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Summary

Sodium borohydride (NaBH
4
) combines an exceptionally high gravimetric hydrogen

capacity (≈ 10.9 wt %) with ambient condition stability, making it an appealing solid­state

hydrogen carrier for heavy­duty and maritime applications. Its practical adoption, how­

ever, is limited by the energy­intensive and costly regeneration of the spent product,

sodium metaborate (NaBO
2
). Mechanochemical routes, where high­energy ball milling

drives solid­state synthesis, offer a solvent­free, room­temperature alternative, but pub­

lished data remain fragmented, difficult to reproduce, and largely confined to laboratory

scale. To tackle these bottlenecks, this dissertation develops a robust regeneration

pathway for NaBH
4
and, in parallel, advances a generally applicable methodology for

scalable, data­rich mechanochemistry.

The work begins by identifying the divergence in NaBH
4
mechanochemical yields repor­

ted for similar reactant systems. These differences are traced to un­reported or poorly

controlled milling parameters such as rotational speed, ball­to­powder ratio, jar geometry,

and the working principle of the milling machine. A comprehensive fractional design of

experiments (DoE) is therefore established to quantify both individual and interaction

effects of four key operational variables on chemical yield: milling time, molar ratio,

ball­to­powder ratio (BPR) and rotational speed. Leveraging these insights, the highest

literature yield (90 %) is reproduced while operating the mill 20 % more slowly, cutting

specific energy demand and metal wear. The same procedure simultaneously delivers a

“ready­to­use” aqueous NaBH
4
solution, eliminating hazardous separation steps.

To move beyond empirical screening, the thesis introduces a physics­based description

of the milling process. Discrete Element Method (DEM) simulations reveal that normal

and tangential energy dissipation per collision, together with specific collision frequency,

constitute a set of mechanical invariants that uniquely characterize ball­mill operation.

When experimental conditions are reproduced in terms of these dimensionless groups,

different datasets collapse onto universal master curves, providing a transferable “mech­

anical fingerprint” that links equipment of different sizes and designs to comparable

chemical performance.

Building on this mechanistic insight, the influence of the ratio between tangential and

normal stressing events is systematically explored under constant­power and constant­

rotational­speed conditions. A low fill ratio of 6 %, which maximizes tangential dissipation,

increases the specific yield to 0.28 yield 𝑊−1 and achieves a record conversion to 94 %,

while shifting the fill ratio to 17 % drives the system towards normal impacts and reduces

the yield by 40­50 percentage points. The resulting guidelines enable targeted adjustment

of dynamics and filling conditions to favor shear over less productive compression, provid­
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xii Summary

ing a practical route to maximize regeneration efficiency while minimizing energy demand.

Data­driven models extend the framework. A two­stage Gaussian­Process­Regression

ensemble, trained on combined chemical parameters and DEM­based mechanical

descriptors, predicts out­of­sample NaBH
4
yields with R² = 0.83, allowing unpromising

parameter combinations to be discarded computationally before a single gram of powder

is milled. Complementarily, a graph neural­network surrogate offers a novel alternative

to traditional DEM simulations by predicting particle trajectories with a mean­squared

error of 2 × 10−4 m2 with a time­step more than 100 times larger than DEM. Additionally,
the model can dynamically predict the energy dissipation of the system, showcasing how

these surrogates can be used beyond a simple kinematic fit.

Together, these elements form a closed feedback loop: statistically designed exper­

iments feed physics­based simulations, then these simulations yield scale­independent

descriptors. These descriptors drive machine learning models, significantly cutting time

and energy demands. Lastly, a proof­of­concept approach with the surrogate offers a

low­entry­barrier tool for the mechanochemistry community, intending to standardize

reporting protocols when the knowledge of physical simulations is limited. The dis­

sertation thus delivers a validated, energy­efficient route for mechanochemical NaBH
4

regeneration, and a transferable template for reproducible, scalable mechanochemistry.

By combining empirical, mechanistic and data­centric approaches, the study advances

NaBH
4
towards a truly circular hydrogen carrier and lays the groundwork for broader

adoption of green mechanochemical synthesis across the chemical industry.



Samenvatting

Natriumboorhydride (NaBH
4
) combineert een uitzonderlijk hoge gravimetrische water­

stofcapaciteit (≈ 10,9 wt %) met stabiliteit onder omgevingscondities, wat het tot een

aantrekkelijke vastestofwaterstofdrager maakt voor zware en maritieme toepassingen.

De praktische toepassing wordt echter beperkt door de energie­intensieve en kostbare re­

generatie van het uitgeputte product, natriummetaboraat (NaBO
2
). Mechanochemische

routes, waarbij hoogenergetische kogelmaling de vastestofsynthese aandrijft, bieden een

oplosmiddelvrij alternatief bij kamertemperatuur, maar gepubliceerde gegevens blijven

gefragmenteerd, moeilijk reproduceerbaar en grotendeels beperkt tot laboratoriumschaal.

Om deze knelpunten aan te pakken ontwikkelt dit proefschrift een robuust regenera­

tiepad voor NaBH
4
en, parallel daaraan, een algemeen toepasbare methodologie voor

schaalbare, data­rijke mechanochemie.

Het onderzoek begint met het identificeren van de variatie in mechanochemische op­

brengsten van NaBH
4
die voor vergelijkbare reagentia­systemen zijn gerapporteerd.

Deze verschillen worden herleid tot niet­gerapporteerde of slecht gecontroleerde maal­

parameters zoals rotatiesnelheid, kogel­tot­poeder­verhouding, potgeometrie en het

werkingsprincipe van de maalinstallatie. Daarom wordt een uitgebreid fractioneel experi­

menteel ontwerp (DoE) opgesteld om zowel de individuele als interactie­effecten van

vier belangrijke operationele variabelen op de chemische opbrengst te kwantificeren:

maaltijd, molverhouding, kogel­tot­poeder­verhouding (BPR) en rotatiesnelheid. Met

deze inzichten wordt de hoogste literatuuropbrengst (90 %) gereproduceerd terwijl de

molen 20 % langzamer draait, waardoor de specifieke energiebehoefte en metaal­slijtage

afnemen. Dezelfde procedure levert tegelijkertijd een “gebruiksklare” waterige NaBH
4

oplossing, waardoor gevaarlijke scheidingsstappen vervallen.

Om verder te gaan dan empirische screening introduceert het proefschrift een natuurkun­

dige beschrijving van het maalproces. Discrete Element Method (DEM) simulaties tonen

aan dat normale en tangentiële energiedissipatie per botsing, samen met de specifieke

botsfrequentie, een set mechanische invarianten vormen die het functioneren van de

kogelmolen uniek karakteriseren. Wanneer experimentele condities worden gereprodu­

ceerd in termen van deze dimensieloze groepen, vallen verschillende datasets samen op

universele mastercurves, wat een overdraagbare “mechanische vingerafdruk” oplevert

die apparatuur van verschillende grootte en ontwerp koppelt aan vergelijkbare chemische

prestaties.

Voortbouwend op dit mechanistisch inzicht wordt de invloed van de verhouding tus­

sen tangentiële en normale belastingsevents systematisch onderzocht onder zowel

constante vermogens­ als constante rotatiesnelheidscondities. Een lage vulgraad van

xiii
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6 %, die de tangentiële dissipatie maximaliseert, verhoogt de specifieke opbrengst tot

0,28 yield 𝑊−1 en bereikt een recordomzetting van 94 %, terwijl het verhogen van de

vulgraad tot 17 % het systeem naar normale impacten verschuift en de opbrengst met

40–50 procentpunten verlaagt. De resulterende richtlijnen maken een gerichte afstem­

ming van dynamiek en vullingscondities mogelijk om schuifspanningen te bevorderen

boven minder productieve compressie, wat een praktische route biedt om de regeneratie­

efficiëntie te maximaliseren en tegelijk het energieverbruik te minimaliseren.

Datagedreven modellen breiden het kader uit. Een tweestaps Gaussian Process Regres­

sion ensemble, getraind op gecombineerde chemische parameters en DEM­gebaseerde

mechanische descriptoren, voorspelt out­of­sample NaBH
4
opbrengsten met R² = 0.83,

waardoor weinigbelovende parametercombinaties computationeel kunnen worden uitge­

sloten voordat er één gram poeder wordt gemalen. Aanvullend biedt een grafeneuraalnet­

werksurrogaat een nieuw alternatief voor traditionele DEM simulaties door deeltjesbanen

te voorspellen met een gemiddelde kwadratische fout van 2 × 10−4 m2 bij een tijdstap
die meer dan 100 keer groter is dan die van DEM. Bovendien kan het model de energie­

dissipatie van het systeem dynamisch voorspellen, wat laat zien hoe deze surrogaten

verder kunnen gaan dan een eenvoudige kinematische fit.

Samen vormen deze elementen een gesloten feedbacklus: statistisch ontworpen experi­

menten voeden natuurkundige simulaties, die vervolgens schaalonafhankelijke descrip­

toren opleveren. Deze descriptoren sturen machine learning modellen aan, waardoor tijd

en energiebehoefte aanzienlijk worden verlaagd. Ten slotte biedt een proof­of­concept­

benadering met het surrogaat een hulpmiddel met lage instapdrempel voor de mechano­

chemiegemeenschap, bedoeld om rapportageprotocollen te standaardiseren wanneer

de kennis van fysische simulaties beperkt is. Het proefschrift levert daarmee een gevali­

deerde, energie­efficiënte route voor mechanochemische regeneratie van NaBH
4
, en

een overdraagbare blauwdruk voor reproduceerbare, schaalbare mechanochemie. Door

empirische, mechanistische en data­gerichte benaderingen te combineren, brengt de

studie NaBH
4
dichter bij een werkelijk circulaire waterstofdrager en legt zij de basis voor

bredere toepassing van groene mechanochemische synthese in de chemische industrie.
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2 1. Introduction

1.1. Solid hydrogen carriers

H ydrogen is widely regarded as a key clean energy carrier for a sustainable future,

but a major challenge remains in storing hydrogen safely and efficiently [1, 2].

Traditional storage of hydrogen as a compressed gas or cryogenic liquid poses safety

risks and offers low volumetric energy density [3]. Solid hydrogen carriers, which

chemically bind hydrogen in a solid matrix, are being actively explored to overcome

these issues. By chemically binding hydrogen within a solid, these materials enable

safe, compact, and high­density hydrogen storage that could meet the demands of a

future “hydrogen economy,” in which hydrogen is produced and used as a widespread

fuel [1]. Indeed, solid­state hydrogen storage in certain hydride materials has shown the

potential for greater hydrogen density and safer handling than conventional tanks [2].

However, no single material yet satisfies all practical requirements: current candidates

face different trade­offs in storage capacity, release temperature, kinetics, and cost

[1, 4]. This section introduces the main classes of solid hydrogen carriers, including

metal hydrides, complex hydrides, and other chemical hydrides like ammonia borane,

discussing their potential and the challenges that motivate continued research.

1.1.1. Types of solid hydrogen carriers
Solid hydrogen carriers are materials that store hydrogen via chemical bonds or

adsorptive interactions in a solid matrix, releasing H
2
upon suitable triggers, such as

heat or water. This category encompasses a range of materials. In general, they can be

grouped into three families: metal hydrides, which are hydrides of elemental metals or

intermetallic compounds, such as MgH
2
and LaNi

5
H
6
; complex hydrides, ionic solids

in which hydrogen resides in polyatomic anions, such as borohydrides (NaBH
4
) and

alanates (NaAlH
4
); and chemical molecular hydrides, neutral compounds that store

hydrogen in covalent bonds and are solid under ambient conditions, such as ammonia

borane (NH
3
BH

3
). All of these materials offer material­based storage as opposed to

physical compression, and often feature a higher volumetric hydrogen density and

inherent safety since they don’t rely on high pressures [5].

Metal hydrides
Metal hydrides are compounds formed by the reaction of hydrogen gas with metals or

alloys, often yielding solid materials where hydrogen atoms occupy interstitial sites in a

metal lattice or form metal–hydrogen bonds [6]. Classic examples include alloys like

LaNi
5
H
6
, and simple metal hydrides like magnesium hydride (MgH

2
). Metal hydrides are

attractive because they can reversibly absorb and release hydrogen numerous times

by changing temperature or pressure, effectively acting as a rechargeable hydrogen

“battery”. They also tend to offer very high volumetric hydrogen densities, since the

hydrogen is stored in a compact solid matrix. Moreover, metal hydrides are safe

materials for hydrogen storage under mild conditions and can have higher hydrogen

densities than liquid hydrogen [6]. A notable case is alane (AlH
3
), which has a volumetric

hydrogen density about twice that of liquid H
2
[7].

Despite these advantages, metal hydrides often suffer from excess weight
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and thermal constraints. Many intermetallic hydrides contain heavy elements, so their

gravimetric hydrogen capacity is modest. LaNi
5
H
6
, for example, stores only about 1.4

wt% hydrogen [2], although it operates near room temperature with excellent kinetics [8].

Lighter metal hydrides like MgH
2
and lithium hydride LiH have much higher hydrogen

content: MgH
2
contains 7.6 wt% H

2
, and LiH contains 12.7 wt% H

2
[9]. These light

metal hydrides exemplify the gravimetric potential of metal hydrides; however, they are

too thermodynamically stable, requiring high temperatures to release hydrogen. For

instance, bulk MgH
2
only begins to desorb H

2
at roughly 300 ºC and above, with very

slow kinetics unless improved by catalysts or nanostructuring [10, 11]. LiH is even

more extreme as it is stable at nearly 700 °C, and thus is impractical for on­demand H
2

release by heating. Although LiH can release hydrogen readily if reacted with water, it

is highly reactive and corrosive, posing handling challenges [9]. Another illustrative

example is alane (AlH
3
). It contains approximately 10 wt% hydrogen and, as mentioned,

has an exceptional volumetric hydrogen density, but it is a metastable compound.

Rehydriding aluminum metal to AlH
3
requires enormous hydrogen pressures of up

to 7000 bar in bulk [7], making it very difficult to regenerate once decomposed. In

general, while metal hydrides are often fully reversible in theory, many have unfavorable

thermodynamics that demand either high temperatures or high pressures to cycle, and

their weight efficiency is a concern [1]. Research continues to improve metal hydrides

by alloying and catalysis, but as of now, all metal hydrides fall short in meeting the

necessary requirements for a viable hydrogen economy. The key challenges can be

summarized as insufficient storage capacity, slow reaction rates, and hydrogen release

occurring only at impractical temperature levels [1].

Complex hydrides

Complex hydrides are a broad category of hydrogen­rich compounds containing anionic

complexes such as borohydride [BH
4
]– or aluminohydride [AlH

4
]– , often paired with

lightweight metal cations (Li+, Na+, K+, Mg2+). These materials have attracted great

interest because they typically involve only light elements (H, B, Al, Li, etc.), giving them

very high gravimetric hydrogen densities which in many cases surpass those of simple

metal hydrides [12]. For example, borohydrides are among the most hydrogen­rich

solids known: lithium borohydride (LiBH
4
) has a theoretical hydrogen content of about

18.5 wt% [13], and sodium borohydride (NaBH
4
) contains 10.6 wt% H

2
[14]. Such high

hydrogen capacities exceed the U.S. DOE targets of 5–7 wt% usable hydrogen, and are

very appealing for lightweight storage [15]. Alanates have intermediate capacity and,

when doped with Ti­based catalysts, can reversibly hold approximately 5 wt%, but are

still much lighter than transition­metal hydrides. Complex hydrides also tend to be stable

solids under ambient conditions, making them nonvolatile, which is good for safety and

storage [12].

The main challenge with complex hydrides is achieving controlled hydrogen

release and uptake. These materials usually have strong covalent bonds in their anionic

groups (B–H, Al –H, etc.), which means high thermal stability and slow dehydrogenation

kinetics. As an illustration, NaBH
4
has a decomposition enthalpy of ≈110 kJ per mole H

2
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and does not release significant hydrogen until heated above about (500ºC) [14]. In fact,

if one simply heats solid NaBH
4
, it may melt and partially decompose to sodium metal

and boron, but liberates much less H
2
than expected because of side reactions like

phase separation and evaporation of sodium [14]. While not easily dehydrogenated

by heat alone, it is well known as a chemical hydrogen generator via hydrolysis to

produce H
2
at room temperature, making it useful for on­demand hydrogen via a fuel

cell. The trade­off is that this hydrolysis yields sodium metaborate (NaBO
2
) as a spent

product, and regenerating NaBH
4
from NaBO

2
is notoriously difficult with conventional

methods [14]. Similarly, LiBH
4
has a high decomposition temperature (380–400°C)

[16] and releases hydrogen in multiple steps, often forming stable boron compounds

that are hard to rehydrogenate. These high temperatures are undesirable for practical

systems. On the positive side, some complex hydrides can be induced to release H
2
at

lower temperatures through clever modifications: adding catalysts, making composite

mixtures, or nanoconfinement [17, 18]. To give an example, doping sodium alanate

(NaAlH
4
) with a small amount of Ti­based catalyst enables it to reversibly release

and reabsorb about 4–5 wt% hydrogen at 120–180°C, far lower than its undoped

decomposition temperature [19]. Nanoscale engineering is another approach: confining

hydrides in porous scaffolds can reduce particle size and alter thermodynamics, aiding

hydrogen release. Despite such advances, most complex hydrides remain irreversible

or only partially reversible under practical conditions. In summary, complex hydrides

offer some of the highest hydrogen storage densities and the appeal of solid­state

safety, but they face serious challenges in hydrogen release kinetics and especially in

reversibility. Many borohydrides and high­capacity complex hydrides either decompose

to inert solids that won’t take up H
2
again under mild conditions, or require very high

pressures and temperatures to re­hydrogenate [20].

Molecular Chemical Hydrides
Beyond the metal and complex hydrides, there are molecular chemical hydrides that

store hydrogen in covalent bonds within discrete molecules or polymeric frameworks.

The prime example is ammonia borane (NH
3
. BH

3
), a solid at room temperature that

has been intensely studied as a hydrogen storage material. Ammonia borane (AB)

contains 19.6 wt% hydrogen, making it one of the highest gravimetric hydrogen contents

of any stable compound, and a volumetric hydrogen density of about 146 g H
2
per liter of

solid [21]. It is also non­toxic and stable under ambient conditions, which makes it very

appealing on paper. AB releases hydrogen upon heating through a series of thermolysis

reactions: around 110 °C it begins to release H
2
, and with further heating up to 150 °C it

can liberate roughly two equivalents of H
2
(about 13–14 wt% of its hydrogen) in an

exothermic process [22, 23]. This hydrogen release is relatively low in temperature, and

researchers have developed catalysts to lower the release temperature or to achieve

more complete dehydrogenation [23]. However, ammonia borane exemplifies the key

challenges of chemical hydrides as the decomposition does not cleanly yield H
2
and a

simple spent fuel. Instead, it produces boron–nitrogen byproducts (e.g. polyborazylene

and borazine among others) that are chemically complex. Once AB has released its

hydrogen, the remaining spent material is a mixture of solid residues that are difficult

to reprocess back into AB. Regeneration of ammonia borane from these B–N spent
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products is a complex task requiring multiple chemical steps and substantial energy

input, which undermines its practicality [21]. Additionally, the hydrogen release from AB

can be accompanied by trace amounts of ammonia or borazine, impurities that can

damage fuel cells if not managed. Similar issues affect other high­hydrogen chemical

hydrides like hydrazine borane or metal amine­boranes, which have been explored

but often suffer from stability or handling issues [24, 25]. In general, the advantages

of chemical hydrides like AB are their extraordinarily high hydrogen content and the

possibility of rapid hydrogen generation at low temperature, while their disadvantages

include stability issues, potential side­product formation, and the lack of a simple

regeneration cycle [21].

In summary, solid hydrogen carriers present an innovative solution to store

hydrogen in a dense and safer form, aligning with the needs of a future zero­emission

energy landscape [1]. They offer clear benefits in theory (high hydrogen density, no

need for extreme pressurization, and potential for reversibility), but each class has

its own set of challenges in practice, from thermodynamic limitations to recharging

difficulties. The current state of research reflects a balancing act: improving the

performance of these materials (via catalysts, nanostructuring, new compositions) while

also developing processes to efficiently regenerate and reuse the carriers. Achieving

a practical closed­loop hydrogen carrier fuel cycle, paired with efficient, low­waste

regeneration, would be disruptive for the hydrogen economy. Figure 1.1 illustrates

this compromise explicitly, mapping the practical release temperature of representative

metal, complex, and molecular chemical hydrides against their achievable gravimetric

hydrogen capacities and regeneration capability.

Figure 1.1: Trade­off between practical hydrogen release temperature, gravimetric

capacity, and regeneration capability for representative solid carriers.

1.1.2. Towards the regeneration of sodium borohydride

Among the different solid hydrogen carrier alternatives, sodium borohydride (NaBH
4
)

stands out because it combines a good gravimetric capacity (10.92 wt% H
2
) with
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powder­form stability, benign handling, and an existing industrial supply chain [26].

These qualities make it one of the few materials realistic for on­board hydrogen

generation [12, 14]. It can also deliver hydrogen on demand through simple,

room­temperature hydrolysis (see Equation 1.1), yet it is non­volatile, non­pyrophoric,

and transportable without high­pressure cylinders or cryogenic insulation. This

unmatched safety­energy­density balance makes it particularly attractive for vehicles

and portable power systems [27, 28].

NaBH4 + (2 + 𝑥)H2O → NaBO2 ⋅ xH2O + 4H2 (1.1)

where 𝑥 is the level of hydration.

The critical limitation of NaBH
4
is the difficulty of regenerating it after use. When NaBH

4

releases hydrogen via hydrolysis, it is converted into sodium metaborate (NaBO
2
) or

related borates. Converting NaBO
2
back into NaBH

4
requires the input of considerable

energy and hydrogen, essentially reversing the original reaction. Conventional chemical

methods for NaBH
4
production, such as the Brown­Schlesinger process, are complex

and expensive, which have so far prevented NaBH
4
from being a truly sustainable

hydrogen carrier in a closed cycle [29]. This challenge has motivated researchers to

seek new regeneration methods that are more energy­efficient and practical. One

promising approach is mechanochemical regeneration in which a high­energy ball mill is

used to drive the chemical reduction of NaBO
2
back to NaBH

4
. Recent studies have

shown that by ball milling sodium metaborate with reductive agents, such as MgH
2
,

it is possible to synthesize NaBH
4
directly from its spent form at room temperature,

without the need for high­temperature furnaces or high­pressure hydrogen gas [17,

30]. This mechanochemical route essentially uses mechanical action in the form of

impact and shear forces to overcome kinetic barriers and facilitate the reaction of the

metaborate with H
2
­bearing solids, forming fresh NaBH

4
. While still in early stages,

such approaches hint at a feasible recycling loop for NaBH
4
that could dramatically

improve its practicality as a hydrogen carrier [31] (Figure 1.2).

Figure 1.2: Basic NaBH
4
closed­loop
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1.2. Mechanochemistry
Mechanochemistry is the branch of chemistry concerned with chemical reactions

induced by mechanical energy, typically by grinding or milling solid reactants [32].

Specifically in high­energy ball milling, mechanical forces from collisions and friction

drive reactions without the need for bulk solvents or high temperatures (see Figure 1.3)

[17, 33]. This solvent­free, room­temperature approach is attractive for sustainable

synthesis, as it avoids hazardous reagents and can enable transformations not

attainable by conventional methods [34]. Mechanochemistry has been applied across

materials science, from inorganic alloy formation to organic synthesis [33, 35, 36].

1.2.1. Reproducibility gap and standardization challenges

The outcomes of mechanochemical reactions are highly sensitive to milling conditions.

Important parameters include the ball­to­powder ratio (BPR), which represents the mass

ratio of milling media to reactant powders, the milling time, rotational or oscillation speed,

and other factors like ball size, fill volume of the jar, and even the type of mill [37, 38].

Despite this clear cause­and­effect cycle, mechanochemical reactions have a notorious

reputation for poor reproducibility since the literature underreports or overlooks some of

these parameters. For instance, significantly different product yields are often reported

for the same starting materials, owing to variations in milling conditions and equipment.

Factors like the exact jar geometry, material of the milling media, and even subtle

differences in how a procedure is executed (pre­treatment of reagents, temperature,

etc.) can also dramatically affect outcomes [39, 40].

In the context of solid hydrogen carriers, Kuziora et al. [41] kept a nom­

inal BPR constant but systematically varied jar volume, ball size, and powder mass

while testing the hydrogen­storage performance of MgH
2
. The resulting capacities

diverged widely, proving that a single BPR value cannot guarantee identical milling

conditions or outcomes. In other applications, Julien et al. [38] used in­situ Raman

spectroscopy inside a mixer mill to follow a Knoevenagel condensation and showed that

varying the milling frequency led to different regimes of reaction kinetics. Likewise, an

inter­laboratory benchmarking study concluded that dependencies on mill model and jar

size remain “globally overlooked” in published procedures, frustrating theory­to­practice

transfer and reproducibility [42]. Collectively, these findings illustrate the common pattern

Figure 1.3: Mechanical action inside milling machine
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of reporting only a fraction of relevant parameters, even though neglected variables

can affect yields or selectivity by orders of magnitude. Addressing that blind spot, for

example, by full disclosure of milling geometry, fill level, media composition, and liquid

additives, is imperative for genuine reproducibility and for building transferable kinetic

models. As expected, the same limitations are encountered for the mechanochemical

regeneration of NaBH
4
[17]. Figure 1.4 visualizes this issue by plotting the best­reported

regeneration yields of different studies against rotational speeds. Even within the narrow

1000­1450 rpm window, the yields can scatter by more than 20 percentage points, and

other studies cannot be placed in the abscissa at all because their mill speed was never

disclosed. The plot, therefore, makes the reproducibility gap tangible and underscores

the need for a complete mechanical descriptor set.

1.2.2. Real-Time monitoring and mechanistic understanding

Another fundamental limitation in mechanochemistry has been the difficulty of observing

and controlling reactions in real time. Ball milling typically occurs in sealed, opaque

jars undergoing rapid motion, which limits direct visual or spectroscopic monitoring of

the reaction progress [43]. This lack of real­time insight means that the mechanisms

of energy transfer, from mechanical to chemical, remain only partially understood.

Pioneering developments in the last decade have introduced in situ monitoring

techniques, such as time­resolved X­ray diffraction and Raman spectroscopy performed

on modified milling setups [38, 43], offering glimpses into phase transformations

during milling. However, such methods are still in their infancy and typically require

specialized, modified equipment. As a result, mechanochemical reactions are often

treated as “black boxes,” where only the initial and final states are known. An additional

Figure 1.4: Scatter of best­reported yields for the mechanochemical regeneration of

NaBH
4
versus the rotational speed of the ball mill. The large yield spread

highlights process variability and the impact of incompletely specified milling

conditions.
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limitation of this is that, while lab­scale equipment may be modifiable to include these

inspection technologies, the translation to large­scale equipment cannot be taken for

granted. This is critical since it has already been established that differences in

mills can lead to different mechanochemical outputs. Recent state­of­the­art reviews

emphasize that advanced computational simulations can bridge this gap, providing

a powerful complementary route for understanding and optimizing mechanochemical

transformations [44].

1.2.3. Scale-up limitations
Despite promising lab­scale results, translating mechanochemistry to industrial

production remains a major hurdle. Most successful reactions have been demonstrated

in small laboratory mills, and scaling up the process is non­trivial. The technology

developed in academic labs faces significant scale­up challenges before it can reach

industry [45–48].

One of the biggest obstacles is the lack of proven strategies for continuous

or large­volume mechanochemical processing. Very few demonstrations exist of

mechanochemical syntheses on the kilogram or ton scale, and conventional ball

mills operate in batch mode, which can become inefficient for large throughputs [45,

47]. There is ongoing research into adapting continuous milling techniques, such as

twin­screw extrusion, to perform mechanochemical reactions at scale [46]. For instance,

in an extruder, rotating screws can mash reactants together continuously, offering more

controlled conditions and easier scalability than batch ball mills [48]. Nonetheless,

significant innovation and investment are required to bridge the gap between lab

and industry, and to ensure that mechanochemical processes remain efficient and

controllable at scale.

1.3. Researchobjective & thesis outline
This thesis confronts a two­fold challenge. On the one hand, mechanochemical

NaBH
4
regeneration is a promising route towards a closed borohydride fuel cycle, yet

the published data remains fragmented and hard to reproduce. On the other hand,

mechanochemistry still lacks unified protocols, representative diagnostics, and scale­up

strategies. The goal of this work is therefore to close both gaps by delivering a robust,

transferable route to sustainable NaBH
4
regeneration, and a general template for

reliable, scalable mechanochemistry. The following main research question is therefore

defined:

Which mechanochemical conditions, descriptors, and reporting standards

enable reproducible, scalable, and energy­efficient regeneration of NaBH
4
?
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To unpack this main question, the following sub­research questions are defined:

• What are the key operational variables and interactions in mechanochemical

NaBH
4
regeneration, and do multiple operating windows produce comparable

yields?

• How can the internal dynamics of a mechanochemical process be linked to

machine­level operating conditions to facilitate reproducibility and transferability

across mills and scales?

• Does mechanochemical yield depend more on total mechanical input or its

partitioning between normal and tangential stressing, and how can we test this

experimentally?

• To what extent can the mechanochemical yield be predicted by coupling

mechanical descriptors with chemical stoichiometry via machine learning models?

• How can physics­based simulations, specifically discrete element modeling,

be accelerated through surrogate or reduced­order approaches to reduce

computational cost?

These questions outline the path from mechanistic understanding to scalable technology,

situating the work within the broader landscape of green chemistry innovation. The

thesis, therefore, unfolds in three distinct parts:

I (chapter 2) establishes an efficient experimental methodology that maps the

vast operational space of a typical mechanochemical process with a reduced set of

trials. This allows operational parameters to be ranked against yield targets and the

identification of statistical significance. Also, a water­based yield quantification protocol

replaces conventional handling of ethylenediamine and simultaneously produces a

“ready­to­use” solution of NaBH
4
.

II (chapter 3 and chapter 4) turns to physics­based modeling. In chapter 3,

Discrete Element Method (DEM) simulations are used to define a set of mechanically

invariant descriptors that collapse multiple milling conditions onto so­called master

curves. Framed in this way, any mill, at any scale, can be compared or tuned using a

single ’mechanical blueprint’, allowing fair comparisons between equipment and forward

predictions of conditions that favor a desired mechanochemical outcome. Then, in

chapter 4, the master curve framework is exploited to fairly assess the influence of

the distribution between tangential and normal stressing events in the system, thereby

providing the first unbiased benchmark for bulk­scale NaBH
4
mechanochemical reactivity.

III (chapter 5 and chapter 6) combines data­driven tools to extend both

reach and practicality. In chapter 5, machine learning models fuse experimental

conditions with the DEM­derived descriptors to predict regeneration across the entire

design space, steering experiments toward high­yield regions while cutting trial­and­error

costs. Finally, chapter 6 introduces a graph neural network surrogate that reproduces
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DEM physics at a fraction of the computational cost, lowering the entry barrier for rapid

mill design and scale­up studies.

Collectively, the three parts progress from systematic experimentation, through

mechanistic insight, to predictive and accelerated design of mechanochemical processes.

In doing so, the thesis offers both a concrete pathway for circular hydrogen carriers

based on NaBH
4
and a broadly applicable framework for next­generation industrial

mechanochemistry.
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2
Optimizationofoperational

variablesandinteractionsfor
NaBH4 regeneration

In this chapter, we investigate mechanochemical NaBH
4

regeneration from

NaBO
2
⋅ 4H

2
O and MgH

2
on a Retsch Emax ball mill. A screening design of experiments

identifies the key operational variables and their interactions. We map operating

windows in the space of rotational speed, milling time, BPR (ball­to­powder ratio), and

molar ratio, showing when different combinations reach comparable yields with different

trade­offs. A water­based method facilitates conversion quantification while avoiding

toxic solvents and produces a ready­to­use NaBH
4
solution.

Parts of this chapter are adapted from: Garrido Nuñez, S., Schott, D. L. and Padding, J. T. ‘Optimization

of operational parameters in the mechanochemical regeneration of sodium borohydride (NaBH
4
)’. In:

International Journal of Hydrogen Energy 97, 640­648 (2025).
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20 2. Optimization of operational variables and interactions for NaBH
4
regeneration

2.1. Introduction
The ongoing transition to low­carbon and no­carbon energy systems has incentivized

the creation of many green power generation solutions that have the potential to sustain

our energetic needs. This transition faces a great challenge in finding an effective and

efficient energy carrier that can keep up with the demands of high­energy industries and

applications such as maritime transport [1, 2]. One of the alternatives to mitigate fossil

fuel dependency is hydrogen, a clean energy carrier with zero emissions. However,

hydrogen storage and transportation in pure gaseous or liquid form is challenging due to

high­pressure or low­temperature working conditions [3, 4].

A potential solution involves using solid hydrogen carriers, which enable the storage

of hydrogen at ambient temperature and pressure conditions. Sodium borohydride

(NaBH
4
) has a high theoretical gravimetric hydrogen storage capacity (10.92 wt%)

and thus, is a promising solid hydrogen carrier [5]. Hydrogen can be released

via the hydrolysis of NaBH
4
(Equation 4.1) with dry or hydrated sodium metaborate

(NaBO
2
⋅ xH

2
O) as byproduct, typically referred to as spent fuel. Therefore, the

regeneration of NaBH
4
from the spent fuel is critical for considering it a viable contributor

to the energy transition since it would allow its usage in a circular, cheap, and

sustainable manner [6, 7].

