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1
Introduction

Although it is a major challenge in the quickly developing field of artificial intelligence, producing motion
from speech that is similar to that of a human has many uses. From virtual reality avatars and intelli-
gent robots to online communication tools, the ability to produce synchronized and natural body, hand,
and facial gestures is vital for creating immersive and intuitive digital experiences. Due to the limita-
tions of monolithic architectures that are unable to capture complex interdependencies across various
body parts, current methods, despite significant advancements, struggle to maintain the coherence
and complexity of human motion.

With the help of Vector-Quantized Variational Autoencoders (VQ-VAEs) and a Cross-Attentive Trans-
former architecture, this thesis introduces a novel method called SpeechCAT. Our approach produces
promising results for synchronization, diversity, and realism in motion generation by independently
modeling the hands, face, and body and enabling cross-attention between them. Compared to our
baselines, we achieve an accuracy gain of 2,55% and 6,17%. The diversity of SpeechCAT is specifi-
cally 34.38% and 16.21% higher. Furthermore, it improves temporal smoothness and stability by 0.84%
and 0.71%, respectively. By explicitly modeling inter-body part correlations and maintaining computa-
tional efficiency, SpeechCAT addresses critical gaps in previous research and pushes state-of-the-art
advances.

By bridging these gaps, SpeechCAT offers new possibilities for generating realistic and expressive mo-
tions from speech, with implications ranging from advanced robotics to next-generation communication
platforms. Future advancements in artificial intelligence and human-computer interaction may be facil-
itated by this research, which offers not only a technically sound solution but can also accelerate the
understanding and advancement of human motion synthesis.

This report is structured in three main parts. The primary objective and definition of the problem are
covered in the introduction. The scientific paper represents the core of our report. It was aimed at
experts in the computer vision field and was accepted at the IEEE/ACM International Conference on
Human-Robot Interaction. The supplementary material chapter provides all the prerequisite information
a master’s student would need to comprehend the ideas covered in the paper.
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SpeechCAT: Cross-Attentive Transformer for Audio to Motion Generation

Sebastian Deaconu
Tu Delft

Abstract

Audio-to-motion generation is an important task with appli-
cations in virtual avatar creation for XR systems and intel-
ligent robot control in daily life scenarios. Most current
motion generation methods depend on a single encoder-
decoder architecture to simultaneously model all body
parts, constraining their capacity to capture the diverse and
complex motions exhibited by humans. In this paper, we
propose a novel method, SpeechCAT, that employs three
separate encoder-decoder modules to individually model
the motions of the face, body, and hands. To capture the re-
lationships and synchronization among these body parts, we
introduce a cross-attention mechanism to effectively learn
their correlations. SpeechCAT ensures sufficient capacity
to model the unique characteristics of each body part while
preserving the coherence between them. Our experimen-
tal results demonstrate the superiority of SpeechCAT over
baseline methods, highlighting its effectiveness in generat-
ing diverse, realistic, and synchronized motions with face,
body, and hand parts.

1. Introduction
Given a human speech audio input, motion generation aims
to synthesize synchronized human motion corresponding
to the audio similarly to other human movements. This
foundational technique has broad applications, including
film production [23], virtual digital avatar generation [53],
and human-robot interaction [5]. Consequently, this area
of research has garnered significant attention, with nu-
merous studies contributing to advancements in the field
[18, 21, 59].

Early works in audio-to-motion generation focused
mainly on single motion domains, such as facial mo-
tion [32], hand gestures[30], or 3D body skeletons [14, 29,
38]. Although these studies achieved promising progress,
they often lack the integration of multiple body parts, limit-
ing their applicability to comprehensive human motion gen-
eration. Recent studies [33, 43, 50] have begun addressing
this limitation by leveraging holistic information to generate

full-body human motion from speech. These methods inte-
grated multiple body parts, including face, body, and hands,
leveraging human mesh representation [26, 35] as the inter-
mediate or final outputs.

Human motion is a continuous and dynamic process,
which makes it computationally expensive to model. To ad-
dress this challenge, the Vector Quantized Variational Au-
toencoders (VQ-VAE) framework [45] has been applied in
generating human facial [27, 31, 31, 47], body [55], and
hand motions [50]. This approach effectively captures dis-
crete representations of continuous motion, significantly re-
ducing the computational burden while preserving motion
quality. In terms of facial motions, these methods adopted a
lip regressor[33] to synthesize synchronized lip movements
from audio or trained an encoder-decoder model to produce
synchronized mouth motions in a deterministic manner[50].

Although these motion generation methods have demon-
strated promising results, they overlooked the correlations
among the three body parts across face, body, and hands.
For instance, hand gestures are closely correlated with wrist
positions, which, in turn, should affect forearm movement.
Similarly, head poses are strongly correlated with face mo-
tion and neck positions. Even though face motions, es-
pecially lip movements, are linked to the audio input di-
rectly, isolating the face domain from the body and hands
hinders the generation of natural, synchronized human mo-
tions. This limitation shows the need to model across body
parts correlations explicitly to enhance the realism and co-
herence of generated motion.

To address this limitation, we propose a novel method,
SpeechCAT, for audio-to-motion generation. Different
from previous works, SpeechCAT includes three VQ-VAE
to encoder the whole body motions into three descreate
codebooks corresponding to the face, body, and hands, re-
spectively. Once the codebooks are fully trained, we con-
catenate the encoded audio features with body-hand-face
triplet indices from the codebooks, which are then pro-
cessed by a cross-attention transformer module. To model
the correlation and synchronization across different body
parts of face, body, and hands, we perform the cross-
attention across the three body parts. In this way, Speech-



CAT explicitly captures and models the correlations and
synchronization among the face, body, and hands, ensuring
that the generated motions are coherent and realistic across
all domains.

Our experimental results demonstrate that SpeechCAT
significantly outperforms baselines that use a single VQ-
VAE or without the cross-attention module, highlighting its
effectiveness in producing synchronized, diverse and nat-
ural human motion. Especially, we find that the Speech-
CAT can provide better synchronization in the generated
motions.

2. Related Work

2.1. Speech Driven Motion Generation

Human motion generation can be guided by different
modalities such as audio, text, or actions. Current attempts
at generating motion from speech can be split into rule-
based and learning-based methods. Rule-based [6, 22, 37,
41] methods map speech to pre-collected body motions
based on pre-designed rules. Although easily explainable
and controllable, creating complex, realistic, and coherent
motion is timely and expensive due to the rules being man-
ually made. Moreover, these methods suffer from a lack
of diversity as they are deterministic. Early learning-based
methods primarily focused on generating motions for iso-
lated body parts, such as facial expressions, hand gestures,
or 3D body poses [24, 57]. These approaches, while effec-
tive in their respective domains, often overlooked the inter-
connected dynamics of full-body motion. Recent methods
have sought to address this limitation by generating holistic
human motions, leveraging human mesh representations as
intermediate outputs[17, 25, 44, 51, 52].

