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Abstract

The Earth’s surface is a complex landscape that is essential for a wide range of ap-
plications, from urban planning to environmental monitoring. Digital models of the
Earth’s surface are generated through mathematical calculations using elevation data
collected from various sources and the Digital Terrain Model (DTM) which captures
the bare earth’s surface topography in 2.5D. The creation of DTM is an approximation
of terrain in unsample locations, by using x-y coordinates and one z value. Tradition-
ally, terrain interpolation uses deterministic or geo-statistical methods to calculate
elevation. This research, based on Hengl et al. [2018], would use random forest re-
gression as an alternative method and to compare the results against traditional inter-
polation. Comparing different locations against traditional interpolation yields sim-
ilar results overall. Feature importance, within the the points that are closest to the
sampled ICESat-2 data point are more significant than other features used in Random
Forest model. The correlation between these datasets and the spatial relationship es-
tablished would impact on the results of the elevation. The improvement overall
of using traditional interpolation compared to random forest regression is limited
depending on the location and using model trained with local datasets. For model
trained on other geographical locations, which shows similar differences.
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1. Introduction

Earth’s surface is filled with complex landscapes. Digital models of the Earth’s sur-
face are essential tools for a wide range of applications: from urban planning to envi-
ronmental monitoring [Arun, 2013]. These models are generated through mathemat-
ical calculations using elevation data collected from various sources, including man-
ual surveying, satellite imagery, and aerial photography. Figure 1.1 shows that the
term Digital Elevation Model (DEM) encompasses two things: the DSM, which repre-
sents all surface objects like trees and buildings, and the Digital Terrain Model (DTM),
which captures the bare earth’s surface topography.

Figure 1.1.: Differences between DSM (Earth’s surface with objects like buildings and
vegetation) and DTM (Bare Earth’s surface without any objects) [Croneborg et al.,
2020]

To construct a digital representation of terrain, data is collected using diverse acqui-
sition techniques such as aerial Light Detection and Ranging (LiDAR) scanning, land
surveying, and photogrammetry. These datasets are subsequently processed, filtered,
and interpolated to generate a DEM, commonly visualised through data structures
such as rasters, Triangular Irregular Network (TIN), and contour lines.

1.1. Research Motivation

Achieving global coverage for Earth’s surface elevation is challenging. It is physi-
cally impractical and time consuming to acquire such dense data when scaled up to
a global scale. Using aerial LiDAR point cloud capture, it is able to achieve large land
areas covered with density of 6-8 points per square meter in smaller countries such
as the Netherlands [AHN, 2023]), it is, however, still a patchwork of varying levels
of coverage in larger countries such as the United States, as can be seen on Open
Topography OpenTopography [2023].
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1. Introduction

Tracking changes to the earth’s surfaces can be done with InSAR! (InSAR!), which
uses radar images to measure ground deformation. Contrary to optical imaging satel-
lites, it can overcome cloud cover and capture at night. Data from Interferometric
Synthetic Aperture Radar (InSAR), such as Sentinel-1, can reveal topographic changes
when the satellite returns to the same point as it orbits Bürgmann et al. [2000]. The
downside of InSAR is that can be susceptible to different atmospheric conditions be-
cause radar back-scatter is sensitive to variations in water content in the troposphere
Michaelides et al. [2021]. ICESat-21, in this case, is able to be employed to monitor
and model Earth’s terrain at higher temporal resolution and measure thin ice sheets
that are not possible for InSAR. When modelling a DTM Li [1994] with sea, and ice
changes, each method has its own advantages, and this project focuses on ICESat-2
satellite mission.

The ICESat-2 satellite data often come with its own limitations, with sparse data
points acquired at standard intervals. Therefore, machine learning techniques ex-
plored by Hengl et al. [2007] is able to produce an accurate DTM. He explored the
geometric relationships between the elevation points as features in ”a similar way
as Kriging” Hengl et al. [2007]. With the addition of remote sensing features, this
would contribute additional information to model’s learning. Based on this context,
this thesis aims to assess the accuracy of using ICESat-2 elevation data using random
forest machine learning method data that is gathered from this satellite mission, and
testing whether Geometric and Remote sensing features is able to produce a DTM that
performs better than traditional interpolation.

1.2. Traditional interpolation Techniques

There are a range of techniques in terms of traditional interpolation techniques, such
as IDW Interpolation [Shepard, 1968], Laplace Interpolation [Burrough, 1986], and
other linear spatial interpolation techniques. Since it is common to have a limited
number of elevation measurements in the area of interest, these intermediate points
would need to rely on known measurement points to estimate its elevation. Some
terms are used interchangeably to represent the bare-earth model that measures from
the vertical datum. For this research, DEM will be used to mean the bare earth model.
Therefore, the act of spatial interpolation methods are essential to estimate values
within the data gaps where measurements are not available. Comparing RF and in-
terpolation techniques would expand the understanding of machine learning, partic-
ularly on sparse space-borne LiDAR datasets.

Space-borne satellite missions like ICESat-2 and Global Ecosystem Dynamics Inves-
tigation (GEDI) are launched to detect changes and measure the Earth’s land, ice, and
vegetation surfaces with high precision. The datasets from these missions allow sci-
entists to monitor changes in the Earth throughout its many orbits around Earth. The

1Ice, Cloud and land Elevation Satellite
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1.3. Research Question

satellite orbits at an angle at certain intervals, and a ground track pattern is designed
to cover the earth as much as possible. The ground track pattern of strong beams and
weak beams of ICESat-2 is illustrated in Figure 1.2.

Figure 1.2.: ICESat-2 Track

1.3. Research Question

Elevation dataset using coordinates from the ICESat-2 mission will be used in this
thesis to produce a DTM of several areas of interests, namely Australia, New Zealand,
the Netherlands and the United States. This thesis aims to find the significance
of Geometric and Remote Sensing Features to perform elevation prediction on the
sparse measurements of the ICESat-2 mission, and would compare the results against
Traditional Interpolation Techniques against ground truth. The main research ques-
tion is as follows:

To what extent would Random Forest (RF) elevation prediction improve on tradi-
tional interpolation methods for creating a DTM?

To further investigate this research question, and the main question can be separated
into several sub-questions:

• Which features in the RF model have the most significant impact on the accu-
racy?

• How does the accuracy of RF regression vary across different geographical lo-
cations within the study areas?

• Compared to traditional interpolation, how would the RF model created in this
research compared against the method proposed in RFsp by Hengl et al. [2018]?

3



1. Introduction

1.4. Research Scope and constraint

To facilitate the research and the resulting digital terrain, the main study area for
this research will focus on interpolation of the sparse nature of the ICESat-2 ATL08
dataset. Though the ICESat-2 mission is covers near-globally, this study will con-
centrate on three distinct geographical regions, which will be further elaborated in
section 1.5.

In addition to traditional interpolation methods, machine learning will also be used to
predict the expected height of the areas in between known data points. RF regression
and the tools within the scikit-learn library will be extensively used in the scope of
this research. The scikit-learn library offers flexibility and comprehensive functions
that allows efficient testing and easy implementation.

The ICESat-2 ATL08 dataset is known for its sparsity, and machine learning can adapt
to varying levels of density to make predictions possible in regions in between satel-
lite transect. External datasets contribute as features in the algorithm, with their
weights and biases being integrated into the decision trees to enhance its robustness.
By using RF regression, this research can expect to generate a more comprehensive
DTM.

To fully implement the machine learning algorithm, a significant amount of data is
necessary to effectively train the model. Consequently, a diverse collection of data
will be employed as features. These features encompass a range of data types, in-
cluding geometric data, land use and land cover data, settlement data, and remote
sensing data. The full list of data sources can be found in Appendix B.

The constraint for this study is that the use of Global Digital Elevation Model (gDEM)
and other derivative products such as viewshed, accumulation flow, slope and aspect
as feature data will not be used. It is because this would provide influence to the
model and is prone to over-fitting. However, the relationships between the ICESat-
2 points will be used based on the geometrical relationship between the ICESat-2
points (Geometric Features) and external remote sensing datasets (Remote Sensing
Features) obtained from earth observation agencies that are found on Google Earth
Engine.

1.5. Study area

To demonstrate the suitability of RF as the predictive model on ICESat-2 points, a
comparison of interpolation techniques with ICESat-2 points will be compared by
using an area in Tasmania, Australia. Tasmania, Australia provides good range of
terrain features, and is suitable to be a first step in understanding its performance
before comparing with other study areas and RF regression method.

In addition to Tasmania, three more areas are chosen as study areas for comparison

4



1.6. Thesis outline

for this research. They are chosen to show the range of terrain features the random
forest algorithm is expected to handle, namely hill, saddle, valley, ridge, and depres-
sion. These four areas chosen are as follows:

• Tasmania, Australia

• Grand Canyon, United States

• South Limburg, Netherlands

• Mount Taranaki, New Zealand

Tasmania, Australia offers a range of terrain features that are present with rivers
and valleys. Mount Taranaki, New Zealand is a cone-shaped volcano situated in
North Island of the country. It demonstrates one large hill–in this case a volcano–
with a height of over 2500 metres. By contrast, South Limburg, Netherlands has
more terrain features albeit the highest peak stands at around 300 metres, and finally,
the Grand Canyon, United States can show a variety of terrain features within the
area.

ICESat-2 data will come from the NASA Earthdata (www.earthdata.nasa.gov), and
the ground truth data from the mapping agency for each country. They are Land
Information New Zealand (LINZ) (www.linz.govt.nz), Kadaster (www.kadaster.nl,
and USGS (www.usgs.gov) respectively.

1.6. Thesis outline

In this research there are six chapters and broken down to subsections. A brief sum-
mary of each chapter are outlined as follows:

• chapter 1: Introduction provides the background, motivation, and objectives of
this study. It also introduces the study area, dataset, and research question.

• chapter 2: Theoretical Background and Related Work elaborates on the techni-
cal aspects, including the concepts of different terrain analysis techniques, and
various DEM analysis approaches. This chapter also details the machine learn-
ing methodologies that are available and discusses the techniques in which dif-
ferent research has explored.

• chapter 4: This chapter goes into detail about the algorithms for downloading
different datasets, the interpolation techniques used.

• chapter 3: Methodology details the downloading and pre-processing of ICESat-
2 data, feature data to be used as training data of the RF algorithm, the enabling
of RF regression for elevation prediction, and the error metrics used to measure
the suitability of the algorithm.