NaBH4 + (2 + 𝑥)H2O → NaBO2 ⋅ xH2O + 4H2 (2.1)

where 𝑥 is the level of hydration.

Mechanochemical, electrochemical, and thermochemical methods have been

reported for regenerating NaBH
4
[6, 8, 9]. Thermochemical processes require

high­pressure and temperature conditions, while electrochemical methods tend to be

inefficient and can produce toxic or harmful byproducts that have a negative impact

on the environment. Mechanochemical methods, in contrast, are appealing and

environmentally friendly options because they function without the need for an electrolyte

solution and can be performed at room temperature and pressure conditions [6].

Within a mechanochemical process, the mechanical action of the system in­

duces the breakage of primary bonds, giving rise to surface reconstruction and chemical

reactions among the surrounding media as milling balls collide [10]. For the chemical

reaction to take place, a sufficiently large contact area and contact time must be involved

in the process. Otherwise, the reactants may not have sufficient interplay.

In the specific case of NaBH
4
, its mechanochemical regeneration has been reported

to be viable in high­energy mills [11–17]. A summary of the highest yield obtained in

different studies is presented in Table 4.1, which are based on the following five distinct

chemical processes.

NaBO2 + 2MgH2 → NaBH4 + 2MgO (2.2)

NaBO2 ⋅ 2 H2O + 4Mg → NaBH4 + 4MgO (2.3)

NaBO2 ⋅ 2 H2O + 4MgH2 → NaBH4 + 4MgO + 4H2 (2.4)

NaBO2 ⋅ 4 H2O + 6MgH2 → NaBH4 + 6MgO + 8H2 (2.5)
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NaBO2 ⋅ 2 H2O + 2Mg2Si → NaBH4 + 4MgO + 2 Si (2.6)

It can be noticed that significantly different yields have been achieved using the same

reactants. This variation is due to differences in the working conditions of the ball

mills used (e.g., rotational speed, fill ratio, ball size, jar shape, ball mill motion, or

ball­to­powder ratio (BPR)). These parameters fundamentally affect the mechanical

action within the milling jar. It is important to emphasize that mechanical conditions

depend on the specific ball mill and the collisions occurring inside the jar. Therefore,

simply replicating operational conditions does not guarantee the same chemical yield

unless the same mechanical action inside the jar is ensured. The process parameters

reported in the studies shown in Table 4.1 are presented in Table 2.2.

The results presented in Table 4.1 and Table 2.2 highlight the significant potential

of mechanochemistry in facilitating the regeneration of NaBH
4
, which serves as a

motivation for this study. However, it is worth noting that many authors have omitted

crucial details for the complete characterization of their experimental setup, thereby

hindering reproducibility.

Moreover, most authors typically investigate the impact of only one or two

operational variables at a time while holding the remaining variables constant. For

instance, Hsueh et al. [11] simultaneously varied milling time and molar ratio while

keeping rotational speed and BPR constant. In contrast, Lang et al. [14], Çakanyildirim

et al. [13], and Chen et al. [16] independently varied milling time and molar ratio

while maintaining the remaining variables fixed. Kong et al. [12] independently varied

milling time, molar ratio, and ball­to­powder ratio (BPR) while keeping the rest of the

variables constant. Notably, the work of Ouyang et al. [15] stands out as they studied

the simultaneous effects of varying milling time, molar ratio, and BPR. However, their

maximum yield fell short compared to other studies. Finally, Zhong et al. [17] also

analyzed the combined influence of milling time and molar ratio while keeping the other

variables constant.

It is understandable why authors have decided to follow this approach. The number of

Table 2.1: Reported yields for the mechanochemical regeneration of NaBH
4
.

Metaborate 2nd reactant Yield (%) Year Ref.

NaBO
2

MgH
2

76 2009 [11]

NaBO
2

MgH
2

71 2009 [12]

NaBO
2

MgH
2

74 2011 [13]

NaBO
2

MgH
2

89 2017 [14]

NaBO
2
⋅ 2H

2
O Mg 68 2017 [15]

NaBO
2
⋅ 2H

2
O MgH

2
90 2017 [16]

NaBO
2
⋅ 4H

2
O MgH

2
88 2017 [16]

NaBO
2
⋅ 2H

2
O Mg

2
Si 78 2017 [17]
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Table 2.2: Process parameters reported for the mechanochemical regeneration of

NaBH
4
. Parameters that were not specified in the original papers are

indicated with an en­dash (–).

Reference [11] [12] [13] [14]

Metaborate NaBO
2

NaBO
2

NaBO
2

NaBO
2

2nd reactant MgH
2
(98 %) MgH

2
(79.3 %) MgH

2
(99 %) MgH

2
(95 %)

Mass metaborate (g) 0.66 – 0.86 –

Mass 2nd reactant (g) 0.26 – 0.89 –

Total mass (g) 0.92 – 1.75 –

Molar ratio 2.8 2.0 2.6 2.7

Rotational speed (rpm) 1080 – 1450 –

Milling time (h) 6 2 12 12

Jar volume (mL) 65 – 45 –

Ball diameter (mm) 13 – 10/4 –

Number of balls 4 – 2/3 –

Ball volume in jar (%) 7 – 2.5 –

Ball­to­powder ratio (kg:kg) 39 50 10 50

Mill type SPEX 8000 QM­3A CertiPrep 8000M QM­3A

Milling vessel material Steel – – –

Yield (%) 76 71 70 89

Reference [15] [16] [17]

Metaborate NaBO
2
⋅ 2H

2
O NaBO

2
⋅ 4H

2
O NaBO

2
⋅ 2H

2
O

2nd reactant Mg (99.8 %) MgH
2
(99 %) Mg

2
Si (99.5 %)

Mass metaborate (g) 0.43 0.44 0.31

Mass 2nd reactant (g) 0.57 0.56 0.69

Total mass (g) 1.00 1.00 1.00

Molar ratio 5.5 5.0 3.0

Rotational speed (rpm) 1200 1200 1000

Milling time (h) 10 15 20

Jar volume (mL) 80 80 –

Ball diameter (mm) – – –

Number of balls – – –

Ball volume in jar (%) 8 8 –

Ball­to­powder ratio (kg:kg) 50 50 50

Mill type QM­3C QM­3C QM­3C

Milling vessel material Steel Steel –

Yield (%) 68 90 78
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experiments increases exponentially as more parameters are varied simultaneously,

and the effect can be even more dramatic depending on the number of levels or values

assigned to these variables. However, it is crucial to recognize that all these operational

variables impact the chemical yield. To provide a simple example, while it may be

intuitive to fix the rotational speed of the milling jar at a constant value that can deliver

sufficient kinetic energy to the milling balls, one needs to realize that it also directly

influences the collision frequency. This affects the number of events (effective collisions)

that ultimately enable the chemical reaction to take place. If one then decreases the

BPR to include more powder, the chemical yield will inevitably be reduced as the

collisions available to treat the total amount of powder have effectively changed. In this

situation, one could arguably compensate by increasing the rotational speed or the

milling time. Needless to say, the molar ratio also plays a key role as it impacts the

amount of effective collisions where both reactants are crushed together. This chain of

events can be visualized in Figure 2.1.

Figure 2.1: Graphical model of variable interplay

As a result of the previous observations and the insights gained by the studies

shown in Table 2.2, this study aims to optimize and enhance the understanding of

the mechanochemical regeneration of NaBH
4
by investigating the individual and joint

effects of milling time, BPR, molar ratio, and rotational speed on the chemical yield.

Consistent with our prior investigations, we maintain a fill ratio of 10%, achieved with

twenty­four 10 mm milling balls. In our milling machine, this fill ratio achieves an optimal

balance between normal and tangential dissipation during collisions, while the size of

milling balls primarily affects the distribution of energy dissipation per rotation cycle [18].

Furthermore, we opt for the chemical pathway consisting of NaBO
2
⋅ 4H

2
O and MgH

2

(Equation 3.27) as this reaction has shown to enable high conversion yields and it

eliminates the need to dedicate additional energy drying the sodium metaborate or to

artificially create a hydrogen atmosphere inside the milling jar [16].



24 2. Optimization of operational variables and interactions for NaBH
4
regeneration

2.2. Materials andmethodology
2.2.1. High-Energy ball milling

The Emax high­energy ball mill is a device produced and distributed by the German

company Retsch. It offers a novel approach to ball milling by combining high friction

and impact results with a temperature control system, allowing for controlled grinding.

The system was set up to allow a maximum temperature of 50 ∘C. The machine can
allocate proprietary grinding jars with 125 ml of volume that follow a circular motion with

a rotational speed 𝑛 up to 2000 revolutions per minute (corresponding to an angular

frequency of 𝜔 = 2𝜋𝑛/60 = 209 rad/s) with an amplitude (radius) 𝐴 of 1.7 cm, see

Figure 6.1.

Figure 2.2: Schematic of jar movement

Stainless steel milling balls with a diameter of 10 mm (1.4034 G100 DIN 5401),

purchased from Kugel Pompel, were utilized in all experiments.

2.2.2. Chemicals

Hydrated sodium metaborate (NaBO
2
⋅ 4H

2
O) (≥ 99%) was purchased from Sigma­

Aldrich. Magnesium hydride (MgH
2
) (≥ 99.9%, ≤ 50𝜇𝑚) was purchased from Nanoshel.

All chemicals were used as received. Additionally, all samples for ball milling were

prepared in a glove box under an Argon environment where concentrations of oxygen

and water were below 0.1 ppm.

2.2.3. Equipment cleaning

To preserve similar conditions for all our experimental cases, after every 3 experiments,

the jars were cleaned, and the milling balls were replaced with new ones. We have

found that cleaning the jar by milling 1 g of silica sand and adding 10 ml of isopropyl
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alcohol provides excellent results in removing any leftover contamination. The typical

duration for the cleaning process was 6 minutes. Upon finishing, the jar is then rinsed

thoroughly with pure water, air­blasted with compressed air, and left to dry open to the

ambient.

2.2.4. Quantification of conversion yield

In the studies presented in Table 4.1, the standard approach for quantifying the

regenerated NaBH
4
via mechanochemistry involves utilizing ethylenediamine (EDA).

EDA possesses a distinct advantage as it selectively dissolves NaBH
4
while leaving

the remaining reactants intact, facilitating an efficient separation process through

subsequent filtering and sublimation. However, EDA poses risks such as corrosion,

toxicity, and health hazards. Hence, we propose a cheaper, safer, and more

environmentally friendly method to assess the conversion yield, leveraging any

unconverted MgH
2
in the process.

After the ball milling process is completed, the jar is opened to the atmosphere, and

pure water is added. This promptly initiates the self­hydrolysis of unconverted MgH
2
,

elevating the solution’s pH above 11 within seconds [19]. Hydrogen is released

from this hydrolysis until dense passivation layers of magnesium hydroxide form over

unconverted magnesium hydride [20–22]. While hydrogen released in this step is

carefully disposed of, it could also be utilized to enhance overall hydrogen release in the

system. The half­life of this solution, representing the time for half of the NaBH
4
solution

to decompose, can be calculated as 10.2 hours at pH = 11 and temperature of 25 ∘C,
based on the work by Kreevoy and Jacobson (Equation 2.7) [23]. Thus, a significant

advantage of the rapid pH increase is the immediate inhibition of NaBH
4
self­hydrolysis,

minimizing hydrogen losses for quantification purposes [24, 25].

log10(𝑡1/2) = pH − (0.034𝑇 − 1.92) (2.7)

where 𝑡1/2 represents the half­time in minutes and T is the temperature in Kelvin.

After the stabilization of MgH
2
by self­hydrolysis, the jar is sealed again with

a lid featuring a unidirectional flow valve and connected to a gas­collection over

water system. Subsequently, Ru­based catalysts are introduced into the solution

within the jar, and the temperature is raised to 80∘C. This catalyst specifically assists
the hydrolysis of NaBH

4
, as the hydrolysis of MgH

2
remains relatively inactive at

temperatures below 200∘C [26–30] for non­catalized mixtures and 146∘C for catalyzed
mixtures [31, 32]. Moreover, Ru­based catalysts are favored for NaBH

4
hydrolysis

due to their high hydrogen generation rates, durability, and efficient catalytic activity,

particularly in comparison to other metals like Pt or Pd. These catalysts are well­suited

for hydrogen­on­demand applications because of their rapid reaction rates and stability

under various conditions [33–35]. Independent experiments using commercially

available NaBH
4
demonstrated that the catalyst can hydrolyze more than 99% of these

solutions under the conditions of our experimental setup.

When the hydrogen release ceases, we assess the actual volume of hydro­



26 2. Optimization of operational variables and interactions for NaBH
4
regeneration

gen released against the theoretical volume, derived from the ideal gas law, that

would have been obtained if all initial NaBO
2
⋅ 4H

2
O had converted to NaBH

4
(refer to

Equation 3.27). This method enables the quantification of the chemical conversion yield

without the need for additional separation steps, chemicals, or equipment. Although the

accuracy may not reach the same level as separating with EDA, it offers a cleaner,

cheaper, and simpler process sufficient to estimate the influence of the investigated

operational variables. Furthermore, it facilitates the production of a ”ready­to­use”

solution, the half­life of which can be extended by further pH or temperature adjustments.

Such a solution offers a new approach to storing regenerated NaBH
4
and streamlines

parallel operations. Moreover, the low solubility of the remaining solids in the jar, namely

MgO and Mg(OH)
2
, allows for a simple and straightforward separation process via

filtration.

2.2.5. Experimental cases definition: Fractional design of
experiments

In this paper, we investigate the simultaneous effects that varying molar ratio, BPR,

milling time, and rotational speed have on the mechanochemical conversion yield. In

principle, the number of experimental cases 𝑛𝑐𝑎𝑠𝑒𝑠 is defined by Equation 2.8.

𝑛𝑐𝑎𝑠𝑒𝑠 = 𝑚
𝑥 (2.8)

Where 𝑚 is the number of possible values (or levels) for each variable and 𝑥 is the
number of variables (or factors).

By defining three general levels for each of the four variables (high(2), medium(1), and

low(0)), we can account for potential non­linear behavior, and the total number of cases is

81. The number of experiments is prohibitive due to time, cost, and equipment availability

constraints. As a result, we decided to employ a fractional design of experiments

technique, namely screening, to reduce the number of cases needed to identify pertinent

information about the main effects and two­factor interactions on the conversion yield [36].

As expected, this approach has some limitations. The most relevant is the

risk of confounding, which binds together the effects of multiple factors, potentially

leading to inaccurate conclusions about the true relationships between them. To

minimize this risk, we select a resolution of the fourth (IV) degree, reducing the total

number of experiments to 27. This configuration has no main effects confounded with

interactions, but at least one pair of two­variable interactions is confounded together

[37]. To define the values for each level, it is important to define a wide and reasonable

range [38]. For this, we use as a reference both the operational limitations of our milling

machine and the process parameters shown in Table 2.2. The levels for BPR (A) are

defined as 10, 30, and 50. In the case of molar ratio (B), we use a molar ratio of 33%,

66%, and 100% compared to the stoichiometric value for MgH
2
. The milling time (C) is

varied between 5, 12.5, and 20 hours. Finally, the rotational speed (D) is set to 600,

800, and 1000 rpm. To ensure robustness, we applied randomization in the selection

order of cases throughout the experimental process. Key cases with high conversion
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results were repeated twice to confirm reproducibility. The repeatability tests showed a

maximum variation of 2.5%, which is significantly smaller than the variation observed

between different parameter settings. Therefore, we do not include error bars in the

interaction plots. The final screening design is shown in Table 2.3, which was created

with Altair’s HyperStudy v2022.1.

2.3. Results andDiscussion
In this section, the results of the experimental cases are presented, and we leverage

the screening design of experiments to assess the relevance of each of the studied

Table 2.3: Screening design of experiments: experimental factors and levels.

Case BPR (a) Molar ratio (b) Time (h) (c) Speed (rpm) (d) Treatment code

1 10 8 5 600 0000

2 10 8 12.5 800 0011

3 10 8 20 1000 0022

4 10 10 5 600 0100

5 10 10 12.5 1000 0112

6 10 10 20 600 0120

7 10 12 5 1000 0202

8 10 12 12.5 600 0210

9 10 12 20 800 0221

10 30 8 5 800 1001

11 30 8 12.5 1000 1012

12 30 8 20 600 1020

13 30 10 5 1000 1102

14 30 10 12.5 600 1110

15 30 10 20 800 1121

16 30 12 5 600 1200

17 30 12 12.5 800 1211

18 30 12 20 1000 1222

19 50 8 5 1000 2002

20 50 8 12.5 600 2010

21 50 8 20 800 2021

22 50 10 5 600 2100

23 50 10 12.5 800 2111

24 50 10 20 1000 2122

25 50 12 5 800 2201

26 50 12 12.5 1000 2212

27 50 12 20 600 2220
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operational variables: BPR (A), molar ratio (B), milling time (C), and rotational speed

(D). Additionally, we evaluate the linear (L) and quadratic (Q) dependency of each

operational variable to identify trends in yield performance. Then we assess specific

cases of interest that are worth discussing in more detail. The conversion results, along

with the linear and quadratic mapping, are presented in Table 2.4.

Table 2.4: Conversion results for the screening experiments. Linear (L) and quadratic

(Q) orthogonal contrasts are shown for the coded factors A–D: A = BPR, B =

molar ratio, C = milling time, D = rotational speed.

Case Treatment Yield (%) AL AQ BL BQ CL CQ DL DQ

1 0000 12 ­1 1 ­1 1 ­1 1 ­1 1

2 0011 22 ­1 1 ­1 1 0 ­2 0 ­2

3 0022 30 ­1 1 ­1 1 1 1 1 1

4 0100 28 ­1 1 0 ­2 ­1 1 ­1 1

5 0112 39 ­1 1 0 ­2 0 ­2 1 1

6 0120 45 ­1 1 0 ­2 1 1 ­1 1

7 0202 40 ­1 1 1 1 ­1 1 1 1

8 0210 61 ­1 1 1 1 0 ­2 ­1 1

9 0221 73 ­1 1 1 1 1 1 0 ­2

10 1001 26 0 ­2 ­1 1 ­1 1 0 ­2

11 1012 37 0 ­2 ­1 1 0 ­2 1 1

12 1020 42 0 ­2 ­1 1 1 1 ­1 1

13 1102 50 0 ­2 0 ­2 ­1 1 1 1

14 1110 71 0 ­2 0 ­2 0 ­2 ­1 1

15 1121 88 0 ­2 0 ­2 1 1 0 ­2

16 1200 21 0 ­2 1 1 ­1 1 ­1 1

17 1211 32 0 ­2 1 1 0 ­2 0 ­2

18 1222 49 0 ­2 1 1 1 1 1 1

19 2002 25 1 1 ­1 1 ­1 1 1 1

20 2010 62 1 1 ­1 1 0 ­2 ­1 1

21 2021 74 1 1 ­1 1 1 1 0 ­2

22 2100 31 1 1 0 ­2 ­1 1 ­1 1

23 2111 73 1 1 0 ­2 0 ­2 0 ­2

24 2122 90 1 1 0 ­2 1 1 1 1

25 2201 41 1 1 1 1 ­1 1 0 ­2

26 2212 62 1 1 1 1 0 ­2 1 1

27 2220 57 1 1 1 1 1 1 ­1 1
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2.3.1. Analysis of variance (ANOVA)

The main principle behind an analysis of variance (ANOVA) is to partition the total

variation in experimental data into different components, using sums of squares, to

assess how well a statistical model fits the data. Including all relevant operational

variables in the model enables the evaluation of individual statistical significance in

influencing the outcome variable. The mapping presented in Table 2.4 was used to fit

the models to assess the statistical significance of each variable, as well as to examine

the dominance of linear versus quadratic effects. The linear mapping, denoted by ’L’ for

each factor (e.g., AL, BL), is derived directly from the treatment combination and follows

this pattern: 0 is mapped to ­1, 1 to 0, and 2 to 1. For instance, in case 9, where the

treatment combination is defined as 0221, the mappings are as follows: AL is mapped

to ­1, BL and CL are mapped to 1, and DL is mapped to 0. The quadratic mapping,

denoted by ’Q’ (e.g., AQ, BQ), is then generated by squaring the linear values. However,

this method results in identical values for zero, which is not ideal. To address this, we

assign a value of ­2 to the quadratic components corresponding to a linear value of 0

[39]. Returning to the example of case 9, AQ is calculated by squaring AL, resulting in 1,

while BQ and CQ are also 1 after squaring their respective linear components. Finally,

DQ is assigned a value of ­2 because the corresponding linear component is 0.

Once the mapping is established, a full ANOVA model was fitted, incorporat­

ing all factors and their interactions to assess their effect on the response variable.

This analysis allows for the identification of significant factors and interactions, setting

the stage for a more detailed examination of the individual contributions of linear and

quadratic effects.

Subsequently, a separate ANOVA model was used to specifically evaluate the linear

and quadratic components of each factor. This approach helped to clarify whether the

relationship between the factors and the response variable was predominantly linear or

quadratic. By comparing the results from both models, the most influential factors were

identified, providing a deeper understanding of their impact on the response variable. A

p­value is then employed as a metric to balance the risk between making type 1 errors

(false positives) and type 2 errors (false negatives). Here, we opt for a cutoff p­value of

0.05 to determine statistical significance. The selection of this value means that there is

a 5% chance of observing the obtained data if the null hypothesis is true (i.e., that the

relevance of an operational variable does not affect the chemical yield). The results of

the ANOVA are presented in Table 2.5.

The results presented in Table 2.5 indicate that the BPR, molar ratio, and milling time

are statistically significant in affecting the yield of the mechanochemical regeneration

of NaBH
4
. Additionally, the confounded two­factor interaction (AB, CD) between

BPR/molar ratio and milling time/rotational speed also has statistical relevance. The

ranking of these variables is effectively visualized with the Pareto plot in Figure 2.3.

In this Pareto plot, the F­value is used to rank the significance of each factor and

interaction. The F­value quantifies the ratio of variance explained by a factor relative to

the variance not explained by the model. A higher F value indicates a greater impact on

the response variable.
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Table 2.5: Analysis of variance (ANOVA) for the screening design. Main factors A–D

correspond to: A = BPR, B = molar ratio, C = milling time, D = rotational speed.

“L” and “Q” denote orthogonal linear and quadratic contrasts, respectively.

Source of variation Degrees of freedom. Sum of squares 𝑝­value

A (BPR) 2 0.153 0.013

AL 1 0.151 –

AQ 1 0.002 –

B (Molar ratio) 2 0.191 0.007

BL 1 0.062 –

BQ 1 0.129 –

C (Milling time) 2 0.434 0.0009

CL 1 0.417 –

CQ 1 0.017 –

D (Rot. speed) 2 0.023 0.293

DL 1 0.003 –

DQ 1 0.020 –

AB, CD 6 0.270 0.011

AC, BD 6 0.050 0.286

AD, BC 6 0.009 0.874
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Figure 2.3: Pareto plot of operational variables

The success in the mechanochemical yield has the strongest correlation with the milling

time of the process. This is supported by the findings of previous studies as presented

in Table 2.2 where it can be seen that high conversion yields necessitate long milling

times. Moreover, while a proper individual selection of molar ratio and BPR is also

significant for the success of the process, it is worth noting that they are affected by

each other. As a consequence of this, their influence on the chemical conversion is

leveled. This interaction has the risk of confounding with the two­factor interaction

between milling time and rotational speed. However, our results suggest that rotational

speed is not statistically significant in this study, and thus, the risk of confounding is

minimized. The lack of statistical significance of rotational speed is intriguing since

previous studies consistently rely on high rotational speeds (> 1000 rpm) to achieve high
yields. Our findings suggest that this high energetic input is unnecessary, as other

operational variables will dominate the process. This result is compelling because it can

decrease energy requirements and the wear experienced by the milling balls and jar

during the process. Specifically, we observed that at higher rotational speeds (> 1000
rpm) in the Emax, the material loss from the milling balls can become so significant that

it contaminates the sample. One potential explanation is that the Emax can supply

sufficient energy to regenerate NaBH
4
even at comparatively low rotational speeds.

However, quantifying this is challenging with current state­of­the­art methods, as ball

milling machines are often treated as black boxes. This is an area we plan to investigate

further in future studies.

The results presented in Table 2.5 also provide a means to quantify linear

and quadratic trends among individual factors. This is achieved by comparing the sum of

squares between linear and quadratic terms. Specifically, the evolution of ball­to­powder

ratio (BPR) and milling time is linearly explained, whereas the molar ratio is explained

quadratically. This implies that there exists an optimal point for the molar ratio beyond

which the chemical yield will be impacted negatively. This result is supported by the

findings of Chen et al. [16] and can be visualized in the interaction plots presented in

Figure 2.4. These interaction plots are created by grouping the data based on two
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selected factors and plotting the average yield for each combination of their levels.

Variables not plotted are averaged out, meaning their effects are integrated into the

overall means, allowing the focus to be on the interaction between the plotted factors.

Interestingly, the quadratic dependency of the molar ratio tends to become linear as the

second interacting factor decreases in level (A, C = ­1). This behavior is observed in

both interaction plots, but the slope is considerably different. In the case of the low

BPR, the increase in molar ratio results in higher yields, whereas in the case of low

milling time, the increase in molar ratio leads to stagnation. The effect of milling time is

straightforward to explain, as it is a critical variable in the process: longer milling times

allow more opportunity for the quadratic dependency to exert influence, thus increasing

yield. In contrast, the behavior with BPR presents a more intriguing phenomenon. The

results suggest that the maximum yield shifts as BPR changes. Although the static

nature of the selected levels prevents precise identification of these maxima, the trend

indicates that a lower BPR requires a higher molar ratio to achieve maximum yield

values. While this could potentially allow for the regeneration of more NaBH
4
in the

same batch, it also implies an increased waste of material due to the need for a greater

excess of MgH
2
, which is undesirable.

The other statistically significant confounded interaction (C, D), milling time/

rotational speed, may also be analyzed using the interaction plot shown in Figure 2.5,

even if rotational speed is not statistically significant as an individual factor.

As expected, longer milling times result in higher overall conversion yields, as shown by

the green curve where C (milling time) = 1 (20 hours). However, the same plot illustrates

why rotational speed is not a significant variable for improving yield in this study. At each

level of milling time, the highest average yield occurs at different rotational speeds,

indicating that other variables are more influential in the process. It is worth highlighting

that when shorter milling times are used (C = ­1), the average yield increases linearly

with higher rotational speeds, likely due to the increased number of collisions. However,

(a) (b)

Figure 2.4: (a) Interaction plot of BPR (A) and Molar ratio (B). (b) Interaction plot of

Milling time (C) and Molar ratio (B). BPR levels: ­1 = 10, 0 = 30, 1 = 50;

Molar ratio levels: ­1 = 33%, 0 = 66%, 1 = 100%; Milling time levels: ­1 = 5 h,

0 = 12.5 h, 1 = 20 h.
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Figure 2.5: Interaction plot of Milling time (C) and Rotational speed (D). Milling time

levels: ­1 = 5 h, 0 = 12.5 h, 1 = 20 h; Rotational speed levels: ­1 = 600 rpm,

0 = 800 rpm. 1 = 1000 rpm.

the average yields for short milling times never reach those achieved with longer milling

times (C = 0, 1). For these longer milling times, the average yields intersect, indicating

that with sufficient milling time, other variables in the process become more influential

and the correlation with rotational speed is lost. It is also notable that high rotational

speeds (D = 1) lead to convergence of the average yield regardless of the remaining

variables. This does not necessarily mean that maximum performance is achieved under

these conditions, but it does help to standardize the results, effectively brute­forcing the

conversion. This may explain why many of the results shown in Table 2.2 report high

rotational speeds with little care for the remaining operational variables.

Lastly, it is important to highlight that the statistical significance of each individual factor

and the corresponding two­factor interactions are subject to the levels used in this

study. We have explained the rationale behind the value selection for each level in

subsection 2.2.5. Naturally, for the sake of the discussion, had we selected a broader

range in rotational speed, its statistical significance in the process could have increased.

2.3.2. Specific case analysis

The results in Table 2.4 show that case 24 achieves the highest conversion yield (90%)

in this study. This outcome is obtained with a BPR of 50, an excess molar ratio of 66%,

a milling time of 20 hours, and a rotational speed of 1000 rpm. These conditions allow

us to match the highest yield reported in the literature while reducing the rotational

speed by 20% [16]. While this result is notable for achieving the same yield with lower

energy requirements, it is also important to consider if other cases in this study, given

the broad range of operational conditions, might be of interest.
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The operating conditions of case 15 are particularly attractive as they achieve a

regeneration yield of 88% while reducing the BPR by 40% and the rotational speed by

an additional 20%. This supports our earlier observation that rotational speed does not

statistically affect the conversion yield. Achieving nearly identical results with a reduced

BPR demonstrates significant potential for optimizing the process conditions. This is

also evident in Figure 2.4(a). While a high BPR consistently yields high conversion rates

regardless of the molar ratio, reducing the BPR requires more precise fine­tuning to

maintain high yields, thus narrowing the range of high performance. Similar findings are

reported in Table 2.2, where Çakanyıldırım et al. [13] achieved a 70% yield with a low

BPR of 10. In other words, lenient operating conditions (e.g., high BPR, long milling

times, and high rotational speed) facilitate achieving high conversion yields but are

generally more costly and less efficient. Conversely, more stringent conditions reduce

the range within which the mechanochemical process can obtain high conversion yields,

but they offer performance benefits.

The previous observations clearly demonstrate the critical role of milling time

in achieving high conversion yields, as both cases 15 and 24 required 20 hours of

operation. According to Figure 2.4(b), while there is a noticeable difference in yields

between processing times of 12.5 hours and 20 hours, the difference between 12.5

hours and 5 hours is much more significant. This is highlighted by cases 23 and 14,

which achieve yields of 73% and 71%, respectively, with only 12.5 hours of milling.

Thus, reducing the milling time by 37.5%, from 20 to 12.5 hours, results in only a 17%

decrease in yield. This finding is economically significant and suggests that a shorter

milling time could be advantageous. A detailed techno­economic analysis could be of

interest to further explore this potential benefit.

Finally, cases 1­9, which use a BPR of 10, generally perform poorly, yield­

ing low conversion rates that are not appealing. This performance only improves with a

significant excess of MgH2, which is not technically or economically attractive since the
resulting MgO needs to be managed for a circular fuel cycle. Instead of using lower

BPRs to process more material in the same batch at the expense of wasted material,

it would be more advantageous to develop a larger machine that can replicate the

mechanical conditions of the Emax. We plan to quantify these mechanical conditions in

future research.

2.3.3. Iron contamination analysis
Given the highly abrasive environment inside the milling jar, it is relevant to estimate

the expected levels of iron contamination resulting from the wear experienced by the

milling balls. A straightforward method for estimating contamination levels involves

weighing the milling balls before the milling process and after cleaning them. For this,

we examine the wear experienced by the balls at rotational speeds of 1000 rpm, and

additionally, we implement 1200 rpm to serve as a comparison benchmark. These

tests were conducted with a milling time of 20 hours and a BPR of 50, minimizing the

amount of powder. Thus, this setup increases the potential percentage of impurities in

the powder and reduces damping, resulting in more frequent and energetic collisions.
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Therefore, this approach allows us to examine the worst­case scenario.

Table 2.6: Ball wear and resulting iron contamination measured after milling.

Ball size
(mm)

Speed

(rpm)
Unused
mass (g)

Used
mass (g)

Weight

loss (%)
Wear
(g)

Fe contam.
(%)

10 1200 97.06 96.73 0.34 0.323 17

10 1000 97.06 96.94 0.12 0.117 6

As shown in Table 2.6, operating within the rotational speed range of 600­1000 rpm

allows us to keep contamination levels below 6% even under the most abrasive

conditions. If the milling time, BPR, or rotational speed are further reduced,

contamination levels are expected to also decrease. This approximation does not

account for contamination from the jar; however, we anticipate this to be minimal, as

a layer of powder rapidly coats and protects the entire jar surface during the milling

process.

2.4. Conclusions
We have conducted a comprehensive study on the importance of operational variables

in the mechanochemical regeneration of NaBH4, including ball­to­powder ratio, molar
ratio, milling time, and rotational speed. Our results, covering a wide range of these

variables, provide valuable insights for optimal selection and prioritization in future

developments. Additionally, we introduced an inexpensive and straightforward method

to quantify regeneration yield without additional chemicals, allowing the production of a

’ready­to­use’ solution for on­demand hydrogen release.

Using a screening design of experiments, we investigated the influence of

each operational variable on reaction yield. Our findings show that milling time is

the most significant factor, followed by molar ratio and the interaction between molar

ratio and ball­to­powder ratio. These results align with current state­of­the­art and

offer insights into why previous studies selected specific conditions for high yields.

We also found that rotational speed, often set at high values (i.e., >1000 rpm), does

not significantly impact conversion yield compared to other variables. However, high

rotational speeds homogenize yields, making them more consistent regardless of other

conditions. While this doesn’t ensure high yields, it results in yields converging toward

an average value, which may explain their common use despite less optimization of

other variables.

