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Abstract

The purpose of this research is to analyze the performance of Propensity Score
Matching, a causal inference method for causal effect estimation. More specifically,
investigate how Propensity Score Matching reacts to breaking the unconfoundedness
assumption, one of its core conceptual pillars. This has been achieved by running PSM
on synthetic data that upholds the unconfoundedness condition, and then comparing
these results with measurements obtained from running the algorithm on data with con-
founding features with varying contribution to other variable values and hiding these
features individually or in progressively higher numbers. These results are also then
compared to Linear Regression, a generic machine learning algorithm, for the sake of
comparison of performance. The results obtained point to the observation that when
hiding variables that only contribute to the main effect, treatment effect or treatment
propensity calculation respectively, PSM performs with the same error no matter which
of the three effects the hidden feature affects, making them equivalent in their error
contribution. Additionally, it has also become apparent that in all experimental sce-
narios used in this work, PSM performed very similarly to Linear Regression and did
not seem to offer any advantages over the latter in these specific situations.

1 Introduction
The capability to understand causal relations is a difficult computational task essential to
many scientific fields. The field of causality has been studied in medical science, economics,
epidemiology, and meteorology among others (Guo et al., 2020). The estimation of causal
effects has been traditionally done by randomized controlled trials (Cook et al., 2002), but
since these are quite often unfeasible in a realistic setting, causal machine learning algorithms
for causal effect estimation have become increasingly more popular. Traditional machine
learning methods are incapable of detecting these causal relations, but causal algorithms
offer a path forward that enables the quantification of the effect that a treatment variable
has on an outcome variable, while conditioning on all features of a subject present in the
data. To illustrate, let’s say the length of an article title affects the click-through rate of
said article, the longer the title, the more clicks it gets. But what if the actual reason for
the clicks was the quality and renown of certain authors, who coincidentally write longer
titles, thus making title length correlated, but not the direct cause of the measured effect
on the outcome?

From these examples, it is possible to see that the distinction between actual causation
and correlation is crucial. Famously, “correlation doesn’t imply causation”, but as was
discussed, there is also no causation without correlation. The aim of causal effect estimation
machine learning algorithms is to specifically address this computational challenge and be
able to measure it. Humans can intuitively deduce these relations in day-to-day observations;
however, causality is a concept that is hard to define and account for when it comes to
machine learning methods because of the complex relationship between correlation and
causation.

However, most if not all causal machine learning methods in this field operate ideally
only under specific conditions, the main assumptions being “unconfoundedness” and the
“overlap assumption”. Unconfoundedness of a dataset means that there exist no unmea-
sured confounders (Guo et al., 2020). In simpler terms, this assumption entails that all
features (also known as covariates) that affect treatment and outcome have been observed
and measured. The other assumption known as overlap signifies that every subject in the
data has a non zero probability of getting either treatment (Rosenbaum and Rubin, 1983).
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Because of all these difficulties, this topic can be the subject for complex research, with
potential for conflicting viewpoints (King and Nielsen, 2019).

The purpose of this research is to investigate the intricacies of Propensity Score Matching,
or “PSM”, a causal inference method that allows us to calculate the unbiased estimate
of the average treatment effect (ATE) but is often specifically used in the estimation of
the average treatment effect for the treated (ATT) (Imbens, 2004). As (Austin, 2011)
defines, “propensity score matching entails forming matched sets of treated and untreated
subjects who share a similar value of the propensity score”. When trying to estimate these
causal effects of a specific treatment from data, PSM measures it by comparing a test and
control group, that is to say comparing a sample of data-points for which the treatment was
“true”, with a sample where it was “false”. An analogy for this would be to compare the
infection rates for a certain virus on patients that got administered a vaccine for it with ones
that didn’t. On observational data however, there is no guarantee that these two groups
are independent of other covariates, implying that the treated and untreated groups often
systematically differ in their characteristics (Austin, 2011). In this example, variables like
gender, age or genetic predispositions can represent these confounding features, among a
multitude of other possibilities.