Recently, diffusion models have emerged as a powerful
tool in generative tasks, especially image generation. In the
domain of motion generation, they have demonstrated their
capability to produce high-fidelity and temporally coherent
results by iteratively refining noisy data. For instance, mod-
els like [48] and [54] employed a multi-modal framework
for co-speech motion generation, integrating audio and text.
[1] used diffusion for a denoising mechanism to aid tem-
poral coherence, [3] utilized CLIP latent spaces for ges-
ture synthesis, enabling expressive and semantically rich
motion. Although these models are particularly effective
when combined with expressive representations, enabling
the synthesis of nuanced and realistic human motion and
temporal coherence, they focus on single-domain motion or
individual body parts and fail to integrate them cohesively.
This leads to fragmented motions across face, body, and
hands.

2.2. VQ-VAEs in Motion Generation

Vector Quantized Variational Autoencoders (VQ-VAEs),
initially proposed in [34], are a VAE variant [20] that aims
to learn reconstruction with discrete representations. VQ-
VAEs have recently achieved promising results on genera-
tive tasks which include different modalities such as image
synthesis [11, 49], text-to-image generation [40], speech
gesture generation [46], music generation [8, 9] etc. VQ-
VAEs offer a compact and discrete representation of contin-
uous data, making them ideal for computationally intensive
tasks such as motion synthesis. Models such as [2] pro-
posed hierarchical neural embeddings to capture rhythmic
elements in co-speech gestures while [17] effectively syn-
thesized conversational gestures directly from video using
different body parts. While rhythm and audio aware, these
methods did not address the synchronization challenges of
multi-body part motion. These models have been employed
to encode different motions such as body, hand, and fa-
cial motions into separate codebooks, enabling more di-
verse and expressive motion generation. The use of distinct
codebooks for different body parts has proven beneficial in
capturing the unique characteristics of each domain, but it
lacks mechanisms to model the correlations between these
parts explicitly.

2.3. Transformers in Motion Generation

Transformers, with their ability to model long-range de-
pendencies, have significantly advanced tasks such as
image[10], text[15], and video[28] generation. By employ-
ing self-attention mechanisms, transformers can capture in-
tricate temporal correlations within sequences. This has
also been utilized in motion generation tasks.

In recent works, transformers have been utilized in au-
toregressive settings to predict motion trajectories from
audio[12] or textual[13] input, demonstrating improved co-
herence and diversity. [7] introduced a novel transformer ar-
chitecture coupling kinematics and dynamics for 3D human
motion prediction, which contributes to more realistic and
physically plausible human motion modeling. However, it
focuses primarily on prediction tasks rather than generation,
limiting its direct applicability to co-speech scenarios. [58]
unified multiple perspectives of human motion representa-
tion, leveraging a pre-training framework that demonstrated
superior generalization capabilities. [36] highlighted the
potential of multi-task transformers for motion modeling.
While effective in synthesizing specific motion types, its
holistic application to conversational gestures remains un-
explored. Despite their versatility, these models do not ad-
dress the issue of synchronization across diverse body parts
such as face, hands, and body.



2.4. Text Driven Motion Generation
Text-to-motion generation shares similarities with speech-
to-motion tasks, with both requiring the alignment of se-
quential input (audio or text) to motion. Discrete repre-
sentations, often facilitated by VQ-VAEs, have been piv-
otal in bridging this gap[50, 56]. Techniques integrating
transformers and discrete codebooks have successfully gen-
erated natural and expressive motions from textual descrip-
tions. [19] conceptualized motion as a “language”, lever-
aging GPT-style architectures for generation. [4] demon-
strated the effectiveness of transformers for generating emo-
tive gestures. However, its focus on emotional expressive-
ness does not extend to full-body motion modeling.[46] ad-
vanced the field by using GPT for generating natural mo-
tions from text. Its application to speech-driven generation
is however limited. Although this language-inspired ap-
proach provides flexibility, it does not address multi-body
part dynamics, critical for conversational gestures.

Our approach builds upon VQ-VAE and transformer
frameworks by employing separate VQ-VAEs for face,
body, and hands, while also leveraging a cross-attentive
transformer to explicitly model correlations between the
different body parts (face, body, and hands). This enhances
synchronization and coherence in generated motions while
enabling finer-grained motion modeling and better align-
ment across modalities.

3. Method

We aim to generate highly correlated conversational body,
hand, and facial gestures that match a given speech se-
quence. The framework comprises two modules: a VQ-
VAE encoder-decoder and a Cross-Attentive Transformer.
The former creates a mapping from motion sequences to
discrete code sequences, while the latter generates said
codes from input speech. The generated codes are then de-
coded into a sequence of motion vectors to recover the mo-
tion data. A visual representation is found in Figures 1 and
2

We aim to generate highly correlated conversational
body, hand, and facial gestures that match a given speech
sequence. The framework comprises two modules: a
VQ-VAE encoder-decoder and a Cross-Attentive Trans-
former. While the latter generates code sequences from in-
put speech, the former maps continuous motion to discrete
code sequences. The generated codes are then decoded into
a sequence of motion vectors to recover the motion data. A
visual representation is found in Figures 1 and 2

3.1. Motion VQ-VAE
VQ-VAEs, such as the one in [2], can learn discrete rep-
resentations of continuous data which is especially use-
ful for generative models. Given a sequence of motions

M = {mi}|M |
i=1 with mi ∈ Rd where |M | is the number

of frames and d is the dimension of the motion, we aim to
learn a codebook Z = {zi}|Z|

i=1 which contains discrete vec-
tors zi ∈ Rdz that represent a quantized latent space for this
input sequence. By splitting the motion data into represen-
tative body parts we can further extend the range of motion
our codebook can represent. Thus we split our data into
three compositional pieces, i.e., body, hands, and face. By
doing this we map the pieces to three separate codebooks

Zb =
{
zbi
}|Zb|
i=1

, Zh =
{
zhi
}|Zh|
i=1

and Zf =
{
zfi

}|Zf |
i=1

,

where zbi , z
h
i , z

f
i ∈ Rdz . With this, we can achieve

∣∣Zb
∣∣ ×∣∣Zh

∣∣ × ∣∣Zf
∣∣ different body-hand-face triplets

(
zbi , z

h
i , z

f
i

)
and have a wider range of motion diversity. As shown in
Figure 1, we encode our audio features using the encoder
E1:τ = (e1, · · · , eτ ) ∈ R64×τ which can be mapped to our
latent feature space Z1:τ = (z1, · · · , zτ ) ∈ R64×τ and later
decoded by D for synthesis. Here τ is computed as τ = T

w ,
with w the temporal downsampling of the encoder, i.e., w
pose time frames correspond to a single time embedding. To
achieve a balance between speed and quality at inference, w
is set to 4. We can quantize an embedding by mapping it to
the nearest code in each of the corresponding codebooks.

zbt = arg min
zb
k∈Zb

∥∥ebt − zbk
∥∥ ∈ R64,

zht = arg min
zh
k∈Zh

∥∥eht − zhk
∥∥ ∈ R64,

zft = arg min
zf
k∈Zf

∥∥∥eft − zfk

∥∥∥ ∈ R64.

