface area divided by perimeter; 

The load per profile is summed from the surfaces that it helps define (i.e., the surfaces to the left 

and right of the line, where applicable). 

The line load is determined with: 

𝑞𝑖𝑚𝑝𝑜𝑠𝑒𝑑 [
𝑘𝑁

𝑚
] =

𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒[𝑚2] ∗ 𝑄𝑔𝑙𝑎𝑠𝑠[
𝑘𝑁
𝑚2]

𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒[𝑚]
 

D1. 4x4 Gridshell Additional Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 151: Gridshell 44 node model: Validation load combination: self-weight + imposed load of 1kN/m2. 
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Figure 152: Gridshell 44 node model: Test load combination: 1.35 * self-weight + 1.35 * 50 * imposed load of 1kN/m2. 



185 

 

The heatmaps in Figure 152 to Figure 155 present the learned lengthscales per input dimension for 

multiple Gaussian Process kernels, evaluated in the original design space without applying PCA. 

Each row corresponds to one kernel, and each column to one design dimension. The color intensity 

encodes the log-scaled lengthscale values: 

• Bright colors (yellow/green): short lengthscales → model is highly sensitive to changes 

in that input dimension. 

• Dark colors (blue/purple): long lengthscales → input dimension has little influence on 

the predictive model. 

The heatmaps are produced immediately after the first optimization of the hyperparameters for the 

Gaussian processes following the fitting on the initial samples. In this way the effect of any 

subsequent samples generated from the acquisition function is disregarded.   

In Figure 152 it can be seen that the GPs are correctly registering the most influential input 

dimension for each steel element. Since the first 12 elements share the same cross-section which 

is the first in the input vector the length scales are the shortest at index 0 as expected. The diagonal 

that forms from the kernel 13 to kernel 28 corresponds to the fact that each GP models the 

constraints for an individual element rather than a group of elements.    

 

Figure 153: Heatmap of log-length scales across 17 input dimensions and 28 kernels. 17 initial samples. 
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With 28 input dimensions and only 280 training samples, the heatmap in Figure 154 reveals a 

sparse and somewhat noisy sensitivity pattern. The 28 individual GPs are able to form the expected 

diagonal with the input dimensions, indicating that since there are no groups of elements each 

structural element is dependent on the corresponding cross-sectional area. However, there is also 

other random dependencies as well. This suggests that with limited data, the GP struggles to 

robustly distinguish between relevant and irrelevant dimensions. In high-dimensional spaces, this 

effect is expected due to the curse of dimensionality, where the number of samples needed to 

represent the same part of the design space grows exponentially with every new dimension. 

Nevertheless, even at this low data regime the BO framework is able to produce reasonable designs 

leading to total weight reduction as discussed in subchapter 5.3.  

 

Figure 154: Heatmap of log-length scales across 28 input dimensions and 28 kernels. 280 initial samples.   

 

Increasing the number of samples by an order of magnitude drastically clarifies the sensitivity 

structure. The heatmap in Figure 155 shows a much stronger diagonal dominance, where different 

kernels consistently identify specific input dimensions as relevant, with relatively stable short 

length scales. The noise observed in the 280-sample case is reduced, and irrelevant dimensions are 

more uniformly assigned long length scales (dark regions). This demonstrates that sample size has 

a direct impact on GP interpretability in high dimensions: with sufficient data, the model is better 

able to disentangle the influence of individual variables and establish a coherent sensitivity profile. 

However, the computational cost is substantially increased with execution time being around 15 

hours compared to the ca. 1.6 hours as discussed in Figure 81 in subchapter 5.3. 
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Figure 155: Heatmap of log-length scales across 28 input dimensions and 28 kernels. 2800 initial 

samples.  
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D2. 9x9 Gridshell Additional Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 156: Glass imposed load applied along the true length of the elements. 
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Figure 157: Wind variable load applied along the true length of the elements. 
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Figure 158: Snow variable load applied along the true length of the elements. 
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Figure 159: ULS Load Combination: 1.20 * Self-weight + 1.20 * Glass + 1.50 * Wind 
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Figure 160: 99 gridshell: von Mises equivalent stresses. 
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Figure 161: Displacement due to LC1: Top view. 
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Figure 162: Displacement due to LC1:  Side view. 
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Figure 163: Gridshell 99. Grasshopper model using Kangaroo2 plugin for shape generation. 
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Figure 164: Gridshell 99. Generated geometry. 
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Appendix E: Supplementary Material 
 