Propensity Score Matching tries to tackle this issue of group dissimilarity directly by
matching data points with the same confounders using propensity scores and then compar-
ing their weighted outcomes. Defined by (Rosenbaum and Rubin, 1983), “the propensity
score is the conditional probability of assignment to a particular treatment given a vector
of observed covariates”. In other words, the probability of getting treatment is based on
observed characteristics. The distribution of measured covariates will be the same between
a control and test group with the same propensity scores, allowing the unbiased calculation
of the treatment effect through matching. A significant amount of research has been done
around this method and multiple implementations of it are also available. A multitude of
methods have been tested and used for calculating propensity scores and matching samples,
respectively (Lee et al., 2010; Setoguchi et al., 2008; King and Nielsen, 2019).

An important aspect of this topic that will be the focus of this paper is the effect of
unconfoundedness on the performance of Propensity Score Matching. As with other causal
machine learning methods, unconfoundedness constitutes one of the main key assumptions
for PSM to work properly (Rosenbaum and Rubin, 1983) and breaking this assumption,
should impact the performance of the algorithm. This work therefore tries to quantify these
differences in performance. The methodology will consist of running PSM on synthetic
data that upholds the unconfoundedness condition, and then comparing these results with
measurements obtained from running the algorithm on data with confounding features with
varying contribution to other variable values and hiding these features individually or in
progressively higher numbers. These results are also then compared to Linear Regression, a
generic machine learning algorithm, for the sake of comparison of performance.

The details of this methodology and related work will be discussed in Section 2 together
with a more in-depth explanation of propensity score matching and the specific implemen-
tation of it used in this work. Section 3 will discuss the set up and reasoning behind the
experiments and the results achieved through them, along with the hypotheses they try
to answer. Section 4 will provide further discussion about the implications of the results
obtained, while Section 5 will consider the responsibility of the research done. Finally, the
research will get its conclusion in Section 6 along with potential paths for further experi-
mentation.
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2 Methodology
This section contains the details of the formal setup of the problem setting, along with
the explanation of the specific algorithms and models used to achieve experimental results.
This is to explain how the approach used helped answer the main question of the paper,
namely the impact of unconfoundedness on the performance of Propensity Score Matching
as a means of causal effect estimation. Moreover, it also serves as a guide for reproducing
the results obtained in later sections.

2.1 Problem Description
All the variables that can be considered when discussing and calculating causal effects are
present in figure 1. The effect that every variable type has on the others is critical when
calculating the causal effect, which can be viewed as the amount of change that being treated
has on a subject, compared to not being treated (Guo et al., 2020). The main effect (X → Y )
and propensity score (X → Z) add unwanted noise to this value, whereas the causal effect
is part of the treatment effect (Z → Y ) along with influences from the features that can
be only considered as correlation, not causation. Most importantly, when talking about
treatment in this paper, it is always assumed to be binary, meaning each subject either has
treatment (Z=1) or doesn’t (Z=0).

Figure 1: Diagram of Causal Effect, X represents the features, Y the outcome and Z is
the binary treatment.

Propensity Score Matching functions by creating matched sets of untreated and treated
subjects based on their propensity scores, and then comparing the output Y if they had
treatment (Y1) with the output if they didn’t (Y0) for each of them (Rosenbaum and Rubin,
1983). The Propensity Score : ei =Pr(Zi = 1|Xi), most often simply referred to as “propen-
sity”, is defined as the probability of a subject getting treatment (Zi = 1) based on its set
of observed features (Xi) (Rosenbaum and Rubin, 1983). These features are also known
as confounding variables or covariates (Guo et al., 2020). Since a single specific subject in
the data cannot possibly have an entry with and without treatment, PSM finds an counter-
factual subject in a matched group with a similar propensity score, therefore with similar
features, and then compares their outcomes.

