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Abstract

The stability of an oscillator uniformly moving along a thin ring that is connected to an immovable axis by a distributed viscoelastic

foundation has been studied. The dynamic reaction of the ring to the oscillator is represented by a frequency and velocity dependent

equivalent stiffness. The characteristic equation for the vibration of the oscillator is obtained. It is shown that this equation can

have roots with a positive real part, which imply the exponential increase of the amplitude of the oscillator’s vibration in time, i.e.

instability. The critical velocity after which instability can occur is determined. With the help of the D-decomposition method, the

instability domains are found in the space of the system parameters. Parametric study of the stability domains is carried out.

c� 2017 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

The dynamic response of structures to moving loads has long been a subject of great interests especially in the field

of railway engineering. It deals with interactions between moving loads/objects and elastic continua. Generally, two

types of problems are of particular importance: i) the forced vibration of the supporting structures caused by moving

loads or objects and ii) the stability of moving objects themselves. A considerable amount of literature has been

published on the first problem, not to mention the classical and comprehensive monograph by Frýba [1]. The second

problem is less extensively studied. Metrikine et al. [2–5] have systematically invistigated the stability problems of

moving objects on elastically supported beams. It has been concluded that the moving object can be unstable when it

moves faster than a critical speed because of the appearance of anomalous Doppler waves [6]. Other research on the

stability issue include e.g. [7,8] and the recent studies conducted by Mazilu and his co-authors [9,10]. In the latter

investigations, the nonlinearity of the wheel/rail contact is considered, which turns out to be important.

All the above-referenced studies which focus on stability of moving objects consider those to move along a straight

system. Considering a moving mass on an infinite EB beam [2], the necessary condition for instability to occur is that

it moves faster than the minimum phase speed of waves in the beam, which can be referred to as a resonant speed.
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In this paper, an elastic ring is considered as the structure supporting a moving oscillator. The closeness of the ring

introduces infinitely many resonant speeds [11]. The stability of such a system has not been analysed in the past. After

obtaining the complex-valued equivalent stiffness at the contact point, the oscillator-ring is reduced to a mass-spring

system. The D-decomposition method is used to study the stability domains in the space of system parameters.

2. Model and characteristic equation

The study of an oscillator-ring system is motivated by modelling an elastic train wheel interacting with railway

tracks. As shown in Fig. 1, the train wheel is modeled as a flexible ring attached to an immovable axis by visco-

elastic springs in both radial and circumferential directions, with the stiffness per unit length kr (viscosity σw) and kc

(viscosity σu), respectively. It is assumed that the mean radius of the undeformed ring is R. θ is the circumferential

polar coordinate. Small displacements in radial and circumferential directions are denoted as w(θ, t) and u(θ, t). In

addition, ρ denotes the density of the ring, E is the Young’s modulus, A is the cross-sectional area and I is the cross-

sectional moment of inertia. The track is represented by a point mass m. The contact between the track and wheel is

simplified as a Hertz contact spring k1, together with a dashpot σ1 to account for dissipation at the contact area. The

support of the track from the substructure is represented by a visco-elastic spring k2 whose viscosity is characterized

by σ2. w01(t) and w02(t) denote the displacement of the ring at the contact point and the one of the mass, respectively.

The equations which govern vibrations of a thin ring can be found in [12]. The oscillator rotates at Ω (angular

velocity). In order to analyse the problem, it is convenient to introduce the following dimensionless variables

t0
2 =
ρAR4

EI
, χ =

EAR2

EI
, (K̄r, K̄c) =

(kr, kc)R
4

EI
, ε(w,u) =

σ(w,u)t0

ρA
, (K1,K2) =

(k1, k2)R3

EI
, ε(1,2) =

σ(1,2)t0

ρAR
,

τ = t/t0, Ω̄ = Ωt0, (w, u) = R(W,U), W (01,02) = Rw(01,02), M = m/(ρAR).

