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Abstract
Long-lived coherences, emerging under periodic pulse driving in the disordered ensembles of
strongly interacting spins, offer immense advantages for future quantum technologies, but the
physical origin and the key properties of this phenomenon remain poorly understood. We
theoretically investigate this effect in ensembles of different dimensionality, and predict existence
of the long-lived coherences in all such systems, from two-dimensional to infinite-dimensional
(where every spin is coupled to all others with similar strength), which are of particular
importance for quantum sensing and quantum information processing. We explore the transition
from two to infinite dimensions, and show that the long-time coherence dynamics in all
dimensionalities is qualitatively similar, although the short-time behavior is drastically different,
exhibiting dimensionality-dependent singularity. Our study establishes the common physical
origin of the long-lived coherences in different dimensionalities, and suggests that this effect is a
generic feature of the strongly coupled spin systems with positional disorder. Our results lay out
foundation for utilizing the long-lived coherences in a range of application, from quantum sensing
with two-dimensional spin ensembles, to quantum information processing with the
infinitely-dimensional spin systems in the cavity-QED settings.

1. Introduction

Collective quantum coherences of many-spins systems play central role in quantum science and technology.
But quantum coherence is fragile, and extending its lifetime is a critical problem. For instance, in spin
ensembles the collective coherence (collective transverse polarization) is destroyed by dipolar interactions
[1–4], and the spin echo signal, which quantifies coherence, quickly decays on the time scale T2 [5].
Coherence can be preserved e.g. via pulse and/or continuous-wave decoupling that suppresses dipolar
interactions [1–3]. Recently, an intriguing alternative has attracted much attention: it exploits, rather than
fights, the spin–spin interactions. Namely, the unusual many-spin states, which are formed in ensembles of
dipolar-coupled spins under periodic driving by π-pulses, exhibit collective spin coherences living up to 105

times longer than the T∗
2 and about 104 time longer than the T2 time [6–9]. This phenomenon, along with

other similar effects, has been observed in various solid-state nuclear magnetic resonance (NMR)
experiments [6, 7, 9–12, 13], but still remains poorly understood. The long-lived coherences emerge from
the combination of strong dipolar coupling, disorder, and pulse imperfections (understood broadly as
deviations of the real π-pulses from perfect instant 180◦ rotations) [6, 12]. Besides, the long-lived
coherences demonstrate subharmonic response, i.e. asymmetry in the magnitudes of even and odd echoes
[6, 9, 12]. Both effects of long coherence lifetime and its subharmonic response are remarkably stable
against perturbations and decoherence.

The long-lived coherences could be of great benefit for new quantum technology platforms. For
instance, promising platforms for quantum sensing utilize two-dimensional systems (d = 2, see figure 1),
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Figure 1. (a) Spin ensembles of different dimensionality: two-dimensional, three-dimensional, and (effectively)
infinite-dimensional systems. The latter system with all-to-all interactions of similar strength is realized e.g. by coupling the spins
to a detuned collective photon/phonon/magnon mode in a cQED-like setting. (b) Schematic representation of the periodic pulse
sequence. Imperfect π pulses (P) are applied at times (2n + 1)τ (n � 0), so that a series of echoes (E) is formed at times 2nτ .
Each pulse rotates the spins along the x-axis by an angle π(1 + ε), where ε is the pulse imperfection parameter.

such as surface spins or 2D layers of NV spins [14–17]), which can be brought close to the system being
sensed, thus improving resolution and sensitivity. Employing ensembles of spins boosts the total signal, and
thus greatly improves the signal-to-noise ratio, but the collective coherence decays quickly due to dipolar
coupling between the spins. Increasing the lifetime of collective coherences would be of enormous benefit
for quantum sensing. On the opposite end (d →∞) are the spin ensembles in a cavity QED-type settings,
actively explored for quantum information applications [18, 19], where each spin is coupled to all others
with a similar strength via collective photonic, phononic, or magnonic mode [20–26]. Taking full advantage
of the long-lived coherences could increase the signal-to-noise ratio in these systems by orders of
magnitude. In order to achieve that, detailed understanding the long-lived coherences in systems of
different spatial dimensionality d is required. So far, even existence of the long-lived coherences at d = 2 or
d →∞ has remained elusive, and their properties have been unknown.

In this article we predict that the long-lived coherences do exist in these important systems, thus
opening the way to employing them in novel quantum information platforms. In order to analyze in detail
the transition from d = 2 to d →∞, and to clarify generic features of the long-lived coherence dynamics,
we numerically simulate the dynamics of disordered dipolar-coupled quantum spin ensembles of different
dimensionalities, subject to periodic driving by imperfect π-pulses, with the rotation angle slightly deviating
from 180◦. For all dimensionalities d studied, we observe the long-lived coherences and see emerging
subharmonic response when the time interval τ between the pulses increases to become comparable to T2,
see figure 1(b). Our simulations show that the magnitude of the long-lived coherence decreases at larger d,
but still remains quite large even at d →∞. By analyzing the Floquet operator, we establish the kinematic
origin of the long-lived coherences, determine that it is similar for all dimensionalities, and identify the
states that are involved in their formation.

Some aspects of the long-lived coherence resemble the time crystal dynamics in periodically driven spin
systems [27–35], with their characteristic robustness [36–38]. Time crystals have been observed in many
spin systems, from trapped ions [39] to spin ensembles in diamond [40], including the kind of NMR
systems that exhibits the long-lived coherences [35, 41, 42]. However, the physical origins of the two
phenomena are different: the coherences are determined by the transverse magnetization, while the time
crystal dynamics refers to the behavior of the longitudinal polarization. They are governed by different
processes, and their lifetimes can differ by many orders of magnitude [1, 2]; e.g. in the case of perfect pulses
(instantaneous 180◦ rotations) the time crystal oscillations have the longest lifetime and largest amplitude,
while the long-lived coherences completely vanish [6, 9, 12]. The relation between the long-lived coherence
and the time crystal dynamics is poorly explored, in spite of its fundamental interest. Besides, the studies of
time crystals so far have mostly focused on d = 1 [35, 37, 38, 43–50] and d = 3 systems
[39–42, 51], as well as on the systems with d →∞ [21, 36, 40, 50–52]. For these reasons, we also explore
here the time crystal dynamics of the longitudinal spin polarization for different dimensionalities. We find
that it also demonstrates time crystal-like oscillations with a very long lifetime for all d, but the physical
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features are markedly different from those of the long-lived coherences. More detailed exploration of this
issue in the future would be of utmost interest, but is beyond the scope of the present paper.