5
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1. Introduction

• chapter 5: This chapter is presents and interprets the results obtained from the
random forest machine learning algorithm, with a focus on comparing them
to traditional interpolation techniques and identifying key similarities and dif-
ferences across various geographical locations. Further analysis on the error
metrics and scoring of each feature importance.

• chapter 6: This section represents the thesis’s conclusion, encompassing the
discussion of results, addressing the research questions posed in chapter 1, and
exploring potential opportunities for future research.

6



2. Background and Related Work

The characteristics of the ICESat-2 mission and its specific orbital ground track and
measurements often results in significant spatial gaps in its data. Present research
have addressed this challenge by using deterministic and geo-statistical interpola-
tion techniques. Furthermore, there has been a notable shift towards application of
machine learning algorithms to improve elevation accuracy. This background section
aims to provide an understanding of the existing strategies for interpolating and, in
addition, focusing on random forest regression as a technique to assess the suitability
of using this method on sparse data points.

2.1. The ICESat-2 Satellite Mission

The satellite’s orbit covers most of the Earth’s surface due to its orbital inclination
of 92◦, with global coverage from 88◦South to 88◦North latitudes. [Neumann et al.,
2019] Its ground-track orbits around the polar region. The satellite uses laser beams
to measure Earth’s surface, and it uses three beam pairs (one weak and one string
beam in each pair) that are directed to the Earth’s surface to measure the elevation
of the Earth’s surface. This thesis will focus on data from ATL08 product1 which has
data on the along-track heights above the WGS84 ellipsoid on the ground and canopy
surfaces.

Figure 2.1.: ICESat-2 ATL08 Product Classification from Neuenschwander et al. [2021]

1Land and Vegetation Height Product. https://nsidc.org/data/atl08/versions/5
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Out of all the products in the ICESat-2 mission, the ATL08 product offers data that
has been classified as canopy and ground for land and vegetation. The data used
is the height of the terrain that is measured as the photon is reflected to the satellite
as seen in Figure 2.1. The study conducted by Neuenschwander et al. [2021] demon-
strated that following testing across various terrains, including Sonoma County char-
acterised by its ”complex topography and vegetation,”[Neuenschwander et al., 2021]
the Root Mean Square Error (RMSE) of ATL08 data show that terrain photon levels
ranged from 0.5m to 2m. Although Neuenschwander et al. [2021] added that the
performance and capabilities still needed more rigorous testing, the accuracy of the
satellite still provides good quality for the extent of this research.

2.2. Technical Background

The ICESat-2 operates at a pulse of 10 kHz, which means that the laser fires 10,000
times per second. This high repetition rate enables dense sampling of the Earth’s
surface and allows for accurate measurements of surface elevation changes. As seen
from Figure 2.2, the gap between each track between each strong-weak beams is 3.3
kilometres and around 90 metres along each track. The ground track follows a near-
polar orbit that completes the orbit around the Earth in 90 minutes. The satellite
repeats itself every 91 days that covers the same ground track, and the data from
repeated ground tracks enables temporal data for monitoring of changes of land, sea
and ice on Earth [Neumann et al., 2019].

Figure 2.2.: ICESat-2 mission beam pattern [Smith et al., 2019]

Furthermore, the density of data points varies depending on the latitude of the or-
bit. In high-latitude polar regions, for instance, ground tracks are closely spaced,
resulting in a higher density of measurement points, whereas at mid-latitude and at
the equator results are wider in spacing and thus lower the density of measurement
points.

For the extent of this research, all points from the ATL08 data product will be used
from the beginning of the satellite mission until May 2023 within a predefined bound-
ing box. In terms of the density of points, three areas will be chosen with similar sizes
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and density of points in order to find the interpolation method for such density of
ICESat-2 data points.

In terms of the density and sparseness of the measurement points, this thesis aims to
utilise ICESat-2 data and apply Random Forest Regression to fill in the missing areas
represented as a digital elevation model raster. Specifically, this thesis will use a range
of features to train the model and then evaluate its performance in predicting the
missing areas, with bounding boxes having a similar density of measurements.

2.3. Existing Spatial Interpolation Techniques

To interpolate spatial data on a 2.5D surface, several techniques are available for fill-
ing gaps in the unsampled locations. 2.5D is a representation of terrain that encodes
one x-y (horizontal) coordinate with one z (vertical) coordinate. In a DTM, there is one
elevation data point for every point on the 2-dimensional field Kraus and Otepka
[2005].

Traditional techniques such as ’Inverse Distance Weighting (IDW)’ [Shepard, 1968],
’Natural Neighbour Interpolation (NNI)’ [Sibson, 1981], ’Triangular Irregular Net-
work (TIN)’ [Philip and Watson, 1982], and ’Laplace interpolation (Laplace)’ [Bur-
rough, 1986] focuses on the geographical relationship between neighbouring data
points, and have been a robust technique for any distribution of data points. All of
these techniques aim to find elevation data at unsampled locations using the known
elevation values in the surrounding neighbourhood. Each of these techniques uses
proximity and assigning higher weighting to nearby points. Their simple operation
make them convenient to use on many spatial data. Furthermore, IDW, Laplace, and
NNI methods are deterministic approaches, which are fully dependent on the param-
eters and input values. In the case of IDW, for instance, the parameters including but
not limited to searching circle distance, weighted power, number of neighbours etc.
are decided for each terrain characteristics. In order to choose which technique works
best, one should consider the complexity of terrain, distribution of data points, and
resulting accuracy.

Inverse Distance Weighting (IDW) Interpolation

In a spatial dataset with sampled elevation data, IDW is a common interpolation tech-
nique to model the terrain. It assigns weights to its neighbours, by a searching circle
or ellipses based on the distance of nearby points within the search area, as illustrated
in Figure 2.5. The inverse of the distance of each of the known data points are used
as weights. This means the closer the point, the more influence on the weight than
further points. These weighted values are then averaged to obtain the interpolated
value in the unsampled location.
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2. Background and Related Work

Equation 2.1 explains it in a formula where zn represents the point to be interpolated
at location n, zi is the height of the nearby known points within the searching circle, di
is the distance between points between the interpolated point and the nearby points.
p is the power, of which the weighting wi are inverse to the distance power. The
downside of IDW is the drawing of searching circle. The size of the circle will influence
the results, especially on anisotropic datasets such as ICESat-2 elevation data. It is
quite sensitive to areas with large gaps between measurement points.

zn =
∑n

i=1 ziwi

∑n
i=1 wi

wi =
1
dp

i
(2.1)

Adjusted Inverse Distance Weighting (AIDW) Interpolation

AIDW produced by [Li et al., 2018] is an adjusted and improved IDW to adjust for
clustering of data points, as illustrated in Figure 2.3. The adjustment of this tech-
nique uses the angle at the interpolated point in relation to the neighbouring two
points (∠α), their intersection angle (∠β), and their respective distances are included
in its weighting formula. Such a technique have indeed improved IDW in the study
location of Zhejiang Province, China. However, it is worth noting that this enhance-
ment comes at the cost of increased computation time, which can pose challenges
when scaling up the method.

O

p1
p2

p3

α1

α2

α3

β1

β2

β3

p4

Figure 2.3.: Adjusted IDW adapted from Li et al. [2018]

2.3.1. Interpolation with Voronoi Diagram

Using Voronoi Diagram is a way of dividing space to a number of cells that are de-
fined by the closest sampled point on each elevation data point. This method pro-
vides another way of estimating values for unsampled points. The continuous sur-
face of a set of discrete points can be used to interpolate the elevation at the spatial
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extent within the study area. In simple terms, the partitioning of the points creates
these cells, and each cell corresponds to the region that represent the areas where
the data point is the closet as illustrated in Figure 2.4 with O being one of the data
points.

O

Figure 2.4.: Voronoi Diagram

Based on this diagram, interpolation such as Laplace interpolation and NNI interpo-
lation are based upon the relationship of the calculation of weighting based on the
distance or area respectively. The advantage of using Voronoi Diagram instead of
IDW is that it reduces the number parameters involved, and calculation of is sim-
pler based on the characteristic of the Voronoi Diagram. Compared to IDW, however,
these interpolation techniques only work within the convex hull that is constructed
by outermost points that encloses all the Voronoi cells in a given dataset. To address
the areas that are out of convex hull, cropping of the resulting DTM may be neces-
sary.

Kriging Interpolation

Kriging interpolation, on the other hand, is a geo-statistical method used for spatial
interpolation that was developed in the 1950s by Krige [Krige, 1951]. It is a method
that estimates the value of a point at an unsampled location using the spatial correla-
tion and the variability of the data from its surrounding neighbourhood. It assumes
that there is correlation among the distribution of data, and that data are stationary
and normally distributed. Kriging works when the closer points are given higher
weighting than those that are further away. The accuracy of the model suffers when
the data points are limited in its spread and the number of sampled data is small.
Kriging, also, can be slow due to the complexity of mathematical calculations, partic-
ularly with large datasets.
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O

p1

p2

p3

d2d1

d3
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p4d5

p5

searching circle

Figure 2.5.: IDW Interpolation with pre-defined searching circle

Machine Learning as Interpolation Technique

In Machine Learning, filling unsampled data gaps is referred to as data imputation.
For spatial interpolation, researchers are finding new interpolation techniques to im-
prove accuracy from traditional interpolation as well as geo-statistical approach such
as kriging. Incremental improvements have experimented and applied to different el-
evation data, including, notably ’Random Forest Spatial Interpolation’ [Sekulić et al.,
2020] and ’AIDW’ [Li et al., 2018].

There has been a growing interest in the use of ”more computationally intensive and
data-driven algorithms” [Hengl et al., 2018] over the past decade. This interest co-
incided with the increased availability of high-performance computers, which leads
to more experimentation in machine learning and deep learning algorithms. Hengl
et al. [2018] introduced to machine learning in random forest and gradient boosting.
The paper illustrates that the RFsp framework is able to apply on spatial and spatio-
temporal prediction on many geo-spatial fields. It shows that using different kinds of
features can improve the prediction of random forest.

[Sekulić et al., 2020] used an approach from random forest to predict values at unsam-
pled locations with information such as precipitation data and their distances from
the prediction location as features. Precipitation and daily mean temperature data
were used to estimate the precipitation as data are sourced from land surface sta-
tions in Spain. With spatial resolution of 10km, The study found that RFSI technique
overall outperformed simple deterministic interpolation techniques and had similar
performance as IDW.

