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Abstract

The multi-mode resource-constrained project scheduling problem (MRCPSP) is an extension of
the resource-constrained project scheduling problem (RCPSP), which allows activities to be executed
in multiple modes. The state-of-the-art solutions for solving this NP-Hard problem are dedicated algo-
rithms and (meta-)heuristics. However, this paper considers a more flexible approach using a MaxSAT
solver. The idea is to replace the existing variable selection strategy of the solver, Variable State In-
dependent Decaying Sum (VSIDS), with two scheduling heuristics, Earliest Starting Time (EST) and
Shortest Feasible Mode (SFM). We examine that combining the three heuristics results in a more ef-
ficient solver. In contrast, scheduling rules alone lead to a solver that performs significantly worse on
any of the chosen metrics and benchmarks.

1 Introduction

In literature, a popular way to define schedules is as resource-constrained project scheduling problems
(RCPSP). As planning is an irreplaceable part of numerous real-world problems, such as resource allo-
cation or risk management, the RCPSP has been a hot topic of research for many years now [1]. The
projects in the RCPSP are represented as sets of activities (tasks) that are defined by their starting time,
processing time (duration), resource requirements, and precedence relations. In addition, tasks can be
processed in parallel as long as the precedence constraints are respected and the resources needed at any
point in time, do not exceed some predefined limit. The objective of the problem in most cases is to
minimize the makespan (the time required to complete all activities).

The multi-mode resource-constrained project scheduling problem (MRCPSP) is a generalization of
the RCPSP. It allows for activities to be executed in different modes while using two types of resources,
non-renewable and renewable [27]. Non-renewable resources are limited for the whole makespan, e.g.,
budget. In contrast, renewable resources are limited only at deterministic points in time, e.g., number of
people/machines available [22]. Finally, the different modes for each task are characterized by distinct
processing times and/or resource requirements.

MRCPSP is known to be NP-hard [5]. Despite the problem’s complexity, several algorithms [24, 3,
25, 12, 28] and heuristics [11, 7, 6, 14, 19, 16] have been proposed throughout the years. However, even
though these dedicated algorithms typically yield good solutions, a substantial amount of expert time is
required to study and reproduce them [21].

This is why we consider a more generic approach to solve the MRCPSP using propositional logic and
modeling the problem as a maximum satisfiability problem (MaxSAT). This approach is more flexible
than dedicated algorithms because MaxSAT solvers can be used on any problem that can be encoded into
MaxSAT, without the need for the solver to be modified.

Research on employing SAT/MaxSAT solvers for solving the MRCPSP has already been done be-
fore [8, 18]. In [8], the MRCPSP is split into two parts - mode assignment and scheduling of single-mode
activities. However, in the proposed solution, the SAT solver is only utilized to find a feasible mode
assignment, and a dedicated algorithm is used to schedule the activities based on the selected modes.
Alternatively, in [18], the MRCPSP is encoded entirely into MaxSAT. On the other hand, the research is
focused on reducing the size of the MaxSAT encoding of the MRCPSP and examining how the solver
reacts to an initial solution that it can exploit to optimize the search.

This paper expands upon previous work by incorporating scheduling heuristics into the existing vari-
able selection strategy of the solver, Variable State Independent Decaying Sum (VSIDS) [15]. The two
heuristics we consider are Earliest Starting Time (EST) and Shortest Feasible Mode (SFM). These heuris-
tics are fitted for MRCPSP and are therefore not used in SAT/MaxSAT solvers. However, given that EST
and SFM are identified as one of "the most effective scheduling rules" [6], we expect that a solver that
utilizes them should outperform an off-the-shelf MaxSAT solver when solving the MRCPSP.



The focus of this research is to investigate the impact the new heuristics have on the performance
of the solver, e.g., the time required to find an optimal solution. To accomplish this, multiple tests are
run on more than 3000 problem instances varying in terms of the number of activities, modes, etc. The
results that we obtain tell us that combining VSIDS and the scheduling results leads to a solver that finds
more optimal solutions and takes 5% to 42% less CPU time. On the other hand, using just EST and SFM
proves to be inefficient compared to VSIDS.