(1)

Optimization goal. The VQ-VAE is optimized by the
loss component LV Q[45] which is composed of a recon-
struction loss Lrec, an embedding loss Lembed and a com-
mitment loss Lcommit.

LV Q = Lrec(M1:T , M̂1:T ) + ∥sg[E1:T ]− Z1:T ∥︸ ︷︷ ︸
Lembed

(2)

+ β ∥E1:T − sg[Z1:T ]∥︸ ︷︷ ︸
Lcommit

Here, Lrec is the MSE reconstruction loss, sq is the stop
gradient operator for the codebook embedding loss and β is
the trade-off hyperparameter for the commitment loss.

3.2. Cross-Attentive Transformer
With the trained VQ-VAE a motion sequence M1:τ =
(m1, · · · ,mτ ) ∈ R256×τ can be now mapped to sequences
of indexes of the shape S1:τ = (s1, · · · , sτ ) ∈ R64×τ . A
sequence vector si is composed of a body-hand-face triplet(
zbi , z

h
i , z

f
i

)
, which represent indexes from the codebooks
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index in an auto-regressive manner. The motion index is mapped into motion by the decoder of the VQ-VAE.

Zb =
{
zbi
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and Zf =
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zfi

}|Zf |
i=1

. S
can then be decoded back to a motion Mre through the de-
coder D. Thus, we can now formulate text-to-motion gen-
eration as an autoregressive next-token prediction task[42].
Given a speech input a and the previous sequence S<i we
use a Transformer to predict the distribution of the next pos-
sible indexes p(Si | a, S<i). To extract a speech embedding
we use wav2vec which is then aggregated using a learned
pooling strategy. This representation can also be seen in
Figure 2.

Optimization goal. To optimize the transformer we
maximize the log-likelihood of our data distribution. Given
that our sequence data likelihood can be mapped as p(S |
c) =

∏|S|
i=1 p(Si | a, S<i), we then have the following

Transformer loss:

Ltrans = ES∼p(S) [− log p(S | a)] (3)

Self-Attention. We apply the following causal self-
attention strategy[39] in speechCAT:

Attention = Softmax
(
QKT × mask√

dk

)
(4)

where Q ∈ Rt×d and K ∈ Rt×d are the query and the

key while mask represents the causal mask. The mask en-
sures that future information is not allowed to attend the
current tokens. At inference, we start from the speech token
and generate the next motion tokens in an auto-regressive
manner, until the sequence is equal in size to the initial
speech sequence.

Cross-Attention. In addition to causal self-attention,
SpeechCAT employs a cross-attention module to en-
able communication and synchronization between different
body parts i.e., body, hands, and face. The cross-attention
mechanism is formulated as follows:

CrossAttention = Softmax

(
Qpart1K

T
part2√

dk

)
(5)

where Qpart1 ∈ Rt×d and Kpart2 ∈ Rt×d represent the query
and key matrices of two different body parts i.e., hands and
body. This cross-attention mechanism allows each body
part to attend to other parts, effectively sharing information
to improve cohesiveness and synchronization in the gener-
ated motion. Each body part has its unique query, key, and
value representations. Thus, the attention is directed across
body parts rather than within a single part, ensuring motion
that reflects coordinated gestures or body-language cues.



Method Body
VSD ↓ ASD ↓ MSD ↓ BCS ↑

TalkSHOW 0.0359 0.0624 0.1580 0.851
SpeechCAT 0.0308 0.0529 0.1519 0.874
w/o cross-att. 0.0319 0.0548 0.1532 0.866
One-code 0.0297 0.0513 0.1530 0.918

Table 1. Comparison of stability and coherence metrics for
body motion prediction between TalkSHOW, SpeechCAT, and two
baselines.

Method Body & Hand Face
L2 ↓ Diversity ↑ MSD ↓ L2 ↓ LVD ↓

TalkSHOW 14.77 1.07 0.851 0.2049 0.0303
w/o cross-att. 12.47 0.37 0.1532 0.2039 0.0314
One-code 12.007 0.32 0.1530 0.1892 0.0321
SpeechCAT 11.7 0.43 0.1519 0.2048 0.0312

Table 2. Comparison of proposed SpeechCAT, two baselines, and
TalkSHOW with multiple error metrics. We separate the body &
hand and face since these joints are in different magnitudes. Note:
Some of the original results from TalkSHOW could not be repro-
duced. TalkSHOW[50] notes a diversity of 0.821 for the body and
for the face an L2 score of 0.130 and an LVD of 0.248

There is a discrepancy in index quality between infer-
ence and training. While in training all i − 1 indexes are
assumed to be correct, there is no guarantee that the indexes
used for generation are relevant for the conditional proba-
bility. To address this we replace α× 100% of ground truth
indexes, as explained in [55]. This combined with index
sampling from the predicted distributions ensures diversity
for our Transformer. For the trade-off of stability, α was set
to 0.4.

4. Experiments
We evaluated the ability of our method to generate body
movements (sequences of poses) effectively from speech in
the TalkSHOW dataset[50] quantitatively and qualitatively.
Specifically, a 80% / 10% / 10% train-val-test split is used,
and the videos are between 3 and 4 seconds. Several metrics
are used to measure coherence and stability as well as the
diversity of the generated motions which can be split into
facial and body poses.

4.1. Experimental setup
Evaluation metrics
Because both the face and the body are modeled in a sin-
gle non-deterministic task, we asses the generated motion
in terms of diversity and accuracy. Even though we use a
generative, non-deterministic Transformer model, we test
its ability to learn an informative and robust feature space,
thus also using metrics such as coherence, synchronization,
and stability. The full list of metrics used is the following:
• L2 error: L2 distance between GT and generated joints.

This applies to both body(all body joints including hands)
and face(facial expression joints including jaw position)

• LVD: Landmark Velocity Difference calculates the veloc-
ity difference between GT and generated body/face joints.
It measures the synchronization between the speech and
the generated motion.

• Diversity: Variance across 16 samples of body and hand
motions for the same audio input.

• VSD: Velocity Standard Deviation computes the standard
deviation of frame-to-frame velocities of generated joints.

• ASD: Acceleration Standard Deviation computes the
standard deviation of accelerations of generated joints.

• MSD: Mean Squared Displacement measures the average
frame-to-frame displacement of joints, thus quantifying
temporal smoothness.

• BCS: Beat Consistency Score measures the alignment be-
tween audio and generated body motion.