Dimensionality plays a key role in the dynamics of dipolar-coupled positionally disordered spin systems.
Such systems exhibit characteristic d-dependent dynamical singularities: the spin dynamics at short times is
strongly singular for d = 2, while for d →∞ the singularity disappears [2, 53–56]. Besides, dimensionality
is well known to be decisive in the context of localization and thermalization dynamics in spin ensembles
[28, 38, 57–59]. Since so many key features of the spin dynamics depend on d, one would expect that the
properties of long-lived coherences would also strongly depend on d. Surprisingly, our results demostrate
that this expectation is incorrect.

2. Qualitative discussion of the effect

We study an ensemble of Ns spins Si = 1/2 (i = 1, . . . , Ns) in a standard setting of a magnetic
resonance-type experiments. Namely, the spin system is placed in a strong quantizing magnetic field HQ

directed along the z-axis [1]; this field induces fast spin precession with Larmor frequency ωQ, which is
much larger than all other frequency scales of the problem [60]. Following the standard theory of magnetic
resonance, we describe spin dynamics in the coordinate frame that rotates around the z-axis with the
circular frequency ωQ, and retain only the secular terms in the system’s Hamiltonian, which remain static in
the rotating frame [61], or vary slowly in comparison with ωQ [1, 2].

Initially, by applying a preparatory π/2 pulse, the spins are prepared in a state weakly polarized along
the x-axis of the rotating frame, such that the initial ensemble density matrix is ρ(t = 0) ∝ I− μMx, where
I is identity matrix, μ � 1 is a parameter determining the absolute polarization of the ensemble, and
Mx =

∑
j Sjx is the collective coherence operator. Here and below, Sjα with α = {x, y, z} denotes the

component of the jth spin along the rotating-frame axis α. In experiments, the ensemble coherences along
the x- and y-directions are quantified by the total transverse magnetizations Mx and My along the
corresponding axes, so we use the terms ‘coherence’ and ‘transverse magnetization’ interchangeably. The
longitudinal polarization, exhibiting time crystal-like behavior (see section 5), is quantified by the
magnetization Mz =

∑
j Sjz along the z-axis. Note that in this work we vary only the spatial dimensionality

d of the ensemble, while spins themselves remain embedded in three dimensions, i.e. have three orthogonal
components.

In typical experiments, the spins experience random quasi-static local magnetic fields, described by the
Hamiltonian HL =

∑Ns
j=1hjSjz; everywhere in this article we set � = 1 and normalize the spins’

gyromagnetic ratio to γ = 1. [62] These fields cause fast dephasing: the x-component of each spin Sjx

oscillates at its own rate proportional to hj, and the collective coherence 〈Mx(t)〉 = Tr[ρ(t)Mx] vanishes at
the timescale T∗

2 . This is usually too short for practical needs, and dephasing is suppressed by applying a
number of hard π pulses, which reverse the sign of the Hamiltonian HL (ideal, i.e. instantaneous 180◦ hard
pulse along the x-axis performs rotation Siz →−Siz, Siy →−Siy for all spins at once). A pulse applied at
t = τ restores collective coherence, producing Hahn echo signal at t = 2τ [1, 2] (see figure 1(b)).

However, the hard π pulses do not affect the spin–spin interaction that destroys the ensemble coherence
by entangling different spins [1–4]. In relevant experiments, the dominant interaction is the dipolar
coupling, described by the Hamiltonian [1, 2]

HI =

Ns∑
i=1

∑
j>i

(Jij/2)
(
2SizSjz − SixSjx − SiySjy

)
, (1)

where Jij = (1 − 3 cos2 θij)/r3
ij is the coupling constant between the spins i and j, rij = |
rij| is the distance

between them, and θij is the polar angle of
rij. Under the influence of HI, the Hahn echo signal gradually
decays as a function of time t = 2τ at the timescale t ∼ T2 � T∗

2 .
Note that the dipolar interaction is long-ranged, so that each spin is coupled to all other spins for all

systems considered here, for all values of d from 2 to ∞, and the coupling strength Jij decays with distance
rij between the spins i and j in the same way for all d. However, the statistical properties of the values Jij

greatly vary with the system’s dimensionality, thus leading to dramatically different decay of the Hahn echo
signal.

The rate of the Hahn echo decay is governed by the positional disorder of spins. In relevant experiments
[9–11, 14–19, 40], the spins are very dilute: they occupy a small fraction of the lattice sites, and are
randomly distributed in the sample. As a result, each spin Si has its own set of dipolar couplings Jij to the
other spins, such that different spins ‘feel’ different environments made of other spins. In low-dimensional
ensembles these spin-to-spin variations are very strong [53–55], leading to a very fast decay of the collective
coherence. In appendix A we show that, in the limit of T2 � T∗

2 , when the flip-flop terms can be omitted
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Figure 2. Long-lived coherence Mx(t) for two-dimensional d = 2 periodically driven disordered spin systems, for short
inter-pulse time delay 2τ (τ/T2 ≈ 0.07) (a) and for long delay 2τ (τ/T2 ≈ 0.7) (b). The long-lived train of echoes Mx(t)
(orange lines) extends far beyond the T2 = 1 time. The single-pulse Hahn echo (black solid lines) was obtained by simulating a π
pulse applied at time τ = t/2; the analytical result for the Hahn echo in d = 2 is Mx(t) = exp(−t2/3), and is in excellent
agreement with numerics. The amplitude of the long-time tails is larger for short τ . For long τ , the even–odd echo asymmetry
becomes pronounced. The system size is Ns = 20, other parameters are ε = 0.07 and T∗

2 ≈ 0.02.

and the Hamiltonian (1) acquires the form
∑

JijSizSjz, the Hahn echo signal 〈Mx(t)〉 decays with time as

〈Mx(t)〉 ∝ exp
(
−| t/T2|d/3

)
. (2)

for d � 5, such that for d = 2 the initial decay is infinitely fast. For larger d the fluctuations are not as
strong, and the singularity of 〈Mx(t)〉 at t = 0 is weak for d = 4 and 5. In the limit d →∞ each spin is
coupled to all others with almost uniform coupling, so the echo decay acquires Gaussian form

〈Mx(t)〉 ∝ exp
[
−
(
t/T2

)2
]

, without any singularity at all.

