Change of Plans!
Adaptive AlphaZero Planning Methods
for Novel Test Environments

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Isidoro Tamassia
born in Rome, Italy

]
TUDelft

Sequential Decision Making Group
Department of Intelligent Systems
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

©2025 Isidoro Tamassia. All rights reserved.

Change of Plans!
Adaptive AlphaZero Planning Methods
for Novel Test Environments

Author: Isidoro Tamassia
Student id: 6054765

Abstract

AlphaZero and its successors employ learned value and policy functions to enable
more efficient and effective planning at deployment. A standard assumption is that the
agent will be deployed in the same environment where these estimators were trained;
changes to the environment would otherwise violate their expectations and could result
in suboptimal decisions. In this work, we investigate how environment changes affect
the usability of the learned estimators and develop criteria that can quickly detect and
localize such changes. Moreover, we develop novel planning methods that leverage
these principles as well as further modifications of standard Monte Carlo planning
techniques. These methods demonstrate superior performance under several tested en-
vironment configurations. The main assumptions and limitations of our approaches are
also discussed, providing a foundation for future research to broaden their applicability.
The code is available on GitHub[]

Thesis Committee:

University supervisor: Prof. Dr. Wendelin Bohmer, Sequential Decision Making, TU Delft
Committee Member: Prof. Dr. Anna Lukina, Algorithmics, TU Delft

'https: //github.com/TheEmotionalProgrammer/alphazero-vs-env-changes

isidorotamassia@gmail.com
https://github.com/TheEmotionalProgrammer/alphazero-vs-env-changes

Preface

It feels bittersweet to reach the end of this adventure, made unforgettable by the exceptional
people I have had the fortune to meet along the way.

I would first like to thank my thesis supervisor, Prof. Wendelin Bohmer, for providing
invaluable guidance and feedback throughout the development of this project, as well as
introducing me to the field of Deep Reinforcement Learning with his MSc course. 1 would
also like to thank PhD student Max Weltevrede for reviewing earlier drafts of this manuscript
and for the many fruitful discussions we had during our meetings.

My heartfelt thanks go to all the amazing friends I met in Delft, who made this experience so
much more than just studying. I am especially grateful to Roberto for all the tips and support
provided during my first year in Delft, as well as for being a great teammate during the many
group projects we worked on together. I am also grateful to my partner, Sabrina, for listening
to my daily complaints about pretty much anything, as well as suggesting interesting algo-
rithmic ideas that were unfortunately too creative to be practically implemented in this thesis.

Finally, I would like to express my deepest gratitude to my family for all the remote support
they have provided over the past two years, particularly to Angela and Alessandro, the best
”life supervisors” a son could ever hope for.

Isidoro Tamassia
Delft, the Netherlands
June 12, 2025

iii

Contents

[Preface] iii
v
List of Kigures vii
(I__Introduction| 1
[LT Contributionsl 3
.................................... 3
2° Background| 5
[2.1 Reinforcement Learning| 5
2.2 Monte Carlo Tree Searchl 8
2.3 AlphaZero|. 12
2.4 Generic Tree Evaluation and Construction| 15
|3 Detecting Environment Changes| 19
[3.1 Value as a Change Indicator] 21
[3.2 Detecting Obstacles| 24
[3.3 Addressing Value Underestimation with an Overestimation| 27
@ Planning in a Changed Environment| 29
i.1 AlphaZeroDetection| 29
4.2 Penalty-Driven Deep Planning| 37
4.3 Is Depth All You Need?|. 45
5 Related Work 49
[5.1 Planning with Imperfect Estimators| 49
[5.2 Modified MCTS Planning|. 49
[5.3 Planning with an Imperfect Model| 50

CONTENTS

|6 Experimental Setup| 51
.................................... 51
6.2 Evaluation|. L 54

[7_Results| 59

1__Evaluation of the D onCriterial 59
[7.2 Main Evaluation of the Planning Algorithms|. 61
73 _CarGoal Evaluationl v it 73

8 Discussion 77

9__Conclusions and Future Work 81

1 Futur ekl . o 82

Bibliograp 85

|A" Implementation Details| 89
|A.1 'Tramning Details and Hyperparameters| 89
|A.2 Evaluation Details and Hyperparameters| 95

B Complementary Experiments| 97
[B.1 Influence of the Exploration Constant on AZ+PUCT and AZ+UC'T Baselines| 97

100

nfiuen of th a Parame on V] and [V

vi

List of Figures

21

A single iteration of MC'TS Planning, from left to right: the agent selects a path

using its selection policy and reaching a not-fully-expanded node, expands a

new child, estimates 1ts value with a random rollout, and finally backpropagates

the value through thepath|

3.1

A representation of the agent following 7, for n steps in the training and test

environments. The two trajectories 7, and 7,, first deviate after ¢ steps.|

21

B2

An obstacle prevents the agent from reaching state s;.; and instead makes it

loopins;forever|

24

B3

Negative deviation example: the agent keeps trying to move beyond the obstacle

and gets one step farther away from the goal each time.|

25

B4

Positive deviation example: the agent keeps trying to move beyond the obstacle

and gets one step closer to the goal eachtime.|

27

ks
i

Visual example of the application of the Value Search mechanism. The light-

yellow cells correspond to the states that the agent sees during planning. Initially,

the agent rolls out the prior and detects an obstacle by bumping into the wall.

The tree 1s later expanded, and we look for states beyond the obstacle. The red

state has a larger value than the problematic state (red cross), but rolling out

the trajectory from it results in another bump. Conversely, the green state has

a value as high as the problematic state, and we do not detect any obstacle by

checking again our criterion starting from it. The agent can then reach that state

by following the corresponding trajectory in the expanded tree. |

MiniTrees detection, planning, and Value Search visualized.|

31
33

QI | D)

Example of the tree re-usage mechanism on a simple binary tree. The green

node 1n each tree corresponds to the current state s; in the real environment at

step t. After step 1, we can reuse the right subtree of the previous root node

as the corresponding child is the only one whose state 1s s;. After step 2, we

could reuse both children of the previous root, but we choose the left one as the

corresponding subtree 1s deeper.|

ERININ NN R R R

4

Three different trees with branching factor b =1, b = 2, b = 3, respectively,| . .

vii

38

List oF FIGURES

4.5 Example of integrated change detection during planning, with v = 0.95 and

| e = 0.01. The green circled node represents the root of the planning tree. The

| yellow circled nodes are traversed by the selection policy,| 40
|4.6 Special cases in detection. The agent sits on the root node, which is the node |
| for which we estimate the n-step value for detection, unless one of these two |
| special casesoccurs.| L. 41
|4.7 Two examples of the way our pseudo-deterministic evaluation policy “sees’” the |
| penalizednodes|. 43
4.8 Example of loop blocking mechanism. From left to right, we expand two nodes |
| at a time and block exploration through actions that led toaloop.|. 47
[6.1 Empty Grid World Environments. The green cell represents the initial state. |
| The yellow cell represents the goal state.| 52
6.2 Maze Grid World Environments. The blue cells represent obstacles that the |
| agent Cannot SUTPASS.| « « v v v v v v v v e e e e e e e e e e e e e e e 52
|6.3 CarGoal environment visualized. The goal position is indicated with a dollar.| . 53
[6.4 8 x 8 test challenges for agents trained on|Figure 6.1af 55
6.5 16 x 16 test challenges for agents trained on|Figure 6.1b| 55
6.6 MAZE test challenges for agents trained on|Figure 6.2aland |Figure 6.2b] 56
|6.7 CarGoal test configurations. Obstacles are represented by the parked (static) |
| vellowcears.| 56
[7.1 Test configurations D3,D6,D9,D12,D15 for detection experiment, where Dn |
| indicates a Manhattan distance of n steps between the initial state (0, 0) and the |
[CCobstaclel o oo 59
[7.2 Accuracy and sensitivity errors of C and Cpax detection criteriaf. 61
{7.3 MINITREES and MEGATREE results on 8 x 8 and 16 x 16 grid world test |
| configurations.] e e e 62
[7.4 PDDP results on 8 x 8 and 16 x 16 grid world test configurations.| 63
[7.5 Ablation study of PDDP features on NARROW test configurations.|. 63
[7.6 Effect of applying PDDP penalties on NARROW 8 x 8. The agent s positioned in |
| (0,2) (green border state). Values are averaged across 10 x 10 training/evaluation |
Cseeds] - oo oo 64
{77 Effect of applying PDDP penalties on NARROW 16 x 16. The agent 1s po- |
| sitioned 1n (0,5) (green border state). Values are averaged across 10 x 10 |
| training/evaluationseeds.| Lo L 65
[7.8 PDDP results on MAZE test configurations. The label MAZE_X — MAZE_Y |
| on top of each plot indicates training on the MAZE_X configuration and testing |
[onthe MAZE Y onel L 66
[7.9 Results of detection-based algorithms with clockwise (CW) obstacle deviations |
| on 8 x 8 and 16 x 16 grid world test configurations, compared with baselines.|. 67
[7.10 Results of detection-based algorithms with counter-clockwise (CCW) obstacle |
[deviations on 8 X 8 and 16 x 16 grid world test configurations, compared with |
[haselines] o oo 67

viii

List of Figures

[7.11 EDP results on 8 x 8 and 16 x 16 grid world test configurations.| 68
[7.12 Ablation study of EDP features on SLALOM test configurations.| 69
[7.13 Comparison of EDP planning with and without blocking loops on SLALOM |
| 8 x 8. The agent 1s positioned in (0,5) (green border state).| 70
[7.14 Comparison of EDP planning with and without blocking loops on SLALOM |
| 16 x 16. The agent 1s positioned in (/,14) (green border state).| 70

[7.15 EDP results on MAZE test configurations. The label MAZE_X — MAZE_Y |
| on top of each plot indicates training on the MAZE_X configuration and testing |

[7.16 Performance of all novel algorithms on 8 X 8 and 16 X 16 configurations.| . . . 72
[7.17 PDDP and EDP performances compared on MAZE configurations. The label |
| MAZE_X — MAZE_Y on top of each plot indicates training on the MAZE_X |
| configuration and testing on the MAZE Y one.| 72
[7.18 Return on CarGoal test configurations.| 73

[7.19 Fraction of seeds reporting at least one collision on CarGoal test configurations.| 74

|[A.1 MLP architecture with a variable number of hidden layers /. The Y block |
| represents a sum and the o block represents an activation function (e.g., ReLU).| 92

|A.2 Mean and SD of NN estimates over 10 seeds on 8 X 8 empty grid environment.| 94
|A.3 Mean and SD of NN estimates over 10 seeds on 16 X 16 empty grid environment.| 94

ean and e ate e e nvironment| . 94
Mean and SD of 1m r 1 n the MAZE RL environment| . 95

[B.1 Influence of the (' parameter on AlphaZero baselines in 8 x 8 grid world test |

| configurations.| e e 98
[B.2 Influence of the (" parameter on AlphaZero baselines in 16 x 16 grid world test |
| conflgurations.] e 98

[B.3 Influence of the C' parameter on AlphaZero baselines in MAZE test configu- |
| rations with MAZE LR training. The label MAZE_X — MAZE_Y on top of |
| each plot indicates training on the MAZE_X configuration and testing on the |

[B.4 Influence of the C' parameter on AlphaZero baselines in MAZE test configu- |
[rations with MAZE_RL training. The label MAZE_X — MAZE_Y on top of |
| each plot indicates training on the MAZE_X configuration and testing on the |

[MAZE Y onel. e 99
[B.5 Influence of the ' parameter on AlphaZero baselines in CarGoal test configu- |
CTalions] . . v v v e 100

[B.6 Influence of 5 and C' on MVC baselines in 8 x 8 grid world test configurations.| 101
[B.7 Influence of 5 and C' on MVC baselines in 16 x 16 grid world test configurations.{l01
[B.8 Influence of S and (' on MVC baselines in MAZE test configurations with |
| MAZE_LR training. The label MAZE_X — MAZE_Y on top of each plot |
| indicates training on the MAZE_X configuration and testing on the MAZE_ Y |

iX

List oF FIGURES

[B.9 Influence of the 5 and C' on MVC baselines in MAZE test configurations with

[MAZE_RL training. The label MAZE_X — MAZE_Y on top of each plot

| indicates training on the MAZE_X configuration and testing on the MAZE_Y

[B.10 Influence of 5 and C' on MVC baselines in CarGoal test configurations.|

Chapter 1

Introduction

Over the last two decades, Reinforcement Learning (RL) has led to significant breakthroughs
in several domains of application, ranging from dominating the landscape of chess-playing
programs to enabling significant advancements in control and robotics. This was probably
hardly imaginable in the past if looking back at the way it all started, with tabular rein-
forcement learning methods that, despite being theoretically sound, could never scale to
real-world applications due to their inherently large or infinite state and action spaces. The
advent of neural networks, however, completely changed the perspectives of both model-free
methods, which teach an agent to act in an environment by directly interacting with it, and
model-based methods, which rely on a given or learned model of the environment to plan
ahead.

Two major contributions can be identified as the true turning points for model-free RL
and model-based RL, respectively. In 2013, a team of research scientists from DeepMind
(today’s Google DeepMind) provided the first successful, end-to-end integration of a neu-
ral network architecture and a model-free reinforcement learning framework [21[], which
learned to play Atari games with a human-comparable performance. This is considered the
actual start of the whole field of research now referred to as Deep Reinforcement Learning.

A few years later, in 2015, the same company released a computer program called AlphaGo
[29]], which achieved superhuman performance in the game of Go by combining supervised
learning, reinforcement learning, Monte Carlo Tree Search [[8]], and game-specific heuristics.
In a series of subsequent papers [31]] [30], this was turned into a general, model-based RL
algorithm called AlphaZero, able to reach superhuman performance in Chess, Shogi, and
Go with the sole knowledge of the rules, i.e., a perfect simulator of the corresponding envi-
ronment. AlphaZero trains a neural network that provides a prior policy and value function,
which are used to guide planning at deployment. This was pushed even further in 2020 with
the development of the MuZero algorithm [28]], which learns both an internal representation
of the environment and a dynamics model in that latent space, enabling planning without ac-
cess to the true environment dynamics. This algorithm not only matched the extraordinary
results of its predecessors in two-player games, but also achieved state-of-the-art results
on the aforementioned Atari games suite, where model-based algorithms had previously

1

1. INTRODUCTION

struggled. As of today, an active branch of RL research focuses on improving AlphaZero
and MuZero to address increasingly complex challenges, as well as reducing the substantial
computational resources required to train the associated neural networks.

A potential issue is that AlphaZero-like algorithms have been mostly experimented on
environments whose dynamics do not change over time. This implies that the neural net-
work is still reliable at deployment if properly trained beforehand. In reality, many tasks that
an agent is required to perform might change from time to time; this is often the case for
robots, which can be trained in controlled or simulated environments to perform a variety
of tasks, but once deployed in the real world usually face discrepancies, such as minor
changes in layout, lighting, or object positioning, that were not present during training. For
example, a household robot trained to navigate an apartment may suddenly encounter a
chair that has been moved or a new piece of furniture, requiring it to adapt its behavior
despite having never seen this configuration before. Similarly, a self-driving car trained on
traffic patterns and road layouts in a specific area may encounter unexpected obstacles, such
as a temporary construction site, a road closure, or a newly installed traffic signal. These
changes can significantly impact the agent’s ability to act safely and effectively if they are not
adequately accounted for. Model-free RL can struggle in this scenario, but if we are given
a model of the test environment, we may be able to check whether the predictions of the
learned policy and value still hold and use this information to influence the agent’s decisions.

This poses some questions: can previously learned policy and value functions still be used
to guide a planning algorithm at deployment in a partially different environment? When is
a change so disruptive that we would need to re-train the network? In principle, standard
AlphaZero may compensate for such changes if we can simulate for a long time since it
integrates the rewards observed while planning at deployment. However, in settings where
our planning time per step is limited or rewards are sparse, this may not be sufficient for the
agent to realize early enough that its priors are inaccurate. In other words, our self-driving
car might come too close to an obstacle that was not present during training and realize it
needs to steer when it is too late to change direction.

Our work tries to answer the following research questions:

1. How can we detect changes to the environment at deployment when planning with
learned estimators?

2. How can we leverage such detection principles to re-plan around these changes and
subsequently overcome them?

3. What standard features of AlphaZero planning might be modified or improved to better
plan and act in a potentially changed environment?

We address question 1 with an analysis provided in We address questions 2
and 3 with the novel algorithms proposed in [chapter 4] and conduct associated experiments

reported in

2

1.1. Contributions

1.1

Contributions

Our work includes several scientific contributions, summarized as follows:

1.2

We provide an analysis of the problems raised by planning with learned estimators
(value, policy) when deployed in a changed environment, with a particular focus on
the AlphaZero algorithm.

We develop novel analytical criteria aimed at detecting and localizing detrimental
changes to the test environment when planning with learned policy and value functions.

We develop a novel family of planning algorithms named AlphaZeroDetection (AZD),
leveraging our detection criteria to localize problems far into the future and explore
alternative action paths aimed at overcoming detrimental changes to the environment.

We develop the Penalty-Driven Deep Planning algorithm (PDDP), which integrates
the detection criteria directly into standard AlphaZero tree construction and penalizes
changed paths by decreasing the corresponding value estimates.

We identify several weaknesses of standard AlphaZero planning that can particularly
damage performance in changed environments and propose simple modifications that
dramatically boost it, even without relying on detection mechanisms. We implement
these changes in the Extra-Deep Planning algorithm (EDP).

We suggest several directions for future work, which could broaden the applicability
of our methods by relaxing some of the main assumptions.

We provide anopen-source implementation of all the mentioned algorithms, integrated
into a general-purpose AlphaZero framework.

Outline

The remainder of this manuscript is structured as follows:

In we provide the necessary background for understanding the work pre-
sented in this thesis.

In we provide an analysis of the problem of detecting changes to the
environment. We present methods for identifying and localizing such changes, and
investigate the error that we might commit depending on the employed assumptions.

In we describe our novel planning methods.

In|chapter 5|we connect our work to existing literature, examining how our work aligns
with and diverges from previous approaches.

In[chapter 6| we describe our training and test setups.

https://github.com/TheEmotionalProgrammer/alphazero-vs-env-changes

INTRODUCTION

e In we present our main results and highlight the most prominent benefits
and drawbacks of our novel algorithms.

e In we further discuss the outcomes of our analysis and experiments, as well
as highlighting potential limitations.

* In{chapter 9)we draw our conclusions and suggest some promising directions for future
work.

e In we provide the implementation details of our training and evaluation
frameworks, including the hyperparameters used.

* In[Appendix B|we provide results from complementary experiments, such as extensive
evaluation and hyperparameter tuning of the employed baselines.

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that focuses on how agents
take actions in an environment to maximize cumulative rewards. It is fundamentally based
on the concept of learning through interaction with an environment by receiving feedback
in the form of rewards or penalties.

Mathematically, an RL environment is usually framed as a Markov Decision Process (MDP)
[S], defined by the tuple:

(S,p, A, P,R,7)
where:
» S is the set of states the agent can occupy.
* pis the initial states distribution.

» A is the set of possible actions the agent can take.

P(s'|s,a) is the transition probability, defining the likelihood of moving to state s’
after taking action « in state s.

* R(s,a,s") is the reward distribution, which provides feedback to the agent depending
on the action « taken in state s, and on the resulting next state s’.

* v € (0, 1] is the discount factor, which determines the importance of future rewards.
The MDP formulation comprises several fundamental assumptions:

* Discrete time: MDPs assume that decision-making occurs at discrete time steps,
indexed as t = 0,1,2,.... This contrasts with continuous-time models, where
transitions and decisions can happen at any instant.

2. BACKGROUND

* Stationarity: MDPs assume that the transition probability P(s|s, a) and the reward
function R (s, a, s’) do not change over time.

* Markov Property: the future state distribution depends only on the current state and
action, i.e. P(8t+1 | Sty Aty St—1yQt—1,5- -5 S0, ao) = P(8t+1 | St, at).

* Full observability: the current agent observation corresponds exactly to the cur-
rent state. This assumption can be relaxed by employing a modified version of an
MDP, known as a Partially Observable Markov Decision Process (POMDP) [3]. In a
POMDP, the agent no longer has access to the full state but instead receives observa-
tions that provide partial information about the true underlying state. This introduces
an additional layer of complexity, as the agent must maintain a belief over possible
states based on its observation history.

Moreover, we define the expected return, that is, the expected cumulative reward, obtained
by starting from state s and acting under policy 7 as:

re~R(St,at,5t+1)

o0
Ve(s) =E |> ' seraPlsrar)
t=0 S0=s8

This is commonly referred to as value function.

The goal of reinforcement learning is to find an optimal policy 7*, which maps states
to actions in a way that maximizes the expected cumulative reward:

7*(s) = arg max Vy(s),

We can further define the action-value function (or Q-function), which represents the ex-
pected return obtained by starting from state s, taking action a, and thereafter following
policy 7:

e re~R(st,at,5¢41)

— t st41~P(st,at)
el = | 3ot
t=0 So=S,ap=a

The function Q) (s,a) quantifies the expected return for executing action a in state s and
subsequently following policy 7. It can also be expressed via the following relationship,
known as one of the Bellman equations [4]]:

QW(S7 a) =K [Tt + ’}/Vﬂ—(StJrl) TtNR(57a73t+l)i|

st+1~P(s,a)
This allows us to treat RL problems as step-by-step optimization problems.
Note that this formulation enables the proper modeling of stochastic environments. The
transition dynamics and reward function can be simplified under the assumption of a deter-

ministic environment. Specifically:

6

2.1. Reinforcement Learning

* The transition probability function P(s’|s, a) becomes a deterministic mapping, mean-
ing that for each state-action pair (s, a), there is a unique next state s’. This is often
expressed as a deterministic transition function f : S x A — S, where s = f(s,a) .

* The reward distribution R(s’, s, a) also becomes a deterministic function R : Sx.4 —
R where ri = R(Si, ai).

In the remainder of this thesis, we will primarily focus on deterministic environments, and
therefore, the simplifications above apply.

Although a wide variety of RL algorithms exist, they can generally be classified into the
following two categories:

2.1.1 Model-Free RL Methods

These methods do not assume knowledge of the transition dynamics P(s’|s, a) and let the
agent learn by directly interacting with the environment. They are often divided into two
subclasses of methods:

* Value-based methods: These methods learn a value function, such as Q-learning
[36] and Deep Q-Networks (DQN) [21]]. They then extract a policy from the learned
value.

* Policy-based methods: These methods learn a policy directly, such as REINFORCE
[37] and Actor-Critic methods [[16]].

One of the main advantages of model-free RL is that it avoids model bias and error, thereby
improving the performance and robustness of the agent. By learning directly from expe-
rience, the agent can adapt to the environment without depending on a potentially flawed
or incomplete model. Additionally, model-free RL is often simpler to implement since it
focuses solely on learning a value function or policy without the need to design and update
a model.

2.1.2 Model-Based RL Methods

Model-based approaches attempt to learn the transition dynamics or use a given transition
model to plan ahead. Examples include Monte Carlo Tree Search [8] (given model), Alp-
haZero [30]] (given model), and MuZero [28] (learned model).

The primary advantage of model-based RL methods is that they can simulate and evaluate
potential actions without requiring direct interaction with the environment. This capability
allows for learning effective policies with fewer real-world trials, often increasing sample
efficiency. However, these methods can be computationally intensive due to the complexity
of learning and maintaining accurate models, which may limit their applicability in certain
scenarios.

2. BACKGROUND

Given the particular relevance of Monte Carlo Tree Search and AlphaZero in the context of
this thesis, we provide further information in[section 2.2]and [section 2.3] respectively.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an online search algorithm used for decision-making
in large or infinite state spaces. The term and original algorithm were coined by Remi
Coulom [8] in 2006 as a way to apply Monte-Carlo methods to game tree search. In the
same year, Kocsis and Szepesvari [15] first proposed the closely related UCT algorithm
(Upper Confidence bounds for Trees), which applied multi-armed bandit theory to guide
Monte-Carlo tree exploration. In the following years, MCTS gained extensive popularity as
a game-playing algorithm, particularly for its remarkable results in the domain of Go [7]].

