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Abstract

We present the application of a local dimensionality
estimator to the analysis of 3-D microscopic network
structures. Three-dimensional images of these structures
have been acquired with a fluorescence confocal
microscope. We derive the smoothed gradient square
tensor (GST) in 3D and show how the eigenvalues and
eigenvectors of the tensor can be computed analytically.
The eigenvalues yield the dimensionality, the
eigenvectors the corresponding orientation. The
application of the GST to analyse isotropic, cylindrical
and planar structures is tested on synthetic data. The
GST analysis of the confocal data requires a reliable
measurement of the fluorescence intensities as well as a
adequate resolution. We shown that an optimisation of
the fluorescence staining combined with an attenuation
correction guarantees the former, whereas image
restoration will deliver the latter. Finally, results of the
application of the GST to confocal data are presented.

1. Introduction
Health-conscious consumers have created a tremendous
demand for low-fat products. Reducing the amount of fat
in a product can be quite a challenge. Margarine, which is
the main subject of this research, normally consists of
approximately 80% fat and the remaining part is primarily
water. Water is cheaper and more common than fat and
therefore would be an ideal fat-replacement. For halvarine
the fat concentration has already been reduced to 40%, or
even 20% for low-fat margarine. The process of producing
low-fat foods is not simply one of taking out fat however.
The fat molecules form a network that gives margarine its
characteristic structure and determines important
properties such as taste, mouthfeel and strength of the
margarine. If we reduce the fat-contents too much, the fat-
structure is not strong enough to contain the water and we
get a liquid state (Figure 1). In order to create low-fat
spreads (< 5% fat) another way to structure the water is
needed.

The water can be structured using a liquid-crystalline
phase [1]. The liquid-crystalline phase is created under the
influence of surface-active substances. An example of a
surface-active substance is a molecule with a hydrophilic
head and a hydrophobic tail.

Water
Fat

Figure 1: Structuring of water using fat. On the left margarine (>
20% fat) and on the right a low-fat spread (< 5% fat)

For the structuring of water it is most interesting when
both the head and the tail are about equally sized (Figure
2.a). The molecules then form themselves in a so-called bi-
layered structure with the tails close to each other (Figure
2.b). On a local scope the heads and tails of the molecules
are very mobile, just like in a liquid. There is a larger scale
ordering present though, giving the substance many
properties of a crystal. Many surface-active substances,
e.g. monoglycerides, form this bi-layered structure.
Monoglycerides have been used for a number of years in a
wide variety of food products [1].
In three dimensions the bi-layered structures form a
lamellar phase. By cooling the lamellar phase the tails of
the surface-active molecules lose their liquid character and
become more rigid. The water/monoglyceride mixture
enters the α-gel phase, which is much more consistent.
This phase is thermodynamically not stable and will
convert to a phase that is called the coagel phase [1]. The
coagel phase is not quite a structure of layers, but more a
network or matrix of planar crystals (Figure 2.c). This
network is quite comparable to the network fat forms while
containing oil.
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Figure 2: Surface-active substance with a hydrophobic tail as
wide as its hydrophilic head.

The microstructure of fat has well-known rheological
properties. Those of the water-structuring monoglyceride
are less well known. To study and understand
waterstructuring we need quantitative measures to
characterise these microstructures. In this paper we focus
on estimation of the local dimensionality of the matrix.
In section 2 we derive a closed-form expression for the
eigenvalues and eigenvectors of the 3-D Gradient Square
Tensor (GST). In section 3 we present tools for the
determination of the local dimensionality based on the
GST. Results performed on synthetic data are presented in
section 4. Section 5 discusses the optimization of confocal
imaging for quantitative image analysis and presents an
application of the GST to the analysis of microscopic
network structures. In section 6 these results will be
discussed and preliminary conclusions will be drawn from
them.

2. The Gradient Square Tensor
The GST has been proposed by Haglund [2] to estimate the
local dimensionality. Van Vliet [3] presented a closed-
form analytical solution in 2-D and applied it to estimate
local orientation and anisotropy in geological data. Here
we present a closed-form analytical solution for the
eigenvalues and eigenvectors of the 3-D tensor which is
defined by
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with g the gradient, which we compute with Gaussian
derivatives of size σgradient and (    ) a local smoothing
operation (Gaussian of size σtensor).