The total Hamiltonian of the system, taking into account the pulse driving, is

H(t) = HI +HL +HP(t), (3)

where HP(t) describes periodic driving by a train of (generally imperfect) π-pulses, as shown in figure 1(b).
If the pulses were ideal, they would suppress the dephasing term HL (see appendix A for details), and leave
the dipolar interaction HI intact. Thus, the echo signal 〈Mx(t)〉 would not depend on the number of pulses
applied during the time t, and the echo decay would follow equation (2).

Our results show that for non-ideal pulses this is true at short times: the dynamics drastically depends
on d, with the initial decay rate varying from infinity at d = 2 to zero at d →∞. At long times, for spin
ensembles of all dimensionalities d, the spin dynamics is controlled by accumulation of the pulse
imperfections. This process depends on the specific pulse sequence [6, 7, 9]; here we focus on the simple
and efficient Carr–Purcell–Meiboom–Gill (CPMG) protocol shown in figure 1(b). Accumulation of the
pulse errors, combined with the dipolar spin–spin coupling, leads to long-lived tails in the echo signal,
extending far past T2 time, in the region where the Hahn echo has already vanished. The magnitude of the
long-lived coherence tails is particularly large when the inter-pulse time delay τ is short compared to T2, as
seen in figure 2(a) for d = 2. The effect is remarkably robust, and does not disappear even when τ becomes
comparable to T2. In that regime, another feature emerges for all values of d: the long-lived coherences
exhibit pronounced subharmonic response (figure 2(b)), with even echoes being larger than odd ones. This
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Figure 3. Long-lived coherence Mx(t) for periodically driven disordered spin systems of different spatial dimensionalities d,
indicated in the figure. The echoes Mx(t) extend far beyond the T2 time. For the single-pulse Hahn echo, the π-pulse is applied
at time τ = t/2. With increasing d, the Hahn echo approaches Gaussian form. The simulation parameters are Ns = 20, short
τ ≈ 0.07, ε = 0.07 and T∗

2 ≈ 0.02.

behavior reflects the fact that the period of the evolution operator for CPMG protocol is twice the period of
the Hamiltonian HP(t) of the CPMG pulse train [3] (see section 3).

We use direct numerical solution of the many-spin time-dependent Schrödinger equation with the
second-order Suzuki–Trotter [63] or Chebyshev [64] expansion of the evolution operator U(t) for up to
Ns = 24 spins. In all situations that we tested, both methods give consistent results. The initial mixed-state
density matrix is represented by a random pure state, i.e. as a random unit-norm complex-valued vector of
length 2Ns , uniformly sampled from a sphere S2Ns−1 of unit radius. We calculate the experimentally
measured normalized magnetization response

Mα(t) = 〈Mα(t)〉/〈Mα(0)〉, (4)

where α = {x, y, z} and 〈Mα(t)〉 = Tr[MαU(t)MαU†(t)] for initial polarization along the axis α. The spins
are randomly placed in a d-dimensional cube, and averaging is performed over 100–360 realizations of the
spatial arrangements and values of local fields. The cube’s edge length (i.e. the spin density fs) is adjusted to
have T2 = 1 for each system after averaging (see appendix A for relation between T2 and fs). T2 is defined as
the time when the echo magnitude decreases by the factor e. In experiments the pulse imperfections may
arise from deliberate or accidental miscalibration, or also due to local fields and dipolar interactions, which
affect the spin rotation during the finite-duration pulses [6, 9, 12]. For hard short pulses, imperfections are
small, and in this article we model nonideal pulses as instantaneous rotations around the x-axis by an angle
π(1 + ε) with ε � 1.

3. Dynamics of the long-lived coherences

The behavior of Mx(t) in pulse driven spin ensembles, as described above, is shown in figure 2 for d = 2,
and in figure 3 for larger d. For reference, we presented the results for previously unexplored cases of d = 2,
5, 8, and d →∞. For other dimensionalities d that we studied, all results remain qualitatively the same
[65, 66].
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Figure 4. The matrix Mjk
x = |〈ψj|Mx |ψk〉|2 for short τ (a) and long τ (b) for a two-dimensional d = 2 system. On the vertical

and the horizontal axes, respectively, the quasienergies φj and φk of the corresponding Floquet eigenstates |ψj〉 and |ψk〉 are
plotted. For short τ (panel (a)), a large number of large entries concentrate on the diagonal φj ≈ φk, producing long-lived
coherence with noticeable amplitude. For long τ (panel (b)), the values at semi-diagonals |φj − φk| ≈ π become comparable to
the values on the diagonal, which leads to noticeable subharmonic response. Overall, the values for long τ are smaller than those
for short τ . The system size is Ns = 14. Only values larger than 0.25 are included in the figures.

We consider two different values of the inter-pulse delay τ : short τ ≈ 0.07T2, and long τ ≈ 0.7T2 (recall
that T2 = 1). At short times t � T2, the system’s response Mx(t) closely follows the Hahn echo, and is in
excellent agreement with our analytical predictions (see appendix A for details), as seen in the figures (the
small differences between the simulated Hahn echo decay and the analytical predictions are due to the
finite-size effects). At longer times t � T2, the magnetization response Mx(t) exhibits long-time tails for all
dimensionalities d considered, and for both short and long τ . These long-time tails extend far beyond the
T2 time, and in experiments are likely to be limited by the spin-lattice relaxation time T1. With increasing d,
the overall amplitude of the long-time echoes becomes somewhat smaller. Still, even in the limit d →∞,
the long-time tails do not vanish but saturate at a nonzero value. Also, the amplitude of the long-time tails
becomes smaller as the inter-pulse delay τ increases.

