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SUMMARY

Despite significant advancements in microscopy, studying microorganism locomotion
has been limited by either low resolution or low accuracy. Two-dimensional techniques
fail to capture the nuances of three-dimensional movement, while three-dimensional
techniques often lack higher resolution. This thesis introduces a novel 3D tracking
system and methods to improve the understanding of microorganism motility within
their three-dimensional complex fluid environments. The new imaging techniques
developed allow for a more detailed exploration of microorganism kinematics and
interactions, addressing limitations of previous methods, and improving both accuracy
and resolution.

The dissertation is organized into five chapters. Chapter 1 discusses the importance
of studying microorganisms, focusing on their motility and locomotion at low Reynolds
numbers. It reviews previous work, highlights open questions in the field, and discusses
the need for better 3D imaging techniques.

Chapter 2 showcases the multi-camera microscopy system designed for 3D tracking
of microswimmers, featuring a single objective, a light source, and four sCMOS cameras.
Advanced calibration and tracking algorithms based on projective geometry enable
tracking microorganisms with higher accuracy. This system captures significantly
denser image data and reveals new insights into the helical swimming patterns and
diffusive behavior of the unicellular green alga, C. reinhardtii.

Chapter 3 focuses on the pair-wise interactions of C. reinhardtii, utilizing the
capabilities of the multi-camera system to observe over half a million 3D trajectories.
The findings indicate asymmetrical scattering behaviors and avoidance of permanent
bound states during interactions, challenging previous theoretical models. This
analysis underscores the importance of real-world dynamics in understanding cell-
cell interactions, facilitated by a robust tracking system and enhanced by numerical
simulations using a spring-bead model.

Chapter 4 explores the effects of non-Newtonian fluid rheology on the kinematics
and surface interactions of C. reinhardtii. It contrasts the behaviors of cells in
Newtonian and viscoelastic fluids, noting differences in flagellar beating frequency,
swimming speed, and helical path characteristics. The study highlights how the viscosity
and elasticity of the medium influence the motility and surface interaction patterns
of microorganisms. This work shows that cells in viscoelastic fluids have higher
reorientation times and different scattering dynamics compared to Newtonian fluids.

Chapter 5 provides an outlook on the future directions and potential impact of this
work. It discusses how the novel 3D tracking system and methodologies developed in
this thesis can advance our understanding of microorganism motility and interactions.
The insights gained from this research have broad implications for various fields,
including biological research, medical diagnostics, and environmental science.
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SAMENVATTING

Ondanks significante vooruitgangen in microscopie is het bestuderen van de
voortbeweging van micro-organismen beperkt gebleven door ofwel lage resolutie
ofwel lage nauwkeurigheid. Tweedimensionale technieken kunnen de nuances
van driedimensionale beweging niet vastleggen, terwijl driedimensionale technieken
vaak een hogere resolutie missen. Deze thesis introduceert een nieuw 3D-
tracksysteem en methoden om het begrip van de motiliteit van micro-organismen
in hun driedimensionale complexe vloeistofomgevingen te verbeteren. De nieuw
ontwikkelde beeldvormingstechnieken maken een meer gedetailleerde verkenning van
de kinematica en interacties van micro-organismen mogelijk, waarbij de beperkingen
van eerdere methoden worden aangepakt en zowel de nauwkeurigheid als de resolutie
worden verbeterd.

Het proefschrift is onderverdeeld in vijf hoofdstukken. Hoofdstuk 1 bespreekt
het belang van het bestuderen van micro-organismen, met de nadruk op hun
motiliteit en voortbeweging bij lage Reynolds-getallen. Het bespreekt eerder werk,
belicht open vragen in het veld en bespreekt de behoefte aan verbeterde 3D-
beeldvormingstechnieken.

Hoofdstuk 2 toont het multi-camera microscopie systeem dat is ontworpen voor 3D-
tracking van microswimmers, met een enkele objectief, een lichtbron en vier sCMOS-
camera’s. Geavanceerde kalibratie- en trackingsalgoritmen gebaseerd op projectieve
geometrie maken het mogelijk om micro-organismen met hogere nauwkeurigheid te
volgen. Dit systeem vangt aanzienlijk dichtere beeldgegevens op en onthult nieuwe
inzichten in de helixvormige zwempatronen en diffusief gedrag van de eencellige groene
alg, C. reinhardtii.

Hoofdstuk 3 richt zich op de pareninteracties van C. reinhardtii, waarbij gebruik
wordt gemaakt van de mogelijkheden van het multi-camera systeem om meer dan
een half miljoen 3D-trajecten te observeren. De bevindingen wijzen op asymmetrisch
verstrooiingsgedrag en het vermijden van permanente gebonden toestanden tijdens
interacties, wat eerdere theoretische modellen uitdaagt. Deze analyse benadrukt het
belang van real-world dynamiek bij het begrijpen van cel-cel interacties, gefaciliteerd
door een robuust volg systeem en verbeterd door numerieke simulaties met een veer-
kraal model.

Hoofdstuk 4 onderzoekt de effecten van niet-Newtoniaanse vloeistofreologie
op de kinematica en oppervlakte-interacties van C. reinhardtii. Het vergelijkt
het gedrag van cellen in Newtoniaanse en visco-elastische vloeistoffen, waarbij
verschillen in flagellabeatsfrequentie, zwemsnelheid en spiraalvormige padkenmerken
worden opgemerkt. De studie benadrukt hoe de viscositeit en elasticiteit van het
medium de beweeglijkheid en oppervlakte-interactiepatronen van micro-organismen
beïnvloeden, waarbij visco-elastische vloeistoffen heroriëntatietijden verlengen en
verstrooiingsdynamiek veranderen in vergelijking met Newtoniaanse vloeistoffen.

xiii
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Hoofdstuk 5 geeft een vooruitblik op toekomstige richtingen en de potentiële impact
van dit werk. Het bespreekt hoe het nieuwe 3D-tracking systeem en de methodologieën
ontwikkeld in dit proefschrift ons begrip van de beweeglijkheid en interacties van micro-
organismen kunnen verbeteren. De inzichten verkregen uit dit onderzoek hebben
brede implicaties voor verschillende velden, waaronder biologisch onderzoek, medische
diagnostiek en milieuwetenschappen.
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1
INTRODUCTION

"Journey before destination is the ancient code of the Knights Radiant. Some may call it a
simple platitude, but it’s far more. A journey will have pain and failure. It is not only the

steps forward that we must accept. It is the stumbles, the trials, the knowledge that we
will fail and hurt those around us. But, if we choose to stop, if we accept the person we are

when we fall, the journey ends, that failure becomes our destination. To love the journey
is to accept no such end. I have found through painful experiences, that the most

important step a person can take is always the next one."

Dalinar Kohlin in Oathbringer, Brandon Sanderson

And my journey begins here.

1
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1.1. THE DANCE OF MICROORGANISMS

In the vast canvas of life on Earth, the complex dance of microorganisms often
goes unnoticed. However, within this microscopic realm lies a fascinating world of
motion, where bacteria, algae, and other microscopic life forms perform a ballet of
survival, propagation, and interaction. Their ability to move independently, powered by
metabolic energy, is a crucial component of the Earth’s biological processes, impacting
diverse areas from nutrient cycles to disease transmission [1].

Until about 350 years ago, this microscopic world remained largely unknown,
hidden due to its small scale. This changed with the pioneering work of Antonie
van Leeuwenhoek, a Dutch scientist in Delft, who, using basic microscopes he had
built, discovered a world teeming with microscopic life. His observations provided
initial insights into the movement, diversity, and environmental interactions of
microorganisms [2, 3]. Previously invisible, these microorganisms are now recognized
as vital to the health and diversity of the biosphere. The study of their dynamics has
become crucial in the field of microbiology and biophysics, essential for understanding
fundamental life processes and broadening comprehension of life.

The study of microorganism motility is highly relevant, with significant implications
for environmental sustainability, biotechnology, health, agriculture, and even the
understanding of climate change. For instance, in biotechnology, understanding the
motility of microorganisms is essential for developing photobioreactors that sustainably
convert algae biomass into bio-fuel [4, 5]. The efficiency of these reactors relies
heavily on the microorganisms’ ability to move and interact within a complex fluid
environment, among many other factors [6]. Understanding the microorganisms’
kinematics and interactions can inform advancements in reactor design, leading to more
efficient biofuel production. In health and medicine, many pathogenic microorganisms
are motile, and their locomotion can be critical to their virulence and colonization
capabilities [7]. Studying their motility and interactions can provide valuable insights
for developing new treatments and interventions [8, 9]. For instance, biofilms,
communities of microorganisms that adhere to surfaces in an extracellular polymeric
substance (EPS), are influenced by microbial motility and can cause serious issues
in numerous industrial and clinical settings [10]. Understanding the motility and
interactions of microorganisms can lead to better prediction and potentially controlling
the biofilm formation [11]. In agriculture, motile bacteria are critical in soil health
and nutrient cycling, directly affecting crop yields [12]. Furthermore, the movement of
microorganisms, particularly in the ocean, has been recognized as an essential factor
in Earth’s biogeochemical cycles [13]. This has implications for understanding climate
change and the design of mitigation strategies [14].

Investigating microorganism motility not only reveals a fascinating natural
phenomenon but also opens the door to many practical applications. This dissertation
aims to contribute to this burgeoning field by enhancing the understanding of
microorganism motility and providing new insights that can support advancements
toward a sustainable future.
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1.2. PHYSICS OF MICROSWIMMER LOCOMOTION
One may wonder how microorganisms, as small as they are, navigate and survive in
vastly different physical environments. To understand the intricacies of microorganism
motility, it is crucial to step into their world and explore the governing physical
principles. The incredible diversity of motile microorganisms presents a broad range
of motility mechanisms, yet they all have one unifying feature: their interaction with the
fluid environment. The mechanisms of their movement are dictated by their size and the
properties of the fluids they inhabit. Their world is dominated by viscosity, as opposed
to forces such as gravity and inertia that dictate our macroscopic world.

The microscopic world of these microorganisms is characterized by low Reynolds
numbers. The Reynolds number, defined as the ratio of inertial forces to viscous forces
in fluid flow, is expressed as Re = ρLU /η, where ρ is the fluid’s density, L is the organism’s
characteristic length, U is the characteristic velocity, and η is the fluid’s viscosity. Inertial
forces, which are influenced by the fluid’s density, the organism’s velocity, and size,
reflect the fluid’s tendency to maintain its motion due to momentum. Viscous forces,
conversely, represent the fluid’s internal resistance to flow changes, resisting variation in
speed or direction, and are governed by the fluid’s viscosity. The value of the Reynolds
number distinguishes between different swimming regimes, indicating whether inertial
or viscous forces dominate. For Re ≪ 1, locomotion occurs in the Low Reynolds number
regime, a typical characteristic of microorganism swimming. For example, in the case of
Chlamydomonas Reinhardtii, an alga, with L = 10µm and U = 100µm/s while navigating
in water, the Reynolds number is at O(10−3). In such a regime, the effect of viscous
dissipation far surpasses that of inertial forces. This reality is eloquently captured by
Purcell [15]:

"For these animals, inertia is totally irrelevant. We know that F = ma, but
they could scarcely care less."