This Gaussian filter can be extremely large. To speed up
calculations we apply a recursive Gaussian filter [4]. The
eigenvectors vi with eigenvalues λ i (i = 1, 2, 3) of a matrix
A are defined by:

A v v• =i i iλ (2)

The eigenvalues can be found by solving

G I− =λ 0 (3)

This leads to solving a cubic equation of the form:
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The roots of this equation are the eigenvalues. Since we
only have real coefficients a, b and c we can calculate the
three roots analytically [5]:
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The possible solutions of these roots can be visualised in
complex space by the real values (because of the cosine) of
the edges of three pieces of a six-piece pie (Figure 3: ).
The pie is a unit circle translated by −a 3 and scaled by
2 Q . Because 0 ≤ ≤Θ π  we can clearly see from Figure
3:  that the following ordering is always true:

x x x1 3 2≤ ≤ (8)



Figure 3: The ordering of the roots of the cubic equation becomes
evident if depicted as the real values of the possible Θ. Θ
increases in the direction indicated.

2.1 The 3D eigenvectors
With the eigenvalues found, we can now calculate the
corresponding eigenvectors by using equation (2). Suppose
we have an eigenvector with 

�
ui , 

�
vi  and 

�
wi  its projections

along the x-, y- and z-axis respectively, and eigenvalue
(length) λ i. We then need to solve the following equation:
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With these equations it is clear that the projections are
linear dependent of each other. This dependence is not a
problem when we realise that we only need the ratios of
the projections in order to calculate the angles. In this case:
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with standard spherical coordinates r, ϕ and θ with r=1.

Because we are working with the squared tensor, we must
be able to uniquely represent only half of the sphere. The
other half can not be distinguished from the first. We
choose to be able to represent the half enclosed by octant I,
II, III and IV, as defined in Figure 4: . As we can see in
Table 1 if we use only ϕ (the ratio between u and v) we
can not distinguish between octant I and IV (nor VI and
VII but those are outside the half-sphere).
So we must use the θ to distinguish between those octants.
But equation (11) squares the ratios u

v  and 
v

w , and thus
cannot distinguish between the two octants either. We must
therefore use an additional requisite:

θ π θi i
v

w
= − ∀ <                , 0 (12)

Table 1: Determining the uniqueness of each vector using the
signs of its projections and the signs of their ratios to determine
the octant it is represented in.

ui vi wi octant ui/vi ui/wi vi/wi

+ + + I + + +
- + + II - + -
- + - III - - +
+ + - IV + - -
+ - + V - - +
- - + VI + - -
- - - VII + + +
+ - - VIII - + -

VIIIVII
III

III IV

VVI
ϕ
θ

u

w

v
θ

ϕu
v

w

Figure 4: The sphere determining the total domain of possible
eigenvectors, with definitions of the symbols used. It is divided
into octants numbered I through VIII.

We can now fully distinguish any vector within the front
half of the sphere in Figure 4:  by the three variables λ i, ϕ i

and θi. The domains of ϕ i and θi are respectively [-½π, ½π]
and [0, π]. Combining formulas (10), (11) and (12) results



in the following analytical solutions for the angles of the
eigenvectors:
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3. Dimensionality Measures
The use of the GST can be demonstrated by looking at the
result for three typical shapes: an edge or plane, a line or
cylinder and noise. In Figure 5: the ellipsoid spaces
spanned by the eigenvectors have been displayed in dark
grey. These have been overlaid on the original grey object.
The ratios of the sizes of the eigenvectors are
representative for the dimensionality within the smoothing
window. The absolute size of each vector is representative
for the strength of the gradient in that direction. In an
image with a reasonable SNR the sum of the eigenvectors
will be quite low at regions dominated by noise. Areas in
the image where the signal and orientation are strong will
consequently have a larger sum of eigenvectors.

Table 2: Defining a measure of the local dimensionality
dependent on the ratios of eigenvalues of the 3-D GST.