• BPSS: Body Part Synchronization Score is a weighted
average of the following motion metrics, calculated per
body part(body, hands and face):
– Cross-Correlation: Computes the correlation between

pairs of body parts to measure general alignment.

– Mean Phase Coherence: Measures phase alignment
to capture synchronization in motion cycles.

– Velocity and Acceleration Alignment: Uses cosine
similarity to capture alignment in the direction and
speed of movement between body parts.

Compared method

We compare SpeechCAT with two baselines and
TalkSHOW[50], another VQ-VAE-based speech-to-
motion method. The original results from TalkSHOW
could not be reproduced, thus we show our comparison
with the results we computed in Table 2. TalkSHOW maps
facial generation as a deterministic task, while body and
hands are kept as a non-deterministic task. Even though
our method is fully nondeterministic, because TalkSHOW
generates the face and body as two separate tasks, our
results will also be compared separately for the face and
body motions. Besides TalkSHOW our baselines, “w/o
cross-att” and “one-code”, are simplifications of Speech-
CAT aimed to show the importance of cross-attention and
body part VQ-VAEs. “W/o cross-att” baseline removes the
cross-attention module from the transformer, while “one-
code” uses a single VQ-VAE to encode the whole body
collectively. These are further explained in Section 4.4.



Figure 3. A demonstration of the synchronization between the input audio and motion generated by SpeechCAT. The method generates
motion consistent with the rhythm and tone of input audio. The intonation of the strengthening words “high” and “low” is directly expressed
through the hand motions.

Figure 4. Visual comparison between SpeechCAT(top) and TalkSHOW(bottom). SpeechCAT has a gesticulative motion while TalkSHOW
keeps the hands towards the middle with very few movements.

4.2. Quantitative Analysis

From Table 2, it is evident that SpeechCAT outperforms the
two baselines across most error metrics, except the L2 error
for the face part. Moreover, SpeechCAT achieves compa-
rable results to TalkSHOW, which uses a specific encoder-
decoder architecture for the facial features. Although dif-
ferences are negligible, we can see a decrease in L2 error
and a small increase in LVD which shows the model is as
effective as TalkSHOW at generating motion. Moreover,
the low LVD can be a product of exaggerated motions for
speech/phonetic patterns in TalkSHOW. These results high-
light the advantages of the proposed SpeechCAT with the
cross-attention module and multiple encoder-decoder mod-
ules architecture.

When analyzing the body generation, however, Table 2
shows a clear decrease in error but also a decrease in di-
versity. This is expected due to the transformer’s robust na-
ture. Although losing diversity, the model ensures more mo-
tion stability and consistency based on the improvement in
velocity and acceleration deviation as well as mean square
displacement. Moreover, based on the improved beat con-
sistency score, this robust nature generates more audio-
consistent motions, as shown in Table 1.

Notably, SpeechCAT demonstrates significant improve-
ments in diversity in body and hand parts, a critical metric
for the audio-to-motion generation task. The diversity per-
formance drops substantially for the one-code baseline, un-
derscoring the limitation of using a single encoder-decoder
architecture. Although improved, the diversity score is still
lower than TalkSHOW. This is expected due to the trans-
former’s robust nature. Although losing diversity, the model
ensures more motion stability and consistency based on the
improvement in velocity and acceleration deviation as well
as mean square displacement. Moreover, this robust na-
ture also generates more audio-consistent motions based on
the improved beat consistency score. For the L2 error on
the body and hand parts, the baseline without the cross-
attention module exhibits the worst performance compared
to our other methods. However, its L2 error was better than
TalkSHOW. This emphasizes the necessity of the cross-
attention mechanism in SpeechCAT for effectively model-
ing the correlations between body and hand motions.

Overall, we conclude that the proposed SpeechCAT ef-
fectively maps the three body parts such as face, body, and
hands into separate latent spaces, while leveraging cross-
attention to model their correlations. This design ensures



Model Ablation Study
Model corr ↑ mpc ↑ vel al ↑ acc al ↑
SpeechCAT 0.618 0.732 0.881 2.761
w/o cross-att. 0.429 0.623 0.853 2.674
One-code 0.349 0.577 0.844 2.554

Table 3. Ablation study results. Metrics include correlation (corr),
mean phase coherence (mpc), velocity alignment (vel al), and ac-
celeration alignment (acc al).

improved motion diversity, stability, and robustness, further
enhanced by the transformer-based motion generator.

4.3. Qualitative Analysis
An example of generated full-body motion can be seen in
Figure 3. Given words that are accentuated in a sentence,
i.e. having a strengthening tone, the model can correctly ex-
press the given tone through coordinated body motion. For
the expression “high initial collisions” which is followed
by a pause in speech to attract the listener’s attention, the
model generates a body that lifts its hands in front with open
palms. This is a plausible motion as it highlights and com-
plements the speech pause.

A similar motion is generated for the word “low”, which
is also used as a strengthening tone. The hands are now
lifted beforehand and slowly put down to accentuate the
word. This is a natural expression that complements the
intonation as well as the rhythm of the audio. In Figure 4
we can see a visual comparison between SpeechCAT and
TalkSHOW. The TalkSHOW model has a very conserva-
tive approach with low movement by always keeping the
hands close to the body. SpeechCAT generates a more ex-
pressive body motion with, more natural movement. The
motions are not only correlated to each other but also with
the speech itself. The correlation creates a more expressive
motion which better facilitates audio.

4.4. Model Ablation
For the audio-to-motion generation task, aligning differ-
ent body parts is crucial. To evaluate the synchronization
among the face, body, and hand motions, we show the re-
sults in Table 3 using the BPSS metrics.

Effect of body part cross-attention We investigate the
impact of the body part cross-attention mechanism on the
quality of the generated motion. To understand how cross-
attention affects the synchronization and cohesiveness of
generated movements, we compare two versions of our
model: one with the body part cross-attention module en-
abled and another without it. From Table 3 we can see
that cross-attention significantly improves the correlation
between body parts. There are also slight increases for all
other metrics. Moreover, in Table 1 the improved metrics
for cross-attention show better overall robustness. We con-
clude that adding cross-attention ensures a more reliable,

cohesive, and better-synchronized model.
Effect of mapping body parts separately We investi-

gate the impact of using separate VQ-VAEs for each body
part i.e., body, hands, and face, compared to using a single
VQ-VAE for the entire motion. The hypothesis is that mod-
eling each body part independently might allow the model
to capture finer, more nuanced motion details specific to
each body part, potentially improving motion realism, syn-
chronization, as well as diversity. From Table 3 we see
a decrease in all metrics when using the one-code model,
showing that separate VQ-VAEs increase the cohesiveness
and synchronization between body parts. However, Table 2
shows that one-code body parts yield a more accurate and
speech-aligned motion with the tradeoff of lower diversity.
Although the facial expressions are also slightly improved,
from Table 2, the higher LVD shows that they are not nec-
essarily better aligned. Finally, Table 1 shows that there are
slight improvements across some of the metrics for the one-
code model which prompts higher stability. Overall, the
one-code approach is slightly more performant in terms of
stability than the use of separate VQ-VAEs. It does however
fall short in terms of diversity as well as body part synchro-
nization due to the lack of motion choices within the single
VQ-VAE.