We reproduced the highest conversion yield reported using NaBO2 ⋅ 4 H2O
and MgH2, with adjustments including a 20% reduction in rotational speed,

offering energy savings. Given the wide range of conditions explored, we

identified other attractive scenarios that, while not achieving the highest yields,

offer economic advantages by processing more powder per batch or reducing milling time.
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The ranking of operational variables holds within our experimental range. For instance,

an extremely low rotational speed, like 10 rpm, would significantly reduce yield, despite

being statistically insignificant in our analysis. This underscores the need for careful result

interpretation and highlights substantial opportunities for optimization and future scale­up.

This work advances understanding of the complex interactions in the mechanochemical

regeneration of NaBH4. While we examined many variables, we believe the fill ratio,

kept constant in this chapter, merits further exploration due to its potential impact

on processing and yield. To address this, the next chapter uses discrete element

simulations to characterize the mill’s internal dynamics and map them to machine­level

conditions (speed, fill ratio, ball size), establishing a mechanical basis for the operating

windows identified here.
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3
Linkinginternaldynamicsto

machine-leveloperating
conditions.

Having mapped the experimental landscape in chapter 2, we move inside the milling jar

to link internal dynamics to machine­level operating conditions via Discrete Element

Method (DEM) simulations. We vary rotational speed, fill ratio, and ball size to

characterize normal and tangential dissipation across all relevant collisions in the mill,

and we define setup­independent mechanical descriptors (mean normal/tangential

energy per collision and specific collision frequency). From these descriptors, we

construct master curves that reveal distinct operational regimes and define transferable

metrics for reproducibility and scale­up. Used in inverse mode, the curves can

predict combinations of machine­level operational conditions that reproduce specified

internal­dynamics configurations.

Parts of this chapter are adapted from: Garrido Nuñez, S., Schott, D. L. and Padding, J. T. ‘Predictive

models for energy dissipation in mechanochemical ball milling’. In: Powder Technology 457, 120919

(2025).

43



44 3. Linking internal dynamics to machine­level operating conditions.

3.1. Introduction

High­energy ball milling is a versatile method that harnesses mechanical forces

to drive physical and chemical material transformations. In recent years, it has

emerged as an attractive technique that can support green chemistry, offering synthesis

capabilities without reliance on organic solvents or extreme temperature­pressure

conditions [1, 2]. Its application in various domains, such as sodium borohydride

(NaBH
4
) mechanochemical regeneration, showcases the growing preference for this

novel mechanical method over traditional chemical routes [3]. It has also opened up

the possibility of obtaining stable supramolecular and organic compounds that would

otherwise be hard or impossible to obtain with traditional methods [2]. Additionally, it has

been shown to facilitate ultra­fine grinding and the amorphization of crystalline materials

below glass transition temperatures [4, 5]. Nonetheless, regardless of the application, an

important challenge lies in comprehending and predicting the key mechanical dissipation

interactions that influence the success of the process and that are fundamental for

optimization and up­scaling [6].

Laboratory­scale milling processes are typically carried out in machines known as ball

mills. The function and usage of these machines can vary according to the motion they

induce, the size and density of the milling balls used to impact the processed material,

and the shape of the container where they are placed. For example, shaker ball mills

follow a linear left­to­right motion, promoting head­on impacts between the milling balls

where normal energy transfer dominates, and are typically used with small samples. On

the other hand, planetary ball mills use centrifugal forces by inducing a double­axis

rotational motion. These centrifugal forces contribute towards tangential energy transfer

and attempt to emulate the working mechanism behind industrial­sized roller mills in

which potential energy is exploited, offering a direct path for scaling up [2]. However,

these are only two general types of ball mills. As applications diversify and increase in

complexity, specialized milling machines tailored to distinct motions and mechanical

phenomena emerge. While the use of specialized machinery may offer benefits to

individual use cases, it also highlights a pressing challenge: the lack of fundamental

understanding regarding the underlying phenomenology makes reproducibility across

different devices and scales problematic [1, 2].

Currently, some control on the outcome of a milling process can be offered

with the definition of operational parameters, such as rotational speed or fill ratio.

However, it has become apparent that when the process’s complexity increases, or

efficiency and scale­up become relevant, this is no longer sufficient [1]. We hypothesize

that distinguishing between normal and tangential energetic contributions in ball

milling becomes critical due to their distinct mechanical effects. Normal interactions

predominantly induce compression forces, causing direct contact and facilitating material

compaction or deformation. In contrast, tangential interactions induce shear forces,

resulting in sliding or relative motion between surfaces. Understanding these distinctions

is vital as they dictate energy transfer mechanisms, influencing the extent of particle

deformation and the resultant effects, such as fragmentation, amorphization, or chemical

conversion.
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To tackle these limitations, some attempts have been made to characterize

milling processes from the point of view of the fundamental mechanics inside the

milling jar. Chen et al. [7] make use of DEM (Discrete Element Method) simulations

to study the dynamics of a shaker ball mill and quantitatively describe the collision

events that take place during a mechanical alloying process. The research focused

on the energy dissipation that occurs as a result of ball­ball and ball­wall interactions

by analyzing the changes in kinetic energy before and after collision. Although the

study provides valuable information, it falls short in distinguishing between the roles

of normal and tangential dissipation caused by impact and shearing collisions, which

affect how the processed material is treated. Following a similar approach, Broseghini

et al. [8] studied how varying the shape of the milling jar affected the efficiency of

a high­energy planetary mill. To do this, an upper bound of the energy available for

grinding is approximated using the same principles of kinetic energy transformation, with

the main difference that the velocity vectors are decomposed into their normal and

tangential components to distinguish the contribution of impacts and shearing. While

this approach allows a more in­depth analysis of the different mechanical phenomena

inside the jar, the approximations assume that the milling balls do not rotate and

the contact model used is not capable of taking into account the non­linear elastic

contact behavior of ball­ball and ball–wall interactions. Moreover, we hypothesize that

assessing the interaction between the ball and the wall by measuring the change

in kinetic energy will not accurately reflect the true extent of the impact. This is

because the energy transferred from the wall to the ball could increase the ball’s kin­

etic energy, making it challenging to precisely determine the amount of energy dissipated.

In the field of mechanochemistry, Burmeister et al. [9, 10] employed DEM

simulations to examine the impact of various stressing conditions in planetary

ball mills to obtain Knoevenagel synthesis. To achieve a more accurate

representation of the ball­ball and ball­wall interactions, the Hertz­Mindlin model

was used. However, their analysis is centered around the dissipation of energy

in the normal direction due to head­on collisions, which may be insufficient

in cases where shearing has the potential of being a critical component to

determine the success of the process [11]. Moreover, the characterization para­

meters presented are limited to the reactants used and cannot be generalized any further.

Lastly, in the field of ultra­fine milling and particle breakage, Oliveira et al.

[12] and Rodriguez et al. [5] have employed a state­of­the­art mechanistic and

phenomenological model (UFRJ) to characterize the breakage mechanisms that occur

in vertical stir mills and planetary ball mills, respectively. The model has only been

validated for normal collisions, and as such, the tangential component is typically

ignored. This is a limitation that can underestimate the resulting product of the process,

as noted by Beinert et al. [13]. In an attempt to overcome this, Oliveira et al. account

for the tangential contribution by matching the model predictions with experimental

data via back­fitting. This method enables good agreement between experimental and

simulation results, given that the proportion of tangential contribution is accurately
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adjusted, but naturally, it is susceptible to over­fitting and possible misinterpretation

of results. Moreover, this method is viable given that the process involves only a

physical transformation (i.e., particle size reduction). In a process where a chemical

transformation is expected, such as mechanochemistry, the back­fitting recursion

method becomes inadequate. This limitation arises because the Discrete Element

Method (DEM) is unable to simulate chemical processes, thus neglecting the possible

role of tangential energy dissipation that could influence the rate of a chemical reaction.

In other words, it becomes impossible to match experimental and simulation results

because the simulations cannot predict the chemical component of the process.

3.2. Model andmethods

3.2.1. Modelling approach

The Discrete Element Method (DEM) is used to simulate the interactions between the jar

and the grinding media. In this study, Altair EDEM 2021.2 was used as the DEM solver,

and Python 3.9.12 was used for data post­processing. EDEM follows a soft­sphere

approach by calculating the contact forces for each particle interaction using Hertz

and Mindlin’s contact model. Then, Newton’s laws of motion are used to calculate the

instantaneous motion for each particle:

𝑚𝑖
𝑑𝐕𝑖
𝑑𝑡

= 𝐅𝑐,𝑖 + 𝑚𝑖𝐠 (3.1)

𝐼𝑖
𝑑𝝎𝑖
𝑑𝑡

= 𝝉𝑖 (3.2)

where 𝑚𝑖, 𝐼𝑖, 𝐕𝑖, and 𝝎𝑖 are the mass, moment of inertia, velocity, and angular velocity,
respectively, of particle 𝑖. 𝐅𝑐,𝑖 and 𝝉𝑖 represent the total contact force and total contact
torque (relative to the particle’s center of mass), respectively. The total force and torque

are determined by summing over all neighbors in contact with particle 𝑖.

The Hertz–Mindlin model [14, 15] is selected to calculate the contact force

on each pair because it is capable of capturing the non­linear behavior of

particle–particle and particle–geometry interactions. The original model was modified to

make the damping components accessible for data post­processing. Each discrete

element has its own radius 𝑅, mass 𝑚, Young’s modulus 𝑌, shear modulus 𝐺, coefficient
of restitution 𝑒, and Poisson ratio 𝜈. The contact force 𝐅𝑐,𝑖𝑗 on a particle 𝑖 due to its

interaction with another particle 𝑗 (or wall) is the vector sum of a normal 𝐅𝑛,𝑖𝑗 and
tangential 𝐅𝑡,𝑖𝑗 force:

𝐅𝑐,𝑖𝑗 = 𝐅𝑛,𝑖𝑗 + 𝐅𝑡,𝑖𝑗 = (𝐾𝑛𝜹𝑛,𝑖𝑗 − 𝛾𝑛𝐕𝑛,𝑖𝑗) + (𝐾𝑡𝜹𝑡,𝑖𝑗 − 𝛾𝑡𝐕𝑡,𝑖𝑗) (3.3)
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with:

𝐾𝑛 = 4
3
𝑌∗√𝑅∗𝛿𝑛 (3.4)

𝛾𝑛 = −2√
5
6
𝛽√𝑆𝑛𝑚∗ ≥ 0 (3.5)

𝐾𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 (3.6)

𝛾𝑡 = −2√
5
6
𝛽√𝑆𝑡𝑚∗ ≥ 0 (3.7)

𝑆𝑛 = 2𝑌∗√𝑅∗𝛿𝑛 (3.8)

𝑆𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 (3.9)

𝛽 =
ln(𝑒)

√ln2(𝑒) + 𝜋2
(3.10)

1
𝑌∗

=
(1 − 𝜈21)
𝑌1

+
(1 − 𝜈22)
𝑌2

(3.11)

1
𝐺∗

=
2(2 − 𝜈1)(1 + 𝜈1)

𝑌1
+
2(2 − 𝜈2)(1 + 𝜈2)

𝑌2
(3.12)

1
𝑅∗

= 1
𝑅1

+ 1
𝑅2

(3.13)

1
𝑚∗ = 1

𝑚1
+ 1
𝑚2

(3.14)

Here, 𝐕𝑛,𝑖𝑗 and 𝐕𝑡,𝑖𝑗 are the relative normal and tangential velocities between the two
particles 𝑖 and 𝑗 at the point of contact. 𝜹𝑛,𝑖𝑗 and 𝜹𝑡,𝑖𝑗 represent the normal and

tangential overlap vectors between the particles, the latter being found by integrating

the relative tangential velocity with time and projecting it on the current tangential

direction. 𝐾𝑛 and 𝐾𝑡 are the elastic coefficients for normal and tangential contact.

Furthermore, 𝛾𝑛 and 𝛾𝑡 represent the viscoelastic damping coefficients for the normal
and tangential contacts. On the right­hand side of Equation 6.3, the first term

between parentheses is the normal force, and the second term is the tangential force.

The normal force has two terms, a spring force and a normal damping force 𝐅𝑛,𝑑.
The tangential force also has two terms, a shear force and a tangential damping force 𝐅𝑡,𝑑.

Additionally, the contact torque 𝝉𝑖𝑗 on particle 𝑖 due to its interaction with

particle (or wall element) 𝑗 is calculated by cross­multiplying the vector 𝐑𝑖𝑗, which points
from the center of mass of particle 𝑖 to the contact point with particle 𝑗, by the tangential
contact force F𝑡,𝑖𝑗. Since the particles undergo constant rolling motion, especially against
the wall, it is also necessary to account for slight non­sphericity with a rolling torque 𝝉𝑟,𝑖𝑗
calculated by the coefficient of rolling friction 𝜇𝑟, magnitude of the normal contact force
𝐹𝑛,𝑖𝑗, the distance from the center of mass to the contact point 𝑅𝑖𝑗 and the orientation of
the angular velocity vector 𝝎𝑟𝑒𝑙 of the particle relative to the particle (or wall) it is in
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contact with:

𝝉𝑖𝑗 = 𝐑𝑖𝑗 × 𝐅𝑡,𝑖𝑗 + 𝝉𝑟,𝑖𝑗 (3.15)

𝝉𝑟,𝑖𝑗 = −𝜇𝑟𝐹𝑛,𝑖𝑗𝑅𝑖𝑗
𝝎𝑟𝑒𝑙
𝜔𝑟𝑒𝑙

(3.16)

Lastly, the amount of dissipated energy in a time interval 𝑡1 to 𝑡2, attributed to the

damping components 𝛾𝑛 and 𝛾𝑡, can be calculated as follows:

𝐸𝑛 = ∫
𝑡2

𝑡1

𝐅𝑛,𝑑 ⋅ 𝐕𝑛,𝑖𝑗d𝑡 = ∫
𝑡2

𝑡1

𝛾𝑛𝑉
2
𝑛,𝑖𝑗d𝑡 (3.17)

𝐸𝑡 = ∫
𝑡2

𝑡1

𝐅𝑡,𝑑 ⋅ 𝐕𝑡,𝑖𝑗d𝑡 = ∫
𝑡2

𝑡1

𝛾𝑡𝑉
2
𝑡,𝑖𝑗d𝑡 (3.18)

3.2.2. Simulation setup and calibration
In this work, we model a commercially available ball mill. In particular, the Emax

high­energy ball mill is a device produced and distributed by the German company

Retsch. It offers a novel approach to ball milling by combining high friction and impact

results with a temperature control system, allowing for controlled grinding. The machine

can allocate proprietary grinding jars with 125 ml of volume that follow a circular motion

with a rotational speed 𝑛 up to 2000 revolutions per minute (corresponding to an angular
frequency of 𝜔 = 2𝜋𝑛/60 = 209 rad/s) with an amplitude (radius) 𝐴 of 1.7 centimeters,
see Fig. 6.1. The movement of the jar has been replicated in our simulations. To

accurately represent the geometry of the milling jar, a CAD file was imported into EDEM

and an automatic rigid body mesh was built using the settings in Table 3.1.

The system is initialized by generating the total amount of discrete media over a span

of five seconds, allowing them to reach resting positions inside the jar before any

movement is induced. The simulation is then run for an additional 15 seconds to

observe the system’s dynamics. To minimize the computational complexity of the model,

the number of discrete elements has been limited to only include the milling balls. This

approach is viable as the influence of the processed material can be represented by

altering the friction and restitution coefficients [16–18].

As a result, two sets of coefficients are used. The first set corresponds to

a clean, empty jar without powder, serving as a reference for the unaltered dynamics of

Table 3.1: Mesh­generation parameters used in the simulation.

Parameter Value

Minimum mesh scaling factor 0.33

Maximum mesh scaling factor 4

Maximum deviation scaling factor 1

Maximum angle 0.261 rad
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(a) (b)

Figure 3.1: (a) Schematic of jar movement (b) 3D model of the jar.

the milling balls. The second set was obtained through calibration, considering the

presence of hydrated sodium metaborate (NaBO
2
⋅ 4H

2
O) and magnesium hydride

(MgH
2
). The calibration methodology combines the approaches of Dreizin et al. [17] and

Burmeister et al. [10]. For an accurate calibration, it is essential to have a representative

powder layer covering the jar and milling balls. To achieve this, we selected one of

the experimental conditions from our previous work, where we explored the effects

of various experimental parameters on the mechanochemical regeneration of NaBH
4

[19]. The selected conditions involve a ball­to­powder ratio of 30, a 66% molar ratio

excess, a milling time of 12.5 hours, a fill ratio of 10%, and a rotational speed of 600

rpm, ultimately enabling a regeneration yield of 71%.

After conducting this experiment, the resulting powder layer inside the jar provides the

most accurate representation of how the powder’s presence affects the balls and jar,

enabling a precise calibration process.

The methodology for determining the restitution coefficient is based on free­

fall experiments. Milling balls were removed from the jar, and for each test, a ball was

randomly selected and dropped onto the flat bottom surface of the milling jar. The

restitution coefficient was then calculated as the ratio between the drop height and the

bounce height, as shown in Equation 3.19. A total of 32 tests were conducted to ensure

statistical significance, and the average value of 0.3 was chosen as the calibrated

restitution coefficient.

𝑒 = √
ℎ𝑏𝑜𝑢𝑛𝑐𝑒
ℎ𝑑𝑟𝑜𝑝

(3.19)

The calibration of the friction coefficients involves the combination of a new experiment

and its computational representation using the previously defined restitution coefficient
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as a constant. In this experiment, the representative powder layer is retained, but

instead of the flat surface at the bottom of the jar, the walls are used. The jar is

positioned vertically, and a milling ball is placed at the midpoint of the jar’s straight wall.

The ball is then released, and a custom tracking code records its position as it oscillates

along the walls until it comes to rest. An equivalent DEM model of this experiment is

created, and the friction coefficients are adjusted until the simulated ball position aligns

with the experimental curve. See Figure 3.2 and Figure 3.3 for the calibration results.

The comparison between the experimental and computational curves indicates that

a static friction coefficient of 0.3 and a rolling friction coefficient of 0.045 provide a

good fit. To further illustrate the sensitivity of the ball’s motion to changes in these

Figure 3.2: Frame of video and simulation used for the calibration of the friction

coefficients.

Figure 3.3: Normalized ball position as a function of time for calibration purposes. SF:

static friction; RF: rolling friction. The bumps during the initial experimental

oscillation of the ball are due to inaccuracies in ball detection during initial

frames.
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coefficients, we have included additional values in Figure 3.3. Notably, the rolling friction

significantly affects the number of oscillations the ball undergoes before reaching its

resting state, while the static friction primarily influences the height of each oscillation

and the time it takes for the ball to reach its inflection points. Ultimately, both coefficients

must be fine­tuned together. This finding aligns with the work of Dreizin et al. [17], but

contrasts with Burmeister et al. [10], who suggest that the static friction coefficient has

no significant impact. The final calibrated values and simulation settings used in the

simulations can be found in Table 3.2 and Table 3.3.

Relevant dependent variables are derived from the normal and tangential damping

forces shown in Equation 6.3. The normal interactions account for head­on collisions,

while the tangential interactions account for glancing collisions. The benefit of extracting

these forces directly from the Hertz­Mindlin model is that it becomes possible to access

instantaneous values for both normal and tangential interactions at any time and not

rely on averages derived from power calculations. This allows for a more precise

representation of the evolution of the energy dissipation given by Equation 6.17 and

Equation 6.18. Thus, it is possible to calculate the mean normal and tangential energy

dissipation per collision by summing all individual dissipation events and dividing by the

number of collisions in a given time.

Table 3.2: Material parameters for the milling balls and vial walls. “Standard” values

correspond to clean X46Cr13 steel; the “calibrated” set accounts for the

presence of NaBO
2
⋅ 4H

2
O and MgH

2
. *Young’s modulus was deliberately

reduced to shorten simulation runtime (see Subsection 3.2.3).

Parameter Standard value Calibrated value

Restitution coefficient 0.68[20] 0.30

Static friction coefficient 0.70[21] 0.30

Rolling friction coefficient 0.01[20] 0.045

Density (kgm−3) 7700[22]

Young’s modulus* (GPa) 205[22]

Poisson’s ratio 0.235[22]

Table 3.3: Solver parameters used in the DEM simulations.

Parameter Value

Simulation time step 9.5 × 10−7 s

Total simulation time 20 s

Time­integration method Euler
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𝐸𝑛 =
∑𝐸𝑛

𝑁𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠
(3.20)

𝐸𝑡 =
∑𝐸𝑡

𝑁𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠
(3.21)

Then, the normal and tangential dissipation power can be calculated by multiplying by

the collision frequency 𝑓𝑐𝑜𝑙 observed within the system:

𝑃𝑛 = 𝑓𝑐𝑜𝑙𝐸𝑛 (3.22)

𝑃𝑡 = 𝑓𝑐𝑜𝑙𝐸𝑡 (3.23)

By adding Equation 3.22 and Equation 3.23 together, the total dissipated power

available to the processed material can be calculated. This value could then be

compared to the total power of the machine to find an initial estimate of the efficiency of

the process. Unfortunately, the Emax is not equipped with a torque sensor, so it needs

to be estimated from the simulation. In EDEM, each geometry is modeled as a series of

triangles, similar to a mesh. Therefore, the total torque on the geometry 𝐓 around the
center of rotation 𝐫𝑐 can be calculated as follows:

𝐓 = ∑
𝑎
(𝐫𝑎 − 𝐫𝑐) × 𝐅𝑎 + 𝐓𝑎 (3.24)

where 𝐅𝑎 is the total force on triangle 𝑎, 𝐫𝑎 the triangle’s center of mass, and 𝐓𝑎 the
torque on triangle 𝑎. With this, it becomes possible to calculate the total power 𝑃𝑡𝑜𝑡𝑎𝑙 to
drive the system:

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝜔𝑇𝑧 (3.25)

where 𝜔 = 2𝜋𝑛/60 is the angular frequency with which the system is driven (𝑛 is the
shaker frequency in rotations per minute), realizing the rotations of the jar only take

place around the 𝑧­axis

The granular temperature (Θ) is an important parameter for the kinetic and

hydrodynamic characterization of dynamic granular systems [23]. It is a quantity

that measures the variance in the distribution of particle velocities, analogous to the

fluctuations in molecular velocity distributions which are measured by the thermodynamic

temperature [24]:

Θ = 1
3
(⟨𝐕2⟩ − ⟨𝐕⟩2) (3.26)

where 𝐕 represents the velocity vector of a particle, and pointy brackets ⟨⋯⟩ indicate an
average over all particles in a mesh cell dividing the geometry of the milling jar. In this

paper, the granular temperature is used to identify high­energy collision zones within the

milling jar. By doing this, it becomes possible to identify different collision regimes as the

filling of the jar and the shaking speed change.
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3.2.3. Evaluation of the effect of lowering Young’s modulus

Using realistic values for the Young’s modulus of steel necessitates using extremely

small integration time steps, potentially making the simulations computationally very

expensive. A way to tackle this limitation is to artificially lower Young’s modulus as

shown by Lommen et al. [25]. This is because reducing the stiffness weakens contact

forces between particles and allows them to deform more, leading to larger overlaps

under the same applied force. This enables particles to change their velocities more

gently upon impact.

Lowering the Young’s modulus should be done carefully to find a best­performance

value where the accuracy of the simulation is preserved while allowing for shorter

simulation times. Since the Young’s modulus has a direct influence on the damping and

elastic components of both tangential and normal forces, as shown in Equation 6.3,

it influences the energy dissipation per collision. Thus, a sensitivity analysis with 19

discrete media with diameter 𝑑𝑏 = 10mm, shown in Figure 3.4, was carried out. The

total power exerted onto the system, based on Equation 4.5 has been measured for

different values of Young’s modulus, as this allows an analysis of the influence on both

the elastic and damping components. By doing this, relevant particle properties, such as

velocity and momentum, are also included in the decision­making. By decreasing the

Young’s modulus by a factor of 100 (from 205 GPa to 2.05 GPa), we can achieve a

threefold reduction in computation time, while remaining within a range of two standard

deviations from the mean power predicted for the realistic value. Thus, for all the

following simulations, we set Young’s modulus to 2.05 GPa.

Figure 3.4: Young’s modulus sensitivity analysis. Red line indicates the simulation’s

average power, and the black line indicates the simulation time. Whiskers

show two standard deviations from the corresponding means. Ball size =

10mm, rotational speed = 1200 rpm.
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3.2.4. Simulation variable parameters
The relevant operational parameters for this study are the rotational speed 𝑛, size of the
milling balls 𝑑𝑏, and the fill ratio 𝑓𝑟, which is defined as the volumetric ratio between the
total of all milling balls and that of the empty milling jar. Note that the fill ratio differs from

the ratio of the stagnant layer thickness to the jar height because of the void space in

a packed bed of monodisperse particles. The fill ratios used in the simulations are

presented in Table 3.4. The rotational speed is varied from 600 to 1200 rpm.

3.2.5. Chemicals
Hydrated sodium metaborate (NaBO

2
⋅ 4H

2
O) (≥ 99%) was obtained from Sigma­Aldrich,

while magnesium hydride (MgH
2
) (≥ 99.9%, ≤ 50𝜇𝑚) was sourced from Nanoshel. All

reagents were used without further purification. The reaction between these reactants

facilitates the following conversion:

NaBO2 ⋅ 4 H2O + 6MgH2 → NaBH4 + 6MgO + 8H2 (3.27)

The sample preparation for ball milling was performed in a glove box under an argon

atmosphere, with oxygen and water concentrations maintained below 0.1 ppm.

3.3. Results andDiscussion
In this section, the performance of the Emax is evaluated in terms of energy and power

dissipation in collision events. The motivation for focusing on these parameters is that

they represent how kinetic energy is being transformed into usable energy for the

mechanochemical reaction to take place [1]. First, the performance is assessed by

varying the diameter of the milling balls from 5 mm to 10 mm, and altering the rotational

speed from 600 rpm to 1200 rpm while maintaining a consistent fill ratio of 8%. Then,

the fill ratio is varied following Table 3.4, and two rotational speeds are tested. With the

Table 3.4: Ball counts required to reach a given fill ratio 𝑓𝑟 in a 125mL jar. Two ball

diameters are considered: 𝑑𝑏 = 10 mm and 𝑑𝑏 = 5 mm.
Fill ratio 𝑓𝑟 # balls (𝑑𝑏 = 10 mm) # balls (𝑑𝑏 = 5 mm)

0.04 10 76

0.06 14 115

0.08 19 153

0.10 24 191

0.12 29 229

0.16 38 306

0.20 48 382

0.30 72 573

0.40 96 764
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obtained results, master curves are built, which allow for generalization of the results in

terms of the grinding media’s density, ball diameter, rotational speed, amplitude (radius)

of oscillation, collision frequency, number of balls, and powders used.

3.3.1. Ball size and rotational speed

We start with an analysis of the performance in energy dissipation as the ball size

and rotational speed change while maintaining a constant fill ratio of 8%. Figure 3.5

presents the probability distributions of normal and tangential energy dissipation per

cycle for different rotational speeds (600, 800, 1000, and 1200 rpm) and two milling ball

diameters: 10 mm and 5 mm. The comparison includes unaltered steel conditions and

calibrated conditions, where friction coefficients (static and rolling) and the restitution

coefficient have been adjusted.

As expected, higher rotational speeds lead to greater energy dissipation due

to the increased kinetic energy available during each cycle, which is reflected in the

peak shift from lower values at 600 rpm to higher values at 1200 rpm. A key observation

across the plots is that tangential energy dissipation increases at a faster rate compared

to normal dissipation, as the rotational speed increases. This is easier to visualize in

Figure 3.6 where the mean dissipation values are presented.

The difference between calibrated and non­calibrated values is reflected in a

shift of peak dissipation values. In the case of 10 mm balls, this shift is guided towards

smaller values, whereas in the case of 5 mm balls, the shift is much more subtle and

is guided towards larger values. Specifically, this shift causes the mean tangential

dissipation to no longer exhibit a significant difference between 5 mm and 10 mm balls,

as it did by 13% with the non­calibrated conditions. In contrast, a difference of 20 % can

now be identified for the mean normal dissipation.

This result indicates that the calibration process is much more critical as the

size of the milling balls and the rotational speed increase. Additionally, the standard

deviation and coefficient of variation decrease in both directions when smaller milling

balls are used, as shown in Table 3.5. This suggests that the use of smaller milling balls

can lead to a more consistent and predictable process, potentially increasing efficiency,

if the required energy input for a given mechanochemical reaction is known.

3.3.2. Fill ratio

The analysis of the fill ratio is crucial as it determines the number of grinding elements

involved in the mechanochemical process, impacting both the collision frequency and

the milling balls’ dynamic behavior. As a consequence, it defines operational ranges that

enhance either normal or tangential dissipation. Figure 3.7 and Figure 3.8 show the

mean energy dissipation in the normal and tangential directions, as the fill ratio is varied

according to Table 3.4, for unaltered and calibrated conditions, respectively.

For both conditions, it is useful to define three operational zones. The first zone covers a

fill ratio from 4% to 10%, the second extends from 10% to 20%, and the third goes
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(a) (b)

(c) (d)

Figure 3.5: (a) Normal energy dissipation per cycle, d = 10 [mm] (b) Tangential energy

dissipation per cycle, d = 10 [mm] (c) Normal energy dissipation per cycle, d

= 5 [mm] (d) Tangential energy dissipation per cycle, d = 5 [mm]. Fill ratio =

8% for all cases.

Table 3.5: Descriptive statistics for energy dissipated in a single cycle. Two ball

diameters are considered: 𝑑𝑏 = 5 mm and 𝑑𝑏 = 10 mm.

Normal energy dissipation Tangential energy dissipation

Std. dev. Coeff. of variation Std. dev. Coeff. of variation

Speed (rpm) 5 mm 10 mm 5 mm 10 mm 5 mm 10 mm 5 mm 10 mm

600 0.006 0.015 3.81% 9.27% 0.019 0.035 4.70% 7.76%

800 0.014 0.029 5.45% 10.95% 0.033 0.065 5.03% 8.64%

1000 0.015 0.046 3.50% 10.36% 0.047 0.098 4.22% 7.77%

1200 0.023 0.063 3.53% 10.11% 0.064 0.145 4.06% 8.02%
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Figure 3.6: Mean energy dissipation per cycle. Note that the blue and green curves

virtually overlap.

from 20% to 40%. In terms of normal dissipation, the optimal operating range falls

within the second zone, where the majority of the maximum normal dissipation values

are observed. However, clear differences emerge between unaltered and calibrated

coefficients, as well as between small and large milling balls.

Regarding normal dissipation, the most noticeable difference occurs in the

transition from zone 1 to zone 2. For large balls, an increase of up to 88% is estimated

under calibrated conditions, while unaltered conditions only show an increase of 31%.

Interestingly, when using small balls, unaltered conditions display a clear decrease of up

to 67%, whereas calibrated conditions remain nearly stable, except at a fill ratio of 4%.

Tangential energy dissipation, on the other hand, exhibits a different beha­

vior. The differences between large and small balls are subtler, with the primary

change occurring in how dissipation evolves from zone 1 to zone 2. These results

are consistent with the observations in Figure 3.6, where a shift from large to small

balls led to differences in normal dissipation, but not in tangential dissipation. Under

unaltered conditions, tangential dissipation decreases by as much as 150%, making

zone 1 optimal for this type of dissipation. Conversely, calibrated conditions show a 42%

increase, suggesting that zone 2 remains optimal for tangential dissipation as well.

Finally, when considering collision frequency, both unaltered and calibrated conditions

exhibit growth as the number of balls increases, which is expected. However, the

rate of growth is notably slower under calibrated conditions. This discrepancy can

be explained by the differing behavior of the specific collision frequency in the two

scenarios. Under calibrated conditions, the specific collision frequency decreases

as the fill ratio increases. This is due to the increased damping, which enhances

energy dissipation and reduces the relative velocities between balls. Consequently,

collisions per ball occur less frequently as the system becomes denser. In

contrast, under unaltered conditions, the lack of realistic damping allows for larger

relative velocities, which increase the probability of collisions per ball as the jar
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becomes more crowded. This upward trend in specific collision frequency amp­

lifies the total collision frequency, resulting in a higher growth rate for unaltered conditions.

Regarding zone 3, it becomes evident that it does not provide any advant­

ages over zones 1 or 2 in terms of energy dissipation. Moreover, the specific collision

frequency plateaus in both unaltered and calibrated conditions, indicating the presence

of choking behavior. Thus, zone 3 and beyond can be disregarded as zones of interest.

The previously discussed results can be visualized by comparing the heat maps in

Figure 3.9 and Figure 3.10. These maps depict the relative likelihood of finding particles

in specific locations in the jar throughout the simulation, offering insight into how the

system’s dynamics evolve as different fill ratios give rise to the distinct operational

zones. With a 4% fill ratio and calibrated coefficients, the combination of fewer balls and

increased damping causes the balls to traverse the jar walls with minimal collisions

among them, especially when compared to the uncalibrated scenario. This visually

explains the significant increase in normal energy dissipation as more balls are added.

Furthermore, it clarifies why the tangential dissipation remains almost constant for the

calibrated values: most of the tangential dissipation arises from balls scraping along

the jar walls. Since the balls maintain contact with the wall throughout the process,

tangential dissipation reaches near­maximum values even at low fill ratios.