Dimensionality relative
eigenvalue sizes

Measure

Cylindrical (1D) λ λ λ1 2 3≈ >> λ λ
λ λ

2 3

2 3

−
+

Planar (2D) λ λ λ1 2 3>> ≈ λ λ
λ λ

1 2

1 2

−
+

Isotrope (3D) λ λ λ1 2 3≈ ≈ λ λ λ1 2 3+ +

Figure 5: Visual representation of the ellipsoid space spanned by
the eigenvectors of the Gradient Square Tensor resulting from the
grey objects: a plane (a), a cylinder (b) and a sphere or isotropy
(c).

Van Vliet [2] defined 1 2 1− λ λ  as a measure for
anisotropy in 2D. We have translated this measure for the
local dimensionality in 3D using three measures (Table 2).
The planar and cylindrical measures are dimensionless so
only the third measure, λ λ λ1 2 3+ + , contains

information about the strength of the gradient. This can be
useful for separating noise from spherical objects, for
example. Spherical objects will in general have a stronger
gradient and therefore a larger eigenvalue than noise does.

4. Test results
Before applying the orientation tensor to three-dimensional
CSLM images we need to validate the GST on test images
for which the ground truth is known. Another important
aspect is the robustness of the dimensionality measures in
the presence of noise. We generated synthetic images of
ellipsoids, cylinders and plane using analytical descriptions
of their shapes. We use erfclipping [6] to ensure that
generated images are approximately bandlimited.
To investigate the influence of noise on dimensionality
detection, we take a look at several composite images. The
original images were one of a cylinder through the centre
and one of a plane. To these images various amounts of
noise were added and the eigenvalues calculated. Instead
of looking at the separate eigenvalues, we consider the
dimensionality measures defined in the previous section.
These measures determine the x and y position in the
dimensionality image presented in Figure 6.

For visualisation purposes we have ignored the third - or
3D - axis. The value - or intensity - of each pixel is average
amount of energy in the original image with the
dimensionality indicated by the x and y position. The
dimensionality image is displayed on a logarithmic
intensity scale.
The dimensionality image is a composite image which
means that the result from the planar and cylindrical
images were calculated separately and then added to form
a single image.
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Original images:
size: 100x100x100 voxels
Cylinder radius: 10 voxels
Plane thickness: 20 voxels
SNR: 26 dB

Figure 6: Composite image of a noisy plane, a noisy cylinder and
pure noise calculated separately. It is clear that with an SNR of
26 dB the three dimensionalities are very well separated in the
dimensionality space. (a) planar area, (b) cylindrical area, (c)
isotropic area, (d) planar noise trail, (e) cylindrical noise trail.

For completeness’ sake the dimensionality results from a
realisation of noise with the same variance as the noise
added to the objects has been displayed as well. We can
roughly distinguish the following areas in the resulting
images:
a) The area where the behaviour is distinctly planar. As

the SNR decreases a trail develops towards the origin.
b) The area where the behaviour is cylindrical. The same

as with the planar area, a trail towards the noisy area
results from a decreased SNR.

c) The area where the behaviour is that of isotropy. Here
all three eigenvalues are of about equal size. If the third
measure had been taken into account, the absolute size
of λ1 in the z-direction, spherical objects and noise
would have been separated in the z-direction but now
they are both in this area of the image.

d) This is the trail developing from the noise of the planar
image.

e) This trail develops from the cylindrical image as the
SNR decreases. It does not lead directly to the area of
isotropy. At a larger distance from the cylinder, the
curvature of the cylinder becomes larger and resembles
more and more a planar structure. Therefore the trail
first moves towards the planar area before the signal
becomes too weak and the trail moves totally towards
the isotropic area.

When we look at a series of dimensionality images with
decreasing SNR (Figure 7), we see that both the planar and
the cylindrical areas move away from the border, the
’perfect’ planar or cylindrical dimensionality, as the SNR
worsens and leave a totally blank area.

SNR: 26 dB 20 dB 14 dB

8 dB 2 dB
Figure 7: Series of dimensionality images with decreasing SNR.
All images were calculated using the following Gaussian filter
parameters: σgradient=1.5 and σtensor=5.