The rest of the paper is structured as follows. Firstly, Section 2 provides a formal definition of the
MRCPSP. Secondly, an outline of SAT, MaxSAT, and VSIDS is given in Section 3. After that, Section 4
provides the encoding of the problem into MaxSAT, and further details about EST, SFM, and how they are
incorporated into the solver. Then, Section 5 presents the results from the performed experiments. Fol-
lowing that, in Section 6 we examine potential ethical issues, related to the research. Lastly, conclusions
and ideas for future work are discussed in Section 7.

2 MRCPSP Model Formulation

The MRCPSP is characterized by a set of activities that can be executed in multiple modes with different
processing times and/or resource requirements. Furthermore, the tasks use two types of resources, non-
renewable and renewable. The goal of the problem is to minimize the makespan of the projects.

The set V of N activities is defined as:

V ={v|0<wv < N}, where

0 and N — 1 represent dummy start and end tasks. Furthermore, the sets R” and R" represent the
renewable and non-renewable resources, respectively. Additionally, for each resource k € R", we have a
capacity ¢, fixed at each deterministic point in time. In contrast, the capacity ¢}’ for all [ € R™ is constant
for the entire planning period. Then, to model the execution modes m we use N sets M, for each activity
v € V, such that:

My = {(dv,ms Ty m k> To.my) | k€ R, V1 € R"}, where

* d, m - the processing time of time activity v when executed in mode m;

* 77 1 - the required units of renewable resource k of activity v when executed in mode m;

e 17 .1 - the required units of non-renewable resource ! of activity v when executed in mode m.

The dummy start and end activities can only be executed in one mode with duration and resource require-
ments equal to 0. Finally, we introduce two sets of auxiliary variables, defined as follows:

1, if activity v is executed in mode m
Sv,m,t = and starts at time ¢,

0, otherwise,

1, if activity v is executed in mode m
Ty,mt = and is being processed at time ¢!,
0, otherwise.

UIf activity v starts in mode m at time ¢, then it is being processed from ¢ to ¢ + dy,m.



These variables help formulate the problem’s constraints and objective [26]. First, we need the fol-
lowing constraints to ensure that the precedence relations are respected:

M;

T
S (t+diy) s”,t<ZZt Sj.ats V(i) € E.

p t=0 q

With these, if activity ¢ starts in any mode p € M; at time ¢, and j is a successor of ¢, then j can only
start after ¢ 4 d; ;,, inclusive as time-lag of zero is considered. Then, we need to prevent activities from
starting more than once or in multiple modes:

M, T
Zst,mﬂg =1, YweV.

m t=0

The upcoming two inequalities assure that the demands for renewable and non-renewable resources,
respectively, do not exceed the available capacity for each resource:

vV M,
SN vt T S Yk € R, t=0,1,...,T,

v m

vV M,

ZZ Tv,m,l stmf<cl,VI€Rn

Lastly, the equation

T
min § SN—1,mn.t
t=0

is used to minimize the start time of the dummy end activity, which coincides with minimizing the
makespan.

The MRCPSP can be modeled as a directed graph G(V, E'), in which each node v € V represents an
activity and each edge e; ; € E represents a precedence relation between activities ¢ and j (see Figure 1).
It is important to note that the graph needs to be acyclic, otherwise the problem is not satisfiable (see
Theorem 1).

(4,2,3)
(6,1,1)

(3,34 (2,2.3)
(5.1,2) (4.1,2)

r n
(dv,mv Tv,m,k' ru,m,l )

Figure 1: An example graph representation of an MRCPSP instance with seven activities, one renewable
resource, and one non-renewable resource [14]. Each edge refers to a precedence relation between two
activities. Each label below a node corresponds to an execution mode for that activity, defined as a triplet
of the mode’s processing time, and its demand for renewable and non-renewable resources.