When examining the heat maps for the 10% fill ratio, the key difference is that with

calibrated coefficients, collisions still do not occur in the center of the jar, unlike in the

uncalibrated case. This visual representation also explains why the maximum normal

dissipation for calibrated coefficients is achieved by further increasing the fill ratio to

around 18%, as opposed to the 10% observed with uncalibrated coefficients. Since

most of the normal dissipation results from head­on collisions between balls, allowing

them to move slightly further toward the center of the jar leads to maximum dissipation.

Lastly, the heat map for the 40% fill ratio shows, in both scenarios, why zone 3 is

unfavorable. In both cases, there is a clogging effect, where the balls are unable to

achieve high­energy collisions anywhere in the jar.

3.3.3. Master curves
The prior analysis provides a clear description of how the dynamics of the milling balls

change as powder is introduced into the milling jar for a mechanochemical reaction.

However, two limitations remain. First, while the dissipated energy in each collision is

crucial for driving the reaction, it is also important to consider the dissipated power,

which accounts for the rate of collisions that generate this energy. Ideally, maximizing

power dissipation would combine a high frequency of collisions with the maximum

amount of energy dissipated.

The second limitation relates to the fact that these results are, so far, specific to the

operating conditions used in the simulations for this work. To address both issues

simultaneously, we introduce master curves. These curves are designed to facilitate

prediction capabilities when variables such as fill ratio, collision frequency, number of

balls, ball density, rotational speed, ball diameter, and amplitude of rotation are varied.

This approach offers significant flexibility for both characterization and iterative analysis.

The master curves are constructed using the normalization formulas presented in
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(a) (b)

(c) (d)

Figure 3.7: (a) Mean normal energy per collision 𝐸𝑛 (b) Mean tangential energy per

collision 𝐸𝑡 (c) Collision frequency 𝑓𝑐𝑜𝑙𝑙 (d) Specific collision frequency

𝑓𝑐𝑜𝑙𝑙,𝑠𝑝𝑒𝑐. Cases with fill ratio variation and unaltered steel coefficients.
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(a) (b)

(c) (d)

Figure 3.8: (a) Mean normal energy per collision 𝐸𝑛 (b) Mean tangential energy per

collision 𝐸𝑡 (c) Collision frequency 𝑓𝑐𝑜𝑙𝑙 (d) Specific collision frequency

𝑓𝑐𝑜𝑙𝑙,𝑠𝑝𝑒𝑐. Cases with fill ratio variation and calibrated coefficients (system
comprising NaBO

2
⋅ 4H

2
O and MgH

2
).
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(a) (b)

(c)

Figure 3.9: Particle heat map (blue­green­red) and granular temperature (blue­white­red).

𝑛 = 1200 [rpm] and 𝑑 = 10 [mm]. Fill ratio: (a) 4% (b) 10% (c) 40%.

Unaltered steel values.
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(a) (b)

(c)

Figure 3.10: Particle heat map (blue­green­red) and granular temperature (blue­white­

red). 𝑛 = 1200 [rpm] and 𝑑 = 10 [mm]. Fill ratio: (a) 4% (b) 10% (c) 40%.

Calibrated values.
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Equation 4.3 and Equation 4.4, which are based on basic mechanical principles. As

shown in Figure 3.11 and Figure 3.12, these curves provide the mean specific power

dissipation, along with the respective standard deviation, for both normal and tangential

components. From there, mean energy dissipation values can be obtained by using the

corresponding mean specific collision frequency curve.

𝑃̃𝑠𝑝𝑒𝑐 =
𝑓𝑐𝑜𝑙𝐸̄

𝜌𝜔3𝐴2𝑑3𝑝𝑛𝑏𝑎𝑙𝑙
(3.28)

̃𝑓𝑐𝑜𝑙𝑙 =
𝑓𝑐𝑜𝑙
𝜔𝑛𝑏𝑎𝑙𝑙

(3.29)

Where 𝑓𝑐𝑜𝑙 is the collision frequency, 𝐸̄ is mean energy dissipation, 𝜌 is the density of the
grinding media,𝜔 is the rotational speed of the mill (in Hz), 𝐴 is the amplitude of oscillation,
𝑑𝑝 is the diameter of the milling balls and 𝑛𝑏𝑎𝑙𝑙 is the number of milling balls in the system.

Additionally, Figure 3.11 (d) and Figure 3.12 (d) show the ratio between the

mean specific tangential and normal dissipation powers for the unaltered and calibrated

scenarios, respectively. In this plot, it becomes easier to distinguish the three operational

zones previously discussed. The first zone goes from 4% to 10% and favors tangential

dissipation. At this point, the elbow of the curve can be identified, meaning that this

fill ratio provides the best balance between normal and tangential dissipation in this

machine. Then, the second zone, which extends up to 20%, increases the relevance of

normal dissipation. Lastly, the third zone, extending beyond 20%, provides no benefit as

the ratio is no longer able to achieve values beyond those achievable at lower fill ratios.

Furthermore, the ratio remains constant in this range since both types of dissipation

begin to decay at the same rate. The identification of this limit is convenient as it

establishes a clear upper boundary for the number of balls that should be used in the

ball mill. Exceeding this value will result in inefficiency.

It is worth highlighting some key differences that arise in the calibrated master

curves (see Figure 3.12), given that these represent the real system relevant for the

mechanochemical regeneration of NaBH
4
. Specifically, it can be observed that while the

maximum zone for normal dissipation remains in the 10%­20% range, the actual fill

ratio leading to maximum normal dissipation may fluctuate between 10% and 18% due

to the standard deviation of the data. This is explained by the behavior identified in

subsection 3.3.1, where it was noted that switching from small balls to large balls shifts

the mean normal energy dissipation.

Similarly, while the maximum zone for tangential dissipation remains in the 4%­8%

range, the standard deviation in the master curve allows for two interpretations: either a

maximum is achieved at 4% or 8%. This variation arises due to the dynamic behavior

depicted in Figure 3.10 (a), as previously discussed. At low fill ratios, the use of 10 mm

balls causes energy dissipation to be dominated by collisions with the wall, effectively

minimizing the contribution of ball­ball interactions. Smaller balls, however, do not

exhibit this condition. Nevertheless, it is expected that if even lower fill ratios are used,



64 3. Linking internal dynamics to machine­level operating conditions.

(a) (b)

(c) (d)

Figure 3.11: (a) Master curve ­ mean specific normal power dissipation per collision

𝑃̃𝑠𝑝𝑒𝑐,𝑛 (b) Master curve ­ mean specific tangential power dissipation per
collision 𝑃̃𝑠𝑝𝑒𝑐,𝑡 (c) Master curve ­ mean specific collision frequency ̃𝑓𝑐𝑜𝑙𝑙 (d)
Ratio between mean specific tangential power dissipation per collision and

mean specific normal power dissipation per collision
𝑃̃𝑠𝑝𝑒𝑐,𝑡
𝑃̃𝑠𝑝𝑒𝑐,𝑛

. Unaltered steel

coefficients.
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(a) (b)

(c) (d)

Figure 3.12: (a) Master curve ­ mean specific normal power dissipation per collision

𝑃̃𝑠𝑝𝑒𝑐,𝑛 (b) Master curve ­ mean specific tangential power dissipation

per collision 𝑃̃𝑠𝑝𝑒𝑐,𝑡 (c) Master curve ­ mean specific collision frequency

̃𝑓𝑐𝑜𝑙𝑙,𝑠𝑝𝑒𝑐 (d) Ratio between mean specific tangential power dissipation per

collision and mean specific normal power dissipation per collision
𝑃̃𝑠𝑝𝑒𝑐,𝑡
𝑃̃𝑠𝑝𝑒𝑐,𝑛

.

Calibrated coefficients (system comprising NaBO
2
⋅ 4H

2
O and MgH

2
).
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collisions between smaller balls will also eventually be minimized, as they will begin

to traverse smoothly against the wall of the jar. In this operational range, tangential

dissipation can be up to 4 times higher than normal dissipation. The elbow of the curve

at 10% results in a ratio of 2.1, and with higher fill ratios, the ratio between tangential

and normal dissipation can be minimized to 1.5.

To conclude, it is worth reiterating that these master curves encompass vastly different

operational conditions. While the standard deviation may cause a slightly incorrect

selection of the maxima, the master curves remain highly effective for facilitating a

mechanical characterization of the regeneration of NaBH
4
without the need for additional

simulations.

3.3.4. Testing the master curves

To test the master curves and their capability for characterization and prediction, it is

essential to use an existing mechanochemical experiment along with its chemical yield.

For this purpose, we utilize the same reference case used for calibration. This case

involves a ball­to­powder ratio of 30, an excess molar ratio of 66%, a milling time of 12.5

h, a rotational speed of 600 rpm, a fill ratio of 10%, and a ball size of 10 mm. Under

these conditions, a NaBH
4
regeneration yield of 71% was achieved [19]. By applying

our master curves and Equation 3.31, we can propose a mechanical characterization of

the mechanochemical process by defining three main characteristic values: the mean

normal energy dissipation ̄𝐸𝑛, calculated as 2.21 × 10
−4 J; the mean tangential energy

dissipation ̄𝐸𝑡, calculated as 5.00 × 10
−4 J; and a specific collision frequency

𝑓𝑐𝑜𝑙
𝑛𝑏𝑎𝑙𝑙

of 400

𝑠−1.

With these values defined, it is now possible to use the master curves to

derive a new set of conditions that can replicate the characteristic mechanical values.

We choose to preserve a fill ratio of 10%, as we wish to maintain the ratio between

tangential and normal dissipation for this study. However, we opt to use 5 mm balls

requiring a total of 191 milling balls, representing a 700% increase over the reference

case. By changing the ball size and keeping the three characteristic mechanical values

constant, Equation 3.31 allows us to solve for the density of the balls, rotational

speed, or amplitude of rotation. We choose to solve for the rotational speed given the

grinding media and equipment available. The new rotational speed is 1698 rpm, which

represents a 183% increase over the reference case. A new experiment is conducted

under these conditions, yielding a regeneration of 67%, just 4% below the reference

case of 71%. This experiment was carried out twice to ensure reproducibility.

3.3.5. Universal master curves

In subsection 3.3.3, we presented two distinct sets of master curves, each independently

characterizing the mechanical performance of the ball mill under different friction

coefficients, which vary according to the presence of processed material. To develop a

universal master curve that can characterize any processed material with calibrated

coefficients within the ranges addressed in this work (restitution coefficient: 0.3­0.7,
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Figure 3.13: Mechanochemical yield in reference case and predicted case

static friction coefficient: 0.3­0.69), we utilize the effective restitution coefficient, 𝜀, as
defined by Chialvo and Sundaresan [26].

𝜀 = 𝑒 − 3
2
𝜇exp(−3𝜇) (3.30)

where 𝑒 is the standard restitution coefficient, and 𝜇 is the static friction coefficient.
Thus, general equations for constructing universal master curves can be proposed as

follows:

𝑃̃𝑠𝑝𝑒𝑐 =
𝑓𝑐𝑜𝑙𝐸̄

𝜌𝜔3𝐴2𝑑3𝑝𝑛𝑏𝑎𝑙𝑙
⋅ (1 − 𝜀)1/2 (3.31)

̃𝑓𝑐𝑜𝑙𝑙 =
𝑓𝑐𝑜𝑙
𝜔𝑛𝑏𝑎𝑙𝑙

⋅ (1 − 𝜀)1/2 (3.32)
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(a) (b)

(c) (d)

Figure 3.14: (a) Universal master curve ­ mean specific normal power dissipation per

collision 𝑃̃𝑠𝑝𝑒𝑐,𝑛 (b) Universal master curve ­ mean specific tangential power
dissipation per collision 𝑃̃𝑠𝑝𝑒𝑐,𝑡 (c) Universal master curve ­ mean specific
collision frequency ̃𝑓𝑐𝑜𝑙𝑙,𝑠𝑝𝑒𝑐 (d) Universal ratio between mean specific

tangential power dissipation per collision and mean specific normal power

dissipation per collision
𝑃̃𝑠𝑝𝑒𝑐,𝑡
𝑃̃𝑠𝑝𝑒𝑐,𝑛

.

To use these curves effectively, it is necessary to first obtain calibrated values for the

restitution coefficient and static friction coefficient to calculate 𝜀. These universal curves
are less accurate than the specific­case curves (Figure 3.11 and Figure 3.12) because

they do not apply exclusively to a specific set of contact parameters. They aim to capture

the dynamic changes caused by adding different processed materials to the milling jar

and their impact on the motion of the milling balls. Despite this decrease in accuracy,

the universal curves remain a practical and efficient tool for estimating dissipation

mechanisms without requiring additional simulations. Moreover, while the utility of this

characterization methodology has been tested for the system comprising NaBO
2
⋅ 4H

2
O

and MgH
2
, it still needs to be tested for other mechanochemical processes.
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3.4. Conclusions
In this chapter, we characterized the internal dynamics of high­energy ball milling

for mechanochemistry by distinguishing normal from tangential energy dissipation at

ball­ball and ball­jar collisions. Our findings present a clear methodology that can be

followed to obtain an in­depth characterization of any milling machine. By following it,

the development of green chemical processes can be facilitated, and their generalization

and reproducibility across scales and setups becomes viable.

We used the Hertz­Mindlin model and discrete element modeling to accur­

ately characterize the forces involved in ball­ball and ball­wall collisions, allowing us

to distinguish the contribution of normal and tangential interactions in the mechanical

energy dissipation of the system. Our approach allowed us to identify optimal operational

ranges where each form of dissipation can thrive and to characterize the milling process

with master curves that predict the performance of the mill under different conditions

beyond those presented in this work.

We also found that the contribution of tangential interactions to the mechan­

ical energy dissipation of the system is significant and cannot be neglected, as it

dominates the overall dissipation. This is particularly important for use cases where

shearing has the potential to be a critical component leading to a successful outcome.

Moreover, maximizing or minimizing its significance in the global energy dissipation

performance is possible by varying the fill ratio.

The performance of the milling machine is strongly influenced by the milling

parameters, such as the ball size, fill ratio, and rotational speed. Our master curves

present a valuable tool for designing, optimizing, and predicting mechanochemical

processes. Additionally, they enable a direct comparison of key mechanical conditions

among different milling machines thanks to the dimensional analysis carried out.

This work presents the first mechanical characterization for the mechano­

chemical regeneration of NaBH
4
. By establishing the mean normal energy dissipation,

mean tangential energy dissipation, and specific collision frequency as process

parameters, we successfully predicted a new set of conditions that replicated a

previously achieved result with only a 4% difference.

This work represents a step forward in the understanding of the complex be­

havior of mechanical forces in high­energy ball milling and their influence on the

success of mechanochemical reactions. In the next chapter, we leverage the presented

methodology to test whether outcomes are driven by total mechanical energy or by its

partitioning between normal and tangential stressing, using targeted experiments to

distinguish the two.
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Impactoftangentialtonormal
stresspartitioningonNaBH4

regeneration

Building on the mechanical descriptors of chapter 3, this chapter explores whether

reactivity during NaBH
4
regeneration (from NaBO

2
⋅ 4H

2
O + MgH

2
) is governed by the

total mechanical energy delivered or by the way that energy is divided into normal

(compressive) versus tangential (shear) components. Using the descriptors, we

design two complementary experimental comparisons: matched total dissipation with

different normal/tangential partitions and matched partition with different totals. These

comparisons separate “how much” from “how it is delivered.” As a first approximation to

efficiency, we summarize performance with simple, setup­independent metrics to gauge

productivity per unit power without committing to a full techno­economic analysis.

Parts of this chapter are adapted from: Garrido Nuñez, S., Schott, D. L. and Padding, J. T. ‘Influence of

shear and compressive stress regimes on efficient NaBH
4
mechanochemical regeneration’. In: Chemical

Engineering Journal 525, 170168 (2025).
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4.1. Introduction
4.1.1. Sodium borohydride (NaBH

4
)

Sodium borohydride (NaBH
4
) is an attractive solid hydrogen carrier given its high

theoretical energy density and gravimetric hydrogen storage [1, 2]. The hydrolysis

of NaBH
4
releases hydrogen and produces sodium metaborate (NaBO

2
⋅ xH

2
O) as a

byproduct.

NaBH4 + (2 + 𝑥)H2O → NaBO2 ⋅ xH2O + 4H2 (4.1)

where 𝑥 is the level of hydration.

The central barrier to the deployment of sodium borohydride at scale is not

the hydrogen release, but rather its regeneration. In 2007, the U.S. Department of

Energy (DOE) go/no­go reviews concluded that all assessed NaBH
4
pathways exceeded

cost targets primarily due to high regeneration costs and sodium price sensitivity,

leading to a no­go recommendation for on­board hydrolysis [3]. Since then, NaBH
4

mechanochemical loops have co­integrated hydrogen release and regeneration within a

single, solvent­free process window by capturing the hydrolysate as borates/carbonates

and solid­state reducing it back to NaBH
4
under ambient milling. The approach

bypasses high­pressure H
2
, compression, solvent use, and dehydration, consistently

achieving ∼70–80% regeneration yield [4–9]. Relevant examples in the context of this

work are shown in Table 4.1.

Analogous one­step variants have been demonstrated for LiBH
4
and Mg(BH

4
)
2
,

underscoring that mechanochemistry enables new opportunities for process integration

and cost reduction across complex hydrides [16–19]. We also note a related

mechanochemical route to NaBH
4
from NaB(OH)

4
using Mg–Al intermetallics; reported

yields remain comparatively low under prolonged milling (<∼43%), reflecting different

interfacial chemistry than the MgH
2
­driven cycles considered here [20]. In chapter 2,

we have presented results of the mechanochemical regeneration of NaBH
4
from a

system comprising NaBO
2
⋅ 4H

2
O and MgH

2
(Equation 4.2) with yields reaching up to

Table 4.1: Reported yields for the mechanochemical regeneration of NaBH
4
.

Metaborate 2nd reactant Yield (%) Year Ref.

NaBO
2

MgH
2

76 2009 [10]

NaBO
2

MgH
2

71 2009 [11]

NaBO
2

MgH
2

74 2011 [12]

NaBO
2

MgH
2

89 2017 [13]

NaBO
2
⋅ 2H

2
O Mg 68 2017 [14]

NaBO
2
⋅ 2H

2
O MgH

2
90 2017 [15]

NaBO
2
⋅ 4H

2
O MgH

2
88 2017 [15]

NaBO
2
⋅ 2H

2
O Mg

2
Si 78 2017 [5]
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90% along with a ranking of the operational variables (rotational speed, milling time,

ball­to­powder ratio and molar ratio) based on their relevance to the chemical yield, with

milling time being the most significant [21].

NaBO2 ⋅ 4 H2O + 6MgH2 → NaBH4 + 6MgO + 8H2 (4.2)

More generally, mechanochemistry harnesses mechanical energy to drive chemical

transformations, but its practice often treats the applied stresses simplistically (e.g.,

as a pressure or scalar force) rather than as a full stress tensor [22, 23]. In reality,

mechanical loading in ball milling involves both normal (compressive) and tangential

(shear) stress components. The distinct roles of these stress modes, however, have

rarely been explored in mechanochemical studies. Apart from a few targeted studies,

most notably Kobayashi et al. [24] who mapped the spatial distribution of normal and

tangential stresses for a single ball in a planetary ball mill, most reports and mechanistic

studies treat mechanical loading as a single pressure or force magnitude, overlooking

the fact that shear and compression can influence reaction pathways differently [22, 25].

For example, the Bell model expresses the rate enhancement via a term exp (−𝑃Δ𝑉𝑅𝑇 )
involving an isotropic pressure 𝑃, but effectively ignores any anisotropy [25]. This

simplification means that chemically important distinctions, for example, that tensile

stress tends to break bonds, while normal stress often drives bond formation, can be

overlooked [26].

Indeed, several authors point out that common methodologies lack independ­

ent control of stress modes. For example, studies of boundary lubrication films

(ZDDP tribofilm growth) show that prior experiments based on tribometers could not

independently control the normal and tangential stress [27]. Quantitative comparisons

further underscore the oversight: for ZDDP tribofilm formation, the measured activation

volume under shear loading (∼0.18 nm3) is nearly twenty times larger than that under
pure compression (∼0.01 nm3), confirming that tangential, not normal stress, drives the
mechanochemical reaction [27].

Several factors contribute to this oversimplification. On the experimental

side, it is difficult to apply or measure pure shear without collateral normal forces.

Most common mechanochemical reactors (ball mills, twin­screw extruders) impose

mixed stress states. For instance, planetary and high­energy ball mills induce

both impact and shear forces, and continuous extruders force material through

narrow channels applying high tangential and normal stress simultaneously [28].

Few laboratory techniques allow independent control of shear versus compression.

Traditional pressure devices (diamond­anvil cells, gas­ or liquid­pressure cells, AFM

tips) primarily deliver uniform normal stress, while tribometers typically combine

tangential and normal loading [22]. Even with these limited experimental options,

conclusions drawn under such idealized conditions remain difficult to generalize to bulk

mechanochemical operations, where complex, varying stress landscapes deviate from

bench­top experiments. A consequence of this is that well­defined shear loading is

rarely isolated in mechanochemical experiments, so mechanisms driven by sliding or
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frictional forces are usually inferred indirectly [28].

In summary, both experimental practice and theoretical frameworks have so

far treated mechanical loading as effectively scalar, bypassing the need to decouple

components. These simplifications have significant implications. By ignoring stress

anisotropy, predictive models may fail to capture important mechanistic pathways. For

instance, Jonas et al. showed that under pure sliding (shear) conditions, there exists

a finite critical stress below which no reaction occurs, contrary to the continuous

behavior predicted by the scalar Bell model [25]. If one calibrates a model on

compression­induced data, it may not predict shear­driven kinetics correctly. Similarly,

an experimental result obtained under one loading mode (e.g., hydrostatic press) may

not translate to another (e.g., milling) if the shear contribution is different, leading

to misinterpretation of which bonds are activated. Moreover, the different intrinsic

working principles that mills have also produced a wide variation in collision frequencies,

impact energies, and shear rates, rendering comparative evaluation across milling

platforms complicated [29–33]. This lack of detail can also hamper reactor design when

up­scaling becomes relevant; without knowing how shear or normal forces drive a

transformation, it is hard to optimize milling media, extruder screw profiles, or frictional

conditions to maximize yield or selectivity. In practice, this could mean that some

reaction products remain inaccessible simply because the wrong stress component

is being applied. Overall, neglecting shear–normal distinctions reduces the predict­

ive power of mechanochemical models and can obscure the true mechanism of activation.

A concrete example relevant to the context of this work is the regeneration

of NaBH
4
. Research has focused on trying different reducing agents or hydration

levels while attempting to maximize yield within a limited set of operational parameters

(rotational speed, ball­to­powder ratio (BPR), milling time, and molar ratio) [5,

10–15]. Unfortunately, this has unintentionally diverted attention away from deepening

the mechanical understanding of the system that defines the reaction’s success

[34]. This presents several challenges: reproducibility becomes problematic unless

identical equipment is used, scaling­up becomes challenging, the connection between

macroscopic behavior and molecular transformations is neglected, and predictive

models that allow quantitative descriptions of expected chemical conversion are scarce

[35]. As reported in chapter 2, the intended replication of identical operational

parameters in a different ball mill (for example, going from a shaker ball mill to a

high­energy ball mill) led to completely different results in the mechanochemical

regeneration of NaBH
4
. Thus, given the fundamental changes in design, operation, and

energy input of different mills, it becomes evident that these operational parameters are

not sufficient to accurately characterize a mechanochemical process if the ultimate

goals are increasing efficiency, scaling up, and ensuring reproducibility across devices.

To overcome the shortcomings outlined above, namely poor interlaboratory re­

producibility, the inability to decouple normal and tangential stress modes, and the

resulting obstacles to reliable scale­up, we proposed and validated the methodology

presented in chapter 3 which characterizes mechanochemical processes by analyzing
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the mechanical interactions occurring inside the milling jar through Discrete Element

Method (DEM) modeling [36]. By defining three characteristic values: the mean normal

energy dissipation per collision, 𝐸̄n; the mean tangential energy dissipation per collision,
𝐸̄t; and the specific collision frequency, 𝑓

col
/𝑛

ball
, we could successfully predict the

chemical yield of NaBH
4
regeneration under previously untested operational conditions.

Together, these metrics capture the distribution of energy dissipated between normal

and tangential contacts, providing a practical representation for the underlying stress

landscape in a bulk mechanochemical process because the energy released in each

collision scales directly with the normal or tangential force components; partitioning

that energy therefore mirrors how compressive and shear stresses are delivered in the jar.

Because these descriptors are derived directly from particle–particle and particle–wall

interactions, they remain independent of the mill’s working principle and design.

Consequently, any milling device that can reproduce the triplet {𝐸̄𝑛, 𝐸̄𝑡, 𝑓col/𝑛ball} should
deliver the expected chemical conversion. Moreover, since the framework explicitly

separates the contributions of compression (normal interactions) and shear (tangential

interactions), it gives the unique opportunity to deliberately tune their balance in

the system while keeping the total mechanical power dissipation constant. Since

this power can be expressed as (𝐸̄𝑛 + 𝐸̄𝑡) 𝑓col, the mechanical descriptors can be

manipulated to maintain an invariant mechanical ’budget’ even as the fill ratio (i.e. the

volume occupied by the balls divided by the jar’s total internal volume) changes, and

hence the grinding media mass and internal dynamics. The master­curve framework

provides the compensating adjustments in rotational speed or amplitude required to

hold that power fixed while smoothly shifting the ratio 𝐸̄𝑡/𝐸̄𝑛 from shear­dominated to

compression­dominated regimes. This decouples the stress mode from net energy

delivery, allowing mechanistic comparisons that are free from confounding effects

and isolating the true influence of shear versus normal loading on reaction kinetics.

Moreover, projecting any milling device onto the same {𝐸̄𝑛, 𝐸̄𝑡, 𝑓col/𝑛ball} space yields
a quantitative stress fingerprint that immediately reveals whether the mill intrinsically

favors shear or compression, providing a rigorous, transferable basis for equipment

benchmarking, optimization, and scale­up.

4.2. Model andmaterials
The Emax high­energy ball mill, distributed by the German company Retsch, is used for

all experiments. The system was set up to allow a maximum temperature of 50 ∘C. The
machine allocates proprietary grinding jars with 125 mL of volume that follow a circular

motion with a rotational speed 𝑛 up to 2000 revolutions per minute with an amplitude
(radius) 𝐴 of 1.7 cm, see Fig. 6.1.

Hydrated sodium metaborate (NaBO
2
⋅ 4H

2
O) (≥ 99%) was purchased from Sigma­

Aldrich, while magnesium hydride (MgH
2
) (≥ 99.9%, ≤ 50𝜇𝑚) was obtained from

Nanoshel. All reactants were used without further purification. The sample preparation

for ball milling was carried out in a glovebox under an argon atmosphere, with oxygen

and water concentrations maintained below 0.1 ppm. For a detailed description of the
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Figure 4.1: Schematic of jar movement

quantification of chemical yield and the cleaning of the equipment to preserve similar

conditions for all experimental cases, we refer to chapter 2.

4.2.1. Modeling approach and case definition

The interactions between the milling jar and the grinding media were modeled and

simulated using the Discrete Element Method (DEM). For this study, Altair EDEM 2021.2

was used as DEM solver, while Python 3.9.12 was employed for data post­processing.

EDEM implements a soft­sphere approach, calculating particle contact forces based on

the Hertz­Mindlin model. Refer to chapter 3 for a detailed description of the contact

model and the equations governing the particle’s motion in the DEM framework, as well

as for the calibration and data post­processing carried out to produce the master curves

presented in Figure 4.2.

The master curves (Figure 4.2 (a) and (b)) represent the expected mechanical action of

the high­energy ball mill in terms of mean specific power dissipation in the normal and

tangential directions, respectively. Additionally, the specific collision frequency and ratio

between both modes of dissipation are also presented (Figure 4.2 (c) and (d)). These

master curves were obtained from a large number of DEM simulations, normalizing the

measured dissipated energies and collisions through Equation 4.3 and Equation 4.4.

𝑃̃𝑠𝑝𝑒𝑐 =
𝑓𝑐𝑜𝑙𝐸̄

𝜌𝜔3𝐴2𝑑3𝑝𝑛𝑏𝑎𝑙𝑙
(4.3)

̃𝑓𝑐𝑜𝑙𝑙 =
𝑓𝑐𝑜𝑙
𝜔𝑛𝑏𝑎𝑙𝑙

(4.4)
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(a) (b)

(c) (d)

Figure 4.2: (a) Master curve ­ mean specific normal power dissipation per collision

𝑃̃𝑠𝑝𝑒𝑐,𝑛 (b) Master curve ­ mean specific tangential power dissipation per

collision 𝑃̃𝑠𝑝𝑒𝑐,𝑡 (c) Master curve ­ mean specific collision frequency ̃𝑓𝑐𝑜𝑙
(d) Ratio between mean specific tangential power dissipation per collision

and mean specific normal power dissipation per collision 𝑃̃𝑠𝑝𝑒𝑐,𝑡/𝑃̃𝑠𝑝𝑒𝑐,𝑛.
Calibrated coefficients (system comprising NaBO

2
⋅ 4H

2
O and MgH

2
).
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Where 𝜌 is the milling ball density, 𝜔 is the rotational speed of the mill, 𝐴 is the amplitude
of oscillation, 𝑑𝑝 is the diameter of the milling balls, and 𝑛𝑏𝑎𝑙𝑙 is the number of milling
balls in the system.

The combination of the master curves along with Equation 4.3 and Equation 4.4 enables

the estimation of the triplet of characteristic values ( ̄𝐸𝑛, ̄𝐸𝑡 and 𝑓𝑐𝑜𝑙/𝑛𝑏𝑎𝑙𝑙) for this
mechanochemical process without the need for any simulations. Then, it is possible to

calculate the total power following Equation 4.5.

𝑃
tot
= 𝑓

col
(𝐸̄n + 𝐸̄t) (4.5)

Looking at the ratio between tangential and normal dissipation (Figure 4.2 (d)), it

becomes possible to define three distinct operational regimes that strictly depend on the

fill ratio. The first goes from 4% to 9% fill ratio and favors tangential dissipation. At 10%,

an elbow can be identified in the curve, meaning that this fill ratio provides the best

balance between normal and tangential dissipation in this mill. Then, the second zone,

which extends up to 20%, increases the relevance of normal dissipation. Lastly, the third

zone, extending beyond 20%, provides no benefit as the ratio can no longer achieve

values beyond those achievable at lower fill ratios. Thus, to test the effect of each dissipa­

tion regime on the mechanochemical yield, the cases presented in Table 4.2 are selected.

The five cases in Table 4.2 are designed with the following rationale: a reference case,

with a fill ratio of 10%, achieves the best balance in dissipation between tangential and

normal components in the context of the Emax mill (see Figure 4.2 (d)). Cases favoring

Table 4.2: Comparison of milling scenarios at constant rotational speed versus constant

total power. Two biased cases are shown for each operating mode: one that

favours tangential dissipation and one that favours normal dissipation.

Reference Constant rot. speed Constant total power

Parameter case Favor tang. Favor norm. Favor tang. Favor norm.

Fill ratio (%) 0.10 0.06 0.17 0.06 0.17

Rot. speed (Hz) 10.0 10.0 10.0 13.14 9.03

Spec. power, normal 39.7 23 43 23 43

Spec. power, tangential 90 75 60 75 60

Spec. collision frequency 40 70 25 70 25

Collision frequency (𝑠−1/𝑛𝑏𝑎𝑙𝑙) 400 700 250 920 226

𝑃
total

(W) 6.9 3.0 9.4 6.9 6.9

Normal energy (10−4 J) 2.21 0.73 3.82 1.26 3.12

Tangential energy (10−4 J) 5.00 2.38 5.34 4.11 4.35

Ratio tang to norm. 2.26 3.26 1.40 3.26 1.39

Yield (%) 71 84 43 94 40
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tangential dissipation use a fill ratio of 6%, while those favoring normal dissipation use a

fill ratio of 17%. It is worth highlighting that, until now, the influence of the fill ratio on the

mechanochemical regeneration of NaBH
4
has not been investigated at all, let alone with

a mechanistic rationale [21]. In broader mechanochemical research, this parameter is

shifted for pragmatic or empirical reasons, making it unclear whether the reported results

on mechanochemical yield arise from altered power input, modified collision modes, or

both [37, 38]. To account for the effects of these different fill ratios on the system’s

dynamics and mechanical behavior, two approaches are introduced: constant rotational

speed and constant total power. Using both approaches, we can introduce a systematic

exploration of the effects of the fill ratio in a mechanochemical reaction by enforcing

power equivalence, providing a controlled platform for mechanistic interpretation.

State­of­the­art mechanochemical studies are typically carried out using only

the constant rotational speed approach, where the mill speed stays fixed while the fill

ratio is adjusted. Varying the fill ratio changes the total power dissipation because both

the mass in the jar (number of milling balls) and the collision frequency shift. As stated

above, the problem is that any change in reaction outcome now combines two effects:

tangential vs. normal distribution and total power, making it impossible to determine

which factor drives the yield. To resolve this confounding, the constant power strategy

can be used.