In environments where the Reynolds number is relatively high, the flow dynamics are
primarily governed by inertial forces. This regime is typical for organisms like fish, birds,
and insects [16, 17]. These organisms use locomotion strategies that leverage inertia and
would be largely ineffective at low Reynolds numbers due to the influence of viscous
forces. Consequently, microorganisms have evolved to devise strategies that proficiently
circumvent and exploit the viscous drag to move and interact in the fluid environments
they inhabit.

1.3. SWIMMING OF MICROORGANISMS
Microorganisms have adopted various swimming strategies, many of which rely on
whip-like appendages called flagella. Fig. 1.1 presents different microorganisms and
their motility strategies.

The bacterium Salmonella typhimurium (Fig. 1.1A) propels itself forward using a
bundle [21] of multiple flagella. The flagella rotate collectively in a counter-clockwise
direction, propelling the bacterium in a straight ‘run’ When one or more flagella change
their rotation to a clockwise direction, the bundle disassembles, causing the bacterium
to ‘tumble’ and change direction for the subsequent ’run’ [22, 23] as shown in Fig. 1.1B.
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Figure 1.1: Various motility strategies observed in microorganisms. [A] Salmonella typhimurium
bacteria with a bundle of rotating flagella. Adapted from [3]. [B] ‘Run and tumble’ motion
of bacteria: Counter-clockwise rotation of the whole flagella bundle during a run (blue) and
clockwise rotation of at least one flagellum causing a tumble (red), resulting in changes in flagellar
form and cell direction. Adapted from [18]. [C] Human sperm cell and its single, wave-like
moving flagellum. Adapted from [19]. [D] The flagellar motion of sperm cells: a sinusoidal
wave propagating from the head to the tip. Adapted from [3]. [E] Chlamydomonas Reinhardtii,
a unicellular alga with two flagella. Adapted from [20]. [F] ‘Breaststroke’ motion of C. reinhardtii’s
flagella: The flagella move in opposing directions during power (red) and recovery (yellow) strokes,
propelling the cell body forward and backward as indicated by yellow and red arrows, respectively.

This ‘run and tumble’ motion is characteristic of many bacteria and enables efficient
exploration of their environment [3]. Sperm cells exhibit a different variation of flagellar
locomotion (Fig. 1.1C). Here, a single flagellum beats in a wave-like fashion, driving
the sperm cell forward. The undulating wave starts at the base of the flagellum near
the cell body and travels towards the tip (Fig. 1.1D). The shape and amplitude of this
wave motion are different on one side of the flagellum compared to the other as the
wave travels from the base to the tip. This asymmetric waveform, combined with the
bending flexibility of the flagellum, generates a net forward motion [21]. The green
alga Chlamydomonas reinhardtii (Fig. 1.1E), a eukaryotic microorganism, employs two
flagella for movement. These flagella beat in a coordinated, symmetrical pattern akin



1.3. SWIMMING OF MICROORGANISMS

1

5

to a ‘breaststroke’ motion [24]. The simultaneous motion of the two flagella propels
the alga forward in a direction opposite to the stroke (Fig. 1.1F). These highlighted
examples of bacteria, spermatozoa, and green algae represent only a small fraction
of the diverse locomotion strategies exhibited by microorganisms. Other examples,
like the spinning motion of dinoflagellates [25] or the coordinated flagellar movement
in Volvox colonies [3], further enrich this diversity. The range of these strategies
has evolved in response to the unique ecological environments these microorganisms
inhabit, highlighting the complexity and adaptability of life at microscopic scales.

So far, we have explored the diverse strategies that microorganisms use to
navigate their environments. The reasons behind their motility are equally diverse.
Microorganisms display directed motility, known as ‘taxis’, to move towards or away
from specific stimuli, such as chemical concentration (chemotaxis) [22, 26], light
(phototaxis) [24, 27, 28], and gravity (gravitaxis) [29]. These responses play a significant
role in the survival and proliferation of microorganisms. For example, chemotaxis, a
well-studied form of taxis, is crucial for bacteria to find nutrients and avoid toxins in
their environment [30]. Phototaxis influences the behavior of algae, such as Euglena and
Chlamydomonas, with movement towards or away from light sources to optimize their
photosynthetic activity [31].

Beyond the motility of individual cells, microorganisms exhibit collective behaviors.
These behaviors result from inter-cellular interactions [32], enabling them to form larger,
more complex structures and dynamic patterns beyond the sum of their individual
components [33]. Biofilms are a classic example of microbial collective behavior.
These are colonies of bacteria embedded within a self-produced matrix of extracellular
polymeric substances, allowing bacterial communities to protect themselves from
environmental stressors, antibiotics, and the host immune response [34]. In fluid
environments, dense suspensions of bacteria like Bacillus subtilis exhibit collective
swimming, resulting in micro-scale turbulence [35, 36]. This turbulent behavior is
reminiscent of high Reynolds number turbulence, and the energy spectrum for both
classic and bacterial turbulence follows a power law [35]. Sperm cells also display
collective behavior, which varies between different species. For example, mass motility is
observed for bull and ram semen, where cells self-organize and show features similar to
bacterial turbulence [37, 38]. For rodent species, sperm trains are formed where sperm
cells aggregate and link with each other due to hydrodynamic interactions, resulting in
increased velocity for the group, compared to the individual [39]

Both individual and collective behaviors of microorganisms are significantly affected
by the complex environments they inhabit. These are typically not just simple aqueous
solutions but complex fluids, including solid particles and polymeric molecules,
exhibiting non-Newtonian rheology. These environments range from the mucus layers
within an animal’s body and biofilms to the soil and sediments in aquatic and terrestrial
ecosystems. The complex nature of these fluids presents challenges for swimming
microorganisms. The non-Newtonian properties, such as shear-thinning or thickening
behavior and elasticity, can significantly alter the swimming dynamics compared to
a Newtonian fluid [40, 41]. The effect of the rheological properties of these complex
fluids on the swimming strategies of individual microorganisms is multifaceted. For
example, spermatozoa show changes in their swimming paths in response to the
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rheological properties of the surrounding fluid. Sperm cells swim on straighter paths
in mucus, which exhibits viscoelastic properties, compared to semen [42]. Similarly,
bacterial species like E. coli also experience changes in their swimming dynamics in
response to the non-Newtonian nature of their surroundings. The swimming velocity
of bacteria significantly reduces in non-Newtonian fluids with both shear-thinning and
viscoelastic properties compared to Newtonian ones [43, 44]. In addition, eukaryotic
microorganisms like C. reinhardtii display alterations in their flagellar beating frequency
in response to the rheological properties of their environment. When these organisms
encounter more viscous environments, the beating frequency of their flagella reduces.
However, elasticity changes this behavior, and cells beat at higher frequencies than pure
viscous environments [45].

Apart from individual responses, the non-Newtonian rheology of complex fluids
also influences the collective behaviors of microorganisms. For example, spermatozoa
display collective behaviors affected by the rheological properties of the medium, with
viscoelasticity resulting in enhanced clustering [46]. Escherichia coli exhibits a vortex
swimming pattern at high concentrations with only a counter-clockwise swimming
direction. In large polymer concentrations, the direction of the vortex reverses and
oscillates between clockwise and counter-clockwise patterns [47]. Moreover, for
Bacillus subtilis, the velocity correlation for their collective motion increases with the
concentration of viscoelastic media. In contrast, the variations in the concentration
of Newtonian media do not affect the velocity correlation [48]. This suggests that the
collective behavior of B. subtilis is primarily influenced by fluid elasticity.

In light of these observations, it is evident that the dynamics of microorganisms’
locomotion are influenced by the interaction with their diverse and complex
environments. The movements of microorganisms, whether alone or in groups,
are closely linked to their environment’s physical and rheological characteristics.
This section has provided an overview of microorganism locomotion, yet the topic’s
complexity goes beyond this summary. For a deeper understanding, comprehensive
reviews by Lauga and Powers [2], Elgeti et al. [3], and Spagnolie and Underhill [49]
are recommended.

1.4. TECHNOLOGICAL LIMITATIONS AND UNCHARTED

FRONTIERS
Despite considerable progress in understanding microorganism locomotion, numerous
open questions invite further exploration. These questions arise from the limited
understanding of microorganism motility in a three-dimensional (3D) context.
Microorganisms naturally move and interact in three-dimensions, and studying them
in an environment that mimics their habitats is essential. Traditional two-dimensional
(2D) studies have provided valuable insights but offer only a partial view, missing the
full complexity of 3D motion. To address this need, promising 3D tracking technologies
have emerged such as tracking microscopy [22, 50], defocused particle tracking [51, 52],
and holographic microscopy [53, 54]. These techniques have advanced the study of
microorganism trajectories and behaviors in 3D environments. However, they come
with limitations, including but not limited to resolution constraints [55, 56] and the
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complexity of tracking multiple organisms simultaneously [57], particularly in densely
populated suspensions.

The limitations of existing technologies have left several important areas of research
unexplored. Understanding short- and long-range hydrodynamic interactions and
their influence on the collective behavior of microorganisms remains a significant
challenge [58]. Despite investigations into individual behavior [2, 3] and some aspects of
collective dynamics [33, 59], the specific characteristics and effects of these interactions
are still elusive. The ongoing debate on whether collective behavior stems from short
or long-range interactions [60–62] necessitates more advanced 3D imaging and tracking
techniques.

Another important question in the study of microorganism locomotion is how non-
Newtonian fluid properties affect their 3D motility. Most current understanding is
derived from studies in simple, Newtonian fluids, which fail to mimic the complex
environments where microorganisms typically exist. A few experimental studies in non-
Newtonian fluids have shown the complex interplay between rheological properties and
locomotion of microswimmers. These studies predominantly utilize two-dimensional
microscopy. However, microorganism motility is inherently three-dimensional.
Therefore, a comprehensive understanding of motility in such environments requires
detailed three-dimensional investigations that can accurately capture critical behaviors
such as helical trajectories, cell orientation, and tactic responses. Bridging this gap
could have far-reaching implications, including optimizing bio-remediation processes
and advancing drug delivery systems.