(1)

Thin rings are considered, thus shear deformation and rotatory inertia are not included. The dimensionless governing

equations which describe vibrations of the ring-oscillator system in the moving reference {φ = θ − Ω̄τ, τ = τ} are

Ẅ − 2Ω̄Ẇ′ + Ω̄2W + (W′′′′ − U ′′′) + χ(W + U ′) + K̄rW + εw(Ẇ − Ω̄W′) =

−
+∞
�

n=−∞

�

K1(W01 −W02) + ε1(
dW01

dτ
− dW02

dτ
)

�

δ(φ + 2nπ),

Ü − 2Ω̄U̇ ′ + Ω̄2U + (W′′′ − U ′′) − χ(W′ + U ′′) + K̄cU + εu(U̇ − Ω̄U ′) = 0,

M
d2W02

dτ2
+ ε2

dW02

dτ
+ ε1(

dW02

dτ
− dW01

dτ
) + K2W02 + K1(W02 −W01) = 0,W01(τ) = W(0, τ)

(2)

where n is an integer to account for the periodicity of the ring with the period 2π. Prime stands for the spatial derivative

with respective to θ and overdot represents time derivative. Since k1 and k2 are large, the centrifugal force acting on

the moving oscillator is relatively small comparing to the reaction force from the springs and thus is neglected.

The Fourier transform with respect to φ and Laplace transform with respect to τ are defined as (i =
√
−1 ):

�

W̃s(φ, s)

Ũs(φ, s)

�

=

+∞
�

0

�

W(φ, τ)

U(φ, τ)

�

exp(−sτ)dτ,















˜̃Wk,s(k, s)
˜̃Uk,s(k, s)















=

+∞
�

−∞

�

W̃s(φ, s)

Ũs(φ, s)

�

exp(−ikφ)dφ. (3)

Applying the above Fourier and Laplace transforms to equation (2) and eliminating ˜̃Uk,s from the first two equations

of Eqs. (2) (the initial conditions are taken as trivial since they have no effect on stability of linear systems), we obtain

˜̃Wk,s(k, s)D(k, s) = −(K1 + ε1s)(W̃01
s (s) − W̃02

s (s))

+∞
�

n=−∞
exp(2iknπ) (4)

where

D(k, s) =
A(k, s)B(k, s) + (C(k, s))2

A(k, s)
, A(k, s) =

�

1 − Ω̄2 + χ
�

k2 +
�

−2 iΩ̄ s − iΩ̄ εu

�

k + K̄c + s2 + εus,

B(k, s) = k4 − Ω̄2k2 +
�

−2 iΩ̄ s − iΩ̄ εw

�

k + K̄r + s2 + εws + χ, C(k, s) = ik3 + iχ k.

(5)
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Fig. 1. Moving oscillator on a stationary thin ring.

Performing the inverse Fourier transform with respect to k in Eq. (4), the Laplace-displacement of the radial

direction is

W̃s(φ, s) = −
(K1 + ε1s)(W̃01

s (s) − W̃02
s (s))

2π

+∞
�

−∞

+∞
�

n=−∞
exp(2iknπ)

D(k, s)
exp(ikφ)dk,

= −
(K1 + ε1s)(W̃01

s (s) − W̃02
s (s))

2π

+∞
�

n=−∞

+∞
�

−∞

exp(ik(φ + 2nπ))

D(k, s)
dk.

(6)

By letting φ = 0, a system of equations with respect to W̃01
s and W̃02

s are obtained

(K1 + ε1s + χeq)W̃01
s − (K1 + ε1s)W̃02

s = 0, (Ms2 + K2 + ε2 s + K1 + ε1s)W̃02
s − (K1 + ε1 s)W̃01

s = 0 (7)

where

χeq =

�

I0

2π

�−1

=





















1

2π

+∞
�

n=−∞

+∞
�

−∞

exp(2iknπ)

D(k, s)
dk





















−1

. (8)

This function determines the radial reaction of the ring to the moving oscillator at the contact point and is called

equivalent stiffness. It can be evaluated using the contour integration similar to Ref. [12].

The characteristic equation for the oscillator dynamics can be obtained by setting the determinant of the coefficient

matrix of Eq. (7) to zero. This gives

(K1 + ε1s + χeq)(Ms2 + K2 + ε2s + K1 + ε1s) − (K1 + ε1s)2 = 0. (9)

The system stability is determined by the roots of Eq. (9). The vibration of the oscillator is unstable if there is at least

one root of s with a positive real part.

In next sections, the D-decomposition method [2–5] will be used to analyse the stability of the oscillator. It is

customary to replace s by s = iω in the following analysis.