2.4. Random Forest Regression

Random forest is driven by a set of decision trees that improves on prediction accu-
racy by using a ensemble of these tress (hence the name ’random forest’). The forest
of decision trees takes random data points within the features and training data, then
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taking the average in bootstrap aggregation [Breiman, 2001, Liaw and Wiener, 2002].
One of the downside of using RF is that coordinates for features in random forest ig-
nores the fundamental relationship between the coordinates itself. This means that it
breaks the spatial relationship as data enters each node in the decision tree. This re-
sults in overestimating or underestimating predictions. In order to solve this, Hengl
et al. [2018] have introduced spatial relationship into random forest regression as a
variable. This approach engages spatial relationship such as relative distances, dis-
tances to specific coordinates etc. These geometric relationships would form part of
this study to be used as Geometric Features. With reference to RFsp, da Silva Júnior
et al. [2019] also commented that this method results are closer to IDW and Ordinary
Kriging (OK) algorithms due to its ”lower estimating error” [da Silva Júnior et al.,
2019]. With machine learning modelling, some of the previous research is able reduce
errors in terms of RMSE by using machine learning compared to traditional interpola-
tion.

Figure 2.6.: Partial Structure of Decision Tree

2.5. Random forest for spatial predictions framework (RFsp)

The upside of RFsp is that it uses the geographical relationship between the points
and the observation points as buffer distances. The introduction of this framework
also means features (also called ”covariates” in Hengl et al. [2018] paper) pointed out
having a set of features in random forest as Hengl et al. [2018] have pointed out,
Equation 2.5

Y(s) = f (XG, XR, XP) (2.2)
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The example in Figure 2.6, shows that the the decision of each node splitting in both
direction based on the criteria set in the hyper-parameters, and with the help of fea-
tures as exemplified by XG for geographical relationships, XR are reflectance data
from remote sensing images, and XP are process-based covariates such as soil re-
flectance index etc. The combination of these features in RF regression would have
similar outcomes to Ordinary Kriging. The only difference is that variogram is not
needed, also a search distance.

This thesis is going to model an area of Earth using spatial interpolation, and the
model is a representation of a 2-dimensional surface in a 3-dimensional space. Since
the Earth is round, the terrain model would represent poorly on a large scale. [de Berg
et al., 2008] Hence, a smaller-scale representation will be implemented. There are
many spatial interpolation methods, and each has their characteristic. This section
will highlight existing works on spatial interpolation and their results and accuracy
metrics.

There are increasing number of publications in recent years on using machine learn-
ing algorithms as a method for spatial interpolation [Hengl et al., 2018, Sekulić et al.,
2020], and is now becoming a useful method for DEM and DEM elevation interpolation
and experimentation. RFsp, as highlighted by [Hengl et al., 2018], shows the benefits
of using RF as an approach to perform interpolation with the use of data points, ’co-
variates’ (meaning machine learning features in his paper), and random forest algo-
rithm to perform prediction of terrain elevation. This approach can decrease time for
generating a variogram, a computationally intensive operation, and an accuracy that
matches OK. The contribution of Hengl et al. [2018] therefore provides a basis for this
thesis.
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3. Methodology

The method of using machine learning algorithms to model terrain is an important
aspect regarding the analysis of this research. Using accurate terrain model leads to
better understanding the dynamics of Earth’s surface. This research aims to use ma-
chine learning to perform elevation prediction from ICESat-2 dataset, and RFR is a
central part in this research. This section guides through the methodology of achiev-
ing this prediction.

Figure 3.1.: Procedure to predict terrain elevation

Since 2018, the ICESat-2 data provided by the Advanced Topographic Laser Altime-
ter System (ATLAS) presents a ”unique opportunity to quantify the Earth’s surface
processes” [Rehman et al., 2023]. Hence the focus will be on the ICESat-2 product,
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which captures ground and canopy height in 100-metre intervals. This interval is the
distance that each LiDAR light beam captures the ground surface of Earth during its
orbit. This dataset captures the latitude and longitude and the elevation will be pro-
vided by each of the official mapping agencies in different geographical locations. In
the end, combining trained RF models from these locations will be tested on a new
location. The methodology will follow the steps of gathering ICESat-2 data, followed
by feature selection, feature ranking, and training and applying model. The diagram
presented in Figure 3.1 summarises this process.

The geographical location chosen for

3.1. Download and Filtering Data

The first step in this research involves the collection of satellite data from NASA’s
Earth Data repository. The objective of the ICESat-2 mission from NASA is to measure
the elevation of Earth’s ice sheets, sea ice and land surfaces using laser. It provides
data for monitoring the polar ice and land surfaces to analyse the impact of climate
change. To access the ICESat-2 data, the National Snow and Ice Data Centre (NSIDC)
have made a python library icepyx that is free to download and open source. This
simplifies the process of downloading ICESat-2 data. Since the research extensively
investigates Earth’s terrain, hence ATL08 is the product needed.

The ATL08 dataset focuses on the photons’ heights captured during laser shots to
capture the surface elevation and canopy height above Earth’s surface [Markus et al.,
2017]. The ATL08 dataset from ICESat-2 contains photon-level data, including the
photon heights and times of laser shots, which are useful for deriving surface eleva-
tion and canopy height over land.

The use of the icepyx Python library makes the download of data easier and more ef-
ficient. The ease of data download can be defined by the bounding box. The resulting
file is then packaged in HDF51 and available to download. All the data within the
bounding box would be contained inside the HDF5 file.

All the necessary data are present and ready to be extracted including latitude and
longitude of the ICESat-2 points as well as other features such as height, ground
classification etc. Since this study aims to use height as information, a fair compari-
son would be to use the height that is extracted from the ground truth. The ground
truth are elevation data of earth’s surface from DTM that are sourced from each of the
mapping agencies. Therefore, only the coordinates of the ICESat-2 point coordinates
are necessary. Thus, the ICESat-2 track pattern is downloaded from pre-determined
bounding boxes from each location that are presented in Table 4.1.

1Hierarchical Data Format version 5
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3.2. Gathering Features Data for Training

To understand the predictions and the role of weights and biases within the context of
a random forest, a set of features is needed. These features are integral to the regres-
sion process, and it facilitates the decision-making within each node of the decision
tree. Each decision split in each node is based on a criteria. The decision criteria will
be further elaborated in section 2.5.

The features used in this research can be classified in two broad categories: Geometric
Features and Remote Sensing Features. Geometric Features focuses on the geometric
relationship within the measurement points and the interpolated points. Whereas
Remote Sensing Features are external datasets captured from other remote sensing
satellites from reputable sources. These features data will be combined in a data
frame that forms the dataset component of the random forest. This table combines
all the information of latitude, longitude, elevation, Geometric Features, and Remote
Sensing Features.

3.2.1. Geometric Features using Dataset Relationships

Geometric features picks on the relationship between the ICESat-2 points and its re-
lationship with the surrounding points. These relationship utilises K-D tree as the
primary data structure for data point organisation. The K-D tree enables the identifi-
cation of N-nearest neighbours in proximity to each ICESat-2 point, which allows the
encoding of various relationships among the points. The relationships are namely
the relative height differences, slope, the angular relationship between the nearest
neighbours, and the buffer distance between the interpolation point and the ICESat-2
points.

• Height from nearest neighbour: This feature is derived by considering the n-
number of neighbouring ICESat-2 points, from which height information is ex-
tracted and encoded within the features. Each encoding represents the height
from the n-number of closest neighbour. In Figure 3.2a, each ICESat-2 points O,
are encoded with three neighbouring points–p1, p2, and p3–that has heights of
20, 33, and 29 units respectively.

• Gradient to nearest neighbour: Features in the nearest neighbour gradient
represents the interpolated point with respect to n-number of neighbouring
ICESat-2 points. In general, the gradient is derived from subtracting between
two points (x1, y1, z1) and (x2, y2, z2). This will give a vector. Dividing next by
its magnitude will obtain the gradient. With n-number of points, the gradient
is calculated by finite difference. The calculation of gradient requires data from
the nearest neighbour height, and this data will be gathered from ten nearest
height data point from the neighbourhood of ICESat-2 point O.

• Buffer Distances between ICESat-2 data: The distance between the ICESat-
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2 point (O) and points p1−3, and the interpolated points as illustrated in Fig-
ure 3.2a. This means selecting closest points within the neighbourhood and
calculate the distance between the sampled point and the ICESat-2 point.

• Relative Heights between ICESat-2 data: Features the closest neighbour height,
and compare this height with the next height of the nearest neighbour. To es-
tablish the relative height differences between the ICESat-2 points. This height
would mean that all heights in this feature would be relative to each other.

O

p1
p2

p3

h2 = 33

h3 = 29

h1 = 30

hO = 28

(a) Nearest neighbouring heights, h, with re-
spect to O

O

p1
p2

p3

d2

d1

d3

d4

p4

(b) Buffer distance, d, between each point from
p1 with respect to O

Figure 3.2.: Calculation of geometric features from ICESat-2 points

3.2.2. Remote Sensing features via Google Earth Engine

Remote Sensing Features are data features that are sourced from third-party datasets.
These are useful for understanding the relationships that extend beyond the scope
of ICESat-2 points, and provides crucial geographical context in relation to the study
area. More features data enables the random forest training to be more robust, which
leads to improved predictive capabilities. These datasets are available to use freely
via Google Earth Engine data catalogue and the Awesome GEE Community Cata-
logue [Roy et al., 2023].
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• World Settlement Footprint (WSF) 2019: [Marconcini et al., 2020] This is a
binary mask of which population settlements are represented in ’1’ and every-
thing else ’0’. The data sources used in this dataset stem from multi-temporal
imagery captured by Sentinel-1 and Sentinel-2 satellites.

• Geomorpho90m Geomorphometric Layers [Amatulli et al., 2020]: Geomor-
phons are classification method used in geomorphology to categorise land-
forms based on the characteristics such as slope, aspect, and curvature. These
are categorical data that describes the landscape. The 90m resolution data are
derived from the MERIT-Digital Elevation Model. The 3 arc-second resolution
dataset is used as feature.

• ESRI 2020 Global Land Use Land Cover from Sentinel-2 [Karra et al., 2021]:
This dataset captures the land use and land cover across the globe that is de-
rived from the imagery captured from the Sentinel-2 satellites. This dataset in-
cludes information about land cover classes such as forests, urban areas, water
bodies, crop lands and so on.

• GFSAD Landsat-Derived Global Rainfed and Irrigated-Cropland Product (LGRIP)
[Teluguntla et al., 2023]: Croplands derived from the Landsat satellite that cat-
egorises from irrigated and rain-fed croplands and also the extent of these crop-
lands. The dataset uses Landsat-8 temporal data at 30 metres resolution. The
layers area classified as rain-fed cropland (dependent on precipitation only), ir-
rigated cropland (with at least one irrigation during the crop growth season),
non-cropland, and water bodies.