Advancing 3D microscopic tracking techniques is necessary to allow for more
detailed exploration of key research areas. For instance, 3D imaging can improve our
understanding of microorganism morphology and how physical structure influences
motility. Investigating responses to stimuli, such as chemical gradients or light, can
benefit from 3D tracking, offering a more detailed understanding of tactic behaviors
and how microorganisms navigate their complex environments. Furthermore, 3D
techniques can enhance the study of microbial interactions with their abiotic
environment, revealing new aspects of their behavior and survival strategies.

1.5. OBJECTIVE AND OUTLINE OF THE DISSERTATION
This dissertation advances our understanding of microorganism motility by introducing
a novel 3D imaging technique. Specifically, we explore 3D kinematics and interactions
between microorganisms and their navigation in complex fluids. The thesis is structured
into three main chapters addressing distinct but interrelated research questions.
While each chapter can be read individually, they collectively form a comprehensive
exploration of microorganism motility in 3D environments.

1. Three-dimensional Microscopy of Microorganisms (Chapter 2): This chapter
introduces our three-dimensional tracking system, designed to image the movement
of microswimmers, focusing on the green alga, C. reinhardtii. We first detail our
experimental setup and the calibration processes. The performance of our system
is evaluated through tracking C. reinhardtii at various concentrations. This system
offers improvements over previous methods, notably its capability to track at higher



1

8 1. INTRODUCTION

image densities of 0.06 particles per pixel. We record trajectories and shed light on the
3D dynamics of these organisms and their interactions with surfaces. Our analysis
reveals that C. reinhardtii cells predominantly move in helical patterns, with a left-
handed chirality. We also examine the diffusive behaviors of these cells and show
that 3D tracking is necessary to accurately determine their diffusive characteristics.
Additionally, our findings demonstrate the effect of hydrodynamic forces on cellular
interactions with surfaces.

2. Pair-wise interactions of Chlamydomonas reinhardtii (Chapter 3): This chapter
explores the pair-wise interactions of microorganisms and their effects on kinematics
and trajectories. Using our multi-camera microscope setup and in-house
tracking algorithm, we capture three-dimensional trajectories of unicellular alga C.
reinhardtii. We find asymmetry in the scattering of pairs and highlight the roles of the
approach angle and minimal approach distance between cells. The stochasticity in
the cell dynamics due to biological noise leads to changes in the swimming direction,
competing with those induced by pair interactions. Numerical simulations provide
further insight into these interactions. Our experimental and numerical results
qualitatively agree and indicate that cells scatter more strongly at short distances with
nearly parallel approach angles.

3. Kinematics & Surface Interactions of Chlamydomonas reinhardtii in Complex
Fluids (Chapter 4): This chapter addresses the relatively unexplored area of 3D
swimming behaviors of microorganisms in complex fluids. We examine the effects of
non-Newtonian rheology on the kinematics and surface interactions of C. reinhardtii
cells. By leveraging two primary imaging techniques, 2D tracking with an inverted
microscope and 3D tracking with our multi-camera microscope setup, we investigate
how these cells navigate and adapt to their environment. Our investigations reveal
the influence of fluid properties on swimming behaviors, surface interactions, and
adaptation strategies to improve phototaxis. In viscoelastic solutions, C. reinhardtii
cells display an increased beating frequency but no related increase in swimming
speed. We also find that irrespective of the medium, C. reinhardtii cells adapt their
swimming to maintain a constant rotational velocity along their helical trajectory.
We also show that in viscoelastic fluids, cells swim closer to the surface, resulting in
higher cell accumulations near surfaces than Newtonian fluids.



2
THREE DIMENSIONAL TRACKING OF

MICROSWIMMERS

Understanding the locomotion of microorganisms is essential for insights into microbial
ecology, infection, and colonization processes. Two-dimensional microscopy has
remained an essential tool in acquiring this understanding, yet it fails to capture the
full scope of microswimmers’ three-dimensional (3D) motility. Recent advances in
three-dimensional imaging techniques like Defocused Particle Tracking, Holographic
Tracking Velocimetry, and Stereo-microscopy have improved the detail and precision
of observations. However, these methods still face challenges with resolution at high
particle densities and tracking multiple particles simultaneously. This chapter introduces
a unique multi-camera microscopy system that significantly improves the accuracy of
tracking microswimmers in three dimensions. This system uses four sCMOS cameras
to image microorganisms in the same volume of approximately 2.5 × 2.5 × 2 mm3.
We evaluate the performance of our microscopy system by tracking a population of the
unicellular motile algae Chlamydomonas reinhardtii. An in-house tracking algorithm
based on the projective geometry framework facilitates tracking with reprojection errors of
0.3 body lengths. Our system allows imaging and tracking image densities of 0.06 particles
per pixel, one order of magnitude higher than other 3D microscopy techniques. Analysis of
C. reinhardtii trajectories in 3D revealed predominantly left-handed chirality and helical
swimming patterns. Moreover, our three-dimensional tracking data yielded translational
and rotational diffusion coefficients that differed from those obtained via traditional two-
dimensional methods. This highlights the limitations of previous approaches and the
need for three-dimensional data to characterize microswimmer motility appropriately.

Part of this chapter has contributed to "J. Mehmood, K. Muller, S. Kumar, A.J. Buchner, and D.S.W. Tam, “Three

dimensional tracking of microswimmers”, Experiments in Fluids, 2024, [Submitted]"
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2.1. INTRODUCTION
The study of microbial ecology, colonization, and infection requires a fundamental
understanding of the interactions between microorganisms and their physical
environment, including surface interactions, accumulations, cell-cell interactions, and
collective behavior. Tracking the motion and orientation of these microorganisms
is, therefore, crucial to gain insights into their behavior and how they navigate
through complex environments and respond to external stimuli such as light [28,
63], gravity [64], chemical gradients [65, 66] or physical barriers [67, 68]. Moreover,
tracking microswimmers also has practical applications, including optimizing the
design of bioreactors [69, 70], developing more effective strategies for the treatment of
infections [8, 9], and monitoring the formation and dispersal of biofilms [11].

Microswimmers display a wide range of motility patterns, which are three-
dimensional in nature. For instance, bacteria navigate complex 3D environments
through stochastic patterns of linear movements and sudden reorientations [3, 71].
Protists, such as Chlamydomonas Reinhadtii, display inherently three-dimensional
helical swimming behavior [24, 28, 72]. Most studies focusing on microorganism
locomotion have relied on two-dimensional optical microscopy as a main tool for live
imaging of microswimmers [24, 73–81]. However, two-dimensional microscopy does
not capture the full range of the kinematics of microswimmers [82]. Furthermore,
more complex trajectory parameters, e.g., curvature and torsion, which underlie
microswimmer motion, are lost or have higher signal-to-noise ratios. Therefore, to
fully understand microswimmer locomotion, it is essential to use three-dimensional
trajectory data, which enables a more accurate and detailed representation of their
motile behavior.

An early experimental technique, developed to obtain three-dimensional motility
data of microswimmers, was designed to track the bacterium Escherischia coli [50]. In
this method, the microorganism was kept in focus by physically moving the microscope
stage using feedback control, and the three-dimensional motion was deduced from the
displacements of the stage. Such tracking microscopes have been used to characterize
different aspects of bacterial motility, such as chemotaxis [22], rheotaxis [83], and
coupled motion of the cell body and flagellum [84]. This method is limited to tracking
one object at a time, resulting in a low throughput of acquired trajectories that limit the
characterization of the population behavior. Additionally, microorganisms with the size
ranging from 10 µm (C. reinhardtii) to 100 µm (Volvox) require a larger flow chamber
to inhibit surface effects. Tracking microscopy for these larger flow chambers induces
uncontrolled background flow inside the chamber. To address these limitations, several
imaging techniques have been developed in recent years that enable the tracking of
multiple microswimmers simultaneously, resulting in higher throughput of acquired
trajectories and more comprehensive characterization of individual and population
behavior. These methods include defocused particle tracking (DPT) [51, 52, 82, 85],
holographic tracking velocimetry (HTV) [53, 54, 86–89], and stereo-microscopy [90–94],
among others.

In Defocused Particle Tracking (DPT), the three-dimensional positions of particles
are tracked using the image characteristics they exhibit. These characteristics arise due
to the spherical aberrations of the microscopic objective [51, 82]. When a particle is at
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the focal plane, its image appears as a sharp point. However, any displacement from this
plane results in defocused images. This defocus presents itself in the form of rings arising
due to both diffraction and the spherical aberrations of the lens system. The diameter
of these rings is directly proportional to the particle’s distance from the focal plane, and
this relationship is used to determine the three-dimensional position of the particle [95].
DPT facilitates a depth of field that varies from 30µm [85] to 200µm [82]. This technique
has proven instrumental in examining the collective dynamics of E. coli [52], discerning
bacterial species’ variations in run and tumble behaviors [82], and to measure the flow
field of Euglena gracilis [85]. DPT has the main advantage of being easy to use, with
simple optical setup requirements and multi-particle tracking. However, defocusing
methods face limitations at higher particle densities and are sensitive to low signal-to-
noise ratio [57].

In Holographic Tracking Velocimetry (HTV), a particle’s three-dimensional position
is determined from its hologram, a recorded interference pattern, using digital
holography. While various methods exist to create this hologram, single beam in-
line holography is used for microscopic applications [57]. In this particular method,
the hologram is produced by the combination of the wave scattered by the particle
(object beam) and the unscattered portion of the illumination beam (reference
beam). This interference pattern provides the necessary data regarding phase and
amplitude for numerical algorithms to reconstruct the particle’s position in three
dimensions. HTV has been used to study the motility of various species, such as
copepod nauplius [96], dinoflagellates (Pfiesteria piscicida, Karlodinium veneficum,
Prorocentrum minimum) [54, 87], spermatozoa [86] and different bacterial species (E.
coli, Agrobacterium tumefaciens, Pseudomonas aeruginosa) [88, 89]. HTV offers higher
accuracy and a larger depth of field (∼ 100−1000µm) than tracking microscopy and DPT.
However, it still faces challenges in reconstructing overlapping holograms, limiting its
resolution [56] and has a larger uncertainty of one to two particle diameters along the
optical axis [55].

Stereoscopic microscopy utilizes two distinct optical paths, each with its respective
camera system, to image particles from different viewing directions. Particle images
are first identified and matched across both camera views. The three-dimensional
positions of the particles are then determined by computing the points of intersection
of the lines of sight corresponding to the particle images from each camera view. The
depth of field for these microscopes is primarily influenced by the geometry of the
optical path and the characteristics of the objective lens, enabling stereo microscopy
to achieve a depth of field of 2000 µm [92]. Stereo-microscopy has been used to study
the three-dimensional trajectories of sea urchin larvae Clypeaster japonicus [90], and
green algae C. reinhardtii [91–93]. Compared to DFT and HTV, stereoscopic microscopy
is advantageous as it offers a greater depth of field and relies on simpler computational
algorithms [93] for particle position reconstruction. However, it is limited by the use of
low particle densities to avoid false particle identifications and overlapping images [97].
Moreover, in practice, the lines of sight from the two cameras never really intersect,
compromising calibration precision and thereby diminishing the technique’s overall
efficacy.