3. The equivalent stiffness

Analogous to an inifinitely long Euler beam whose critical speed, after which instability can happen, is the resonant

speed (minimum phase speed) of a constant point load moving on the beam [2], we may expect that instability of a

moving oscillator can occur when its velocity exceeds critical speeds at which resonances occur. For an elastic ring

subjected to a moving point load, resonance occurs when the travelling speedΩ equals a natural frequency divided by
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the corresponding mode number [11,12]. The critical speeds are Ω̄n
cr = ωn/n in dimensionless form, where ωn is the

dimensionless natural frequency. The first critical speed is the minimum of Ω̄n
cr.

The parameters are adopted from [12] for a steel ring with rectangular cross-section. These parameters are

E = 2.06 × 1011N/m2, I = 2.83 × 10−6m4, ρ = 7800kg/m3, A = 1.5 × 10−3m2, R = 0.3m,

kr = 6 × 107N/m2, kc = 0.3kr, σw = σu = 6 × 103Ns/m2.
(10)

For the parameters adopted here, the first three critical speeds are

Ω̄n=1
cr ≈ 0.736, Ω̄n=2

cr ≈ 1.371, Ω̄n=3
cr ≈ 2.455 (11)

and they are corresponding to the 1 to 3 bending dominant modes. The minimum resonant speed is the one associated

with mode 1 for the chosen parameters. Geometrically, the critical speeds are the ones at which the kinematic invariant

intersect the dispersion curves at the natural frequencies [12].

The real and imaginary parts of the equivalent stiffness determine the elasto-inertial and viscous properties of the

ring, respectively. The equivalent viscosity can be negative when the object is moving super-critically. It has been

shown that a moving object might become unstable because of the ”negative radiation damping” [13]. Since the sign

of the imaginary part of χeq represents viscosity, the boundary of positive and negative damping is

Im
(

χeq(iω)
)

= 0. (12)

ω = 0 is always a root of Eq. (12) because of symmetry. The other frequencies which satisfy Eq. (12) are denoted as

ωcr. The number of ωcr depends on the velocities of the moving oscillator and the ring properties.

(a)

N=0

ω

ω

(b)

Fig. 2. (a) Imaginary part of the equivalent stiffness; (b) D-decomposition curves for M = 5 and travelling speed Ω̄ = 0.5 < Ω̄n=1
cr .

Fig. 2(a) shows the dependence of Im( χeq) on frequency. Here Ω̄ = 0.5, 1 and 1.3 are chosen to illustrate the

correlations. The first velocity is lower than the first critical speed whereas the latter two are between the first and

second critical speeds. It is shown that the imaginary part of χeq is always positive when Ω̄ = 0.5, indicating energy

dissipation. There is one critical frequency ωcr except ω = 0 for Ω̄ = 1. The equivalent damping is negative when

0 < ω < ωcr , implying energy gain and the oscillator may be unstable. When Ω̄ = 1.3, there are two critical

frequencies ωcr1 and ωcr2, between which Im( χeq) < 0.

4. Stability analysis

The stiffness K2 of the soil is chosen as our subject. Substituting s = iω into the characteristic equation Eq. (9),

one obtains

K2 = Mω2 − χ′eq − iε2ω (13)

where

χ′eq =
χeq(K1 + iε1ω)

χeq + K1 + iε1ω
. (14)
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The equivalent stiffness χeq and K1 act as two springs in parallel. It can be checked that the frequencies that correspond

to Im( χeq(iω)) = 0 are also the roots of Im( χ′eq(iω)) = 0 when ε1 = 0.

N=0
N=1N=2

ω

ω

(a)

N=2
N=2

N=0

ω

ω

(b)

Fig. 3. D-decomposition curves for M = 5 and travelling speed : (a) Ω̄ = 1.0 ∈ {Ω̄n=1
cr , Ω̄

n=2
cr }; (b) Ω̄ = 1.3 ∈ {Ω̄n=1

cr , Ω̄
n=2
cr }.

The D-Decomposition curves are plotted for three velocities as illustrated in Fig. 2(b) and Fig. 3. The dashpots in

the oscillator are neglected, namely σ1 = σ2 = 0. The stiffness of the Hertz contact spring is k1 = 1.4GN/m which

is taken from Ref. [14]. The crossing points (critical K2, namely K∗
2
) on the real axis are the points which divide

domains with different number of unstable roots. The values of ω corresponding to the crossing points are given by

Eq. (12). Crossing the D-decomposition line one time in the shading direction means that the number of unstable

roots increases by one. The absolute numbers can be determined by either using the Cauchy’s argument principle or

following the way in the Appendix of Ref. [3]. The number of unstable roots is represented by N in each figure.