In the constant power approach, the machine’s rotational speed is carefully

adjusted using Equation 4.3 and Equation 4.4 to maintain constant total power

dissipation. Since ultimately the goal is to set 𝑃𝑡𝑜𝑡,𝑟𝑒𝑓 = 𝑃𝑡𝑜𝑡,𝑖, the aforementioned

equations can be manipulated to arrive at Equation 4.6. This step assumes that the

ball material and diameter, as well as the machine’s amplitude, remain unchanged.

Nonetheless, the influence of these parameters can be readily implemented back into

the expression if they are varied.

𝜔𝑖 = 𝜔ref (
𝑛ball,ref 𝑃̃spec,ref
𝑛ball,𝑖 𝑃̃spec,𝑖

)
1/3

(4.6)

In both strategies, the tangential to normal dissipation ratio remains constant because it

is set solely by the fill ratio. What changes is how the total power is delivered to the

reactants. By keeping that power constant, any shift in yield reflects how the power is

supplied, rather than how much the system receives (see Table 4.2). Furthermore, all

cases have the following previously optimized chemical operational parameters: BPR of

30, molar ratio of 66% above the stoichiometric value (see Equation 4.2), milling time of

12.5 hours, and stainless steel balls (1.4034 G100 DIN 5401) with a diameter of 10 mm

[21]. Each case was carried out three times to ensure reproducibility.

4.3. Results andDiscussion
This section presents the results obtained when the relative contribution of tangential

and normal collision modes inside the jar is systematically varied. Two complementary
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approaches were applied to isolate mechanical effects. The first follows constant

rotational speed, and the second follows constant total mechanical power. Alongside the

absolute regeneration yield, each run is evaluated through its specific yield (𝑊−1), which
relates fractional conversion yield directly to the mechanical power consumed, and

through the converted mass per Watt (𝑔 ⋅ 𝑊−1), which relates net product output directly
to the mechanical power consumed. Finally, we estimate mechanochemical energy

leverage metrics 𝜆𝑚𝑐, which measure the fraction of mechanical energy converted into
recoverable chemical energy.

4.3.1. Tangential to normal dissipation ratio

The results in Figure 4.3 depict how the conversion yield changes with fill ratio,

which dictates the ratio between tangential and normal stressing events in the milling

machine. In both approaches, the lowest fill (6%) leading to the highest tangential

contribution gives the best performance. Under constant power operation, this achieves

a regeneration yield of 94%, the highest value reported to date for the NaBO
2
⋅ 4H

2
O

and MgH
2
system. Specifically, this is achieved while reducing the milling time by 38%,

the ball­to­powder ratio by 40% (meaning more powder can be treated within the same

batch), and the rotational speed by 34% (see Table 4.3) [15]. These gains demonstrate

the potential for optimizing mechanochemical reactions with a deeper understanding of

Figure 4.3: Yield versus fill ratio for experiments run (i) at constant rotational speed

(blue) and (ii) at constant total power (orange). The secondary (top) axis

converts each fill ratio to the corresponding tangential/normal dissipation

ratio inside the jar. Error bars show the variability in yield.
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interactions among variables and the influence of mechanical conditions on the system.

When the system is held at constant speed, the tangential biased case still leads, but

the yield is about ten percentage points lower than in the constant power approach. For

normal­dominant cases, the opposite trend appears; constant speed offers a small

advantage of less than five percentage points. A simple first­order model captures this

behavior with high fidelity. Linear regression of yield against fill ratio gives 𝑅2 > 0.99
for both approaches. The fitted slopes quantify the penalty for reducing tangential

influence: yield falls by ≈ 0.038 per percentage of fill ratio at constant speed and by

≈ 0.049 per percentage of fill ratio at constant power, the latter being about 30% steeper.

Thus, increasing fill ratio from 6% to 17% lowers the yield by roughly 0.4–0.5 (40–50

percentage points) regardless of the strategy.

For NaBO
2
⋅ xH

2
O + MgH

2
−−−−−→ NaBH

4
, solid­state studies support a stepwise

interfacial hydride­substitution pathway: [B(OH)
4
]– converts via a borohydride–hydroxy

intermediate (BH
3
(OH)– /’NaBH

3
OH’) before full formation of BH

4
– , with 11𝐵 MAS NMR

directly detecting the intermediate under high­energy milling [15, 39]. Accordingly,

milling modes that maximize shear contact at reactive interfaces, continually renewing

MgH
2
/borate surfaces and abrading passivation layers (e.g., MgO, Mg(OH)

2
),

are more productive per Watt than brief head­on impacts (see Table 4.4 and

Figure 4.4). The advantage of a tangential­rich regime is consistent with known

shear­activation channels in mechanochemistry [40]; it increases defect density

and freshly created surface area, accelerates intimate mixing at reactive inter­

faces, and thereby can lower effective barriers for B–H bond­forming steps toward BH
4
– .

Across the different operating conditions tested, the highest specific yield performance

is achieved when tangential dissipation dominates. Under the constant rotational speed

regime, the mill reaches a specific yield of 0.28 (𝑊−1), which is 2.7 times higher than the
balanced reference. Even when total mechanical power is held fixed at 6.9 𝑊, simply
reorienting collisions from normal to tangential raises the specific yield from 0.058 to

0.136 (𝑊−1), delivering a 134% jump in productivity without any additional energy input.

By contrast, normal biased operation is doubly penalized as it demands more power

(9.4 𝑊 versus 6.9 𝑊) yet still depresses specific yield from 0.058 to 0.046 (𝑊−1).

It is also worth noting that, once tangential bias has driven the yield into

Table 4.3: Mechanochemical regeneration of NaBH4 from NaBO2 ⋅ 4H2O + MgH2: prior
art (Chen et al., 2017[15]) versus this work.

Metric Chen et al., 2017[15] This work Change

Regeneration yield (%) 88 94 +6%
Milling time (h) 20 12.5 −38%
Ball­to­powder ratio (BPR) 50 30 −40%
Rotational speed (Hz) 20 13.14 −34%
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Table 4.4: Yield normalised by total mechanical power input. The lower block continues

with the mass­based metrics for the same five conditions.

Condition
(orientation ⋅ fill ⋅ #balls)

𝑃
tot

(W) Yield

Specific­yield

(yield⋅W−1)
Gain vs. ref.

(%)

Reference – balanced ∙ 10 % ∙ 24 6.9 0.71 0.103 –

Tangential favored – 6 % ∙ 14 3.0 0.84 0.280 +172

Normal favored – 17 % ∙ 41 9.4 0.43 0.046 ­56

Tangential favored – 6 % ∙ 14 6.9 0.94 0.136 +32

Normal favored – 17 % ∙ 41 6.9 0.40 0.058 ­44

Condition
(orientation ⋅ fill ⋅ #balls)

NaBO2⋅4H2O
mass (g)

Converted mass per W

(g⋅W−1)
Gain vs. ref.

(%)

Reference – balanced ∙ 10 % ∙ 24 1.10 0.113 –

Tangential favored – 6 % ∙ 14 0.66 0.185 +64

Normal favored – 17 % ∙ 41 1.87 0.086 ­24

Tangential favored – 6 % ∙ 14 0.66 0.090 ­20

Normal favored – 17 % ∙ 41 1.87 0.108 ­4

Figure 4.4: Specific yield (𝑊−1) versus fill ratio for experiments run at constant rotational
speed (blue) and at constant total mechanical power (orange).
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the mid­80% range, further gains become increasingly expensive. Raising the yield from

84% (3 𝑊) to 94% (6.9 𝑊) requires more than doubling the mechanical power input, and
the specific yield is reduced by 55%, illustrating clear diminishing returns as the process

approaches full conversion. Therefore, expressing performance as converted mass

per Watt (𝑔 ⋅ 𝑊−1) (see Table 4.4) gives a direct, quantitative metric to evaluate these
diminishing returns. Because the ball­to­powder ratio is constant, increasing the fill ratio

processes more total reactant mass per batch, so even if a higher fill ratio yields a lower

percentage conversion, the mass converted per Watt can still be greater. Framing

conversion this way automatically penalizes those marginal, last percentage point gains

that demand disproportionately more power; this can be visualized in Figure 4.5.

Figure 4.5: Converted mass per W (g/W) versus fill ratio for experiments run (i) at

constant rotational speed (blue) and (ii) at constant total power (orange).

While the constant rotational speed tangential run retains the highest conversion, its

advantage shrinks to 64% compared to the reference case once the smaller batch

mass is accounted for (see Table 4.4). Critically, in the constant mechanical power

approach, the normal mode run overtakes its tangential counterpart on a mass per Watt

basis (0.108 vs. 0.090 𝑔 ⋅ 𝑊−1), and both perform worse than the balanced mode at

0.113 𝑔 ⋅ 𝑊−1. This result emphasizes a trade­off typically ignored in mechanochemical
processes: while the net conversion efficiency reaches its peak (94%) under these

tangential­rich conditions, the mechanical energetic cost to achieve the conversion

renders the mass per Watt less attractive. The choice of operational conditions,

therefore, depends on whether the goal is to maximize absolute percentage conversion

or mass per Watt conversion.
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4.3.2. Mechanochemical energy leverage
By quantifying the mechanical energy dissipated during the mechanochemical process,

we can estimate the theoretical maximum of recaptured chemical energy in the

regenerated NaBH
4
, and the liberated H

2
(see Equation 4.2). For this, we define

mechanochemical energy leverage (𝜆𝑚𝑐) in Equation 4.7:

𝜆𝑚𝑐 =
𝐸
chem

𝐸
mech

(4.7)

where 𝐸𝑚𝑒𝑐ℎ is the available mechanical energy defined as 𝑃𝑡𝑜𝑡 ⋅ 𝑡𝑚𝑖𝑙𝑙, with 𝑃𝑡𝑜𝑡
calculated via Equation 4.5 and 𝑡𝑚𝑖𝑙𝑙 the milling time (in our case 12.5 hours). 𝐸𝑐ℎ𝑒𝑚 is

the chemical energy associated with NaBH
4
produced, evaluated on three baselines:

the reaction enthalpy Δ𝐻 (­1226 𝑘𝐽/𝑚𝑜𝑙), the Gibbs free energy Δ𝐺 (­1510 𝑘𝐽/𝑚𝑜𝑙 at
298 K), or the lower heating value LHV of H

2
available per cycle (2908 𝑘𝐽/𝑚𝑜𝑙). Note

that because 𝜆𝑚𝑐 is referenced to the mechanical power dissipated inside the jar, it will
overestimate the wall­plug efficiency. A formal techno­economic analysis is outside the

scope of this study; nonetheless, the corresponding wall­plug specific energy intensity

(𝐸̄
plug

) and cost per kilogram of NaBH
4
(𝐶

NaBH
4

) can be estimated with Equation 4.8 and

Equation 4.9.

𝐸̄
plug

[kWhkg−1] =
𝐸𝑚𝑒𝑐ℎ

𝜂
plug

𝑚NaBH4

, (4.8)

𝐶
NaBH

4

[€ kg−1] = 𝐸̄
plug

𝑝
elec

, (4.9)

where 𝑚NaBH4
is the mass produced (kg), 𝜂

plug
the electromechanical efficiency, and

𝑝
elec

the electricity price (€/kWh).

The three comparison baselines form an energy quality hierarchy. The reaction enthalpy

represents low­grade heat recoverable at room temperature; the Gibbs free energy is

1.23 × larger because it includes the maximum reversible work associated with the

entropy gain, and the LHV is 2.37 × larger than |Δ𝐻| because it accounts for the usable
fuel energy stored in the liberated hydrogen and the regenerated NaBH

4
. With 𝐸𝑚𝑒𝑐ℎ

fixed, 𝜆𝑚𝑐 scales by the same factors (see Table 4.5). This shows how much of the

invested work can be exploited as the process moves from heat recovery towards full

fuel utilization.

Table 4.5: Mechanochemical energy leverage 𝜆𝑚𝑐 for each milling condition.

Operating conditions 𝜆𝑚𝑐(Δ𝐻) (%) 𝜆𝑚𝑐(Δ𝐺) (%) 𝜆𝑚𝑐(LHV) (%)

Tangential favored – 6% ⋅ 3W 3.65 4.49 8.66

Reference balanced – 10% ⋅ 6.9W 2.24 2.75 5.30

Normal favored – 17% ⋅ 9.4W 1.69 2.08 4.00

Tangential favored – 6% ⋅ 6.9W 1.78 2.19 4.21

Normal favored – 17% ⋅ 6.9W 2.14 2.64 5.08
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As expected, the ranking of operating conditions coincides with the mass per Watt

conversion ranking. The mechanochemical energy leverage values reveal that only

1.7–3.7% of the input mechanical work is recovered when evaluated on an enthalpy

basis, 2.1–4.4% on a Gibbs free energy basis, and 4–8.7% when considering the

fuel value of all available hydrogen (both directly liberated H
2
and that stored in

NaBH
4
). The best performance across all metrics is achieved under tangential milling at

low power. While these LHV efficiencies account for the total hydrogen yield, they

represent theoretical maxima assuming costless extraction of hydrogen from NaBH
4

via hydrolysis. In practice, the energy costs associated with hydrolysis will reduce

these leverage values below the reported range, making the actual recoverable energy

storage efficiency lower than these estimates indicate.

For context, mechanocatalytic water splitting over NiO achieves ≈ 4% enthalpy­based

efficiency [41], whereas planetary ball mill reduction of water by metallic Ti consumes

1.72 kWh m−3 [42]. That equates to ≈ 52 g kW−1 h−1, or 0.052 𝑔 ⋅ 𝑊−1 on a one­hour
basis, which is two­to­four times lower than the 0.090­0.185 𝑔 ⋅ 𝑊−1 obtained here for
NaBH

4
regeneration. While the processes are different, the scarcity of performance

data for NaBH
4
regeneration makes any deeper comparison impossible.

4.3.3. Conclusions
In this chapter, we present a methodology to steer the contributions of tangential

(shear) and normal (compressive) loading events during mechanochemical ball milling,

specifically for the regeneration of NaBH
4
. By combining DEM­derived mechanical

descriptors with two complementary experimental approaches, one at constant rotational

speed and one at constant total power, we separate changes in the energy dissipation

distribution between tangential and normal modes from changes in overall collision

dynamics. Because the dissipated energy in each mode scales with the corresponding

contact forces, this distribution provides a practical and quantitative representation for

the underlying stress landscape. Benchmarking each scenario through the specific

yield (𝑊−1), the converted mass per Watt (𝑔 ⋅ 𝑊−1), and the mechanochemical energy
leverage (𝜆𝑚𝑐) offers relevant metrics for optimization and scale­up.

A low fill ratio of 6%, which maximizes tangential dissipation, is the clear

optimum across both approaches if absolute percentage conversion is to be maximized.

Under constant­power operation, it delivers a record 94% regeneration yield while

reducing milling time by 38%, the ball­to­powder ratio by 40%, and the rotational speed

by 34% compared to prior literature. The same tangential­rich state achieved at

around half the power (3 𝑊) attains 84% yield, giving a specific yield of 0.28 𝑊−1, five
times the normal­dominant cases. Yield falls linearly with fill ratio (𝑅2 > 0.99), with
gradients of 0.038 per percentage point at constant speed and 0.049 per point at

constant power; thus, raising the fill from 6% to 17% costs 0.4–0.5 of fractional yield

(40–50 percentage points) regardless of experimental approach. Together, these trends

indicate that shear­dominated contact mechanics, rather than normal impacts, govern

the rate­limiting interfacial chemistry. To mechanistically ground this, Density Functional

Theory (DFT) derived energetics for the elementary steps could seed a microkinetic
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model that quantitatively links mechanical stress components (normal vs tangential) to

interfacial reaction rates, enabling prediction of optimal operating windows.

Our analysis further reveals that while tangential bias maximizes absolute

conversion yield, mechanical energy cost and BPR diminish per­Watt mass conversion

efficiency. Under constant mechanical power conditions, the balanced regime (10% fill)

yields the highest converted mass per Watt (0.113 𝑔 ⋅ 𝑊−1) compared to both tangential
(0.090 𝑔 ⋅ 𝑊−1) and normal (0.108 𝑔 ⋅ 𝑊−1) biased cases. This trade­off highlights

that the optimal operating point depends on the prioritization of absolute conversion

efficiency or normalized productivity.

The mechanochemical energy leverage of the process reveals theoretical

maxima of 1.7–3.7% on an enthalpy basis, 2.1–4.4% on a Gibbs free energy basis, and

4–8.7% when considering the fuel value of all available hydrogen. These values indicate

that the majority of input mechanical work is dissipated as heat and deformation rather

than being converted to useful chemical energy. This inefficiency suggests opportunities

for improving the process via thermal management, catalytic additives, or alternative

reactor geometries that better harness mechanical work for chemical activation.

Taken together, these findings demonstrate the critical role of stress mode

partitioning in mechanochemical reactions. Because the three mechanical descriptors

{𝐸̄𝑛, 𝐸̄𝑡, 𝑓col/𝑛ball} are transferable between mills, any reactor that reproduces the

tangential­rich scenarios identified here is expected to achieve comparable yields,

provided other thermochemical factors (jar atmosphere, contamination, etc.) are

controlled. By targeting desired mechanical conditions, practitioners can rationally

design milling protocols to maximize yield, throughput, and energy efficiency.
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5
Linkingmechanicsand

chemistry:Machinelearning
foryieldprediction

The results of the previous chapters have shown that the design space of a

mechanochemical process is large, interactions are non­linear, and internal dynamics

can be summarized by mechanical descriptors related to machine­level variables.

However, chemical and mechanical components remain uncoupled so far. Because

exhaustive testing of every condition is costly and time­consuming, we couple those

descriptors with reaction stoichiometry to build data­efficient machine learning (ML)

models that predict NaBH
4
yield, aid interpretability, and quantify uncertainty. This

work establishes a framework for using ML to optimize mechanochemical processes,

reducing experimental cost and offering a method to link mechanical conditions to

chemical outcomes, thereby enabling predictive mechanochemistry.

Parts of this article are adapted from: Garrido Nuñez, S.; Schott, D. L.; Padding, J. T. “Linking mechanics

and chemistry: machine learning for yield prediction in NaBH
4
mechanochemical regeneration”. In RSC

Mechanochemistry (2025).
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5.1. Introduction

5.1.1. Mechanochemical reactions via high-energy ball
milling

The advancement of mechanochemistry in the last two decades has seen the

application and innovation of multiple tools and processes to achieve chemical and

material synthesis that align with the principles of green chemistry [1]. Typically,

mechanochemical processes at the lab scale rely on ball mills to supply the (mechanical)

energy required to achieve a desired chemical reaction, although different methods

have been explored to combine this with additional sources of energy, such as thermal

energy, acoustic energy, or electrical energy [2]. Pure mechanochemical ball milling

is often characterized by intuitive process parameters that any ball mill can readily

account for, namely rotational speed, filling ratio, ball­to­powder ratio (BPR), milling time,

and additional physical material properties such as density of the milling balls [3–7].

Although these parameters certainly steer the overall behavior of the process, it has

been observed that they are not sufficient to accurately characterize mechanochemical

processes, leading to significant challenges in reproducibility and scaling up given the

intrinsic differences in working principle that different machines have [8, 9].

It becomes clear that mechanochemistry involves a series of complex inter­

actions that must be investigated systematically before layering on additional,

non­intuitively tunable energy inputs, especially because both mechanical and chemical

variables fundamentally dictate high yields. However, due to the relative novelty of

the field, research has remained largely exploratory, employing one­variable­at­a­time

(OVAT) studies that prove inadequate once scale­up or efficiency optimization becomes

the goal [10–12].

To tackle this challenge, the Discrete Element Method (DEM) has been employed to

accurately characterize a high­energy ball mill’s internal dynamics, effectively bypassing

the dependency of the utilized mill or the aforementioned process variables. This is done

by defining three key mechanical characterization properties: the mean normal energy

dissipation per collision 𝐸̄𝑛, the mean tangential energy dissipation per collision 𝐸̄𝑡, and
the specific collision frequency per ball

𝑓𝑐𝑜𝑙
𝑛𝑏𝑎𝑙𝑙

[8]. This methodology can be applied to any

milling machine of any scale, reducing the challenges in reproducibility and providing

guidelines for the specifications needed in larger­scale equipment. Regardless, this

numerical characterization remains mechanical and thus cannot include the influence of

the chemical variables of the system, such as the molar ratio, BPR, milling time, and

their confounded influence with the rest of the mechanical variables.

The chemical characterization of the system can only be accomplished exper­

imentally. In our target reaction, the mechanochemical regeneration of NaBH
4
from

NaBO
2
⋅ 4H

2
O (see Equation 5.1), the dependence on molar ratio is non­linear, while

the influence of milling time is effectively linear within the investigated range [3].

Furthermore, the interaction between the BPR and molar ratio is statistically significant,

indicating a complex interaction among operating parameters. These experiments

were carried out under constant, albeit optimized mechanical conditions from the pure
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perspective of energy dissipation, ignoring the effect that changing the distribution of

shear and normal stress can have on the system [8]. Thus, while DEM simulations

can facilitate a mechanical characterization, their effectiveness can only be tested

experimentally. To overcome this limitation, we investigate the use of different

machine learning (ML) algorithms to predict the conversion yield, reducing the need for

trial­and­error experiments.

NaBO2 ⋅ 4 H2O + 6MgH2 → NaBH4 + 6MgO + 8H2 (5.1)

In other applications, Anglou et al. [13] employed linear regression to link DEM outputs

(collision frequency and average kinetic energy of a milling ball) to the depolymerization

of PET, obtaining a good fit (𝑅2 = 0.966). This result, however, holds only within a range
of total energy given to the system before the linear condition is lost. The authors

accurately point out that a non­linear model could be trained, but the lack of data prohibits

this. Furthermore, this study made use of a single milling ball in a 25 mL jar where only

the milling frequency was varied. This configuration effectively simplifies many other

operational parameters that lab­scale and industrial­scale ball milling processes can have.

Similarly, Yu et al. [14] utilized polynomial regression to analyze different

milling parameters and predict target particle sizes while ball milling alumina ceramics.

Although no chemical processes were involved in this study, the authors point out the

same challenge mentioned before: most studies focus on optimizing milling parameters,

varying only one process variable and keeping the rest constant, which severely limits

the applicability of data­based methods to gain a more profound understanding of their

impact on the process. In the same context of pure milling, Lit et al. [15] trained a

convolutional neural network (CNN) to predict the grinding rate and size distribution of

a rotating drum mill, achieving high accuracy (𝑅2 > 0.95) and good transfer learning

results. This indicates that deep neural networks can capture the complex physics of

milling when sufficient training data exists.

However, deep models such as these remain unviable when applied directly to

experimental mechanochemical data, simply because such large, labeled datasets do

not exist. Furthermore, the creation of these datasets requires extensive experimental

work that necessitates a significant amount of time. For instance, a typical experiment

involving the regeneration of NaBH
4
takes at least 72 hours from sample preparation to

yield quantification.

To address these issues, a shared mechanochemical reaction database has

been created [16], allowing researchers to pool results and push machine learning

approaches that connect milling conditions with chemical outcomes, something experts

believe could revolutionize the field [17]. However, because different groups study

different reactions in different mills, detailed data for any one process remain scarce,

and most characterization methods only work on the specific equipment for which they

were developed as stated before. Moreover, the ”black­box” nature of ML models adds

another limitation. While some methods, like random forests, offer feature­importance

insights, other methods, like deep neural networks and support­vector machines,

hardly explain why a given parameter set succeeds or fails. This makes it hard to
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build a mechanistic understanding or plan experiments beyond the model’s training

scope. Furthermore, while previous applications of machine learning in milling have

often focused on either purely physical outcomes (e.g., particle size prediction) or

utilized limited operational parameters for chemical yield, a comprehensive approach

integrating detailed, DEM­derived mechanical descriptors with a broader set of chemical

process variables to predict yield for complex reactions remains unexplored. Finally,

practical challenges persist: producing large, high­quality datasets demands extensive

experimentation, run­to­run variability can introduce noise, and fitting sensors inside a

sealed milling jar to gather real­time data is technically difficult [18–20]. Altogether,

these five factors keep ML­driven ball milling mechanochemistry at a very early stage.

Within the broader landscape of data­driven reaction discovery and optimiza­

tion, machine learning has not only accelerated condition search but also changed

how chemists learn from experiments. In solution­phase synthesis, high­throughput

experimentation (HTE) and automation provide the dense, standardized datasets

that enable multivariate modeling and closed­loop optimization [21, 22]. Multivariate

linear models extract quantitative structure–reactivity/selectivity relationships that rank

which variables matter and why, enabling prospective design [23]. Orchestration

and active­learning platforms (e.g., ChemOS; LabMate.ML) close the loop between

Bayesian decision­making and automated execution, reaching high­yielding conditions

in tens of experiments while handling mixed categorical/continuous spaces [24, 25].

Beyond single substrates, closed­loop protocols now optimize for generality across

substrate matrices, identifying condition sets that transfer across chemotypes [26].

Recent systems show that optimization can produce knowledge on­the­fly, integrating

interpretable/physics­informed models with automation to uncover mechanistic factors

during optimization [27, 28]. These developments motivate our study, but also highlight

two distinctions specific to mechanochemistry: data throughput is typically much

lower than in plate­ or flow­based solution platforms [21], and controllable variables

necessarily include mechanical/process descriptors of mechanical stressing and energy

transfer, which are absent from most solution phase models [8, 29].

Motivated by recent ML­driven progress in solution­phase optimization, we lay

the groundwork for a mechanochemistry­specific framework. We take advantage of

a DEM­based mechanical characterization that establishes a commonality between

mills, enabling unified datasets. We compare modeling families and map their strengths

and limitations to use cases in small­data, high­cost regimes. Ultimately, we show

that combining mechanical and chemical operating variables can accurately predict the

mechanochemical yield. The dataset spans 27 experiments with wide ranges in both

chemical and mechanical factors and, although compact, constitutes the most extensive

open­access operating space for NaBH
4
regeneration to date, positioning this study as

a practical starting point for predictive mechanochemistry.
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5.2. Methodology
This section details the methodology employed to predict the experimental yield using

machine learning techniques. The workflow encompasses data acquisition, feature

engineering, model training, hyperparameter optimization, and evaluation. All analyses

were performed using Python 3.9.

5.2.1. Data acquisition

The dataset (Table 5.1) utilized in this work combines two previously published

components: experimental yields for regeneration of NaBH
4
using the Emax high­energy

ball mill [3], and a DEM­based methodology to mechanically characterize ball milling

conditions [8]. In the present study, we derive device­independent descriptors for all

experimental cases and assemble an ML­ready dataset that supports comparison

and transfer across ball­milling devices. This is achieved by defining three key

parameters: the mean normal energy dissipation per collision 𝐸̄𝑛, the mean tangential
energy dissipation per collision 𝐸̄𝑡, and the specific collision frequency per ball
𝑓𝑐𝑜𝑙
𝑛𝑏𝑎𝑙𝑙

. We note that the variables modeled in solution phase yield prediction studies

typically comprise solvent, base, ligand/catalyst, temperature, concentrations, and time,

often explored at scale via HTE or flow with inline analytics. In mechanochemistry,

outcome­relevant variables also include mill type, jar/ball materials and sizes,

ball­to­powder ratio, fill ratio, and milling frequency, and thus require abstraction via

the aforementioned mechanical descriptors of energy transfer to compare between

devices. The results presented in our previous work can be readily used to arrive at

these key parameters in the Emax, but the methodology can be applied to any ball mill [8].

Experimentally, hydrated sodium metaborate (NaBO
2
⋅ 4H

2
O) (≥ 99%) was pur­

chased from Sigma­Aldrich, while magnesium hydride (MgH
2
) (≥ 99.9%, ≤ 50𝜇𝑚) was

sourced from Nanoshel. All reactants were used without further purification. The sample

preparation for all ball milling experiments was carried out in a glove box under an argon

atmosphere, with oxygen and water concentrations maintained below 0.1 ppm. For a

detailed description of the quantification of the chemical yield and equipment cleaning to

preserve similar conditions for all experimental cases, we refer to our previous work [3].

5.2.2. Feature engineering

To facilitate the capture of non­linear relationships and interactions, several feature

engineering steps were applied to the initial feature set:

1. Quadratic Term: Our previous results indicate that the molar ratio has a

significant quadratic relationship with the chemical yield [3]. Thus, a new feature

containing this quadratic term was added.

2. Interaction Term: We have found a strong interaction between the BPR and the

molar ratio [3]. Therefore, we also include an additional feature composed of the

product of these 2 variables.
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Table 5.1: NaBH
4
regeneration dataset. BPR = ball–powder mass ratio; “Mol. ratio” =

NaBH
4
: MgH

2
; 𝐸̄𝑛, 𝐸̄𝑡 are mean normal and tangential energy dissipated

per collision from DEM; 𝑓
col
/𝑛

ball
is the specific collision­frequency per ball.

Experimental details: [3]; DEM details: [8].

Case BPR Mol. ratio Time (h) 𝐸̄𝑛 (µJ) 𝐸̄𝑡 (µJ) 𝑓
col
/𝑛

ball
(s−1) Yield (%)

0 10 8 5.0 221 500 400 12

1 10 8 12.5 382 888 533 22

2 10 8 20.0 613 1391 667 30

3 10 10 5.0 221 500 400 28

4 10 10 12.5 613 1391 667 39

5 10 10 20.0 221 500 400 45

6 10 12 5.0 613 1391 667 40

7 10 12 12.5 221 500 400 61

8 10 12 20.0 382 888 533 73

9 30 8 5.0 382 888 533 26

10 30 8 12.5 613 1391 667 37

11 30 8 20.0 221 500 400 42

12 30 10 5.0 613 1391 667 50

13 30 10 12.5 221 500 400 71

14 30 10 20.0 382 888 533 88

15 30 12 5.0 221 500 400 21

16 30 12 12.5 382 888 533 32

17 30 12 20.0 613 1391 667 49

18 50 8 5.0 613 1391 667 25

19 50 8 12.5 221 500 400 62

20 50 8 20.0 382 888 533 74

21 50 10 5.0 221 500 400 31

22 50 10 12.5 382 888 533 73

23 50 10 20.0 613 1391 667 90

24 50 12 5.0 382 888 533 41

25 50 12 12.5 613 1391 667 62

26 50 12 20.0 221 500 400 57
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3. Sigmoid Transformation: To account for potential saturation effects, sigmoid

transformations (1/(1 + exp(−𝑥))) were applied to the ‘Time’, and ‘BPR’ features,
creating new features while retaining the original features. This allows the model

to plateau rather than grow indefinitely (or turn negative) as these variables

change.

The resulting set of features constituted the final engineered feature matrix used for

model training.

5.2.3. Train-Test split and feature scaling

The dataset, comprising the engineered features and the target yield, was divided into

training (80%) and testing (20%) sets. A fixed random state was used to ensure

reproducibility of the split. With 27 experimental cases, this corresponds to 21 training

and 6 test samples. To ensure every algorithm is evaluated on the same examples, we

used a single, predetermined 21/6 partition created by shuffling once and then locking

that partition for all analyses. All model fitting and hyperparameter selection used only

the training data; the test set was held back until the final evaluation.

Feature scaling was applied to ensure that features with larger ranges did not

disproportionately influence the model’s sensitivity to feature magnitude, such as

distance­based algorithms (Support Vector Regression (SVR), Gaussian Process

Regression (GPR)) and linear models. Specifically, standardization was employed,

where each feature was transformed to have zero mean and unit variance according to

Equation 5.2:

𝑥
scaled

=
𝑥 − 𝜇

train

𝜎
train

(5.2)

where 𝑥 is the original feature value and 𝜇
train

and 𝜎
train

are the mean and standard

deviation of that feature calculated exclusively from the training data partition.

The train­test split ensures that no information from the test set influences the

transformation applied during the training phase (preventing data leakage) and

preserves the integrity of the test set for unbiased model evaluation. The same training

set parameters (𝜇
train

, 𝜎
train

) were then used to standardize the corresponding features of

the training set and the test set. Models requiring scaled data (Linear Regression, GPR,

SVR) utilized these standardized features for both training and prediction. In contrast,

tree­based models (Random Forest, XGBoost), which are less sensitive to feature

scaling, were trained and evaluated using the original, unscaled engineered features.

5.2.4. Weighted loss function

To prioritize accurate prediction of higher yields, which are often of greater experimental

interest, a custom weighted mean squared error (MSE) loss function was defined:

Weighted MSE = 1
𝑁

𝑁

∑
𝑖=1
𝑤𝑖(𝑦true,𝑖 − 𝑦pred,𝑖)

2 (5.3)
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where 𝑁 is the number of samples, 𝑦
true,𝑖 and 𝑦pred,𝑖 are the true and predicted yields for

sample 𝑖, respectively. The weight 𝑤𝑖 was set to 2.0 if 𝑦true,𝑖 > 70%, and 1.0 otherwise.
This weighted MSE was used as the primary scoring metric during hyperparameter

optimization and for comparing model performance.

5.2.5. Modeling approach motivation
Informed by previous research [3], the milling time feature alone was found to account

for approximately 50% of the observed variance in yield. A primary concern was that this

dominant predictor could mask the influence of the remaining process parameters. To

address this potential overshadowing effect and better capture the contributions of the

remaining features, we implemented a specialized two­step modeling strategy. The

approach involves:

1. Training a first model using only the ‘time’ feature to predict the yield.

2. Calculating the residuals (actual yield minus the first model’s prediction) on the

training data.