The methods discussed above have provided important insights into the three-
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dimensional locomotion of different microswimmers. However, tracking multiple cells
leads to high occlusion rates and results in low tracking certainty. The development of an
experimental technique to accurately track multiple microswimmers is of great interest
to the study of many outstanding questions in biophysics, e.g., population behavior in a
complex 3D environment like that encountered in nature, and the description of cell-cell
interactions.

Here, we present a unique multi-camera microscopy system to track microswimmers
in three dimensions with high tracking accuracy at low to medium particle densities.
Our tracking system uses four sCMOS cameras to image the same volume of 2.5 ×
2.5 × 2 mm3. We use a custom-made tracking algorithm based on the projective
geometry framework to track microorganisms. By tracking green algae C. reinhardtii
at varying concentrations, we evaluate the performance and limitations of our tracking
system and algorithm. We demonstrate a significant improvement over previous work
by achieving accurate and reliable tracking at higher image densities of 0.06 particles
per pixel, with a low reprojection error of 0.3 body length. Our approach supports the
accurate reconstruction of the kinematics of cell trajectories and cell surface interaction
analysis. Our experimental results reveal that C. reinhardtii cells exhibit predominantly
left-handed chirality and swim in elongated helices with larger pitch and shorter
radii. Furthermore, we show that helical angular velocity varies from 1 to 2 Hz across
the population. We also calculate the population’s persistence length and diffusive
coefficients, providing insights into their diffusive behavior and showcasing that 3D data
is necessary to characterize the diffusion behavior correctly.

This chapter is organized into four sections. In section 2.2, we describe the
experimental setup, the calibration procedure, and the tracking experiments for C.
reinhardtii and the tracking algorithm. In section 2.3, we present performance
parameters that characterize our setup and tracking algorithm. In section 2.4, we
present the tracking results of our experiments with C. reinhardtii and characterize
the kinematic properties of the extracted trajectories. Our microscopy setup has also
enabled us to investigate C. reinhardtii surface interactions, revealing phenomena such
as bi-modal interaction kinematics (steric & hydrodynamic) and trajectory hopping
behavior near the surface, which have been extensively discussed in Buchner et al. [98].
In this section, we briefly summarize these findings. Finally, in section 2.5, we conclude
this chapter by discussing the scope and limitations of our setup.

2.2. THREE DIMENSIONAL TRACKING SETUP
In this section, we first describe the details of our microscopy system and calibration
procedure. We then present the details of the tracking experiments for C. reinhardtii,
including cell culturing and flow chamber design. We also discuss the tracking algorithm
and post-processing steps used for C. reinhardtii tracking experiments to extract 3D
trajectory data.

2.2.1. MULTI-CAMERA MICROSCOPY SETUP

We track a suspension of microswimmers using a multi-camera microscope (Fig. 2.1).
Our three-dimensional tracking setup is designed around a single common objective
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and includes a light source, four sCMOS cameras, and a flow chamber (see Fig. 2.1B for
schematics of the setup). Similar optical configurations have previously been utilized for
Tomo-PIV and particle tracking in thin immersion droplets [99, 100].

Figure 2.1: [A] The experimental setup: (1) Laser, (2) light diffuser, (3) Flow chamber & mechanical
stage, (4) Objective & optics, (5) Cameras. [B] Schematic of the experimental setup. Dashed
red lines show the optical path. The laser light passes through the diffuser and illuminates the
microswimmers inside the flow chamber. An objective of magnification M = 1.5 and focal length
f = 30mm collects the scattered light. The scattered light then passes through small pinholes,
leading to a large depth of field. Prisms are used to guide the optical rays to the four sCMOS
cameras.

We illuminate the sample with a laser and place a light diffuser (Optotune; LSR300)
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between the illumination source and the sample to reduce undesired speckles and
provide uniform illumination by expanding the laser beam. The illumination intensity is
modulated by the alignment of the diffuser on the optical rail. Our system supports both
lasers and LEDs of different wavelengths. For our C. reinhardtii tracking experiments,
we use green and red lasers with wavelengths of 500 nm and 650 nm, respectively.

The flow chamber containing the microswimmer suspension is fixed to a 3-axis
mechanical stage inside the illumination volume. The positioning of the flow chamber
is controlled with 10 µm accuracy by mechanical micrometers. Our imaging system can
be used with different flow chamber designs. It is versatile and supports a broad range of
experiments, such as three-dimensional parameter estimation, and can be used to study
the effect of shear rate and temperature on microswimmer locomotion.

We use four cameras to image the sample through a single common objective (Zeiss;
M = 1.5, f = 30mm), each camera collecting the light passing through a pinhole of
diameter Dh . This results in the cameras viewing the sample at an angle of 20◦ from
the optical axis [99]. Therefore, the optical path of each camera is off-axis, such that no
transmitted light reaches the cameras, and the cameras only collect forward scattered
light by the cells. Our imaging system is, therefore, similar to dark field microscopy, and
cells appear as bright spots against a dark background. The cameras used are imager
sCMOS, which have a resolution of 2560 × 2160 pixels, a 16-bit dynamic range, and a
maximum frame rate of 50 fps. The pixel size of the cameras is 6.5 µm2.

The depth of field (∆zo) of the system can be adjusted by varying the diameter of the
pinholes[99]:

∆zo = 4

[
1+ 1

M

]2 [
f

Dh

]2

λ (2.1)

In this equation, Dh is the pinhole diameter, and λ is the light wavelength. Dh can be
varied between 1 mm and 7 mm. For red light illumination at 650 nm, this range of
pinhole diameters yields a depth of field varying between 6 mm and approximately 200
µm. Although it is possible to decrease the pinhole size to less than 1 mm, this leads to
lower image quality.

Cell images appear as bright dots of diameter D I in our recordings. An estimate for
the particle image diameter can be calculated as:

D I =
√

[MDs ]2 +D2
L (2.2)

Here, Ds is the diameter of the cell (Ds ≈ 10µm), M is the objective magnification, and
DL is the diffraction-limited object diameter. Considering the low magnification of our
objective, the size of the cell image in our recordings is determined by the diffraction
limit. DL is affected by the aperture size and the wavelength of light and can be
calculated using the following equation:

DL = 2.44λ [1+M ]
f

Dh
(2.3)

Decreasing the pinhole diameter (Dh) results in an increase in image diameter (D I )
for a constant swimmer size, as shown in Fig. 2.2 A. Choosing the appropriate pinhole
diameter depends on several factors, such as the wavelength of light, the size of the
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swimmer, and the required depth of field. For our tracking experiments of C. reinhardtii,
we use a 2 mm pinhole size. This pinhole size leads to 9-pixel sized cell images (Fig. 2.2
B.) and induces a depth of field of 2mm, such that the entire flow cell remains in focus
and cells can be tracked throughout the entire chamber’s depth.

Figure 2.2: [A] Effect of pinhole diameter (Dh ) on the swimmer image diameter (D I ) as a function
of swimmer size (Ds ) for the light wavelength λ= 650 nm. [B] An example image of a C. reinhardtii
cell with a pinhole diameter of 2mm under λ= 650nm laser light illumination.

2.2.2. CALIBRATION PROCEDURE

We calibrate our tracking system with a custom-made calibration procedure, which uses
the DaVis 8.4 calibration module as a starting point and rewrites the mapping function in
the projective geometry framework commonly used in computer vision [101]. Recasting
the mapping function is necessary because our tracking algorithm uses the framework
of projective geometry, which supports fast and computationally efficient linear ray
tracing. We describe the camera calibration procedure for the C. Reinhardtii tracking
experiments below.

We used a calibration target containing a regularly spaced 100µm dotted pattern (see
Fig 2.3A). The calibration target was positioned at the exact location as the measurement
volume of the flow chamber. To align and focus the cameras, we first increased the
pinhole diameter to 7 mm, such that we imaged the target with a shallow depth of field of
200 µm. Once all of the cameras were focused and positioned to observe the same view
volume, the pinhole diameter was decreased to 2 mm to achieve a 2 mm depth of field.
We acquired 13 images for each camera, moving the target through the measurement
volume with 200 µm increments. This resulted in a calibrated measurement volume of
2.4mm depth in the optical axis. The sweep can be extended/shortened depending on
the depth of field of the experiment. We used the DaVis 8.4 calibration module to acquire
both the coordinates of the images of the dotted pattern in the camera image planes
of each camera and the corresponding world coordinates in the measurement volume,
as shown in Fig. 2.3B. These coordinates were then used to construct the calibration
model. Below, we describe the mathematical structure of the calibration mapping
function we use in this study. A more complete description can be found in Muller et
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al. [102], describing a recently developed calibration procedure. It bears emphasis that
the calibration method described in Muller et al. [102] is fundamentally different from
the one used here since the calibration mapping function is determined solely from
images of a free calibration target without knowledge of its position and orientation
in the measurement volume. This is not the case here, where the displacements of
the target are imposed and its position is known. Though the calibration procedure is
different, the mathematical structure of the mapping function in this study is identical
to Muller et al. [102].

Figure 2.3: [A] An image of the calibration grid. Black grid points are 100µm apart in each direction
in the object domain. [B] Location of the grid points in the object domain. Images were taken of
the calibration grid at 13 xy-planes by traversing the calibration grid by 200 µm, each represented
by a different color in the Z direction, covering the full range of depth of field of 2 mm.

The camera mapping function has two components: a linear part, which models
the geometry of the optical setup and supports linear ray tracing, and a non-linear
part, which corrects for optical distortions. We first correct for optical distortions
by computing a distortion correction map m that dewarps the calibration images to
produce the distortion-corrected image. This step yields a function x̂ = m(x), which

maps the coordinates in the camera image plane x = [
x y

]T
to distortion corrected

images x̂ = [
x̂ ŷ

]T
. We then determine a mapping function x̂ = F (X) to map the

coordinates X = [
X Y Z

]T
of a point in the three-dimensional object domain to the

dewarped projected image x̂. This function F is a linear function formulated within the
projective geometry framework.

In this framework, augmented vectors facilitate the representation of points in both
the image plane and the object domain. Specifically, in the dewarped image plane,

coordinates are augmented into the ray-tracing vector x̃ = [
kx̂ k ŷ k

]T
, where k

is a scaling parameter representing a coordinate along the principal optical axis. An
inverse mapping p(x̃) inverts this transformation, resulting in x̂ = p(x̃) = [

x̃/k ỹ/k
]
.

Similarly, world coordinates X are augmented to obtain a homogeneous vector X̃ =[
X Y Z 1

]T
, simplifying geometric transformations in the calibration procedure.