 

Figure 165: Matérn kernel samples based on different hyperparameter combinations. 
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Constrained BO algorithm  

Start Bayesian optimization   

Problem Setup  

• Specify the number of design variables such as the geometry (shape) via the node coordinates 

and/or the areas of individual elements or groups of elements.   

• Define upper and lower bounds for each design variable.  

• Establish the number of initial design samples.  

• Specify the number and type of constraint functions (e.g., stresses, buckling, deflection). 

Initial Sampling and Feasibility Check  

• Generate an initial set of design samples using a space-filling sampling strategy (e.g., Latin 

Hypercube Sampling).  

• Ensure at least one initially feasible sample is included. If that is not achieved automatically, a 

manual sample has to be added to serve as a starting point of the optimisation.   

• For each sample:  

o Evaluate the objective function and all constraints using the RFEM6 solver.  

• Identify and retain the subset of samples that satisfy all constraints or have minimal constraint 

violation.  

Data Normalization  

• Fit appropriate normalization or scaling transforms to the design variables, objective values, and 

each constraint.  

• Apply normalization to all sampled data to facilitate efficient modelling.  

Surrogate Model Construction  

• Initialize surrogate models (e.g., Gaussian Processes) for the objective function and each 

constraint, with suitable kernel functions and corresponding starting hyperparameters.  

Optimization Loop  

    For each optimization iteration:  

1) If necessary (e.g., at regular intervals), update or re-optimize surrogate model hyperparameters.  

2) Define an acquisition function that combines expected improvement in the objective with the 

probability of constraint satisfaction.  

3) Maximize the acquisition function over the feasible domain using a global optimization 

algorithm to select the next candidate design such as the differential evolution algorithm.  

4) Denormalize the selected candidate to obtain real design variable values.  

5) Evaluate the objective and constraint functions at the new candidate using the RFEM6 solver.  

6) Normalize and incorporate the new data into the surrogate models.  

7) Update the record of the best feasible solution found so far. 

8) Check for improvement; if the objective does not improve sufficiently over a set number of 

iterations, terminate early. 

Result Extraction  
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• Return the design variables, objective value, and constraint values corresponding to the best 

feasible solution identified by the algorithm.  

End Bayesian optimization 

Constrained BO with PCA algorithm 

The differences with the previous algorithm are outlined. 

Data Normalization  

• Fit appropriate normalization or scaling transforms to the design variables, objective values, and 

each constraint.  

• Apply normalization to all sampled data to facilitate efficient modelling. 

• Choose a number of principle components based on the explained variance metric.   

• Fit the PCA on all the scaled initial samples  

Surrogate Model Construction  

• Initialize surrogate models (e.g., Gaussian Processes) for the objective function and each 

constraint, with suitable kernel functions and starting hyperparameters.   

• Fit the GPs on the initial samples transformed in the PCA latent space.     

Optimization Loop  

    For each optimization iteration:  

1) If necessary (e.g., at regular intervals), update or re-optimize surrogate model hyperparameters.  

2) Define an acquisition function that combines expected improvement in the objective with the 

probability of constraint satisfaction.  

3) Maximize the acquisition function over the bounded domain in the PCA latent space using a 

global optimization algorithm to select the next candidate design such as the differential 

evolution algorithm.  

4) Transform the sampled point from the PCA latent space back to the scaled space.    

5) Denormalize the selected candidate to obtain real design variable values.  

6) Evaluate the objective and constraint functions at the new candidate using the RFEM6 solver.  

7) Normalize and incorporate the new data into the surrogate models.  

8) Update the record of the best feasible solution found so far.  

9) Check for improvement; if the objective does not improve sufficiently over a set number of 

iterations, terminate early. 
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