Theorem 1. The MRCPSP has no satisfiable solutions if its directed graph representation contains a
cycle.

Proof. Let G(V, E) be a directed graph of any MRCPSP problem, and let C = (v1,vs,...,v,) be a
cycle in that graph. From the definition of a cycle, it follows that the edges e; 2, €2 3, ..., €,,1 must exist.
Therefore, we say that vs is a successor of vy, vs is a successor of vs, ..., and vy is a successor of v,,.
However, this means that none of these activities can be started, as the precedence relations do not allow
for that. Thus, since there are activities that cannot be started and completed, we conclude that a satisfiable
schedule for the problem does not exist. O

Consider the MRCPSP example, shown in Figure 1. The problem consists of seven activities, one
renewable resource k with capacity c; = 4, and one non-renewable resource [ with capacity ¢} = 8.
An optimal schedule of the start time and execution mode for each of the five non-dummy activities is
provided in Figure 2.
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Figure 2: Optimal schedule with makespan of 7 units of time for the problem in Figure 1. Each rectangle
is labeled with a corresponding activity number and the execution mode that is picked.

3 Overview of MaxSAT and VSIDS

This section provides formal definitions of the SAT/MaxSAT problems and the Variable State Independent
Decaying Sum (VSIDS) heuristic [15]. This heuristic is utilized by the solver provided for this research
by the Faculty of Electrical Engineering, Mathematics, and Computer Science of the Delft University of
Technology. Additionally, VSIDS serves as a baseline for comparison against the MRCPSP scheduling
rules, introduced in Section 4.

3.1 SAT/MaxSAT

Given a propositional formula F', SAT problems aim to assign a truth value to all variables, such that the
provided formula is satisfied. The formula F' is defined as the conjunction of a set of clauses:

F:=CiANCyA...N\C,, where

C; is a disjunction of literals:
Ci = L1 \/LQ V..V Lm

Each literal L; can either be a propositional variable (x;) or its negation (—x;). Thus, F' is said to be in
conjunctive normal form (CNF).



In this paper, we focus on an extension of SAT, namely MaxSAT. The difference between the two
problems is that in MaxSAT we try to find an assignment that maximizes the number of satisfied clauses.
Furthermore, by introducing non-negative weights to MaxSAT we can use two types of clauses, hard and
soft. The hard clauses must all evaluate to True, otherwise the problem is considered unsatisfiable. In
contrast, soft clauses can be False, but the goal of a MaxSAT solver is to minimize the cost (the sum of
the weights of the unsatisfied soft clauses). Finally, this encoding allows us to maximize the value of a
function, which in the case of MRCPSP means that we can minimize the makespan [18].

3.2 VSIDS

VSIDS is a heuristic that dynamically ranks the variables during the solver’s execution. It is considered
more efficient than other known alternatives due to the low computational overhead [15].

The main idea behind the heuristic is that each variable is assigned a floating-point value and the
one with the largest value is selected for branching. These values are updated dynamically as clauses are
learned, in such a way that recently learned clauses are preferred. To clarify, clause learning happens when
a conflict occurs. Then, the solver performs a conflict analysis [17], which yields a new more concise
clause without any redundant literals [4]. Furthermore, when the solver learns a clause, the values of the
variables that are part of the conflict are increased by a fixed value (bump). Additionally, all variables’
values are multiplied by a decay factor at regular intervals.

In the solver used in this paper, each variable is initialized with a value equal to 0. Furthermore, the
bump is 1, and the decay factor is 0.95.

4 Integration of Heuristics into a MaxSAT Solver

In this section, we go over the integration of MRCPSP-specific heuristics into a MaxSAT solver. First,
Section 4.1 presents the encoding of the MRCPSP into weighted CNF (WCNF), in which state the solver
can use it. Then, Section 4.2 provides details about the chosen heuristics and how they are incorporated
into the existing algorithm.