Algorithm 1: MCTS PLANNING
Input: Environment model env, planning budget IV, rollout budget n, discount
factor v, selection policy 7|
Output: Root node root with updated statistics

Initialize root <— Node(env)
while root.visits < N do
expNode, expAction < SELECTION(700t, Tge])
if expNode.terminal then
L Backup(expNode,)

N AW N =

else
child < Expanp(expNode, expAction)
child.value < RoLrLout(child,n,~)
Backup(child,)

NI RN B

10 return root

The key idea behind MCTS is to incrementally build a search tree by performing simulations
and using the results to refine future decisions. In this context, a search tree is a tree where
each node represents a unique action sequence started from the root, corresponding to the
current state in the real environment. This formulation avoids inconsistencies that could
arise if we directly mapped nodes to states, as different action sequences can lead to the
same state, but the nodes will still be distinguished. Note that the available simulator might
not perfectly reflect the real environment, i.e., it is not always assumed that we know the true
transition and reward models; however, an extensive amount of literature does in practice
make this assumption, as this is true, for instance, in games such as chess, go, and shogi,
which have been the most common benchmark for MCTS-based algorithms. Moreover,
standard MCTS can only be applied in discrete action spaces, which simplifies some of the
considerations reported in the rest of this section. Nonetheless, modern approaches adapting
MCTS to continuous action spaces exist in the literature (e.g., [39]], [13]], [19]).

8

2.2. Monte Carlo Tree Search

‘\
SELECT
Y
BACKUP
SELECT
(i O \

EXPAND BACKUP
ROLLOUT

Figure 2.1: A single iteration of MCTS Planning, from left to right: the agent selects a
path using its selection policy and reaching a not-fully-expanded node, expands a new child,
estimates its value with a random rollout, and finally backpropagates the value through the
path.

MCTS operates in four main phases, which are repeated for a fixed number of iterations,
usually referred to as the planning budget, in the loop described in

1. Selection: Starting from the root node, child nodes are recursively selected based on
a selection policy until a node that has not been fully explored is reached. This phase

is detailed in

2. Expansion: If the selected node is not a terminal state, a child node is added to the
tree, usually uniformly at random. This phase is detailed in[algorithm 3]

3. Simulation (Rollout): A simulation is performed from the newly added node using
a default policy (often random) until a terminal state is reached, in order to estimate

its value. This phase is detailed in[algorithm 4]

4. Backpropagation: The outcome of the simulation is propagated back through the
tree to update the value estimates of the visited nodes along the selected trajectory.

This phase is detailed in

A sequential visualization of these phases is reported in As mentioned, the
selection phase often employs the UCT formula to balance exploration and exploitation.
This policy is based on the UCT score:

UCT(z,a) = Q(zWa) + C

where:
e 1 is a node of the tree.

* z W a is the node that we enter by taking action a from the state in node x.

2. BACKGROUND

Algorithm 2: SELEcTION: Traverse the tree using a given selection policy.

Input: Root node root, selection policy mge|
Output: Node to be expanded exp N ode, action to expand it expAction

node < root
while not node.terminal do
Select action a using selection policy 7s] on node
if a ¢ keys(node.children) then
| break

node <— node.children{a}

N AW N =

=)

7 return node, a

Algorithm 3: Expanp: Expand the chosen node with a selected action.

Input: Node to be expanded expN ode, action to expand it expAction
Output: Child node

env < expNode.env.copy()
env.step(expAction)

child <— Node(env)

return child

AW N

* N(xz)isthe total visit count of node . Note that this correspondsto 14+ . 4 N(zWa)
since we always start planning from the root.

* Q(z) is the mean cumulative reward for the subtree rooted in node z, as computed in
algorithm 5| In other words, this is the arithmetic average of the discounted returns
of the N (x) trajectories passing through z.

¢ ('is an exploration constant that controls the balance between exploitation and explo-
ration.

The UCT score is turned into the utilized selection policy as:

d(a € argmax UCT(z,a’))
a’cA
|arg max UCT(z, a))|
a’€A

5(z) = 1 ifz is‘true
0 otherwise

71-{JCT (l’, CL) =

Where:

In practice, if there are no ties in the UCT scores, this policy is deterministic and sampling
returns the single best action according to it. Otherwise, it corresponds to sampling uni-
formly at random among the multiple actions that maximize the score. In the remainder of
this work, we will indicate such almost-deterministic policies, including fully deterministic

10

2.2. Monte Carlo Tree Search

Algorithm 4: RoLrLouT: Estimate the value of the given node with a random
rollout starting from the corresponding state.

Input: Node to be evaluated node, rollout budget n, discount factor ~y
Qutput: Estimate of the node’s value value

1 if node.terminal then
2 L return 0

3 value <+ 0
4 env <+ node.env.copy()
5 for i < Otondo

6 Sample an action a uniformly at random.
7 s, env.step(a)

8 value — value + 'r

9 if s.terminal then

10 L break

11 return value

Algorithm 5: Backur: Traverse the tree in reverse order to backup the value of
the expanded node and update mean Q value estimates.

Input: Previously evaluated leaf node node, discount factor ~y

1 R < node.value

2 while node is not none do

3 R < ~v- R+ node.r
node.Rsum < node.Rsum + R
node.visits < node.visits + 1
node.Q — node.Rsum

node.visits
node < node.parent

N & A

ones, with a dash (') for notation convenience.

Note that if an action a is not expanded, then N(x & a) = 0, and therefore the formula
would imply UCT(x, a) = oo for all such actions. In practice, we can see this as applying
the selection policy only to fully expanded nodes, while if any set of actions still needs to be
expanded, we pick one of them uniformly at random. Note that we could not do otherwise,
as the value estimate of a node needed to compute its UCT score is only known once that
node is created and the corresponding rollout is performed.

After planning, a tree evaluation policy is used to decide which action to take in the real
environment based on the statistics of the constructed tree. This policy is applied to the root
node and is typically deterministic, as we aim to select the best possible action now that we
must perform it in the real environment. A typical approach used in conjunction with UCT

11

2. BACKGROUND

is to employ a visitation counts policy that simply picks the action whose corresponding
child has been visited the most during planning, formally defined as follows:

d(a € argmax N(z Wa'))

/ a’eA
= 2.1
mv(z,a) larg max N (z W a'))| @1
a’'eA
It is also possible to sample an action from a stochastic version of the policy:
N(zWa
mv(z,a) =](V(x)) (2.2)

2.3 AlphaZero

AlphaZero (AZ) is a framework that combines neural networks (NNs) with an MCTS
variant (AZMCTS), which gained extensive popularity due to its success in mastering
complex games like Chess, Shogi, and Go, without relying on human knowledge. Unlike
its predecessor AlphaGo, which incorporated expert data and domain-specific heuristics,
AlphaZero learned entirely from self-play, making it more generalizable. When applied to
single-agent domains, the self-play mechanism reduces to simply sampling trajectories from
the environment.

2.3.1 Neural Network Architecture

The core of AZ is a deep neural network fy : S — AMI=1 x R parameterized by #, which
takes a state s as an input and outputs a policy distribution 7y € A~ [l and a value
vg € R. For notation simplicity, we will use vy(s) to directly indicate the value-head NN
output given input s, my(s) for the policy-head NN output, and 7y(s,a) to indicate the
probability of taking action a according to the output distribution 7y (s).

2.3.2 Planning

AZ employs AZMCTS (algorithm 6) to guide action selection and improve the policy. The
first difference with standard MCTS is the way we estimate the value of leaf nodes. While
MCTS employs policy rollouts, AZMCTS uses the learned values by calling the neural
network.

The second difference is that at each simulation step, AZMCTS selects actions accord-
ing to the PUCT formula, which incorporates the neural policy outputs as a prior policy:

PUCT(z,a) = Q(z ¥ a) + C'mp(, a) m\]fv(f&)m)

'The notation A4~ here represents the |.4|—dimensional simplex, i.e., the set of vectors of dimensionality
| A| whose elements sum up to one.

12

2.3. AlphaZero

Algorithm 6: AZMCTS PLANNING
Input: Environment model env, planning budget IV, rollout budget n, discount
factor v, selection policy 7, value function vg
Output: Root node root with updated statistics

1 Initialize root <— Node(env)

2 while root.visits < N do

3 expNode, expAction < SELECTION(r00t, Tg)
4 child < Expanp(expNode, expAction)

5 if child.terminal then

6 L child.value < 0

7 else
8 L child.value < vy(child.s)

9 | Backup(child,)

10 return root

Where my(z,a) = my(s,a) with s being the state underlying node x. The corresponding
selection policy can then be expressed in the same way as we did with UCT:

d(a € argmax PUCT(z, d’))
a’eA
larg max PUCT(x, a’))|
a’c€A

ﬂ-l/’UCT (z,a) =

The search traverses the tree by selecting actions according to 7y until reaching a leaf
node, at which point the neural network provides an estimated value. This value is then
backpropagated to update () exactly as in standard MCTS, i.e., as shown in [algorithm 5

It is common to incorporate Dirichlet noise 7 ~ Dir(«) into the prior probabilities dur-
ing training to increase exploration. This is only applied at the root, allowing for more
diverse trajectories to be sampled. The prior policy is then modified as follows:

77797(% CL) = (]‘ - E)ﬂ-@(l‘v CL) + €n,
where ¢ is a fixed mixing parameter. This modification is usually not applied at deployment,
i.e., once the neural network parameters are fixed.
2.3.3 Training

The training loop consists of the following phases:
1. Trajectory Collection. Sample multiple trajectories from the environment using the
evaluation policy Tevar. Typically, meyvar = v in standard AlphaZero implementations,

where 7y was previously defined in (2.1). At each step ¢, the planning tree rooted at
the current state s; is evaluated using AZMCTS, which returns a policy distribution

13

2. BACKGROUND

¢ = Teval(St). An action a; is sampled from 7; and executed in the environment,
resulting in a reward r; and next state s 1.

Each trajectory 7T is stored as a tuple of sequences:

7= ({oudboo i) frdi2h moh)

where [is the final timestep of the trajectory. Each collected trajectory is then stored
in a replay buffer.

2. Network Update. The neural network fj is trained via gradient descent on a minibatch
of m trajectories B = (7, ..., Tr,) sampled from the replay buffer. The objective is
to minimize the AlphaZero loss:

Laz(B) = a Ly(B) + 8 Lp(B)
where «, § are weighting hyperparameters, Ly is a value loss and L p is a policy loss.

3. Policy Evaluation. At regular intervals, performance is evaluated using a determin-
istic version of the policy, specifically 7y, from (2.2)) in the default AZ setting. This is
done to reduce stochasticity and get a more objective understanding of how the agent

is performing.

The value loss Ly is defined as the mean squared error between the predicted state values
and the n-step targets, averaged over all the m trajectories in the minibatch:

Ly(B) = — S Ivo(Tsls]) — yal T
j=1

where:

* vg(T;[s]) is the vector of predicted values for each state s; in 7}, such that:
vo(Tj[s])[t] = ve(st)

* yn(T;) is the vector of n-step value targets for the same states, computed as:

n—1
yn(T;)[t] = Z Yoreri 9" v(Se4n) - (1 — term(T;, ¢ +n))
i=0

where term(7;, t + n) is an indicator for whether the episode terminates before ¢ + n:

1 1ft+n2l]

0 otherwise

term(7;,t +n) = {

14

2.4. Generic Tree Evaluation and Construction

With /; being the length of the j-th trajectory in the batch.

The policy loss Lp is the average cross-entropy between the policy distributions predicted
by the neural network and the target distributions collected via AZMCTS:

where s; = 7;[s][t] and 7, =
In short, the network is trained to:

* Match its value predictions to n-step returns over each trajectory.

* Reproduce the improved policy distributions computed via planning.

2.4 Generic Tree Evaluation and Construction

Despite appearing somewhat arbitrary, the visitation counts evaluator used in AlphaZero has
several desirable properties and theoretical guarantees. However, these are closely linked to
the way the tree is constructed, i.e., the selection policy used. To better understand why this
is the case and describe the impact of alternative evaluation and selection policies, we now
generalize some of the steps taken in the default MCTS planning algorithm. This is more
thoroughly detailed in [[12]], where the theoretical framework that we are going to summarize
was originally developed.

To start, we introduce the concept of a “special” simulation action a,, and subsequent
extended action space A, = A U {a,}. This special action corresponds to performing the
rollout in to estimate a leaf’s value, or to a neural network call in the AZ case.
Clearly, we cannot take a,, in the real environment, but this formulation allows us to more
easily express some of the definitions that will follow. Given a policy 7 defined over the
action space A, we then indicate the corresponding policy over the extended action space
A, as 7. This can be easily converted back to a valid policy for choosing an action to step
in the real environment as: _
m(x,a) = M
1 —7(z,ay)
Now, we can define the value estimate of a node as:

A~

Vi(z) =E[Qz(zWa)|a ~ 7(z)]
Where, assuming a deterministic environment:
Qx(z) = r(x) + v Vi ()

Here, r(z) denotes the reward obtained by entering node x through the corresponding
parent action and is therefore set to zero for the root node. These equations are developed

15

2. BACKGROUND

by adapting the Bellman equations to the tree setup, so that Qz (s, a) = Qx(x & a). Then,
the planning Q-value estimate of a node x under policy 7 can be expressed as a recursive
formulation over the extended action space A,:

Qx(z) =r(x) +~ Z 7(z,0)Qx(z W a) (2.3)

aGAv

As anticipated, Q (x W a,) = v(z) corresponds to the value estimated by the rollout in
standard MCTS, or by the neural network in AZ, in which case v(z) = vy(x). On the other
hand, 7(z W a,) shall be defined depending on the specific policy. In the case of 7y, for
instance, this is set by definition to 7y (zWa,) = ﬁ If we substitute the generic evaluator
7 with 7y, we obtain the described arithmetic value estimate as computed in

Qay(x) =) +7 Y Fnlz,0)Qry(z8a) =
acA,
r(z) + Qry(z ¥ ay) + Z N(z¥a)

Vi V] Qo) = Q)

acA

This formulation reveals that in standard MCTS, planning is in practice performed by es-
timating Q-values according to the corresponding stochastic visitation counts policy 7y
defined over the extended action space. While this can be seen intuitively by comparing the
reported equation with the algorithmic description of the backup, it is formally proven in
[12]]. Note that the reported equation also reflects the fact that the value estimate of a just
expanded node x with no children, i.e., N(x Wa) =0 Va € A, depends entirely on the
simulation value Q;w(x W ay).

Moreover, it is also proven in [12] that:

¢ Using 7{;c OF Tpyer @s a selection policy and 7y as an evaluation policy to estimate
node Q-values let us converge to the optimal value for the root node with enough
visitation counts, i.e., lim Vi, (z)=V*(z).
N(z)—o00
¢ Using 7,y OF Thyer as a selection policy and under further assumptions, 7y minimizes
the variance of the value estimates.

In practice, we usually have a limited simulation budget, which may cause 7 to underesti-
mate the value of a node. Besides, we might want to construct the planning tree differently,
something which will be particularly relevant in the rest of this thesis, and could therefore
employ different tree evaluation policies that are not strictly tied to UCT/PUCT construction
and the arithmetic mean value backup. This generic framework is therefore instrumental as
it allows us to more easily employ new evaluation policies that are independent of the way
Q-values are estimated, i.e., of which policy 7 is used to estimate Q;T. Moreover, the backup
algorithm shown in can be turned into a generic backup which is equivalent to

the former if 7 = 7. This is reported injalgorithm 7

16

2.4. Generic Tree Evaluation and Construction

Algorithm 7: GenericBackup: Traverse the tree in reverse order to backup the
estimated value of node and update Q value estimates based on policy 7.

Input: Previously evaluated leaf node node, discount factor -y, evaluation policy 7.

1 while node is not none do

2 node.visits < node.visits + 1

3 Probs < w(node.s)

4 QValues < node.value ++ [child.Q for child in node.children]
5 weightedQV alues < dotProduct(QV alues, Probs)

6 node.Q) < node.r + v - wetghtedQV alues

7 node < node.parent

Some of the most relevant alternative evaluation policies relevant to our work are described
below. Note that these can be used for evaluating a fully constructed tree to act in the real
environment, as well as for estimating node Q-values during construction.

Q-evaluator

The Q-evaluator simply chooses the action with the associated highest Q-value estimate, or
picks one at random among them if they are more than one:

§(a € argmax Qz(z W a'))

7 (z,a) = Ay
v larg max Qx(z W a)|
a' €A,
Or, for the stochastic version:
- Qz(zWa)

TQ («T, a) = ZMGAU er(l‘ " a’)

This is a greedy evaluator that has a low bias but can have a high variance.

Minimal Variance Constrained Evaluator

The Minimal Variance Constrained (MVC) Evaluator [[12] aims at balancing between low
variance evaluators like 7y, which might underestimate the optimal value, and low bias
evaluators like ¢, which are potentially more optimal but can yield a high variance. Enter-
ing into the details of how this evaluator is formally derived is outside of the scope of this
section; however, we shall provide an intuition of its purpose and related assumptions, as it
will be utilized both in some of our baseline and novel algorithms.

First, we can define the variance of the value estimates recursively in a way that is sim-
ilar to how values are computed in (2.3)):

V[Qx(2)] =+* Y #(z,0)* V[Qz(z Wa)]

aEA'u

17

2. BACKGROUND

By doing this, we are again assuming a deterministic environment, as well as the indepen-
dence of the value estimates. If the latter did not hold, we would need to manage covariance
structures, which can be difficult to compute in practice. Note that for leaf nodes, this
simplifies to: R

V[0 (2)] = +* Viv(a)]

Where V[v(x)] can be estimated in different ways depending on how the simulation values
are computed in practice (random rollout, neural network, etc.).

The MVC evaluator returns the action probabilities according to the following formula:

. . .
Fave(z, a) = V[Qﬂ(? Wa)l eXp(ﬂQﬂ(wAH:J a)) 2.4)

Ywea, V[Qx(z W a)] " exp(BQz(x & d))
Where (3 is a parameter controlling “how greedy” we want to be. It is easy to see that for
B — oo, MVC converges to the Q-evaluator, while for 5 — 0 it converges to selecting the
action whose corresponding value estimate has the lowest variance. Note that thanks to the
way we defined it, the variance can also be updated during the backup in a similar way to

what is done for the values in Jalgorithm 7

18

Chapter 3

Detecting Environment Changes

In this chapter, we analyze the problem of detecting unexpected changes to the environment
at deployment while planning with learned estimators, i.e., value and policy functions. In
principle, significant changes that completely compromise our estimators would require
retraining the agent from scratch. An example of such a scenario would be training an agent
to navigate toward a fixed goal within a room. If the goal is relocated to an entirely different
room, then the previously learned policy and value functions become ineffective, as the
optimal strategy now requires following a totally different path. However, many real-world
tasks might involve relatively minor changes to the environment, which only partially affect
our estimates. Examples of this could be the ones mentioned in the introduction:

* A robot learned to navigate toward a goal, but some (new) obstacles are now present
on the path.

* A road closure disrupts the usual route from home to the office, requiring our self-
driving car to perform a short detour.

In such cases, while a previously learned policy may no longer be entirely accurate, it could
still provide a partially correct directional guidance and regain full correctness once the
problem is overcome. Likewise, the reliability of a learned value function may diminish
as the agent approaches the obstruction, but it recovers once the agent is far away from it.
Therefore, if we are able to detect the change early enough and localize it correctly, we can
use this information to adjust our planning and subsequent actions accordingly.

Note that in theory, standard AZ planning (subsection 2.3.2) is already a way of adjusting
the previously learned prior policy 7 and value vy by incorporating additional information
from the search tree. We could therefore ask ourselves whether this is enough to get around
problems like the ones we just described. In general, planning trees constructed using
standard UCT-based policies tend to be relatively shallow. This is because they include an
exploration component designed to evaluate multiple potential actions at each node, pre-
venting the search from prematurely committing to a single greedy path. Moreover, standard
MCTS-based planning algorithms often discard the previously built tree after acting in the
real environment, which limits the amount of information that we can gather with a fixed

19

3. DeteEcTING ENVIRONMENT CHANGES

planning budget. These factors combined might imply that our tree only manages to reflect
the changes in the associated estimates after the agent gets too close to them in the real
environment. Nonetheless, options to directly modify this standard way of planning without
employing explicit change detection will also be discussed in

In the remainder of this chapter, we will then only focus on finding a sound criterion
that allows us to detect and localize those changes in the shortest time possible. Several
options for integrating these principles into complete planning algorithms are proposed in

(AlphaZeroDetection methods) and[section 4.2 (Penalty-Driven Deep Planning).

A quick way to "have a look into the future” can be, for example, rolling out our prior
policy 7y by turning it into a deterministic policy and selecting the best action at each plan-

ning step. We can do it one step at a time, by just taking action mj(s;) := arg max my(s;, a).
acA
From now on, we will refer to this operation as rolling out (or “following”) 7, i.e., the

deterministic version of . Note that we are assuming no ties in the argmax operation. This
will create an extremely sparse search tree where each node has only one child expanded.
Intuitively, this deep tree allows us to look much further into the future than a commonly
expanded one.

We now provide additional definitions that will help us during the next steps of our analysis:

* s¢: the current state in the (real) environment.

* s,: the state that we would reach in the training environment (before the changes)
after following 7, for n steps from sg.

/

* s, the state that we reach in the modified environment (after the changes) after

following 7, for n steps from sg. If no deviation has happened yet, then s;, = sy,.

* 7,,: the sequence of states so, s1, ..., s,, that we would enter if we followed 7 in the
training environment for n steps.

* 7/ the sequence of states sg, s}, ..., s,, that we enter in the modified environment by
following 7, for n steps.

e 7*: an optimal policy for the training environment. Note that there might be multiple
optimal policies.

* VV*: the optimal value function for the training environment.

Note that if a model of the training environment is available, the solution to our problem
is trivial since we can observe 7,,. Then, comparing 7,, and 7,, immediately tells us if any
deviation happened, and exactly where. If we trained our neural network with a model-based
method, we may still retain such a model, unless it becomes inaccessible for some reason.
One such case could be in sim-to-real robotics, where agents are trained in high-fidelity
simulators that are not available at deployment. In this scenario, a planning model might

20

3.1. Value as a Change Indicator

then be obtained at deployment from real-time sensor data, onboard estimation of physical
dynamics, or external mapping systems. Moreover, our work also addresses more generic
situations where the policy and value functions could be learned, for instance, with a model-
free method that did not require a planning model in the first place.

Excluding the availability of a model of the training environment, we then need an indicator
that 7), no longer matches the (unknown) trajectory 7, that we would have experienced had
the environment not changed. In the remainder of this chapter, we show how the learned
value function can be utilized for this purpose under two main assumptions:

* The model of the changed environment correctly predicts transitions and rewards.
¢ The environment (and therefore the model) is deterministic.

Future work ideas for extending our approach beyond these assumptions are discussed in

3.1 Value as a Change Indicator

@

Figure 3.1: A representation of the agent following 7 for n steps in the training and test
environments. The two trajectories 7,, and 7, first deviate after ¢ steps.
Let y,,(s0) be the n-step bootstrapped value estimate of the current state so in the modified

environment (i.e., after some changes happened) computed by rolling out 7:

n—1

Yn(s0) =D _4'ri+7"ve(s),)
i=0

Where = R(s, mp(s})).
Then, it is easy to see that if vy = Vﬂé, the following implication holds:

v (s0) # ve(so) = 7} # Tn, V0 >0

In other words, if vy corresponds to the expected return of the deterministic policy 7, that
we are rolling out, then a change in the corresponding n-step value estimate always implies
that transitions have changed. This is true, for example, in the ideal case where 7y = 7* and
vg = V*, but should generally hold approximately even in cases where vy and 7y are not

21

3. DeteEcTING ENVIRONMENT CHANGES

optimal, since they are learned together. The problem is that in practice, the n-step value
estimate may fluctuate as we roll out further due to the learned value, even if no change has
occurred. This can result in the anticipated or delayed realization of this change, as well as
reduced confidence about where the trajectory initially deviates from the expectation of the
policy.