When the inter-pulse delay τ is large, comparable to T2, the long-lived coherences demonstrate
pronounced subharmonic dynamics (figure 2(b)), where the period of the magnetization response 4τ is
twice longer than the period of driving 2τ . The subharmonic response was observed for all values of d we
modeled. This feature can be rationalized with the notion of the cycling period of a pulse sequence [3]: for
the control Hamiltonian HP(t), the cycling period tc is defined by the condition of periodicity of the
evolution operator, i.e. U1(t) = U1(t + tc), where U1(t) = T exp[−i

∫ t
0HP(t′)dt′]. It is known that the

cycling period of a pulse sequence can differ from the period of the Hamiltonian [3], e.g. for ideal π-pulses,
the cycling period of the CPMG protocol is tc = 4τ , and includes two π-pulses [67], i.e. contains two
periods of the underlying control Hamiltonian HP(t). We also note that the even–odd asymmetry is present
for short τ , but its amplitude is too small to be easily seen.

It is important to point out that the long-lived coherences and the subharmonic response crucially
depend on the driving sequence. For instance, for an alternating-phase Carr–Purcell sequence, where the
direction of driving alternates between the positive and the negative x-direction, no long-lived tails of
Mx(t) emerge [6].
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Figure 5. Same as figure 4 but for a five-dimensional d = 5 system. Only values larger than 0.1 are included in the figures. The
same features as in the case d = 2 are seen along the diagonal φj ≈ φk and at the semi-diagonals |φj − φk| ≈ π; these features
correspond to the long-lived coherences and to the subharmonic response, respectively. Similarity in the structure of the matrices
Mjk

x for ensembles of different dimensionalities confirms similarity in the physical origin and behavior of the long-lived
coherences for different d.

4. Floquet operator analysis of the long-lived coherences

Periodically driven systems, described by a Hamiltonian obeying H(t + 2τ) = H(t), can be analyzed using
Floquet theory. The stroboscopic time evolution of the system’s density matrix, considered only at times
that are integer multiples m of the driving period 2τ , can formally be written as ρ(2τm) = Um

F ρ(0)U†m
F ,

where UF is time evolution operator per one period of the driving Hamiltonian (Floquet operator). For the
CPMG pulse sequence considered here, the Floquet operator has the form UF = UH(τ)Rx[π(1 + ε)]UH(τ),
where Rx[π(1 + ε)] is the operator of rotation around the x-axis by an angle π(1 + ε), and UH(τ) is the
operator of evolution under the action of the system’s internal Hamiltonian HI +HL.

As a unitary operator, UF possesses a complete orthonormal set of eigenstates |ψk〉, with complex
eigenvalues eiφk of unit modulus:

UF =
∑

k

eiφk |ψk〉〈ψk|, (5)

so the magnetization response after m driving periods is

Mx(2τm) =
4

Ns2Ns

∑
j,k

ei(φj−φk)m|〈ψj|Mx|ψk〉|2. (6)

The signal Mx(2τm) is therefore mainly determined by two quantities: firstly, by the magnitude of the
matrix elements Mjk

x = |〈ψj|Mx|ψk〉|2, and, secondly, by the distribution P(φj − φk) of the quasienergy
differences φj − φk, i.e. by the number of Floquet eigenstates |ψj〉 and |ψk〉 with a given difference in the
quasienergies φj and φk. The terms with j = k in equation (6) do not depend on m, so the long-time

response Mx(2τm) is governed by the diagonal elements Mjj
x of the matrix Mjk

x . The subharmonic response
(the even–odd echo asymmetry) is controlled by the pairs of Floquet eigenstates obeying φj − φk ≈ ±π,

such that ei(φj−φk)m ≈ (−1)m.
An example of the matrix Mjk

x = |〈ψj|Mx|ψk〉|2 is shown in figure 4 for short τ (a) and long τ (b) for a

two-dimensional system, for one typical realization of the positional disorder. The matrix Mjk
x for short τ is

7
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Figure 6. Histogram of the quasienergy differences Δφ for a d = 2 disordered spin system with Ns = 14, at short τ (a) and long
τ (b). The sharp peaks at Δφ = 0 and at Δφ = π correspond to the long-lived coherences and to the subharmonic response,
respectively. Specifically, P(Δφ) is the total number of the Floquet eigenstates |ψj〉 and |ψk〉 having a given difference Δφ in their
quasienergies φj and φk . The quantity Δφ is downfolded to the interval Δφ ∈ [0,π] and binned, so that P(Δφ) includes all
states whose quasienergies satisfy the condition |φj − φk| ∈ [Δφ− β,Δφ+ β] or 2π − |φj − φk| ∈ [Δφ− β,Δφ+ β], where
2β = π × 10−5 is the width of a bin. To avoid double counting, only the states with φj � φk are included in P(Δφ). The results
shown are averaged over many realizations of the disorder. The inset in panel (b) shows the magnified view of the peak at
Δφ ≈ π. The simulation parameters are the same as in figure 2.

dominated by large diagonal elements, whereas the off-diagonal elements are almost negligible. This
corresponds to the pronounced long-lived coherences in figures 2(a) and 3, with the almost
time-independent amplitude. It is clearly seen that the long-lived coherence contains comparable
contributions from a large number of Floquet eigenstates, rather than being confined to a small subset of
some special states.

For long τ , the matrix Mjk
x exhibits large entries both on the diagonal, and on the two semi-diagonal

lines corresponding to φj − φk ≈ ±π; the latter correspond to emerging even–odd echo asymmetry seen in
figure 2(b). The semi-diagonals also show comparable contributions from a large number of pairs of
Floquet eigenstates. In comparison with the case of short τ , the diagonal values Mjj

x on average are smaller
for long τ , corresponding to smaller amplitude of the long-time tails in figure 2(b).