4.1 Encoding MRCPSP into MaxSAT

To be used by the solver, the MRCPSP must first be encoded into WCNEF. The following propositional
variables are introduced:

Sp, Vo eV, t=0,1,...,T,
Tymyt, V0 €V, VYme M,,t=0,1,...,T,
Yo.m, YU € V, Ym € M,.

The first two variables have the same meaning as the ones shown in Section 2. The last one is defined as:

1, if activity v is executed in mode m,
Yv,m = .
0, otherwise.

To ensure that only one mode is selected, the constraints

M,
Zywm =1, YWweV
m



must be satisfied. When translated into WCNF, we get the following hard clauses:

(yv,ml \/yv,mg\/“'\/yv,mn)/\(_‘yv,ml \/_‘yv,mQ)/\(_‘ymel \/_‘yv,m3)/\~~~/\(_‘yv,mn_1 \/_'yv,mn)v Vv € ‘/a

where M,, := {m1,ma, ..., m, }. The first clause ensures that at least one mode is selected for an activity,
and the rest ensure that at most one mode is selected.
Similar clauses are added for the start times to guarantee that an activity is started only once:

(81,70 \Y Sy,1 V..V Sv,T) A (—\Suo V —'81}71) AN (—\Suo V —'80,2) VANAN (—\51,71“_1 V —|SU,T), Yo e V.

Next, to ensure that any activity v € V can start in any of its modes m € M, with enough time to
complete we add the following ’completion’ clauses:

“WYo,m V Su,0V Su1 V..V Sy Tr1-d,,,, Where

dy,m is the processing time of activity v when executed in mode m. Note that the clauses above are
equivalent to the implications

Yv,m — (SU70 V Sv,1 V..V 51},T+1—(1@1m)-

As previously stated, activities in the MRCPSP are subject to precedence relations. The upcoming
hard clauses are added to assure those relations are respected:
TS5tV Wim V SioVSi1 V...V Sitr1-d V(Z,j) eEkE t=0,1,..T.

im

Then, to set the processing time variables x correctly we introduce additional ’consistency’ clauses.
With these clauses, the solver can directly propagate the truth values for x, based on the starting time and
mode, picked for each activity v € V:

=Sp.t V " Youm V Tomar, Vm € My, t =0,1,..,T —dym, ' =t,t+ 1, .t +dym — 1

The last two sets of hard clauses are related to the demand and availability of non-renewable and
renewable resources, respectively. The encoding of these constraints into WCNF is done using a Binary
Decision Diagram (BDD) [2]. As this approach requires a significant amount of auxiliary variables, only
the high-level formulation of the clauses is provided:

V. M,

Z Zy”’m : rﬁ,m,l < C?7 Vi€ R™,

v m

V. M,

SNt Thp < VEER, t=0,1,...T.
v m

Finally, using one-hot encoding we can translate the goal of the MRCPSP into WCNF by introducing
T + 1 soft clauses:
“SN—1,mn,t; t =0,1,..., T, where

the weight of each clause is equal to £ + 1. With this encoding, the makespan of each MRCPSP instance
is equal to the cost of its MaxSAT solution - 1.



4.2 EST and SFM

As described in the previous section, the MaxSAT encoding of the MRCPSP consists of four types of
variables - s, z, y, and additional auxiliary variables. Both x and the auxiliary variables can be propagated
from the clauses once the s and y have been assigned. We hypothesize that assigning those first should
reduce the search space and increase the efficiency of the solver. To accomplish this efficiently, we
incorporate scheduling heuristics into VSIDS.