It shows that for speeds smaller than the first critical speed, no instability will occur (Fig. 2(b)). In Fig. 3(a), there

is one unstable root when K2 is greater than about 5. When the oscillator moves at velocity Ω̄ = 1.3, two unstable

regions exist on the positive real axis of K2 as displayed in Fig. 3(b).

0 0.5 1 1.5 2 2.5

Dimensionless velocity Ω

-40

-20

0

20

40

60

80

C
ri
ti
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l
st
iff
n
es
s,

K
2

Ω
n=1
cr cr

n=2
Ω

Ω
2
anti1

Ω anti

1

n=3
crΩ

0 2 1

2

0

0

(a)

Fig. 4. (a) Critical K2, namely K∗
2

versus velocity, σw = σu = 6000Ns/m2; (b) Equivalent stiffness versus velocity, σw = σu = 10Ns/m2.

Fig. 4(a) shows the dependences of the stable and unstable regions on velocities. The number in different regions

stands for the number of unstable roots of this region. At present we keep the regions where K2 is negative as well

in order to show a complete picture, although we are only interested in the regions where K2 is positive eventually.

The vertical dotted and dashed lines are velocities which separate the regions qualitatively. The stable region exists in

the gap between the upright U-shape curve and the curve which is initially in the middle of the upright U-shape curve

and the reverse U-shape curve. The originally middle curve has a tendency to increase with velocities, indicating that

the stable region will disappear when this curve intersect one of the upright U-shape curve. However, extra stable

regions may exist at higher speeds as Fig. 4(a) shows at about Ω̄ = 2. As can be seen from Fig. 4(a), there exists

one critical speed, namely the minimum resonant speed Ω̄n=1
cr , below which the oscillator is always stable. Between

two neighboring resonant speeds, there are two qualitatively different dependences of stability on moving velocities
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of the oscillator. For example, in the range of Ω̄ ∈ {Ω̄n=1
cr , Ω̄

n=2
cr }, Ω̄ ≈ 1.22 separates this domain into two parts. In

the left domain, there are two curves of K∗
2

(critical K2), the upright U-shape curve correlates to ω = 0 and the lower

one to ω = ωcr . In the right domain, three curves of K∗
2

exist. The reverse U-shape curve in the negative plane of

K2 corresponds to ω = 0 and the other two curves correspond to ωcr. Similar conclusion holds for Ω̄ ∈ {Ω̄n=2
cr , Ω̄

n=3
cr }

in Fig. 4(a) although the values of K∗
2

are located in a more complicated way. These velocities which demarcate the

region among two adjacent resonant speeds are termed as Ω̄anti in Fig. 4(a), because after checking the equivalent

stiffness, it is shown in Fig. 4(b) that these velocities correspond to anti-resonances.

5. Parametric study

The mass of the oscillator is a destabilising factor. The dissipation at the contact area has little influence on the

stability of the oscillator. However the effect of the damping σ2 is more profound. Although σ2 serves as a stabilising

factor for lower values, it destabilises the oscillator when it passes a certain magnitude. The most crucial parameter is

the damping of the foundation of the ring. On one hand, the increasing of foundation damping shifts the first critical

speed to a higher value and consequently moves the starting point of the unstable region to higher speeds. On the

other hand, larger foundation damping expands the stable regions both to higher stiffness of K2 and higher travelling

speeds of the moving oscillator.

6. Conclusion

In this paper, the stability of a moving oscillator on a viscoelastically supported flexible ring has been investigated.

The results have shown that exponential growth of the vibrational amplitude of the oscillator can occur when it moves

super-critically. It has been found that the first critical speed after which the oscillator can be unstable is the minimum

resonant speed of the ring under a moving load of constant magnitude. The influence of system parameters on stability

has been analysed. The increasing mass shrinks the range of K2 where the oscillator is stable. The damping of the

ring foundation stabilises the oscillator. It increases the first critical speed and allows for higher stiffness of K2. The

influence of dissipation at the contact area on the stability of the oscillator is marginal. Lower values ofσ2 stabilise the

oscillator, whereas σ2 destabilises the oscillator when it reaches a certain magnitude. It should be mentioned that the

critical speeds of the ring considered exceed the operational speeds of current trains. Although the initial motivation

is to model elastic train wheels, the aim of the analysis in this paper is to show the existence and qualitative features

of instability of such a ring-oscillator system which may find applications also in other engineering practice.
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