The results from Table 3 show that the proposed Speech-
CAT significantly outperforms the two baselines across all
error metrics. Notably, SpeechCAT achieves substantial im-
provements in cross-correlation and mean phase coherence,
which are specifically designed to assess the alignment and
correlation among different body parts. These improve-
ments demonstrate the effectiveness of our SpeechCAT in
modeling the relationships between the face, body, and
hands. In contrast, the one-code baseline yields the poor-
est performance across all metrics, highlighting the limi-
tations of using a single shared latent space for all body
parts. This underscores the advantage of employing sepa-
rate latent spaces tailored to each body part, as proposed
in SpeechCAT. Overall, the combined approach of separate
latent spaces integrated with cross-attention in SpeechCAT
not only enhances robustness but also ensures better coher-
ence and synchronization across the body parts compared
to using standalone VQ-VAEs.

5. Conclusion
In this paper, we propose a novel method, SpeechCAT, for
the audio-to-motion generation task. Our approach mod-
els the face, body, and hands separately using a three-
encoder-decoder architecture, capturing the unique vari-
ations in motion for each body part by mapping them
into distinct latent spaces. To account for the corre-
lation between these body parts, we introduce a cross-
attention mechanism that learns and integrates the correla-
tions among the face, body, and hands. Experimental re-
sults demonstrate the effectiveness of the proposed archi-



tecture in generating diverse and coherent motions across all
body parts. For future work, we aim to further optimize the
model by fine-tuning its parameters, adding Convolution-
Augmented Transformers(Conformers)[16], and expanding
our comparisons to include additional state-of-the-art meth-
ods.
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3
Supplementary material

The supplementary material provides technical explanations of the fundamental concepts and method-
ologies used in the scientific article in Chapter 2. By focusing on key topics like deep learning, gen-
erative models, motion generation techniques, and data models, this section aims to ensure that non-
expert readers can fully comprehend the scientific article.

The topics covered include the fundamental ideas of Deep Learning [17] and Neural Networks, a prin-
ciple of modern artificial intelligence, followed by an exploration of Generative Models [16], which are
algorithms responsible for generating new data. We then explore the Vector-Quantized Variational Au-
toencoder (VQ-VAE) [25], a widely used generative framework for tasks that involve the creation of
images and videos. Transformers [29], a crucial architecture that has revolutionized sequence model-
ing tasks, is then introduced in the following section. We go deeper into this architecture by showing
how it can be used for Text Generation and Speech-to-motion tasks using Next-Token Prediction, the
main mechanism behind sequence modeling tasks.

Lastly, we describe the datasets used in the scientific study as well as parametric and non-parametric
3D human mesh models, including the SMPL Model [20]. These offer the data-driven and structural
basis for human motion modeling. We then explain how these techniques allow for the synthesis of
synchronized, natural human motion from sequential inputs by using this data to link the concepts
from the Text-to-Motion domain and then apply them to Speech-To-Motion generation. Together, these
topics form a cohesive framework that equips readers with the necessary knowledge to engage with
the scientific content in detail.

3.1. Deep Learning
3.1.1. Neural Networks
Deep Learning (DL) is a subset of machine learning inspired by the structure and function of the human
brain. It enables machines to learn complex patterns and representations from data, making it pivotal
in applications like computer vision, natural language processing, and speech recognition.

Neural networks are the foundation of deep learning. They are composed of layers of interconnected
nodes called neurons. A Neuron receives an input vector x = (x1, x2, . . . xn) where its elements are
each connected with a corresponding weight wj . The neuron calculates a weighted sum of its inputs,
adds a bias term b, and applies an activation function f to produce an output y:

y = f

(
n∑

i=1

wixi + b

)
(3.1)

From the input x the data flows through each layer of neurons to produce a prediction. This process
is called forward propagation and can be seen in Figure 3.1. A neuron layer can then be defined as

13
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Figure 3.1: A simple neural network architecture, consisting of an input layer, hidden layer, and output layer [31].

Figure 3.2: Different activation functions.

a(l) = f(W (l)a(l−1) + b(l)), where a(l) are the activations(outputs) of layer l, W is the weight matrix, b
the bias vector and f the activation function.

The goal of training a neural network is to approximate a target function f∗ by iteratively updating the
network’s parameters (θ, which include weights and biases). The network learns a mapping y = f̂(x, θ),
where the predicted output ŷ should closely match the true output y. During training, the network
minimizes a loss function that quantifies the error between ŷ and y. Through forward propagation, the
network computes predictions, while backpropagation adjusts the parameters using the gradients of
the loss function. This optimization process ensures that f̂(x, θ) converges towards f∗, improving the
network’s ability to generalize and make accurate predictions.

However, because of the weighted sum operation in Equation (3.1), each neuron layer in this format
can only map linear relationships. On the other hand, most real-world events are non-linear. Simply
altering the activation function of neurons in neural networks allows us to add non-linearities. Figure 3.2
contains common activation functions.
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Figure 3.3: Example of a Variational Auto Encoder architecture

3.1.2. Generative models
A subclass of machine learning models known as generative models is made to produce fresh data
samples that closely resemble the distribution of an existing dataset. Generative models seek to model
the underlying data distribution p(x). In contrast, discriminative models learn the boundary between
various classes directly. Image synthesis, text generation, and audio-to-motion generation are just a
few of the many uses of generative models.

Mathematical Foundation
Generative models work by approximating the true data distribution pdata(x) using a model distribution
pθ(x), parameterized by θ. The goal is to learn θ such that pθ(x) closely resembles pdata(x). This can
be achieved by explicitly modeling pθ(x) and maximizing the likelihood of the data:

L(θ) =
N∑
i=1

log pθ(x
(i)) (3.2)

Or by generating samples directly without explicitly defining pθ(x), as seen in Generative Adversarial
Networks (GANs) [13].

In recent years, deep learning approaches have led to advanced explicit models like Autoregressive
models (e.g., PixelRNN [21]) and Flow-based models (e.g., NICE [8], RealNVP [9]). These models
offer more flexible and powerful ways to model data distributions.

Types of explicit Generative Models
Variational Autoencoders (VAEs)[19]
An autoencoder network is composed of two parts: an encoder and a decoder. The encoder maps the
input data x to a compressed, dense representation, often called the latent space. The decoder then
reconstructs the original input x from this latent representation. While traditional autoencoders can
learn meaningful encodings, their latent space is not explicitly designed for generation. Thus, it may
not be continuous, or allow easy interpolation. The lack of a structured latent space makes it difficult
to generate new samples that closely follow the original data distribution.