The first heuristic considered is the Earliest Starting Time (EST). As we are trying to minimize the
makespan, it is rational to start processing activities as soon as possible. The benefit of using this greedy
approach is that it is static, meaning that we only need to compute it once at the start, and therefore, it does
not introduce additional overhead. The following adjustments are made to the VSIDS implementation:
for each variable s,, ;, an initial value of t% is assigned. This way, the s variables are branched on before
the rest. In addition, the value approaches O as ¢ increases. Thus, this implementation ensures that earlier
starting times are preferred.

The second heuristic is the Shortest Feasible Mode (SFM). With SFM we first explore the mode with
the shortest processing time. This heuristic is considered "the most effective scheduling rule" for the
MRCPSP [6]. To elucidate, in the research done by F. Boctor, the heuristic is compared to two other
scheduling rules, namely the Least Criticality Ratio (LCR) and the Least Resource Proportion (LRP).
The experiments that he performs are on benchmarks with 50 and 100 activities, and a ranging number of
resources. He concludes that on average SFM finds a solution that is 39% worse than the optimal, whereas
this number is double for any of the other heuristics. SFM is incorporated into the solver similarly to EST:
the initial values for the ¥, ,, variables are set to 1+ dii;" . This way, we guarantee that the mode variables
y are selected before the start times s and that the shorter modes are explored first.

We conduct three experiments with distinct configurations of heuristics: VSIDS, VSIDS and schedul-
ing rules (VSIDS++), and just scheduling rules (ESTSFM). The results from the experiments are pre-
sented in the upcoming section.

5 Experiments and Results

In this section, we provide evidence that VSIDS++ significantly outperforms both VSIDS and ESTSFM
on all chosen metrics and benchmarks. A more detailed analysis is provided in Section 5.2. Before
that, in Section 5.1, we provide details about the software and hardware that are used to perform the
experiments?.

5.1 Test setup

The encoding of the MRCPSP instances into MaxSAT is done using Python 3.8.12 and the PySAT library
on version 3.0.6 [13]. The experiments are run on the solver, mentioned in Section 4. As the solver is
written in Rust [10], its code is compiled using Rust’s built-in compiler on version 1.69.0 and is run in
release mode.

The experiments are conducted on the standard nodes of TU Delft’s supercomputer DelftBlue [9].
These nodes have Intel Xeon Gold 6248R CPUs running at 3.0GHz and 192GB RAM @ 2933Mhz. In
addition, these machines use Red Hat Enterprise Linux 8 as their operating system.

The benchmarks that we use to compare the algorithms are taken from PSPLIB [20] and MMLIB [27].
Table 1 provides an overview of each benchmark regarding the number of test instances and the number
of activities, the number of modes per activity, and the number of renewable and non-renewable resources
for each instance.

2 All of the scripts and collected data can be found on GitHub: https://github.com/Revirator/MRCPSP.
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Table 1: Number of test instances, number of activities (excluding dummy start and end), number of
modes per activity, number of renewable resources, and number of non-renewable resources for each
benchmark.

Benchmark  #Instances N ||M]| ||R"|| ||R"|]

j20 554 20 3 2 2
i30 631 30 3 2 2
m5 558 6 5 2 2
n3 600 16 3 2 3
r5 546 16 3 5 2
MMLIB50 475 50 3 2 2

5.2 Results

In this paper, we compare the three heuristic configurations on four distinct metrics - CPU time, the
division of solutions into optimal, satisfiable, and timeouts, the number of decisions made, and the area
under the time-objective curve (AUC). Furthermore, the experiments are split into two groups:

* small benchmarks (j20, j30, m5, n3, r5), which are run with 5 seconds, 20 seconds, or 60 seconds
timeouts and 1GB or 2GB of available RAM;

* big benchmarks (MMLIB50), which are run with 60 seconds, 180 seconds, or 600 seconds timeouts
and 8GB of available RAM.

Finally, it is important to note that the CPU time metric does not include the time it takes to encode the
problem into MaxSAT, as this is not the purpose of the experiments.

Table 2: Average CPU time required to solve a single instance (find an optimal solution or timeout).