5. Confocal Image Formation
Confocal fluorescence microscopy provides a means of
acquiring three-dimensional images of the microscopic
network structure of gel-like food products
(monoglycerides). Stained with Nile Red, the lipid network
structure of these products can be made visible using
fluorescence microscopy (see Figure 8).
Reliable and accurate measurements, however, require an
optimised image formation that minimises the distortions
imposed on the image by the image formation. Various
distortions can hamper the data. Mismatches in refractive
index between the immersion medium (the medium
between the objective and coverslip) and the sample
imposes a translation variant blurring on the image [7].
Scatter and reabsorption impose an attenuation of the
fluorescence light intensity emitted from deeper layers in
the sample.
In the following sections we address these distortions. The
Nile Red dye concentration is optimised to minimise
attenuation and improve the depth penetration in stained
monoglycerides. We have applied attenuation correction
software to the acquired images and show that this results
in a further reduction of the attenuation of the pixel
intensities at deeper layers in the image. Finally, image
restoration is used to invert the blurring imposed by the
confocal microscope.
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Figure 8: Representative lateral slices from 3-D images of four
different monoglyceride systems.

5.1 Attenuation Reduction
Scatter and the absorption of the excitation light in higher
layers will reduce the amount of light penetrating to deeper
layers in the sample, attenuating the fluorescence light of
these layers. The non-transparency of monoglycerides
gives rise to scatter that attenuates the excitation light
focussed on deeper layers of the sample. The amount of
scatter is specific to the sample, and is unavoidable.
Another source of attenuation, the absorption of the
excitation light and the re-absorption of the emitted light
can be minimised by tuning the amount of the fluorescence
dye the sample is stained with. We have investigated
whether a reduction in the concentration of the Nile Red,
used to stain the monoglyceride, reduces the attenuation.
The monoglycerides are stained by means of diffusion.
After a monoglyceride sample is put on a microscope glas,
a glass filter (disk of porous glass) is placed on top of it. A
drop of the stain is dropped on the filter. The filter slowly
releases the fluorescent dye to the monoglyceride, which is
then stained by diffusion. After an adequate staining of the
sample, the filter is removed, and a glass cover in put over
it to prevent it from drying up.
The mean intensity of a 5% monoglyceride sample (made
in a beaker) is shown in Figure 9 as a function of depth for
four different Nile Red concentrations (100%, 50%, 25%
and 10%). The 100% concentration corresponds to 0.1 mg
Nile Red per 1 ml of solvent (50 % polyethylene glycol,
45% glycerol, and 5% water). The figure clearly shows
that the drop in intensity as a function of depth is less

significant for lower concentrations. Therefore the
attenuation caused by absorption is minimised with the use
of a low concentration (10%) of the Nile Red fluorescence
stain. We found that the use of an even lower concentration
(2%) significantly reduces the fluorescence signal. We had
to use a 30% laser power in this case instead of the 5-10%
laser power used normally. We therefore conclude that for
the investigated monoglyceride systems an optimal
reduction of absorption induced attenuation is obtained
with a Nile Red concentration of about 0.01 mg/ml.
Furthermore, the reduction in stain concentration enable us
to penetrate deeper in the sample (~15 µm for 100%, > 27
µm for 10%).
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Figure 9: The mean intensity of 5% monoglyceride system as
function of depth, stained with four different concentration of
Nile Red. The 100% concentration corresponds to 0.1 mg/ml.

Attenuation can also be corrected for after acquisition. We
have implemented the RAC-LT2 attenuation correction
algorithm proposed by Strasters [8] and applied it to the
monoglyceride images. The algorithm is based on the
premise that the amount of local attenuation can be
estimated from the amount of local fluophores. This is a
reasonable model for both scatter- and absorption-induced
attenuation. The intensity of a pixel is corrected by
dividing it by a weighted sum of the acquired intensities in
the light cone of the pixel being corrected. The weight,
named the extinction coefficient, has to be estimated.
Strasters applied his attenuation correction to images of
individual cells. Therefore he could estimate the extinction
coefficient by reasoning that the background intensity just
above and just below a cell should be equal after
correction. In our situation we cannot use this approach.
Instead we reasoned that the monoglyceride images
represent a large network structure of which the mean
intensity should be constant. We have therefore estimated
the extinction coefficient in such a way that after
correction the mean intensity would remain constant as
function of depth.
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Figure 10: The mean intensity and the 95% percentile of the
intensity distribution of a 25% stained monoglyceride as function
of depth.