3. Training a second model using all other engineered features (excluding ‘time’) to

predict these residuals.

4. The final prediction is the sum of the predictions from the time model and the

residual model.

This allows the residual model to focus on explaining the yield variation not captured by

the primary time trend. To rigorously assess the benefit of this specialized strategy,

we also trained corresponding models directly on the full set of engineered features

for direct performance comparison against their two­step counterparts. The general

methodology is visualized in Figure 5.1.

5.2.6. Machine learning algorithms and hyperparameter
optimization

The machine learning algorithms described below were selected on the basis

of their suitability and applicability to the current state of available experimental

mechanochemistry data. It is worth highlighting that the feature engineering and

two­step approach described in previous sections are omitted for the linear regression

model, which is included solely as a baseline for comparison. For the GPR (Gaussian

Process Regression), RF (Random Forest), SVR (Support Vector Regression), and

XGBoost models, hyperparameter optimization was performed using the Tree­structured

Parzen Estimator (TPE) algorithm implemented in the Hyperopt library. The objective

was to minimize the weighted MSE, evaluated using repeated k­fold cross­validation of

the training data with 𝑘 = 5 splits and 𝑛 = 3 repeats. We chose 𝑘 = 5 as a pragmatic
bias–variance compromise [30]. Given 21 samples, 5­fold yields validation folds of

4–5 samples (training folds of 16–17), whereas 10­fold would leave 2–3 per validation,

and leave­one­out CV only 1, both of which increase variance in hyperparameter
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Figure 5.1: Methodology workflow overview.
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comparisons. A total of 100 function evaluations were assigned for most models, while

SVR, known to be potentially slower to tune, was assigned 500 evaluations to ensure a

thorough search [31]. The best hyperparameters found during this process were used to

train the final model on the entire training set.

Linear regression

Linear regression is included, given its simplicity and the ability to assess how well

the relationship between input and output variables can be captured with a linear

relationship. Linear models have been widely used to relate physical­organic descriptors

to outcomes and selectivity in reaction development [23, 32]. The relationship between

target 𝑌 and input variables 𝑋𝑖 can be described as [33]:

𝑌 = 𝛽0 +
𝑝

∑
𝑖=1
𝑋𝑖𝛽𝑖 (5.4)

Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a supervised learning method that models a

distribution over possible functions rather than fitting a single function directly [34]. At its

core, GPR assumes that any set of observed points is drawn from a joint Gaussian

distribution characterized by a mean function and a covariance (kernel) function. The

kernel function defines how closely related any two points are, which in turn governs

the smoothness and shape of the functions in the model. Thus, GPR is an attractive

alternative, as it produces not only a prediction value but also a distribution, effectively

giving confidence intervals for the outcome. Moreover, these functions can adapt as

more data is collected for training, making it particularly applicable for small data sets.

Given the scarce data available currently in mechanochemistry, it is a clear candidate

until more data can be collected for deep models. For background on GPR in chemistry,

including kernel design and uncertainty quantification in small­data settings, see the

general overview in Chemical Reviews [35] and recent catalysis­focused reviews [36].

In our formulation, we assume a zero­mean function. This common choice is made

when no strong prior knowledge about the mean exists; any systematic trends are

then captured by the covariance (kernel) function, allowing the model to focus on the

underlying correlation structure. Additionally, we use a composite kernel (Equation 5.5)

consisting of a constant scaling factor (𝐶), a Matérn kernel (with smoothness parameter
𝜈 fixed at 1.5) since it is effective in modeling physical processes [37, 38], and a white
noise kernel (𝜎2𝑛) to account for observation noise.

𝑘 = 𝐶𝑘Matern(𝜈 = 1.5) + 𝑘WhiteKernel(𝜎
2
𝑛), (5.5)

𝑘𝑀𝑎𝑡𝑒𝑟𝑛(𝑟) = 𝜎22
1−𝜈

Γ(𝜈)
(
√2𝜈 𝑟
𝑙

)
𝜈

𝐾𝜈 (
√2𝜈 𝑟
𝑙

) , (5.6)

where 𝑟 = |𝑥 − 𝑥′| is the distance between two inputs, 𝑙 is the length scale, 𝜎2 is the
signal variance, 𝜈 controls the smoothness, Γ(⋅) is the Gamma function, and 𝐾𝜈(⋅) is the
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modified Bessel function of the second kind.

Given a training set 𝐗 = {𝑥1, … , 𝑥𝑁} with outputs 𝐲 = {𝑦1, … , 𝑦𝑁} and a test set

𝐗∗ = {𝑥∗1, … , 𝑥
∗
𝑚}, the joint distribution of the training outputs and the latent function

values 𝐟∗ at the test points is modeled as:

( 𝐲𝐟∗) ∼ 𝒩(𝟎, (𝐾(𝐗, 𝐗) + 𝜎
2
𝑛𝐈 𝐾(𝐗, 𝐗∗)

𝐾(𝐗∗, 𝐗) 𝐾(𝐗∗, 𝐗∗))) , (5.7)

where 𝜎2𝑛 denotes the noise variance. 𝐾 denotes the covariance function computed from
the composite kernel and is used to construct the covariance matrices for both the

training data and the test data.

Conditioning on the training data, the predictive distribution for the latent function values

at the test points is Gaussian with mean and covariance given by

̄𝐟∗ = 𝐾(𝐗∗, 𝐗) [𝐾(𝐗, 𝐗) + 𝜎2𝑛𝐈]
−1 𝐲, (5.8)

cov(𝐟∗) = 𝐾(𝐗∗, 𝐗∗) − 𝐾(𝐗∗, 𝐗) [𝐾(𝐗, 𝐗) + 𝜎2𝑛𝐈]
−1 𝐾(𝐗, 𝐗∗). (5.9)

The kernel hyperparameters (𝑙, 𝜎2𝑛, 𝜈) and the noise variance 𝜎2𝑛 are estimated by

maximizing the log marginal likelihood:

log 𝑝(𝐲|𝐗) = −1
2
𝐲 [𝐾(𝐗, 𝐗) + 𝜎2𝑛𝐈]

−1 𝐲 − 1
2
log |𝐾(𝐗, 𝐗) + 𝜎2𝑛𝐈| −

𝑁
2
log(2𝜋). (5.10)

This structure allows flexibility in modeling the signal variance, smoothness, feature

relevance, and noise level. The key hyperparameters optimized via Hyperopt are

detailed in Table 5.2.

Table 5.2: Hyper­parameter search space used for Gaussian­process regression (GPR).

𝒰(𝑎, 𝑏) denotes a continuous uniform prior on the interval (𝑎, 𝑏).
Hyper­parameter Search space / value

Constant scaling 𝐶 𝒰(0.1, 103)
Base length­scale 𝑙 𝒰(0.05, 10)
Noise variance 𝜎2𝑛 𝒰(10−5, 1.5)
Matérn smoothness 𝜈 fixed at 1.5

Random Forest

A random forest (RF) is an ensemble algorithm that makes use of multiple decision

trees to enhance performance and reduce over­fitting. Each tree is fed with different

samples of the training data (i.e., a bootstrap), and at each node, a random subset

of features is used for decision making [39]. This introduces variability across trees

and thus, errors made across different trees are averaged out in the final prediction.

Given the confounded nature of variables in mechanochemical processes, tree­based

algorithms are appealing due to the ‘if­then’ working principle, which can capture

non­linear relationships. For instance, tree­based ensembles such as random forest are
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standard in chemoinformatics [40], and QSAR [41]. The overall prediction is given by

Equation 5.11 [42].

̂𝑓(𝑥) = 1
𝑀

𝑀

∑
𝑚=1

ℎ(𝑥; Θ𝑚), (5.11)

where ̂𝑓(𝑥) is the ensemble prediction for 𝑥, 𝑀 is the number of trees in the forest,

and ℎ(𝑥; Θ𝑚) denotes the prediction of the 𝑚­th tree. Here, Θ𝑚 represents the

random factors, such as the bootstrap sample and random feature selection, used in

constructing the 𝑚­th tree.
Key hyperparameters were tuned to optimize performance as detailed in Table 5.3.

Table 5.3: Hyper­parameter search space used for random­forest (RF) regression.

𝒰(𝑎, 𝑏) denotes a discrete uniform prior on the integer range {𝑎, … , 𝑏}.
Hyper­parameter Search space / value

Number of trees 𝑛
estimators

𝒰(50, 300)
Maximum tree depth 𝒰(5, 30)
Minimum samples split 𝒰(2, 20)
Minimum samples leaf 𝒰(1, 10)

Support Vector Regression

A support Vector Regression (SVR) aims to find a function 𝑓(𝑥) that deviates from the

target values 𝑦𝑖 by a value no greater than 𝜖 for all training points, while remaining as
flat as possible [43]. The resulting regression function takes the form:

̂𝑓(𝑥) =
𝑁

∑
𝑖=1
(𝛼𝑖 − 𝛼

∗
𝑖 ) 𝐾(𝑥𝑖, 𝑥) + 𝑏, (5.12)

where 𝑥𝑖 are the training points (support vectors), 𝛼𝑖, 𝛼
∗
𝑖 are non­negative Lagrange

multipliers determined during optimization, and 𝑏 is a bias term. The choice of the

kernel function 𝐾(𝑥𝑖, 𝑥) allows capturing non­linear relationships. The optimization

process finds these multipliers subject to constraints, including the crucial box constraint

0 ≤ 𝛼𝑖, 𝛼
∗
𝑖 ≤ 𝐶, where 𝐶 is the regularization hyperparameter. This parameter 𝐶 > 0

controls the trade­off between the flatness of 𝑓(𝑥) and the tolerance for errors larger
than 𝜖; a larger 𝐶 allows less error but potentially a more complex function.
In SVR, the support vectors are defined by training data points that lie on or outside

the boundary of the 𝜖­insensitive tube. This characteristic of SVR is particularly

advantageous in the current state of mechanochemical processes, where experimental

data is scarce, and studies typically explore the effect of only one or two parameters

on yield. By concentrating on the most informative data points, it can uncover subtle

nonlinear dependencies among multiple process parameters. SVR has long been part

of the chemometrics toolkit for nonlinear calibration and classification [44, 45]. The
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Radial Basis Function (RBF) kernel was employed:

𝐾(𝑥𝑖, 𝑥) = exp(−𝛾‖𝑥𝑖 − 𝑥‖
2) (5.13)

where the kernel parameter 𝛾 controls the influence of a single training example. The
key hyperparameters 𝐶, 𝜖, and 𝛾, which influence the model’s complexity, error tolerance,
and kernel shape, respectively, were optimized using Hyperopt as detailed in Table 5.4.

Table 5.4: Hyper­parameter search space used for support­vector regression (SVR).

𝒰(𝑎, 𝑏) denotes a continuous uniform prior on (𝑎, 𝑏), while log𝒰(𝑎, 𝑏) is
uniform in log10 space.

Hyper­parameter Search space / value

Regularization 𝐶 log𝒰(0.1, 100)
Epsilon 𝜀 𝒰(0.001, 1)
Kernel scale 𝛾 log𝒰(0.001, 1)

XGBoost

XGBoost is another tree­based algorithm that, in contrast to RF, which constructs

independent trees and averages them, builds an ensemble of regression trees in a

sequential form [46]. Its efficiency, ability to capture complex non­linear relationships

and feature interactions, and sophisticated regularization techniques make it a powerful

choice for predictive modeling tasks, particularly with structured or tabular data often

encountered in chemical process optimization. The final prediction ̂𝑓(𝑥) is the sum of

the predictions from all 𝑀 trees:

̂𝑓(𝑥) =
𝑀

∑
𝑚=1

𝑓𝑚(𝑥), (5.14)

where 𝑓𝑚(𝑥) represents the prediction of the m­th tree, and 𝑀 corresponds to the

number of estimators.

The training process iteratively adds trees by minimizing an objective function ℒ(𝜙) that
combines a loss term (measuring the difference between predictions and actual values)

and a regularization term Ω (penalizing model complexity), summed over all trees:

ℒ(𝜙) =
𝑁

∑
𝑖=1
𝑙(𝑦𝑖, 𝑦̂

(𝑀)
𝑖 ) +

𝑀

∑
𝑚=1

Ω(𝑓𝑚), (5.15)

where 𝑙(𝑦𝑖, 𝑦̂
(𝑀)
𝑖 ) is the loss for sample 𝑖 after 𝑀 trees (e.g., squared error for regression),

and 𝑦̂(𝑀)𝑖 is the cumulative prediction. The regularization term for a single tree 𝑓 is
defined as:

Ω(𝑓) = 𝛾𝑇 + 1
2
𝜆‖𝑤‖2. (5.16)
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Here, 𝑇 is the number of leaves in the tree, and 𝑤 is the vector of scores (weights) at

the leaves. The hyperparameter 𝛾 represents the minimum loss reduction required

to make a further partition on a leaf node, acting as a tree pruning mechanism. The

term
1
2𝜆‖𝑤‖

2 is an L2 regularization on the leaf weights, where 𝜆 (typically fixed, e.g.,
𝜆 = 1 by default in XGBoost, and not tuned in this study) helps to prevent overfitting by
shrinking the leaf scores.

The structural complexity of each tree 𝑓𝑚 is primarily controlled by its maximum depth.

The boosting process, which dictates how the ensemble is built, is further refined

by several key hyperparameters: the learning rate (often denoted as 𝜂) scales the

contribution of each new tree, reducing the impact of individual trees and preventing

overfitting. The subsample specifies the fraction of training instances randomly

sampled to grow each tree, introducing stochasticity and improving generalization.

Sample­by­tree defines the fraction of features randomly sampled when constructing

each tree (or each split), which further diversifies the trees and helps manage feature

collinearity. These parameters, along with the number of estimators and 𝛾, were
optimized via Hyperopt. This careful tuning of the gradient boosting process, combined

with its inherent regularization strategies, allows XGBoost to achieve high accuracy

while effectively mitigating overfitting [47]. For chemical best practices with XGBoost on

tabular reaction/molecular data, we refer to the Journal of Cheminformatics guidelines

[48] and recent domain reviews in catalysis science [36]. The main hyperparameters

tuned are listed in Table 5.5.

Table 5.5: Hyper­parameter search space used for extreme­gradient boosting (XGBoost).

𝒰(𝑎, 𝑏) is a continuous uniform prior on (𝑎, 𝑏), log𝒰(𝑎, 𝑏) is uniform in log10
space, and 𝒰

int
(𝑎, 𝑏) is a discrete uniform prior on the integers {𝑎, … , 𝑏}.

Hyper­parameter Search space / value

Maximum depth 𝑑max 𝒰
int
(3, 10)

Learning rate 𝜂 log𝒰(0.01, 0.3)
Number of estimators 𝑀 𝒰

int
(100, 500)

Row subsample (subsample) 𝒰(0.5, 1)
Column subsample (colsample_bytree) 𝒰(0.5, 1)
Minimum loss­reduction 𝛾 𝒰(0, 5)

5.3. Results andDiscussion
The primary objective of this study is to develop accurate predictive models that can link

mechanical and chemical operational parameters to experimental mechanochemical

yield. To assess this, we evaluate several machine learning algorithms using two distinct

modeling strategies:

1. A primary modeling approach, where each algorithm was trained directly on the

full set of engineered features (either scaled or unscaled, as appropriate for the

specific model).
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2. A two­step modeling approach, designed to address the potentially dominant

influence of the ‘time’ feature. This involved first modeling the yield based on ‘time’

alone, and then modeling the residuals (the difference between actual yield and

the time model’s prediction) using the remaining engineered features. The final

prediction was the sum of the outputs from these two component models.

This dual approach allows for a comprehensive assessment of how well different

algorithms capture the underlying relationships in the data, particularly concerning

the prominent role of reaction time. It should be reiterated that the weighted MSE

calculations discussed here reflect a configuration in which the yields above 70% were

given a weight of 2.0, and all other yields a weight of 1.0.

5.3.1. Model Performance Evaluation
The performance of all trained models was evaluated on a held­out test set. To provide

a multifaceted view of predictive accuracy, several standard regression metrics were

employed, in addition to the Weighted MSE already defined in Eq. (5.3). These metrics

are:

• Root Mean Squared Error (RMSE): This metric calculates the square root of the

average of the squared differences between predicted and actual values. It is

sensitive to large errors due to the squaring term. The RMSE is given by:

RMSE = √
1
𝑁

𝑁

∑
𝑖=1
(𝑦

true,𝑖 − 𝑦pred,𝑖)2 (5.17)

where 𝑁 is the total number of samples in the test set, 𝑦
true,𝑖 is the actual yield for

sample 𝑖, and 𝑦
pred,𝑖 is the predicted yield for sample 𝑖. Lower RMSE values

indicate a better fit, and the metric shares the same units as the target variable

(yield).

• Mean Absolute Error (MAE): MAE measures the average magnitude of errors

in a set of predictions. It is the average over the test sample of the absolute

differences between prediction and actual observation.

MAE = 1
𝑁

𝑁

∑
𝑖=1
|𝑦

true,𝑖 − 𝑦pred,𝑖| (5.18)

MAE is less sensitive to outliers compared to RMSE and provides a straightforward

interpretation of the average error magnitude, also in the units of the target

variable.

• Mean Absolute Percentage Error (MAPE): MAPE expresses the average

absolute difference between predicted and actual values as a percentage of

actual values. This makes it a scale­independent metric, useful for comparing

performance across datasets or models with different output scales.

MAPE = 100%
𝑁

𝑁

∑
𝑖=1
|
𝑦
true,𝑖 − 𝑦pred,𝑖
𝑦
true,𝑖

| (5.19)
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where 𝑦
true,𝑖 ≠ 0. Lower MAPE values are desirable.

• Coefficient of Determination (𝑅2): The 𝑅2 score indicates the proportion of the
variance in the dependent variable (yield) that is predictable from the independent

variables (features).

𝑅2 = 1 −
∑𝑁𝑖=1(𝑦true,𝑖 − 𝑦pred,𝑖)

2

∑𝑁𝑖=1(𝑦true,𝑖 − 𝑦̄true)2
(5.20)

where 𝑦̄
true

is the mean of the true yield values in the test set. 𝑅2 values range
from −∞ to 1, where 1 indicates a perfect fit, 0 indicates the model performs no

better than predicting the mean of the target, and negative values indicate poorer

performance than predicting the mean.

5.3.2. Comparison of modeling strategies and algorithm
performance

The performance metrics for all evaluated models on the test set are summarized in

Table 5.6, and the predictions can be visualized in Figure 5.2.

The Linear Regression model, utilizing a selected subset of scaled features, registered a

weighted MSE of 395.29 and an 𝑅2 of 0.53. While simple and interpretable, its linear

nature inherently limits its ability to capture the complex, non­linear dynamics typical of

chemical reactions, including those in mechanochemistry. Nonetheless, it should be

noted that when examining the primary (single­stage) versions of the more complex

algorithms, most struggled to significantly outperform this baseline. For instance, the

GPR (Primary) model achieved a weighted MSE of 260.82 and an 𝑅2 of 0.51, while RF
(Primary) yielded a weighted MSE of 354.31 and 𝑅2 of 0.52, and SVR (Primary) resulted

in a weighted MSE of 346.48 and 𝑅2 of 0.52. On average, these primary models offered
only a modest reduction in weighted MSE (approximately 20­35% improvement over

baseline) and showed 𝑅2 values very close to, or even slightly below, that of the

Table 5.6: Predictive performance of the evaluated regression models on the test set.

For RMSE, MAE, MAPE, and weighted MSE (W­MSE), lower values indicate

better performance; for 𝑅2 higher is better.

Model RMSE MAE MAPE (%) 𝑅2 W­MSE

Linear regression 15.50 14.11 37.49 0.53 395.29

GPR (primary) 15.88 11.09 31.39 0.51 260.82

GPR (two­step) 9.43 7.48 26.59 0.83 93.37

RF (primary) 15.65 15.01 49.86 0.52 354.31

RF (two­step) 12.52 10.29 27.42 0.69 177.17

SVR (primary) 15.66 14.66 48.57 0.52 346.48

SVR (two­step) 15.36 14.73 50.20 0.54 320.32

XGBoost (primary) 12.65 11.20 32.68 0.69 194.37

XGBoost (two­step) 11.06 8.79 24.79 0.76 139.56
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simpler linear model. The XGBoost (Primary) model was an exception, showing a

marked improvement with a weighted MSE of 194.37 and an 𝑅2 of 0.69; thus, when
no prior domain knowledge is available, it should be the first­line choice, providing

both competitive accuracy and an initial, data­driven ranking of influential variables.

This general difficulty of the primary models to substantially advance beyond the linear

regression baseline underscores the dominant influence of the ’time’ variable, which,

when not explicitly addressed, appears to overshadow the contributions of other features

in these conventional modeling approaches.

Thus, a clear and consistent finding from these results is a significant benefit of the

two­step modeling approach for several algorithms. The GPR two­step model stands

out, achieving the lowest weighted MSE (93.37), MAE (7.48), and RMSE (9.43),

alongside the highest 𝑅2 value (0.83) among all models tested. Beyond its strong

predictive accuracy, GPR can provide uncertainty estimates (confidence intervals) for its

(a) GPR (b) RF

(c) SVR (d) XGBoost

Figure 5.2: Predictions on the test set from primary and two­step variants of each

regressor: (a) GPR, (b) RF, (c) SVR and (d) XGBoost.
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Figure 5.3: Actual yield versus predicted confidence intervals for the entire dataset.

predictions (see Figure 5.3). Here, the effect of the weighted objective is evident; cases

above 70% yield exhibit closer agreement with the model, indicating that errors at high

yield were effectively down­weighted during training. This error scale is invaluable for

guiding future experiments and assessing prediction reliability, especially when dealing

with limited or costly experimental data, a common scenario in developing fields like

mechanochemistry. The adaptability of its kernel functions also allows for encoding

prior knowledge about the process, if available. The superior performance of the

two­step GPR suggests that by first isolating the primary time trend, the GPR framework

could more effectively model the subtle, potentially non­linear interactions among the

remaining process parameters through its covariance structure.

To further delve into the interpretability of the more complex non­linear mod­

els, particularly the tree­based ensembles, SHAP (SHapley Additive exPlanations)

analysis was employed for the two­step variants of RF and XGBoost. SHAP values

provide a unified measure of feature importance by attributing to each feature the

change in the expected model prediction when conditioning on that feature. A SHAP

summary plot visualizes these attributions: each point represents a SHAP value for a

feature and an instance, where the position on the x­axis indicates the impact on the

model output (positive or negative), and the color represents the feature’s value (high or

low). Features are ranked by the sum of absolute SHAP values across all samples.

The XGBoost two­step model also demonstrated considerable improvements with the

second strategy, emerging as the second­best performing model with a Weighted MSE

of 139.56 and an 𝑅2 of 0.76. Tree­based ensemble methods like XGBoost are inherently
capable of capturing complex nonlinear relationships and variable interactions. The

SHAP summary plot for this model (Figure 5.4 (a)) reveals that ‘time’ remains, as

expected, the most influential feature for the overall two­step prediction, with higher time

values generally pushing the prediction higher (positive SHAP values). Following ‘time’,

features such as ‘molar ratio’ and the interaction ‘BPR­molar ratio’ exhibit significant
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(a) XGBoost (two­step)

(b) Random forest (two­step)

Figure 5.4: SHAP summary plots for (a) the two­step XGBoost model and (b) the

two­step random­forest model. See main text for interpretation.
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importance, where higher values of these ratios tend to positively influence the predicted

yield. These results align with our previous findings [3]. ‘BPR’ and ‘time (sigmoid)’ also

show discernible impacts. It should be highlighted that, while the use of engineered

features can be beneficial for capturing complex relationships and potentially improving

model accuracy, it underscores a common trade­off in machine learning: a balance must

often be struck between the enhanced predictive power gained from feature engineering

and the goal of maintaining straightforward interpretability in terms of original process

parameters. Despite this consideration, the two­step approach has effectively enabled

the two­step XGBoost model to focus its learning capabilities on variance not explained

by time, leading to more accurate predictions.

The Random Forest (RF) two­step model also benefited from the residual

strategy, with a Weighted MSE of 177.17 and an 𝑅2 of 0.69. Similar to XGBoost, RF
models can effectively map non­linearities and interactions. The SHAP summary plot for

the RF two­step model (Figure 5.4 (b)) shows a similar pattern of feature importance.

‘Time’ is again paramount, with a wide spread of SHAP values. ‘BPR­molar ratio’ and

‘molar ratio’ are the next most impactful features, with higher values generally increasing

the predicted yield. Other engineered features like ‘molar ratio (squared)’ and ‘time

(sigmoid)’ also contribute, though to a lesser extent than the top three. For both

tree­based models, the features related to energy input (‘ ̄𝐸𝑛‘, ‘ ̄𝐸𝑡‘) and collision frequency
(‘
𝑓𝑐𝑜𝑙
𝑛𝑏𝑎𝑙𝑙

‘) show relatively lower overall SHAP values, suggesting a smaller impact on the

output of these two­step models compared to the primary chemical and time­related

parameters. However, it is crucial to reiterate that these mechanical milling properties

were obtained under a constant fill ratio, and their influence is subject to change as this

parameter is varied. We intend to investigate this in a future study, and it highlights the

need for more experimental data that explores a wide range of operational parameters.

Furthermore, this aligns with our previous finding that rotational speed, which has been

abstracted into these variables, has a relatively lower relevance compared to the rest of

the operational variables when maintaining a constant fill ratio [3].

For Support Vector Regression (SVR), the two­step approach provided a min­

imal improvement in Weighted MSE (320.32 for two­step vs 346.48 for primary) and

𝑅2 (0.540 vs 0.522 for primary). SVR models, particularly with non­linear kernels

like RBF, can be effective in high­dimensional spaces and are less sensitive to the

dimensionality of the feature space. Their reliance on support vectors (a subset of

training data) can make them memory efficient. However, in this case, the gains from

the two­step strategy were less pronounced compared to GPR and the tree­based

ensembles, suggesting that the primary SVR model might have already captured

much of the structure the two­step approach aimed to resolve, or that its specific way

of defining the decision boundary was less amenable to this sequential decomposi­

tion. As such, the SVR should not be investigated further until more data can be collected.

In summary, the GPR two­step model is the top­performing model across

most key metrics based on the current dataset and evaluation criteria. The two­step

modeling approach proved to be highly advantageous, particularly for GPR, XGBoost,
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and RF, significantly enhancing their predictive accuracy, especially when considering

the weighted error. These results emphasize the importance of considering tailored

modeling strategies. The distinct characteristics of each algorithm (i.e., GPR’s

probabilistic outputs, the non­linear mapping capabilities and interpretability via SHAP of

tree­based ensembles, and SVR’s margin­based optimization) offer different strengths

beyond raw predictive power. Therefore, the ultimate choice of predictive model in

mechanochemical studies, or indeed any application, should not be solely dictated by a

narrow focus on performance metrics. For instance, a model that performs slightly

worse on a specific metric might be preferred if its intrinsic properties, such as superior

interpretability, the ability to quantify uncertainty (as with GPR), or robustness to certain

data characteristics, align more closely with the specific goals of the investigation or the

practical constraints of its application. Factors such as data availability, the cost of

acquiring more data, the need for uncertainty quantification for decision­making, and

the desired level of insight into the underlying process mechanisms must be weighed

alongside predictive accuracy.

5.3.3. Model generalization under mechanical regime
change

To probe prospective generalization beyond the training distribution, we evaluated the

two best­performing models on two new milling conditions (Table 5.7). In the original

dataset (Table 5.1), the distribution of mechanical stressing conditions was effectively

held constant, with a dissipation ratio of 𝐸̄𝑡/𝐸̄𝑛 ≈ 2.27. Therefore, we expose the

model to an unseen mechanical regime where the dissipation ratio is tuned to increase

the dominance of tangential dissipation 𝐸̄𝑡/𝐸̄𝑛 = 3.26. This is practically achieved by

reducing the fill ratio in the Emax ball mill.

We scaled the features with the training scaler and obtained predictions from the

two­step GPR and XGBoost without refitting. Table 5.8 reports point predictions and

absolute errors relative to the measured yields.

In case 27, the fill ratio (6%) departs from the training domain. The two­step models

under­predict by ≈ 11 percentage points, which is broadly consistent with their held­out

Table 5.7: Out­of­sample milling conditions used for the generalization check. 𝐸̄𝑛 and 𝐸̄𝑡
are the mean normal and tangential energy dissipated per collision from DEM;

𝑓
col
/𝑛

ball
is the specific collision­frequency per ball. For these two cases, the

fill ratio was 6%, and the dissipation ratio increased from 𝐸̄𝑡/𝐸̄𝑛 = 2.27 in

Table 5.1 to 3.26 here, i.e., a more tangential­dominated stressing regime.
Rotational speeds were 600 rpm (Case 27) and 788 rpm (Case 28).

Case BPR Mol. ratio Time (h) 𝐸̄𝑛 (µJ) 𝐸̄𝑡 (µJ) 𝑓
col
/𝑛

ball
(s−1) Yield (%)

27 30 10 12.5 73 238 700 84

28 30 10 12.5 126 411 920 94
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Table 5.8: Predictions on the two out­of­sample cases. Absolute errors are in percentage

points of yield.

Case

Yield
true

(%)

GPR
two­step

(%)

XGB
two­step

(%)

|GPR
two­step

− true|
(% points)

|XGB
two­step

− true|
(% points)

27 84.0 73.14 72.42 10.86 11.58

28 94.0 74.09 72.42 19.91 21.58

RMSE (≈ 9.43) and indicates that a modest shift toward a more tangentially dominated
stressing state can be tolerated when other operating factors remain consistent.

However, in case 28, the fill ratio and rotational speed are shifted simultaneously,

which further increases tangential stressing and the specific collision frequency. Errors

rise to 20­22 percentage points, showing that the tangential mechanical regime alters

the influence of the rotational speed on yield in a way that the models have not yet

learned, leading to systematic under­prediction. As more variables move outside the

training distribution, errors compound because of unseen nonlinear interactions between

operational variables. This underscores the value of an expandable dataset design:

targeted additions will expose these interactions and enable refitting for reliable use

under regime changes. Because the DEM descriptors are mill­agnostic, different groups

can explore the variables and ranges most relevant to them, and the pooled data will

steadily improve accuracy and generalization.

5.4. Conclusions
In this chapter, we have demonstrated the effectiveness and applicability of various

machine learning algorithms to predict conversion yield in the regeneration of NaBH
4

from a system of NaBO
2
⋅ 4H

2
O and MgH

2
. More fundamentally, we established

a practical methodology that couples mechanics­based descriptors with reaction

stoichiometry into data­efficient predictors of yield. We have evaluated two distinct

modeling strategies designed to account for the scarcity of data and the dominant

influence of milling time in the process. Our findings indicate that carefully selected and

configured ML models can provide valuable predictive capabilities, offering a pathway to

optimize experimental efforts at a fraction of the time compared to the classic ‘trial and

error’ approach, and gain deeper insights into the complex interplay of parameters in

mechanochemistry.

The most compelling predictive performance was achieved by the Gaussian

Process Regression (GPR) two­step model, which consistently outperformed all

other evaluated algorithms across key metrics, including the lowest weighted

MSE (93.37) and the highest 𝑅2 (0.83). Following GPR, the two­step XGBoost

and Random Forest models also delivered strong results. Beyond mere pre­

dictive accuracy, the choice of an appropriate ML model should also be guided

by the specific objectives of the research and the intrinsic characteristics of the algorithms.
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The practical implications of this work are significant. By developing reliable

predictive models, researchers can substantially reduce the number of exploratory

experiments, leading to considerable savings in time, materials, and energy. This is

particularly pertinent given the current state of mechanochemistry, where experiments

can be resource­intensive and exploratory. While the current data set provided a strong

starting point, further exploration with more variability in mechanical conditions will

enhance this linkage. Currently, performance degrades when multiple variables move

outside the training domain, showcasing regime­dependent, nonlinear interactions.

To facilitate this, the invariant mechanical characterization used in the dataset

makes it readily expandable by independent experiments. Future work should focus

on incorporating such expanded datasets, potentially exploring additional feature

engineering techniques and advanced deep learning architectures once data volume

permits.

While prediction models can be built from different inputs, the mechanical

descriptors used here provide a common parameter that enables transferability across

mills and scales. Generating those descriptors with full DEM simulations remains

time­intensive, especially for larger simulations as processes are scaled up, and it is not

yet clear whether the master curve logic generalizes to all ball­mill geometries. As

a first approach to lowering this barrier, the next chapter develops a surrogate that

approximates kinematics and dissipation at much lower computational cost, providing a

practical path to faster iteration and adapting the framework across different mills.
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6
Acceleratinggranular

dynamicssimulations: agraph
neuralnetworksurrogate

Thus far, we have leveraged mechanics­based descriptors because of their transferability

across mills and scales, but generating them with full Discrete Element Method

(DEM) simulations is computationally costly, especially for larger, scale­up simulations.

Moreover, it remains uncertain whether the master curve logic generalizes across

different types of mills. As a first approach, this chapter develops a physics­informed

surrogate: a signed­distance­function graph neural network (SGN) trained on

high­resolution data of the Retsch Emax. The model predicts ball kinematics and

cumulative dissipation across the mill’s contact network at a much looser timestep than

DEM. This chapter represents a proof­of­concept built on a limited training set and a

single baseline geometry; substantially more data across speeds, fill ratios, ball sizes,

and geometries will be needed to calibrate magnitudes and generalize with confidence.