Benchmark Timeout / Memory
5s/1GB 20s/ 1GB 60s /2GB

j20 3.31s 1.93s 3.83s 4.81s 3.26s 8.17s 6.15s 4.55s 15.76s
j30 4.67s 3.61s 5.19s 12.13s  7.87s 14.82s 20.7s| 16.13s 32.93s
mS5 3.48s 2.24s 4s 5.76s 4.45s 9.48s 9.11s 7.67s 20.25s
n3 1.6s 0.95s 2.42s 1.94s 1.28s 4.03s 2.03s 1.31s 6.42s
15 3.38s 1.85s 3.4s 4.44s 2.92s 6.65s 5.38s 3.95s 11.31s

! - VSIDS

2 - VSIDS +EST + SFM (VSIDS++)

3 - EST + SFM (ESTSFM)



In Table 2, we can see for each benchmark the average CPU time that the solver needs to solve a
single instance. The experiments show that VSIDS++ takes between 22% and 42% less time compared
to VSIDS. In contrast, ESTSFM takes more than double the amount of time compared to the other two
alternatives. Therefore, we conclude that VSIDS is required for the solver to perform efficiently. How-
ever, incorporating domain-specific knowledge into it proves to improve performance when solving the
MRCPSP.

Then, Table 3 presents the division of the found solutions into optimal, satisfiable, and timeouts.
Timeouts also include instances that run out of memory during the solver’s execution. We notice that
VSIDS++ finds more optimal and satisiable solutions compared to VSIDS when run with a 5 seconds
timeout. However, for most benchmarks, this difference disappears when the timeout is 20 or 60 seconds.
On the other hand, using just scheduling rules to select variables performs worse for all configurations
compared to the other two alternatives. Given the results of the 5 seconds experiment, we conclude
that VSIDS++ finds an optimal/satisfiable solution quicker than VSIDS. The findings in Table 2 further
support this statement.

Table 3: Division of the found solutions into optimal, satisfiable, and timeouts (including executions that
run out of memory).

Benchmark Timeout / Memory
5s/ 1GB 20s/ 1GB 60s / 2GB
20 392,161,1 481,73,0 519,35,0 526,28,0 539, 15,0 537,17,0
310, 216, 28 427,115, 12 479,73,2
30 38,445, 148 285,216, 130 293, 188, 150 360, 141,130 371, 109, 151 430, 121, 80
60, 278, 293 251, 123, 257 355, 122, 154
s 367,191,0 437,120, 1 501, 57,0 499,59,0 525,33,0 525,33,0
272, 257,29 377,171, 10 435,122, 1
- 573,27,0 581,19,0 593,7,0 596,4,0 599,1,0 599,1,0
476, 115,9 557,39, 4 579, 19,2
s 376, 170,0 495,51,0 519,27,0 512,25,0 536, 10,0 536, 10,0
344, 159, 43 457, 60, 29 496, 38, 12
! - VSIDS
2 - VSIDS + EST + SFM (VSIDS++)
3 - EST + SFM (ESTSFM)

In Table 4, we present the average number of decisions the solver makes in order to find an optimal
solution. The solver makes a decision, when it needs to select a variable to branch on. We see that
VSIDS++ makes 10 times fewer decisions compared to VSIDS. This happens because we introduce a
new value selection strategy that initially assigns a truth value equal to True when it selects a variable, as
opposed to the old one, which assigns False first. The assumption is that this should help guide the search
in the ’right’ direction, and thus, the solver should make fewer decisions in the end. However, we apply
the same idea when using ESTSFM, but because the dynamic ranking of VSIDS is not present, it makes
more than four times the amount of decisions that VSIDS makes.