Fig. 2.4 illustrates the relationship between these coordinate systems, showing the
camera, the world coordinate system, and the dewarped image plane.
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Figure 2.4: Illustration of the optical path geometry in the calibration process. The optical ray,
represented by the solid red line, extends from the camera center Xc to a grid point location on
the calibration grid in the three-dimensional object domain (X = [

X Y Z
]
). The camera’s

coordinate system is denoted as x̃ = [
x̃ ỹ k

]
. The intersection of the optical ray with the

dewarped image plane yields the coordinates x̂ = [
x̂ ŷ

]
.

For each camera, the mapping function F models both extrinsic camera properties,
i.e. the position and orientation of the camera, as well as intrinsic properties, i.e. optical
properties and sensor properties. The extrinsic properties are represented by a rotation
and translation

[
R T

]
, which represent the transformation from the world coordinates

system to the camera coordinates system. Here, R is a 3 × 3 rotation matrix, T is a 3 × 1
translation vector. The intrinsic properties are represented by a 3 × 3 camera matrix K

of the following form:

K=
 f rx S px

0 f ry py

0 0 1

 (2.4)

where f is the focal length of the lens in mm, rx and ry are the pixel pitch of the sCMOS
sensor (px/mm), S is the pixel skew, and px and py are the coordinates of a point at
the intersection of the principal optical axis and the dewarped image plane. With these
notations, the mapping F can be written in the following form [101]:

x̂ = F (X) = p
(
K

[
R T

]
X̃
)

(2.5)

The calibration procedure determines, for each camera, the matrices K, R, and
T, represented as a projection matrix P = K

[
R T

]
, which is a 3 × 4 matrix with 12

elements. The four projection matrices Pc are deduced by solving for each a least
squares problem, using the positions in the object domain of the dots on the calibration
target X̃j and the augmented coordinates of their images on the four camera image plane
x̃c

j :

min
Pc

∑
j

∥∥∥x̃c
j −Pc X̃j

∥∥∥2
(2.6)

Superscript c is for cameras, and the subscript j denotes the calibration grid point
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number and includes all 13 positions of the target. Finally, an RQ decomposition is used
to determine K, R, and T from the optimized projection matrices.

ACCURACY OF THE CAMERA CALIBRATION

We follow the approach described in Muller et al. [102] to assess the spatial accuracy
of our calibration. Images of a dot from the calibration target on the camera’s image
planes are associated with four optical rays using projective geometry. For a perfect
calibration, the optical rays from all cameras should intersect at one point in the object
domain. However, in practice, camera optical rays are skew lines and do not intersect
at one point. We characterize the accuracy of the camera calibration by computing
the skewness between the optical rays. The skewness is evaluated by first triangulating
the location of each grid point in the object domain and then computing the average
distance of this point from the camera optical rays (see Muller et al. [102] for more
details). For each of the 13 positions of the calibration target, we average the skewness
corresponding to each dot on the target, and present in Fig. 2.5 the average skewness as a
function of the depth position Z . Our calibration procedure resulted in low triangulation
error, characterized by low skewness values. The minimum value was 0.3 µm at the
center of the flow chamber, while the maximum value was 0.7 µm near the lower and
upper surfaces of the viewing volume. These skewness values are an order of magnitude
smaller than the diameter of the C. reinhardtii cell, indicating a high level of accuracy for
our calibration.

Figure 2.5: Accuracy of camera calibration characterized by average skewness for all grid points
for four cameras along the Z-axis (optical axis). The error bars represent the standard deviation of
the mean.

For our C. Reinhardtii tracking experiments, calibration was performed using a
calibration target in ambient air. However, our experiments are performed when the
cells swim in the aqueous tris solution. The higher index of refraction of the aqueous
solution results in a small shortening of the optical direction. The distortion induced
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by changes in the index of refraction is corrected in the final step after the cells in the
experiments have been tracked in the object domain by multiplying the Z-coordinates
with a refraction correction factor. The definition of this correction factor is described in
a later section.

2.2.3. C. REINHARDTII TRACKING EXPERIMENTS
This study focuses on the tracking of unicellular motile algae C. reinhardtii. Here, we
provide the details of our cell culturing protocol, the design of our flow chamber, and
the cell imaging.

CELL CULTURE

Figure 2.6: [A] Tube containing agar slant upon which a culture of quiescent algae cells was
maintained. [B] Liquid growth chamber with two light bulbs. Silicone tubes allow air bubbles
into the liquid culture. An air filter of pore size 0.2 µm was connected to the silicone tubes to filter
the air being transferred to the culture. [C] 250ml conical flask containing cell culture of density
1×106 cells/ml four days post-inoculation.

In this work, we performed tracking experiments on green algae C. reinhardtii.
Quiescent cells of wild-type CC125 were obtained from the Chlamydomonas Resource
Center and transferred to agar slants (see Fig. 2.6A). Once transferred, algae slants
were kept under constant illumination of broad-spectrum light with low intensity of 25
µmol/m2s. New slants were re-streaked every two months to prevent the aging of the
slants.

Liquid cultures were started by transferring a small number of cells from agar slants
into 250 ml conical flasks containing 100 ml of Tris minimal medium. Cells were grown
phototrophically in liquid cultures under constant air bubbling, and the flasks were
maintained in a custom-made growth chamber at 24-26◦C, using two Philips Green
Power LED bulbs for illumination (see Fig. 2.6B). Cells were exposed to a 14/10-hour
light/dark cycle with a light intensity of 150 µ mol/m2s. Cells were harvested during
the exponential growth phase when the cell density reached 1×106 cells/ml (Fig. 2.6 C).
We achieved experimental concentrations ranging from 5× 104 to 5× 105 cells/ml via
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dilution with Tris minimal medium. The protocols listed above are the same as those
used by Quaranta et al. [103] to study C. Reinhardtii flagellar hydrodynamics.

FLOW CHAMBER: DESIGN, CHARACTERIZATION, AND CLEANING PROCEDURES

We performed our tracking experiments using a simple reservoir flow chamber. Flow
chambers were fabricated from a 2 mm thick transparent acrylic sheet with dimensions
of 60 mm × 26 mm (Fig. 2.7). A hole was laser-cut in the middle of the sheet to create the
chamber for algae suspension. Two glass coverslips (VWR; 631-1572) were then used to
seal the reservoir using Norland optical glue (Thorlabs; NOA81).

60 mm26 m
m

2 mm

Figure 2.7: A schematic of the flow chamber used for C. Reinhardtii tracking experiments. The
cover slip is shown with a light gray color, which encloses the reservoir from both sides. The
reservoir is represented by a green cylinder in the middle of the flow cell.

The coverslips were cleaned and treated before use to minimize flagellar
adhesion [104] and remove dirt particles that can significantly lower the quality of the
images. First, ultrasonic cleaning was performed for 25 minutes in a surfactant (Sigma-
Aldrich; Z805939-1EA) solution. Next, the coverslips were rinsed with de-ionized water
and placed in a sonic bath for 25 minutes in de-ionized water only. After cleaning,
the coverslips were immersed in 1% bovine serum albumin (Sigma-Aldrich; A7906-
50G)/phosphate buffer solution (Sigma-Aldrich; P4417-50TA) for more than 24 hours at
4◦C. After that, coverslips were rinsed with de-ionized water and dried with pressurized
air. The coverslips were stored in a dust-free container before the tracking experiments.

The acrylic chambers were cleaned with 70% alcohol and de-ionized water to remove
any residue from the laser cutting procedure. Before each experiment, we transferred
approximately 100 µl of algae solution using a micro-pipette and placed the flow
chamber on the multi-camera microscope stage. We waited for 15 minutes before
starting the recording to ensure that the cells acclimated to the environment in the flow
chambers.

CELL IMAGING

The algae suspension inside the 8mm diameter flow chamber was illuminated with
red laser light (PICOTRONIC; D1650), with a wavelength (λ) of 650nm, to prevent the
phototactic response [27, 105]. As mentioned before, we used a 2mm pinhole, resulting
in a depth of field of 2mm and a particle image diameter of 9 pixels. The camera
sensors were cropped to 640 × 640 pixels to reduce the image size, resulting in a total
viewing volume of 2.5 × 2.5 × 2 mm3. Images were acquired via a commercial PIV
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software, DaVis 10, at 20 fps with an exposure time of 42ms. The recording time for
one experiment was set to 5 minutes, corresponding to a total recording of 6000 frames.
Tracking experiments were performed for cell concentrations ranging from 5 × 104 to
5× 105 cells/ml to characterize the performance of the setup. Fig. 2.8 shows a typical
image for an algae suspension of 5×104 cells/ml for all four cameras.

Figure 2.8: The four camera views imaging an algae suspension of 5×104 cells/ml concentration.
Bright dots represent the scattered light from individual illuminated cells. The number on each
image corresponds to a specific camera.

2.2.4. LAGRANGIAN PARTICLE TRACKING
In our experiments, we record the movement of cells using a setup of four cameras, and
the resulting dataset consists of a sequence of images. We utilize a custom-made particle
tracking algorithm based on the projective geometry framework [101] to obtain accurate
three-dimensional trajectories of the cells. With projective geometry, we leverage the
accuracy of our calibration and use linear ray tracing, leading to linear mathematical
operations throughout the tracking process, which optimizes performance and reduces
computational complexity. A detailed description of the algorithm can be found in
Muller [106]; here, we provide an overview of the algorithm’s important steps that
are relevant to the subsequent part of this thesis. The Lagrangian particle tracking
(LPT) algorithm is subdivided into five steps: particle identification, image tracking,
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coordinate matching & triangulation, time-resolved tracking & optimization, and post-
processing.

STEP 1: PARTICLE IDENTIFICATION

The first step in our tracking algorithm is particle detection, which involves identifying
the positions of cells in the camera image planes at each time step. We first dewarp
the camera images by applying the distortion correction obtained from the calibration
procedure (see section 2.2.2). Next, we apply a convolution filter with a Mexican hat
shape to enhance the contrast of the image. We use a custom-made peak-finding
algorithm to identify the ellipsoidal shape of algae cells in each camera view. This
method uses the projective geometry framework to identify cell images as conics [101].
In this way, algae images can be easily manipulated and projected onto all camera
views using computationally efficient linear ray tracing in subsequent steps. Within
this framework, the outer contour of each alga is represented in terms of homogeneous
coordinates as:

x̂TCx̂ = [
x̂ ŷ 1

] C1 C2/2 C4/2
C2/2 C3 C5/2
C4/2 C5/2 C6

x̂
ŷ
1

= 0 (2.7)

Here, x̂ is a vector of homogeneous coordinates, and C is a 3x3 symmetric matrix that
defines the conic in the image plane. The values of the coefficients Ci are determined
by using a characteristic kernel size corresponding to the size of the cell image [107].
We then calculate the midpoints of the conics to track the position of each algae cell as
follows: [

x̂ j
o

ŷ j
o

]
=−

[
2C1 C2

C2 2C3

]−1 [
C4

C5

]
(2.8)

Here, x̂ j
o and ŷ j

o represent the x and y coordinates of the midpoint of the j -th conic
in the dewarped image plane. These midpoints are the initial positions for tracking the
algae cells from one frame to another.
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Figure 2.9: Images of three algae cells at different time steps showing variation in their image size
due to the cell movement across the depth of field. Moreover, the cell blinking effect is visible for
algae 1 & 2, where the intensity of the bright spot changes from one time step to the next due to
cell rotation.