Let ¢ be the last “safe” step, after which the two trajectories in the training and test en-
vironments diverge, as shown in |Figure 3.1|or, formally:

te(0,n =1 (7] = 7) A (sp41 # st41)

Since we are interested in detrimental changes to the environment rather than positive ones,
we can consider the following criterion:

n—1 ,
(AL g

ip vo(50)

Yn(0)
vg(S0)

<l—¢ = t<n (3.1

In simple terms, this states that if our online value estimate becomes smaller than the prior
value, then something must have changed along the trajectory. Setting a tolerance ¢ is
important since we are working with neural networks and as anticipated, small fluctuations
in the y}(sp) estimate could otherwise trigger our criterion when there is no actual problem
in the environment. Note that this criterion only tells us that there is a problem along the
trajectory, but it does not tell us exactly where.

In the most general case and without specific assumptions on the reward function, we
can roughly express the estimate ratio as:

. o
Un(s0) _ yn(so) im0 ¥'mi+ 255000 ki 1 ve(sn)

vg(s0) Yn(S0) a ZE:O yirg + Z;L;f Y HI vy + " ve(sn)

Where y,,(so) corresponds to the n-step value estimate that we would have obtained by
following 7y in the training environment, and is exactly equal to vy (so) if vg = | &%

Note that the numerator is composed of:

e Afirstterm Zf:o ~'r; which is the discounted return obtained on the unchanged path
until a certain step ¢ is reached.

* A second term Z?;f At T +; which is the discounted return obtained from the
moment we first deviate from the trajectory that we would have followed in the
training environment.

* A third bootstrapping term " vy(s),), where s, is likely not the same state as s,, since
we have deviated before.

22

3.1. Value as a Change Indicator

Long deviations from the original trajectory 7,, (n > t) will likely bring the second and third
terms of the numerator to be very dissimilar to the corresponding ones in the denominator.
While this should make it easy to detect that something is off, it is challenging to analytically
extract the moment ¢ at which the deviation occurred, as we have to deal with a ratio of
sums. However, after the very first step of deviation, i.e., when n = ¢ + 1:

—1 i
Yn(50) _ yn(s0) _ Siso Vi + A4y oa(s)4)
vo(50) Yn(s0) STIZ0 i + vy + v Lvg(sp41)

We can see how the difference between the two terms depends on the reward of the first
different transition r; and on how different the state we enter is from the one we would
have entered in the training environment, from the perspective of the value function. In
usual situations, we can imagine s;,; would be fairly similar to s;1 1. In such a case, a big
difference between r; and r; should trigger our criterion very easily. That should also be the
case in the opposite situation, where we get a fairly similar reward but end up in a state that is
highly suboptimal compared to the one we would have entered in the training environment.
If our tolerance parameter € is properly tuned, we can then assume that nothing happened
until the moment we detect a change, which coincides with the first problematic transition,
ie,wecansett =n — 1.

A potential issue with generic reward functions is that the ratio between the value esti-
mates may not always be computable analytically. This can occur when the reward function
produces both positive and negative values, resulting in both positive and negative value
estimates. One way to address this problem could be to rescale the environment rewards to
be always non-negative. If we know the minimum possible reward for a single step is —c,
with c being a positive constant, we can then set:

r(s,a) =r(s,a)+c VseS,ac A

However, note that this creates an issue when bootstrapping the value of a terminal state,
since it is usually set to zero, essentially assuming that upon reaching it, the agent enters
an endless loop without accumulating further reward. Now, since we are introducing this
reward trick, we need to adjust the value of terminal states accordingly as if we were looping
in a state which yields a reward of c, i.e., for any value function V' and any terminal state

Sterm-

Where the last equation holds since the series is geometric. With this adjustment, the detec-
tion criteria can be applied without further modifications.

In the next section, we will present some relevant examples where the reward function
and the nature of the changes allow us to analytically compute the moment at which the

agent first deviates from the expected trajectory.

23

3. DeteEcTING ENVIRONMENT CHANGES

3.2 Detecting Obstacles

Figure 3.2: An obstacle prevents the agent from reaching state s;y; and instead makes it
loop in s; forever.

We now restrict our analysis to cases where changes to the environment take the form of
obstructions, such as obstacles along a navigation path. For now, let’s further assume that
trying to move towards an obstacle results in bumping into it, staying in the current state.
This is shown in [Figure 3.2] where the red loop represents the fact that s; = s;1;, V i > 0.

Let dg(s) = V() — vg(s), i.e., how much our estimated value differs from the expected
return of the policy we are following. If the only signal is a unitary reward obtained once
reaching the goal state EI and we assume following 7, would bring to it in m steps if there
were no obstacles, then V2 (so) = 7™ and therefore vg(so) = 7™ + dg(s0). Moreover, if
we roll out our prior and start bumping into an unexpected obstacle after ¢ steps, we know
that), (s0) = Y"vg(st) = ¥ (v~ + dg(st)). Therefore:

/ n(~m—t
Unls0) _ YO 4 00(s) gy <y (32)

vg(s0) ™ 4 do(s0)

Yn(S0)

Equation (3.1)) states that we assume to be safe as long as oe50)

(3.2)) at the boundary of this condition and isolate ¢:

< 1 — €, so we can plug

In[(1 — €)y™ + (1 — €)da(s0) — 7"5a(s)]
In(7)

et — (3.3)

This expression is relatively complex, and cannot be computed in practice since we do not
know m, dg(so), and dp(s;). If we assume that the learned value function correctly reflects
the expected return of the learned policy, then we can set dy(s) = 0, Vs € S, in which case:

/
Yn(50) _ it vps 0.t <n (3.4)
vg(50)
This way, (3.3) simplifies to:
In(1 —¢)
f— €) (3.5)
In(v)

"'We set it to 1 without loss of generality, as the analysis does not change if the reward is any other positive
number.

24

3.2. Detecting Obstacles

Since this is generally a real number, we can set t = [n — 1%1(—)5” as the last ’safe” step

along our trajectory. This criterion, which we name C, is therefore fully expressed as:

n—1
/ B yi(so) o, Yn(s0) . . In(l-¢
Clmen =N\ LGy 219N Gy <179 = 1= ln= e GO
Note that :
In(1 —
lim n—WJ:n—l, Yy e (0,1) 3.7)

This reflects the fact that if our value function perfectly matched the expected return of the
policy, then we could set our tolerance arbitrarily small and we would always detect changes
as soon as we encounter them, allowing us to set ¢ = n — 1 without committing any error.
In reality, vg might not exactly correspond to Vn;, and even by applying (3.6), we commit
an error both in detecting and localizing the problem, which depends on dy(so) and dg(s¢).

3.2.1 Different Obstacle Interaction Outcome
(oo)meom(0) = = seapoer(ooX oy == (o) == (o)
ay
X

(Dx

Figure 3.3: Negative deviation example: the agent keeps trying to move beyond the obstacle
and gets one step farther away from the goal each time.

‘We now provide an intuition of what might happen when we apply our criterion in situations
where the outcome of moving towards an obstacle is different. While anything could happen
in theory, we can imagine three different reasonable situations:

* Bumping: the agent stays in the same state. We already analyzed this situation in
detail and developed our obstacle localization method based on it.

* Negative deviation: when trying to pass through the obstacle, the agent deviates to a
state that is farther away from the goal compared to the previous state.

* Positive deviation: when trying to pass through the obstacle, the agent deviates to a
state that is closer to the goal compared to the previous state.

25

3. DeteEcTING ENVIRONMENT CHANGES

Say we get farther away from the goal of z steps after following the right path for ¢, i.e.,
x = n — t. This would be the case in the example situation in where we contin-
ually attempt to move beyond the obstacle, and each failure brings us one step farther away
from the goal.

Then, it would take us x + (m — t) steps to reach the goal from the position we reached.
The bootstrapped value estimate of s in the test environment would then be:

Yl (50) = Yyt — ymt2(n—t)

The ratio of our estimates, assuming dg(sg) = dg(s,) = 0, would change as follows:

Therefore, the ¢ estimate in (3.6) should also change if we plug this ratio into the boundary
of the trigger condition:

_ In(1—¢)
2(n—t) _ 1 _ B S
¥ l—-e = t=n 2In(7)

This means that by using the previously developed (3.6) unchanged, we now commit a
constant underestimation error of:

In(1—¢)
2In(v)

In(1 —¢)
2In(7)

In(1—¢)

")

)= (n—

):_

In other words, this means that the agent will believe the deviation started earlier than it
actually did. In most cases, this is preferable to an overestimation error, especially if we
want to ensure that any countermeasure is taken before reaching the deviation in the real
environment. Note that this error fades away as ¢ — 0, meaning that if our value function
vy is reliable enough, we can set a small tolerance € and its impact will be minimal.

Conversely, deviating in the positive deviation case would bring us closer to the goal.
This is exemplified in In this case, the criterion will not even be triggered unless
there are significant flaws in the value function. While this prevents detecting the change, the
states that the agent enters when deviating are still equally optimal from a value perspective,
and it therefore makes sense that the criterion is not triggered.

26

3.3. Addressing Value Underestimation with an Overestimation
@A
at I

|

|

X |

|

|

| @@

Figure 3.4: Positive deviation example: the agent keeps trying to move beyond the obstacle
and gets one step closer to the goal each time.

While these two additional situations do not prove that our criterion would always work as
expected in more complex cases, they provide an intuition that in standard situations and
with acceptably good estimators, it should still function with sufficient reliability.

3.3 Addressing Value Underestimation with an Overestimation

Can we use something better than vg(so) as an estimate of V/ (so) for our criterion? Let’s
first analyze two possible scenarios:

* vp(s0) is an overestimation of V., (so), i.e. dg(so) < O: our criterion might be
wrongly triggered as we roll-out further and y.(so) becomes a more precise (and
therefore lower) estimate. To counter this, we can increase our tolerance e.

Y;(s0)
vg(s0)
we roll-out further since y;(so) will likely increase. When we start bumping into the

obstacle, /(o) will start to decrease due to the -y discounting, but it might take much
more time before the ratio goes below 1 — e. This would result in delayed detection.

* vg(s0) is an underestimation of V. (so), i.e. dg(so) > O: might grow > 1 as

y;(s0)

How can we deal with vg(sg) underestimation? Note that when e (50)

< 1, we might have

i(s0)

detected a problem, depending on our tolerance €. Conversely, while % > 1, we are

always assuming no detrimental change has happened along 7/, i.e.), = 7,,, irrespective
/

of the tolerance. Note that this always holds at step 0 since % = 1 by definition.

In principle, we could therefore change our current sy value estimate for the training envi-

ronment from vy (o) to . (so) if we are confident that no deviation has been experienced yet,

ie., if % > 1. This can be done iteratively while adding nodes to our trajectory, every

time ¥} (sp) increases compared to the previous value of the denominator. This should help

27

3. DeteEcTING ENVIRONMENT CHANGES

to combat the value underestimation of vy(sg) with a (potential) overestimation. The de-
scribed iterative process corresponds to selecting the maximum ¢-step value estimate along
the trajectory 7;, rolled out so far, i.e.:

max

yn**(s0) = max{yi(so) | i <n}

Our final criterion Cpax becomes:

, oA Yi(s0) . Yn(50) . _ iy nd—¢)
Cmax(TmG,’Y) = (izo yZI_naX(SO) >1)/\ (yf{lax(so) <1) =t { ln(v) J
(3.8)

If the approximation errors of the learned value function with respect to the expected value

of our policy are more similar for closer states, i.e., i = j = dp(s;) = dp(s;), then

the new criterion should also provide a better estimate of ¢. This is because the index

which maximizes y;;**(so), i.e. j = argmax{y;(so) | ¢ < n}, is closer to n than 0 is,
7

and therefore |0p(s;) — dg(sn)| < [69(s0) — dp(sn)|. Such a hypothesis will be confirmed
empirically by the experiment reported in

28

Chapter 4

Planning in a Changed Environment

In this chapter, we focus on principles and methods that can be leveraged to plan and sub-
sequently act in an environment whose estimators, i.e., learned policy and value functions,
are potentially unreliable due to some unknown environment modification. Note that the
environment is assumed to have changed compared to the original training environment, but
not to change further while the agent is acting; i.e., the changed test environment remains
stationary.

All the methods presented assume, as in standard AZ planning, that we possess a learned
value function vg. Some of them also require a learned policy 7y; if we performed AZ
training as described in[subsection 2.3.3| these two come by default, but we want to further
stress the fact that, in principle, they could also be learned by different, model-free methods
and then used at deployment given a model of the test environment. Moreover, we still
assume that our planning model correctly represents the underlying environment, as we did

in our analysis in [chapter

To ensure a fair comparison with our baselines in terms of computational cost of the
planning, we develop anytime algorithms where the maximum number of nodes that can be
evaluated at each step is fixed and independent of whether these are used to detect a change,
subsequently plan, or check when the change is cleared. Importantly, in all our proposed al-
gorithms, as well as the baselines, both neural network calls and transition model invocations
occur only when a new node is created and evaluated. Therefore, by counting the number
of node evaluations, we can fairly compare computational costs regardless of whether the
bottleneck arises from neural network evaluations or transition model computations.

4.1 AlphaZeroDetection

The first new family of algorithms that we introduce is named AlphaZeroDetection (AZD).
The general idea is straightforward: we want to follow a given policy, which we assume was
trained sufficiently well in the training environment, and deviate from it when we detect a
disruption along the path. While such disruption could in principle be caused by any kind

29

4. PLANNING IN A CHANGED ENVIRONMENT

of change to the environment, we will informally refer to it as an obstacle as this makes it
easier to visualize and explain related examples. If such an obstacle is detected, we want to
plan as much as possible to find a path “around” it. Finally, once the obstacle is cleared, we
can resume following our prior policy until a new obstacle is detected... and so on.

In our setting, the policy that we want to follow is the learned prior policy my. We can
then turn it into a deterministic policy by always selecting the action with the highest prob-
ability according to it, and look into the future by rolling it out. This creates a sequence of
nodes which we will simply refer to as a trajectory. Then, the way we can detect obstacles is
exactly as described in specifically using one of the described criteria C or
Cmax (3.8). Once we have found the node after which the obstacle is encountered, we may
want to retain all the nodes before it for the subsequent planning phase. However, the shape
or extent of the obstacle is, in principle, not known. This means we don’t know if it was
just a small obstacle we can simply move around, or a closed door that now requires a long
detour starting from the beginning of the trajectory:

1. How do we expand the trajectory into a planning tree?
2. How do we identify nodes located beyond the obstacle?

Note that standard AZ planning described in always plans from the root node
and discards the previous planning tree after stepping into the environment. In our case,
however, we may not be able to find a path around the obstacle right after detecting it (due
to the limited planning budget). We could then keep expanding the previously constructed
tree even in subsequent environment steps, until we finally find a path that can be safely
followed in the real environment. Before discussing ways to expand our rolled-out trajectory
in detail, let’s first focus on the second question, assuming we already know how to construct
the tree. This will make the advantages and disadvantages of the two expansion methods we
are going to describe easier to understand.

4.1.1 Clearing the Obstacle with a Value Search

When constructing our planning tree after a successful change detection, our goal is to find
a node from which we could start relying on our prior policy again, i.e., we do not have to
worry about the detected obstacle from then on. If such a node is identified, the idea is to
simply stop planning and follow the path of nodes that lead from the root to it in the real
environment. To do so, we devised a method which we call Value Search (VS). The idea
is that to start relying on the prior policy again, we should find a node with the following
properties:

* The node’s value is at least as high as the root value, i.e., the value of the current state
of the environment.

* If we checked again our criterion by rolling out a trajectory from the node, we would
not detect an obstacle anymore.

30

4.1. AlphaZeroDetection

The second is perhaps the most intuitive; since our way of detecting obstacles involves rolling
out a trajectory guided by the prior, we now consider an obstacle cleared if the same criterion
indicates that we are finally safe when taking the same number of steps in the direction of
the prior from the found node. The problem is that only checking this would very easily
fool us into going “backwards”. We might have found a node far away from the obstacle
and the current state, from which our fixed-length rollout does not detect an obstacle, simply
because we went back a few steps. As a result, we will face the same problem again once
we move forward. Instead, by checking that the node’s value is higher than the root’s, we
ensure that such a node is "ahead” of the agent’s current position, and we therefore avoid
fooling our detection criterion by just going backwards.

There is, however, a major issue in practice. While planning, we will encounter several
nodes whose value is higher than the root value. Every time, we should then roll out a
detection trajectory from there, which results in a certain number of node evaluations. To
be fair with respect to the baselines, we should then deduct that number from the available
planning budget. This could potentially cause us to run out of budget extremely quickly,
which might severely deteriorate the algorithm’s performance, as we will be able to find
and check fewer potential solution nodes. To avoid this, we instead decide to only check
the nodes whose value is higher than the last safe node of the trajectory (i.e., the one before
the obstacle). Since this should be a higher value than the root, we will then check fewer
candidates and maintain part of the planning budget for expanding other nodes. A visual
example of the workings of the Value Search mechanism is shown in

$ $ $ $

(a) Rollout (b) Expansion (c) Look for solutions (d) Step to the solution

Figure 4.1: Visual example of the application of the Value Search mechanism. The light-
yellow cells correspond to the states that the agent sees during planning. Initially, the
agent rolls out the prior and detects an obstacle by bumping into the wall. The tree is later
expanded, and we look for states beyond the obstacle. The red state has a larger value than
the problematic state (red cross), but rolling out the trajectory from it results in another
bump. Conversely, the green state has a value as high as the problematic state, and we do
not detect any obstacle by checking again our criterion starting from it. The agent can then
reach that state by following the corresponding trajectory in the expanded tree.

‘We can now present two AZD algorithms that share the principles presented so far but differ
in the way they roll out and expand the future trajectory.

31

4. PLANNING IN A CHANGED ENVIRONMENT

4.1.2 The MiniTrees Algorithm

The MiniTrees algorithm rolls out a fixed-length trajectory of n nodes to perform change
detection, as described infalgorithm § Note that we make use of the Cyax detection criterion
in the pseudocode description, but the simpler C could also be used. If no obstacle is detected
along the trajectory, we follow it for one step, i.e., we act deterministically according to 7,
without further planning. Recall we use 7, to define the deterministic policy extracted from
mp by just following its argmax action. Conversely, if the detection is triggered, we want to
expand the nodes in a way that can address both the “obstacle situation” (we should expand
the last nodes) and the ”’door situation” (we should expand the first nodes).

Algorithm 8: DetEcTiIONROLLOUT: Detect changes using the Cyax criterion.

Input: Root node root, discount factor -y, policy policy 7y, prior value vg, rollout
budget n, tolerance €
Output: Trajectory 7 containing nodes and actions, change index changeStep,
number of node evaluations numEwval

1 Initialize node < root, T < [|, changeStep <— None, R < 0, numEval < 0
2 node.value < vg(node.s)
3 Ymax < node.value
4 fori =01t0ondo
5 a < arg max mp(node.s, a’)
a

6 T.append([node, a])

7 node < ExpanD(node, a)

8 R+ R+ ~" - node.r

9 node.value < vg(node.s) if not node.terminal else 0
10 numEval < numEval + 1

1 | y+ R+~ nodevalue

12 if ¥ > Ymay then

13 | Umax < ¥

14 if 2~ < 1 — ¢ then

Ymax
. In(1—¢)
15 t < max([i+1 - 7 1,0)
16 changeStep <— min(t + 1,7+ 1)
17 return 7, changeStep, numFEval
18 if node.terminal then
19 | break

20 return 7, None, numFEval

We opt for the simplest approach balancing these two scenarios by uniformly expanding the
nodes. Given a total planning budget N, the number of nodes n’ < n that we rolled out at
this step before detecting the obstacle, and the index ¢ which is the last safe step along the
trajectory, we split our trajectory into completely independent “mini” trees and plan with

32

4.1. AlphaZeroDetection

standard AZMCTS by each of them for | & 7”IJ , starting from the first one

t+1

O c‘%c%
(a) The agent rolls out the future trajectory and de- (b) The nodes of the trajectory are ex-
tects an obstacle by using one of the developed cri- panded independently. If no solution node
teria (C, Ciax)- is found, the agent steps to the next node.
(c) The remaining nodes of the trajectory (d) The agent follows the path that leads to
are further expanded. The green node in- that node. From there on, it will trust the
dicates that we found a VS solution node. prior again until a new obstacle is detected.

Figure 4.2: MiniTrees detection, planning, and Value Search visualized.

The per-tree budget is computed to be fair with respect to standard AZ, ensuring that the total
number of node evaluations remains the same. This means we also need to take into account
the ones used for the Value Search. Each time we find a node whose value is greater than
that of the last node of the trajectory, we perform an n-step policy rollout to check whether
we have cleared the obstacle. If we have not, then we must subtract n from the remaining
total budget for the current step. This implies that in practice, the individual planning budget
per node of the trajectory will not always be the same, and we might end up exploring less
from the last nodes of it. However, if no solution is found immediately, we will then step
into the next node and grow the remaining mini trees further. The closer we get to the end of
the trajectory, the more we will expand these trees since we have to share the budget among
fewer roots. An example of this is provided in while the pseudocode detailing

MiniTrees expansion and Value Search is reported in[algorithm 9]

Moreover, this algorithm allows for employing the standard visitation counts + PUCT/UCT

"Note that the trajectory is ¢ 4+ 1 nodes long as indexing starts at zero.

33

4. PLANNING IN A CHANGED ENVIRONMENT

framework without losing its properties discussed in [section 2.4] since each mini-tree is
expanded independently of the others in the usual AZ way.

Algorithm 9: ExpaAnDMINITREES: Expand nodes independently and perform VS.
Input: Trajectory 7 containing nodes and actions, sel. policy 7], planning budget
N, disc. factor v, rollout budget n, prior policy 7y, prior val. vy, tolerance €
Output: Solution sequence of actions path to be undertaken by the agent (if any)

netPlanning < N
fori =070 |7| do

1
2
3 miniroot < tli].node
4 miniroot.parent < None
5 v181ts <— miniroot.visits
6 while (miniroot.visits - visits < N // |7|) A (netPlanning < N) do
7 TrackSELECT: Runs standard selection and keeps track of the traversed
8 action sequence actions.
9 expNode, expAction, actions <— TRACKSELECT(miniroot, m|)
10 if expNode.terminal then
11 L Backup(expNode,)
12 else
13 child < Expanp(expNode, expAction)
14 child.value < vg(evalNode.s)
15 Perform Value Search:
16 if (child.value > T[—1].node.value) A (netPlanning > N — n)
then
17 Roll-out the prior from child to check if there is still a problem.
18 problem, numEwval <+ DetectioNRoLLouT(child, 7, 79, vg, N, €)
19 if not problem then
20 Concatenate the action sequence leading to miniroot with the
21 one leading from miniroot to the newly expanded node.
2 path < T[: i].actions ++ actions
23 return path
24 Backup(child,)

25 If no solution is found, simply return None to indicate this.
26 return None

The pseudocode description of the overall algorithm orchestrating change detection and
minitrees expansion is provided in[algorithm T0]

The MiniTrees algorithm is conceptually simple, and while being a good start, it may
underperform in certain scenarios. For instance, the fact that we roll out a fixed-length
trajectory might be a problem in situations where the obstacle needs to be spotted from very

34

4.1. AlphaZeroDetection

long distances in order to find a solution. While we could increase the length of the rollouts,
we would then need to uniformly expand a trajectory consisting of many nodes, which would
result in the individual budget per node becoming very small. If we can increase our overall
available budget, this is not a problem. Nonetheless, we would like to know whether an
alternative way of expanding the trajectory that mitigates the issue on its own exists. Finally,
note that MiniTrees does not expand the rolled-out trajectory further when no obstacle is
detected. While this makes it very fast until we spot an obstacle, it might be possible to plan
”in advance” to increase the chances of finding a solution once an obstacle is detected.