4



Just as with other methods relying on the propensity score, for PSM to work, two crucial
assumptions need to be upheld. These are unconfoundedness : (Y (1), Y (0)) ⊥⊥ Z|X, and
the overlap assumption : 0 < P (Z = 1|X) < 1 (Austin, 2011). The first assumption means
that potential outcomes are independent from the binary treatment assignment conditional
on the observed features, this practically means that all features that affect the treatment
and outcome have been observed and measured (Austin, 2011). These specific features are
often referred to as confounding variables. The latter assumption says that every subject
in the data has a non-zero probability of getting treated, meaning that every subject has a
potential counterfactual subject in the opposite test group (Austin, 2011). Although both
assumptions are important, unconfoundedness is the actual subject of this research.

PSM can accurately output two estimates of causal effect, namely the average treatment
effect ATE (1) and the average treatment effect for the treated ATT (2) (Imbens, 2004).
Because of time constraints for this research, all experiments analyze ATE because of its
ease of use when calculating the ground truth for results and generating synthetic data.

ATE = E[Y (1)− Y (0)] (1)

ATT = E[Y (1)− Y (0)|Z = 1] (2)

To answer the main question posed by this paper, the ATE output of PSM when various
features are unobserved is compared to its actual true value, which gives an error value. The
various experiments conducted in the next section of the paper use different error metrics,
these being the Absolute Error (3), the Mean Absolute Error (4), and the Root Mean
Squared Error (5).

AE = |yi − xi| (3)

MAE =
1

n

n∑
i=1

|yi − xi| (4)

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − xi

)2

(5)

2.2 Related Work
Following the explanation by (Austin, 2011), there is a multitude of algorithm combinations
to consider when utilizing versions of propensity score matching. These can be categorized
into the methods used in the acquisition of an accurate propensity score, the numbers in
which the pairings found are matched along with the algorithmic way the matching is per-
formed, and finally how the “closeness” of treated and untreated subjects are determined and
considered. Each of these components are discussed separately in the ensuing paragraphs.

The most employed technique in the estimation of propensity scores is logistic regres-
sion, and it is also the method used in this work. Even though logistic regression is the
most frequently used propensity score estimation method seen, bagging, boosting, recursive
partitioning, tree-based methods, neural networks, and random forests, among a plethora
of others have also been researched for this task (Setoguchi et al., 2008; Lee et al., 2010;
McCaffrey et al., 2004).
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Next, greedy full matching with replacement is used, a technique discussed at length in
(Gu and Rosenbaum, 1993), which signifies that every treatment unit gets matched with n
control units and that each control unit gets matched with n treatment units, where n can
be chosen (in this case, defaulted to 5). One-to-one matching (1:1) is used the most, but
many-to-one matching (M:1) can also be seen. It is also matching with replacement since
it is possible to consider a unit more than once when matching them with different units.
Finally, the matching is greedy because when choosing specific pairings of units to compare
values with when calculating the treatment effect estimation, they are chosen randomly
based on their distance of their propensity score instead of optimally. (Gu and Rosenbaum,
1993) has proven that optimal matching does not in fact outperform greedy matching.

To determine this distance and quantify how close units are to each other, the K-nearest
neighbors’ algorithm has been used. By choosing randomly from a subset of nearest neigh-
bors, we prevent choosing the same unit an abundant number of times when matching, since
having discrete values for unit features can cause units to have the same exact propensity
score. Moreover, it is also important to mention that no bootstrapping has been used when
utilizing this specific version of Propensity score matching.

These decisions about the Propensity Score Matching version specifics used in this paper
were motivated by the choice of using the specific code implementation of propensity score
matching present in the GitHub repository by (Kelleher, 2018)1. Simply put, the choice of
this implementation was motivated by its ease of use and the fact it was provided by the
supervisors of this research. The minutiae of the implementation of these methods and the
choices made can be found in this codebase.

3 Experimental Setup and Results
In this section, the details of every experiment and their setup will be discussed along with
the results gathered from them. Each subsection will provide insight on how the results
were interpreted and how they address their relevant hypotheses.