The matrices Mjk
x for other d exhibit similar structure. As an example, figure 5 shows the results for Mjk

x

in the case of d = 5. The results of diagonalization of the Floquet operator for different d evidence that the
physical origin of the effect of the long-lived coherences is similar for all dimensionalities.

The other quantity determining the signal Mx(2τm) in equation (6) is the distribution P(Δφ) of the
quasienergy differences |φj − φk|. In order to take into account the symmetries of the summands in
equation (6), we downfold the quantity Δφ to the interval [0,π], i.e. we take Δφ = |φj − φk| when
|φj − φk| � π, and Δφ = 2π − |φj − φk| when |φj − φk| > π (so that Δφ is the smallest angular distance
between φj and φk on the S1 circle). The binned distribution P(Δφ) for d = 2 is shown in figure 6, the bin
width is 2β = π × 10−5. A peak at Δφ ≈ π clearly emerges for long τ . This means that the number of
quasienergy pairs with |φj − φk| ≈ π becomes larger for long τ . Hence, the subharmonic response emerges

not only because the values of Mjk
x on the semi-diagonals become larger, but also because the total number

of non-zero entries on the semi-diagonals increases.

5. Longitudinal magnetization and the infinite-temperature time crystal dynamics

Let us now focus on the dynamics of the longitudinal polarization Mz(t), which under some circumstances
can exhibit robust long-lived infinite-temperature time crystal-like dynamics [27].

Long-lived coherences and time crystal dynamics share a number of similarities: both are induced by
strong spin–spin interactions, robust to experimental imperfections, and demonstrate subharmonic
dynamics under appropriate conditions. However, the underlying physics is totally different. Since the
system’s internal Hamiltonian HI +HL conserves the total z-magnetization, the signal Mz(t) remains
constant between the pulses. If the π-pulses were ideal, then Mz(t) would just switch between +1 and −1.
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Figure 7. Long-time tails of the z-component of collective magnetization Mz(t) in a d = 2 disordered spin system for short τ
(a) and long τ (b) (orange lines and symbols), suggesting time crystal-like behavior. Between the pulses, the value of Mz(t) is
constant because the internal Hamiltonian HI +HL conserves the z-component of the total magnetization. Each π-pulse flips
the z-magnetization, so that the subharmonic response with the period 4τ is the dominating component of the system’s
long-time response. Without dipolar coupling, accumulated pulse error would modulate the magnetization along the z-axis, and
Mz(t) would decay as cosm(πε) after m pulses (dashed black line). However, in the presence of the dipolar coupling, Mz(t)
exhibits long-time tails, alternating between the directions ‘up’ and ‘down’ after each π-pulse. The system size is Ns = 20,
ε = 0.07, and T∗

2 ≈ 0.02.

In contrast, the coherence Mx(t) would quickly vanish under the action of the dipolar spin–spin coupling,
along with the Hahn echo, at the timescale T2, without any long-lived tail.

For non-ideal pulses, one would expect the longitudinal polarization to decay with increasing the
number of applied pulses. Indeed, for ε > 0, after an imperfect pulse, the absolute value of Mz(t) would
decrease by a factor cos(πε), while the y-component increases by sin(πε). Accordingly, if the y-component
irreversibly dephased to zero during the time 2τ between pulses, then the absolute value of Mz(t) would be
expected to decay monotonically as cosm(πε) with increasing the number m of applied pulses
[35, 41].

The actual behavior of the longitudinal magnetization response Mz(t) in a d = 2 disordered spin
system with Ns = 20 is shown in figure 7. Initial decay roughly follows the expected cosm(πε) pattern for
both short and long τ (panels (a) and (b), respectively); the additional modulation seen in panel (a) is likely
due to incomplete dephasing of the y-component between the pulses due to short τ .

At later times, however, the absolute magnitude of Mz(t) stabilizes, showing little (if any) decay, and
Mz(t) itself just alternates between positive and negative values. The period of Mz(t) response is 4τ , which
is twice the period of the of the driving Hamiltonian HP(t), and equals, as expected, the cycling period of
the CPMG driving sequence. This long-lived subharmonic response is seen for all dimensionalities we
studied: the results for another example, a d = 8 spin ensemble, are presented in figure 8, and are very
similar, except that the amplitude of the long-time tail is somewhat smaller than in the d = 2 case. This
conclusion is also consistent with the experimental evidence reported for d = 3 spin systems [40–42].

Note that the initial decay of Mz(t) does not exhibit the singularities present in the short-time dynamics
of Mx(t), because it is governed by a different physical process, by accumulation of the rotation errors.
Likewise, the long-time behaviors of the longitudinal Mz(t) and the transversal Mx(t) polarization are also
qualitatively different. For instance, with increasing the inter-pulse delay τ , the amplitude of the long-time
tails of Mz(t) increases, while the amplitude of Mx(t) decreases, thus clearly demonstrating the difference
between the time crystal dynamics and long-lived coherences.

We have also analyzed the stroboscopic evolution of Mz(t) by diagonalizing the Floquet operator; an
example of the corresponding matrix Mjk

z = |〈ψj|Mz|ψk〉|2 is shown in figure 9 for one typical realization of

9



New J. Phys. 23 (2021) 073029 W Hahn and V V Dobrovitski

Figure 8. Same as figure 7 but for an eight-dimensional d = 8 disordered spin system.

Figure 9. A typical example of the matrix Mjk
z = |〈ψj|Mz |ψk〉|2 for a two-dimensional d = 2 system and short τ . The vertical

and horizontal axes correspond to the quasienergies φj and φk of the corresponding Floquet eigenstates |ψj〉 and |ψk〉. The entries
are concentrated along the semi-diagonals φj − φk ≈ ±π, evidencing time crystal-like dynamics with the doubled period 4τ . For

long τ , the structure of the matrix Mjk
z is very similar (not shown). Only values larger than 1.0 are included in the figure. The

system size is Ns = 15.

the positional disorder. As anticipated, it exhibits nonzero values only at the semi-diagonals φj − φk ≈ ±π,
in accordance with the subharmonic response described above. The diagonal elements are negligible.
Similar to the case of long-lived coherences, we see again that many states, distributed all over the Hilbert
space, contribute to the effect.