Algorithm 10: MiNITREES ALGORITHM
Input: Environment model env, prior policy 7y, prior value vg, rollout budget n,
planning budget NV, discount factor -, tolerance e, selection policy g,
rolled out trajectory 7 containing nodes and actions, detected changeStep
Output: Sequence of actions bypassing the detected change (if any) or single prior
policy action.
1 if changeStep is not None then
2 Change previously detected, we can keep expanding the same trajectory
3 T+ 7[1]
4 solutionPath < ExPANDMINITREES(T, s, IV, 7, n, mg, Vg, €)
5 if solutionPath is not None then
6
7
8

We can directly return the whole sequence of actions that the agent will
follow to bypass the change.
return solutionPath

9 else
10 No solution found, save 7 to keep expanding it at the next step.
11 return arg max mg(root.s, a)

a

12 root <— Node(env)
13 7, changeStep, numEval < DETECTIONROLLOUT(T00t, 7, 9, Vg, N\ €)
14 if changeStep is None then

15 No change detected, we can trust the prior.
16 return arg max 7y (root.s, a)

L a
17 else

18 We expand the non-changed part of the rolled-out trajectory.

19 N <+ N — numFEwval

20 solutionPath < ExpANDMINITREES(7|[: changeStep|, wel, N, 7y, n, g, vg, €)
21 if solutionPath is not None then

22 L return solutionPath
23 else
24 No solution found, save 7 to keep expanding it at the next step.
25 return arg max 7y (r00t.s, a)
a

35

4. PLANNING IN A CHANGED ENVIRONMENT

4.1.3 The MegaTree Algorithm

The MegaTree algorithm generates an increasingly long trajectory of nodes. We start by
rolling out an n-step trajectory, as done in MiniTrees. If no obstacle is detected, we follow
this trajectory for one step in the environment and expand it by adding additional n nodes.
This is repeated until the detection is triggered. If this is not the case, it is easy to see that
the trajectory ahead of the agent will be n + (t — 1)(n — 1) nodes long after ¢ steps taken
in the environment. As it can become challenging to sufficiently expand the nodes of such
a long trajectory independently, the MiniTrees approach would not be effective in this case.

We can then switch back to a more standard expansion method starting from the root
of the trajectory. The problem is that we have already constructed part of the tree in a
non-standard manner, which could influence the usual subsequent evaluation by visitation
counts in unpredictable ways, as well as breaking the nice properties of the visitation counts
evaluator under the original AZ construction. A solution to this is to employ one of the
alternative construction decoupled evaluation policies shown in and estimate
the node Q-values accordingly while planning (as shown in [algorithm 7). For example, we
could employ the MVC evaluation policy (2.4)), whose parameter 3 allows us to adjust how
greedy we want to be.

Moreover, we now continually expand our trajectory step by step, even when no obsta-
cles are detected. Since all the nodes of the trajectory are now connected during planning
(unlike in MiniTrees), this will grow a large “mega” tree, which will hopefully explore a
variety of potential solution nodes. Like in MiniTrees, we do this while maintaining the
total number of node evaluations at each step at most the available planning budget N.

The main drawback of the MegaTree approach is that the practical implementation of the
Value Search mechanism is less intuitive. In MiniTrees, it is sufficient to evaluate whether
a node is a solution only at the time of its initial expansion. In contrast, we now must also
check previously expanded nodes during selection, as they may have been created before
an obstacle was detected. Additionally, since MegaTrees can identify obstacles much far-
ther ahead than n steps, it may make sense to also conduct deeper detection rollouts when
checking potential Value Search solution nodes. However, this would quickly consume a
significant portion of the planning budget.

Due to the relatively lengthy implementation of this algorithm, which involves rewriting
many of the steps already described for MiniTrees, we do not provide a full pseudocode
description but instead list below the main practical differences:

* DetecTiONROLLOUT (algorithm &) has to be adjusted to append new nodes to the
previously rolled out trajectory at each step, instead of rolling out from scratch.

* The nodes of the trajectory are not separated from each other, and the tree is expanded
with a standard SELEcTION procedure (algorithm 2)) starting from the root, even when
no obstacle is detected during the rollout.

36

4.2. Penalty-Driven Deep Planning

* The Value Search has to also be checked on previously expanded nodes when they are
selected during planning.

* Nodes should be evaluated with a construction decoupled evaluation policy (e.g.,
7mve)- Then, GENERICBAckuP (algorithm 7)) can be used instead of Backup to update
the estimates.

Finally, we explored alternative versions of MegaTree that incorporated the detection rollout
as a means to penalize value estimates, or their associated variance, along the agent’s
trajectory, thereby encouraging deviation without relying on the Value Search method.
However, these variants performed poorly in early experiments, largely due to the limited
information provided by a single-trajectory detection. Penalizing a node can push the agent
to deviate immediately from the trajectory which brings to it, but this information is quickly
lost afterwards, as the penalized node is no longer part of the planning tree and thus no
longer contributes to value (or variance) estimation. Nonetheless, the idea of using the
detection criteria as a way to adjust the planning estimates through penalties would make
much more sense if we were able to dynamically detect multiple disruptions at each step
without constraining the agent to follow a fixed trajectory while we do so. This is indeed the
focus of the next section and proposed algorithm.

4.2 Penalty-Driven Deep Planning

As discussed, AZD methods allow us to detect an environment change far into the future
while deterministically following the learned prior policy 7. Additionally, the Value Search
mechanism provides a conceptually simple way of finding alternative paths that get around
the change. However, the effectiveness of these methods is inherently dependent on how
good my is. If the prior is inaccurate with respect to the training environment, our agent
would subsequently follow a suboptimal strategy even when no change has occurred yet.
This can be problematic in complex environments where obtaining accurate prior estimates
is hard.

Moreover, we always localize at most one problematic state each time we roll out the
prior, but this does not give us any further information about, for example, the shape or size
of this obstacle. If our agent is close to a wall, we might need to mark several paths that
lead to it as problematic, rather than just a single one. This would provide us with more
information, indicating whether the obstacle is a minor issue that can be easily overcome
without a significant deviation from the rolled-out trajectory, or if a substantial change in
direction is required.

Ideally, we would like to balance between the ability to detect changes far into the fu-
ture and more standard planning that considers multiple paths, in a cleaner, single-phase
algorithm. Following this intuition, we outline the steps taken to develop a change-aware
planning method that leverages the detection mechanism without requiring a separate detec-
tion rollout.

37

4. PLANNING IN A CHANGED ENVIRONMENT

4.2.1 Reusing the Previous Planning Tree

One main issue with standard MCTS, which we mentioned earlier in [chapter 3| is that
the previously built planning tree is discarded after the agent acts in the environment.
This highly constrains the maximum depth that our planning trees can reach with limited
simulation budgets, even when planning greedily. Let x; be the root node of the planning tree
constructed at step ¢, and a; be the action that we are going to undertake in the environment
after planning. In a fully deterministic setting, we can set x44; = x¢Wa; and resume planning
from there, since we are sure that the corresponding state will match the one reached in the
real environment. A more generic approach, however, is to directly check whose child
of the previous root node (if any) holds the same state as in the environment and resume
planning from there. Note that these two approaches are not always equivalent, as there
might be multiple children of the root that correspond to the current state, and in the second
approach, we should then decide which one to step into. Since our main goal is building
increasingly deep trees, it then makes sense to choose the child whose corresponding subtree
is the deepest, where the depth of a node’s subtree is defined recursively as the “height” of
the node:
r.height =1+ max a2 height

z’'€x.children

The recursion stops at leaf nodes whose height is set to 0 by definition. The tree re-usage

mechanism is exemplified in

t=0 s =859 t=1 s; =35

Figure 4.3: Example of the tree re-usage mechanism on a simple binary tree. The green
node in each tree corresponds to the current state s; in the real environment at step ¢. After
step 1, we can reuse the right subtree of the previous root node as the corresponding child
is the only one whose state is s1. After step 2, we could reuse both children of the previous
root, but we choose the left one as the corresponding subtree is deeper.

It is easy to see that this mechanism allows us to reuse many more nodes if the previous

38

4.2. Penalty-Driven Deep Planning

planning tree was deep rather than wide. As an example, the trees shown in |[Figure 4.4] are
built by always expanding 1, 2, and 3 children per node, respectively. They are all complete
trees of NV nodes where each parent has a branching factor of exactly b children; then, each
subtree of the root has exactly % nodes.

S A

Figure 4.4: Three different trees with branching factor b = 1, b = 2, b = 3, respectively.

4.2.2 Integrated Change Detection

We propose to integrate the detection mechanism into the standard planning by dynamically
checking our criterion on the trajectories followed by the selection policy 7. To better
understand what we mean by this, it is important to recall that at each planning iteration,
MCTS traverses the tree until reaching a node which is not fully expanded; then, it creates a
child of this node by expanding an action according to an expansion policy, which is usually
a uniform one. We should therefore apply our detection criterion to the selection trajectory
before performing the expansion. It is important not to include the expanded node in the
detection process, as this would result in computing our bootstrapped root value estimation
on a trajectory built by two different policies. An example of the application of the Cpax
criterion during selection is shown in[Figure 4.5] Two main challenges affect this approach:

1. Inthe formalization of our criteria, we assumed that the value estimates produced by vy
should approximately correspond to what the followed policy 7 expects, i.e., vg ~ V.
This makes sense when following 7j, in AZD methods, but is generally not the case
for standard selection policies, especially since they incorporate an exploration term
which does not depend on the value estimates.

2. g is usually non-stationary. For example, both the exploration term and the Q-value
estimates used in 7, and mpyep to select an action dynamically change while we are

planningﬂ

The first problem can be addressed by using a completely greedy selection policy that

simply selects the action to undertake from node x as a, = arg max Qz(z, a), where 7 is
acA

“Note that the exploration constant C is fixed, but the whole exploration term also depends on the visitation
counts which evolve over time.

39

4. PLANNING IN A CHANGED ENVIRONMENT

Yi(so) . _9a(s0) _
Y1 (s0) Y5 (s0)

vg(sg) = 0.35 wy(s1) =0.40 wy(s2) = 0.45

‘50’ > 5 > S9 e 81 + 89 —EXPANDD@
I\ I\

A\ 7\
I\ /A I\ [\ I\ I\
(a) The selection traverses the tree until (b) The criterion is checked on the traversed trajectory.
a not-fully expanded node is reached. AS Cinax (72,0.01,0.95) = L, no change is detected.

V() o) | shs)

¥1"*(s0) Y5 (s0) Y5 (s0)

vg(s9) =0.35 wg(s1) =0.40 wvy(sy) =0.45 vg(s2) = 0.45

‘ S0 } S1 So So S1 + $2 _X@
I\ I\ I\ I\
/A I\ /N I\ I\ I\
(c) The selection traverses the tree (d) This time, Ciax(73,0.01,0.95) = T and we extract

again until a not-fully expanded node is ¢ = 2 as the last safe step. Therefore, the last node of the
reached. trajectory can be marked as problematic (red).

=0.95

Figure 4.5: Example of integrated change detection during planning, with v = 0.95 and
e = 0.01. The green circled node represents the root of the planning tree. The yellow circled
nodes are traversed by the selection policy.

the evaluation policy that we use to estimate Q-values as described in The second
problem can be addressed by “interrupting” the criterion any time we select an action that is
suboptimal according to 7ry,. Strictly speaking, this would involve checking at every selection

step whether or not arg max Qz (z, a) = arg max my(x, a). Especially in environments with
acA acA
large action spaces, however, this is probably too strict of a constraint since there might be

several optimal or close-to-optimal actions, and it is therefore unlikely that the selection
policy will match the choice of 7, for many consecutive steps. Alternatively, we can check
whether the policy logit 7y (x, a,) exceeds a fixed threshold ¢, indicating that the selected
action is sufficiently aligned with g, allowing us to continue applying our criterion. If we
instead follow an off-policy action with respect to the prior policy, we should stop detection.
We can, however, resume it from the next node; if no other off-policy action is taken from
there on, that is a valid trajectory on which to apply our criterion. An example of this is

visualized in

40

4.2. Penalty-Driven Deep Planning

OFF POLICY i PENALIZED

(a) The selection follows an off-policy action (b) The selection traverses an already penal-
w.r.t. the prior. We restart detection from the ized node. We restart detection from the next
next node. node.

Figure 4.6: Special cases in detection. The agent sits on the root node, which is the node
for which we estimate the n-step value for detection, unless one of these two special cases
occurs.

4.2.3 Penalizing Detected Changes

Since the detection process is now continuously applied during tree construction, we may
detect numerous problematic transitions along several planning trajectories. Having iden-
tified them, we might now leverage such information in several ways. A simple option is
to directly penalize the value estimate of nodes located immediately after the problematic
transitions, as the red circled node in We do so by modifying their prior value
estimate from vg(x) to vj () = vg(x) — p. The parameter p can be tuned depending on the
nature of the changes that we assume could show up and the scale of the value estimates.
Although simple, applying the penalties in this way has a profound impact on subsequent
planning. To understand why, recall that given the evaluation policy 7 that we are employing
(e.g., Tn or Tyve), the node Q values are updated during the backup in the following way:

~

Qx (2) = r(z) + 7w, @) vo(a) +7) 7(w,a)Qx(z Wa)

acA

Where we now substitute vg(z) with vj(z) if = is marked as problematic. This means
that even if a node has been penalized, the overall Q value estimate can still increase if its
children have a high value. We believe this to be a suitable property since it avoids fully
removing exploration pressure from the problematic nodes and underlying subtrees, while
simultaneously encouraging the agent to explore alternatives. If the agent’s planning focus
is on a portion of the environment that presents several detected changes, then multiple
nodes will be affected by the penalties. This should cause the agent to gradually shift its
planning focus to other promising regions of the state space, also considering actions with
low associated prior estimates.

Once a node is penalized, we no longer want to consider it in subsequent detections, as its
value has decreased and no longer reflects the expected value of the prior policy. Similarly
to the case where an off-policy action is followed, we can still apply the detection to the rest

of the trajectory as shown in [Figure 4.6b

41

4. PLANNING IN A CHANGED ENVIRONMENT

The pseudocode detailing the integration of the change detection and penalization within

selection is reported injalgorithm 11

Algorithm 11: PDDPSEeLEcTION: Traverses the tree using a selection policy while
applying change detection and penalization.

Input: Root node root, discount factor v , selection policy ., prior policy 7y,
tolerance ¢, prior threshold ¢, value penalty p
Output: Node to expand expN ode, action expAction

1 Initialize node < root, T < [root], i < 0, R < 0, Ymax < node.value
2 while not node.terminal do

3 Select action a using selection policy 7 on node
4 if a ¢ keys(node.children) then
5 L break

6 node < node.children{a}
7 R <+ R+~" - node.r

8 T.append(node)
9

141+1
10 if (mg(node.parent.s,a) < ¢) V node.parent.penalized then
11 We restart detection from the current node:
12 | 10,7« [node], R < 0, Ymax < node.value
13 else
14 y < R+ " - node.value
15 if ¥ > yuqc then
16 | Ymax < ¥
17 if (-4 <1 —¢€) A (—node.penalized) then

Ymax

. In(l—¢)
18 t < max({z) J ,0)

19 changeStep < min(t + 1,1)

20 changeN ode < T[changeStep]

21 changeN ode.penalized < True

22 changeN ode.value < changeNode.value — p

23 return node, a

4.2.4 Pseudo-Deterministic Evaluation

The last piece of the puzzle that we want to introduce in our algorithm is the adoption of
a special evaluation policy, which changes the way we estimate nodes’ Q values during
planning. We will first define the policy and then explain the reasons behind this particular
choice. The special pseudo-deterministic policy 7 can be defined starting from a generic

42

4.2. Penalty-Driven Deep Planning

(a) Penalties are ignored as they are not on (b) The penalty is on the path to the goal,
the path to the goal. and will influence the agent’s decision.

Figure 4.7: Two examples of the way our pseudo-deterministic evaluation policy “sees” the
penalized nodes.

evaluation policy 7 over the extended action space A, :

N]&"&)ﬂ;l if @ = argmax 7(z,a)

. acA

Tz (x,a) = —N%x) ifa=a, 4.1
0 otherwise

The rationale behind this policy is simpler than its relatively uncommon definition; in fact,
7 turns any stochastic evaluation policy 7 into a pseudo-deterministic policy whose only
non-zero logits are the best real action (€ A) according to 7 and the special action a,,, which
is assigned a probability of ﬁ that fades away as node visits increaseﬂ Using such a
policy to estimate node Q-values with (2.3)) results in the following recursion:

A~

Qala) = (@) +9 3

@ N@) 15 wa) 4.2)

where a, = arg max 7(x, a). Intuitively, this recursive formulation evaluates a node solely
acA
based on its most promising underlying path, rather than a weighted average of the entire

subtree, while maintaining a prior value term that fades away as the number of visits
increases. There are two main reasons for doing this:

 This is a very greedy approach which should further encourage deep planning, allow-
ing us to detect changes farther away.

* In certain situations, this approach can cope better with the agent’s goal as well as our
way of penalizing problematic nodes.

43

4. PLANNING IN A CHANGED ENVIRONMENT

Algorithm 12: PDDP ALGORITHM
Input: Environment model env, previous root node root, prior policy g, value
network vy, selection policy 7, evaluation policy 7, planning budget IV,
discount factor -, tolerance e, prior threshold ¢, value penalty p
Output: Root node root with updated statistics

1 if root is None then
2 L root <— Node(env)

else
4 Select the child of root with the deepest subtree among the ones whose
| state corresponds to env.s. If there is no such node, start planning from scratch.

w

wn

V1S1ts <— root.visits

while root.visits — visits < N do

expNode, expAction < PDDPSELECTION(100t, 7, T, Ty, €, C, P)
if expNode.terminal then

10 L GeNERICBAckuP(expN ode, 7,)

-T-CRER

11 else

12 child <Expanp(expN ode, expAction)
13 if child.terminal then

14 L child.value < 0

15 else

16 L child.value < vg(expNode.s)

17 | GenericBackup(child, 7,)

18 return root

We motivate the latter with a simple example. shows a situation where following
the right child of the root node can eventually bring the agent to the goal (represented with
a dollar). However, two out of the three actions that can be undertaken from it triggered
our detection criterion during planning, which therefore penalizes the associated values (red
nodes). Our standard way of estimating nodes’ Q-values (according to a stochastic evalu-
ation policy) might therefore doom the right child because of its many penalized children,
preferring the left one, which, however, does not retain any path to the goal underneath.
Instead, the new method for evaluating Q-values would ignore the penalties since it would
only consider the non-penalized sibling and therefore correctly lead the agent to the goal.
Note that this situation is different from the one visualized in[Figure 4.7b] where the penalty
is instead applied directly to the right child of the root, which is now a problematic node.
In this case, the new value estimation method would not ignore the penalty, which is re-
flected in the prior term of our formula. Depending on the scale of the penalty, this could
prevent the agent from stepping into it, which now makes more sense since the detected

3Note that the probability 7(z, a,) for any node z is sometimes (as in [12]) assumed to be equal to %
regardless of the utilized policy 7, so our definition does not constitute an exception in that sense.

44

4.3. Is Depth All You Need?

change is right on the path to the goal, and it might be better to look for an alternative solution.

It is important to underline that (.2) is not equivalent to what we would obtain by simply
plugging a standard deterministic evaluation policy 7’ in the original recursive formulation
(2.3)), in which case our estimate would become:

Qw(z) = r(z) + v Qs (2 Was)

where now a, is selected from the whole extended action space A,, i.e., a, = arg max 7(x, a).
aEAv
The reason we do not prefer this option is that, in most cases, the prior term would be ignored

by the argmax, and we would completely lose the influence of the penalties. Instead, (4.2))
guarantees that the prior term only fades away as we keep expanding the corresponding
subtree.

This completes our description of the Penalty-Driven Deep Planning algorithm (PDDP).

The overall algorithm pseudocode is reported in

4.3 Is Depth All You Need?
The algorithms presented in[section 4.1 (AZD algorithms) and [section 4.2](PDDP) have two

major commonalities:
1. They both try to detect unexpected changes to the environment.
2. They both try to build deep planning trees.

For several reasons that we already discussed, it should now be clear that the first cannot
be truly effective without the second. This will be further demonstrated by the experiments
presented in However, we might wonder whether standard planning methods
could be adjusted to construct so deep trees that they can update the online value estimates
more quickly without the need for explicit change detection mechanisms. For example,
imagine our agent keeps planning towards a wall without even trying to look elsewhere,
repeatedly bumping into it. This will adjust the corresponding value estimates along the
unsuccessful trajectories much faster than if we tried to look in different directions. To
achieve extremely far-sighted planning without the need to increase our planning budget,
which is a trivial but not always feasible solution, we propose combining three modifications
to standard AZ/MCTS planning.

4.3.1 Greedy Selection

In standard AlphaZero planning, we typically aim to strike a balance between very high
values of C', which lead to essentially uniform planning, and very low values of C, which
plan optimistically with respect to the learned value function, potentially an issue if such a
value function is not accurate enough. At first thought, we could hypothesize that a more
pessimistic approach, exploring more actions per node, might be a better approach if the

45

4. PLANNING IN A CHANGED ENVIRONMENT

learned value function is damaged by some change. In the end, this makes sense if the
planning budget still allows us to conduct a sufficiently deep search that ’sees” the changes
early enough. However, when the budget is limited, we might not even encounter such
changes until we are very close to them, which could be too late to act accordingly. If that
is the case, building a very deep tree (C' = 0) might allow us to detect that something is off
in our prior estimates much earlier. That should subsequently be reflected in the planning
value estimates, which should slowly turn the planning focus in a different direction. Still, if
the budget is insufficient, we might not be able to explore anything beyond the actions that
are best according to the training.

4.3.2 Reusing the Previous Planning Tree

We again propose reusing the previous planning tree, exactly as we did for PDDP in
As mentioned, one of the reasons it is difficult to build deep search trees in
MCTS is that we usually immediately discard the previous planning tree after stepping into
the environment. There are some key reasons why this is the most common practice in the
literature:

* Model inaccuracy: If our transition model is inaccurate, we might accumulate plan-
ning errors and end up modeling highly inaccurate transitions.

* Memory and time constraints: Building an incrementally deeper tree requires re-
cursively traversing and backing up from much longer trajectories, which might be
undesirable if there are specific time constraints. It also requires more memory to
maintain the increasing number of nodes.

While we acknowledge these potential limitations, we still believe that allowing our agent
to reuse part of the previous planning tree can significantly reduce the amount of planning
budget needed to properly plan in modified environments, particularly when combined with
a greedy selection policy. Moreover, specific memory and/or recursion limits could simply
be addressed by setting a maximum number of consecutive tree reuses, after which we can
drop the previously constructed tree and start planning from scratch.

4.3.3 Blocking Loops

In certain environments, especially single-agent games, it is common to fall into loops during
planning. This can happen, for example, if our agent is stuck in a corner and keeps bumping
into the wall. We define a loop as the repetition of the same state along a single trace from the
root to a leaf; moreover, we refer to the second, redundant occurrence as the node “’closing”
the loop. Intuitively, planning from a repeated state is rarely useful, as we could simply take
the same steps from the equivalent appearance of the state in a node earlier in the trace.

Moerland et al. [22] proposed an alternative version of MCTS where they incorporated
the concept of variance of a node and modified the selection policy so that nodes with higher

46

4.3. Is Depth All You Need?

Figure 4.8: Example of loop blocking mechanism. From left to right, we expand two nodes
at a time and block exploration through actions that led to a loop.

variance are more frequently exploredﬂ Then, the variance of nodes closing a loop is set to
zero as soon as they are created, immediately stopping the exploration pressure from being
wasted through them. Another option for implementing the same principle is to directly
remove the edge corresponding to the parent action of the node that closes the loop, thereby
forcing the agent to no longer choose that action from the parent node. This can be easily
implemented, for instance, via action masking and subsequent renormalization of the policy.