In all our experiments, the algae images are characterized by strong time fluctuations
in both the size of the cell image and the light intensity, as seen in Fig. 2.9. These strong
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fluctuations are caused by the three-dimensional motion of the cells. C. reinhardtii
does not scatter the incident light isotropically, and the rotation of the algae cells
leads to quasi-periodic variations in the intensity values of the cell images throughout
the recording sequence. This effect is significant and causes the cells to appear as
blinking dots. This blinking of the algae cells impacts the performance of the peak
detection algorithm. To address this issue, we utilize a multi-kernel approach for outer
contour detection, using three kernel sizes of 5 × 5, 7 × 7, and 9 × 9, and derive three
outer contours for each algae image. The unique coefficients Ci that define the outer
contour of the algae cells are determined through a voting criterion based on the average
intensity value within each kernel size.

Fig. 2.10A shows a typical image, the detected cells, and their midpoints. The inset,
Fig. 2.10B, corresponds to the same algae as those from Fig. 2.9. Fig. 2.10 C demonstrates
the robustness of our algorithm, where images of two overlapping algae are detected
separately.

Figure 2.10: [A] Camera image with detected algae cells represented by green conics. Red dots
show the midpoints of the conics. [B] A close-up of detected algae cells for the same cell images
from Fig. 2.9. [C] Identification of the cells for overlapping cell images.

STEP 2: IMAGE TRACKING

In the second step of our Lagrangian tracking algorithm, we track the movement of algae
cells, referred to as particles, in each camera view. Our approach involves identifying
particle images in frame n+1 that are within a distance of one body length from those in
frame n, which enables us to establish a two-dimensional track for each particle. To
accomplish this, we compute the distance between the midpoints of particle images
using the following equation:

Lp =
√√√√∣∣∣∣∣1− x̂T

o,n+1 Cn x̂o,n+1

x̂T
o,n Cn x̂o,n

∣∣∣∣∣ (2.9)

Here, Lp is the distance between two particle images’ midpoints, x̂o,n and x̂o,n+1, in
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frame n and n + 1, respectively, normalized by the conic size of the particle image in
frame n.

We use the computed distance Lp to determine whether the particle in frame n+1 is
part of the track in frame n. If Lp is less than 1, the particle in frame n +1 lies within the
conic in frame n, and is considered part of the track for that specific conic. Conversely,
if Lp is greater than 1, that particle is not considered part of that track. Occlusions may
result in one detected particle becoming part of two tracks. In such instances, instead
of maintaining a single, uninterrupted track for a particle, the track splits at the point of
overlap. Specifically, while non-overlapping particles continue to be tracked with their
unique indices, any overlap prompts the initiation of a new track segment from that
moment onward. As a result, a single particle is tracked by multiple track segments.
Single tracks are recovered for each particle during an optimization step, which we will
discuss later.

The image tracking step results in an indexed list of two-dimensional tracks,
including particle conic and midpoint information for each particle for all cameras.
Fig. 2.11 demonstrates the effectiveness of the image tracking algorithm in accurately
capturing the motion of algae cells in a 50-frame sequence for one of the cameras. The
figure highlights that most trajectories correspond to real particles and effectively track
their motion. A few short tracks are also reconstructed that do not correspond to actual
particles because of image noise. These false particle identifications and trajectories are
later removed in the post-processing step.

Figure 2.11: Visualization of two-dimensional image tracking. [A] An average image created from
50 individual camera images, temporally spaced from one another by∆t =0.05 seconds, forming a
time series, displaying particle motion as streaks with 2D tracks of each particle overlaid in distinct
colors. [B] A zoomed-in view of the particle motion as streaks and their corresponding 2D tracks,
including short tracks resulting from false particle identifications due to image noise.

STEP 3: CORRESPONDENCE MATCHING & TRIANGULATION

The next step in our tracking algorithm is to match particle images between the different
cameras. We establish camera correspondences by using epipolar geometry [101]. This
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technique utilizes the geometric relationship between the image planes of two calibrated
cameras. Specifically, when the image of a given particle is known in one camera, its
image in a second camera lies along the epipolar line. This line corresponds to the
projection of the optical ray passing through a particle in the object domain and the
center of camera 1 onto the image plane of camera 2 (see Fig. 2.12A).

The epipolar line plays a crucial role in establishing correspondences between
particle images in both camera views. Using the particle’s image from camera 1, we
determine its associated epipolar line in camera 2. We then compute the distance
between the epipolar line and all particle images in camera 2. Ideally, a particle image
in camera 2 would align perfectly with the epipolar line, resulting in a distance of zero.
However, due to image noise and calibration errors, the distance may not always be zero;
hence, we set a threshold of one body length for match consideration. If the distance
between the epipolar line and the particle’s image in camera 2 is less than one body
length, we consider the images in both cameras to represent the same particle and thus
establish a correspondence.

The projective geometry framework is ideally suited to the fast computation of
epipolar lines and the distance between epipolar lines and particle images. For particle
locations x̃1

j in camera 1, the epipolar line (l 12) from camera 1 to camera 2 can be
computed as a single linear operation, as follows:

l 12 =
[
P2X1]

×P
2P1+ x̃1

j (2.10)

Here, P1 and P2 represent the projection matrices for Camera 1 and Camera 2,
respectively, and []× denotes the skew-symmetric matrix. P+ is the pseudo-inverse of
the projection matrix P1, and X1 is the location of Camera 1 in the three-dimensional
domain. This framework enables the computation of epipolar lines through linear
matrix operations. For more details on this computation and the calculation of the
distance between the epipolar lines and particle images, we refer to Muller [106].

Establishing a reliable correspondence between two particle images in two different
camera views requires that the particle image in each camera lies within one body
length of the epipolar line associated with the other corresponding particle image in
the other camera. When this bi-directional condition is satisfied, we consider the two
particle images to be matched and refer to this as a stereoscopic correspondence. In
our four-camera setup, multiple combinations of epipolar lines are possible, as shown
in Fig. 2.12B. Trifocal correspondences between three particle images in three camera
views imply that a stereoscopic correspondence is established for each of the three
combinations involving two particle images. Quad-focal correspondences extend this
principle to all four cameras. This implies that, for four particle images in four different
cameras, stereoscopic correspondence is established for any of the six combinations
involving two out of the four particle images.

We exclude stereoscopic correspondences and only process particles with trifocal
and quad-focal correspondences, as these correspondences provide a higher level of
geometric constraint. This helps to limit the number of false correspondences, including
ghost particles that may appear due to image noise, occlusion, or errors in the camera
calibration.
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Our tracking algorithm allows one particle image to be matched with more than
one image in another camera. This can occur because of particle occlusions, where
one particle moves in front of another particle, and their particle images can no longer
be distinguished in one of the camera views. By allowing for multiple matches, we
capture the entire trajectory of the particle and avoid losing tracks because of occlusions.
However, during the optimization step later in the algorithm, we establish unique
correspondences for each particle image by selecting the best match among the multiple
candidates based on the re-projection error.

Figure 2.12: [A] Epipolar geometry setup. Two cameras (camera 1 and camera 2) image a particle
" j " at location Xj in the object domain. The solid blue and red lines represent the rays from the

camera centers (X1 and X2) intersecting with the particle. The green circles in the image planes are
the location of the particle in each image plane, represented by homogeneous coordinates x̃1

j and

x̃2
j . Epipolar lines (l 21 and l 12) corresponding to the particle are represented by dashed lines and

projected onto the image planes of camera 1 and camera 2, respectively. [B] Illustration of various
camera correspondences for a multi-camera system. Images of each camera are represented by a
unique color, with their corresponding epipolar lines matching these colors. The image of particle
1 shows stereoscopic correspondence between two cameras (camera 1 & camera 2), while images
of particle 2 and particle 3 demonstrate tri-focal and quad-focal correspondences among three
and all four cameras, respectively.

After matching particle images, we use triangulation to locate the particles in the
three-dimensional object domain. We use matched particle images x̂c in the different
camera views to triangulate the location of the corresponding particle in the three-
dimensional object domain. The location of the particle in the object domain is
triangulated as the three-dimensional point X, minimizing the sum of the squared point-
line distances between X and the optical rays from each camera associated with the
particle images x̂c:

min
X

∑
c

∥∥d
(
X, l (x̂c)

)∥∥2 (2.11)

In the equation, d
(
X, l (x̂c)

)
is the distance between the particle location in the object
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domain X and the optical ray, denoted as l (x̂c), associated with the particle image x̂c in
camera c.

STEP 4: TIME RESOLVED TRACKING & OPTIMIZATION

The previous steps described how particles are tracked in two dimensions and how
triangulation is performed after establishing camera correspondences between particle
images. These steps are independent of each other. In this step, we combine the
two-dimensional tracking and the particle image correspondences to obtain continuous
trajectories in three dimensions.

In the first recorded frame, we initiate three-dimensional trajectories from
each particle location obtained from the triangulated locations of particle image
correspondences. The trajectories are then continuously extended using two-
dimensional camera tracking information. For each trajectory, we model its path with
a polynomial function in the image plane, enabling us to predict the particle’s position
in the next frame. This modeling aids in resolving uncertainties that emerge from image
processing and tracking.

Using the polynomial fit, we predict the position in the next frame for all trajectories.
Based on this prediction, we find the particle image within one body length of the
predicted particle image position in the next frame. This prediction step is particularly
beneficial in instances of image occlusion, allowing us to find the particle image even
when occlusion occurs. This action compensates for inconsistencies in camera tracking.
If no image identification is available in the subsequent frames within one body length,
we extrapolate the image position for an existing trajectory based on our fit. This
extrapolation helps us track the particle, especially if its image is out of view of one
camera but is present in the other cameras.

As we progress through frames, new particle images are identified and appended
to their corresponding trajectories. For each of these images, we triangulate their
location in three-dimensions using image correspondences and subsequently calculate
the re-projection error. Particle locations with an average re-projection error (evaluated
across all cameras) that is less than one body length get incorporated into the three-
dimensional trajectories. Conversely, trajectories that display a re-projection error
exceeding one body length are terminated at that specific frame. This iterative approach
continues for all frames, appending trajectories accordingly.