With this chapter, we provide a practical approach that lowers compute cost, potentially

eases adoption for non­specialists, and creates a testbed to probe transferability as

datasets grow.

Parts of this chapter are adapted from: Garrido Nuñez, S., Schott, D. L., and Padding, J. T. ‘Accelerating

granular dynamics simulations: A graph neural network surrogate for complex high­energy ball milling’.

In: Powder Technology 468, 121653 (2026).
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126 6. Accelerating granular dynamics simulations: a graph neural network surrogate

6.1. Introduction

The rapid advancement of artificial intelligence can enable significant progress in

scientific computing. In particular, surrogate models can approximate complex physical

phenomena, such as particle interactions in granular systems or particle­based

fluid representations, at much lower computational cost than traditional methods

like the discrete element method (DEM) or smoothed particle hydrodynamics (SPH) [1–3].

Such surrogates are especially appealing in high­energy ball milling, where

DEM is a well­established method for a wide range of applications, such as

mechanochemistry [4, 5], mechanical alloying [6], ultra­fine milling, and particle

breakage [7, 8]. Although each of these application fields faces its own set of distinct

challenges for producing a valuable model, they share some critical commonalities,

namely, they require a combination of a large number of particles (discrete elements),

a very small timestep to accurately numerically integrate the underlying equations of

motion, or possibly a combination of both [9, 10]. These conditions may be manageable

when reproducing well­defined granular flows on a lab scale. However, as attention

shifts towards industrial­scale applications, the computational cost needed to resolve

numerous particle­particle and particle­wall contacts at small timesteps can become

prohibitively expensive. This is especially problematic for emerging technologies such

as mechanochemistry, where there are no clear connections to larger­scale machinery

[11]. The intensive iterative design and implementation required slows the adoption of

mechanochemistry, delaying its potential contributions to sustainability goals as defined

by green chemistry principles [12]. Consequently, surrogate models are an appealing

alternative in this context, offering a potential pathway to accelerate progress.

Among data­driven surrogates, graph neural networks (GNNs) have rapidly

become a compelling paradigm for learned particle simulators, representing particles

as nodes and interactions as edges, and rolling out dynamics via message passing

[13]. The seminal Graph Network–based Simulator (GNS) demonstrated accurate,

long­horizon roll­outs over fluids, rigid bodies, and simple granular settings, with strong

generalization in particle count and initial conditions. [1]. Building on this, Choi &

Kumar developed GNN surrogates specifically for granular flows (e.g., column collapse),

reporting hundreds­fold speedups relative to high­fidelity solvers while preserving key

flow features and scaling to larger domains than seen in training [14]. There is also

emerging work coupling GNS with inverse design/optimization to tune DEM parameters

or device settings efficiently [15].

A persistent challenge in learned granular simulators is boundary handling in

complex geometry while preserving accurate physics. Early approaches either encoded

distances to simple box­like boundaries or introduced virtual/ghost entities in so­called

boundary GNNs to approximate walls. While these approaches have improved model

generality, the introduction of virtual entities brings additional complexity and potential

inaccuracies in wall­interaction physics [16–23]. To address these limitations, Li and

Sakai proposed a signed distance function­based GNN (SGN) that encodes arbitrarily

shaped boundaries as continuous distance fields, allowing the network to handle
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complex geometries without virtual particles [2]. In parallel, physics­informed GNN

architectures have been introduced to embed hard constraints from mechanics. For

instance, Sharma and Fink enforce conservation of linear and angular momentum at

individual collisions via a special message­passing scheme, yielding stable long­term

predictions for 3D granular systems with inelastic impacts [24].

Despite these advances, no prior work has applied GNN­based surrogates to

the extreme dynamic regime of high­energy ball milling. In such systems, particles

collide violently under rapidly evolving boundary conditions (e.g., tumbling jars and

moving reactor walls). Existing surrogate models have yet to demonstrate they

can capture this highly dynamic, dissipative environment. In fact, prior data­driven

studies have focused on macro­scale performance metrics of low­speed mills, such as

predicting particle size distribution, bed height, or mixing quality, rather than simulating

the detailed collision dynamics [16, 23, 25]. Related SDF­GNN work (e.g., Li & Sakai,

2024 [2]) has also targeted static or low­speed boundaries. Thus, this gap motivates the

present work to develop a surrogate approach that can faithfully emulate the physics of

a high­energy milling process.

To achieve this, we develop a surrogate model capable of handling complex

dynamic boundaries, involving oscillatory and translational motion, characteristic of

high­energy ball milling equipment used in powder processing. Specifically, we adapt an

SGN to accurately capture complex energy input mechanisms and intense, high­energy

dynamics and collisions, beyond the low­velocity regimes of prior studies. We extend the

model by introducing moving boundaries and a secondary output for cumulative energy

dissipation alongside local particle kinematics, enabling a dual prediction that is critical

for mechanochemistry. Furthermore, our approach shows promising generalization

to unseen motions and modified geometries, facilitating systematic study and design.

Although our primary focus is on mechanochemical applications, this methodology can

be adapted to virtually any high­energy ball milling scenario. Because the boundary

kinematics and regimes differ compared to previous studies, we do not pursue a

numerical head­to­head comparison; our contribution is complementary, extending

SDF­based surrogates to time­varying, fast­moving wall regimes.

All associated code is freely available, including scripts for data ex­

traction, transformation, and loading, as well as those used for model

construction, training, and generative simulations, at the following location:

github.com/sgarridonunez/SGN_ball_milling. In the subsequent sec­

tions, we detail the specific SGN architecture and training procedure using DEM

simulation data, present validation results comparing surrogate predictions against

ground truth values for particle dynamics and energy dissipation, and discuss the

model’s performance and generalization capabilities.

https://github.com/sgarridonunez/SGN_ball_milling
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6.2. Methodology

6.2.1. Discrete ElementMethod (DEM) and simulation setup

The Discrete Element Method (DEM) is used to generate the data needed for training

the surrogate model and serves as ground truth. In this study, Altair® EDEM™ 2021.2

was used as the DEM solver, and Python 3.9.12 was used for data post­processing.

EDEM™ follows a soft­sphere approach by calculating the contact forces for each

particle interaction using Hertz and Mindlin’s contact model, which can capture the

non­linear interactions that arise when particle–particle or particle–wall collisions occur

[26, 27].

Newton’s equations of motion are solved numerically to predict the evolution of the

(angular) velocity of each particle:

𝑚𝑖
𝑑𝐕𝑖
𝑑𝑡

= 𝐅𝑐,𝑖 + 𝑚𝑖𝐠 (6.1)

𝐼𝑖
𝑑𝝎𝑖
𝑑𝑡

= 𝝉𝑖 (6.2)

where 𝑚𝑖, 𝐼𝑖, 𝐕𝑖, and 𝝎𝑖 are the mass, moment of inertia, velocity, and angular velocity,
respectively, of particle 𝑖. 𝐅𝑐,𝑖 and 𝝉𝑖 represent the total contact force and total contact
torque (relative to the particle’s center of mass), respectively. The total force and torque

are determined by summing over all neighbors in contact with particle 𝑖. Each discrete
element has its own radius 𝑅, mass 𝑚, Young’s modulus 𝑌, shear modulus 𝐺, coefficient
of restitution 𝑒, and Poisson ratio 𝜈. The contact force 𝐅𝑐,𝑖𝑗 on a particle 𝑖 due to its

interaction with another particle 𝑗 (or wall) is the vector sum of a normal force 𝐅𝑛,𝑖𝑗 and
tangential force 𝐅𝑡,𝑖𝑗:

𝐅𝑐,𝑖𝑗 = 𝐅𝑛,𝑖𝑗 + 𝐅𝑡,𝑖𝑗 = (𝐾𝑛𝜹𝑛,𝑖𝑗 − 𝛾𝑛𝐕𝑛,𝑖𝑗) + (𝐾𝑡𝜹𝑡,𝑖𝑗 − 𝛾𝑡𝐕𝑡,𝑖𝑗) (6.3)
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with:

𝐾𝑛 = 4
3
𝑌∗√𝑅∗𝛿𝑛 (6.4)

𝛾𝑛 = −2√
5
6
𝛽√𝑆𝑛𝑚∗ ≥ 0 (6.5)

𝐾𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 (6.6)

𝛾𝑡 = −2√
5
6
𝛽√𝑆𝑡𝑚∗ ≥ 0 (6.7)

𝑆𝑛 = 2𝑌∗√𝑅∗𝛿𝑛 (6.8)

𝑆𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 (6.9)

𝛽 =
ln(𝑒)

√ln2(𝑒) + 𝜋2
(6.10)

1
𝑌∗

=
1 − 𝜈21
𝑌1

+
1 − 𝜈22
𝑌2

(6.11)

1
𝐺∗

=
2(2 − 𝜈1)(1 + 𝜈1)

𝑌1
+
2(2 − 𝜈2)(1 + 𝜈2)

𝑌2
(6.12)

1
𝑅∗

= 1
𝑅1

+ 1
𝑅2

(6.13)

1
𝑚∗ = 1

𝑚1
+ 1
𝑚2

(6.14)

Here, 𝐕𝑛,𝑖𝑗 and 𝐕𝑡,𝑖𝑗 denote the relative velocities in the normal and tangential directions
between particles 𝑖 and 𝑗 at the point of contact. The vectors 𝜹𝑛,𝑖𝑗 and 𝜹𝑡,𝑖𝑗 represent
the normal and tangential overlaps between the particles, with the tangential overlap

obtained by integrating the relative tangential velocity over time and projecting it onto

the current tangential direction. The constants 𝐾𝑛 and 𝐾𝑡 are the elastic coefficients

for normal and tangential contacts, respectively, while 𝛾𝑛 and 𝛾𝑡 correspond to the

viscoelastic damping coefficients for these contacts.

On the right­hand side of Equation 6.3, the expression within the first set of

parentheses represents the normal force, and the expression in the second set

corresponds to the tangential force. Specifically, the normal force comprises

two components: a spring force and a normal damping force 𝐅𝑛,𝑑, while the

tangential force is made up of a shear force and a tangential damping force

𝐅𝑡,𝑑. The magnitude of the tangential force 𝐹𝑡 is limited according to the Coulomb

friction law: if 𝐹𝑡 ≥ 𝜇𝑓𝐹𝑛, where 𝜇𝑓 is the friction coefficient and 𝐹𝑛 the magnitude

of the normal force, then 𝐹𝑡 is set equal to 𝐹𝑛 (while still oriented in the tangential direction).

Additionally, the contact torque 𝝉𝑖𝑗 acting on particle 𝑖 as a result of its in­

teraction with particle (or wall element) 𝑗 is determined by the cross product of the vector
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𝐑𝑖𝑗, which extends from the center of mass of particle 𝑖 to the contact point with particle
𝑗, and the tangential contact force 𝐅𝑡,𝑖𝑗. Given that the particles experience continuous
rolling motion, particularly in interactions with a wall, it is essential to account for any

slight deviations from perfect sphericity. This is achieved by introducing a rolling torque,

𝝉𝑟,𝑖𝑗, which is computed using the coefficient of rolling friction 𝜇𝑟, the magnitude of the
normal contact force 𝐹𝑛,𝑖𝑗, the distance 𝑅𝑖𝑗 from the center of mass to the contact point,

and the orientation of the particle’s relative angular velocity, 𝝎𝑟𝑒𝑙. These relationships
are described by:

𝝉𝑖𝑗 = 𝐑𝑖𝑗 × 𝐅𝑡,𝑖𝑗 + 𝝉𝑟,𝑖𝑗 (6.15)

𝝉𝑟,𝑖𝑗 = −𝜇𝑟𝐹𝑛,𝑖𝑗𝑅𝑖𝑗
𝝎𝑟𝑒𝑙
𝜔𝑟𝑒𝑙

(6.16)

Finally, the energy dissipated over the time interval from 𝑡1 to 𝑡2, due to the damping
effects characterized by 𝛾𝑛 and 𝛾𝑡, is calculated as follows:

𝐸𝑛 = ∫
𝑡2

𝑡1

𝐅𝑛,𝑑 ⋅ 𝐕𝑛,𝑖𝑗 d𝑡 (6.17)

𝐸𝑡 = ∫
𝑡2

𝑡1

𝐅𝑡,𝑑 ⋅ 𝐕𝑡,𝑖𝑗 d𝑡 (6.18)

The DEM model has been calibrated and validated for the mechanochemical

regeneration of sodium borohydride NaBH
4
in the Emax high­energy ball mill produced

by the German company Retsch. We refer to chapter 3 for more details [4, 28]. The

crucial properties relevant to this work can be found in Table 3.2.

We model the commercially available high­energy ball mill Emax produced by the

company Retsch. The machine can allocate proprietary grinding jars with 125 ml of

Table 6.1: Material and numerical parameters used for the milling balls and jar walls

(steel X46Cr13) while accounting for NaBO
2
⋅ 4H

2
O and MgH

2
.

Parameter Value

Particle diameter 0.01m

Coefficient of restitution 0.30

Coefficient of friction 0.30

Coefficient of rolling friction 0.045

Density 7700 kgm−3 [29]

Young’s modulus 2.05GPa [29]

Poisson’s ratio 0.235 [29]

Simulation time step 9.5 × 10−7 s

Total simulation time 15 s

Time­integration method Euler
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volume that follow a circular motion with a rotational speed 𝑛 up to 2000 revolutions per
minute with an amplitude (radius) 𝐴 of 1.7 centimeters, see Fig. 6.1. The movement of
the jar has been replicated in our simulations. An STL file was built and imported into

EDEM™ to represent the geometry of the milling jar accurately.

(a) (b)

Figure 6.1: (a) Schematic of jar movement (A = 1.7cm, n = 300rpm) (b) 3D model of the

milling jar [4].

The system is initially set up by generating all the discrete media over a five­second

interval, which allows them to settle into their resting positions within the jar before

any motion begins. After this initialization phase, the simulation runs for an additional

10 seconds with a rotational speed of 300 rpm to capture the dynamic behavior of

the system. A fill ratio of 10% is used, corresponding to a total of 24 milling balls.

To reduce computational complexity, the model is simplified by including only milling

balls as discrete elements. This simplification is justified because the influence of

the processed material can be effectively represented by calibrating the friction and

restitution coefficients [5, 30, 31].

6.2.2. Graph neural network and surrogate model

A graph is a representation composed of a set of nodes and a set of edges that connect

pairs of these nodes [32]. This structure models relationships or interactions between

objects in various domains, such as computer networks, social networks, biological

systems, and, in the context of this paper, granular systems (see Figure 6.2). Moreover,

graphs provide a natural framework for message passing, where nodes exchange

information with their neighbors along the edges [33]. This capability is fundamental in

graph neural network architectures, enabling iterative aggregation of local information to

capture complex, global patterns within the graph.



132 6. Accelerating granular dynamics simulations: a graph neural network surrogate

(a) (b)

Figure 6.2: (a) DEM connectivity example, (b) Graph representation of DEM timestep.

Note that each particle has an individual ID used to define connectivity at

any given timestep.

Architecture

In this study, node and edge features encode the dynamic state and geometric context

of the system. Specifically, the dynamic state is encoded through particle velocity, and

the geometric context is dictated by a Signed Distance Function (SDF), leading to the

definition of an SDF­based graph neural network (SGN) as proposed by Li et al. [2].

As such, we follow the same terminology for consistency. The SDF is a fixed field

computed from the watertight, triangulated jar STL (see Figure 6.3). It provides a

per­particle distance channel for node features and a proximity vector on particle–wall

edges. The mill’s boundary motion is applied to the wall: for each time step the STL is

rigidly translated in space by the time­dependent center of mass (CoM), and the SDF is

evaluated relative to the moved wall. Particle states are not directly forced by this

motion; they are updated by integrating predicted smooth accelerations. Conditioning

on the moving boundary allows inference under unseen motion trajectories, provided

the training data spans comparable kinematic/energy regimes.

For closed (watertight) surfaces, the inside/outside sign is unambiguous and internal

cavities are supported; open holes or non­manifold seams can introduce sign ambiguity

and should be repaired before SDF generation. For new jar shapes, we simply

recompute the SDF field for the new STL; no retraining is required for inference,

whereas new training datasets require regenerating the SDF­derived features.
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(a) (b)

Figure 6.3: Geometry’s SDF field slices (a) XZ plane, (b) XY plane. In our system,

negative values indicate positions inside the jar. Thus, the most negative

values represent positions furthest away from the wall.

The granular system at a given time is represented as a graph 𝒢 = (𝒱,ℰ). The set of
nodes 𝒱 includes nodes 𝑣𝑝 representing each individual particle (𝑝 = 1,… , 𝑁𝑝) and a
single, dedicated node 𝑣𝑤 representing properties of the wall boundary. Note that the
node 𝑣𝑤 does not dictate any spatial context information for the particles; it is simply

established to define variables relevant to the geometry, such as its center of mass, and

to be able to keep track of collisions between particles and the wall, which are crucial in

ball milling.

The set of edges ℰ comprises two subsets: particle­particle edges ℰ𝑝𝑝 = {𝑒𝑖𝑗} and
particle­wall edges ℰ𝑝𝑤 = {𝑒𝑖𝑤}. For generating the graphs used during offline training,
the edge sets ℰ𝑝𝑝 and ℰ𝑝𝑤 are constructed directly from the contact pairs reported by the

source high­fidelity DEM simulation (i.e. from Altair® EDEM™) at each corresponding

time step. This implicitly defines the interaction range learned by the model from the

training data.

To capture temporal dependencies, features for particle and wall nodes incor­

porate information over a history window covering the current and 𝜏 preceding time

steps (total window size of 𝜏 + 1). For a particle node 𝑣𝑖 at time step 𝑡𝑛, the input

node feature vector 𝝐𝑣𝑖(𝑡𝑛) is constructed by concatenating features related to particle
kinematics and boundary interactions:

𝝐𝑣𝑖(𝑡𝑛) = concat({𝐕𝑝(𝑣𝑖, 𝑡𝑗)}
𝑛
𝑗=𝑛−𝜏, {𝜙𝑆𝐷𝐹(𝑣𝑖, 𝑡𝑗), ∇𝜙𝑆𝐷𝐹(𝑣𝑖, 𝑡𝑗)}

𝑛
𝑗=𝑛−𝜏) (6.19)

where 𝐕𝑝(𝑣𝑖, 𝑡𝑗) is the translational velocity of particle 𝑖 at time 𝑡𝑗. Crucially, the SDF

value 𝜙𝑆𝐷𝐹(𝑣𝑖, 𝑡𝑗) and its gradient ∇𝜙𝑆𝐷𝐹(𝑣𝑖, 𝑡𝑗) are calculated for all particle positions

relative to the time­dependent boundary geometry (since the geometry is in oscillatory

motion) at each time step 𝑡𝑗 in the history window. This provides a continuous geometric
and contact context to every particle node. The feature vector for the wall node,

𝝐𝑣𝑤(𝑡𝑛), includes information about the wall’s state over the time window, such as its

Center of Mass (CoM) position and rotational velocity, padded with zeros to match the
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dimensionality of particle node features for each snapshot in the window.

Edge features encode the relative spatial configuration or interaction proper­

ties between connected nodes identified by the DEM simulation during data generation.

For particle­particle edges 𝑒𝑖𝑗 ∈ ℰ𝑝𝑝, the features 𝝐𝑒𝑖𝑗(𝑡𝑛) include the relative distance
vector:

𝝐𝑒𝑖𝑗(𝑡𝑛) = {𝐫𝑖𝑗(𝑡𝑛)} where 𝐫𝑖𝑗(𝑡𝑛) = 𝐗𝑗(𝑡𝑛) − 𝐗𝑖(𝑡𝑛) (6.20)

For particle­wall edges 𝑒𝑖𝑤 ∈ ℰ𝑝𝑤, the features 𝝐𝑒𝑖𝑤(𝑡𝑛) represent the particle­wall

interaction, using the SDF distance vector derived from the particle’s SDF features:

𝝐𝑒𝑖𝑤(𝑡𝑛) = 𝜙𝑆𝐷𝐹(𝑣𝑖, 𝑡𝑛)
∇𝜙𝑆𝐷𝐹(𝑣𝑖, 𝑡𝑛)
‖∇𝜙𝑆𝐷𝐹(𝑣𝑖, 𝑡𝑛)‖

(6.21)

These specific input features (velocity history, SDF history, relative positions) are chosen

because they can be readily updated or recalculated during the recursive simulation

phase using only the model’s outputs (acceleration integrated to velocity and position)

and the known boundary motion, enabling a closed­loop prediction while sliding the

history window (W). This contrasts with features like contact forces or tangential

overlaps, which are outputs of the DEM simulation but cannot be directly calculated

during the surrogate’s recursive loop without making further assumptions or predictions

of unknown future contacts. All input node (particle and wall) and edge (particle­particle

and particle­wall) features are normalized using the mean and standard deviation

derived from the training dataset prior to being processed by the network. Separate

normalization statistics are maintained for particle nodes, wall nodes, particle­particle

edges, and particle­wall edges. Additionally, Gaussian noise with a standard deviation

of 0.005 (𝜎 = 0.005) is added to the normalized velocity features during training to

enhance robustness during recursive inference.

The SGN architecture follows the established Encoder–Processor–Decoder paradigm.

First, the Encoder employs independent Multi­Layer Perceptrons (MLPs), MLP𝑣 and
MLP𝑒, with ReLU activations to map the input node and edge features to initial latent

embeddings, 𝐡0𝑣 and 𝐡
0
𝑒, respectively:

𝐡0𝑣 = MLP𝑣(𝝐𝑣) ∀𝑣 ∈ 𝒱 (6.22)

𝐡0𝑒 = MLP𝑒(𝝐𝑒) ∀𝑒 ∈ ℰ (6.23)

Note that while a single MLP𝑣 is shown, distinct initial layers or feature handling could
be applied to particle vs. wall nodes if necessary. Similarly, MLP𝑒 processes both edge
types. Second, the Processor consists of 𝐿𝑝 interaction layers, performing iterative

message passing to refine node representations by propagating information through the

graph. Within each layer 𝑙:

1. An edge­update MLP, 𝜓𝑒, computes messages based on the embeddings of

connected nodes and the edge itself:

𝐦𝑙
𝑒𝑖𝑗
= 𝜓𝑒(𝐡𝑙𝑣𝑖, 𝐡

𝑙
𝑣𝑗
, 𝐡𝑙𝑒𝑖𝑗) (6.24)



6.2. Methodology 135

2. An aggregation function, (element­wise mean in our implementation), pools

incoming messages for each node 𝑣𝑖 (including the wall node 𝑣𝑤) from its

neighborhood 𝒩(𝑖):

𝐦̄ 𝑙
𝑣𝑖
= 1
|𝒩(𝑖)| ∑

𝑗∈𝒩(𝑖)
𝐦 𝑙
𝑒𝑖𝑗

(6.25)

3. A node­update MLP, 𝜓𝑣, updates the node embedding using its previous state and
the aggregated message:

𝐡𝑙+1𝑣𝑖 = 𝜓𝑣(𝐡𝑙𝑣𝑖, 𝐦̄
𝑙
𝑣𝑖
) (6.26)

Third, the Decoder utilizes an MLP, MLP𝑑, to map the final node embeddings from

the processor, 𝐡
𝐿𝑝
𝑣 , to the target outputs. For particle nodes 𝑣𝑝, the primary target is

the normalized particle acceleration 𝐀
norm

(𝑣𝑝, 𝑡𝑛), as this allows the model to drive

the system’s dynamics through integration. The output for the wall node 𝑣𝑤 is also

computed, but disregarded for the primary task.

𝐀
norm

(𝑣𝑝, 𝑡𝑛) = MLP𝑑(𝐡
𝐿𝑝
𝑣𝑝) (6.27)

Additionally, a Global Readout branch aggregates the final node embeddings 𝐡
𝐿𝑝
𝑣

(via mean pooling across all particle nodes with an edge, i.e. particles undergoing a

collision) and passes the result through a separate MLP to predict a normalized global

system property, specifically for this work, the incremental energy dissipation Δ𝐸
norm

(𝑡𝑛)
(result from adding Equation 6.17 and Equation 6.18). Because Δ𝐸

norm
is learned from

DEM targets, calibration across operating regimes depends on training coverage of

dissipation magnitudes and collision statistics (e.g., RPM, amplitude, fill ratio, materials).

This global variable was selected due to its established relevance in characterizing the

potential outcomes of mechanochemical processes [4]. Table 6.2 summarizes the graph

inputs and targets used in this work.
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Table 6.2: Summary of SGN graph inputs and targets. Per­snapshot node features are

concatenated over a window 𝑊 = 𝜏 + 1.
Component Value

Node Features

Particle (per snapshot) [𝐕, 𝜙
SDF

, ∇𝜙
SDF

] (Dim. 7)
Wall (per snapshot) [𝐂𝐨𝐌, RPM] (zero­padded; Dim. 7)

Edge Features

PP edge (particle–particle) 𝑟 (Dim. 3)
PW edge (particle–wall) 𝜙

SDF
⋅ ∇̂𝜙

SDF
(Dim. 3)

Targets

Node (per particle) 𝐀𝑛𝑜𝑟𝑚 (Dim. 3)

Global (per graph) Δ𝐸𝑛𝑜𝑟𝑚 (Dim. 1)

Symbols: 𝐕 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] (velocity); 𝜙SDF (signed distance to wall surface);

∇𝜙
SDF

= [𝜕𝑥𝜙SDF, 𝜕𝑦𝜙SDF, 𝜕𝑧𝜙SDF] (SDF gradient); ∇̂𝜙
SDF

= ∇𝜙
SDF

/‖∇𝜙
SDF

‖ (unit normal);

𝐂𝐨𝐌 = [CoM𝑥, CoM𝑦, CoM𝑧] (jar center­of­mass position); 𝑟 = 𝑋𝑗 − 𝑋𝑖 (PP separation vector);

𝐀𝑛𝑜𝑟𝑚 = [𝑎𝑥, 𝑎𝑦, 𝑎𝑧] (normalized acceleration); Δ𝐸𝑛𝑜𝑟𝑚 (per­step normalized dissipated energy).

Training

The network’s learnable parameters 𝜃 are trained offline using supervised learning

on data generated by high­fidelity DEM simulations, which are sampled at a fine time

resolution (Δ𝑡𝐷𝐸𝑀). Accurately defining Δ𝑡𝐷𝐸𝑀 is essential for enabling the model to

capture the dynamics effectively. In this work, because the median collision duration is

approximately 0.0005 seconds, we selected a Δ𝑡𝐷𝐸𝑀 of 0.0001 seconds to ensure that

the model can accurately learn the evolution of collisions. Although this parameter

can be fine­tuned depending on the application, in systems where individual collisions

are critical for realistic granular flow, it is advisable not to exceed the median collision

duration. It is also important to note that the training data utilized comprises snapshots

taken only after the initial particle generation phase is complete and the motion of the

milling jar has commenced, focusing the model on the relevant dynamic interactions.

Then, the first 4.5 seconds are used for training, resulting in a total of 45,000 snapshots.

The model was trained on one Nvidia A100 [34] with a batch size of 2 and

a learning rate initially set to 1e­4, managed by an Adam optimizer and an exponential

scheduler targeting a final rate of 1e­6 with a maximum of 2000 training epochs.

The objective is to minimize a suitable loss function between the SGN’s predictions

(𝐀
norm

, Δ𝐸
norm

) and the corresponding ground truth values derived from the DEM data.

Specifically, the total loss function ℒ𝑡𝑜𝑡𝑎𝑙 is a weighted sum of the loss calculated for the

primary task (node acceleration prediction, ℒ𝑛𝑜𝑑𝑒) and the loss for the auxiliary global



6.2. Methodology 137

prediction task (energy dissipation, ℒ𝑔𝑙𝑜𝑏𝑎𝑙):

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝛼ℒ𝑛𝑜𝑑𝑒 +ℒ𝑔𝑙𝑜𝑏𝑎𝑙 (6.28)

with

ℒ
node

= 1
𝑁

𝑁

∑
𝑘=1

𝐻𝛿(𝐀
pred

norm,𝑘 − 𝐀
gt

norm,𝑘) (6.29a)

ℒ
global

= 1
𝐵

𝐵

∑
𝑏=1

𝐻𝛿(Δ𝐸
pred

norm,𝑏 − Δ𝐸
gt

norm,𝑏) (6.29b)

where 𝐵 is the number of graphs in the mini­batch, 𝑁 is the total number of particle­node

acceleration components in the batch (wall node excluded), 𝐀pred
norm

and 𝐀gt
norm

are the

predicted and ground­truth normalized per­particle accelerations (the index 𝑘 runs over
all particle components), and Δ𝐸pred

norm
and Δ𝐸gt

norm
are the predicted and ground­truth

normalized per­step dissipated­energy increments (the former produced by the global

head from pooled node embeddings over particle nodes with at least one incident edge).

We use the Huber penalty (Equation 6.30) with threshold 𝛿 = 2:

𝐻𝛿(𝑒) = {

1
2𝛿

𝑒2, |𝑒| < 𝛿,

|𝑒| − 𝛿
2
, |𝑒| ≥ 𝛿.

(6.30)

The weighting factor 𝛼 (set to 3.0 in our implementation) allows for prioritizing the

accuracy of the particle dynamics prediction during training relative to the global energy

prediction. In this work, both ℒ𝑛𝑜𝑑𝑒 and ℒ𝑔𝑙𝑜𝑏𝑎𝑙 utilize the Huber loss function. Due

to the high­energy collisions inherent in ball milling, the ground truth acceleration

distribution can exhibit large spikes relative to median values. This occurs not only

because of the large contact forces during impacts but also because sampling the DEM

simulation at Δ𝑡𝐷𝐸𝑀 can alias high­frequency events. Collision dynamics occurring at the

DEM’s finer internal timestep might not be fully resolved between samples, leading

to apparent discontinuities or spikes in the calculated acceleration used for training.

Consequently, the Huber loss is employed for its robustness to such outliers, combining

the benefits of L2 loss (mean squared error, MSE) for small errors and L1 loss (mean

absolute error, MAE) for large deviations. Specifically, for errors below a predefined

threshold 𝛿, it penalizes deviations quadratically, ensuring smooth convergence, while
for errors above the threshold, it applies a linear penalty, thereby reducing the influence

of extreme values on the overall training process.

Recursive stage
Once trained, the SGN model enables efficient online recursive simulation. The process

(Figure 6.5) starts by initializing a state window with 𝜏 + 1 snapshots from DEM data.

Then, for each subsequent time step 𝑡𝑛+1:

1. Input features are constructed from the current window ending at 𝑡𝑛.
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2. The SGN predicts normalized acceleration 𝐀
norm

(𝑡𝑛) and energy increment

Δ𝐸
norm

(𝑡𝑛).

3. Predictions are denormalized to physical units 𝐀(𝑡𝑛) and Δ𝐸(𝑡𝑛).

4. Particle states are advanced using a numerical integrator (e.g., Euler) with the

surrogate simulation time step Δ𝑡:

𝐕(𝑡𝑛+1) = 𝐕(𝑡𝑛) + 𝐀(𝑡𝑛)Δ𝑡 (6.31)

𝐗(𝑡𝑛+1) = 𝐗(𝑡𝑛) + 𝐕(𝑡𝑛)Δ𝑡 (6.32)

The definition of Δ𝑡 is critical for ensuring stability during the recursive simulation
stage. We adopt a timestep equal to the training dataset’s sample frequency

(0.0001 s). Using larger timesteps leads to stability issues, as collisions may

be missed or excessive penetration between particles and the wall may occur,

resulting in exponential error accumulation. This limitation primarily arises from the

high­energy dynamics, which inherently involve high velocities and accelerations

that make spatial definition overly sensitive to small changes. Nonetheless, this

surrogate solving timestep represents a 10,426% relaxation compared to the DEM

solving timestep used in Altair® EDEM™ (see Table 3.2).

5. The wall boundary CoM for 𝑡𝑛+1 is obtained via extrapolation (using pre­calculated
periodic splines).

6. New SDF values are recomputed from the updated particle positions 𝑋(𝑡𝑛+1) and
the updated wall geometry. The graph connectivity is then rebuilt: particle–particle

edges 𝑒𝑖𝑗 ∈ ℰ𝑝𝑝 are added if ‖𝑋𝑗(𝑡𝑛+1) − 𝑋𝑖(𝑡𝑛+1)‖ ≤ 𝑟𝑐 (we recommend 𝑟𝑐 ≤1.5 𝑅),
and particle–wall edges 𝑒𝑖𝑤 ∈ ℰ𝑝𝑤 are added if 𝜙

SDF
(𝑣𝑖, 𝑡𝑛+1) ≥ 𝜙pw with 𝜙

SDF
< 0

representing zones inside the surface. The choice of 𝜙pw is guided by the

DEM contact distribution (e.g., capturing ≥ 90% of ground­truth PW contacts;

see Figure 6.4). In this work, we set the value at ­0.0052 m, but it will vary

according to the ball’s kinetic energy and physical properties, as they will dictate

the depth of penetration. At sharp edges/vertices, the nearest­point direction can

be ambiguous; since edge creation uses only 𝜙
SDF

, this does not rely on normals,

which are used to compute edge features. Residual near­wall noise is handled in

Step 7.