A set of three distinct types of experiments has been conducted to try to address all
hypotheses from the previous section. These can be distinctly categorized into the Effect
of hiding individual confounding and non-confounding features, the Effect of
hiding individual features with different effect contributions and the Effect of
hiding multiple sets of features on synthetic datasets.

Just as the experiment names indicate, all data used in these experiments is synthetic and
therefore generated for the specific purposes of the experiment at hand. The details of this
generation will be discussed together with the specific parameters used for each experiment.

3.1 Effect of hiding individual confounding and non-confounding
features

The results obtained in this experiment should provide insight into one specific hypothesis,
namely that hiding a feature that affects propensity, treatment, and outcome, or in other
words, a confounding feature, should impact the performance of PSM. This conversely means
that hiding a feature that has no effect on any other variable should theoretically not impact
PSM performance.

1https://github.com/akelleh/causality/tree/master/causality/estimation
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3.1.1 Description

This type of experiment consisted of running Propensity Score Matching over multiple iter-
ations on the same common synthetic dataset, each time with different individual features
missing. The crucial factor here is that this synthetic dataset has been generated in a way
where different sets of covariates are confounders and non-confounding, respectively. Fea-
tures f0−2 are confounders, meaning they affect all effects of the causal graph that can be
seen in figure 1, while features f3−5 are non-confounding meaning they do not contribute to
any other variables but are still present in the data.

By hiding each feature separately, it is possible to observe what happens to the per-
formance of PSM when hiding variables by comparing the obtained results with “baseline”
ones that PSM returns when every feature is observed, that is when unconfoundedness holds.
Another graph has also been generated that uses Linear Regression instead of PSM. This
has been done to be able to compare the reaction to breaking the assumption of uncon-
foundedness of a causal machine learning algorithm (PSM) with a generic machine learning
algorithm (Linear Regression) that hasn’t been optimized for causal effect estimation.

By hiding the appropriate features, it is possible to categorize both graphs into three
categories: absolute error when hiding confounding features, absolute error when hiding
non-confounding features and finally absolute error when every feature is observed.

The output of PSM that is used here is the ATE, the average treatment effect, which
is then compared to the value of the actual causal treatment effect that is utilized when
generating the data. The absolute error is then obtained by comparing these two values.
Running this over multiple iterations where the dataset is newly generated each time with
the same parameters and creating box plots from the results gives a graphical view of the
variance in absolute error when hiding specific individual features.

3.1.2 Parameter Setup

Each graph uses the same dataset for calculations and shows results by hiding unique fea-
tures. Each dataset has a population of 2500, contains 6 features and for each hidden
variable test, PSM has been run over 100 iterations on newly generated datasets with the
same parameters each time to obtain an accurate absolute error variance as seen on the
box-plot graphs. The functions used to generate the dataset are as follows:

• Feature Distribution : Xi ∼ N (1, 12)

• Main Effect : x0 + x1 + x2

• Treatment Effect : x0 + x1 + x2 + 1

• Treatment Propensity : S(x0 + x1 + x2 +N (0, 12))

• Sigmoid Function : S(x) = ex

ex+1

• Noise : N (0, 12)

• Treatment Function : Binomial distribution B(1, P ropensity)

• Outcome Function : Main Effect + Treatment Effect * (Treatment - 0.5) + Noise
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(a) Using Propensity Score Matching (b) Using Linear Regression

Figure 2: Error variance compared to true ATE

Again, since there are 6 features present in the data and only features X0−2 have been
used in the generation of effects, features X3−5 are non-confounding. The choice of using
a sigmoid function for the treatment propensity calculation, using normal distributions for
noise, and using a sum for the feature contributions has been motivated by its use in the
GitHub code by (Kelleher, 2018) used in the experiments. Additionally, the feature dis-
tribution is centered around 1 in order to not have an expected value of 0 for the feature
effects.