• ASTER Global Water Bodies Database (ASTWBD) [NASA/METI/AIST/Japan
Spacesystems And U.S./Japan ASTER Science Team, 2019]: This dataset cov-
ers global water that are larger then 0.2 square kilometres. The water bodies
are further categorised into three categories: ocean, river, or lake. For oceans,
there is a uniform elevation, and elevation information is included for river and
lakes.

• Bare Earth’s Surface Spectra[Demattê et al., 2020]: This data shows how often
a show is detected as bare earth surface, and also indicating whether the bare
earth is increasing or decreasing.

• Global Forest Cover Change (GFCC) Tree Cover Multi-Year Global 30 [Town-
shend, 2016]: This dataset captures the temporal analysis of Landsat images
over the changes in forest extent and forest changes over a series of years.

• JRC Global Surface Water Mapping Layers [Pekel et al., 2016]: This dataset
shows open water locations on Earth’s surface that spans for three decades us-
ing Landsat satellite captured images. It captures natural features like rivers,
lakes, coastal waters and artificial water bodies etc. The global surface water
maps are presented in 30m resolution.

• Daily near-surface air temperature dataset [Zhang and Zhou, 2022]: This is a
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global dataset of near-surface maximum and minimum temperatures. It uses a
series of ground-station measurements and satellite observations to gather the
near-surface air temperature.

3.3. Random Forest Regression

As mentioned earlier in section 2.5 about RFR , the decision tree splits the node in
two directions based on the criteria in the data features. In the context for terrain
analysis, RF is a a collection of decision trees that are trained on a subset of data
using different features sourced from external datasets. The final prediction is then
obtained by aggregating the prediction and perform averaging for regression. This
method helps to minimise over-fitting due to a single decision tree. In order to fully
implement the RF regression, data pre-processing of features dataset will need to be
performed, which will discuss further in subsection 3.3.1.

3.3.1. Data Pre-processing

Data pre-processing is a crucial step to align features data with the ICESat-2 height
dataset and the remote sensing features. Due to the amount of remote sensing data
to be processed to be used in the RF regressor. Each features has different types of
data. While continuous data fits nicely with machine learning models, not all datasets
use continuous data. Categorical data, for instance, requires further processing in
order to fit it into the RF regressor. One-hot encoding proves better data clarity as it
represents each category in a column with their respective data. Having this process
ensures that the RF regressor can perform the best with more detailed information to
make its predictions.

One-hot encoding

Figure 3.3.: One-hot encoding on categorical data

Features that use categorical variables are represented with different values, each
having its own classification and representation. There are no ordinal relationship be-
tween each data point. In the context of this research, ’Geomorpho90m Geomorpho-
metric Layer’ and ’ESRI 2020 Global Land Use Land Cover’ are examples datasets

20



3.4. Testing geometric features

that only categorical data is used. These categorical data often use varying naming
conventions across datasets. For instance, ’Copernicus Global Land Cover’ uses ’20’
to represent shrubs, ’30’ for herbaceous vegetation, ’40’ for cultivated and managed
vegetation/agriculture, and so on. To represent non-ordinal relationships, one-hot
encoding is a technique used to deal with Machine Learning (ML) algorithms that re-
quire numerical input. In machine learning, it provides a necessary representation to
convey information about the categories.

One-hot encoding is a technique commonly used in machine learning and data analysis
to convert categorical variables into a binary matrix representation [Brownlee, 2017].
Since some of the features in the selection are categorical, such as land use/land cover
data, the application of one-hot encoding becomes essential. Figure Figure 3.3 illus-
trates how one-hot encoding transforms categorical data into a binary matrix. Each
column in the encoded matrix corresponds to a unique category encountered in the
data. Therefore, if there are n unique categories, the resulting binary matrix will have
n columns.

Data Normalisation

hnorm =
h − min(h)

max(h)− min(h)
(3.1)

Data normalisation aims to standardise the elevation values. It is to ensure to retain
the consistent scaling by constraining the elevation values of the elevation data to a
certain scale or range. As the areas of study have different height ranges, normal-
isation allows the ICESat-2 elevation data, h te interp, to scale and perform within
the range between 0 and 1. The resulting heights, hnorm in Equation 3.1, takes into
account the maximum and minimum values, thus each geographic location can be
normalised to the same scale. Within this research, a Min-Max scaling is used such
that the normalised dataset retains its original distribution of data. For hnorm, 0 corre-
sponds to the minimum value in the original ICESat-2 data, and 1 corresponds to the
maximum value.

3.4. Testing geometric features

Before inserting data into RF regression, the testing of each geometric features will be
performed. Geometric features used in this thesis is solely based on the relationship
between the ICESat-2 points. The testing of each of the geometric feature will be able
to identify the most suitable parameters in relation to each geometric points. For
example, the test consist of testing the number of neighbours and its distance from
its ICESat-2 point based on the accuracy of RMSE. A number of test on each location
will find the suitable number of neighbour that yields a more accurate result. The
random forest regression will be based on the these geometry relationships that are
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encoded in the geometric features to perform its prediction, therefore having a more
accurate result by testing the number of neighbours will impact on the accuracy of
the results.

f

3.4.1. Implementation of Random Forest Regressor

Previous research, namely Hengl et al. [2018] and Sekulić et al. [2020] has demon-
strated that the use of random forests can result more accurate interpolation from a
sample of elevation points compared to traditional interpolation methods. Their ap-
proach relies on the programming language, R, with a specific focus on the ’ranger’
package for random forest implementation. In short, the ’ranger’ package also imple-
ment random forest in fast and efficient manner in classification and regression tasks.
This study, however, uses sci-kit learn library as the main implementation. Bench-
marking between these two implementations of random forest is out of scope for this
study.

Random Forest, as its name suggests, randomises both the features and target data
during the training process. Instead of constructing a single decision tree from the
entire dataset, it creates an ensemble of decision trees. This means that different trees
in the forest see different subset of the whole dataset. After training on multiple deci-
sion trees, the model performs bootstrap aggregation (bootstrapping). This combines
the predictions from all the trees and takes the mean of all the trees. This reduces the
variance and improves overall accuracy.

Test-train Split

Test-train split is an intermediate step for evaluating the performance of random for-
est or any machine learning predictions in general. It divides a given dataset into two
subsets: the training set and the testing set. In this particular research, the test-train
split for the random forest regressor is 80% training set and 20% testing set. The sub-
set for each testing and training sets are randomly selected from the ICESat-2 dataset,
so it is selected uniformly throughout the whole dataset.

The training set is used to train the RF model. As previously discussed in section 2.4,
training takes the training data and performs the splitting at each node in the tree
and arrive at an overall prediction after bootstrapping. The testing set, on the other
hand, is used to assess the model’s performance and evaluate how well it performs.
Knowing the RF performance metrics can provide insight to the effectiveness of the
training. Validation plays a key role in this study as the testing set can provide a
baseline for evaluation of the model as well as for feature importance ranking.
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Training the RF Model

Having all the features dataset combined, and splitting training and testing dataset.
The training of the RF model involves inserting in the training dataset into the ran-
dom forest. The training of each RF model uses the same location as the input data.
The training dataset is a large data frame that consists of multiple columns repre-
senting each features except the target variable: elevation. Since the prediction is
elevation, this would belong to the target variable, and the goal of the random forest
is to predict the elevation based on the training dataset. For instance, the training
of Tasmania, Australia would use the Geometric Features and Remote Sensing Fea-
tures from Tasmania. This ensures the spatial relationship in the model relies its own
feature dataset information for the results. The training of the RF model also repeats
on different geographical locations: Mount Taranaki, New Zealand, Grand Canyon,
USA, South Limburg, Netherlands.

The role of the testing dataset is to ensure there is a control dataset to compare against.
Usually the ratio between training and testing dataset varies between 80%-20% or
75%-25% depending on the size of the training dataset and the number of data points.
The ratio represents the percentage used as training and as testing datasets. In this
study, 80% of the dataset will be randomly selected for training, and the remaining
20% for testing. The use of testing dataset helps to prevent the model from over-
fitting and to monitor the performance of the training by assessing and is used a
comparing against training dataset. It is used as a validation tool measure to monitor
the performance of training.

The exception to this training is the last test, where the model will be used by com-
bining training dataset from three locations. This means the training of the model is
built upon its local dataset but not on this new location. This unseen data will test the
model’s ability to adapt and application to non-local data, so this tests whether the
spatial relationship built upon the combined dataset from non-local datasets is able
to be applied on a new location.

Feature Importance and Ranking

Predicting the outcome using Random Forest in this projects requires a basket of fea-
tures. These features can influence the weights and biases in the decision trees in the
random forest algorithm. In order to interpret the outcome of the results, it is con-
venient to know the feature importance and it enables us to gain insight into which
of the features influences the results the most. Also, in order to answer the question
from section 1.3, this research is going to quantify the contribution of each feature
that has the most significance on the RF model’s prediction.

Feature importance plays a significant factor in this study. In random forest, fea-
ture importance measures the features with the most influence on the prediction of
the model [Breiman, 2001] . This is typically calculated based on the how much of
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the feature contributes to reducing the impurity of the nodes of the trees. There
are in general three calculations of feature importance, each has its advantages. The
choice of the calculation methods depends on classification or regression problem. In
general there are two methods suitable for regression: Permutation importance and
Mean Decrease in Accuracy Mean Decrease in Accuracy (MDA), and Mean Decrease
in Impurity Mean Decrease in Impurity (MDI) suitable for classification problem. In
this study, the regression calculation will be addressed.

Permutation importance involves shuffling the values randomly of a features and
measuring the impact on the model’s performance compared to the validation dataset
as baseline. Each of columns in the training dataset are then shuffled independently,
meaning only the values of the feature columns are shuffled, and all target values
remains unchanged. Each shuffling of the column values would produce a out-of-
bag score, and is compared to the baseline score. This shuffling will be repeated
exhaustively on all values on all feature columns and the average difference will be
calculated as the feature importance. If shuffling a particular feature has a significant
difference compared to baseline, it suggests that the feature is more important. The
advantage is that breaks the relationship between the features variable sand the target
variable, such that bias is reduced. It is, however, computationally expensive and
repeating on multiple tests would require significant process time.