Variational Autoencoders (VAEs) address this limitation by explicitly designing the latent space to be
continuous and probabilistic. Instead of encoding x into fixed points in the latent space, VAEs encode
x into a distribution over the latent space z ∼ N (µ, σ2), where z is a latent vector sampled from the
learned distribution. This enables smooth interpolation and generation of new samples from the latent
space.

Training a VAE requires optimizing a specific objective function. The total loss for a VAE is the Ev-
idence Lower Bound (ELBO), which consists of the reconstruction loss and the Kullback–Leibler
divergence(KL divergence). This can be seen in Equation (3.3). The reconstruction loss term ensures
that the decoder reconstructs the input x accurately from the latent variable z. The KL divergence term
ensures that the latent variable distribution qϕ(z|x) is close to a prior distribution p(z), typically cho-
sen as a standard Gaussian N (0, 1). This encourages the latent space to be smooth and continuous,
allowing for meaningful sampling and interpolation.
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Figure 3.4: Example of a GAN architecture.

L(θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
Reconstruction Loss

−DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
KL Divergence

(3.3)

By introducing the KL divergence term, VAEs map the input data x into a structured latent space where
points are distributed according to a standard Gaussian prior. This design enables the decoder to
generate realistic new data by simply sampling random points from N (0, 1).

Generative Adversarial Networks (GANs)[13]
Generative Adversarial Networks (GANs) are a class of generative models designed to generate real-
istic data samples by framing the learning process as a game between two competing networks: the
generator and the discriminator. GANs have revolutionized generative modeling and are widely used
for tasks such as image synthesis, text-to-image generation, and data augmentation.

The key idea behind GANs is to train two neural networks simultaneously in an adversarial setting.
The generator takes random noise (z) as input and generates synthetic samples (G(z)). Its goal is to
produce data that is indistinguishable from the real data distribution. In comparison, the discriminator
takes both real data (x) and synthetic data (G(z)) as input and outputs a probability indicating whether
the input is real (1) or fake (0). This can be seen in Figure 3.4. Its goal is to correctly distinguish real data
from fake data. They are both trained in a min-max game. The generator tries to fool the discriminator
by making its outputs as realistic as possible and the discriminator tries to become better at identifying
real data from fake data.

The training of GANs is formulated as a zero-sum game with the following objective:

min
G

max
D

V (G,D) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.4)

Here pdata(x) is the true data distribution and pz(z) is the prior distribution of the random noise input
of the generator (e.g., a standard normal distribution N (0, 1)). D(x) is the probability assigned by
the discriminator that x is real and G(z) is the synthetic data generated by the generator. Here, The
generator seeks to fool the discriminator by minimizing LG (Equation (3.5)), while the discriminator
seeks identify real data by minimizing LD (Equation (3.6)).

LD = −
(
Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

)
(3.5)

LG = −Ez∼pz(z)[logD(G(z))] (3.6)

Diffusion Models
Diffusion models are a class of generative models that use a forward and reverse diffusion process to
generate data by gradually refining noisy samples into high-quality outputs. They have gained signif-
icant attention recently for their ability to produce high-quality images, audio, and other forms of data.
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Figure 3.5: Example of diffusion model architecture[18].

They are inspired by physical processes like the diffusion of particles in gases, where a system evolves
from an ordered state to a completely random state. These models reverse this process: they take ran-
dom noise and iteratively transform it into meaningful data by learning the underlying data distribution.

As shown in Equation (3.7), diffusion models have two key components: forward diffusion and re-
verse diffusion. The forward diffusion process gradually adds noise to the data over several time steps
t = 1, . . . , T , transforming the original data x0 into a pure Gaussian noise xT . Mathematically, the
forward process is defined as q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt is a small variance that

determines the amount of noise added at each step. Reverse Diffusion Process learns to denoise
the noisy data xt back to the original x0. The reverse transition is parameterized by a neural network
pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ

2
θ(t)I). The training objective is to minimize the difference between

the true forward process and the learned reverse process. This is typically formulated as a simplified
loss function to predict the added noise ϵ as in Equation (3.7)

L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
(3.7)

Here, ϵ represents the true noise added during the forward process, and ϵθ is the model’s prediction of
that noise.

3.1.3. Vector-Quantized Variational Auto Encoder
Vector Quantized Variational Autoencoders (VQ-VAEs) are a variant of variational autoencoders that
incorporate discrete latent representations instead of continuous ones. In many real-world scenarios,
discrete representations align more naturally with data. For instance, many objects and concepts,
such as “Cat,” “Car,” or “Tree,” are inherently discrete. Interpolating between these categories in a
continuous latent space often lacks semantic meaning. Moreover, discrete latent spaces are easier
to model because each category corresponds to a single, fixed value. In contrast, continuous latent
spaces require normalization of the density function and learning dependencies between variables,
which can be computationally expensive and complex.

At a high level, VQ-VAEs retain the basic encoder-decoder structure of traditional autoencoders, with
an added discrete codebook in the latent space. Thus, instead of encoding x into a distribution over
the latent space z ∼ N (µ, σ2), where z is a latent vector, VQ-VAEs use discrete latent variables. The
distributions are now categorical, and the drawn samples return integral index values. These indexes
retrieve learned embeddings from an index dictionary called codebook. Rather than directly using the
embeddings, the indexed values are now passed to the decoder.

More specifically, the encoder maps the input x into a latent representation ze(x). Here, instead of
directly using the continuous latent vector ze(x), VQ-VAEs map it to the nearest vector in a fixed set of
discrete embeddings (the codebook). The quantized representation is denoted as zq(x). The decoder
then reconstructs the input x from the quantized latent representation zq(x). The vector quantization
step introduces the discrete latent space by selecting the closest embedding vector ek from the code-
book {e1, e2, ..., eK} for each encoded vector ze(x). This is done by using Equation (3.8) and is rep-
resented in Figure 3.6. This quantized vector zq(x) replaces the continuous latent vector ze(x) in the
reconstruction process.

zq(x) = argminek∈{e1,e2,...,eK}∥ze(x)− ek∥2 (3.8)
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Figure 3.6: Left: a VQ-VAE architecture. Right: The encoder output z(x) is mapped to the nearest point e2 [22].

Unlike traditional VAEs, VQ-VAEs create a discrete latent space that is more suitable for tasks requiring
symbolic or structured representations (e.g., text, audio, or discrete motion indexes). The discrete rep-
resentations are compact and interpretable, making them ideal for tasks like clustering or generating
diverse outputs. Thus, by using discrete codebook entries, VQ-VAEs eliminate the need for a prob-
abilistic prior, avoiding the blurry reconstructions often seen in VAEs. Because of this, VQ-VAEs are
especially used in generative tasks like image synthesis [27], audio synthesis [1], motion generation
[35], and inpainting [25].