3.1.3 Results

On figure 2a, one can see the absolute error variance compared to the true value of ATE
when using Propensity Score Matching to estimate the ATE. As is suggested by the data
generation function in this specific experiment, Features f0−2 are confounded while features
f3−5 don’t have any effect on any other variables. This dichotomy can be clearly seen in this
box-plot graph since the amount of error produced by PSM when hiding individual feature
is dictated by the fact if that variable is confounded or not.

The baseline error when all features are observed spans between AE values 0 and 0.13
with a mean of 0.04. When confounding features start to become hidden to the algorithm
however, the error jumps to AE values spanning from around 0.025 to 0.28 with a mean situ-
ated around 0.15, while hiding non-confounding variables doesn’t cause any error difference
whatsoever compared to the baseline results.

These results therefore confirm the hypothesis that hiding a feature contributing to the
main effect, the treatment effect and propensity score calculation impacts the performance
of PSM. More specifically, hiding such features causes an average percentage increase in
AE of around 275% in this case, while hiding non-confounding features doesn’t influence
the performance in any noteworthy manner. This is to be expected, since hiding a feature
that is confounding effectively prevents PSM to recognize that its effect is only a correlation.
This in turn means that PSM interprets the feature’s effect as causal, making the estimation
wrong by the amount that the hidden feature contributed.

On figure 2b, it is possible to observe that the results acquired using Linear Regression
are remarkably similar to the ones obtained by using PSM. These findings can be interpreted
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as follows: the PSM offers no discernible advantage compared to generic machine learning
algorithms, like Linear Regression, when using it on data where the effect of all features
on other variables is homogeneous and a sum of those feature values. Here homogeneous
signifies that every feature that is confounded influences the main effect, treatment effect
and propensity in the same way, not only specific effects.

3.2 Effect of hiding individual features with different effect contri-
butions

These results should provide insight into three different hypotheses, namely that hiding a
feature that only affects the main effect should not impact the performance of PSM, that
hiding a feature that only affects the treatment effect should impact the performance of
PSM and finally that hiding a feature that only affects the treatment propensity should
impact the performance of PSM.

3.2.1 Description

This experiment consists of running Propensity Score Matching on a type of synthetic
dataset, while hiding each feature individually over multiple iterations to see how the error
changes depending on what feature it is. In this specific dataset, each feature differs in how
it contributes to different category of effect in figure 1 (main effect, treatment effect and
propensity score). More specifically in figure 3, features f0−2 are confounding, while f3 con-
tributes solely to the main effect, f4 affects only to the treatment effect and f5 contributes
to the treatment propensity. When hiding each of these variables separately, it should be
possible to obtain graphs that show the impact on the performance of PSM when hiding a
feature that only affects one specific effect and compare it to the error obtained when hiding
a feature that affects all of them.

The error metric used here is the Mean Absolute Error, or MAE, since the ATE output
for PSM is compared to its true value when hiding each feature separately. Running this over
multiple iterations where the dataset is newly generated each time with the same parameters
and creating bar plots from the results should output an accurate graphical view of that
error. Just like the previous experiment, another graph has also been generated using Linear
Regression instead of PSM for the sake of comparison.

3.2.2 Parameter Setup

The characteristic parameters of the dataset type used is a population of 2500 and the
presence of 6 covariant features. However, each feature contributes to effects differently.
This can be seen in the functions used to generate the datasets (the other functions are
identical to the ones used in section 3.1.2):

• Main Effect : x0 + x1 + x2 + x3

• Treatment Effect : x0 + x1 + x2 + x4 + 1

• Treatment Propensity : S(x0 + x1 + x2 + x5 +N (0, 12))

Moreover, to obtain the results shown in figure 3 experiment type, each bar represents
the Mean Absolute Error over 100 newly generated datasets using the same generation
parameters to obtain a more accurate representation of an error estimate, instead of specific
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anomalies potentially present in unique datasets. The reasoning for the functions used
remains the same as the previous subsection experiments (Kelleher, 2018).