For the initial polarization along the y-axis, no long-lived magnetization response My(t) is seen in any

dimensionality d, and the elements of the matrix Mjk
y = |〈ψj|My|ψk〉|2 are also generally small, without any

clear structure.

6. Final remarks and conclusions

Before concluding, let us make some final remarks.
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(a) Time crystal dynamics and the long-lived coherences exhibit striking similarity: both are induced by
spin–spin interactions and demonstrate subharmonic dynamics under appropriate conditions. At the
same time, these effects arise in very different regimes, demonstrate very different dynamics, and are
differently affected by the pulse imperfections. Understanding the connection between time crystals (in
particular, infinite-temperature time crystals [35]) and long-lived coherences is an interesting and
important, yet rather unexplored problem.

(b) The presence of long-time tails along the z-axis which is perpendicular to the pulse driving field implies
that the fundamental process for establishing long-time tails of the magnetization response may not be
spin locking [1, 2] as may appear in analogy with other similar effects [10, 11, 68].

Our simulations show that even if the direction of the driving during the π-pulses is chosen randomly 
for each spin, the long-lived coherences emerge and persist for long times, as long as the direction of the 
driving remains constant in time. This observation suggests that the origin of the long-lived coherences 
is primarily kinematic; it may arguably also involve many-body localization [28, 31], transient 
prethermal regime [32, 69, 70], or spin-glass like behavior.

(c) The results shown in the present article were obtained for a fixed pulse imperfection ε = 0.07. Our
numerical simulations with other values of ε demonstrate that qualitatively the same behavior occurs
for other choices of ε � 1, but detailed study of the long-lived coherences for different ε is beyond the
scope of the paper. The long-time spin coherences persist even when ε is chosen randomly for different
spins, as long as it remains constant in time.

(d) We considered in this article spin systems of finite size, with the total number of spins Ns ≈ 20. Our
simulations demonstrate very modest quantitative changes as the system size has been varied from
Ns = 10 to Ns = 24. Besides, our numerical results for d = 3 agree with the reported experimental
results for three-dimensional systems [6, 9, 40, 41].

Summarizing, we have investigated disordered dipolar-coupled quantum many-spin systems of different
spatial dimensionality subjected to periodic driving (CPMG protocol). Depending on the dimensionality,
such systems exhibit singularities in short-time spin dynamics, which are caused by statistical fluctuations
in the dipolar spin–spin interaction strength. For all dimensionalities, we observed the long-lived spin
polarization along the driving pulses, and along the axis conserved by the internal Hamiltonian (z-axis).
The amplitude of the long-lived magnetization depends on the inter-pulse time delay and on
dimensionality. The Floquet operator analysis shows that the long-lived coherences Mx(t) contain
comparable contributions from a large number of Floquet eigenstates. Our results imply that the long-lived
coherences and subharmonic response are generic features of dipolar-coupled disordered spin systems,
including two-, three-, and infinite-dimensional systems that are particularly relevant for practical
applications. Developing specific protocols for such applications is an exciting avenue for further research.
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Appendix A. Statistical analysis of disordered spin systems

Let us discuss the effect of disorder in d spatial dimensions on the Hahn echo signal MH
x (t) (denoted with

the superscript H). We are interested in the case of T2 � T∗
2 , when the typical local fields hj are much larger

than the typical dipolar interactions, such that the flip-flop term SixSjx + SiySjy in dipolar Hamiltonian can
be omitted [1, 2, 53, 55, 56], see appendix B. In this case the π-pulse eliminates the inhomogeneous
broadening HL, and the system’s response Mx(t) is determined only by the remaining Ising-like part of the
dipolar Hamiltonian H0

I =
∑

j>i JijSizSjz, so the echo signal 〈MH
x (t)〉 = Tr[MxU0H(t)MxU†

0H(t)], with
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Figure 10. Hahn echo signal MH
x (t) for two-dimensional disordered dipolar-coupled spin systems, calculated using the full and

the reduced models, which differ by the presence of the flip-flop terms in the Hamiltonian. The results of the two models are in
quantitative agreement with each other. The analytic approximation for Hahn echo in d = 2 is Mx(t) = exp(−t2/3). The system
size is Ns = 18, T2 = 1, and T∗

2 ≈ 0.02.

U0H(t) = exp
(
−itH0

I

)
, can be directly calculated:

MH
x (t) ∝

∑
i

∏
j

cos
(

Jijt/4
)
. (A1)

For an ensemble where each spin Si has its own set of coupling constants Jij, one should average
equation (A1) over all possible positions of the spins Sj in a d-dimensional sample of volume Vd. For dilute
spins we can neglect the underlying crystal lattice, and replace summation over the lattice by integration
over the whole space:

MH
x (t) =

1

Vd

∫
Vd

cos
(
b(θ)t/r3

)
dv

]Ns−1

, (A2)

where dv is the volume element, and b(θ) = (1–3 cos2 θ)/4. To calculate the average for a macroscopically
large spin ensemble, when Vd →∞ and Ns →∞ with a fixed spin density fs ≡ Ns/Vd, the integral is
re-written as [2, 56]

MH
x (t) = 1 − 1

Vd

∫
Vd

(
1 − cos

[
b(θ)t/r3

])
dv

]Ns−1

(A3)

≈ exp −fs

∫
Vd

(
1 − cos

[
b(θ)t/r3

])
dv

]
, (A4)

so that the integral in equation (A2) is well defined at large r, where cos
[
b(θ)t/r3

]
→ 1.