Figure 10 shows the result of applying the attenuation
correction software to a 25% stained monoglyceride. It
clearly shows that the decrease of the mean intensity as a
function of depth is significantly reduced (we used an
extinction coefficient of 0.006). To check that the
procedure did not produce large intensity peaks, we also
include the 95% percentile value of the intensity as a
function of depth. Again this shows a proper correction.

5.2 Image Restoration
The 3-D confocal optical transfer function has an axial cut-
off frequency that is about three times smaller than the
lateral cut-off frequency [9]. This results in an anisotropic
blurring of confocal images by the confocal point spread
function. As a consequence, planar structures oriented
laterally will be more blurred than axial oriented planes.
This will greatly influence the gradient-based GST. Lateral
oriented planes will prove more difficult to detect than
axial oriented ones. To overcome this problem we have
applied image restoration to invert the blurring imposed by
the confocal microscope. We have used the iterative
constrained Tikhonov-Miller (ICTM) algorithm [10, 11] to
restore the confocal data.
The confocal point spread function has been computed
using a theoretical model of the microscopic image
formation, which is based on vectorial diffraction theory
[12]. This model takes important microscopic parameters
such as the finite-size pinhole, high numerical apertures,
and polarization effects into account; lens aberrations are
not modeled. The regularization parameter has been
estimated with the generalized cross-validation method
[11]. Figure 11 shows two slices of a 3-D confocal image
of a monoglyceride before and after applying the ICTM
algorithm.

 

 
Figure 11: Two lateral slices of a 3-D monoglyceride image
before (left) and after (right) applying image restoration.

5.3 Scale dependent Anisotropy Measurements
The analysis presented in this section, focuses on the
dominant structure in the image as function of scale (σtensor).
We have determined the average anisotropy at the various
scales (see Figure 12) by computing the average over the
image of

λ λ λ λ12 3 12 3− +	 
 	 
 (14)

with λ12 the average of λ1 and λ2. This measure will
produce values ranging from zero to one. A high value
indicates an anisotropic structure, and low value indicates
that the structure at the measured scale is isotropic. Using
this measure we can distinguish between monoglycerides
of various mass percentages and distinguish gels produced
in a small votator with those produced in a beaker (see
Figure 8).
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Figure 12: Scale dependent anisotropy measurements on various
monoglycerides.



6. Discussion
This paper presents preliminary results of the application
of the gradient square tensor (GST) to the analysis of 3-D
microscopic network structures. We have derived closed-
form expressions for the eigenvalues and eigenvectors of
the 3-D smoothed gradient square tensor. The eigenvalues
are used to determine the local dimensionality and the
eigenvectors can be used to determine the corresponding
orientation. Both the gradients and the smoothing of the
GST are being computed using Gaussian convolution
operations. This allows for both a classical scale-space
approach by varying the scale of the gradient, as well as a
“structure scale-space”, determined by the amount of
smoothing of the GST. Since the size of the smoothing
kernels can become quite large, we have used a fast
implementation of the Gaussian filter using recursive
filters.
We have tested the proposed dimensionality measures of
synthetic objects in the presence of noise. These tests show
that planar, line and isotropic structures can be
distinguished under realistic noise conditions.
A reliable application of the GST to confocal data, requires
the confocal imaging to be optimised for quantitative
analysis. We have used techniques to minimise the
attenuation of the fluorescence intensity at greater depths
and to improve the poor axial resolution by means of
image restoration.
The analysis results on confocal images of monoglycerides
show that the GST is a promising tool for a scale
dependent analysis of the local dimensionality of network
structures. We have demonstrated the use of the GST to
measure the anisotropy of different microstructures. The
analysis showed both a difference in anisotropy between
different microstructures as well as their dependency as
function of the structure scale.
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