A visual example of the loop blocking mechanism is provided in[Figure 4.8] After blocking
the loop, we might still backup its estimated value normally, but we decide to backup a value
of zero instead. Note that a more theoretically principled way of estimating the value of a
repeating state would be transferring information from its first occurrence to the repeated
one. However, this can complicate the implementation, and backing up a value of zero
instead can decrease the Q estimate of nodes that lead to a large number of loops, which is
usually a desirable property.

In environments with continuous state spaces or very large discrete spaces, exact loops
are rare. In those cases, we could instead check whether ||s — s'||2 < 7, 7 € R for any pair
of nodes s, s’ along the planning trajectory. Note that setting 7 = 0 corresponds to only
blocking exact loops.

By combining greedy construction, previous tree reuse, and the loop blocking mecha-
nism, we create the Extra-Deep Planning algorithm (EDP). The algorithm is detailed in

(main) and [algorithm 13| (selection with nodes tracking).

*Note that this is a different way of characterizing the variance from what we described in|chapter 2

47

4. PLANNING IN A CHANGED ENVIRONMENT

Algorithm 13: EDPSELEcTION: Tracks nodes during selection for loop blocking.

Input: Root node root, selection policy mge|
Output: Node to be expanded expN ode, action to expand it expAction, set of
traversed states visited

1 Initialize node <— root, visited < Set(root.s)

2 while not node.terminal do

3 Select action a among non-masked actions using 7s; on node
4 if a ¢ keys(node.children) then

5 L break

6 node < node.children{a}
7 visited.add(node.s)

8 return node, a, visited

Algorithm 14: EDP ALGORITHM

Input: Environment model env, previous root node root, value network vy,
planning budget N, discount factor -, selection policy 7, eval. pol. 7
Output: Root node root with updated statistics

1 if root is None then
2 L root <— Node(env)

3 else

4 Select the child of root with the deepest subtree among the ones whose state
5 | corresponds to env.s. If there is no such node, start planning from scratch.
6 visits < root.visits

7 while root.visits — visits < N do

8 expNode, expAction, visitedStates < EDPSELECTION(1oot,)

9 if expNode.terminal then

10 L GEeNERICBACkUP(expN ode, 7,)

11 else

12 child «Expanp(expN ode, expAction)

13 if child.s € visitedStates then

14 child.parent.mask|expAction] < 0

15 child.value < 0

16 else if child.terminal then

17 L child.value < 0

18 else

19 L child.value < vg(expNode.s)

20 B GENERICBACKUP(child, 7, T)

21 return root

48

Chapter 5

Related Work

5.1 Planning with Imperfect Estimators

As already discussed throughout this work, AlphaZero algorithms have traditionally been
applied to unmodified environments at deployment. As such, the specific challenges ex-
plored in this thesis have, to the best of our knowledge, received relatively limited attention
in the existing literature. However, Min and Motani [20] proposed a simple benchmark
environment named Brick Tic-Tac-Toe, inspired by the Tic-Tac-Toe game, for evaluating
AlphaZero’s performance on novel test configurations. Their results demonstrate how train-
ing AlphaZero on a set of diverse training configurations can help it adapt to novel test
configurations. However, their setup differs from ours, as brick tic-tac-toe is a two-player
game, whereas we experimented with single-agent environments. Moreover, the paper does
not propose new approaches to address the problem of generic environment changes, except
for varying the training game configurations during self-play. Lan et al. [17] evaluate
the robustness of AlphaZero agents to adversarial perturbations in the state space during
deployment, specifically for the game of Go. However, their definition of perturbations is
tailored to the structure of Go, and no alternative modification to the AZ framework or novel
algorithm is proposed to address them. Pettet et al. [24]] tackle the challenge of combining
online search with a previously learned, partially outdated policy to operate in non-stationary
environments. They introduce Policy-Augmented MCTS (PA-MCTS), in which the agent
selects actions based on a convex combination of a previously learned Q-value function
and online estimates from standard MCTS. The key distinction between their approach, our
methods, and standard AlphaZero lies in how prior training information is used: PA-MCTS
incorporates it outside the planning tree, whereas AlphaZero and our approaches integrate
it within the planning process itself.

5.2 Modified MCTS Planning

While our work proposes several novel modifications of AlphaZero/MCTS planning, such as
the Value Search mechanism used in AZD methods (subsection 4.1.1)) or the detection-based
value penalties applied in PDDP (subsection 4.2.2} |subsection 4.2.3)), part of our contribution

49

5. RELATED WORK

also consists in combining and integrating into our framework existing approaches that
had only been separately applied before. As mentioned, the idea of blocking loops during
planning, leveraged by our EDP algorithm, was first proposed in [22] to enhance their MCTS-
T algorithm. However, this was implemented differently by integrating it into their variance
estimation method and testing it only on purely online MCTS (without prior estimators).
Other MCTS-related works have also explored combining their novel contributions with
the tree reuse mechanism described in [subsection 4.2.1] For instance, Lathrop et al. [9]]
propose applying tree reuse as an additional enhancement to their Subgoal-MCTS algorithm.
However, the core of their framework, as well as its main objectives, profoundly differ
from ours: they aim to improve MCTS efficiency in complex environments by integrating
automatically discovered macro-actions that lead to subgoals. Another related example
is Model Predictive Trees [18]], which incorporates tree reuse in a framework that can
analyze model mismatch over time, for instance, due to evolving system dynamics, and
decide whether to partially reuse past information or fully reset the tree. It may be possible
to integrate their contribution into our framework to make it robust to cases where the
model does not fully match the underlying environment dynamics, something which we
have not experimented with in this thesis. It would also possible to view MCTS trees as
directed (acyclic) graphs and apply graph techniques to reuse information across different
branches, such as transposition tables [25]. Finally, our newly proposed algorithms try to
build deep planning trees by mostly being greedy during selection; other fundamentally
different methods have been proposed in the literature to achieve more generic MCTS-
based deep exploration, such as Epistemic-MCTS (EMCTS) [23]], which propagates the
epistemic uncertainty of a learned model and/or value function throughout the search. Note,
however, that there is ”no free lunch” [38]], which in the MCTS context means that most of
the modifications to the general algorithm will introduce a bias that might benefit certain
applications and be detrimental to others [32].

5.3 Planning with an Imperfect Model

While the focus of our work is on cases where the learned value/policy is imperfect but
the model of the environment correctly predicts the agent transitions, a parallel branch of
research tries to address the case where the model itself is not fully correct. An early
work in this direction is [1]], where the authors propose a hybrid approach that updates a
previously learned approximate model of the environment through real-world evaluation
and correction. Robotics researchers have developed recent advancements in this direction;
for instance, CMAX [34] adapts its planning strategy online to address inaccuracies in the
model without requiring explicit modifications to the model. It does so by biasing the
planner away from regions whose dynamics are inaccurately modeled. A later evolution,
named CMAX++ [35], integrates real-world experience through model-free learning into
the standard CMAX planning algorithm, resulting in a hybrid approach that improves upon
the baselines in several simulated robotic tasks. MCTS-based approaches to the problem
of inaccurate simulators also exist, one example being robust-MCTS (rMCTS) [26l], which
plans to optimize a worst-case scenario of the imprecision of the model.

50

Chapter 6

Experimental Setup

6.1 Training

As our work focuses on modifying the behavior of an agent at test time, we train our policy and
value functions using a standard AZ agent and following the training procedure described in
[subsection 2.3.3] Specific implementation details and utilized hyperparameters are detailed
infsection A.T| Tree construction and evaluation are carried out by using the standard PUCT
and visitation counts policies, respectively. For each of the training environments described
below, we train our AZ agent 10 times with different seeds. This is crucial, as the remaining
policy and value errors after training will differ for each seed. The learned value and policy
functions for the grid world environments that we are going to introduce can be easily
visualized; therefore, we display their average statistics in the appendix (subsection A.1.5)).
Both our detection criteria and planning methods should be robust to these error variations
in order to be reliable. Note that it may be possible to further tune the training parameters to
obtain nearly perfect prior estimates in these toy environments. Nonetheless, we believe this
would not benefit the analysis and subsequent conclusions of this thesis, since learned value
and policy functions in more complex environments are usually far from being perfect, even
when trained until convergence. By running evaluation experiments with multiple imperfect
estimators, we can make more general considerations that do not require the assumption of
a perfectly trained agent.

6.1.1 Environments
Empty Grid Worlds

As our first training environments, we employ two grid worlds of size 8 x 8 and 16 x 16,
respectively. In both cases, the agent has to navigate from the start position, located in the
upper-left corner, to the goal position, situated in the lower-right corner. The action space
is discrete and consists of the 4 actions {Left, Down, Right, Up}. The goal state is the only
terminal state, and trying to move towards the boundaries of the environment results in
staying in the same state. The two configurations are represented in Although
simple, these training environments can be modified with arbitrary obstacles at test time,

51

6. EXPERIMENTAL SETUP

(a) 8 x 8 Empty Grid World (b) 16 x 16 Empty Grid World

Figure 6.1: Empty Grid World Environments. The green cell represents the initial state.
The yellow cell represents the goal state.

providing an intuitive and explainable setting where the optimal value function is based on a
Manhattan distance. The reasons for testing on two configurations of largely different sizes
will be evident later, but in essence, we aim to determine to what extent the performance of
our algorithms is influenced by the scale of the configuration and the obstacles that will be
added.

Mazes

x 2
H I I b

B N

(a) 8 x 8 MAZE LR (b) 8 x 8 MAZE_RL

Figure 6.2: Maze Grid World Environments. The blue cells represent obstacles that the
agent cannot surpass.

52

6.1. Training

We further trained our agents on two additional grid worlds where we placed obstacles to
form different small mazes. These configurations are depicted in[Figure 6.2} Note that Maze
Right-Left (MAZE_RL) is more challenging to learn than the specular Maze Left-Right
(MAZE_LR), as it requires following a longer and more complex trajectory to reach the
goal. The interesting aspect of these configurations is that we can move the two “’doors” to
different positions and observe how much the agents can adapt to such changes. They also
let us evaluate our algorithms in a setting where the learned value function is relatively more
complex compared to the empty grid training.

The CarGoal Environment

(a) Possible starting position. (b) Car reaching the goal.

Figure 6.3: CarGoal environment visualized. The goal position is indicated with a dollar.

While our main quantitative experiments focus on the previously described grid worlds,
we also include additional results using a customized CarGoal environment[l, visualized in
In this training environment, the car starts from a random position and heading
angle and has to reach the goal indicated with a dollar. We consider this an important
extension of our evaluation, as CarGoal introduces a higher degree of complexity compared
to the grid worlds due to three key features:

* Continuous state space.
* Larger action space.
* Car dynamics.

The environment models a single-track vehicle (bicycle model), where the state of the car is
represented as a quadruple:

s = [z,y,0,v]

'Implementation largely based on the repository: https:/github.com/KexianShen/parking-env.git

53

https://github.com/KexianShen/parking-env.git

6. EXPERIMENTAL SETUP

Here, x and y are the spatial coordinates, 6 is the heading angle, and v is the linear velocity.

The control input is a pair:
u = [a,]

where a is the acceleration and ¢ is the steering angle.

To ensure compatibility with the AZ framework, which requires a discrete action space,
both a and § are sampled from predefined discrete sets. Each possible combination of a and
¢ is then mapped to a unique discrete action. To balance approximation accuracy with action
space size, we restrict the choices to a € {—1,1} and § € {~7,—%,0, g, T}, resulting in
10 total combinations.

Time is discretized with a fixed step size At = 0.25, and the system evolves according
to the following kinematic equations:

Ut41 = Clip(vt +a- At, —Umax, Umax)

B8 =tan"! <; tan 5)

Tyy1 = Ty + Vg - cos(0p +) - At
Y1 = Yt + Vg1 - sin(0y +) - At
Orir = 0; + % sin(B) - At
Where:
* [is the slip angle approximation resulting from the steering input.

e L = 4.8 is the car length.

* The maximum velocity is set to vp,x = 4.0. Starting from vg = 0 and with the
chosen At, it therefore takes 16 consecutive positive accelerations to reach maximum
velocity.

We remark that, as in all the grid world environments, training was repeated for 10 different

seeds.

More details on the implementation of the CarGoal environment can be found in
tion A.1.4

6.2 Evaluation

6.2.1 Test Configurations
Empty Grid Worlds — Added Obstacles

In these test configurations, we modify the 8 x 8 and 16 x 16 empty grid words as shown
in|Figure 6.4|and [Figure 6.5| respectively.

54

6.2. Evaluation

(a) SPARSE 8x8 (b) NARROW 8x8 (c) SLALOM 8x8

Figure 6.4: 8 x 8§ test challenges for agents trained on

aall™ il FEFRFRERRRRER -

[T 1]

nll

II] s $ s

(a) SPARSE 16x16 (b) NARROW 16x16 (c) SLALOM 16x16

Figure 6.5: 16 x 16 test challenges for agents trained on |Figure 6.1b

The rationale behind the choice of the obstacles’ placement is reflected in the name of each
of them and aims to test the agent’s ability to deal with different challenges:

* The SPARSE configurations aim at testing the agent’s ability to get around relatively
small, sparse obstacles. In these configurations, a large portion of the paths that were
optimal in the training environment remain optimal and can potentially be followed
by the agent. Therefore, we consider this to be the easiest test setting among the three,
both in the 8 x 8 and 16 x 16 versions.

* The NARROW configurations challenge the agent to find a (narrow) free path through
the placed wall. Missing such an entrance brings the agent to a ”dead end” which
is hard to escape, especially in the 16 x 16 version. Clearly, the placement and
size of the entrance, as well as the depth of the dead end, can have an impact on
the agent’s performance. According to early experimentation, the visualized setting
appeared to pose a significant challenge for baseline AZ; therefore, we stick to it for
our main experiments. Note that, while considerably fewer than in SPARSE, some of
the optimal paths for training are still optimal in the NARROW test configurations.

55

6. EXPERIMENTAL SETUP

* The SLALOM configurations require the agent to perform a ”slalom” in order to
reach the goal. This can only be achieved by taking a certain number of actions
in a direction that is highly suboptimal in the training environment. Therefore, we
consider this the hardest configuration among the three, specifically designed to test
whether our algorithms can perform sufficiently well in situations where the change
to the environment is significant and cannot be avoided by following any previously
effective strategy.

Mazes — Modified Mazes
EERERN - B -

$ $ $ $

(2) MAZE_LL 8x8 (b) MAZE_RR 8x8 (c) MAZE_LR 8x8 (d) MAZE_RL 8x8

x —

_H

Figure 6.6: MAZE test challenges for agents trained on IFigure 6.2a| and |Figure 6.2b|

As anticipated, we test our agents on the mazes by moving the position of the entrances
as shown in Clearly, moving both entrances (MAZE_ LR — MAZE_RL or
MAZE RL — MAZE_LR) represents a harder challenge than moving only one.

CarGoal — Added Obstacles

(a) SPARSE obstacles configuration. (b) HORIZONTAL obstacles configuration.

Figure 6.7: CarGoal test configurations. Obstacles are represented by the parked (static)
yellow cars.

56

6.2. Evaluation

We can conduct an evaluation on the CarGoal environment by adding new obstacles, as
done with the grid world environments. We choose two different obstacle configurations,
named SPARSE and HORIZONTAL, both of which are reported in Note that
the starting position of the agent is now fixed to the upper-left corner as in the figures (while
it was randomized during training). The rationale behind the choice of these two configu-
rations is similar to the one behind some of the grid world ones; SPARSE should represent
a challenge because of the many obstacles, which are, however, easy to get around, while
HORIZONTAL requires the car to follow a more specific path to avoid bumping into the
long queue of cars in front of it.

Importantly, the agent bumping into an obstacle (or the wall) results in its velocity im-
mediately being set to zero. While we do not set a negative reward for bumping, which
would likely make the test configurations relatively easier, the fact that the observed velocity
drops may have a strong effect on the NN value estimates.

The reason why we consider these CarGoal experiments interesting is that the car, con-
trarily to the grid world agent, cannot avoid an obstacle by changing direction immediately
in front of it. It must instead realize that it is about to hit it well in advance and progressively
adjust both its velocity and steering angle.

6.2.2 Agents
Baselines

We evaluate the performance of our methods against the following four baseline agents:

* Standard AlphaZero (AZ+PUCT): This is the baseline agent also used during training,
combining the visitation counts evaluation with PUCT for node selection.

* AlphaZero without prior policy (AZ+UCT): This variant removes the use of the prior
policy network and selects nodes using standard UCT. We consider this an equally
relevant baseline because, depending on how much the test configuration diverges
from the training environment, avoiding reliance on the prior policy might already
lead to improved results.

* AlphaZero with MVC evaluation (MVC+PUCT): Some of our proposed algorithms
use the MVC policy for evaluating the search tree and estimating node Q-values. To
fairly assess their components, we include a baseline AZ agent using MVC in the same
way.

* AlphaZero with MVC evaluation and without prior policy (MVC+UCT): As done for
standard AZ, we include a baseline that uses MVC for tree evaluation but relies on
UCT for node selection.

Note that the performance of the standard AZ agents is affected by the choice of the explo-
ration parameter C' used during tree construction. This was tuned separately for each of the

57

6. EXPERIMENTAL SETUP

training configurations, as reported in detail in Similarly, the MVC agents rely
on the 3 parameter that controls how greedy we want our evaluation policy to be. This was
also tuned for each training configuration in[section B.2] In the main results that follow, we
therefore compare our novel agents with the best baseline performances that we achieved
through tuning.

Another potential baseline could have been standard MCTS, i.e., using random rollouts
for node evaluation. However, we chose to exclude it because, in sparse-reward settings
like ours, its performance heavily depends on the length of the rollouts, and its computa-
tional cost is not directly comparable to our approach or the other baselines, as it does not
involve a neural network. Additionally, early qualitative experiments not reported in this
thesis showed that even with large planning and rollout budgets, MCTS remained highly
suboptimal across most test configurations.

Novel Methods

We test the performance of the following four agents:

* The MINITREES agent, which plans and acts according to the MiniTrees algorithm
presented in|subsection 4.1.2]

* The MEGATREE agent, based on the MegaTree algorithm described in
ltion 4.1.3]

* The PDDP agent, employing the Penalty-Driven Deep Planning algorithm presented
in

* The EDP agent, which builds extra-deep planning trees using the techniques detailed
in

58

Chapter 7

Results

7.1 Evaluation of the Detection Criteria

We run an independent experiment to evaluate the performance of the detection criteria C
(3:6) and Ciax (3-8). This is useful for validating our hypothesis that Ci,x might provide
more accurate detection under certain assumptions, as discussed in Moreover,
the outcome will indicate us which criterion to employ in the main experiments presented
in the next section.

Intuitively, a good detection algorithm would notify the agent of an issue as soon as possible
and precisely localize the change. We have shown that the C works flawlessly in the simple
bumping obstacle setting if we are following the deterministic policy 7y and vy = V,ré.
Therefore, we can compare what would happen in that ideal situation with the performance
of (3.3) and (3.7) in a realistic learning setting. To do so, we employ the 16 x 16 empty
grid environment previously shown in and corresponding 10 policies and value
functions that we learned for the different seeds. Note that we ensured, for all seeds, that
following the prior policy deterministically is an optimal solution in the training environ-
ment. This makes it easy to compute the exact expected return of the policy Vﬂé for the

ideal setting, i.e., the optimal value function V*(s) = y%®5m) where d(s, s,,) represents
the Manhattan distance between s and the goal state s,,,.

S

s s s s s

Figure 7.1: Test configurations D3,D6,D9,D12,D15 for detection experiment, where Dn
indicates a Manhattan distance of n steps between the initial state (0, 0) and the obstacle.

We then create 5 different test configurations, which are shown in Note that
there is no way the agent can get past the obstacle in any of the configurations, but this is

59

7. REsuLTS

not a problem, as we only want to test the detection criterion. We also included the training
configuration (no obstacles) labeled as "Empty”, to ensure the detection is not wrongly
triggered when no obstacle is present. We test our 10 agents on each of these configurations
by rolling out the policy in the following way: before every step in the real environment, we
roll out the prior for n steps and check our criterion for ¢ = 1,2, ...,n. Then, we step into
the real environment by following such a policy and add n nodes to the rolled-out trajectory.
We now check our criterion for ¢ = n + 1,7 + 2, ..., 2n. We keep repeating this process
until we detect a problem. We choose v = 0.95 as it is the same value used to train the
agents on this environment, and ¢ = (.05, which we observed to be enough to avoid false
positive detections with these value estimates. Moreover, we set n = 4 since it provides
a good balance between situations where the obstacle is immediately visible to the agent
and situations where the agent must take a few steps into the real environment before notic-
ing anything. This allows us to more properly evaluate detection and localization accuracies.

We define the following metrics:

Accuracy Error = |t,, — ty+|

Sensitivity Error = 7, — Ty
Where:

* ty« is the future timestep along the rolled out trajectory at which our criterion localizes
the obstacle to be, using V* as the value function. This corresponds exactly to the
number of steps it takes our agent to bump into the obstacle, starting from the initial
position and following 7.

* 14, is the future timestep along the rolled out trajectory at which our criterion localizes
the obstacle to be using vy, starting from the initial position and following 7.

¢ Ty~ is the timestep of the real environment at which our criterion using V* first realizes
that there is an obstacle, regardless of where it is, starting from the initial position and
following 7.

* Ty, is the timestep of the real environment at which our criterion realizes that there
is an obstacle using vg, regardless of where the obstacle is, starting from the initial
position and following 7.

The results reported in show how applying Cpax can greatly improve the agent’s
ability to detect and localize changes accurately, particularly when detecting far away from
the current position. The fact that the standard criterion performance degrades significantly
when performing long-distance detection is clearly related to the significant underestimation
error of the value functions (see [Figure A.3). More specifically, the values are severely
underestimated near the starting state, while being much more accurate near the goal.
Therefore, performing long n-step value estimates will increase the gap with the O-step
estimate used as a comparison in C. Conversely, Cnix compares closer estimates and
therefore closer estimation errors, drastically reducing their impact. Given the significant

60

7.2. Main Evaluation of the Planning Algorithms

accuracy and sensitivity benefits that Cr,ax showed in this experiment, we set it as the utilized
criterion for the rest of our experiments.

S — C Cmax
Accuracy Error (1) Sensitivity Error (1)

20.0
6 4

17.5 1
15.0 4 51
12:5 44

10.0 4
34

357
21

5.01
25 1
0.0 1 0]

Empty D3 D6 D9 D12 D15 Empty D3 D6 D9 D12 D15
Configuration Configuration

Figure 7.2: Accuracy and sensitivity errors of C and Cpax detection criteria.

7.2 Main Evaluation of the Planning Algorithms

As anticipated, we present our main quantitative results focusing on the grid world configu-

rations described in[subsection 6.2. 11

For each tested configuration and algorithm, we show averaged results over 10 x 10 seeds,
i.e., the 10 trained models and 10 evaluation seeds. Changing the training seed modifies
both the utilized prior policy and value, whereas changing the evaluation seed affects certain
stochastic operations, such as the random UCT expansion order or the resolution of ties in
policy argmax computations. The visualized standard error is computed over the training
seeds.

We employ the discounted return, R, as the primary metric. In our case, the reward
function only returns a positive reward of 1 when reaching the goal, thus, this can simply be
defined as:

{*ﬁ if goal is reached
R, =

0 otherwise

where ¢ is the number of steps it took the agent to reach the goal. This retains more
information than the undiscounted return, which would only indicate whether the agent has
reached the goal within the available maximum number of steps.

