Semantic Segmentation of Roof Superstructures

000

MSc thesis presentation | June 28th, 2022 | Irène Apra

0 00 0

0000

0000000

Content

Introduction

1

(2)

(3)

4

Related work

Methodology

Experiments

Results

5 Analysis

Conclusion

Motivation

Semantic city models:

)elft

- Different levels of details (LODs)
- Different applications

source: Biljecki et al. 2014

Motivation

PV potential of buildings:

- Project at the TU Munich
- Need to assess the building's geometrical potential
- ➡ Estimation of roof surface available for panels

Motivation

Approach of the existing project:

- 1. Detect superstructures through Convolutional Neural Network (CNN)
- 2. Vectorize and model them in 3D
- 3. Add them to a simple 3D model available

Research scope

Research goal and steps:

- Improve superstructure detection by incorporating 3D data sources
- Selection of appropriate 3D data (LiDAR)
- LiDAR preprocessing to obtain height maps (absolute and normalized)
- Implementation of fusion network

fUDelft

Introduction Problem & Hypotheses

Main question:

How can building height data fused to a Convolutional Neural Network (CNN) on RGB aerial images improve the semantic segmentation of roof superstructures?

Hypotheses:

- 1. Improvement for some classes only: the ones with relief
- 2. Relative height yield better results than the absolute one since it would highlight only reliefs
- 3. Interpolated height data yield better results than no interpolation

1. Related work

Semantic segmentation | **Definition**

Semantic segmentation:

Assigns a class per pixel
 (classes = superstructure categories)

Network:

- CNN on image input
- Encoding part to obtain feature maps
- Decoding back to obtain back the image size

TUDelft

FCN; source: Long et al. 2015

1. Related work

Semantic segmentation | U-Net

U-Net:

- One of the most used CNN architectures
- Symmetric architecture
- Used in the PV-assessment pipeline

source: Ronneberger et al. 2015

1. Related work Multimodal networks | Concepts

Height data fusion:

- 1. Stacking on an additional channel
- 2. Fusing by encoding on another network branch
- According to the literature, fusion yields better results (e.g. land-use segmentation)

STACKING

FUSION

1. Related work Multimodal networks | FuseNet

FuseNet functioning:

- Fusion network
- Fusion module: activations

 of the auxiliary branch
 are fused to the main branch
 during encoding

Experiments:

 Comparison of U-Net and FuseNet results

source: adapted from Hazirbas and Aygun 2018

2. Methodology

Overview

2. Height data preparation

Relative height calculation | Concept

Relative height calculation:

- Extraction of roof polygons
- Retrieval of underlying polygon per point
- Vertical distance calculation

2. Height data preparation Interpolation | Implementation & Results

TUDelft

3. Experiments Image dataset | Location, Germany

Image dataset:

- Bavarian village, Wartenberg
- Exisiting implementation uses non-ortho-rectified images
- Roof centered images

3. Experiments New training data | Ortho-labels

1880 roofs (true ortho-photos)

1km - Д

6 classes

3. Experiments New training data | Data split

Split:

TUDelft

- Train, validation and test datasets
- Independent datasets
- Test dataset is labeled to assess the network performance quantitatively

3. Experiments

Semantic segmentation results | Assessment concept

Metrics on test dataset:

- Intersection over Union (IoU),
 a global score including background
- 2. Accuracies per class
- Calculated through confusion matrices

+ FN

TP

TP

(classes)

3. Experiments U-Net | Scope

Scope of U-Net experiments:

- U-Net is only based on aerial images
- Provide a comparison mean for Fusion results
- Have to be run on new labels

3. Experiments U-Net | Results

Results of U-Net experiments:

- Several sets of parameters are tested
- Two best confusion matrices are kept as reference

id	${ m split}$	epoch	loss	base	augmentation	mean Acc. GT	mean IoU Pr.Acc.	τ
1	01	40	CFL+Dice	vgg19	None	0.47	0.53 0.4	5
2	01	40	CFL+Jaccard	vgg19	None	0.43	0.58 0.4	5
3	01	40	0.5(CFL+Dice) + 0.5(CFL+Jacc.)	vgg19	None	0.43	0.61 0.4	4
4	01	40	CFL+Jaccard	resnet152	None	0.40	0.53 0.4	3
5	02	40	CFL+Jaccard	vgg19	None	0.44	0.63 0.4	6
6	02	40	CFL+Jaccard	resnet152	None	0.42	0.62 0.4	5
7	01	80	CFL+Jaccard	vgg19	None	0.42	0.62 0.4	5
8	02	80	CFL+Jaccard	vgg19	None	0.46	0.64 0.4	7
9	01	40	0.5(CFL+Dice) + 0.5(CFL+Jacc.)	resnet152	Train Val.	0.48	0.58 0.4	7
10	01	40	0.5(CFL+Dice) + 0.5(CFL+Jacc.)	resnet152	Train Val. Test	0.46	0.58 0.4	6

prediction

3. Experiments FuseNet | Scope

Scope of FuseNet experiments:

- Determine best parameters
- Fuse all different height datasets (x6)
- Assess which dataset yields best results

4. Results **Results on all datasets**

U-Net best results	id	mean	Acc.	mean	IoU	
		\mathbf{GT}		Pr.Acc.		
		1	0.47		0.53	0.45
		7	0.42		0.62	0.45
FuseNet results,	id	height	mean	Acc.	mean	IoU
absolute height		data	\mathbf{GT}		Pr.Acc.	
dobbildte meight	i	no	0.40		0.51	0.40
	ii	nn	0.51		0.56	0.46
	iii	idw	0.49		0.56	0.46
FuseNet results,	id	height	mean	Acc.	mean	IoU
relative height		data	\mathbf{GT}		Pr.Acc.	
relative neight	iv	no	0.27		0.54	0.34

 $\mathbf{0.51}$

0.46

 $\mathbf{0.51}$

0.57

0.45

0.45

nn

idw

V

vi

Enhanced structural information:

Relative (NN)

5. Analysis

Quantitative analysis | Comparison U-Net and FuseNet

Concept:

- Subtraction of U-Net to FuseNet results
- Comparison per class

Calculation:

- Example result with green scale highlighting improved classes
- 6 FuseNet best results are compared to 2 U-Net best results
- A general trend can be inferred through a scatter plot

5. Analysis

Quantitative analysis | Comparison U-Net and FuseNet

Accuracy on ground truth:

Improved for dormers, chimneys and windows

5. Analysis Qualitative analysis | Comparison U-Net and FuseNet

Volumetric classes are better recognized: example, dormers

5. Analysis

Qualitative analysis | Comparison U-Net and FuseNet

Superstructures always located in buildings' footprints
 Point cloud outliers or temporal mismatches ⇒ wrong detections

5. Analysis Dutch test dataset | Data preparation

New test set, aims:

- Evaluate performance on a different geographical area
- Confirm scalability of the method

New test set, implementation:

- Holten, the Netherlands
- Usage of datasets openly available (PDOK, 3D-BAG and AHN3)
- Qualitative analysis only

5. Analysis

Qualitative analysis, Holten | Comparison U-Net and FuseNet

FuseNet detects better chimneys (and dormers)

5. Analysis

Qualitative analysis, Holten | Comparison train and test datasets

Impact of architectural typologies:

- Dormers are different between training and test set (gabled versus flat boxes, and different materials)
- ⇒ Narrow dormers are detected. Flat dormers are partly detected or confused with PV modules

5. Analysis Qualitative analysis, Holten | 3D model

3D modelization of predictions (Bruhse 2022):

- Volumetric and planar LOD3 geometries, including usage description
- Comparison to ground truth and LOD2.2 model available for the Netherlands (3D BAG)

GT, Holten

Modelization of predictions, Holten

3D BAG, LOD2.2 model

5. Analysis Wartenberg | 3D model application

Modelization of ortho-labels:

- Unprecise geometries
- But one can deduce the available surface

PV-application:

- Available surface \Rightarrow PV disposition
- Roof azimuth ⇒ Power generation

Conclusion

Answer to problem & hypotheses

Main question:

How can building height data fused to a Convolutional Neural Network (CNN) on RGB aerial images improve the semantic segmentation of roof superstructures?

Hypotheses:

 \bigcirc Improvement for specific classes \rightarrow Chimneys & dormers

 \bigotimes Relative height provides better results than the absolute one \rightarrow Absolute one is preferred

 \bigvee Interpolation methods provide better results than « no » interpolation \rightarrow Provides more context

Conclusion

Contributions & future work

Contributions:

- 1. Semantic segmentation at the building scale is improved through the fusion of height data (LiDAR)
- 2. Knowledge about the labeling process:
 - Usage of ortho-rectified datasets,
 - Impact of geographical location on label classes
- 3. Outcomes on height data type to use:
 - Absolute height data extracted from LiDAR data \rightarrow provides more structural information
 - IDW or NN interpolation \rightarrow provides information about the superstructure scale

Conclusion

Contributions & future work

Future work:

- Improve the evaluation metrics by implementing an uncertainty factor per pixel;
 IoU is a limited criterion, not adapted to highly imbalanced classes
- Try other fusion network architectures (Symmetric, more recent networks)
- Improve pipeline (speed, process) to generate height data grids and 3D city model refinement

Thank you for your attention !

00

n 5

00

0 00 0