Singularity of the spin dynamics is determined by the competition of two effects: the dipolar coupling
constants Jij decrease with increasing r, but the number of spins Sj which interact with the given spin Si

grows with r as the volume element dv = rd−1drdA (where dA is the surface element of the
(d − 1)-dimensional hypersphere of unit radius). For d < 6, this growth is sufficiently slow, so the
integration over r can be extended to infinity, yielding the above-mentioned result (see equation (2) of the
main text)

MH
x (t) = exp

(
−|t/T2|d/3

)
(A5)

with the decay time T2 =
[

fs Λ
∫
|b(θ)|d/3dA

]−3/d
. The integral over the hypersphere is a numerical factor

of order of one, and the quantity

Λ =
1

3

∫ ∞

0

1 − cos z

zd/3+1
dz = −1

3
cos

(
πd

6

)
Γ

(
−d

3

)
, (A6)

which comes from integration over r, is also of order one, such that T2 is determined just by the spin
density fs. By renormalizing the spin density, we can set T2 = 1 as explained above.

For d = 2, the singularity of the Hahn echo MH
x (t) = exp

[
−|t/T2|2/3

]
is strong: the initial echo decay

is infinitely fast due to strong fluctuations in the positions of the spins at small distances rij. Although the

typical distance between spins is of the order of 1/f 1/d
s = (Vd/Ns)1/d, a large fraction of spins has many

neighbors at much smaller distances. Correspondingly, while the typical dipolar coupling is of the order of
one (recall that we normalize fs to yield T2 = 1), many realizations of the disorder produce very large
dipolar couplings Jij.
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Figure 11. Multi-pulse CPMG signals, comparison between the reduced and the full models for d = 2 (a), and for d →∞ (b).
The results for the magnetization response Mx(t) are almost the same for d = 2, whereas for d →∞ the amplitudes of the
long-lived coherences differ by a factor of ≈ 2. The results shown are for Ns = 20 and short τ ; the other parameters are the same
as in figure 2.

Of course, in real crystals, at extremely short times the initial decay rate is finite, because the distance
between spins is limited by the crystal lattice constant, which in turn limits the maximal dipolar interaction
strength. However, the corresponding times are extremely small, orders of magnitude smaller than T∗

2 , and
are irrelevant for the phenomena considered here.

For d = 3, such fluctuations in Jij are less strong, and the singularity is weaker: MH
x (t) = exp

(
− |t/T2|

)
has a cusp at t = 0, but the initial rate of decay is finite. Still, for both d = 2 and 3, the total spectral power
of the resonance line is (formally) infinite. For d = 4 and 5, the fluctuations are less pronounced, the total
spectral power of the resonance is finite, and the singularity in MH

x (t) is weak.
For d � 6, the integration over r cannot be extended to infinity: the integral equation (A6) diverges at

small z (which correspond to r →∞). This divergence means that the number of the spins Sj coupled to the
given spin Si grows too fast with increasing r. The contribution from the surface of the sample becomes
important, dominating at larger d. The form of MH

x (t) then depends on the sample shape and size, but in
the limit d →∞ it again acquires a universal shape-independent Gaussian form. For any regular-shaped
sample in the limit d →∞ all spins are located near the surface, and each spin pair is separated by almost
the same distance, producing all-to-all interactions with a uniform coupling constant Jij → J. Equation (A2)
yields MH

x (t) = cosNs−1(2Jt), and, since the value of J scales as 1/
√

Ns for large d, in the limit Ns →∞ the

Hahn echo signal is MH
x (t) = exp

[
−
(
t/T2

)2
]

, free of singularities, with finite spectral power of the

resonance line. The effect of local fluctuations vanishes completely in this case, in stark contrast with d = 2
and d = 3 spin ensembles.

Since the key physical aspects of the spin dynamics are drastically different for the systems of different
dimensionalities, it is reasonable to expect that the key features of the long-lived coherences would also
differ drastically for different d. Surprisingly, our results have demonstrated this expectation to be incorrect.

Appendix B. The role of the flip-flop processes

In this article, we consider a typical experimental situation where T2 � T∗
2 , i.e. where the random local

fields hj are much larger than the dipolar interactions Jij. Strong random local fields generally suppress the

flip-flop terms SixSjx + SiySjy = (1/2) S+i S−j + S−i S+j

]
in the dipolar Hamiltonian HI given in equation (1).

It is reasonable to expect that the magnetization response does not change if the flip-flop terms are omitted,
but the accumulation of the neglected terms at long times may become significant. Therefore, it is
important to directly evaluate the role of the flip-flop terms.

For the Hahn echo signal MH
x (t) our simulations show that the impact of the flip-flop terms is

insignificant: the curves remain practically the same, independent of whether we include the flip-flop terms
or not, see figure 10, where we refer to the Hamiltonian H0

I =
∑

j>iJijSizSjz without the flip-flop terms as the
reduced model and to the full dipolar Hamiltonian HI as the full model.
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Figure 12. Multi-pulse CPMG signals for a two-dimensional (d = 2) disordered dipolar-coupled spin systems, demonstrating
the role of the pulse errors in appearance of the long-lived coherences. (a) Comparison between the decay of coherence Mx(t)
for perfect pulses with ε = 0 (black solid line) and for imperfect pulses with ε = 0.07 (orange solid line). In the case of perfect
pulses, the decay of the CPMG signal is fast, and follows the decay of the Hahn echo (red dashed line, showing the theoretically
predicted curve exp[−t2/3]), while for the imperfect pulses a long-lived coherence is clearly seen. (b) Comparison between the
decay of coherence Mx(t) for imperfect pulses. Black solid line represents the situation when the pulse error (the value of ε) is
the same for all spins but randomly varies in time, being sampled uniformly from the interval [−0.07, 0.07] for each new pulse.
Orange solid line corresponds to the case when the pulse errors stay constant in time but vary in a random way from one spin to
another (sampled uniformly from the interval [−0.07, 0.07]). In the case of the time-varying pulse errors, the decay of the
CPMG signal is fast, and follows the decay of the Hahn echo (red dashed line, showing the theoretically predicted curve
exp[−t2/3]). However, when the pulse errors remain constant in time, a long-lived coherence is clearly seen, even though the
pulse errors have different values for different spins. For both panels, the results were obtained for Ns = 18 and averaged over 200
samples; all other parameters are the same as in figure 2.