7. Optional correction (snap­back) is applied only for shallow, near­wall penetrations:

if 𝜙
SDF

(𝑣𝑖, 𝑡𝑛+1) ≥ 𝜙sb with 𝜙pw < 𝜙sb < 0, we project to the threshold value:

𝐱𝑖(𝑡𝑛+1) ← 𝐱𝑖(𝑡𝑛+1) − (𝜙𝑖 − 𝜙sb) 𝐧𝑖, where 𝜙𝑖 = 𝜙SDF(𝑣𝑖, 𝑡𝑛+1), 𝐧𝑖 = ∇𝜙𝑖/‖∇𝜙𝑖‖.

For deeper overlaps (𝜙
SDF

< 𝜙sb) no snap­back is used; the contact dynamics

resolve the interaction (parameters 𝜙pw and 𝜙sb are listed in Table 3.3). The

optional correction’s sole purpose is to prevent nonphysical interpenetration from

accumulating due to prediction error or integration overshoot.
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8. A new snapshot dictionary for 𝑡𝑛+1 is assembled using the updated states and

recalculated geometric features (including the re­determined contacts/edges).

9. The time window is advanced by removing the oldest snapshot and adding the

new one.

This iterative process can be visualized in Figure 6.5 and allows the surrogate model to

generate the system’s stable evolution over extended periods, driven solely by its own

predictions after initialization. A summary of the parameters used for the architecture of

the SGN and the recursive stage is presented in Table 3.3. The SGN was implemented

using Pytorch 2.1.

Table 6.3: Key parameters for the structured­graph­network (SGN) model and the

recursive simulation loop used during roll­outs.

Parameter Value Unit / description

Model architecture

History window size (𝜏 + 1) 7 time steps

Hidden dimension 256 –

MLP layers 4 –

Interaction layers (𝐿𝑝) 1 –

Huber­loss threshold (𝛿) 2 –

Loss­weighting factor (𝛼) 3 –

Recursive simulation loop

Time step (Δ𝑡) 1 × 10−4 s

Integration type Euler –

PP contact threshold (𝑟𝑐) 0.0015 m

PW contact threshold (𝜙𝑝𝑤) −0.0052 m

Snap­back threshold (𝜙𝑠𝑏) −0.0049 m

Contact rules: We adopt 𝜙
SDF

< 0 inside the geometry. PP edges are added when ‖Δ𝐱‖ ≤ 𝑟𝑐. PW edges

are added when 𝜙
SDF

≥ 𝜙𝑝𝑤. Snap­back is applied only when 𝜙
SDF

≥ 𝜙𝑠𝑏, with 𝜙𝑝𝑤 < 𝜙𝑠𝑏 < 0.

6.3. Results andDiscussion
In this section, the performance of the SGN surrogate model is evaluated using three

distinct assessment methods. First, we measure how accurately the model predicts the

bulk dynamics of the standard high­energy ball milling process in the Emax machine.

Second, we assess performance using a mechanochemistry­specific variable: the

global energy dissipation of the system, which continuously increases as collisions

occur. Our previous work has shown that this variable can effectively characterize a

mechanochemical process from a mechanical standpoint [4]. Third, we evaluate the

model’s generalization by testing its ability to handle unseen motions and modifications

to the base geometry. These evaluations are crucial to demonstrate the potential of the
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Figure 6.4: Distribution of SDF values for particle­wall contacts. Values closer to zero

indicate deeper penetration. The defined threshold of ­0.0052 covers over

90% of all particle­wall contacts.

method in the iterative design processes required to scale up and optimize. A sensitivity

analysis of critical hyperparameters in Table 3.3, together with an ablation study on the

relevance of the global loss ℒ
global

, can be found in Appendix A, where we show how

the predictive capacity and stability of the model are affected.

6.3.1. Standard high-energy milling process
The model was trained on 4.5 seconds of high­resolution data generated by a DEM

simulation, which also serves as the initial benchmark (Figure 6.6). To evaluate the

accuracy and stability of the model when predicting the bulk motion of particles in

the system, it is run recursively (online) for 15 seconds. At each available time

step 𝑡, we compare the predicted ball positions 𝐗̂𝑡 to the ground­truth reference 𝐗𝑡
(see Figure 6.7), and compute spatial MSE according to Equation 6.33. We report

the MSE because, while the Huber loss was used during training to reduce the

influence of occasional high­frequency acceleration spikes, MSE provides a single,

widely understood scalar that directly quantifies average squared deviations in particle

positions for straightforward benchmarking of bulk­dynamics accuracy.

MSE𝑡 =
1
𝑁

𝑁

∑
𝑖=1
‖𝐗̂(𝑖)𝑡 − 𝐗

(𝑖)
𝑡 ‖

2
(6.33)

Although this is the simplest objective of the model, it is crucial to ensure stability and

accurate global predictions, which rely on accurate bulk dynamics and proper collision

identification. Looking at Figure 6.7, it is possible to visualize the oscillatory motion of

the system and its effect on the predictions. The peaks of these curves coincide with the
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Figure 6.5: Recursive loop flowchart.
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Figure 6.6: Standardized loss history for the SGN surrogate model. Note that the MSE

loss is shown for comparison purposes.

Figure 6.7: MSE loss history for the recursive (online) stage of the SGN. Here, time is

measured from 𝑡 = 5s, marking the start of motion in the DEM simulation,

which provides reference data only up to 𝑡 = 10s. Beyond this point, the

model is let run recursively until 𝑡 = 15s.
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moments where the milling jar changes direction in the x­axis. Then, the predicted

global energy dissipation can be compared in Figure 6.8.

Thus, the combination of Figure 6.7 and Figure 6.8 shows that the SGN model is capable

of accurately representing the bulk motion of the high­energy system and maintaining an

accurate track of the energy dissipation that occurs in the system with a stable relative

error of 2.78% while using a solving timestep 10,426% larger than the original DEM

simulation. To provide a more intuitive representation of the accuracy of the predictions,

we used Blender 4.3.2 to reproduce the motion of the milling balls predicted by the SGN

and compare them to the original DEM visualization. This can be seen in Figure 6.9.

6.3.2. Unseen motions
Upon establishing that the model can accurately represent the original bulk dynamics

and energy dissipation, we now test the model with two new, unseen motions that have

a direct effect on the dynamics of the milling balls. To define these arbitrary motions, we

use two different Lissajous curves as they operate under the cyclic behavior that a

typical high­energy ball mill experiences. The trajectories of the two tested motions

are shown in Figure 6.10, and where implemented in Altair® EDEM™ according to

Equation 6.34 and Equation 6.35.

Motion 1

𝑥1(𝑡) = 1.7 sin(10𝜋 𝑡) − 0.85 cos(20𝜋 𝑡),
𝑧1(𝑡) = 1.7 cos(10𝜋 𝑡) − 0.85 sin(20𝜋 𝑡).

(6.34)

Figure 6.8: Cumulative energy dissipation: comparison of SGN­predicted versus DEM

ground­truth energy dissipation. Note that DEM simulation stops at 𝑡 = 10s.
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Figure 6.9: Comparison grid of DEM and SGN simulation results.

Figure 6.10: Lissajous motions used for testing the SGN.
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Motion 2

𝑥2(𝑡) = 1.7 sin(10𝜋 𝑡),
𝑧2(𝑡) = 1.7 cos(20𝜋 𝑡).

(6.35)

The model is capable of reproducing accurate and stable predictions of the bulk

dynamics for both unseen motions, with MSE errors comparable to those of the standard

case presented in the previous section, as per Figure 6.11 and can be visualized in

Figure 6.12 and Figure 6.13.

The model’s ability to predict energy dissipation is substantially weaker than its

performance on bulk dynamics. For Motion 1, the predictions maintain a constant

relative error of 23.84 %. For Motion 2, the error rises to a steady 46.62 %.

Nonetheless, the shape of the time series is captured remarkably well. In both cases,

the simulation follows not only the overall trend but also the short­time­scale wiggles

(i.e., the small, rapid oscillations superimposed on the mean growth, so the predicted

and reference curves rise and fall almost in lock step). This can be quantified by the

Pearson correlation coefficient (𝑟 = 0.9998 for both cases). Pearson’s 𝑟 measures linear
association between two variables: an 𝑟 of 1 means every peak, dip, and inflection in
one series occurs at exactly the same relative level in the other (perfect synchrony

of the wiggles), while an 𝑟 of 0 would indicate no consistent linear pattern. Because
𝑟 is insensitive to uniform scaling or offsets, the coefficient can be close to 1 even

when the absolute magnitudes are biased, as we see here. In other words, the model

slightly underestimates the magnitude of each dissipation event, but it gets the timing

and relative spacing of those events almost perfectly right. This can be visualized

in Figure 6.14 and Figure 6.15. To address this scaling bias, one could expand

the training set to cover a broader spectrum of dissipation magnitudes, introducing

both lower and higher energy cases. This would encourage the network to learn

appropriate scaling factors across broader operational ranges, reducing systematic bias

and improving calibration of its outputs. Finally, by exposing the surrogate to diverse

collision magnitudes and scenarios, its transferability to new systems should improve,

potentially eliminating the need for manual post­processing adjustments. We intend to

explore this in a future study.

6.3.3. Modifications to original geometry
To test the hypothesis that the underestimation of energy dissipation magnitude in

unseen motions arises from a mismatch in the distribution of known collision and velocity

features, and at the same time probe the model’s ability to handle unseen geometric

features, we introduce a slightly tweaked design to boost the collision frequency.

Specifically, we insert a cylindrical barrier at the center of the jar (see Figure 6.16) and

drive the system with Motion 1 (see Figure 6.10).

By combining this geometry modification with Motion 1, we can also verify whether

the surrogate still generates physically plausible particle trajectories and remains

numerically stable when both jar shape and motion lie outside its training reference. To

illustrate our hypothesis in action, we compare the model’s predicted cumulative energy

dissipation for the modified geometry + Motion 1 case against the original geometry
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(a) Motion 1

(b) Motion 2

Figure 6.11: MSE­loss history comparison for (a) Motion 1 and (b) Motion 2.



6.3. Results and Discussion 147

Figure 6.12: Comparison grid of DEM and SGN simulation results for unseen Motion 1.

Figure 6.13: Comparison grid of DEM and SGN simulation results for unseen Motion 2.



148 6. Accelerating granular dynamics simulations: a graph neural network surrogate

Figure 6.14: Cumulative energy dissipation for unseen Motion 1: comparison of

SGN­predicted versus DEM ground­truth energy dissipation. Note that we

plot until 𝑡 = 7s to facilitate the observation of the dissipation’s evolution.

Figure 6.15: Cumulative energy dissipation for unseen Motion 2: comparison of

SGN­predicted versus DEM ground­truth energy dissipation. Note that we

plot until 𝑡 = 6s to facilitate the observation of the dissipation’s evolution.
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Figure 6.16: Modification to original geometry by adding a cylinder at its center.

+ Motion 1 ground­truth curve (see Figure 6.17). Although this reference no longer

corresponds to the actual physics of the modified geometry, it serves as a controlled

experiment: if the barrier boosts collision frequency, thus increasing the net impact

statistics, then, when we compare its predictions to the original geometry baseline, the

underestimation bias should shrink.

Indeed, we observe a substantial drop in relative error to 5.97%, confirming that the

original dissipation bias stems from a mismatch in feature distributions. The numerical

agreement of this comparison has no physical validity; it exists solely to validate

our distribution­matching hypothesis. Furthermore, the snapshots in Figure 6.18 are

presented solely for illustration; they demonstrate that the model accurately handles

modifications to the original geometry while remaining stable over time.

6.3.4. Runtime
On an Apple M1 Max (10­core CPU; CPU­only to match the DEM run requirements),

an SGN rollout of the Emax case (15 s physical time, Δ𝑡 = 10−4 s) completed in

3,443 s (∼57min), whereas the corresponding DEM simulation to solver completion

took 22,734 s (∼379min). Thus, the SGN was about 6.6× faster with an 84.9% shorter

runtime. This comparison excludes the subsequent post­processing of DEM data

required to compute the dissipation target Δ𝐸; including it would further increase the
DEM wall clock as it requires manual processing, so we report the solver time only. We

observe similar speedups across all our tested cases. In profiling, SDF re­evaluation

dominates SGN runtime due to the rapidly moving boundary; this cost is hard to avoid

because accurate particle­wall spatial information must be maintained each step for

stability. Additionally, increasing Δ𝑡 leads to missed contacts or boundary escapes given
the high rotational speed.
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Figure 6.17: Cumulative energy dissipation distribution‑matching experiment: compar­

ison of SGN predicted energy versus the DEM baseline reference (original

geometry + Motion 1). Note that this ground­truth comparison has no

physical validity but serves to illustrate how slowing particle kinematics

reduces the under­prediction bias.

Figure 6.18: SGN simulation results for modified geometry and Motion 1.

6.4. Conclusions
In this chapter, we developed and validated a Signed­Distance­Function Graph Neural

Network (SGN) that serves as a faithful surrogate for Discrete Element Method (DEM)

simulations of high­energy ball milling. By embedding the jar geometry directly through

an SDF field that supports dynamic translational motion, the model overcomes the static,
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non­translational boundary limitations of previous surrogates. When coupled with a

message­passing graph network, it captures both particle–particle and particle–wall

interactions effectively. In contrast with previous surrogates, the SGN is also specifically

designed to handle the high­impact velocities and collision frequencies characteristic of

high­energy milling processes. Training on 45,000 high­resolution DEM snapshots, the

SGN simultaneously learns local accelerations and a global energy dissipation metric,

providing a physics­aware description that goes beyond purely kinematic fits. This

secondary metric is especially informative for mechanochemistry because cumulative

dissipated energy directly tracks the mechanical work that activates solid­state reactions,

but it could be changed to accommodate other applications. For instance, in fluidized

bed reactors, the model could instead output granular temperature to monitor mixing

efficiency; in hopper or silo flows, it could report stress accumulation to predict clogging;

and in continuous granulation processes, it could track particle residence time to

optimize throughput.

Benchmarking against a reference DEM simulation of the Emax mill revealed

that the surrogate reproduces bulk motion with a mean squared error plateau of

∼ 2 × 10−4 m2 and tracks cumulative energy dissipation with a stable 2.8% relative error.

Importantly, these results are obtained with a time step of 1 × 10−4 s, equivalent to a

10,426 % relaxation over the DEM solver step (9.5 × 10−7 s). The ability to function

with such relaxed temporal resolution while remaining numerically stable makes the

SGN a practical drop­in replacement for exploratory studies, sensitivity scans, and

digital­twin applications. On runtime, the CPU­only rollout was ∼6.6× faster than the

DEM solver, and this comparison excludes the additional DEM post­processing required

to compute Δ𝐸𝑡𝑜𝑡𝑎𝑙. Profiling shows that SDF evaluation dominates cost because fast

boundary motion requires maintaining accurate per­particle spatial context each step,

and increasing Δ𝑡 to reduce these calls proved unviable at high RPM due to missed

contacts and boundary escapes; further wall­clock gains are therefore most likely from

SDF­derived calculation optimization.

The surrogate also exhibits strong generalization when driven by two previ­

ously unseen motions. It preserved stable dynamics and kept trajectory errors within the

same bounds observed for the trained motion. Although the absolute scale of energy

dissipation was underestimated (about 24% and 47%, respectively), the temporal

evolution was captured with a near­perfect correlation (𝑟 ≈ 0.9998), indicating that the
model internalizes the underlying physics, but needs broader training data to calibrate

energy magnitudes outside of its original set.

Geometric robustness was tested by inserting a cylindrical obstacle, absent

from the training set, and combining it with an unseen driving motion. The surrogate

remained numerically stable under this combined distribution and, once the barrier

increased the ball’s collision frequency, its energy­dissipation error (measured against

the original geometry baseline used for hypothesis testing) fell to roughly 6%. While this

comparison is not physically meaningful for the altered jar, it supports the idea that the

earlier under­prediction stemmed from a distribution shift rather than a fundamental
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limitation of the model.

Overall, these findings demonstrate that SDF­based graph surrogates can

compress high­fidelity DEM physics into a lightweight neural simulator that is both

fast, transferable, and can handle complex motions and geometries. Such capability

opens avenues for iterative milling jar optimisation, large­scale parameter sweeps for

mechanochemical scale­up, and closed­loop control strategies.

Several challenges remain:

• Material diversity: the current network is trained on a single material system;

extending the feature set to particle radius, fill ratio, and restitution distributions is

a logical next step.

• Energy calibration: the bias observed under out­of­distribution motions points to

the need for data augmentation spanning a wider velocity and energy spectrum.

• Uncertainty quantification: ensemble or Bayesian message­passing variants

would provide a direct performance indicator by relating the model’s predictive

variance to deviations from ground­truth DEM data, yielding confidence intervals

around mean predictions. This is crucial because granular processes are

inherently stochastic and sensitive to initial conditions, so quantifying predictive

uncertainty helps detect out­of­distribution scenarios and supports risk­aware

decision making in industrial deployment.

The present study marks an advance toward data­driven acceleration of granular

process simulations. By releasing all code and preprocessing tools as open source, we

hope to catalyze community adoption, foster reproducibility, and ultimately shorten the

innovation cycle for sustainable mechanochemical technologies.

AppendixA. Sensitivity analysis
In this section, we analyze how the performance of the surrogate model is affected

by a different selection of hyperparameters from those reported in Table 3.3, and

an ablation of the global loss ℒ
global

(see Equation 6.28). Since the model has two

objective predictions, we employ the following rationale: if the model maintains a stable

error when predicting particle dynamics, then we test if the global energy dissipation is

predicted accurately. We assess the influence of these hyperparameters based on the

model’s capacity to predict the standard milling process in the Emax machine.

History window size
The selection of the history window size is critical to allow the model to learn sufficient

information about how a typical collision evolves in the system. Too long a window will

effectively introduce noise that the model will not be able to resolve and lead to unstable

dynamic predictions (see Figure A.2). Our results also indicate that selecting a window

size that covers less than the median collision duration can lead to stable dynamic
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prediction, but will result in less accurate energy dissipation predictions (see Figure A.1).

Thus, we recommend selecting a window size that encompasses at least the median

duration, and does not exceed this time by more than 40%. In the case of this work, the

median collision duration is 0.0005 seconds, and each window frame contributes 0.0001

seconds.

Figure A.1: Cumulative energy dissipation for window size = 3

Figure A.2: MSE loss history for window size = 9
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Interaction layers

The number of interaction layers defines how many times node messages are passed

and aggregated before making a prediction. Intuitively, deeper interaction modules allow

the model to capture more complex multi­body effects, but given the small number of

particles in the system, the number of collisions with more than 2 elements involved is

relatively scarce. As a result, using more than 1 layer leads to unstable predictions.

When using 2 interaction layers, the dynamic predictions of the particle manage to

stay within the jar bounds, but they become chaotic, leading the energy dissipation

predictions to grow without bound (see Figure A.3). Using even more layers (i.e. 4)

leads to unstable dynamic predictions (see Figure A.4). Nonetheless, we suspect that a

system with significantly more multi­body interactions will necessitate more interaction

layers. We recommend consulting the studies mentioned in the introduction since they

cover systems where multi­body interactions are more prevalent.

Neuron number

The number of neurons in the model’s hidden layers defines its representational capacity

for capturing the nonlinear dynamics of particle collisions. Too few neurons constrain the

model’s ability to predict energy dissipation accurately, although the dynamics remain

stable and precise (see Figure A.5).

Conversely, an excessively large hidden dimension increases the risk of overfitting

to training noise, which can manifest as unstable long­term predictions or reduced

generalization capability. However, determining the precise network width at which

overfitting first appears would require a broader hyperparameter sweep, which was

unnecessary for this work.

Figure A.3: Cumulative energy dissipation for interaction layer size = 2
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Figure A.4: MSE loss history for interaction layer size = 4

Figure A.5: Cumulative energy dissipation for neuron number = 64
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MLP layer number
Lastly, the number of MLP layers defines the depth of successive nonlinear

transformations applied to each node’s aggregated features, thereby controlling the

model’s capacity to approximate complex mappings between the current particle states

and their future dynamics. Using too few hidden layers (i.e., 2) leads to highly unstable

dynamic predictions (Figure A.6).

Similarly, using too many hidden layers can introduce vanishing or exploding gradient

issues during training, increase the model’s susceptibility to overfitting, and substantially

raise computational cost. In our experiments, since four MLP layers achieved stable

convergence and accurate predictions, we did not investigate deeper architectures.

PW contact threshold value (𝜙𝑝𝑤)
The PW contact threshold (𝜙pw) defines the near­wall region in which a particle­wall

edge is created (edges added when 𝜙
SDF

≥ 𝜙pw, with 𝜙SDF < 0 inside the jar). A

shallower threshold (less negative, closer to zero) narrows this band and can miss

near­wall interactions or lead to particle escape from the domain. A deeper threshold

(more negative) widens the band, increasing PW edge density. We probe with

two perturbations around the baseline −0.0052m: a shallower −0.0049m and a

deeper −0.0055m, adjusting the snap­back level as 𝜙sb = 𝜙pw + 0.0003m to maintain

𝜙pw < 𝜙sb < 0.

In both cases, the kinematics of the system remain stable, but the energy

dissipation prediction behavior differs. With a PW threshold closer to zero, grazing

contacts are minimized, and the active PW­edge set shrinks to only the most

wall­proximal, high­intensity events. This stronger set inflates the predicted per­step

Figure A.6: MSE loss history for MLP layer size = 2
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dissipation, so the cumulative energy overshoots the DEM ground truth; in this case, the

relative error reaches 15.45% (see Figure A.7).

Figure A.7: Cumulative energy dissipation for shallower 𝜙𝑝𝑤 = ­0.0049 m

Conversely, when the PW threshold becomes more negative, more grazing interactions

are detected, the active PW­edge set enlarges, and mean pooling over this larger,

lower­intensity set reduces the predicted increment. It should be noted that deeper

thresholds increase the risk of false positive detections. In this case, the prediction

undershoots the DEM reference, with a relative error of 4.18% (Figure A.8). For a safe

rollout, we recommend selecting a threshold that recovers ≥ 90% of DEM PW ground

truth contacts.

Figure A.8: Cumulative energy dissipation for shallower 𝜙𝑝𝑤 = ­0.0055 m
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Global-loss ablation (ℒ
global

)
Finally, we perform a ablation directly from Equation 6.28 by setting ℒ

global
= 0, so the

objective reduces to ℒ
total

= 𝛼ℒ
node

(all other settings in Table 3.3 unchanged). Without

supervision on the global head, the predicted per­step dissipation becomes severely

miscalibrated: the cumulative curve overshoots DEM with a relative error 514.35% at

the end of the rollout, even though the kinematics remain stable (see Figure A.9). This

confirms that ℒ
global

is necessary to calibrate the magnitude of dissipation; otherwise, its

scale is unconstrained and drifts upward.

Figure A.9: Ablation of the global loss ℒ
global

.
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This thesis set out to propose a feasible pathway for closing the sodium borohydride

(NaBH
4
) cycle by combining systematic experimentation, physics­based modeling, and

data­driven surrogates. In doing so, it also aimed to provide a reproducible blueprint for

next­generation industrial­scale mechanochemistry. Below, the main conclusions and

scientific contributions are described, followed by a set of concrete recommendations for

researchers and technologists.

7.1. Conclusions & scientific contributions
• Operational variables, interactions, and operating windows (chapter 2): A

fractional design of experiments on the NaBO
2
⋅ 4H

2
O + MgH

2
system revealed

that milling time is the single most influential variable, followed by the combined

effect of molar ratio and ball­to­powder ratio, whereas rotational speed plays only

a secondary role within the explored range. By exploiting these insights, the

highest yield reported in the literature was reproduced while running the mill 20%

slower, cutting specific energy consumption without sacrificing conversion. The

water­only quantification protocol further turned product work­up from a hazardous

step into a benign, “ready­to­use” solution stage. Additionally, the wide range

of operational settings explored enables a selection based on techno­economic

interests, and not purely on yield performance as is typically done in state­of­the­art

mechanochemical papers.

• Linking internal dynamics to machine­level conditions (chapter 3): Dis­

crete element method (DEM) simulations established mill­invariant mechanical

descriptors, the mean normal and tangential energy dissipated per collision, 𝐸̄𝑛
and 𝐸̄𝑡, and the specific collision frequency per ball, 𝑓col/𝑛ball, that relate directly
to machine­level inputs (speed, fill ratio, ball size). Treating normal and tangential

dissipation as two dimensionless groups collapses diverse operating conditions

onto universal master curves for the Emax ball mill used in this work. These curves

act as a mechanical fingerprint: once matched, any equipment, laboratory, or pilot

operating at comparable mechanical work per collision has the potential to deliver

similar chemical performance. This provides a common metric for reproducibility

and transferability across mills and scales.

• Normal and tangential partitioning (chapter 4): Leveraging the master­curve

framework, experiments compared conditions at constant rotational speed and

at constant total power to decouple how much energy is delivered from how it is

partitioned between shear (tangential) and compression (normal). A low fill ratio

of 6% that maximizes tangential dissipation emerged as the optimum for frac­

tional conversion, attaining a record 94% regeneration yield while simultaneously

trimming milling time, rpm, BPR, and ball count (−37.5% time, −40% BPR, −34%
rpm). Although a tangential bias maximizes fractional yield, the energetic cost

of achieving the highest conversion decreases mass­per­watt efficiency. Under

constant­power conditions, a balanced regime (10% fill) yielded the highest con­

verted mass per watt (0.113 gW−1) compared to both tangential (0.090 gW−1) and
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normal (0.108 gW−1) biased cases. In short: keep the jar lightly loaded, tangential­
rich, and do not blindly increase energy input; the optimal operating point depends

on whether the objective prioritizes absolute conversion or energy­normalized

productivity.

• Yield prediction (chapter 5): Coupling the mechanical descriptors with reaction

stoichiometry in machine learning models enabled accurate yield forecasts under

data scarcity. A two­step Gaussian Process Regression (GPR) ensemble achieved

𝑅2 = 0.83 and the lowest weighted MSE = 93.37 on out­of­sample predictions, con­

sistently outperforming other models. Two­step XGBoost and Random Forest also

delivered strong results. Beyond accuracy, model choice should reflect objectives

and algorithmic properties (e.g., uncertainty quantification with GPR, interpretability,

or speed). These predictors pre­screen unpromising combinations before a single

gram of powder is milled, cutting time, materials, and energy costs; performance

degrades when multiple variables move outside the training domain, reflecting

regime­dependent, non­linear interactions. The dataset is fully transferable and

extendable by independent groups and treats mechanical and chemical variables

on equal footing.

• Surrogate modeling (chapter 6): To reduce the computational cost of full DEM

simulations, we introduced a physics­informed surrogate: a Signed­Distance­

Function Graph Neural Network (SGN) trained on high­resolution data. The SGN

reproduced bulk trajectories with an MSE of 2 × 10−4m2 and tracked cumulative
energy dissipation within 2.8%, while operating with a time step 100× larger than
DEM. It generalized to unseen jar motions, handled geometry modifications, and

remained stable, making digital­twin optimization loops feasible on a laptop rather

than an HPC cluster. Embedding boundary information via signed­distance fields

lets the graph network respect wall constraints without hand­crafted collision rules,

pointing to surrogate models for other particulate reactors. This is a proof­of­

concept, and thus data­limited, yet it lays the groundwork for fast mechanics

beyond full DEM and can incorporate experimentally measured signals in future

iterations.

• Standardization, reproducibility, and benchmarking: By proving that chemical

yield correlates monotonically with the tangential­to­normal dissipation ratio, and

given that these metrics transfer across scales, the work provides missing variables

linking ball­mill mechanics to solid­state kinetics. Full disclosure of experimental

setup, coupled with master­curve normalization, allows laboratories to replicate not

just nominal settings but the underlying impact statistics; this extends to larger­scale

equipment. The use of matched constant­speed and constant­power experiments

delivered the first systematic, unbiased benchmark of shear­dominated (tangen­

tial) versus compression­dominated (normal) loading in a bulk mechanochemical

reaction, quantified linear penalties for losing tangential influence, and identified

practical limits to energy productivity near full conversion.

• Technical implications and TRL: Laboratory batches now reach 94% NaBH
4

regeneration at room temperature, with reductions relative to previous state­of­
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the­art results: ­37.5% shorter time, ­40% lower BPR (allowing more powder

per batch), ­34% lower rpm, and fewer balls, reducing operational costs and

iron contamination. Master curves characterize ball mills onto scale­agnostic

descriptors, offering practitioners a mechanical fingerprint to specify and compare

reactors instead of relying on black­box heuristics; the framework is transferable

to other solvent­free syntheses. Because the process is proven only in 125 mL

laboratory jars with batch operation, it currently sits at TRL 3­4; nonetheless, the

first quantitative scaling laws and data­based models provide key stepping stones

toward TRL 5 pilot validation.

Taken together, these results form a closed feedback loop: experiments inform physics;

physics­based simulations produce setup­independent, scale­agnostic descriptors and

master curves; the descriptors, coupled with stoichiometry, seed machine learning pre­

dictors that reduce trial­and­error; and reduced­order surrogates accelerate mechanical

data generation and lower computational barriers. In short, the thesis demonstrates a

route from empirical screening to predictive design that is transferable across mills and

scales, anchored to three mechanistic quantities: the mean normal energy dissipated

per collision 𝐸̄𝑛, the mean tangential energy dissipated per collision 𝐸̄𝑡, and the specific
collision frequency per ball 𝑓col/𝑛ball.

7.2. Recommendations for future work
• Metal wear & contamination: Even under the most abrasive settings, Fe con­

tamination stayed < 6 wt %, but long­term trends are unknown. Thus, carrying

long­term endurance tests is advisable, along with other ball materials. The master

curves enable a direct calculation of how the operational variables should change

with different materials.

• Master­curve generality: The dissipated­energy master curves validated here

for the Emax mill and the NaBH
4
system should now be tested in intrinsically

different mill geometries (attritors, Simoloyer horizontal reactors, vibratory mills),

and unrelated reactions such as solvent­free cocrystallisation or Li­ion­battery

cathode recycling. Successfully collapsing these additional datasets onto similar

dimensionless curves would confirm their universality and scale­up protocols

derived from them.

• Scale­up & continuous operation: Currently, there are virtually no kilogram­per­

hour demonstrations and batch loading incurs idle time. The first decision is whether

continuous operation is essential for the commercial viability of NaBH
4
. If the

answer is yes, the DEMmaster curve logic could, in principle, be transferred to twin­

screw extruders; however, the necessary long residence times seem incompatible.

If a batch path is acceptable, a Simoloyer mill, which is essentially a high­energy,

large­volume ball mill with cooling and inert gas purging, offers a pragmatic TRL

5­6 scale­up option.

• Integrated system assessment: Regeneration under MgH
2
produces 6 mol MgO

per mol NaBH
4
. Closing the loop, therefore, demands a viable MgO→ MgH

2
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route. This could be carbothermic or aluminothermic reduction of MgO followed

by hydrogenation, or direct electro­magnesiation powered by renewable electricity.

A full techno­economic scenario analysis must integrate this MgO reconversion

energy, projected 2030 H
2
prices, and possible maritime fuel taxes to establish

break­even costs for each logistics chain.

• Alternative reducing agents: Throughout the entirety of this thesis, MgH
2
was

used as reducing agent in the mechanochemical regeneration. Other candidates

of interest include Mg, Mg
2
Si, and Al. The few published results exploring these

agents should not be taken as hard limits of the potential of the reactions, as

demonstrated by the first and third chapters. Instead, it seems more logical

to define a desirable outcome based on economic targets and then optimize

the mechanochemical process to arrive at those needs. This thesis lays out a

straightforward methodology to study these alternative reactions.

• Real­time monitoring: Closed, opaque jars prevent in­situ spectroscopy, keeping

reaction kinetics largely empirical. For this, retrofitting PXRD or Raman windows

on pilot mills and then feeding spectra to the SGN surrogate for online control

can deliver an unprecedented level of control, understanding, and eventually

autonomous reactors.

• Surrogate expansion: To boost generalizability of the surrogate, it must be

exposed to a far richer training dataset, including, but not limited to: multiple mills,

fill ratios, and ball materials, plus experimental streams such as acoustic emission,

or inline Raman. At the same time, exploring more expressive architectures (e.g.

equivariant graph transformers) and embedding active­learning loops that trigger

targeted experiments where the model is uncertain will widen its extrapolation

capabilities and make it robust enough for truly autonomous, closed­loop control

on industrial hardware.

• Contact­resolved mechanochemistry: Mechanical descriptors can be fed into

FEA (Finite Element Analysis) to map contact events into time­resolved stresses,

flash temperatures, and real contact area, summarized as duty cycle thresholds

rather than peaks. Those pulse histories can then drive reactive MD (Molecular

Dynamics) to return reaction probabilities, rate constants, and rank the roles of

heating, plastic work, and pressure across materials.

Final remark
It must be emphasized that mechanochemistry is still a novel, fast­expanding field whose

creative limits for reaction optimization are, for now, impossible to pin down. The design

and tailoring of dedicated milling hardware, the integration of artificial intelligence routines,

and novel ideas such as catalytically active milling balls can each push efficiencies to

entirely new limits. Lastly, the methodological framework presented in this thesis offers a

template that extends far beyond sodium borohydride, hinting at a future where statistics,

mechanics, and chemistry intertwine to deliver sustainable processes at an industrial

scale.
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