(a) Using Propensity Score Matching (b) Using Linear Regression

Figure 3: Error variance compared to true ATE

3.2.3 Results

On figure 3a, one can see the mean absolute error in ATE when each variable is hidden
separately ATE when using Propensity Score Matching. As predicted, removing any of the
confounding features f0−2 individually causes the same error, namely an MAE of around
0.14. Removing f3−5 however results in error values that are significantly lower, more
specifically an MAE of around 0.05, which is nearly identical to the mean error value when
unconfoundedness holds in the results of section 3.1.3.

These results therefore confirm the hypothesis that hiding a feature contributing only
to the main effect should not impact the performance of PSM. Interestingly, the results
also disprove the hypotheses that hiding a feature contributing only to the treatment effect
or treatment propensity should impact the performance of PSM. Hiding any of these three
types of features behaves nearly identically and doesn’t cause any major drop in performance
for PSM.

These findings can be interpreted as follows: for a feature to cause significant error when
hiding it, it needs to affect two or more effects from the main effect, treatment effect and
propensity score calculation.

On figure 3b, it is possible to observe that the results acquired using Linear Regression
are remarkably similar to the ones obtained by using PSM, meaning that PSM does not
provide a discernible advantage compared to Linear Regression in this experimental setting.

3.3 Effect of hiding multiple sets of features on synthetic datasets
These results should provide insight into the last hypothesis, namely that the more hidden
variables there are, the worse the algorithm performs. The interesting aspect of this hy-
pothesis is in what manner does PSM worsen its performance with an increasing number of
hidden features, and what exactly influences this error trend.
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3.3.1 Description

This category of experiments aims to quantify and plot the error in performance of Propen-
sity Score Matching when hiding an increasing number of confounding features. This is
achieved by going over the power-set of all feature combinations, grouping them based on
size and averaging across the error in each size category. Each line in graphs of figure 4
differs in what dataset was used when calculating the ATE using PSM, and each of these
datasets was generated with a different feature function that determines how the features
influence the rest of the effects present in figure 1. By having several types of generated
datasets, it is possible to obtain graphs that show the impact of hiding an increasing number
of features.

The error metric used in these experiments is the root mean squared error, or RMSE,
because the estimated ATE is compared to its true value and averaged over every iteration
depending on the size of the subset of features currently being inputted into PSM. This
outputs a plot that graphically demonstrates the error trend proportional to the number of
hidden variables. Just like the previous experiments, another graph has also been generated
using Linear Regression instead of PSM on the same datasets for the sake of comparison.

3.3.2 Parameter Setup

In this series of tests, each line color represents PSM being run on a different dataset. These
are distinguished by the specific implementation of the way that all features are utilized
in the effects and propensity calculation. All of them, however, have a population of 2500
and contain 6 covariant features. These can be demonstrated by the following generation
functions (the other functions are identical to the ones used in section 3.1.2):

• Feature Function : FFA :
∑

(X0−5)|FFB :
∑

(X0−2)|FFC :
∏
(X0−5)

• Main Effect : FF (X)

• Treatment Effect : FF (X) + 1

• Treatment Propensity : S(FF (X +N (0, 12))

Furthermore, the results shown in figure 4 use RMSE, the root mean squared error, and
compare ATE values. The reasoning for the functions used remains the same as the previous
subsection experiments (Kelleher, 2018).
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(a) Using Propensity Score Matching (b) Using Linear Regression

Figure 4: Error proportional to hidden features (ATE); A: the feature function used is the
sum of all of the features; B: the feature function used is the sum of half of the features; C:
the feature function used is the product of all the features.

3.3.3 Results

On figure 4a, one can see the root mean square error in ATE proportional to the number
of hidden variables Propensity Score Matching. For 4aA, the feature function used is the
sum of all the features. This results in an RMSE value increasing linearly when hiding
a progressively larger number of features, starting around 0.5 at 0 features missing and
finishing at around 2.1 when all of them are missing. When it comes to 4aB, the feature
function used is the sum of half of the features, and the plot follows a similar trajectory than
that of 4aA, starting at around 0.1 but ending at around 0.5 when all features are missing.
Finally, 4aC uses the product of all the features as a feature function. Here the error stays
the same no matter how many of the features are missing, being non-existent.