The multi-pulse CPMG response Mx(t) for d = 2 also demonstrates almost identical short-time
behavior and long-lived coherences for the full and for the reduced models, as shown in figure 11(a).
However, in the case d →∞ shown in figure 11(b), the calculated signals for both full and reduced models
coincide only at short times, and exhibit quantitative difference later. Although both models clearly
demonstrate long-lived coherences, the echo amplitude is approximately twice higher for the reduced model
as compared with the full model. A possible reason for this discrepancy is in the geometry of the dipolar
couplings. The flip-flop process between two spins is important if the dipolar coupling between the two
spins is comparable to, or larger than, the difference in the respective local fields. In the situation considered
here, with T2 � T∗

2 , the above case can only occur if the local fields of two spins are accidentally similar. In
d = 2 systems, these two spins must be close to each other to ensure non-negligible dipolar coupling. In
contrast, in d →∞ systems, these two spins can be at any distance to each other because the dipolar
interaction is homogeneous, coupling each spin to all other spins. Thus, the probability for two spins to
have accidentally similar local fields, and to undergo a flip-flop process, is much larger in d →∞ systems
than in d = 2 systems.

In this article we use the full model in our simulations, with the exception of the results for the
single-pulse Hahn echo shown in figures 2 and 3 of the main text.

Appendix C. The role of pulse errors

In all simulations above, we considered the case where the pulse error ε is constant in time, and is the same
for all spins. Figure 12 demonstrates the role of pulse errors in producing the long-lived coherences. In
panel (a) we show that ideal pulses, with ε = 0, do not produce the long-lived coherences: the decay of the
multi-pulse CPMG signal Mx(t) is fast, and follows the decay of the single-pulse Hahn echo; the latter is in
perfect agreement with the theoretically predicted form MH

x (t) = exp
[
−(t/T2)2/3

]
. The absence of the
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Figure 13. Weighted distribution Σ(Δφ) of the quasienergy differences |φj − φk| for a d = 2 disordered spin system with
Ns = 14, at short τ (a) and long τ (b). The sharp peaks at Δφ = 0 and at Δφ = π correspond to the long-lived coherences and
to the subharmonic response, respectively. The distribution includes averaging over many realizations of the disorder. The bin
width is 2β′ = π × 10−5, i.e. for each value of Δφ the sum includes all Floquet states with |φj − φk| ∈

[
Δφ− β ′,Δφ+ β ′] or

2π − |φj − φk| ∈
[
Δφ− β ′,Δφ+ β ′]. To avoid double counting, only the states with φj � φk are included in Σ(Δφ). The

normalization is chosen such that
∫
Σ(Δφ)d(Δφ) = 1. All other simulation parameters are the same as in figure 2.

long-lived coherences for ideal pulses is a straightforward consequence of the fact that the dipolar coupling
Hamiltonian HI =

∑
i>j(Jij/2)

[
2SizSjz − SixSjx − SiySjy

]
is invariant with respect to ideal π-pulses along the

x-axis (i.e. with respect to simultaneous change Sjz →−Sjz and Sjy →−Sjy for all spi ns).
The panel (b) shows that the pulse errors can be different for different spins, and still produce long-lived

coherences, as long as the pulse errors remain constant in time. The orange solid line shows the multi-pulse
CPMG signal Mx(t) for the case when the pulse error ε is chosen randomly for each spin (sampled
uniformly from the interval [−0.07, 0.07]), but is kept constant in time. In contrast, even if the pulse error
is the same for all spins, but varies in time from one pulse to the next (e.g. sampled uniformly from the
interval [−0.07, 0.07] for each pulse anew), the ensemble coherence in CPMG experiment exhibits fast
decay (black line), coinciding with the decay of the single-pulse Hahn echo (red dashed line). The results
shown in figure 12 have been obtained for Ns = 18; all other parameters are the same as in figure 2.

Appendix D. Weighted contribution of different Floquet states to the long-lived
coherences

In section 4 we presented detailed analysis of the Floquet states giving rise to the long-lived coherences. We
carefully distinguished and studied separately the two contributions to the CPMG signal Mx(t) (see
equation (6)): the values of the matrix elements |〈ψj|Mx|ψk〉|2 between different pairs of the Floquet states
|ψj〉 and |ψk〉, see figure 4 for d = 2 and figure 5 for d = 5, and the number P(Δφ) of contributing pairs of
states, see figure 6.

Yet another way to quantify the contribution of different Floquet states to the long-lived coherences is to
consider the combined effect of both contributions, and study the weighted distribution Σ(Δφ) of the
quasienergy differences φj − φk, formally defined as

Σ(Δφ) =
∑

j,k

|〈ψj|Mx|ψk〉|2
[
δ(|φj − φk| −Δφ) + δ(2π − |φj − φk| −Δφ)

]
, (D1)

such that each pair of the Floquet states having the given value of Δφ enters the sum Σ(Δφ) with the
weight coefficient equal to |〈ψj|Mx|ψk〉|2; this corresponds to summation along diagonals of figures 4 and 5.
Two δ-functions in the formula reflect the fact that the quantity Δφ is downfolded to the interval [0,π], i.e.
we take Δφ = |φj − φk| when |φj − φk| � π and Δφ = 2π − |φj − φk| when |φj − φk| > π; this
downfolding reflects the symmetries of the summands in equation (6). Note that the quantity Σ(Δφ) is
proportional to the cosine Fourier transform of the CPMG signal Mx(2τm).

The graphs of Σ(Δφ) are presented in figure 13, where instead of an infinitely narrow delta
function we used bins of finite width 2β

′
= π × 10−5, i.e. the sum in equation (D1) includes all

states whose quasienergies satisfy the condition |φj − φk| ∈
[
Δφ− β′,Δφ+ β′] or 2π − |φj − φk| ∈
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[
Δφ− β′,Δφ+ β′]. The distinctive peak at |φj − φk| ≈ π, which corresponds to emergence of the

subharmonic response, appears only for long τ . The peak at φj − φk ≈ 0, which corresponds to the
long-lived response, is formed by the pairs of eigenstates having almost the same quasienergy, and the main
contribution to this peak comes from the situation j = k, when |ψj〉 and |ψk〉 are the same.
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