3.1.4. Transformers
Transformers are a class of deep learning models that revolutionized the field of machine learning,
particularly in natural language processing (NLP), by introducing a mechanism called self-attention.
First introduced in [30], transformers have since become the backbone of many state-of-the-art models
like BERT[7], GPT[3], and their derivatives. Their ability to efficiently process sequential data makes
them applicable to a wide range of tasks beyond NLP, including image and audio processing, and even
generative tasks.

The transformer architecture is fundamentally built on the self-attention mechanism, which allows the
model to focus on different parts of the input sequence when making predictions. This mechanism
assigns a score to each element in the sequence, indicating its importance in understanding other
elements. The input of a transformer is represented as a sequence of vectors, often derived from
embedding layers (e.g., word embeddings for text or patch embeddings for images). For each input
vector, self-attention is computed as shown in Equation (3.9). Where Q,K, V are the Query, Key, and
Value matrices derived from the input and dk is the dimensionality of the keys (used for scaling). Finally,
The softmax function ensures that attention scores sum to 1. Here the Query Q represents what the
model is looking for. The Key K shows what information is available in the sequence and V is the
content retrieved based on the attention scores. This mechanism enables the transformer to capture
dependencies between tokens in a sequence, regardless of their distance.

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (3.9)

As shown in Figure 3.7, the transformer architecture is composed of two main components: the en-
coder and the decoder. While some applications, such as BERT, use only the encoder, others, like
GPT, rely solely on the decoder. The encoder processes the input sequence and extracts contextual
representations for each token. The decoder generates output sequences (e.g., translated sentences
or predicted text). Both use self-attention layers alongside positional encodings to process sequences.
Since the input embeddings do not contain information regarding their order in the sequence, positional
encodings are used to incorporate it directly. These create a unique encoding representing the posi-
tions within a sequence. These encoded positions are then added to the input embeddings to inject
the positional information directly within the attention mechanism. The positional encoding for a token
at position pos in the sequence is given by Equation (3.10). Here, i represents the dimension index in
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Figure 3.7: Example of a transformer architecture [30].

the embedding vector (half the dimensions are assigned to sine and the other half to cosine) and dmodel
is the dimensionality of the embedding space (e.g., 512 or 1024).

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
PE(pos, 2i+ 1) = cos

( pos

100002i/dmodel

) (3.10)

Transformers are typically trained using a loss function specific to the task. For instance, in language
modeling (Decoder-only models like GPT) where we aim for next token predictions, the aim is to maxi-
mize the likelihood of the next token xi given the previous tokens, as shown in Equation (3.11).

L = −
N∑
i=1

log p(xi|x<i) (3.11)

In comparison, masked language modeling (Encoder-only models like BERT) tasks aim to predict
masked tokens based on the context. This is particularly used for question-answering models. Such
an objective function is described in Equation (3.12).

L = −
∑

i∈masked

log p(xi|x\i) (3.12)

Besides these tasks, transformers have multiple applications such as natural language processing:
machine translation [30] (e.g., Google Translate), text generation [3] (e.g., GPT-3, ChatGPT), sentiment
analysis [7] (e.g., BERT); Vision Transformers (ViTs) [10] for image recognition; Audio transformers [15]
for tasks like speech recognition and synthesis and text-to-image generation [26] (e.g. DALL-E).

3.2. Computer Vision
Computer Vision is a field of artificial intelligence that enables machines to interpret and analyze visual
data, such as images and videos. It has applications in object detection[36], image classification[34],
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Figure 3.8: Transformer architecture on a next index prediction task. From the input S0:n = (s0, . . . , sn) the transformer
generates the next indexes as the sequence S1:n+1 = (s1, . . . , sn+1).

etc. In this context, computer vision intersects with natural language processing and motion generation,
enabling tasks like text-to-motion and speech-to-motion generation.

3.2.1. Next token prediction and text generation
Next-token prediction is a fundamental task in natural language processing (NLP) that has paved the
way for token generation models. Given the preceding context, it involves predicting the next word or
token in a sequence. This concept is widely applied in text completion, translation, dialogue systems,
etc.

Autoregressive Models like GPT (Generative Pre-trained Transformers) generate responses by repeat-
edly predicting the sequence’s most probable token. A sentence is represented as a sequence in
which words are encoded into tokens, thus the task of next token prediction refers to predicting the
next most probable word in a GPT response. For an input sequence of indexes Strue

0τ = (s0, . . . , sτ ),
the model aims to generate the next index for each item in the sequence, thus having the output
Sgenerated
1τ+1 = (s1, . . . , sτ+1), as shown in Figure 3.8. The objective is to minimize the cross-entropy

loss between the predicted and true token sequences, thus comparing Strue
1τ+1 with S

generated
1τ+1 .

At inference, when generating responses, for each step the model outputs a probability distribution
over the vocabulary for the next token, conditioned on the previous tokens P (xt+1|x1, x2, . . . , xt). The
highest probability word is chosen, and the process is repeated iteratively. This is how responses
are generated for large language models that use transformers, such as GPTs. Next-token prediction
techniques are foundational for models in text-to-motion and speech-to-motion tasks, as these also rely
on predicting sequences of tokes, such as encoded motion trajectories or poses.

3.2.2. Text-to-motion
Text-to-motion generation involves creating realistic human motion sequences directly from textual de-
scriptions. This task lies at the intersection of natural language processing and computer vision.

To generate motion, we first take our text sequence and encode it using NLP models, such as Trans-
formers, to capture semantic and contextual meaning. The result Strue

0τ = (s0, . . . , sτ ) is then mapped
to the same dimension as the motion and collapsed(averaged) into a single token Savg. The motion
data is also encoded into tokens using a VQ-VAE as M true

0τ = (m0, . . . ,mτ ). Autoregressive models
can now use next token prediction to generate the next motions within the sequence. This is done by
generating the output probability distribution P (mt+1|Savg,m1,m2, . . . ,mt). Thus, we use the averaged
speech information as the first token and then iteratively generate the motion tokens from it.

3.2.3. Speech-to-motion
Speech-to-motion generation focuses on synthesizing human-likemotion sequences from speech input.
This involves understanding the rhythm, tone, and semantics of the speech to generate synchronized
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Figure 3.9: Simplified SpeechCAT architecture. The bottom represents the motion encoding using a VQ-VAE. The top part
represents the motion generation where audio is used with the motion sequence to create the input

M0:n = (Savg ,m1,m2, . . . ,mn). The generated transformer sequence is M1:n = (m1,m2, . . . ,mn+1). The generated
sequence is then decoded in motion data using the VQ-VAE decoder. A similar approach can be used for text-to-motion by

changing the speech encoder.

and expressive motion.