If the feature values are simply summed and added to the three effects, the error is
linearly proportional to the number of unobserved features. When the features are multiplied
together and then added to the three features, the error is not dependent on the number of
hidden variables since the effect of all features gets amortized into a single value that PSM
can easily circumvent when estimating the ATE.

These results therefore confirm the hypothesis that the more hidden variables there are,
the worse PSM performs. Removing a progressively larger number of variables and plotting
the error forms a straight line with a non-negative slope, meaning the error always increases
proportionally to the number of hidden variables. The severity of the slope is dependent on
how all the features influence all other variables and how many confounding features there
are.

On figure 4b, it is also possible to observe that the results acquired using Linear Re-
gression are once again nearly identical to the ones obtained by using PSM, making this
experimental scenario also not indicative of the strengths of Propensity Score Matching.
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4 Discussion
To answer the main question of this work, multiple different hypotheses were brought up
during experimentation. From the results obtained, it is possible to gain insight into how
breaking the unconfoundedness assumption influences the performance of Propensity Score
Matching as well as how it fares compared to a non-causal method in the same scenarios.

4.1 Expected Results
Just as expected, when running PSM with missing features, the correctness of the output is
clearly dependent on how that feature affects all other variables present in figure 1 as well
how many of these features are missing. If individual features are confounders and affect
every other variable in the data using the same distribution, removing them individually
will result in an output with a significant error compared to the true value.

This is most likely because PSM will not recognize the effect of these features as only
correlation since it is not aware of them in the data, and therefore will add the value of this
effect to the final causal effect value. The amount by which this faulty estimation is wrong
is dependent on how the feature contributions are distributed, but in any case, this error
will most certainly cause this value to no longer be accurate.

However, if the feature hidden is non-confounding, the output of PSM will remain the
same. One could think that hiding features that do not contribute to anything from the cal-
culation but are still considered by PSM could simplify the estimation and in turn ameliorate
the performance by some noteworthy amount, but from experiments done, it is impossible
to see any proof of this and it is therefore not the case.

From the last experiment, it is also possible to deduce that removing an increasing
number of hidden variables increases the error proportionally to the number of variables
hidden in a non-decreasing fashion. The way this error increases and its maximal value is
dependent on how many features influence the other effects, by how much they influence
them and finally in what way they influence them (i.e. sum, weighted sum, product, etc.).
In this sense, PSM behaved as expected.

4.2 Unexpected Discoveries
Most interestingly, two noteworthy findings that contradicted expectations have also been
made in this work.

Firstly, when hiding variables that only contribute to the main effect, treatment effect
or treatment propensity respectively, PSM performs with the same error no matter which
of the three effects the hidden feature affects. One could assume by understanding "the
back-door criterion" (Pearl, 2009) that hiding features that affect the treatment effect or
propensity calculation should cause a bigger error than hiding a feature solely affecting the
main effect. This criterion is the main reasoning behind the unconfoundedness assumption
and states the importance of conditioning on all the observed features in the data.

This is done to get rid of the unwanted correlation effect values of these features in the
final causal effect estimation, hence the gravity of not having any features hidden. The
treatment effect along with propensity directly influences the conditioning of the features
and depends on the treatment as opposed to the main effect, which makes these two effects
seem more impactful. Based on the results obtained however, there is no difference in the
impact they have on PSM performance between them when they are hidden.
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Secondly, in the specific experimental scenarios Propensity Score Matching has been
utilized, it didn’t offer any advantages to a non-causal machine learning algorithm like
Linear Regression. In every experiment, Linear Regression performed just as well as PSM
and had strikingly equivalent results in every situation when unconfoundedness was broken.
This can be attributed to two circumstances.