61

7. REsuLTS

7.2.1 AZD Agents Main Results

—e— AZ+PUCT -e- AZ+UCT —e— MVC+PUCT -e- MVC+UCT —e— MINITREES MEGATREE ==+ Optimal

SPARSE 8x8 NARROW 8x8 SLALOM 8x8

o
v

o
=

o
w

Discounted Return
o
N}

o
e

8 16 0 6 128 8 16 32 64 128 8 16 2 64 128

SPARSE 16x16 NARROW 16x16 SLALOM 16x16
0.20
£
3
‘D 0.15
o
o
£ o010 R =
5 - - = °
3
0 0.05 e,
[=]

0.00 1

Planning Budget (log scale)

Figure 7.3: MINITREES and MEGATREE results on 8 x 8 and 16 x 16 grid world test
configurations.

The results of the AZD agents MINITREES and MEGATREE on the 8 x 8 and 16 x 16
configurations are reported in As a first insight, we can see that both the
algorithms outperform the baselines on all the 8 x 8 test configurations. Note that the
agent will almost never (and in the case of SLALOM, exactly never) reach the goal by
simply following the prior. Since the only way for both the AZD agents to deviate from it
is by finding a solution through the Value Search mechanism, these results demonstrate its
effectiveness in cases where such a solution is relatively close to the detected obstacle (since
the environment is relatively small). However, the outcome is significantly different when
testing on the equivalent 16 x 16 configurations. While results are as good on the SPARSE
16 x 16 challenge, performance dramatically decreases on NARROW 16 x 16 and is always
0 on SLALOM 16 x 16, indicating that the agent struggles to get past the significantly larger
obstacles present in these configurations.

7.2.2 PDDP Agent Main Results

The results of the PDDP agent on the 8 x 8 and 16 x 16 configurations are reported in
Like AZD agents, PDDP also obtains convincing performance on 8 x 8 config-
urations, outperforming all the baselines. Unlike AZD agents, PDDP also achieves strong
performance on the challenging NARROW 16 x 16 configuration, significantly outperform-
ing the baselines and reaching the optimal mean discounted return with a sufficiently high
planning budget.

62

7.2. Main Evaluation of the Planning Algorithms

Discounted Return

Discounted Return

=4
w

o
~

o
w

o
[N}

o
-

—e— AZ+PUCT -o-

SPARSE 8x8

AZ+UCT —e— MVC+PUCT -e—

MVC+UCT

NARROW 8x8

—e— PDDP

------ Optimal
SLALOM 8x8

8 16 32 64 128

SPARSE 16x16

16 32 64 128

SLALOM 16x16

8 16 2 64 128

Planning Budget (log scale)

Figure 7.4: PDDP results on 8 x 8 and 16 x 16 grid world test configurations.

Recall that compared to the baselines, the PDDP algorithm introduces several novel compo-
nents, specifically:

Discounted Return

o
e

o
w

S
N

0.1+

0.0

—e— PDDP —=— C=1

NARROW 8x8

* Reusing part of the previous planning tree.

* Detection-based penalization during construction.

NO TREE-REUSE ~ —e— NO DETPOL

—=— NO VP

* A special, pseudo-deterministic evaluation policy for estimating nodes Q values.

------ Optimal Value
NARROW 16x16

0.05 4

8 16 2
Planning Budget (log scale)

0.00

64 128 [16

32 64 128

Planning Budget (log scale)

Figure 7.5: Ablation study of PDDP features on NARROW test configurations.

Given the strong results on NARROW 16 x 16 that only this algorithm is able to achieve, we
are interested in determining which of the described components has the most significant

63

7. REsuLTS

influence on performance. To do so, we run an ablation experiment on both the NARROW
8 x 8 and NARROW 16 x 16 configurations, so that we can also see whether the importance
of any of them is particularly relevant when changing the configuration size. Note that we
also include C' = 1 as a modification, since being greedy during selection is one of the key
ingredients needed to build deep trees that can localize problems in the far-off future.

The results of this ablation are shown in The plots show how all the main
components of the algorithm contribute to the overall performance of the PDDP algorithm
in both cases. However, it is interesting to see how performance can degrade much more
when removing components in the 16 x 16 case; as expected, increasing a lot the value of C'
leads to shallow construction and therefore strongly damages the recycling of the previous
tree (fewer nodes to reuse) and the value penalty mechanism (selection is more off-policy
w.r.t. the value network). Nonetheless, deep trees alone seem insufficient, as removing the
detection and penalization mechanism also results in significantly lower performance.

0.57 | 062 | 065 | 0.70 [0.76 | 0.81 | 0.86 -0.01 | -0.02 | -0.00 | -0.01 | 0.00 | -0.00 | 0.01
064 | 068 | 0.72 [0.77 | 0.82 | 0.87 | 0.92 ©0.01 | -0.02 | 0.02 | -0.01 | -0.00 | 0.01 | 0.00
070 | 0.74 | 0.78 | 0.83 | 0.88 | 093 | 1.00 -0.02 | -0.04 | -0.03 | -0.03 | -0.03 | -0.01 §§ 0.00
(a) Planning values without penalization. (b) Value difference when applying penalties.

Figure 7.6: Effect of applying PDDP penalties on NARROW 8 x 8. The agent is positioned
in (0,2) (green border state). Values are averaged across 10 x 10 training/evaluation seeds.

While the ablation suggests that penalties effectively work as intended, we take one step
forward and create visualizations showing how the planning value estimates are affected by
using such a mechanism. shows the average planning values of each observed
state in the NARROW 8 x 8 configuration, computed across 10 x 10 training/evaluation
seeds after constructing a planning tree from a selected state (green border), without applying
value penalties, and with a budget of 128 node expansions. shows how these
values change when applying the value penalties. The rest of the (hyper)parameters are the
same that we used for the main PDDP results on this configuration, but note that, as we
are constructing these trees starting from the specified state, we are also not leveraging the
tree-reuse mechanism. As we can see from the images, penalizing detected changes results
in considerably lower average estimates for the states situated to the right of the agent. This
is desirable since it is never a good move to step to the right from the current position, and the

64

7.2. Main Evaluation of the Planning Algorithms

value of the states leading through the narrow entrance is, on average, significantly higher.
Conversely, planning without value penalties results in not correctly adjusting the values,
which remain strongly overestimated for the states to the right of the agent. This will likely
lead the agent down a dead-end path. Note that planning towards the narrow entrance also
results in some bumps which subsequently decrease the associated values; however, as we
can see, this penalization is considerably weaker and gets out-weighted by what the agent is
able to see at the other end of the entrance.

0.24 (030|031 | 034 | 036 | 039 |042 | 048 | 05

036 [0.38 | 041 | 043 |047

0.20 (032 034 | 038 | 041 | 044 |047 |04B

0.33 | 037 | 0.38 | 0.42 | 046 | 050 |051 059 |0.64 [0.66

030 | 0.43 |0.45 | 0.46 | 040 | 054 | 058 067 0,68 (072

0.44 |00 [0.48 | 053 |057 | 061

70| 075 | 082 |0.81

5
2

o o 65| 071 |074 |076
049 [055 057 | 061 |062 |06 0
053 038 [0) [

66 (070 76 | 0:82 | 0.9 100 002 | 001 |-0.01 | 000 |-0.01

(a) Planning values without penalization. (b) Value difference when applying penalties.

Figure 7.7: Effect of applying PDDP penalties on NARROW 16 x 16. The agent is positioned
in (0,5) (green border state). Values are averaged across 10 x 10 training/evaluation seeds.

The same experiment is repeated on the corresponding 16 x 16 configuration and shown
in Note that in this case, some states are clearly penalized incorrectly, such as
the one to the left of our agent, whose average planning value decreases by 0.26. However,
this does not constitute a problem in practice since it is never a good action to go left in this
configuration. As in the 8 x 8 case, values of states near the wall(s) of the dead-end path are
penalized more, which discourages the agent from moving right and increases the chances
that it will choose to go towards the narrow entrance.

Despite the compelling results on these configurations, it could be argued that such a greedy
approach might struggle when the learned value function is more complex than the one
learned on the empty grid environments. Therefore, we evaluate the performance of PDDP
on the MAZE configurations, for which the learned value functions show great variability
depending on the training seed, as it can be observed by directly inspecting the visualizations
in [Figure A.4|and [Figure A.5| The results of the PDDP agent on the maze configurations
are reported in Overall, we can see that all agents struggle more when trained
on MAZE_ LR and then tested on its variations (first row of plots in the figure) than when
trained on MAZE _RL (second row of plots in the figure). This intuitively makes sense since
MAZE_RL is a more challenging configuration in terms of the number of steps the agent
must take to optimally solve the goal, as well as the different actions it needs to perform.

65

7. REsuLTS

—— AZ+PUCT -e- AZ+UCT —e— MVC+PUCT - MVC+UCT —e— PDDP - Optimal

MAZE_LR - MAZE_LL MAZE_LR - MAZE_RR MAZE_LR - MAZE_RL

=
o«

Discounted Return
o o o
[N} w IS

o
o

8 16 2 64 128

MAZE_RL -» MAZE_LR

I
~

=
w

Discounted Return
o
o

o
i

o
=3

8 16 32 64 128 8 16 2 64 128
Planning Budget (log scale)
Figure 7.8: PDDP results on MAZE test configurations. The label MAZE_X — MAZE.Y

on top of each plot indicates training on the MAZE_X configuration and testing on the
MAZE.Y one.

Thus, moving the entrances at deployment does, in a way, make it easier to solve, despite
damaging the estimators. PDDP’s performance is, anyway, convincing, as the algorithm
surpasses or matches the best baseline results on all the train/test combinations.

7.2.3 Evaluation with Different Obstacle Deviation

The results obtained by the algorithms making use of the detection mechanism might be
correlated with the nature of the environment changes. Specifically, the analytical extraction
of the change step, detailed in partially relies on the assumption that bumping
into the obstacle causes the agent to remain in the same state. If we instead crash and receive
a negative reward, detection should be even easier; however, we are interested in evaluating
other non-trivial situations where the agent’s reaction to moving into an obstacle differs.
Some examples of this were analyzed in [subsection 3.2.1] and we would like to validate
our hypothesis that different yet reasonable deviation directions after moving towards an
obstacle should not particularly damage the application of our Cp,x criterion. To do so, we
repeat the experiments run so far on the 8 x 8 and 16 x 16 configurations (mazes excluded)
in the following setups:

* Clockwise (CW): trying to move towards an obstacle results in a deviation in clockwise
direction, i.e., according to the following map: {(1:—),(—=: 1), : <), (+: 1)}

* Counter-Clockwise (CCW): trying to move towards an obstacle results in a deviation
in counter-clockwise direction, i.e., according to the following map: {(1: <), (—: 1

) (L:=), (=2 D)}

66

7.2. Main Evaluation of the Planning Algorithms

—— AZ+PUCT -e- AZ+UCT —e— MVC+PUCT - MVC+UCT —e— MINITREES MEGATREE ~—e— PDDP - Optimal
CW SPARSE 8x8 CW NARROW 8x8 CW SLALOM 8x8

=4
w

Discounted Return
o o o
[N} w =

o
-

8 16 32 64 128 8 16 2 64 128

CW SLALOM 16x16

CW SPARSE 16x16

Discounted Return

8 16 32 64 128 8 16 2 64 128 8 16 32 64 128

Planning Budget (log scale)

Figure 7.9: Results of detection-based algorithms with clockwise (CW) obstacle deviations
on 8 x 8 and 16 x 16 grid world test configurations, compared with baselines.

—e— AZ+PUCT -e- AZ+UCT —e— MVC+PUCT -~ MVC+UCT —e— MINITREES MEGATREE ~—e— PDDP - Optimal
CCW SPARSE 8x8 CCW NARROW 8x8 CCW SLALOM 8x8

o
w

o
IS

o
w

I
[N}

Discounted Return

o
=

8 16 32 64 128 8 16 32 64 128

CCW SPARSE 16x16 CCW SLALOM 16x16

Discounted Return

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Planning Budget (log scale)

Figure 7.10: Results of detection-based algorithms with counter-clockwise (CCW) obstacle
deviations on 8 x 8 and 16 x 16 grid world test configurations, compared with baselines.

In specific cases where the agent cannot move in the deviation direction (e.g., due to another
obstacle), it remains in the same position as before. This can happen, for instance, if the
agent gets stuck in a corner. For all the algorithms, we keep the hyperparameters fixed at
the previously utilized values for the main experiments.

67

7. REsuLTS

Figure 7.9|shows the results of the baselines, the AZD agents (MINITREES, MEGATREE),
and PDDP on 8 x 8 and 16 x 16 test configurations with CW obstacle deviations. Overall, the
relative comparisons between the agents stay close to the main experiments. Note that AZD
algorithms perform slightly worse than before on SPARSE 8 x 8 but achieve considerably
better results on NARROW 16 x 16 and SLALOM 16 x 16 configurations. This may be
motivated by the fact that, in both configurations, a clockwise deviation causes downward
movement into the dead end to shift the agent leftward, which can help escaping it. This
also explains why the baselines performed better on the corresponding NARROW 8 x 8 and
SLALOM 8 x 8 configurations compared to their performance in the main results.

Figure 7.10| shows the corresponding plots with counter-clockwise obstacle deviations. In
this case, the performance improvement observed for AZD algorithms on 16 x 16 configu-
rations is lost, as the new dynamics no longer help in overcoming the obstacles in NARROW
and SLALOM. Nonetheless, the overall relative performance differences between the al-
gorithms remain similar to those in the main results, confirming that our detection-based
algorithms can handle more diverse dynamic changes than the original one we experimented
with.

7.2.4 EDP Agent Main Results

—o— AZ+PUCT - AZ+UCT —e— MVC+PUCT -e MVC+UCT —e— EDP - Optimal

SPARSE 8x8 NARROW 8x8 SLALOM 8x8

=
o«

I
~

=
w

Discounted Return
o
o

o
i

o
=3

SPARSE 16x16 NARROW 16x16 SLALOM 16x16

= TE s bY
&= NCETEEES ®

S
N
=

=}
b
«

Discounted Return
o o
o =
[v] (=]

o
o
=3

Planning Budget (log scale)

Figure 7.11: EDP results on 8 x 8 and 16 x 16 grid world test configurations.

The results of the EDP agent on the 8 x 8 and 16 x 16 configurations are reported in
Overall, EDP achieves excellent results, except for failing to outperform the
baselines on the NARROW 16 x 16 configuration, where performance only begins to rise
with the highest employed planning budget. However, what is perhaps most surprising are

68

7.2. Main Evaluation of the Planning Algorithms

the almost optimal results for SLALOM configurations, even with very limited planning
budgets, for both 8 x 8 and 16 x 16 configuration sizes.

—e— EDP = C=1 NO TREE-REUSE NO BLOCK LOOPS -+~ Optimal Value

SLALOM 8x8 SLALOM 16x16

o
=
o

0.14

o
w
a

o
w
=)

0.12

0.10

I
N
&

e
N
o

0.08

Discounted Return

I
sy
T}

0.06

o
-
o

0.04

=
o
&

0.02

=3
o
=]

¥ y u T T 0.00 T y y y T
8 16 32 64 128 8 16 32 64 128
Planning Budget (log scale) Planning Budget (log scale)

Figure 7.12: Ablation study of EDP features on SLALOM test configurations.

Similarly to what we did for PDDP, we then conduct a simple ablation experiment to
understand which component of the EDP algorithm contributes the most to these results.
We consider three main ingredients as the core of EDP:

* Greedy selection (C' =~ 0).
* Reusing part of the previous planning tree.

* Blocking loops.

The results of this ablation are plotted in Each of the lines represents the
EDP algorithm without one of the features mentioned above, except for the black line,
which represents the complete algorithm. The results of this experiment clearly show that
blocking the loops is by far the most impactful feature of EDP. In fact, removing it re-
sults in an almost complete drop in performance even in the 8 x 8 case. Not recycling
the previous step’s planning trees also leads to a performance decrease, particularly in the
16 x 16 case, which makes sense as considerably more planning is needed in that case to
clear the obstacle. What is perhaps surprising is that increasing the C' exploration constant
does not significantly damage the results, which even become slightly better in the 8 x 8 case.

To better understand what makes blocking the loops so effective on these configurations,
we propose similar visualizations to the ones shown for PDDP, but this time we plot the
mean visitation count of each state across 10 x 10 training/evaluation seeds after building a
planning tree from a selected state, with and without blocking the loops.

69

7. REsuLTS

131.80 121.20 117.20 0.10 2.70 REER:=l] 52.50

0.20 3.70 | 54.90 0

0

0.40 | 10.30 4,70

0.40 | 24.20 [72890 | 6.10 3.00 0.0 | 18.80 9.60

0.30 | 20.30 | 62.90
0.30 18.70 | 73.50 | 68.70 | 41.70
0.60 3.60 | 24.50 | 58.30
(a) Block loops on. (b) Block loops off.

Figure 7.13: Comparison of EDP planning with and without blocking loops on SLALOM
8 x 8. The agent is positioned in (0,5) (green border state).

For the SLALOM 8 x 8 configuration, this is reported in We can see how
the agent blocking the loops can directly observe the goal state during planning, and the
dark green color persisting along such a path confirms that most of the planning budget is
successfully directed there. Conversely, the agent that does not block the loops continues
to select roughly the same path leading to the corner state (4,7). Acting from there will
produce a lot of loops, which is why performance changes so much if we block them.

080 | 190 [200 [200 [200

080 [15.80 [52.20 s 20

130 [23.80 [57.10 [75.50{ 72 50 50 80

080 | 10.50{17.6013 60[12.00 {12 8O

060 | 570
030 | 260

010 | 060 [010

010

(a) Block loops on. (b) Block loops off.

Figure 7.14: Comparison of EDP planning with and without blocking loops on SLALOM
16 x 16. The agent is positioned in (7,14) (green border state).

An equivalent visualization for the SLALOM 16 x 16 configuration is reported in
In this case, the agent blocking the loops is unable to directly observe the goal state during
planning, which is not surprising, given that the utilized planning budget remains the same as

70

7.2. Main Evaluation of the Planning Algorithms

before, while the distance between the agent and the goal is significantly larger. Nonetheless,
it still manages to observe many more states around the obstacle without focusing on the
corner. Note that, as shown by the ablation, this alone is not sufficient to consistently solve
the configuration, but it is when combined with tree recycling, which further increases the
size of the constructed trees over time.

—e— AZ+PUCT -# AZ+UCT —e— MVC+PUCT -e MVC+UCT —e— EDP -~ Optimal

MAZE_LR - MAZE_LL MAZE_LR - MAZE_RR MAZE_LR —» MAZE_RL

o
w»

Y

PRt T

o
~

o
w

o
[N}

Discounted Return
o
i

8 16 32 64 128 8 16 2 64 128 8 16 32 64 128

MAZE_RL - MAZE_LL MAZE_RL -» MAZE_RR MAZE_RL - MAZE_LR

I
IS

o
w

Discounted Return
o
N

o
.

o
o

8 16 32 64 128 8 16 2 64 128 8 16 32 64 128
Planning Budget (log scale)
Figure 7.15: EDP results on MAZE test configurations. The label MAZE_X — MAZE.Y

on top of each plot indicates training on the MAZE_X configuration and testing on the
MAZE.Y one.

Finally, we evaluate EDP on the maze configurations, with results reported in
The performances achieved by the EDP agent are beyond our expectations, as it not only
largely outperforms the baselines when changing the position of one entrance, but also
obtains by far the best results so far on the challenging MAZE LR — MAZE_RL and
MAZE RL — MAZE_LR combinations. Note that this is the only agent tested so far to
achieve non-zero performance on MAZE_ LR — MAZE_RL, and instead almost reaching
optimality with high planning budgets. We believe that such a significant performance
improvement over the baselines highlights the generally inefficient planning standard AZ
carries out, making its performance tightly constrained by how accurate the learned pri-
ors are. We will discuss how much these results can be expected to generalize to other
environments in

7.2.5 Summary Plots

To facilitate the comparison of all our novel algorithms, we hereby report a few summary
plots of the main results. We avoid reiterating the baseline results since we have already
thoroughly demonstrated their suboptimal performance in comparison to our algorithms.

71

7. REsuLTS

Discounted Return

Discounted Return

=
n

I
=~

o
w

I
[N}

o
i

o
t=)

—e— MINITREES MEGATREE —e— PDDP —e— EDP - Optimal
SPARSE 8x8 NARROW 8x8 SLALOM 8x8
8 16 » 64 128 8 16 32 64 128 8 16 2 64 128

SPARSE 16x16

NARROW 16x16

SLALOM 16x16

,,.,r\;f-/_wf—a\\.

-

» 64 128

8 16 32 64 128

Planning Budget (log scale)

8 16 2 64 128

Figure 7.16: Performance of all novel algorithms on 8 x 8 and 16 x 16 configurations.

Discounted Return

o
o

Discounted Return

0.2 4

o
o

—e— PDDP —e— EDP -~ Optimal

MAZE_LR - MAZE_RL

MAZE_LR - MAZE_LL

MAZE_LR > MAZE_RR

128

s 16 2 64 128 8 16 32 64 128 8 16 2 64
MAZE_RL -» MAZE_LL MAZE_RL - MAZE_RR MAZE_RL » MAZE_LR
s 16 2 64 128 8 16 32 64 128 8 16 2 64 128

Planning Budget (log scale)

Figure 7.17: PDDP and EDP performances compared on MAZE configurations. The label
MAZE_X — MAZE_Y on top of each plot indicates training on the MAZE_X configuration

and testing on the MAZE_Y one.

shows the performance of all the novel algorithms on the main 8 x 8 and 16 x 16
grid world experiments. Overall, all the algorithms demonstrate strong performance on
8 x 8 configurations, whereas PDDP and EDP are the only ones that reach optimality on the
challenging NARROW 16 x 16 and SLALOM 16 x 16 configurations, respectively.

72

7.3. CarGoal Evaluation

IFigure 7.17| compares PDDP and EDP performance on the MAZE configurations. While
both algorithms outperform the baselines as previously shown, these plots make it easier to
see how EDP achieves significantly higher returns in most configurations. We can therefore
conclude that EDP is our overall best-performing algorithm on the grid world experiments.

7.3 CarGoal Evaluation

—e— AZ+PUCT -o AZ+UCT —e— MVC+PUCT -e MVC+UCT —e— PDDP —e— EDP - Optimal
SPARSE HORIZONTAL

0.8

0.6

Return

0.4

0.2

0.0

8 16 32 64 128 8 16 32 64 128

Planning Budget (log scale)

Figure 7.18: Return on CarGoal test configurations.

To conclude this chapter, we show a relatively brief evaluation of our best-performing algo-
rithms, PDDP and EDP, conducted on the CarGoal test configurations shown in
We do this to give a glimpse of the potential performance of our algorithms in more complex
environments. Note that in this case, we consider the undiscounted return as the main
metric, since the discounted return is no longer an intuitive performance indicator, and it is
difficult to compute the corresponding optimal value for this environment. Moreover, two
adjustments to our algorithms were found necessary:

» For PDDP, we do not apply the pseudo-deterministic policy modification described
in [subsection 4.2.4, We make this change based on early experimentation, which
revealed that this extremely greedy approach was particularly detrimental in the Car-
Goal environment, where the action space is relatively larger. As such, we might not
want to risk over-committing to a single greedy path during planning.

* For EDP, we apply the already mentioned generalized definition of loops necessary in
continuous state spaces, i.e., we consider s’ a repetition of s if ||s — s'[|o < 7, where
7 is a constant loop threshold.

shows the results of this evaluation. As the main highlight, we can see how EDP
significantly outperforms all the baselines on both configurations. This is perhaps surprising
considering that the definition of a loop in continuous state spaces is less trivial, and wrongly

73

7. REsuLTS

tuning the threshold 7 could block potentially non-redundant planning paths. Nonetheless,
our results suggest that this can still be a powerful feature if we manage to find the correct
balance.