Mean Decrease in Accuracy (MDA) is used for splitting nodes in the decision tree.
This information aids in feature selection, understand the model’s behaviour to find
the most influential features [Breiman, 2001, Scikit-Learn, 2023]. MDA quantifies the
average reduction in accuracy using Mean Squared Error (MSE) as metric, and as-
sess each split based on this metric. The values of each feature are shuffled, and its
metric is re-assessed and compared to the baseline validation dataset. It evaluates
how much a feature’s contribution by assessing the decrease in disorder when used
for splitting used. Features with the higher MDA values means they are considered
more important, which indicates a more impact on the decision tree and an overall
contribution to making accurate predictions.

3.4.2. Exporting and Combining RF models

In order to compare the performance with different geographical locations from the
study areas, the RF model are exported after training in each location. Each model
are assessed individually and be combined to form a single model. This model
are applied to an untrained location, out of the three selected locations. This tests
the model’s ability to adapt to different terrains, and subsequently assess its accu-
racy.
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3.4.3. Testing and Evaluation

In order to assess the quality of the resulting DEM, it is important to compare the
prediction against the ground truth. This entails comparing the elevations from the
predicted surface. This serves as a validation of performance for the RF regression
results. In order to holistically evaluate the prediction of elevation in the DEM, both
the RF regressor and the results will also be evaluated.

Testing is done by overlaying the resulting DTM on ground truth. The resulting DTM
is then subtracted from the ground truth to establish the areas where there are higher
or lower than the ground truth. This diagram is a measurement to find areas that
have deviation away from the ground truth. To find more detail of this variation,
a scatter plot represents the discrepancies between prediction values from RF and
the expected values from testing dataset. Each data point on the plot corresponds
to a pair of values, that lies on the y-axis representing the predicted data and the
x-axis represent the testing or validation data, the diagonal line shows the closeness
to the ground truth each test presents. The distance of each point from a defined
reference ’0’ level illustrates the extent of deviation. This graphical representation
enables outliers and data points that deviates to understand the relationships of the
RF model.

The Loss Function

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3.2)

It is important to assess the machine learning algorithm and assess their performance
during training, fitting, and testing of data. The loss function assess whether the
training and testing data to determine the outcome. Since each decision tree node
splits two children each time, we utilise a selection criterion to make the decision
to split. The objective is to minimise the loss function in order to result in better
prediction of elevation from training data.

The loss function is also a crucial evaluation of the random forest performance. It is
characterises by MSE. MSE indicates how close the prediction are closer to the actual
target values. The goal of random forest regression is to minimise the MSE as much as
possible. Using the ensemble of trees in the random forest, the RFR algorithm would
aggregate the prediction from multiple trees to minimise the over-fitting ensuring the
effectiveness of the Random Forest Regression algorithm.

3.4.4. Comparison with Traditional Interpolation Methods

The test on the results on the random forest elevation prediction against traditional
interpolation, the traditional interpolation are tested against the results from RF, and
is tested with the same error metrics. The purpose is to find whether the random
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forest interpolation is a better interpolation technique compared to traditional inter-
polation technique.

For IDW, the parameters are set to: the nearest nearest 10000m and power weighting
of 2. This would mean that the searching circle would encompass the surrounding
10km and look for the nearest ICESat-2 points surrounding the circle. For Voronoi di-
agram based interpolation, TIN and Laplace Interpolation are used. These three inter-
polation techniques are compared to to find the most suitable interpolation technique
that subsequently be used to compare with RF regression. The reason to choose one
from traditional technique is find one that can represent to compare between between
RF technique and traditional interpolation. Table 3.1 compares different interpolation
using metrics such as minimum, maximum Error, Mean Average Error (MAE) and
Root Mean Square Error (RMSE). The error metrics are explained in more details in
subsection 3.4.5.

Interp’n Method Min Error Max Error MAE RMSE

IDW -967.729 -138.021 205.893 287.405
TIN -942.682 -137.694 206.4669 287.478
Laplace -927.121 -139.236 206.567 285.489

Table 3.1.: Comparison between Traditional Interpolation Methods

This preliminary test uses ICESat-2 dataset for interpolation using three different
methods: IDW, TIN, and Laplace. These three traditional interpolation techniques
have different interpolation approaches, but largely similar results in terms of MAE
and RMSE as Figure 3.4 have shown. The comparison with Laplace interpolation
shows that in terms of RMSE, it is marginally better than other interpolation tech-
niques at 285.49m. The comparison shows that Laplace would be used as represent
to compare with results from RF regression.

3.4.5. Presenting final results and accuracy assessment

”Vertical accuracy is the main criterion in the specification of the quality of elevation
data.” Uuemaa et al. [2020] One of the error metrics used in this context is the RMSE.
RMSE (as shown in Equation 3.3) calculates the square root of the mean of the squared
differences between predicted height and ground truth values. This offers insights
into both the magnitude and direction of errors. The height difference between the
predicted height and the ground truth height is also more generally called vertical
accuracy.

Additionally, MAE (as shown in Equation 3.4) is also used to measure the average ab-
solute difference between the predicted values and the actual observations, provid-
ing a clear indication of how close the predictions are to the true values. These error
metrics are also used in previous research [Hu and Ji, 2022, Hawker et al., 2022]. In
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(a)

(b)

(c)

Figure 3.4.: Interpolation using Tasmania ICESat-2 Data using methods: (a) IDW (b)
TIN (c) Laplace

addition to these error metrics, minimum error, maximum error, and standard devi-
ation of error will also be used to determine the accuracy of the resulting DEM.

RMSE =

√
1
n

n

∑
i=1

(ẑi − zi)2 (3.3)
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MAE =
1
n

n

∑
i=1

|ẑi − zi| (3.4)

To further assess the performance of the RF regression model, this would mean con-
sidering metrics such as R-squared coefficient (R2). The R2 is the proportion of vari-
ance in the testing data that is predicting the elevation from the RF regression. This is
also one of the assessment of fit of the model in relation to the features and the predic-
tion of the height variable. By incorporating a combination of these error metrics, a
comprehensive evaluation of the Random Forest regression outcomes from ICESat-2
data can be conducted, ensuring the robustness and credibility of the results pre-
sented in this thesis.

28



4. Implementation

To elaborate on the datasets used, this chapter will delve into the two datasets used
for training: the ICESat-2 Dataset and the Features Dataset that includes Geometric
and Remote Sensing Features. The details on data access from NASA Earth-Data and
Google Earth Engine are discussed and the implementation of RF regression, and the
explanation of feature importance will be provided.

4.1. Access to Elevation Data

Since elevation dataset is the core of this study, the elevation information are accessed
from the DEM from each of the local mapping agencies. Although the ICESat-2 mis-
sion has its elevation data acquired from LiDAR, the comparison of results against
ground truth needs to be comparable, and thus rules out the use of raw data from the
ICESat-2 mission itself.

When seeking an appropriate DTM as ground truth, several criteria come into play.
Firstly, the resolution must be less than 100 meters, ensuring that it remains equal to
or smaller than the resolution presented in the results. Secondly, consider utilising a
mapping agency directly sourced from the government. Lastly, prioritise data that is
freely accessible, usable, shareable, and open for further development.

4.2. Correlation Matrix Among Geometric Features

When assessing the Features Data, the correlation matrix provides a convenient way
to visualise the relationships between different features used, and it is important to
understand the relationships among the features. Having or not having correlation
will have impact on the feature importance in the random forest, and this provides
an insight to the relationship among the geometric features.

As ”Tobler’s First Law of Geography” [Miller, 2004] has claimed, the nearer points
are more related than the points that are further away. Figure 4.1a shows the use
of the correlation coefficient as a measure of strength and direction of relationship
between two features. It ranges from 1 (indicating perfect positive correlation) and -1
(indicating perfect negative correlation), and 0 indicates no linear relationships.
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(a) Correlation Matrix

(b) Correlation Matrix

Among the relationships in the correlation matrix, the nearest height (i.e. 1-nearest-
neighbour) that are closer to the interpolated points shows a darker shade of red than
ones that are further away (i.e. 9-nearest-neighbour). As the assumption indicates,
more related points in darker shades are have distances that are close to the interpo-
lated point, and as distance between the interpolated point and the ICESat-2 point
mover further apart, the correlation decreases. As expected, the closer the points, the
more related the data point is.
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4.3. Details on the Study Area

In addition to Geometric Features, Remote Sensing Features shown in Figure 4.1b also
has shown that there are correlations among the remote sensing features. The water-
mask features, for example, shows shows opposite correlation with each other–areas
water pixels has negative correlation with non-water pixels. Overall, however, there
are limited amount of correlated features within the matrix save for water mask and
land use and land cover dataset. Most of these are correlations to each group of
features, and not across different features. This shows that the features does not have
a strong in leaning towards the other features in RF model.

4.3. Details on the Study Area

Four study areas is selected as the study for this thesis, and this will test the suitability
of the machine learning algorithm on multiple terrains. Using Tasmania, Australia as
a test case, this will be used to compare distributed dataset against ICESat-2 dataset
on the performance of RF regression. And the other three locations represent different
landscapes on Earth will be trained and tested, each with its own characteristics.
Figure 4.2 shows the maps for each of the respective study locations.

Study Area Bounding Box (minlon, minlat), (maxlon, maxlat)

Tasmania, Australia (147.0611,-42.82818479),(147.2856,-42.6760)

South Limburg, Netherlands (5.5826, 50.7417),(6.1637, 51.0827)

Grand Canyon, USA (-112.2195, 35.9746), (-111.7676, 36.3165)

Mount Taranaki, New Zealand (173.8336,-39.4686), (174.3158, -39.1469)

Table 4.1.: Coordinates of Study Area in EPSG:4326

4.4. Code Access and Data Downloading

In the spirit of Open Science, the datasets and code are publicly available on a GitHub
repository: https://github.com/leowlk/RF_Terrain. The code includes algorithms
such as filtering, data pre-processing, RF training and testing, and evaluation. The
repository will also include a sample DEM, provided as a sample of the expected re-
sults.

The icespyx python library provides all the necessary tools to download and extract
the ICESat-2 dataset. This method requires an Earth Data account from NASA [2023].
Alternatively, OpenAltimetry [2023] provides a user interface for downloading datasets
within a predefined bounding box. This is useful for quick testing and deploy-
ment.