These steps result in a set of feasible trajectories for all particle images, where one
particle might still be part of more than one trajectory due to occlusions and imperfect
correspondences arising from calibration errors. We devise a cost-function solution
strategy that rewards longer trajectories, matched number of image identifications (tri-
focal and quad-focal), and low re-projection error. We employ a divide and conquer
strategy inspired by Attanasi et al. [108] to find a solution that best fits simultaneous
tracking in the object and image domains. This algorithm aims to reduce computational
time and complexity arising from multiple camera images, the total number of frames,
and the number of particles in each camera image. Once the optimization is complete,
we obtain unique indices for each trajectory and their respective image and three-
dimensional locations.

Fig. 2.13A illustrates the result of our tracking algorithm after step 4, tracking cells
over 50 frames at 5×104 cells/ml concentration. For 6000 frames, which corresponds to
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Figure 2.13: [A] Triangulated positions in the object domain for 50 frames of recording at a cell
density of 5× 104 cells/ml. Longer trajectories can be observed in the middle, corresponding to
the viewing volume location, given the 2mm flow chamber length along the optical axis. Shorter
trajectories inside and outside the viewing volume are predominantly ghost trajectories. [B] An
image created by averaging the intensity of the same 50 frames used for triangulation in [A].
Overlaid on this average intensity image are color-coded 2D projections of the algae trajectories.
The inset displays a close-up of the region highlighted by the red rectangle. The colored markers
indicate the image plane locations where each three-dimensional trajectory projects, accurately
following each cell image streak. Some trajectory locations appear clustered around a single
position in the image plane; these short trajectories mostly belong to ghost particles and false
algae identifications.

5 minutes of recording, we obtain approximately 0.8 million trajectories with an average
track length of 10 frames. Many of these trajectories are ghost tracks or associated
with spurious identifications (see Fig. 2.13B). We filter out these trajectories in the post-
processing step, as discussed below.

STEP 5: POST PROCESSING

The robust and thorough nature of our tracking algorithm ensures that no data is lost
during tracking. However, this results in a high number of unphysical trajectories,
such as ghost particle trajectories (see Fig. 2.13B). To address this, we remove spurious
trajectories in a post-processing step. First, we reduce the tracking data size by filtering
trajectories based on length. Tracks shorter than 20 frames are discarded. This step
effectively removes most ghost trajectories, which are typically short. Next, we remove
tracks corresponding to immobile cells, which correspond, for example, to cells stuck
on solid surfaces. These tracks are identified by computing the standard deviation of
positions along the tracks. Tracks with a standard deviation smaller than 20 µm are
removed. Finally, we eliminate tracks belonging to particles moving faster than 250µm/s
since the average swimming speed of algae cells is 100 µm/s [72].

The remaining trajectories are filtered in order to reduce the noise resulting from
calibration errors, occlusions, and inaccuracies in the triangulated position due to cell
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Figure 2.14: [A] A characteristic cell trajectory in three dimensions. Circular insets show the
discontinuous nature of the trajectory due to occlusions and imperfect matching. The rectangle
shows the part of the trajectory re-projected on one of the camera images in panle [C]. [B]
Trajectory filtered by the Savitzky-Golay filter of kernel length 25 and order 3. Circular insets
show the correction of discontinuities due to the smoothing filter. The rectangle represents the
part of the filtered trajectory re-projected on the camera image in panel [C]. [C] Two-dimensional
trajectories of the re-projected positions from the original and the filtered trajectories. Insets
show the re-projected positions of the original and filtered trajectories on the particle image at
different time steps. [D] Distribution of the time averaged difference ∆s between original and
filtered trajectory locations in object space for all of the trajectories.

blinking in at least one camera view. Fig. 2.14A displays a representative cell trajectory
illustrating these artifacts. The position triangulated in step 3 is influenced by minor
differences in midpoints across various cameras caused by the blinking effect, leading
to a shift in the triangulated position from one frame to another and generating an
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apparent high-frequency helical motion. This can be seen when inspecting a portion
of the track (indicated by a rectangle) projected onto the image plane (Fig. 2.14C).
Camera images are also presented in the inset at different points along the track. The
reconstructed cell trajectory is marked with green dots in Fig. 2.14 and can be seen to
oscillate from one side of the particle image to the other. It is clear that this oscillation
is not physical. The re-projected position oscillates from one side of the algae image to
the other because of the cell blinking effect in another camera view. Another artifact
is the discontinuity of the trajectory, denoted by circles in Fig. 2.14A, which arises from
occlusions and imperfect matching at these positions. To correct for this noise, we use
a Savitzky-Golay filter with a kernel length of 25 and an order of 3. The filtered track
is represented in Fig. 2.14B, and its re-projected location is displayed in Fig. 2.14C with
a red line and red dots on the camera images. Fig. 2.14C shows that the re-projection
of the filtered trajectory aligns with the particle’s image center, thereby validating our
filtering approach. We characterize the difference between the filtered track and the
original track by computing a time-averaged difference as ∆s = 1

N

∑N
t=1

∣∣Xt −Xs
t

∣∣, where
Xs

t represents the filtered track position. Fig. 2.14D displays the distribution of average
differences for all trajectories. The mean value for the ∆s distance is 4.5 ± 1.9 µm, which
is on the order of the algae cell’s radius. This indicates that the filtering does not affect the
trajectory’s helicity but mainly corrects errors due to blinking effects and other artifacts.

Finally, we describe the last post-processing step, which rescales the depth of the
flow chamber. As mentioned earlier, the change in the index of refraction between the
calibration procedure and the experiments results in a shortened distance along the
optical axis. We address this issue by applying a linear correction to the position in
the Z direction. To perform this correction, we first identify the locations of the upper
(Zu) and lower (Zl ) surfaces in the shortened frame of reference. These locations are
determined by identifying cells stuck to the surfaces of the top and bottom coverslips.
Cells remaining on the surfaces exhibit minimal movement (V <20 µm/s) compared
to cells in bulk. We fit a plane through these cells to find the upper and lower surface
locations. Once the surface locations are known in the shortened frame of reference, we
perform the correction as follows:

Zcor r ected =ZL +
(
ZU −ZL

Zu −Zl

)
︸ ︷︷ ︸

rcf

(Z −Zl ) (2.12)

where ZU and ZL define the true upper and lower surface location and takes the value of
1 and -1, respectively.

Fig. 2.15A shows the filtered three-dimensional trajectories in the corrected frame of
reference for cell density of 5×104 cells/ml. For clarity, we only display 266 trajectories
for 2.5 seconds (50 frames), but we acquired ∼ 7000 trajectories for five minutes of
recording time (6000 frames) with an average track length of 200 frames. We have
successfully removed trajectories belonging to ghost and immobile cells (see Fig. 2.15B).
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Figure 2.15: [A] Cleaned and filtered trajectories from a time series of 50 recorded frames for cell
density of 5×104 cells/ml. Light and dark gray planes indicate the locations of upper and lower
surfaces of the flow chamber in the object domain. [B] An image created by averaging the intensity
of the same 50 frames used for triangulation in [A], overlaid with three-dimensional trajectory
locations, re-projected into the image plane. Bright spots without projected tracks represent the
locations of dust particles on the surface and immobile algae cells that exhibit no motion. Inset
shows a close-up at the same location as in Fig. 2.13. Unphysical trajectories have been removed,
leaving only the tracks that follow the cell motion.

2.3. VALIDATION OF THE EXPERIMENTAL APPROACH
We validate the experimental approach by first looking at the transport of passive tracers
to characterize the recirculation within the flow cells. Subsequently, we quantify the
tracking performance and determine the maximum number of cells that can be tracked
simultaneously.

2.3.1. CHARACTERIZATION OF BACKGROUND FLOW
The recirculation within the flow chamber forms a background flow that can influence
the behavior and motion of microswimmers [93]. This is especially true for C. reinhardtii,
where a shear rate exceeding 1 s−1 has been shown to affect the motility and population
behavior of the algae cells [78].

In our experimental setup, the background flow arises from small temperature
differences across the chamber due to heating from the illumination source, leading
to a buoyancy-driven flow. The reservoir size directly influences the magnitude of
the background flow, with buoyancy-driven convection resulting from the temperature
difference and gravity increasing the background flow’s magnitude. An increased flow
leads to passive/immotile cells to be transported with higher velocity magnitudes, which
can no longer be distinguished from the swimming velocities of active particles. Thus,
careful consideration of these factors informs our choice of reservoir size, ensuring that
the background flow remains moderate and does not unduly influence our observations
and analyses.
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To characterize this, we conducted experiments with passive tracer particles of size
10 µm in flow chambers of varying sizes, ranging from 8mm to 12mm in diameter.
The flow field was reconstructed using tomo-PIV. Fig. 2.16 displays the flow fields of

Figure 2.16: Eulerian flow field representing background flow inside [A] 8mm and [B] 10mm
diameter reservoir.

background flow in reservoir chambers of 8mm and 10mm diameters for tomo-PIV
experiments. Despite the consistent flow profile across different chamber sizes, we
observed a significant difference in the magnitude of the background flow. As the size
of the flow chamber increases from 8mm to 10mm, the background flow also increases
considerably - from an average of 20 µm/s to 50 µm/s in the center of the reservoir.

We performed additional numerical simulations using COMSOL multiphysics
software to determine the origin of the observed background flow. Details of the
experiments and simulations can be found in Appendix A.2. Our simulations revealed
that the increase in background flow is due to a small temperature difference of 1◦C
across the sides of the reservoir. This finding highlights the influence of the chamber
size on the background flow and, consequently, on the shear rate experienced by the
microswimmers.

Based on these findings, we chose an 8mm diameter flow chamber for our
experiments. Given that the height of the flow chamber is 2mm, this setup results
in an average shear rate of 0.02 s−1, significantly lower than the 1 s−1 threshold that
could influence the motility and population behavior of C. reinhardtii. Furthermore,
this setup minimizes the background flow, facilitating the detection of immobile cells
drifting within the flow.

2.3.2. TRACKING PERFORMANCE
To assess the accuracy and reliability of our three-dimensional tracking setup and
algorithm, we computed the reprojection errors and the lengths of the tracks for
various concentrations of C. Reinhardtii cells. Our aim was to evaluate how our system
performed as the number of particles increased. Fig. 2.17 shows the variation in the
number of particles in the images for different concentrations.