On the other hand, PDDP shows a more modest improvement over the baselines, par-
ticularly in the SPARSE experiment, where all algorithms besides EDP perform similarly.
In the HORIZONTAL experiment, PDDP reaches a higher return than all the baselines for
large planning budgets, but still significantly less than EDP. The most plausible explanation
for this lies in the fact that, as anticipated, bumping into an obstacle causes the car’s velocity
to drop to zero. This makes standard AZ planning already see this as a detrimental move,
which makes applying PDDP penalties less effective than what we experienced in the grid
world experiments, where standard planning could not update the values quickly enough
to reflect the changes. Conversely, EDP generally makes planning more efficient by loop
blocking.

We do not exclude that better tuning of the several PDDP hyperparameters could bring
its performance closer to that of EDP, which only relies on the loop threshold 7 and is there-
fore easier to tune. This experiment, however, confirms that this is an inherent limitation of
PDDP, which would likely benefit from a method to dynamically estimate the value penalty
to be applied to each penalized node.

—e— AZ+PUCT -e AZ+UCT —e— MVC+PUCT -e MVC+UCT —e— PDDP —e— EDP - Optimal
SPARSE HORIZONTAL

1.0+

I =4 4
IS o @

Fraction of Seeds with Collision

e
[N}

0.0 4

8 16 2 64 128 8 16 32 64 128
Planning Budget (log scale)

Figure 7.19: Fraction of seeds reporting at least one collision on CarGoal test configurations.

Finally, it might be argued that the improvements in return shown in would be
more meaningful if they also corresponded to a reduction in collisions. After all, in a real-
world setting, a driver who reaches the goal while repeatedly bumping into obstacles along
the way would not be considered very professional. To address this, we report the fraction
of seeds that experienced at least one collision in the previous experiment, as shown in
This plot reveals that the collision metric is inversely correlated with the return:
when the car collides, it rarely manages to get unstuck and reach the goal. In the SPARSE
case, EDP’s advantage in avoiding collisions is somewhat smaller than its advantage in

74

7.3. CarGoal Evaluation

return, indicating that there are instances where the algorithm succeeds in reaching the
goal despite some collisions. In the HORIZONTAL case, however, EDP outperforms the
baselines in both return and collision avoidance, showing a more consistent ability to avoid
obstacles and follow a clear path to the goal.

75

Chapter 8

Discussion

We now wish to further discuss the outcomes of our analysis and experiments, as well as
highlight the potential limitations of our framework.

This work started with the simple idea that a model of the test environment would have
enabled us to test whether a learned policy was still reliable at deployment, despite relevant
changes to the environment. Following this idea, we devised a detection method enabling the
agent to localize changes far into the future and conducted an in-depth analysis in [chapter 3]
The related experiment presented in[section 7.1|shows how the standard criterion C presents
important sensitivity and precision issues, even when applied to the relatively simple and
local type of change that an obstacle constitutes. This is likely due to the underestimation
of the learned value functions which is roughly proportional to the distance of
the state from the goal; as such, the values that we are bootstrapping when computing n-step
estimates get increasingly high as we roll out further, and it then takes a lot of time (and
bumps) for the agent to decrease such estimate and realize it encountered an obstacle. The
error that we experienced is indeed also roughly proportional to the distance of the agent
from the obstacle. In contrast, Cax shows a close-to-zero error because taking the max
value estimate along the path as the comparison value combats the underestimation with an
overestimation.

It could be argued that the advantage of using this method in this situation may be off-
set by its disadvantage in the opposite situation, i.e., cases where values close to the agent’s
position are overestimated. However, it is easy to see how in that case, Ciyax Would converge
to C as the maximum value estimate along the path would be the one of the root. We
therefore ultimately see Ciax as a generally more robust criterion.

One important point that still needs to be discussed is what would happen if the state
representation were different. In theory, our detection methods do not utilize explicit infor-
mation regarding the type of observation; instead, they solely rely on the value and policy
estimates that the neural network outputs. In practice, the ability to observe different features
of the state may affect detection; for instance, if we used images instead of coordinates to
represent the agent’s position, new obstacles would be reflected in the observation, which

77

8. DiscussioN

would be out of distribution and subsequently impact the NN outputs.

We can then imagine two possible situations:

* The agent was trained on some obstacle configurations and is now challenged with a
new one. The neural network might generalize to the new observations. If so, we will
likely follow a generally correct direction, and our criterion should still be triggered
if the agent ends up bumping into an obstacle anyway, correctly indicating a change.

* The agent was trained with no obstacles. The new “concept” of an obstacle reflected
in all the test-time image observations could result in globally wrong policy and value
predictions. Nonetheless, if the two estimators are learned together, as in our case,
we can expect them to be similarly affected by the changes; i.e., our assumption that
vy A Vﬂé should still hold, despite vy and 7y being now both strongly suboptimal. If
this is not the case and the two estimators are somehow differently affected, then the
detection might be triggered even without encountering a change.

We can therefore imagine that in most cases, the detection should work regardless of whether
the changes are reflected in the NN inputs, though its practical impact may be reduced. An
example of this is what we experienced when testing PDDP on the CarGoal test configu-
rations (section 7.3)), where bumping into an obstacle causes the car’s velocity to drop to
zero. We believe that the reduced impact of PDDP penalties over baseline performances in
those experiments is due to the neural network already identifying post-collision states as
significantly worse, unlike in the main grid world experiments, where the observation after
bumping stayed exactly the same, and the baselines could not easily account for it.

The impact of incorporating the detection mechanism during planning has been exten-
sively validated in We now wish to discuss under which assumptions we can
expect such successful outcomes to generalize, especially when moving to more complex
environments. The performance of AZD methods is inherently constrained by the quality of
the learned prior policy, as we follow it blindly until a problem is detected. Usually, the main
advantage of retaining a model of the environment is that we can adjust an imperfect policy;
AZD methods address this when environment discrepancies cause such imperfections. If,
however, the neural network was underfitted in the first place, then these methods are bound
to perform suboptimally even if the environment stays the same. On the other hand, PDDP
integrates the detection into a more general planning algorithm and should therefore better
cope with situations where the estimators were originally suboptimal. Moreover, the param-
eter controlling how much we want to penalize the detected changes gives us more flexibility;
if we know what kind of changes might affect the environment (e.g., obstacles, lava blocks,
slippery floor), then we can adjust such parameter to make the agent more or less pessimistic
w.r.t. them. This introduces a bias in our planning algorithm, which might be detrimental if
the changes end up being different than what we expected. Recall that PDDP also relies on
another proprietary hyperparameter, which controls how strict we want to be when checking
whether the actions chosen by the selection policy are on-policy w.r.t. the learned prior. The
presence of several parameters that have a concrete impact on performance constitutes the

78

main limitation of the algorithm.

Finally, the EDP algorithm proposes a more general approach that does not rely on de-
tection principles and instead aims to plan in the most efficient way possible with the
available planning budget. While the individual components of the algorithm are not new
to the MCTS literature (as discussed in[section 5.2)), we showed that their combination can
significantly improve the agent’s performance. It is important to point out that our grid world
configurations naturally bring to a lot of exact loops during planning, being the state space
discrete and relatively small; nonetheless, the performed CarGoal experiments demonstrated
how the generalized definition of a loop, which considers a similarity metric between states,
can still improve performance in large or continuous state spaces if the threshold parameter
7 is properly tuned.

Note that there might be cases where repeatedly entering a certain sequence of states leads
to a net positive/negative reward, in which case blocking the loop and assigning it a value of
zero might not be desirable. Moerland et al. [22] suggest that few real-world tasks require
an agent to repeatedly travel a loop, and in practice, such situations are typically domain arti-
facts. While this makes sense when thinking of most deterministic, single-player games like
the environments both our and their algorithms were tested on, we could likely craft some
examples where blocking loops could be a suboptimal choice even under these assumptions,
such as navigation tasks requiring return trips or repeated laps, or resource-gathering settings
where revisiting the same locations is necessary for collecting more resources. Whether
these situations result in actual loops depends on the state representation that the agent can
observe.

Most importantly, blocking loops can be detrimental in stochastic environments, even if
simple. For example, in the popular FrozenLake grid world environment, the agent has a
1/3 probability of moving in the intended direction when acting and a 2/3 probability of
slipping in a perpendicular direction because of the frozen floor. In such a situation, we
might enter a loop by bumping into the wall even when taking an optimal action. Therefore,
blocking it and assigning it a value of zero would strongly damage the planning process.
This can happen from the very beginning of the episode since the agent starts in the (0, 0)
corner and can bump into the wall if slipping left when trying to go down, or slipping up
when trying to go right.

These considerations highlight that while loop blocking can prevent inefficient planning
in common scenarios, its indiscriminate application risks hiding valuable, even optimal,
behavior. It should therefore be applied with careful consideration of the environment’s
dynamics and task-specific requirements.

79

https://gymnasium.farama.org/environments/toy_text/frozen_lake/

Chapter 9

Conclusions and Future Work

In this chapter, we draw our conclusions and propose some future directions for expanding
our work. To do so, we now come back to our original research questions:

1. How can we detect changes to the environment at deployment when planning with
learned estimators?

The analytical criteria developed in allow the agent to quickly detect that
some detrimental change has happened along the rolled out trajectory without the
use of external knowledge or a model of the original environment. In some cases,
it is also possible to determine the exact location where the deviation began along
the trajectory; this depends on the nature of the changes, as well as the reward and
transition functions governing the environment. We analyzed some of these cases
and provided insights on the related errors and needed approximations. Finally, we
discussed the applicability of our results and considerations in [chapter §]

2. How can we leverage such detection principles to re-plan around these changes and
subsequently overcome them?

We proposed two classes of algorithms that exploit the detection criteria in fun-
damentally different ways. AZD methods look far into the future by
rolling out a prior policy that can detect long-distance deviations. Then, the trajec-
tory can be expanded into a planning tree, which lets us search for alternative paths
through the novel Value Search mechanism. Within this category, we showcased two
algorithms, MiniTrees and MegaTree, which mostly differ in the way the trajectory is
expanded. We went on to describe the PDDP algorithm (section 4.2), which directly
integrates the detection check along the trajectories followed by the selection policy
while building the planning tree, and penalizes each deviation by manually reducing
the value of nodes marked as potentially problematic. We tested both approaches
with multiple experiments and related ablations in [section 7.2] and [section 7.3| and
discussed their limitations in[chapter §

81

9. ConNcLUSIONS AND FUTURE WORK

3. What standard features of AlphaZero planning might be modified or improved to better
plan and act in a potentially changed environment?

Our baseline experiments show how the shallow planning typical of AZ can be too
slow in updating the value estimates necessary to realize that something has changed
in the environment. Based on this observation, we developed the EDP algorithm,
which modifies several features of AZ to make more intelligent use of the available
planning budget, even without modifying the core of the original algorithm. This
resulted in largely improved results, showing how standard AZ’s inability to account
for wrong prior estimates largely depends on an overall inefficient use of the planning
budget. We found out that EDP particularly benefits from blocking state loops during
planning, allowing the agent to explore many more options and avoid getting stuck in
corners or other types of dead ends, and from partially reusing the previous planning
tree instead of completely discarding it after each step. We also discussed which kind
of assumptions and subsequent biases are introduced by these planning modifications

in|chapter 8

Overall, our methods are demonstrated to largely improve performance under certain as-
sumptions. Our future work section is therefore focused on what steps should be followed
to relax such assumptions.

9.1 Future Work

Our work opens the way to several future improvements and extensions of the proposed
framework. We hereby suggest some of the most promising.

9.1.1 Extension to Stochastic and Partially Observable Environments

Our analysis and proposed solutions assume that the environment (and associated model)
is deterministic and that states are fully observable. This means the agent is certain of the
current state it is occupying. This assumption is inherited from the standard AlphaZero
framework, and relaxing it can impact our algorithms in different ways. All the proposed
algorithms keep part of the previous planning tree instead of completely discarding it. They
do so by “’stepping” into the node that corresponds to the current state of the environment
and only retaining its subtree, as the rest of the tree is not useful anymore if we are certain
that we are planning from the correct current state. If this is not the case, one possible
enhancement would be storing some of these planning trees, which could come in handy if
we realized some steps later that the environment state is different from what we believed. It
would also be possible to directly modify the way the planning trees are constructed to take
stochasticity into account, for instance, by following the approach of Stochastic MuZero [2]
but with a given simulator, instead of learning a model as done in MuZero methods.

82

9.1. Future Work

9.1.2 Dealing with Imperfect Models

While our algorithms are specifically tailored to deal with estimators that are inaccurate
due to environment changes, we are, on the other hand, assuming an accurate transition
and reward model of the test environment. This is a strong assumption that can limit
the applicability of our methods, as well as the employed baselines, to real-world tasks
where models are usually incomplete and/or inaccurate. Unfortunately, planning with an
imperfect model is a hard challenge, and many recent approaches rely on fundamentally
different frameworks that are not necessarily MCTS-based, as some of the ones described in
If we have some knowledge of the degree of error of our transition model, then
it might be possible to integrate MCTS-based techniques that deal with model uncertainty,
such as robust MCTS [26] (fMCTS) or Epistemic-MCTS [23] (E-MCTS), also mentioned
in[chapter 5] By combining a method that addresses model uncertainty with our algorithms,
we may be able to tackle more realistic challenges.

9.1.3 Addressing Non-Stationary Environments

It would be interesting to test how our algorithms perform in non-stationary environments.
For instance, we could have similar configurations to the ones we experimented with, where
the obstacles dynamically move during the execution of an episode. This could represent
realistic situations, such as a car driving through traffic and therefore having to deal with
various moving objects that must be detected early on. While the detection itself should not
be impacted, we could not fully reuse the gathered information during the next step because
the changes would be different. Therefore, the methods should be adapted to either only
exploit detection information gathered at the current step or to account for errors arising
from non-stationarity. Mechanisms such as recycling the previous planning tree would also
need modifications in order to be applied to these scenarios.

83

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

Bibliography

Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models in
reinforcement learning. In Proceedings of the 23rd International Conference on Ma-
chine Learning, ICML 06, page 1-8, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595933832. doi: 10.1145/1143844.1143845. URL
https://doi.org/10.1145/1143844.1143845.

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David
Silver. Planning in stochastic environments with a learned model. In International
Conference on Learning Representations, 2021.

K. J. Astrém. Optimal control of markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications, 10(1):174-205, 1965.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

Richard Bellman. A markovian decision process. Journal of Mathematics and Me-
chanics, 6(5):679—-684, 1957.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. https://arxiv.org/abs/1606.
01540, 2016. arXiv preprint arXiv:1606.01540.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter L.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and Al in Games, 4(1), 2012. doi: 10.1109/TCIAIG
.2012.2186810.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
volume 4630, 05 2006. ISBN 978-3-540-75537-1. doi: 10.1007/978-3-540-75538-8_
7.

85

https://doi.org/10.1145/1143844.1143845
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

86

Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, and Claudia Linnhoff-
Popien. Subgoal-based temporal abstraction in monte-carlo tree search. In Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, 1JCAI-19, pages 5562-5568. International Joint Conferences on Artificial
Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/772. URL https:
//doi.org/10.24963/1ijcai.2019/772.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 315-323,2011. URL http://proceedi
ngs.mlr.press/v15/glorotlla/glorotlla.pdf.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015. URL https://arxiv.org/abs/
1502.03167.

Albin Jaldevik. General tree evaluation for alphazero. Master’s thesis, TU Delft, 2024.

Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Kaelbling, and Tomas Lozano-
Perez. Monte carlo tree search in continuous spaces using voronoi optimistic op-
timization with regret bounds. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(06):9916-9924, Apr. 2020. doi: 10.1609/aaai.v34i06.6546. URL
https://ojs.aaai.org/index.php/AAAIl/article/view/6546.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017. URL https://arxiv.org/abs/1412.6980.

Levente Kocsis and Csaba Szepesvdri. Bandit based monte-carlo planning. volume
2006, pages 282-293, 09 2006. ISBN 978-3-540-45375-8. doi: 10.1007/11871842_29.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and
K. Miiller, editors, Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/pap
er/1999/file/6449f44a1021fde848669bdd9ebbb76fa-Paper.pdf.

Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, [-Chen Wu, and Cho-Jui
Hsieh. Are alphazero-like agents robust to adversarial perturbations?, 2022. URL
https://arxiv.org/abs/2211.03769.

John Lathrop, Benjamin Rivi‘ere, Jedidiah Alindogan, and Soon-Jo Chung. Model
predictive trees: Sample-efficient receding horizon planning with reusable tree search,
2024. URL https://arxiv.org/abs/2411.15651.

Jongmin Lee, Wonseok Jeon, Geon-Hyeong Kim, and Kee-Eung Kim. Monte-carlo
tree search in continuous action spaces with value gradients. Proceedings of the AAAI
Conference on Artificial Intelligence, 34:4561-4568, 04 2020. doi: 10.1609/aaai.v34i
04.5885.

https://doi.org/10.24963/ijcai.2019/772
https://doi.org/10.24963/ijcai.2019/772
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://ojs.aaai.org/index.php/AAAI/article/view/6546
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://arxiv.org/abs/2211.03769
https://arxiv.org/abs/2411.15651

Bibliography

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

John Tan Chong Min and Mehul Motani. Brick tic-tac-toe: Exploring the generaliz-
ability of alphazero to novel test environments, 2022. URL https://arxiv.org/ab
s/2207.05991.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning, 2013. URL https://arxiv.org/abs/1312.5602.

Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Monte
carlo tree search for asymmetric trees, 2018. URL https://arxiv.org/abs/1805.
09218

Yaniv Oren, Villiam Vadocz, Matthijs T. J. Spaan, and Wendelin Bohmer. Epistemic
monte carlo tree search, 2025. URL https://arxiv.org/abs/2210.13455.

Ava Pettet, Yunuo Zhang, Baiting Luo, Kyle Wray, Hendrik Baier, Aron Laszka,
Abhishek Dubey, and Ayan Mukhopadhyay. Decision making in non-stationary en-
vironments with policy-augmented search, 2024. URL https://arxiv.org/abs/
2401.03197.

Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie Bruin. Exploiting graph properties
of game trees. 09 1998.

Maxim Rostov and Michael Kaisers. Robust online planning with imperfect models.
2021.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533-536, 1986. doi:
10.1038/323533a0.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
Timothy Lillicrap, and David Silver. Mastering atari, go, chess and shogi by planning
with a learned model. Nature, 588(7839):604—-609, December 2020. ISSN 1476-
4687. doi: 10.1038/s41586-020-03051-4. URL http://dx.doi.org/10.1038/
s41586-020-03051-4.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den
Driessche, Julian Schrittwieser, loannis Antonoglou, Vedavyas Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Grae-
pel, and Demis Hassabis. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484-489, 2016. URL https://api.semanticscholar.
org/CorpusID:515925.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

87

https://arxiv.org/abs/2207.05991
https://arxiv.org/abs/2207.05991
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1805.09218
https://arxiv.org/abs/1805.09218
https://arxiv.org/abs/2210.13455
https://arxiv.org/abs/2401.03197
https://arxiv.org/abs/2401.03197
http://dx.doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
https://api.semanticscholar.org/CorpusID:515925
https://api.semanticscholar.org/CorpusID:515925

BIBLIOGRAPHY

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

88

Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm, 2017. URL https:
//arxiv.org/abs/1712.01815.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis. Mastering the game of go without human knowledge. Nature
550, 2017. URL https://doi.org/10.1038/nature24270.

Maciej éwiechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mandziuk.
Monte carlo tree search: a review of recent modifications and applications. Artifi-
cial Intelligence Review, 56(3):2497-2562, 2023. doi: 10.1007/s10462-022-10228-y.
URL https://doi.org/10.1007/s10462-022-10228-y.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola,
Tristan Deleu, Manuel Goul ao, Andreas Kallinteris, Arjun KG, Markus Krimmel,
Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin
Shen, and Omar G. Younis. Gymnasium. https://zenodo.org/record/8127025,
March 2023. Zenodo.

Anirudh Vemula, Yash Oza, J. Andrew Bagnell, and Maxim Likhachev. Planning
and execution using inaccurate models with provable guarantees, 2020. URL https:
//arxiv.org/abs/2003.04394.

Anirudh Vemula, J. Andrew Bagnell, and Maxim Likhachev. Cmax++ : Leveraging
experience in planning and execution using inaccurate models. In Proceedings of 35th
AAAI Conference on Artificial Intelligence (AAAI °21), pages 6147 — 6155, February
2021.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):
279-292, 1992. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/BF
00992698.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229-256, 1992. doi: 10.1007/BF
00992696. URL https://doi.org/10.1007/BF00992696.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67-82, 1997. doi: 10.1109/4235.
585893.

Timothy Yee, Viliam Lisy, and Michael Bowling. Monte carlo tree search in con-
tinuous action spaces with execution uncertainty. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IICAI’16, page 690-696.
AAAI Press, 2016. ISBN 9781577357704.

https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature24270
https://doi.org/10.1007/s10462-022-10228-y
https://zenodo.org/record/8127025
https://arxiv.org/abs/2003.04394
https://arxiv.org/abs/2003.04394
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696

Appendix A

A.1 Training Details and Hyperparameters

Implementation Details

In this section, we detail our training setting, as well as the hyperparameters used, whose

full list is reported in[Table A.1|for the grid world trainings and in[Table A.2|for the CarGoal

training.

Category Parameter E-8x8 | E-16x16 | MZ-LR-8x8 | MZ-RL-8x8

Environment max_ep_len 100 200 200 200
disc_factor 0.95 0.95 0.95 0.95
iterations 50 60 100 150

Training learning_epochs 4 4 4 4
sample_size 6 6 6 6
buffer_size 90 90 90 90
batch_size 22 22 22 22
learning rate 0.001 0.003 0.001 0.001
optimizer Adam Adam Adam Adam

Loss value_weight 0.7 0.7 0.7 0.7
policy weight 0.3 0.3 0.3 0.3
n_steps 2 2 2 2
hidden_size 64 64 64 64

Neural Network | hidden_num 2 2 2 2
activation ReLLU ReLU RelLU RelLU
batch norm No No No No

. planning_budget 64 128 64 64

Planning c 1 1 0.5 05
dir_eps 04 04 0.4 04
dir_alpha 2.5 2.5 2.5 2.5

Table A.1: Training parameters for the different grid world environments.

Since our novel agents are specifically designed for being deployed once learning is over,

&9

A. IMPLEMENTATION DETAILS

Category Parameter CarGoal

Environment max_ep.len 200
disc_factor 0.975
iterations 1000
learning_epochs 4

Training sample_size 12
buffer_size 180
batch_size 45
learning rate 0.0001
optimizer Adam
value_weight 100

Loss policy weight 0.01
n_steps 1
hidden_size 64

Neural Network | hidden_num 3
activation ReLLU
batch norm Yes
planning budget 128

. C 1

Planning dir_eps 04

dir_alpha 2.5

Table A.2: Training parameters for the CarGoal environment.

the NN training is carried out following the original AlphaZero framework and by employ-
ing one of its several available implementations, specifically the one used as a baseline in
[12]. Consequently, many of the implementation details reported here closely follow those
described in their work.

Each agent is trained by alternating three phases, and we refer to the completion of these
three phases for a single time as completing one of the multiple iterations :

1. Sampling of episodes
2. Learning
3. Evaluation (periodical)

During the sampling phase, the agent collects a number of sample_size episodes sampled
by planning and acting in the environment using the current estimators. In this phase, we
want to somewhat explore the environment and as such, we always act by sampling from
the (stochastic) evaluation policy after planning. Dirichlet noise is also applied to the prior
policy at the root as described in [subsection 2.3.2] Each episode ends when we reach a
terminal state or we hit the max_ep_len. The neural network parameters are not updated
during this phase, i.e., we do not let any gradient flow. Then, these sampled episodes are

90

A.1. Training Details and Hyperparameters

added to a replay buffer of maximum capacity buffer_size.

During the learning phase, we repeat a learning loop for a number of learning_epochs.
For every epoch, we extract batch_size episodes from the replay buffer uniformly at ran-
dom and use them to compute the value and policy losses following a modified version of the
process described in [subsection 2.3.3] The details of the losses computation are described
in[subsection A.1.1| The total AZ loss is then computed as their weighted sum with weights
value weight and policy weight respectively. Based on that, the selected optimizer
updates the neural network’s parameters. Note that we selected the Adam optimizer [[14]] in all
our trainings. The pace at which the parameters are updated depends on the learning rate.