Table 4: Average number of decisions required to solve a single instance (find an optimal solution or

timeout).
Benchmark Timeout / Memory
5s/1GB 20s / 1GB 60s / 2GB
0 13147943 282595 3217309 290042 3223309 296625
j
2223519 4715018 4995760
0 17063709 536387 9053227 639097 (9186846 680804
]
10056199 28793461 39235787
S 13394564 213558 3458203 228599 (3468427 239493
m
3970509 5161972 5615743
\ 1434594 169965 1436585 171991 1437923 172598
n
1878360, 2018564 2041166
S 4319163 382064 4449898 389197 4454136 393482
T.
4003984 4677351 4863584
- vsIDs
2 -VSIDS + EST + SFM (VSIDS++)

31 - EST + SFM (ESTSFM)

Next, in Table 5, we look at the results from the average AUC. An example of the time-objective
curves for the three heuristics run on a single instance can be found in Figure 3. We examine that
VSIDS++ outperforms the other two heuristics as its area is two to three times smaller. This means
that VSIDS++ takes less time to find a *good’ solution, and thus, less time to find the optimal solution.
Furthermore, ESTSFM also outperforms VSIDS on some of the run configurations. Therefore, we con-
clude that ESTSFM finds a *good’ solution quicker than VSIDS, but given the results in Tables 2 and 3,
it seems to struggle to find the optimal solution. Additionally, the large number of timeouts for ESTSFM
further decreases the average AUC.

10
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Figure 3: Time-objective curves and the areas below them for VSIDS, VSIDS++, and ESTSFM run on a
single instance from the j30 benchmark set.

Table 5: Average area under the time-objective curve.

Benchmark Timeout / Memory
5s/1GB 20s/ 1GB 60s / 2GB
0 1287.03 98.74 1294.61 124.70 135324 185.79
j
169.87 33224 553.86
0 1989.55 347.31 1600.39 496.91 1198322 71259
j
288.54. 76841 162691
S 1293.65 79.15 1268.17 106.41 129939 155.74
m
14916 34227 582.89
5 137.29 48.12 1100.51 57.53 112728 88.01
n
100.68. 14746 200.68.
5 1264.89 98.03 125673 130.16 131401 191.55
T.
12794 22549 435.54.
- vsIDs
21 - VSIDS +EST + SFM (VSIDS++)

31 - EST + SEM (ESTSFM)

11



Similar results are obtained for the big benchmarks and are presented in Table 6. We see that
VSIDS++ finds more optimal solutions than VSIDS while making fewer decisions. However, the im-
provement in CPU time is not as significant as for the small benchmarks at a mere 5% to 21%. Con-
versely, for VSIDS++, the AUC is three times smaller than VSIDS. Therefore, even though the CPU time
difference is not as significant, we can still conclude that VSIDS++ finds a good’ solution quicker.

The more interesting result from the experiment can be found in the metrics obtained for ESTSFM.
Even though with ESTSFM the solver makes three to nine times more decisions, it still takes roughly
the same amount of CPU time on average. Furthermore, it appears that ESTSFM’s AUC score is better
compared to the other heuristics when the timeout is 60 seconds. However, this happens because we
do not consider executions that time out when calculating the AUC. Additionally, given the AUC scores
when the timeout is 180 and 600 seconds, we conclude that ESTSFM takes more time to find a *good’
solution. Therefore, we think that VSIDS is irreplaceable for big benchmarks too.

Table 6: Division of solutions into optimal, satisfiable, and timeouts, CPU time, number of decisions,
and area under the time-objective curve (AUC) for the MMLIBS50 benchmark.

Metric Timeout / Memory

60s / 8GB 1805 / 8GB 600s / 8GB
Division of | 147,310, 18 202,253,20 212,252, 11 214,253,8  225,248,2 223,251, 1
solutions 163, 44, 268 190, 78, 207 204, 119, 152
CPUtime 5295 41.36s [4692s  [126.83s 108.63s [121.87s [350.88s 332.71s |364.42s

62310872 1627725 64844994 1879326 65906527 2198776
#Decisions
185708949 366601392 544396261
AUC 12221.99 4457.22 14730.82 6373.3 20824.49 10737.45
3095.68 14247.29 34896.76
! - VSIDS
2 - VSIDS + EST + SFM (VSIDS++)
3 - EST + SFM (ESTSFM)

6 Responsible Research

In this section, we address the two main concerns about this research: the reproducibility of the experi-
ments and the fair comparison of the algorithms.