As shown in Figure 3.9, speech-to-motion is a similar task to text to motion, the only difference being
the input. From the input audio data, audio features are extracted using methods like MFCCs (Mel-
frequency coefficients) or deep models like Wav2Vec [2]. These are then processed into tokens using
VAEs or Audio transformers(Conformers) [15]. Tokens are then collapsed and the motion prediction
process is now the same as in text-to-motion. This process reduces complex tasks such as speech or
text into motion generation to already known concepts such as next index prediction.

Although straightforward, this process of translating to next index prediction poses its own challenges.
First, you need to ensure the generated motion matches the rhythm and intonation of speech. This
requires a very descriptive audio encoder that understands the rhythm, tone, and semantics of the
speech. Second, the motion needs to be diverse and coherent. The VQ-VAE used to encode motion
needs to be large enough to generate diverse motion indexes and keep the motions human-like. Finally,
temporal coherence needs to be ensured across motion sequences by the autoregressive transformer
model.

3.3. 3D human mesh models
3D human mesh models are mathematical representations of the human body used to capture its
geometry and motion in three dimensions. They consist of a mesh, which is a collection of vertices
and edges that form a 3D surface, and additional parameters to define the pose, shape, or motion of
the body. These models are widely used in applications such as animation, motion capture, virtual
reality, and human-computer interaction. 3D human mesh models can be broadly classified into two
categories: non-parametric and parametric.

3.3.1. Non-Parametric models
Non-parametric models rely directly on raw data to represent the human body without introducing prede-
fined constraints or parameters. These models are typically obtained through techniques like 3D scan-
ning or photogrammetry, which capture detailed surface geometry from real-world humans. From input
data, non-parametric models are usually defined as dense point clouds or meshes. This can be seen
in Figure 3.10. A mesh is represented by a set of vertices {v1, v2, . . . , vn} and faces {f1, f2, . . . , fm},
which form the surface of the human body.
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Figure 3.10: Different representations of a non-parametric mesh [5].

Figure 3.11: (a) Default template mesh. (b) Added identity-contribution to blend shape(ex. malefemale). (c) Addition of pose
blend shapes; note the expansion of the hips. (d) Deformed vertices reposed by skinning for the split pose.[20]

Due to their extremely detailed and accurate representations, non-parametric meshes are used in high-
precision applications such as medical imaging, 3D scanning, and photorealistic rendering. Although
highly performant in capturing fine-grained surface details like wrinkles and clothing, non-parametric
meshes have a high computational cost, lack of semantic control over pose and shape, and are difficult
to generalize to new poses or body shapes.

3.3.2. Parametric models: SMPL
Parametric models introduce a structured and low-dimensional representation of the human body by
leveraging statistical priors. SMPL (Skinned Multi-Person Linear model) is one of the most widely used
parametric human mesh models [20].

SMPL represents the human body as a predefined mesh with n = 6890 vertices and is parameterized
by shape and pose parameters. Shape Parameters (β) capture individual body shape variations (e.g.,
height, weight). Pose Parameters (θ) encode joint rotations for different poses.

Mathematically, the model generates a meshM(β, θ) as:

M(β, θ) =W (T (β, θ), J(β), θ,W ) (3.13)

Here, T (β, θ) is the template mesh deformed by β (shape) and θ (pose). J(β) are joint locations
determined by shape parameters and W are linear blend skinning weights. Linear blend skinning is a
technique used to remove discontinuity by linearly blending vertices near the joint. This makes smooth
transitions around the skin of rotating bone joints. This is also shown in Figure 3.11

Although body detail and expressiveness is reduced compared to the non-parametric models, SMPL
has a compact and efficient representation that generalizes well across different poses and body
shapes. SMPL can be easily integrated into computer vision pipelines as it can be defined paramet-
rically, which reduces data volume and computation. Currently, SMPL is a popular model used for
multiple tasks such as motion capture and retargeting, virtual avatars, and 3D pose estimation. Pro-
vides a balance between computational efficiency and realism. This makes it easy to train and use with
standard datasets.
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Figure 3.12: Comparison of SMPL (left), SMPL+H (middle) and SMPL-X (right). There is a clear increase in expressiveness
from left to right. This is directly correlated with the model getting richer: from body-only (SMPL) to include hands (SMPL+H) or

hands and face (SMPL-X) [24].

3.3.3. Other models
Several other 3D human mesh models exist, each designed for specific applications or with unique
features. These include

1. SMPL-X [24]: As shown in Figure 3.12 it extends SMPL by adding parameters for hands and
facial expressions. Suitable for full-body modeling, including gestures and facial expressions.
SpeechCAT also uses this model.

2. STAR (Sparse Trained Articulated Human Body Regressor) [23]: A simplified alternative to
SMPL with faster computation while maintaining comparable accuracy.

3. Body-Region Specific Models: Models like FaceMesh [14] and HandMesh [4] focus on specific
body regions for applications requiring high precision.

4. Neural Implicit Models: Represent the human body using implicit functions, such as signed
distance fields or neural radiance fields (NeRFs) [32]. These models are continuous and can
achieve highly detailed reconstructions.

5. HumanMesh++ [28]: Combines traditional parametric modeling with deep learning techniques
to improve realism and flexibility.

3.3.4. Datased used
We utilized the TalkSHOW Dataset [33], a high-quality audiovisual dataset designed specifically for
generating holistic 3D human body motions from speech. This dataset stands out for its inclusion of
3D body meshes, reconstructed from in-the-wild video data, along with synchronized audio. These
features make it particularly valuable for training and evaluating speech-to-motion generation models.

The TalkSHOW dataset consists of 26.9 hours of annotated video data from four speakers with diverse
speaking styles. Synchronized audio is recorded at a 22 kHz sample rate and frames are reconstructed
at 30 FPS using the parametric SMPL-X model described in Section 3.3.3. The dataset is divided into
short video clips, each less than 10 seconds, making it suitable for mini-batch processing during training.
Reconstruction uses SMPL-X parameters to represent the pseudo-ground truth (p-GT), such as body
shape parameters β ∈ R300, pose parameters θ ∈ R156, facial expressions ψ ∈ R100 alongside camera
poses and translations.

As shown in Table 3.1, TalkSHOW addresses limitations found in other speech-to-motion datasets. Un-
like datasets such as VOCASET[6] or BIWI[11], which focus only on head or body motion, TalkSHOW
provides a holistic representation of the face, body, and hands. Moreover, it surpasses Speech2Gesture[12]
and similar datasets by offering connected 3D body meshes rather than disjoint representations.
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Dataset Head Hands Body Holistic Body In-the-Wild Length
VOCASET 3D mesh 7 7 7 7 4D-scan
Speech2Gesture 7 2D keypoint 2D keypoint 7 3 144 hours
Habibie et al. 3D mesh 3D keypoint 3D keypoint 7 3 33 hours
TalkSHOW 3D mesh 3D mesh 3D mesh 3 3 27 hours

Table 3.1: Comparison of speech-to-motion datasets.
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