On one hand, it is possible that the specific experimental scenarios used along with
the characteristics of each set of synthetic data created together an environment where the
advantages of PSM over traditional machine learning could not be demonstrated. On the
other hand, it is also probable that the specific implementation of PSM used in this work
is similar enough to Linear Regression to see any notable difference since it uses Logistic
Regression to create propensity scores to match each subject. Additionally, the synthetic
datasets used in the experiments use linear functions for feature contribution therefore the
actual answer is a combination of these two circumstances.

5 Responsible Research
To ensure ethical research and reproducibility of results, several measures have been taken
in this work. The first of these measures is that every source of information used, may
it be scientific literature or GitHub repositories, has been referenced and given credit to
appropriately. Most importantly, every technical aspect of the research needed to reproduce
results has also been explained thoroughly.

In the methodology section 2, these technical aspects include baseline mathematical
formulas in section 2.1 that are used in later sections of the work, as well as the specific
version specifics of the Propensity Score Matching method used in section 2.2. In section 3,
every experiment realized in this paper has a description that explains the reasoning behind
it, what question the experiment is trying to answer and how it is technically created. In
addition to this, all experiments have a parameter setup section that contains the detailing
of every variable value and function used, including data generation, while also explaining
the motivation behind using them.

Through these means, the transparency of every decision made, and every method used
is assured and no information is hidden from the reader. In addition to this, all of the
code used in this work to obtain results can be found on the following GitHub repository:
(Erdelsky, 2022)2.

6 Conclusions and Future Work
The purpose of this work was to study the impact of the unconfoundedness assumption
on the performance of Propensity Score Matching when estimating causal effects. This
was achieved through breaking the assumption in a multitude of ways, by running PSM
on synthetic datasets and hiding covariate features in different numbers with varying effect
contributions to other variables in the data. In addition to this, the output of Propensity
Score Matching has also been compared to Linear Regression, a general machine learning
algorithm, in the same experimental scenarios to have a point of reference when interpreting
results.

Some of the results acquired met expectations and confirmed preconceived hypotheses,
while others unearthed new unforeseen findings. Just as expected, when running PSM with

2https://github.com/Erdandrej/causalityPSM/tree/master/scripts
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missing features, the correctness of the output is dependent on how that feature affects all
other variables present as well as how many of these features are missing. More specifically,
the more variables the feature effect value affects and the bigger this value is, the more error
PSM outputs. This error is also proportional to the amount of such unobserved features
and always increases. However, if the feature hidden does not influence any other variable,
the output of PSM will remain the same as when every feature is observed by the method.

Interestingly, contrary to prior hypotheses thought of before experimentation, results
point to the observation that when hiding variables that only contribute to the main effect,
treatment effect or treatment propensity respectively, PSM performs with the same error
no matter which of the three effects the hidden feature affects. This information can be
therefore interpreted as that all three effects have the same contribution weight to the error
when hiding confounding variables. Additionally, it has also become apparent that in all
experimental scenarios used in this work, PSM performed very similarly to Linear Regression
and didn’t seem to offer any advantages over the latter in these specific situations.

From the research and experimentation conducted in this paper, there still exist many
avenues of interest to be potentially investigated in the future. Firstly, only the ATE, or the
average treatment effect, has been analyzed as output for PSM because of time constraints
regarding this work. The ATT, or average treatment effect for the treated, is a metric that
is often used when utilizing PSM and it would be worthwhile to investigate the differences
in results between it and ATE when reproducing the same experiments. Secondly, it would
be beneficial to explore different experimental scenarios when PSM has a clear advantage
over Linear Regression since the ones conducted in this paper show these two methods as
equivalent. The difference in these scenarios could range from using different versions of
PSM to the one used in this work, to employing different functions and distributions with
different values for data generation. Lastly, this research would benefit from using real-world
causal inference datasets in all its experiments. This would provide results that are more
general and realistic, while being independent of artefacts and bias that could arise in a
setting where synthetic data is used.
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