As for the Remote Sensing Features Dataset, individual datasets are found within
their respective data organisations. However, it is recommended to utilise Google
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(a) (b)

(c) (d)

Figure 4.2.: Location maps of the study area. (a) Tasmania, Australia (b) Grand
Canyon, USA, (c) Limburg, Netherlands, and (d) Mount Taranaki, New Zealand

Earth Engine as a centralised hub for accessing and downloading these data for ma-
chine learning features. Downloading datasets from Google Earth Engine requires a
Google Account, and large files can be downloaded to Google Drive or other com-
patible cloud services.
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5. Results and Analysis

Most of the ICESat-2 dataset consists of substantial gaps in non-polar regions due to
the orbiting nature of the satellite. This chapter presents the results and provide anal-
yses in order to answer the research questions on the suitability of using RF regression
as an interpolation technique, and present the quality of the resulting predictions and
its feature importance using this technique. It is used to show the data distribution
and geographical differences among the study areas.

Since Geometric Features and Remote Sensing Features are used in this analysis, both
are tested individually before combining the features to form the final results. These
tests are important to assess the number of neighbours and remote sensing data in
order to discuss their contribution to the RF model. These features are tested on the
three different geographic locations, and the model of three locations are trained and
applied to Tasmania, Australia. In addition, the use of RF model are compared against
traditional interpolation techniques. To answer the research question, error metric,
feature importance ranking, and the difference against ground truth are used in the
results and analysis. Further discussion are made in this section.

5.1. Individually Training of Geometric Features

Each Geometric Feature are first tested with respect to the ICESat-2 points and mea-
sure its accuracy from its implementation. This step is significant as it helps to estab-
lish the optimal relationship of the features used in the RF model. These tests include
the distance to neighbouring points of ICESat-2, nearest neighbour height, gradient
between the elevations, and relative height difference. In summary, these tests will
use the relationship of ICESat-2 points, and is summarised in Table 5.1.

Tests Number of Neighbours

1 Distance to nearest ICESat-2 1 2 5 10 100
2 Nearest neighbour height 1 5 10 20 100
3 Gradient between ICESat-2 points 1 2 5 - -
4 Relative height difference 1 2 5 10 -

Table 5.1.: Summary of Geometric Features Tests

In these tests, these features are used: Longitude, Latitude, and the tested Geometric
Feature. The feature importance would be expected show similar or equal dominance
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on latitude and longitude, but with only three features, the significance of feature
importance are small in these preliminary tests and thus are not shown.

5.1.1. Test 1: Distance to Nearest ICESat-2 Point

While testing the features, n-number of neighbours are tested such that each subse-
quent neighbours reflects the relationship from the nearby elevation points. These
relationships are important to analyse the sampled height that are part of the RF re-
gression. From Table 5.2, using low number of neighbours overall results in errors in
the range of -372 to 571 metres, and RMSE of rangers from around 31 to 44 metres. The
most accurate results from Figure 5.2 shows that in terms of RMSE, one neighbour dis-
plays the least error. Low number of neighbours–1 to 10–yields similar results, and
as the number of neighbour increases, the RMSE increases.

Figure 5.1.: (a) RF - Nearest Distance to ICESat-2 Point (b) Scatter Plot

N-neighbours Min Diff Max Diff RMSE MAE

1 -379.611 375.658 49.916 31.051
2 -372.352 352.439 50.075 31.276
5 -390.528 424.799 54.068 34.91
10 -398.333 371.783 56.325 36.784
100 -395.529 571.263 68.555 44.677

Table 5.2.: Distance to Nearest ICESat-2 Point

The reason for this rise in error is that the more data points in the features table
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mean that there are more data points that are not directly correlated to the nearby
points. Owing to the fact that closer points are more correlated than neighbours
that are further away. This is the reason smaller number of neighbours—from 1 and
10 neighbours—produces more accurate results. This results in the most accurate
would be 1-closest neighbour to be used the feature used in the combined Geometric
Features RF model. The reason for using distance to 1-closet-neighbour is the con-
sideration of computational cost. Calculating larger number neighbours costs more
computational power, especially with the magnitude of ICESat-2 data in this study of
around 20 thousand to 30 thousand points in each study area. Even though having
more than one neighbour would be more representative of the neighbourhood of the
ICESat-2 points, the results show limited improvement for the computation resource
required during computation.

5.1.2. Test 2: Nearest Neighbour Height

In this experiment, the relationship between the interpolated point and the height of
the nearest ICESat-2 point as seen from Table 5.3. This test tests the nearest neigh-
bours of the interpolated point and using KD-tree to find the nearest n-neighbours
from the interpolated point. Each number of neighbours will be aggregated in subse-
quent tests and to be used as features in the training and testing set.

It is expected that the relationship of the 1-nearest neighbour would follow a similar if
not the same pattern as the nearest neighbour interpolation. This means the resulting
DTM would be arranged in a Voronoi Diagram, with each Voronoi Cell of each ICESat-
2 point would have a uniform height. As the number of nearest neighbour increases,
the number of features in the features set would also increase.

N-neighbours Min Diff Max Diff RMSE MAE

1 -344.246 385.154 45.688 27.079
2 -341.152 387.564 44.025 25.242
10 -341.805 376.818 43.63 24.923
100 -337.345 377.037 43.737 25.06
200 -335.816 374.136 43.753 25.078

Table 5.3.: Nearest Neighbour Height of ICESat-2 Point

The errors of the nearest neighbour height yields similar results. As the number of
neighbours increase, the RMSE gradually decreases to around 43 metres. The differ-
ence in maximum and minimum difference hovers from around -340 and around
380. The distribution of errors in the right hand chart shows that that both sides As
the number of nearest neighbour increases from 20 to 200, the general errors have
stabilised to around a similar range from -337m to 374m. In Figure 5.2 shows the
implementation of the most accurate solution as predicted form the RF regression at
10 neighbours.
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Figure 5.2.: (a) RF - Nearest Height to ICESat-2 Point (b) Scatter Plot

5.1.3. Test 3: Gradient to Neighbourhood Points

In Table 5.4, this shows the test is going to test the relationship of the gradient slope
and their neighbours. This relationship between the interpolated point and the height
of the nearest ICESat-2 point will be tested using 1, 2, 5, and 10 neighbours. It will
use KD-tree to find the nearest n-neighbours from the interpolated point. Each num-
ber neighbour are aggregated in subsequent tests and to be used as features in the
training and testing set.

N-neighbours Min Diff Max Diff RMSE MAE

1 -391.77 394.306 47.677 29.076
2 -411.091 427.007 47.602 29.072
5 -537.632 412.667 52.541 32.416
10 -530.209 333.739 53.881 33.666

Table 5.4.: Nearest Neighbour Slope of ICESat-2 Point

As seen from Table 5.4, the number of neighbour with the most accuracy is 2 with
regard to the RMSE, and this is very close. In order to ensure the number of neighbours
are included, having 2 neighbours can ensure that the gradient are from more than
one source to prevent siding one direct line of gradient. A variety of data sources
surrounding the neighbourhood will be used to calculate the gradient.
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Figure 5.3.: (a) RF - Gradient to ICESat-2 Point (b) Scatter Plot

5.1.4. Test 4: Relative Height To Neighbours

This test shown in Table 5.5 is going to focus on the relative heights between the near-
est ICESat-2 point and the heights of its surrounding neighbourhood. Similar to near-
est height, this feature will, however, focus on the difference on the relative heights
among the ICESat-2 points. For each relative distances for n-number of neighbours,
this would contribute to n-number of columns in this feature.

N-neighbours Min Diff Max Diff RMSE MAE

1 -353.554 340.476 47.573 29.034
2 -390.509 334.424 48.724 30.545
10 -787.84 564.375 58.619 37.006
50 -773.813 550.006 69.181 42.806
100 -885.601 494.715 76.984 45.242

Table 5.5.: Relative Height to Nearest ICESat-2 Point

Similar to previous test, the most accurate from the RF prediction from using relative
height is the nearest one neighbour. Figure 5.4 shows the optimal from the nearest one
neighbour from the prediction. In terms of errors, lower numbers of neighbours yield
a better result that larger number of neighbours, where the RMSE of relative height
between closest to 1-neighbour is 47.6 metres. As the number of neighbour increases,
the RMSE and MAE increases accordingly. Smaller neighbour numbers result in better
accuracy, and using just one neighbour saves computational power while providing
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Figure 5.4.: (a) RF - Relative Height to ICESat-2 Point (b) Scatter Plot

the most accurate results in the tests.

5.1.5. Test 5: Remote Sensing Features

Remote Sensing Features adds a second layer of features in the RF regression, and
would involve more information that may influence in the elevation prediction in the
results. These remote sensing features are highlighted in subsection 3.2.2. To test the
Remote Sensing Features, these features data are added separately for each feature to
analyse the effect in the RF. This will then be reflected in the results.

This provides an insight into the random forest and its ability to incorporate itself
into the results. The test is going to be based on the Tasmania Area. To find clearer
comparison of the Remote Sensing Features, a baseline feature is used to provide
the effect of new added features in the RF model. The baseline feature chosen is the
nearest height, and this feature is added without Latitude and Longitude features.
The addition Latitude and Longitude would create established underlying relation-
ship and would be hard to test the effects of Remote Sensing Features. Therefore, a
baseline feature using the distance to ICESat-2 geometric feature is used.

Figure 5.6a shows that by adding the water mask as a feature, the flat surface at the
middle of the responds to the random forest. Water mask is a binary feature that
indicates ’1’ where water is present and ’0’ when not present. This can is will be
illustrated by the shape of the river present in the results. The error diagram on the
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Figure 5.5.: Feature Importance from Remote Sensing Features Only

right in Figure 5.6a reflects that the area within the water mask feature is close to
zero. This means adding water mask as feature would improve the error metric in
the areas with water. Areas containing rivers, streams, sea, would therefore be a flat
surface, which would also yield better results compared to ground truth.

Features Min Diff Max Diff RMSE MAE

RS Features (a) -1236.442 1147.563 328.218 243.487
RS Features (a), (b) -1238.844 1103.648 322.218 242.487
RS Features (a), (b), (c) -1109.608 1098.945 237.764 160.393
RS Features (a), (b), (c), (d) -1109.35 943.361 211.063 140.779

Table 5.6.: Additional Features (a) Water Mask (b) Geomorphon (c) Land Use and
Land Cover (d) NDVI

When the features of (a) Water Mask and (b) Geomorphon were added to the re-
gression, the flat surfaces responded as expected in the results. In flat surfaces as
indicated by the water surfaces and the difference against ground truth are be min-
imised such that water surfaces are flat, and yielded close to the ground truth. The
contribution of (b) Geomorphon in Figure 5.6b has also shows that the peaks and the
valleys and flat surfaces of the terrain. This, however, did not contribute to the over-
all improvement in error metrics as was expected. It has only improved the RMSE
very marginally from 328.218 metres to 322.218 metres, and MAE from 243.487 metres
to 242.487 metres.