Every eval period iterations, an evaluation phase is also run. The goal of this phase
is to evaluate the current evaluation policy as a deterministic policy, i.e., by always taking
the argmax action. Note that the neural network is not updated during this phase and that
Dirichlet noise is also not applied. We therefore run an arbitrary number of evaluation
episodes of maximum length max_ep_len and compute the averaged metrics of interest,
such as the mean discounted and undiscounted return. Based on the outcomes, we may
decide to prematurely stop training if performance is already (close to) optimal.

A.1.1 Loss Computation

Compared to standard AlphaZero implementations, both the policy and value losses are
normalized over the number of unique states in the utilized training framework. This
adjustment helps prevent the total loss from being overly influenced by repeated occurrences
of the same state, especially in situations where an agent gets stuck in one place, resulting in
most of the sampled trajectory consisting of that single state [[12]]. In practice, this is done
in the following way:

* First, count how many times each unique state appears in the batch.

* Then, for each step, divide the corresponding loss term by the count of how often that
state appears.

* Finally, normalize these terms so that the loss scale is preserved.

Regarding hyperparameters, the n_steps parameter sets the value of n used for the boot-
strapped n-step value loss. The disc_factor parameter indicates the chosen ~ for dis-
counting.

A.1.2 Neural Network Architecture

Since our input state embeddings are simple vectors for both grid world and CarGoal
environments, our neural network architecture is a standard Multi-Layer Perceptron (MLP)
[27]. We also need the network to have separate output heads for the value and policy,
respectively, where the policy output needs to be preceded by a softmax operation. We
chose to retain the standard architecture configuration used in [12], as it provided effective

91

A. IMPLEMENTATION DETAILS

o - T T = = ~
Vs N - N\ s N - N s N

Y ve—

obs EMBEDDER

|
]
|
|
|
|
SN
|

\
|
—>
I
|
|
I 7 N
|
> X SOFTMAX |—TT9—>
!
AN J \ J AN J A // AN J

P i e i b s e b hie

Figure A.1: MLP architecture with a variable number of hidden layers H. The ¥ block
represents a sum and the o block represents an activation function (e.g., ReLU).

and quick training performance during early experimentation. A diagram visualizing the
architecture is reported in[Figure A. 1| The number of utilized hidden layers H is reported in
our hyperparameters table as hidden_num, while the number of neurons per layer is indicated
by the hidden_size parameter. The utilized activation function is always ReL.U [10].
Sometimes, it can be useful to apply batch normalization [[11] to stabilize training; whether
it is used for a specific environment is indicated by the parameter batch norm. This can be
implemented by adding additional batch normalization layers before each activation block
of the H hidden layers.

A.1.3 Planning Parameters

The planning budget indicates the number of node expansions that AZ can perform
during planning before it must choose an action to undertake in the real environment. The c
parameter determines the amount of exploration that our selection policy commits. During
training, we also add Dirichlet noise to the prior policy, controlled by the parameters dir_eps
and dir_alpha, to encourage more exploration at the root.

A.1.4 Environments Implementation
Grid Worlds

Our Grid World environments have been implemented as custom modifications of the
popular FrozenLake Gym environment, and as such, they are compatible with the usual
Gym/Gymnasium framework [[6] [33]. In FrozenLake, the obstacles are holes that terminate
the current episode if the agent moves towards them; therefore, we modified them to obtain
the standard obstacle behavior that we wanted for our experiments. The standard Gym
observation format for this environment is a discrete value d, from which we can extract the

2D coordinate as:
d
(z,y) = ({ J , d mod ncols>
ncols

92

A.1. Training Details and Hyperparameters

Where ncols is the number of columns of the configuration. Note that the number of rows
is the same since all the employed configurations are square. We employ this 2D coordinate
vector as an input to our neural network.

CarGoal

As anticipated, we created CarGoal by modifying an existing environment created by Kexian
Shen and available through this repository. The main modifications that we applied are the
following:

* The original environment allows the agent to directly control the car’s velocity, without
modeling acceleration. We replaced this with acceleration control to better reflect
realistic vehicle dynamics.

* Although the original environment supports various action space types (continuous,
discrete, multi-continuous, and multi-discrete), its discrete setting does not allow
backward motion, since velocity is kept constant and only the steering angle is con-
trolled in that case. We addressed this by implementing the previously discussed
discrete action space that enables both forward and backward movement via positive
or negative acceleration.

* The default timestep in the original environment is At = 0.4. We reduce it to 0.25 to
make velocity and heading angle changes less abrupt.

Since our default state representation s = [z, y, 6, v] is already in a suitable form to be passed
to the neural network, we directly use it as our state embedding. The framework also allows
for training using RGB image observations instead. While we did not experiment with this
setting, it would be an interesting future experiment to see how this approach differently
affects the results of our evaluation.

A.1.5 Learned Values and Policies

An advantage of simple grid world environments is that we can easily visualize the learned
estimators. We can then represent the averaged statistics of the learned value and policy
functions. For the values, we visualize the average per-state value across the 10 seeds, along
with the corresponding standard deviation (SD). For the policies, we visualize the policy
logits by showing corresponding weighted-length arrows indicating which direction(s) the
agent is more inclined to follow across the seeds. Similarly, we report the SD of the policy
logits by showing the average per-action SD in each state. All these visualizations are created
for each grid world training environment:

. shows average statistics of the learned value and policy functions for the
8x8 empty grid world environment.

. shows average statistics of the learned value and policy functions for the
16x16 empty grid world environment.

93

https://github.com/KexianShen/parking-env

A. IMPLEMENTATION DETAILS

. shows average statistics of the learned value and policy functions for the
MAZE_LR environment.

. shows average statistics of the learned value and policy functions for the
MAZE RL environment.

.i .i .i .2 4 .i .i .i ﬂnns 002 002 002 | 003 | 002 o002

003 | 002 002 o002 002 002 002 002

002 | 002 o002

004

004 004 0,01 0 0.03 4: o < o o o
BEE - - P O P P P P

(a) Mean values (b) Values SD (c) Mean policy logits (d) Logits SD

Figure A.2: Mean and SD of NN estimates over 10 seeds on 8 x 8 empty grid environment.

ki
ki
)
ki
)
ki
*
ki
ki
h
b
h
hi
kS
ki
s

(a) Mean values (b) Values SD (c) Mean policy logits (d) Logits SD

Figure A.3: Mean and SD of NN estimates over 10 seeds on 16 x 16 empty grid environment.

(a) Mean values (b) Values SD (c) Mean policy logits (d) Logits SD

Figure A.4: Mean and SD of NN estimates over 10 seeds on the MAZE_LR environment.

94

A.2. Evaluation Details and Hyperparameters

005 | 004 003 003 003 0

005 | 003 002 003 O

006 005 004 00: 003

06| 005 005 004 004 004 003 OO

. =

007

(a) Mean values (b) Values SD (c) Mean policy logits (d) Logits SD

Figure A.5: Mean and SD of NN estimates over 10 seeds on the MAZE_RL environment.

A.2 Evaluation Details and Hyperparameters

In this section, we detail the evaluation settings of novel agents and baselines on all the
test configurations we experimented with, as well as corresponding hyperparameters whose
full list is reported in for the grid world evaluation and in for the
CarGoal evaluation. The only parameters not reported in the tables are the ones unrelated
to the specific algorithm, i.e., the discount factor and the maximum number of steps before
truncating the episode. These are set to disc_factor = 0.95, max_ep_len = 100 for all the
grid world environments, and disc_factor = 0.975, max_ep_len = 200 for the CarGoal
environment.

In the tables, the eval_policy parameter represents the evaluation policy used to pick
an action after constructing the tree, as well as the one used to estimate node Q-values,
as discussed in The sel_policy parameter indicates the utilized selection
policy during tree construction along with the corresponding c exploration constant. Note
that choosing PUCT has an influence even if c is zero, since it also modifies the order
of expansion of unexpanded nodes according to the prior policy (instead of uniformly at
random). For the algorithms using MVC evaluation, we also indicate the chosen value for
the § parameter, indicated as beta.

All the other reported parameters are specific to one or more of the novel algorithms
employed. The det_tol parameter represents the e tolerance used during detection in all
three detection-based algorithms, while det_roll_budget indicates the n nodes rolled out
for detection by MINITREES and MEGATREE. The pol_tol parameter indicates the ¢
threshold over which we consider an action off-policy w.r.t. the prior in PDDP detection.
The val_pen parameter indicates how much we penalize the value of a problematic node
after detection and corresponds to the parameter p described in[subsection 4.2.3|

Finally, loop_th corresponds to the 7 threshold of EDP’s loop blocking mechanism men-
tioned in [subsection 4.3.3] Recall that setting it to zero corresponds to only blocking exact
loops, which is the standard behavior for discrete state spaces, like in the grid world case.

95

A. IMPLEMENTATION DETAILS

Algorithm Parameter E-8x8 | E-16x16 | MZ-LR-8x8 | MZ-RL-8x8
eval _policy visit visit / /
MINITREES sel_policy PUCT | PUCT / /
C 0.1 0.1 / /
det_tol 0.08 0.05 / /
det_roll budget 4 4 / /
eval _policy MVC MVC / /
MEGATREE sel policy PUCT | PUCT / /
C 0.1 0.1 / /
beta 10 1 / /
det_tol 0.08 0.05 / /
det_roll_budget 4 4 / /
PDDP eval policy MVC MVC MVC MVC
sel _policy UCT UCT UCT UCT
C 0 0 0.1 0.1
beta 10 1 100 10
det_tol 0.05 0.05 0.08 0.05
pol_tol 0.1 0.1 0.1 0.1
val_pen 1 1 0.1 0.3
EDP eval _policy MVC MVC MVC MVC
sel policy PUCT | PUCT PUCT PUCT
C 0 0 0 0
beta 10 10 10 10
loop_th 0 0 0 0

Table A.3: Utilized planning hyperparameters for grid world experiments. The configura-
tions (e.g., E-8x8) indicate the training environment; the same parameters were used for all
the corresponding experiments on the different test configurations.

Algorithm | Parameter CarGoal
eval policy MVC

PDDP sel policy PUCT
C 0.1
beta 10
det_tol 0.025
pol_tol 0.05
val_pen 0.2
eval _policy MVC

EDP sel_policy PUCT
C 0.1
beta 1
loop_th 0.03

Table A.4: Utilized planning hyperparameters for CarGoal experiments. The same hyperpa-
rameters were used for all the corresponding experiments on the different test configurations.

96

Appendix B

Complementary Experiments

B.1 Influence of the Exploration Constant on AZ+PUCT and
AZ+UCT Baselines

The standard AlphaZero planning only requires tuning the C hyperparameter at deployment,
since Dirichlet noise is no longer applied, and neural networks are not updated. Note that
the value for C' chosen during training does not necessarily represent the optimal choice
at deployment. A higher value might be more useful during training, where exploration
is strictly necessary, while a lower value at deployment can be a better choice if the prior
estimates are reliable. As this is not necessarily true in our case due to the changed test
configurations, we want to tune the parameter in order to compare our algorithms to the best
possible baseline we can achieve. We do this for every environment that we employ and for
both AZ+PUCT and AZ+UCT baselines:

* AZ+PUCT and AZ+UCT on 8 x 8 grid world test configurations (Figure B.1).
* AZ+PUCT and AZ+UCT on 16 x 16 grid world test configurations (Figure B.2)).

* AZ+PUCT and AZ+UCT on MAZE test configurations (MAZE_LR training)
ure B.3).

* AZ+PUCT and AZ+UCT on MAZE test configurations (MAZE_RL training)

B.4]).
* AZ+PUCT and AZ+UCT on CarGoal test configurations (Figure B.5).

Overall, the plots reveal that, despite the changes, a relatively low value of C' (< 0.5) remains
the best-performing choice for most configurations. Increasing its value leads the agent to
highly suboptimal performances even in relatively simple test configurations, especially for
low planning budgets. This is likely because, with insufficient visits, a high C' value slows
down the decay of the exploration term in planning. As a result, the planning distribution
remains close to uniform, and using visitation counts to guide actions ultimately resembles
near-random behavior.

97

B. CoMPLEMENTARY EXPERIMENTS

—— =00 —eo— c=01

PUCT - SPARSE 8x8

¢=0.5 c=1.0 c=2.0 —e— c=100.0

PUCT - NARROW 8x8

- Optimal

PUCT - SLALOM 8x8

0.5 1
£ 044
3
T P
* 03 A
E v : _q//A
£ 02 =
o
b
Aol 1
0.0 - - - <
8 16 32 64 128 8 16 32 64 128 16 32 64 128
UCT - SPARSE 8x8 UCT - NARROW 8x8 UCT - SLALOM 8x8
0.5 T e s e
£ 044 3
3 —— -~
k7l =
= 034 /%]
o
3 "
€ 0.21 1 —— =8
o m—
v o=
w o 4
3019, £ . .\.’/._./'
—
0.0 1 i
8 16 32 64 128 8 16 32 64 128 16 32 64 128

Planning Budget (log scale)

Figure B.1: Influence of the C parameter on AlphaZero baselines in 8 x 8 grid world test

configurations.

—— =00 —o— c=01

PUCT - SPARSE 16x16

c=0.5 c=1.0 c=2.0 —e— c=100.0

PUCT - NARROW 16x16

- Optimal

PUCT - SLALOM 16x16

£
3
@ 0.15
-4
o
3
3
& 0,051
a
0.001 - - - -
8 16 2 64 128 8 16 32 64 128 16 2 64 128
UCT - SPARSE 16x16 UCT - NARROW 16x16 UCT - SLALOM 16x16
N S e e e
g ———
@ 015
o<
o 4:_:
£ 0104
3
3
& 0,051
a
e+ » P A S S Y
0.001] - - - -
8 16 2 64 128 8 16 32 64 128 16 2 128

Planning Budget (log scale)

Figure B.2: Influence of the C' parameter on AlphaZero baselines in 16 x 16 grid world test

configurations.

98

B.1.

Influence of the Exploration Constant on AZ+PUCT and AZ+UCT Baselines

Discounted Return

Discounted Return

o
e

o
w

I
[N}

=3
o

—— =00 - c=01

c=0.5 c=1.0 c=2.0

—e— ¢=100.0

- Optimal
PUCT - MAZE_LR - MAZE_RL

PUCT - MAZE_LR — MAZE_LL

P

PUCT - MAZE_LR — MAZE_RR

[

8 16 32 64 128

8 16 32 64 128

16 32 64 128

UCT - MAZE_LR —» MAZE_RL

UCT - MAZE_LR —» MAZE_LL

UCT - MAZE_LR —» MAZE_RR

O S—

8 16 32 64 128

Planning Budget (log scale)

Figure B.3: Influence of the C' parameter on AlphaZero baselines in MAZE test config-
urations with MAZE LR training. The label MAZE_X — MAZE_Y on top of each plot
indicates training on the MAZE_X configuration and testing on the MAZE_Y one.

Discounted Return

Discounted Return

—— ¢=00 —— c=01

¢=0.5 ¢=1.0 ¢=2.0

—e— ¢=100.0

- Optimal

PUCT - MAZE_RL - MAZE_LR

PUCT - MAZE_RL - MAZE LL

PUCT - MAZE_RL - MAZE_RR

—_—
8 16 32 64 128 8 16 2 64 128 16 2 64 128

UCT - MAZE_RL - MAZE_LL

UCT - MAZE_RL - MAZE_RR

UCT - MAZE_RL » MAZE_LR

Planning Budget (log scale)

—e
— —_——
\
/ ~
| | —_— . ————— 8 //.
] - —_—
8 16 32 64 128 8 16 2 64 128 16 2 64 128

Figure B.4: Influence of the C' parameter on AlphaZero baselines in MAZE test config-
urations with MAZE _RL training. The label MAZE_X — MAZE_Y on top of each plot
indicates training on the MAZE_X configuration and testing on the MAZE_Y one.

99

B. CoMPLEMENTARY EXPERIMENTS

—e— =00 —o— c=01 ¢=0.5 c=1.0 ¢=2.0 —e— ¢=100.0 ---- Optimal

PUCT - SPARSE PUCT - HORIZONTAL

3o, //

8 16 32 64 128 8 16 32 64 128

UCT - SPARSE UCT - HORIZONTAL

8 16 32 64 128 8 16 32 64 128
Planning Budget (log scale)

Figure B.5: Influence of the C' parameter on AlphaZero baselines in CarGoal test configu-
rations.

B.2 Influence of the Beta Parameter on MVC+PUCT and
MVC+UCT Baselines

The MVC agents are more challenging to tune, as their performance depends on both the same
C parameter used in standard AZ and the § parameter, which determines the importance
we want to give to the variance of the value estimates. As mentioned in high
values of 5 make the agent more greedy and optimistic in both acting and estimating nodes’
Q values during planning. To perform the tuning, we select two values of C' that showed the
overall best performance in the standard AZ tuning, (0, 0.1). We then test their combinations
with 5 = 0, 10, 100 on all the employed environments, both with and without a prior policy
network. The results are reported in the following plots:

* MVC+PUCT and MVC+UCT on 8 x 8 grid world test configurations (Figure B.6)).
e MVC+PUCT and MVC+UCT on 16 x 16 grid world test configurations (Figure B.7).

* MVC+PUCT and MVC+UCT on MAZE test configurations (MAZE_LR training)
(Figure B.8).

* MVC+PUCT and MVC+UCT on MAZE test configurations (MAZE_RL training)
(Fig 9.

* MVC+PUCT and MVC+UCT on CarGoal training configurations (Figure B.10).

100

B.2. Influence of the Beta Parameter on MVC+PUCT and MVC+UCT Baselines

Overall, we observe that varying the hyperparameters has a relatively less significant influ-
ence on the results compared to what we saw when tuning C' on AZ agents. In general, using
MVC evaluation alone is insufficient to overcome the challenges of the most complex test
configurations, such as the SLALOM test configurations or the MAZE LR — MAZE_RL
and MAZE_RL — MAZE_LR challenges, where performance remains approximately zero
regardless of the utilized parameters.

—e— ¢=0.0, B=1.0 ¢=0.0, p=10.0 —e— ¢=0.0,p=100.0 -e- c=0.1, B=1.0 c=0.1,=10.0 -e c=0.1,B=100.0 ----- Optimal

PUCT - SPARSE 8x8 PUCT - NARROW 8x8 PUCT - SLALOM 8x8

0.5 s

0.4+

0.3 4

0.2 4

Discounted Return

0.14 1) -

0.04 1 f . e e Su— :
8 16 32 64 128 8 16 2 64 128 8 16 32 64 128

UCT - SPARSE 8x8 UCT - NARROW 8x8 UCT - SLALOM 8x8

0.4+
0.3 4

0.2 4

0.14

Discounted Return

0.0 | 1o
8 16 32 64 128 8 16 2 64 128 8

Planning Budget (log scale)

Figure B.6: Influence of 5 and C on MVC baselines in 8 x 8 grid world test configurations.

—e— ¢=0.0, B=1.0 ¢=0.0, p=10.0 —e— ¢=0.0,p=100.0 -e- c=0.1, B=1.0 c=0.1,=10.0 -e c=0.1,B=100.0 ----- Optimal

PUCT - SPARSE 16x16 PUCT - NARROW 16x16 PUCT - SLALOM 16x16

0.204
£
3
g 0.15
o
®
E 0.101 | L 2 * ad - .]
=]
S
2 0.05
fa}

0.00 1

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

UCT - SPARSE 16x16 UCT - NARROW 16x16 UCT - SLALOM 16x16

0.10 4

0.05 -

Discounted Return

0.00 4

8 16 32 64 128 8 16 2 64 128 8 16 32 64 128

Planning Budget (log scale)

Figure B.7: Influence of 8 and C' on MVC baselines in 16 x 16 grid world test configurations.

101

B. CoMPLEMENTARY EXPERIMENTS

—e— ¢=0.0, B=1.0 c=0.0, =10.0 —e— c=0.0, B=100.0 -e- c=0.1,B=1.0 c¢=0.1,=10.0 - ¢=0.1,B=1000 ---- Optimal
PUCT - MAZE_LR - MAZE_LL PUCT - MAZE_LR - MAZE_RR PUCT - MAZE_LR - MAZE_RL

0.5

o o
w =~

Discounted Return
o
o
»

o

i

\
N

o
o
i

1
1
i
i
|
i
i
i
L 3
1
i
|
i
i
i
i

v

[

8 16 » 64 128 8 16 32 64 128 8 16 2 64 128

UCT - MAZE_LR - MAZE_RL

=
o«

I
=~

o
w

I
[N}

Discounted Return

o
o

o
o

8 16 » 64 128 8 16 32 64 128 8 16 2 64 128

Planning Budget (log scale)

Figure B.8: Influence of 5 and C' on MVC baselines in MAZE test configurations with
MAZE_LR training. The label MAZE_X — MAZE_Y on top of each plot indicates training
on the MAZE_X configuration and testing on the MAZE_Y one.

—e— ¢=0.0, B=1.0 c=0.0, =10.0 —e— c=0.0, B=100.0 -e- c=0.1,B=1.0 c¢=0.1,=10.0 - ¢=0.1,B=1000 ---- Optimal

PUCT - MAZE_RL -+ MAZE_LL PUCT - MAZE_RL -+ MAZE_RR PUCT - MAZE_RL - MAZE_LR

| [

>
1 e

0.5

I
=~

-

o
w

I

[N}

\
N

Discounted Return
o
[
*
H
i
1
i
1
e

o
o

8 16 » 64 128 8 16 32 64 128 8 16 2 64 128
UCT - MAZE_RL — MAZE_RR UCT - MAZE_RL — MAZE_LR

e e S I

=
n

I
=~

o
w

Discounted Return
o
o

o
o

o
o

8 16 » 64 128 8 16 32 64 128 8 16

Planning Budget (log scale)

Figure B.9: Influence of the 5 and C' on MVC baselines in MAZE test configurations with
MAZE_RL training. The label MAZE_X — MAZE_Y on top of each plot indicates training
on the MAZE_X configuration and testing on the MAZE_Y one.

102

B.2. Influence of the Beta Parameter on MVC+PUCT and MVC+UCT Baselines

—e— ¢=0.0, p=1.0 ¢=0.0, B=10.0

PUCT - SPARSE

—e— ¢=0.0, p=100.0 -e- ¢=0.1, B=1.0

¢=0.1, B=10.0

- ¢=0.1, B=100.0 - Optimal

PUCT - HORIZONTAL

UCT - HORIZONTAL

64 128 8

Planning Budget (log scale)

Figure B.10: Influence of § and C' on MVC baselines in CarGoal test configurations.

103

	Preface
	Contents
	List of Figures
	Introduction
	Contributions
	Outline

	Background
	Reinforcement Learning
	Monte Carlo Tree Search
	AlphaZero
	Generic Tree Evaluation and Construction

	Detecting Environment Changes
	Value as a Change Indicator
	Detecting Obstacles
	Addressing Value Underestimation with an Overestimation

	Planning in a Changed Environment
	AlphaZeroDetection
	Penalty-Driven Deep Planning
	Is Depth All You Need?

	Related Work
	Planning with Imperfect Estimators
	Modified MCTS Planning
	Planning with an Imperfect Model

	Experimental Setup
	Training
	Evaluation

	Results
	Evaluation of the Detection Criteria
	Main Evaluation of the Planning Algorithms
	CarGoal Evaluation

	Discussion
	Conclusions and Future Work
	Future Work

	Bibliography
	Implementation Details
	Training Details and Hyperparameters
	Evaluation Details and Hyperparameters

	 Complementary Experiments
	Influence of the Exploration Constant on AZ+PUCT and AZ+UCT Baselines
	Influence of the Beta Parameter on MVC+PUCT and MVC+UCT Baselines