To ensure that the experiments can be reproduced by anyone, in Section 5.1 we provide details about
all the software, hardware, and benchmarks that are used to conduct the experiments. Furthermore, all
scripts and results are available on the linked GitHub page.

The second and more important issue is the fairness of the results obtained. To assure this, we perform
an ’apple-to-apple’ comparison between the heuristics [23]. To elaborate, each experiment is run on the
same hardware and under the same timeout and memory conditions. In addition, the outcomes of the
experiments are not compared to the results of algorithms, discussed in other papers. The reason for this
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is that the test setups used to perform experiments in other research are different than ours, hence, the
comparison is not going to be adequate.

7 Conclusions and Future Work

In this paper, we have looked at the multi-mode resource-constrained project scheduling problem (MR-
CPSP). The MRCPSP is a generalization of the resource-constrained project scheduling problem (RCPSP)
and is known to be NP-Hard [5]. The problem allows for activities to be executed in multiple modes and
to use two types of resources, renewable and non-renewable. This paper has provided a new approach to
solving the problem by using a MaxSAT solver. This approach utilizes scheduling rules to select variables
to be explored first. This is accomplished by encoding the MRCPSP as a Boolean formula in weighted
conjunctive normal form (WCNF), which can thereafter be used by the solver. In addition, the existing
heuristic in the solver, Variable State Independent Decaying Sum (VSIDS), is updated to incorporate two
MRCPSP-specific heuristics, Earliest Starting Time (EST) and Shortest Feasible Mode (SFM).

We have compared three heuristic configurations VSIDS, VSIDS + EST + SFM (VSIDS++), and EST
+ SFM (ESTSFM) on four different metrics and more than 3000 test instances. The results obtained from
the experiments yield two important findings:

* ESTSFM performs significantly worse on every metric and benchmark compared to the other two
alternatives. Our hypothesis is that this is due to the static nature of the heuristic and the fact that
the variables’ order does not change during the solver’s execution;

e VSIDS++ takes between 5% and 42% less CPU time and finds more optimal solutions compared
to VSIDS. Furthermore, based on the area under the time-objective curve (AUC), we have seen that
VSIDS++ discovers a *good’ solution quicker than VSIDS.

Therefore, we conclude that VSIDS, which is widely used in SAT/MaxSAT solvers [15], cannot
be completely replaced by domain-specific heuristics. However, based on the results obtained, we can
say that propositional logic algorithms can be combined with domain-specific knowledge to obtain an
algorithm that performs better when solving the MRCPSP.

However, research on this topic is not complete. Here, we propose ideas for future work that can be
done on this topic:

* More heuristics should be compared. In this paper, we use two MRCPSP heuristics that are consid-
ered to be the most effective [6], however, the research by F. Boctor proposes a total of 10 different
heuristics that could be combined in 21 different ways;

* Other benchmarks exist for the MRCPSP that are not considered in this paper [27]. These are big
test instances with 100 jobs and up to 9 possible modes per activity. It will be beneficial, to see if
the same results will be obtained for these instances as for the ones in this work;

* Another idea is to incorporate previous work into the current solver. For instance, in [18], a more
compact encoding of the MRCPSP is discussed, as well as ideas for providing the MaxSAT solver
with an initial solution that it can exploit to guide the search;

* Finally, we have chosen to use a MaxSAT solver as it is more flexible than dedicated algorithms.
However, it would be insightful to examine the trade-off between flexibility and efficiency. For
this, we propose that the improved solver that uses the VSIDS++ heuristic is compared to the
state-of-the-art approaches for solving the MRCPSP.
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