In addition to the last two features, a third feature was then added (c) Land User/-
Land Cover in Figure 5.6c. This indicates the land use and land cover classification.
The response of the added feature here further minimise some areas closer to the
ground truth. There is still presence of a lot of artefacts, but the effect of the feature
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added to the random forest has improved the compared to using features (a) Water
Mask and (b) Geomorphon.

Finally adding (d) NDVI to the random forest as seen in Figure 5.6d shows further
sees improvement of the error metrics and also the difference against ground truth.
This shows the random forest responds well to the remote sensing features as they
are added one by one, and the improvement from one feature to four features is
drastic. RMSE and MAE has improved from 328.218 to 211.063, and 243.487 to 140.779
respectively. Overall, this shows that with Remote Sensing Features alone is able to
contribute to the prediction of elevation, albeit the predicted elevation does is not
directly correlated from the elevation of ICESat-2 points. Their contribution to RF is
nonetheless an improvement to the method.

Figure 5.5 shows the individual feature contribution to the results with four features.
It shows that the each of the features contributes roughly from 0.34 to 0.003. Land Use
and Land Cover is overall the most influential among the features followed by NDVI.
It is worth noting The Geometric Features of Distance to ICESat-2 point is retained in
the features list in order to maintain the spatial relationship among the pixels in the
prediction.

5.2. Training RF model by Combining Features

After testing Geometric Features and Remote Sensing Features, the training of the
RF model are based on the previous tests, and Geometric Features uses the results of
the number of neighbours listed in Table 5.7. These are part of the training data set
used to train the RF model. The training of the model involves organising the fea-
tures columns into a data frame. This can ensure the tests from previous sections are
honoured. Combining the Geometric Features and Remote Sensing Features allows
further analysis on the behaviour of each feature together.

Tests No. of Neighbours

1 Distance to Nearest ICESat-2 1
2 Nearest Neighbour height 10
3 Gradient between ICESat-2 points 1
4 Relative Height Difference 1

Table 5.7.: Geometric Features Tests

With reference to subsection 3.4.4, Laplace interpolation has the best error metrics
from traditional interpolation, therefore it is used as a comparison guide to measure
the performance of RF models in subsequent tests.

Figure 5.7 shows that using all the features yield results that shows the most domi-
nant geometric feature is the ’nearest neighbour height’. At almost 1.0, the ’nearest
neighbour height’ feature almost dominates the feature importance in RF. In terms of
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Interp’n Method Min
Diff

Max
Diff

RMSE MAE

Laplace -281.367 169.54 38.543 24.108
RF(All Features) -345.907 357.817 43.342 24.384
RF(All Features, except Nearest Neighbour Height) -597.919 620.033 55.711 34.986

Table 5.8.: Tasmania Data Interpolation and RF Prediction

error metrics, Table 5.8 shows that in terms of RMSE, RF(All Features) performs worse
than Laplace Interpolation, but MAE shows similar average errors. This is unexpected
given the fact that the use of both Geometric and Remote Sensing Features have given
a range of dataset for RF model.

The RF regression has no significant improvement on the Tasmania’s data. In fact, in
terms of RMSE and MAE, the RMSE have slightly worsen from to 278.836m to 295.312m
but MAE improved from 207.965m to 205.955m. Comparing to the results from tradi-
tional interpolation, using dataset from randomly distributed data has slight worsen
the overall prediction of elevation.

Due to its dominance of the feature ’nearest neighbour height’ it is removed and
tested again. This would let the remote sensing features contribute to more the pre-
diction of the elevation, and it can be seen from Figure 5.8c that the distribution of
features importance are more equal, where tree canopy remote sensing data and sur-
face temperature forms came first and second at 0.36 and 0.24, as shown in Figure 5.8.
This shows that random forest can perform interpolation without the need of very
closely correlated features, albeit produced less accurate results overall. Figure 5.8
also shows the top five most important features except ’nearest neighbour height’
(Geometric Feature) in descending order, are Landsat Tree Canopy Cover, Surface
Temperature, Latitude, Longitude, and Land Use Land Cover. Water mask, even
though its effectiveness established previously is able to bring water surfaces in the
DTM , ranks close to the bottom of the list of feature importance.

5.3. Application on Geographic Locations

Having tested on Geometric Features and Remote Sensing Features, combining these
features on different geographical locations is the next logical step. This section fo-
cuses on implementation on other locations in this study, namely, Grand Canyon,
USA, South Limburg, Netherlands, and Mount Taranaki, New Zealand.

All three locations have produced results that reflects local terrain, and would explore
further the comparison with Laplace interpolation. In terms of the error metrics, all
of them produces artefacts in the results that deviate from the ground truth. Indi-
vidual performance from the scatter diagram (in Figure 5.10a, Figure 5.12a and Fig-
ure 5.14a) shows that all these study locations produced results that are close to the
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diagonal line of predicted and actual elevation. Most of the residuals shown in the
scatter graphs in all locations concentrates around the zero residual line and fits well,
and with small number of individual points that lies farther out of the zero residual
line.

Location Min Diff Max Diff RMSE MAE

Tasmania, Australia -342.941 362.697 43.343 24.378
Grand Canyon, USA -658.465 656.926 76.173 39.438
South Limburg, Netherlands -120.219 83.171 7.861 3.862
Taranaki, New Zealand -758.779 546.25 28.45 11.107

Table 5.9.: Combined Features among Study Areas

5.3.1. Grand Canyon, USA

The location Grand Canyon, USA shows an area that represents more variations of
the landscape. In the study area, the river valley and the peak ranges from around
600 to over 2000 meters in elevation. This is in stark contrast to the previous study
location of the Netherlands. The differences in terrain and the distribution of ICESat-
2 data should reveal the robustness and the accuracy of the RF model in terms of
accuracy to the ground truth as well as to traditional interpolation, Laplace interpo-
lation.

Interp’n Method Min Diff Max Diff RMSE MAE

Laplace -792.423 931.947 109.017 69.526
RF -653.547 661.584 76.177 39.448

Table 5.10.: Prediction with Geometric Features

The results of Grand Canyon shows that by using Geometric Features alone is able
to produce a DTM that is close to the ground truth. Although the main differences,
positive and negative differences, compared to the ground truth follows closely to to
the ICESat-2 tracks. This is expected due to the fact that the nearest height being a
dominant feature in the RF regression.

The Grand Canyon shows that more complex terrain areas produces more areas of er-
rors, especially around the river gorges areas. Other terrain that area away from the
river gorge, by contrast, are relatively less error prone, which signifies the difference
between simpler and complex terrains. The improvement from Laplace interpolation
shows that there are areas in Grand Canyon that performs better using RF, these are
due to the fact that the terrain have less variation. The results is that the influence
from Remote Sensing Features and Geometric Features is able to establish relation-
ship more accurately across the ICESat-2 track due to the simpler terrain.
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5.3.2. South Limburg, Netherlands

The South of Limburg, Netherlands has more terrain features comparatively to the
coastal region in Western Netherlands. The combined Geometric features shown in
Figure 5.12 shows that a simpler terrain produces comparatively less error compared
to ground truth. The minimum differences shown in Table 5.11 sees that there is
improvement of the minimum difference from -206.447m to -120.75, and RMSE has
overall from 9.544m to 7.867m. The simpler terrain features in the Netherlands was
help due to the fact of the simpler terrain, and easier for the model to establish rela-
tionship across the ICESat-2 track similar to the Grand Canyon.

Interp’n Method Min Diff Max Diff RMSE MAE

Laplace -206.447 65.012 9.544 4.235
RF -120.75 86.09 7.867 3.867

Table 5.11.: Prediction with Geometric Features

The residual scatter graph shows that the predicted and actual points concentrates
around the zero-residual line, and this also shows well in the RMSE and MAE being
7.861 and 3.862 respectively. This means using Geometric Features alone is able to
produce results that are already quite close to the ground truth. The fact that the
influence of nearest neighbour height is 0.90 shows correlation, but not as dominating
as Tasmania of 0.99.

5.3.3. Mount Taranaki, New Zealand

Figure 5.14 shows that the cone shape of the volcano is a relatively simple terrain, and
the peak is visible. Although some artefacts can be seen, which follows the ICESat-2
tracks, this overall performance of using random forest produces results that fits will
in the residual plot.

Interp’n Method Min Diff Max Diff RMSE MAE

Laplace -467.64 234.029 26.520 22.881
RF -314.416 249.204 26.499 22.880

Table 5.12.: Prediction with Geometric Features

The overall difference between the ground truth shows that the errors concentrates
around the slope close to the peak, this is due to the fact that the changes in terrain
lies in between the tracks, and it can be difficult to register the details of the changing
terrain between the tracks without additional information. This is an anticipated
outcome due to the lack of data point between the tracks. This type of terrain example
also confirms that simpler terrain features suits well because of the lack of variation
in height differences between the tracks. Similar to the flatter surfaces Grand Canyon,
RF is performs better in these conditions.
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5.4. Use of Pre-trained RF model on Tasmania, Australia

After having seen differences of error metrics that are presented in previously in Tas-
mania, Australia, Grand Canyon, USA, Mount Taranaki, New Zealand and South
Limbrug, Netherlands. The trained models from the latter three study areas are then
applied to Tasmania, Australia to find whether these models are robust in modelling
an unknown location using RF regression.

Figure 5.15 shows that the resulting DTM performs quite similar to the ones tested
from Tasmania, Australia. The fact that it used data trained from non-local data
sources shows that spatial relationship are not entirely established from the error
metrics presented in Table 5.13

Interp’n Method Min Diff Max Diff RMSE MAE

Laplace -281.367 169.54 38.543 24.108
RF(Geometric Features) -342.562 358.449 43.356 24.398
RF(All Features) -345.907 357.817 43.342 24.384
RF(Combined Models) -341.878 392.526 43.759 24.606

Table 5.13.: Error Metrics from Combined Models and All Features Test from Tasma-
nia, Australia

Table 5.13 shows that the in terms of RMSE and MAE figures, RF(Geometric Features)
and RF(All Features) displayed similar results from previous models, the combined
models, however shows little improvement overall, in fact, slightly less accurate com-
pared to the models trained from local datasets. The RMSE slightly worsened from
43.356 to 43.759, though the significance of the difference is limited. It shows that
using combined model does not always yield better results than using local datasets
as feature data.

With all things considered, the significance of this change is not enough to conclude
that using combined models trained from non-local models perform worse, but it
shows no significant change can established between using non-local models and
combined features from local features. Compared to Laplace Interpolation, the per-
formance from the combined model is worse in terms of RMSE at 43.759m compared
to 38.543m; and MAE at 24.606 compared with 24.108. From Figure 5.15, one can es-
tablish that overall, the combined model is able to perform elevation prediction in
the DTM, and elevation difference against ground truth, like previous, follow closely
along the ICESat-2 tracks. For other areas between the tracks can vary widely based
on the terrain complexity.
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(a)

(b)

(c)

(d)

Figure 5.6.: Subsequently add remote sensing features to the random forest features
and results from adding features: (a) Water Mask (b) Geomorphon (c) Land Use
and Land Cover (d) NDVI
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(a)

(b)

(c)

Figure 5.7.: RF model using All Features on ICESat-2 Data
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5.4. Use of Pre-trained RF model on Tasmania, Australia

(a)

(b)

(c)

Figure 5.8.: RFR using All Features without Nearest Neighbour Height on ICESat-2
Data
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(a) RF predictions using Remote Sensing and Geometric Features

(b) Traditional Laplace Interpolation

Figure 5.9.: Grand Canyon, USA Comparing Different Methods
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5.4. Use of Pre-trained RF model on Tasmania, Australia

(a)

(b)

Figure 5.10.: (a) Grand Canyon–Combined Geometric Features (b) Scatter Residuals
Plot (c) Features Importance
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(a) RF predictions using Remote Sensing and Geometric Features

(b) Traditional Laplace Interpolation

Figure 5.11.: South Limburg, Netherlands Comparing Different Methods
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5.4. Use of Pre-trained RF model on Tasmania, Australia

(a)

(b)

Figure 5.12.: (a) South Limburg–Combined Geometric Features (b) Scatter Residuals
Plot (c) Features Importance
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(a) RF predictions using Remote Sensing and Geometric Features

(b) Traditional Laplace Interpolation

Figure 5.13.: Mount Taranaki, New Zealand Comparing Different Methods
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5.4. Use of Pre-trained RF model on Tasmania, Australia

(a)

(b)

Figure 5.14.: (a) Mount Taranaki– Combined Geometric Features (b) Scatter Residu-
als Plot (c) Features Importance
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Figure 5.15.: RF result trained from three geographic locations
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6. Discussion and Conclusion

To conclude this study, this section is going to sum up this study on random forest
as a means of performing spatial interpolation in sparse datasets such as ICESat-2.
The dataset used are elevation data sourced from local DEM and used the pattern of
the ICESat-2 mission to perform spatial interpolation. The term interpolation in the
context of this study means the prediction of elevation across the study area to find
if random forest is suitable as a technique. Also, the use of Geometric Features and
Remote Sensing Features allows the algorithm to build relationships between all of
the features, and finally presenting the elevations and use the results to compare with
the original DTM values.

Considering the fact that the resolution is set at 100m, the unsampled locations are
tested on the accuracy of the machine learning algorithm along with the features
used in this study. In general, Geometric Features have the most impact and present
the most importance in the accuracy of the RF regression model. Closely correlated
features such as nearest neighbour height is very dominant and consistently stands
at 0.9 or in importance in all geographical locations. When the most dominant fea-
ture is eliminated, however, Remote Sensing Feature of Landsat Tree Canopy Cover
stands at 0.36, which is significantly less influential. This shows that in most cases,
Geometric Features are the most dominant features in elevation prediction, and the
correlation plays a significant role in the results. The more correlated the feature is,
the more significance in terms of feature importance to the RF model.

The accuracy of the results varies across the board depending on the complexity of
the terrain. For terrains that such as the cone-shaped volcano, then RF performs com-
paratively worse compared to Laplace interpolation. More complex terrains such as
the Grand Canyon, the RF algorithm is able to construct a terrain that focus more
prominent terrain features due to the use of auxiliary data. Compared to Laplace
interpolation, the peaks and valleys are less visible as a result. Overall, different ge-
ographical locations perform differently in terms of accuracy. Flatter terrain such as
Netherlands tend to perform better than more complex terrains.

With reference to the background literature, RF does not inherently have an ”explicit
(geo)statistical model” [Hengl et al., 2018], and having more data, more covariates,
more data crunching algorithms as training dataset does not necessary lead to drastic
improvement in accuracy. Although there are sample size and resolution differences,
it shows that the RF Loss function Mean Square Error (MSE) tend to be quite high
at 48124.16, and R-squared: 0.6428 for 500 sample points at Lake Tahoe, California,
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Figure 6.1.: Figure showing prediction v actual scatter graph
Hengl et al. [2018]

USA; Loss function MSE of 0.0052395 and R squared of 0.8511794 at 157870 sample
points at Illinois and Indiana, USA Hengl et al. [2018]. Comparing this to the method
used in this study, the RF metrics for Tasmania stands at Loss function MSE at 860.610
and R-squared at 0.985 using 49796 sampled points.

The comparison in Tasmania have shown that using RF regression is not always yield
better results that traditional interpolation such as Laplace interpolation. In fact, there
even some test where the RMSE and MAE has worsened after introduction of geometric
features to the model. However, using the method to other geographic locations,
the comparison between Laplace interpolation and RF regression have improved the
error metrics with nearest neighbour height being the most dominant at over 0.9.
This shows that using RF as a prediction of elevation is not always a accurate option
compared to traditional interpolation. The cost of computation power and time to
generate a model might cost more time instead.

After eliminating the most dominant Geometric Features (namely nearest neighbour
height), it can be concluded that features without close correlation between each
other and ground elevation can be used in the random forest to get results that are
close to the ground truth. The advantage of using this approach is that the remote
sensing features such as water-mask, land-use and land-cover features are able to pro-
vide more information to the random forest and get better estimation without using
information from gDEM.

Since the main constraint of this research is to perform RF regression on a terrain
without any global DEM and its derivative of analytical features such as water shed
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analysis, flow accumulation, surface roughness etc. This is the primary difference
between this study and the study done by Hengl et al. [2018]. Despite the results
was not as expected, more research can be further investigated. As the chapter 5
have established, different types of terrain complexity would produce different error
measure, and it has been tested that simpler terrain produces better accuracy than
traditional interpolation. Further investigation can focus on different complexity of
terrains or focusing on adjacent terrains. Using a new measurement of Geometric and
Remote Sensing Features that caters to terrain complexity may be an area of research.
The final DTM, though without DEM derived features, RF regression can still be able to
achieve a small improvement on elevation prediction against traditional interpolation
techniques on selected terrains.
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

Criteria Grade

Input data 3
Preprocessing 2
Methods 2
Computational environment 2
Results 1

Table A.1.: Self Evaluation
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A.2. Reflection

To reproduce the results from this thesis, there are several tools that needed accounts,
namely NASA EarthData account and Google account for Google Earth Engine. The
data used in this research can be accessed freely on the internet from data sources
such as NASA, Open Altimetry OpenAltimetry [2023], and Open Topography Open-
Topography [2023]. However, obtaining the data requires more than clicking down-
load on the browser. The data gathering took quite time for me, since the icepyx
python package needed an account and the example code did not explain too much
on the specific ATL08 data that I needed. The trial and error at the initial phase took
some time, but I managed to download the required data after reading the docs and
forums. The ICESat-2 elevation can be quite easily accessed once familiar with the
icepyx package.

Moreover, Google Earth Engine is another data source that I used to gather Remote
Sensing data. These data are freely available on Earth Engine itself, and also data
from the GEE community catalogue. GEE community catalogue is a supplement
data source that has more data featuring Population, Socioeconomic, Soil, Biological,
Physical data etc. Earth Engine’s data are normally sourced from government agen-
cies whereas GEE community catalogue are sourced from other researchers that are
willing to make data available openly for free.

To reproduce the results, analysis tools are crucial to begin analysis, and most of the
packages are available in Python Anaconda, such as scikit-learn, geopandas, and xar-
ray. These tools are also freely available. To use these tools, it took time to browse
the documentation and online forums for its implementation is available for help.
Overall, to reproduce the results from the thesis, the experimentation of different al-
gorithms such as different types of Random Forest algorithms published form scikit-
learn, Ranger, XGBoost since each of these algorithms can have different results, each
of these tools are tested to find the most accurate.

The biggest hurdle in my opinion is the coordinate system change. Since the ground
truth from different location uses different coordinate system, aligning of these coor-
dinates system needs some work especially when calculating the euclidean distance
between the ICESat-2 points and the unsampled location. The solution is to calculate
it in their respective coordinate system and then transforming these into to EPSG:4326
for alignment between all the locations. For exporting results, I find that xarray is a
better tool that geopandas for geospatial data because it allows me to export in the
desired coordinate system in one line of code. I appreciate the use of xarray, and I
find this tool largely hassle-free to use.

Although reproducing the results from data sources are not always straightforward,
but using different python tools and reading documentation is able to find solution
along the way. There are different consideration when aligning with different coordi-
nate systems, and I find that there are always more elegant solution, but for the pur-
pose of this research, the functionality of transforming coordinates systems is good
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enough for producing the results for this research.
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B. Features Data

Name of Feature Resolution Derived

World Settlement Footprint (WSF) 2019 10m Landsat imagery used for generating the
WSF evolution Marconcini et al. [2020]

Geomorpho90m Geomorphometric Lay-
ers

90m Derived from MERIT-Digital Elevation
Model Amatulli et al. [2020]

ESRI 2020 Global Land Use Land Cover
from Sentinel-2

10m Sentinel-2 imagery at 10m resolution
Karra et al. [2021]

GFSAD Landsat-Derived Global Rain-
fed and Irrigated-Cropland Product
(LGRIP)

30m Landsat 8 time-series satellite sensor data
for the 2014-2017 Teluguntla et al. [2023]

ASTER Global Water Bodies Database
(ASTWBD) Version 1

30m Created ASTER Global Digital Eleva-
tion Model (ASTER GDEM) Version 3
data product by the Sensor Information
Laboratory Corporation (SILC) in Tokyo
NASA/METI/AIST/Japan Spacesys-
tems And U.S./Japan ASTER Science
Team [2019]

Bare Earth’s Surface Spectra 1980-2019 250m identify global bare surface areas and
their dynamics based on multitemporal
remote sensing images to aid the spa-
tiotemporal evaluation of anthropic and
natural phenomena Demattê et al. [2020]

JRC Global Surface Water Mapping
Layers

30m Classification of Water Pekel et al. [2016]
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