We quantified the increase in the number of particles with increasing cell
concentration by computing the image density (NI ), a widely used metric in particle
tracking experiments [109]. NI represents the density of particles in each image in
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particles per pixel. To compute NI , we divide the number of detected particles in an
image (Nx̂ ) by the area of the image (AI ) and a normalization factor of (2.5/9)2. This
factor accounts for the larger particle size in our experiments (9 pixels) compared to
typical PIV and PTV applications (2−3 pixels) [109]. We found that our object detection
algorithm accurately detected particles up to a concentration of 2 × 105 cell/ml (see
Fig. 2.17). However, some particles went undetected beyond this concentration due
to overlapping particle images, which is a common challenge in experiments with a high
density of particles [110]. Table 2.1 presents our experiments’ concentration, the average
number of detected particles, and image densities.

No. Concentration ( cel l s
ml ) Detected Particles (#) NI (ppp)

I 5×104 705 0.022
II 1×105 1176 0.037
III 2×105 2082 0.065
IV 5×105 4340 0.137

Table 2.1: Number of detected particles and image density averaged over all four cameras across
all frames for four different cell culture concentrations.

Figure 2.17: Sample camera images for varying cell concentrations: I. 5×104 cells/ml, II. 1×105

cells/ml, III. 2×105 cells/ml, IV. 5×105 cells/ml. Close-ups show the detected cells in part of each
image.

To assess the reprojection error (εr ), we reprojected the triangulated position in
three dimensions onto each of the camera images (see Fig. 2.18A). Theoretically, the
reprojected position should match the center of the detected particle image. However,
in practice, the reprojected location differs due to the skewness of the camera rays. We
normalize the distance from the particle center to the reprojected location with the size
of the particle image. Thus, the reprojection error ranges from 0 to 1, with a higher value
indicating more uncertainty in the location of the three-dimensional position. For each
trajectory, we report the time-averaged reprojection error in Fig. 2.18B for increasing
image densities.
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The reprojection error exhibits a bimodal distribution for all densities except the
highest at NI = 0.14 ppp, with the first peak around 0.15 representing correctly
reconstructed particles. The second peak, located at a higher reprojection error
(0.5), corresponds to particles with overlapping images or tri-focal correspondences
instead of quad-focal. As the image density increases, the number of particles with
larger reprojection errors also increases. This indicates that the increased occurrence
of particle image overlap at higher particle concentrations leads to less reliable
reconstruction. The results also indicate that an image density of NI = 0.14 ppp results in
a lower than 0.5 reprojection error for most of the trajectories and indicates an accurate
reconstruction of the particle trajectories. However, due to the high density, particles
quickly lose correspondence. Consequently, most of the trajectories were shorter than
ten frames and removed during post-processing. This was because of challenges in
distinguishing between real and ghost particle tracks. As a result, the number of tracked
particles was lower than in lower-density data sets, as shown in Figure 2.18A-IV.

We find that the density of particles in the image affects the accuracy and reliability
of our tracking setup and algorithm. While a higher density leads to an increase in
the number of tracks, it also increases the number of overlapping particles, leading to
poor reconstruction and tracking performance. The average reprojection error increased
from 0.15 to 0.3, with an increase in image density from 0.02 to 0.06 ppp. In the context
of our C. reinhardtii tracking experiments, such a reprojection error translates to a
positional uncertainty of up to 3 µm. This compares favorably with particle location
uncertainties of 1 to 2 cell diameter from holographic tracking techniques imaging
particles ranging from 40 to 270 µm in size [55].

We also analyzed the variation in track length as a function of image density (see
Fig. 2.18C). At the lowest density of 0.02 ppp, the average track length was around 200
frames or 10 seconds. However, the average track length decreased as we increased the
image density. For example, for an image density of 0.14 ppp, the average track length
was only 2 seconds. This reduction in track length is mainly due to higher occlusion
rates at higher image densities, which create ambiguities in unique correspondences
and particle detection. Nonetheless, we obtained trajectories at least 5 seconds long
for image densities up to 0.06 ppp, sufficient for performing kinematics and population
behavior analysis.

Our performance assessment shows that we can reliably track active swimmers
for image densities of 0.06 ppp corresponding to particle concentration of 2 × 105

particles/ml. This is one order of magnitude higher when compared to prior studies
that tracked particles at image densities of 0.006 ppp [82] and particle concentrations
ranging from 1.3−1.7×104 particles/ml [111], allowing us to track microswimmers at
higher concentrations. Moreover, our tracking algorithm results in high throughput of
long trajectories with low reprojection error, which provides the basis of our analysis
of cell kinematics, cell-cell interaction, and the effect of non-Newtonian fluids on cell
behavior throughout this thesis.
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Figure 2.18: Tracking performance for varying cell concentrations: I. 5 × 104 cell/ml (NI ≈
0.02), II. 1 × 105 cells/ml (NI ≈ 0.04), III. 2 × 105 cells/ml (NI ≈ 0.06), IV. 5 × 105 cells/ml
(NI ≈ 0.14). [A] Composite camera image for 50 frames, overlayed with the re-projected three-
dimensional position. Insets show the close-up views of a subsection of each image composite,
for clarity. [B] Distributions of time-averaged reprojection error for different cell concentrations.
[C] Distributions of track length in terms of number of frames, for each cell concentration.

2.4. APPLICATION OF MULTI-CAMERA MICROSCOPE TO CELL

TRACKING

In this section, we present the results of our C. reinhardtii tracking experiments
conducted with a concentration of 5 × 104 cells/ml, focusing on characterizing cell
kinematics through various parameters. These parameters include velocity, radius,
pitch, angular velocity, and diffusion coefficients. In addition, we investigated the cell-
surface interactions using the same setup, details of which can be found in Buchner et
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al. [98] but only briefly summarized at the end of this section.

2.4.1. THREE DIMENSIONAL TRACKING OF C. reinhardtii
The methodology described in section 2.2 is ideally suited to investigate the three-
dimensional motility of C. reinhardtii. In our study, we obtained ∼45000 trajectories
at a concentration of 5×104 cells/ml, providing a substantial dataset for analyzing the
trajectory kinematics of C. reinhardtii. Fig. 2.19 shows examples of three-dimensional
trajectories for freely swimming microalgae. Cells display helical motion, which can vary
significantly from one cell to another. The majority of the cells move along elongated
helices, forming a straightened trajectory, similar to trajectories 1 to 4 in Fig. 2.19.
In addition, we observed a few trajectories similar to 5 and 6, characterized by tight
helices with short radii and pitch. Our trajectory dataset also highlights a distinct
‘hopping’ behavior near surfaces, represented by trajectory 3. Here, cells display a series
of bouncing motions against the surface before moving away. This hopping behavior
emerges as a prevalent feature for surface interactions of the microalgae.

Figure 2.19: Six example three dimensional trajectories of C. Reinhardtii cells. Light and dark gray
shaded regions represent the glass surfaces enclosing the flow chamber.

2.4.2. EXTRACTION OF HELICAL PARAMETERS
The three-dimensional motion analysis requires estimating parameters such as velocity,
curvature, torsion, and others [72]. These parameters are computed by using the
Frenet-Serret framework, which is applied to a time-parameterized curve X(t ) =[

X (t ) Y (t ) Z (t )
]

[112]. The Frenet-Serret framework, also known as the TNB
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reference frame system, defines a local coordinate system where T is the unit tangent
vector to the curve X(t ), N is the normal unit vector and B is the unit bi-normal vector,
see Fig. 2.20. T, N, and B vectors form the orthonormal basis for the Frenet-Serret
framework.

To derive the Frenet-Serret reference frame, we define the arc length as the distance
s(t ) along the trajectory X(t ) up to time t :

s(t ) =
∫ t

0

∥∥∥X
′
(t )

∥∥∥d t (2.13)

For a curve X(s), parametrized by its arc length, we can write:

T(s) = dX(s)

ds
, N(s) =

dT(s)
ds∥∥∥ dT(s)
ds

∥∥∥ , B(s) = T(s)×N(s) (2.14)

The curvature κ of a curve is defined as the magnitude of the rate of change of the

tangential vector with respect to arc length, expressed as κ=
∥∥∥ dT(s)

ds

∥∥∥. Torsion quantifies

the deviation of a curve from being planar at a given arc length and is associated with
the rate of change of the binormal vector B. The behavior of the particle along the path
s(t ) is governed by the following equations:

dT

ds
= κN (2.15)

dN

ds
=−κT+τB (2.16)

dB

ds
=−τN (2.17)

Our trajectories are more naturally parameterized with time, and we use the chain
rule to compute the velocity (V), the curvature (κ), and the torsion (τ) as functions of
time:

V(t ) = X
′
(t ) (2.18)

κ(t ) =

∥∥∥X
′
(t )×X

′′
(t )

∥∥∥∥∥X′ (t )
∥∥3 (2.19)

τ(t ) =
[

X
′
(t )×X

′′
(t )

]
·X

′′′
(t )∥∥X′ (t )×X′′ (t )

∥∥2 (2.20)

From the formulation discussed above, it is evident that the complete definition
of the Frenet-Serret framework requires second-order time derivatives. While
this poses no issue for continuous curves, for our discrete curve in the form
X(t ) = [

X (t ) Y (t ) Z (t )
]
, numerical differentiation techniques can be employed to

approximate the necessary parameters. This technique, introduced by Crenshaw et al.
[72], was initially used to analyze the three-dimensional tracks of C. reinhardtii and
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Figure 2.20: Frenet-Serret frame of reference, represented as TNB, in relation to a fixed Cartesian
reference, XYZ for an alga navigating along a three-dimensional curve, denoted as X(t ), with a
velocity V(t ), and characterized by a curvature κ(t ) and a torsion τ(t ). The osculating circle,
represented in blue, best defines the curve at that specific point. The radius of this circle is the
reciprocal of the curvature (κ). The helix’s central axis, depicted by a solid red line, establishes the
radius (R) of the helical trajectory. The helix’s pitch (P ) is the distance covered along the curve for
one complete revolution.

sea urchin spermatozoa. However, calculating second-order derivatives numerically
on our 20 fps tracking data tends to amplify noise and introduce instability, leading to
unreliable velocity and acceleration estimates essential for our analysis. Additionally,
numerical differentiation results depend on the choice of the differentiation time step
and finite difference method (forward, backward, or central), which can introduce
variability and inconsistency in the derivative estimates. To overcome these limitations,
in our study, we express the trajectories X(t ) as a continuous vector function that is
analytically differentiable, yielding exact solutions. For this, we use piece-wise Legendre
polynomials and perform a least square fit to find X(t ). Our piecewise Legendre fitting
approach fits all data points within each individual track simultaneously, preventing
local artifacts and minimizing the risk of introducing non-physical attributes. The
mathematical formulation of the curve fitting problem is discussed in Appendix A.1.

Fig. 2.21 A-D illustrates the accuracy of our curve-fitting algorithm for the given
trajectory. Each sub-figure (A, B, and C) represents the X , Y , and Z components of the
curve, respectively, while Fig. D showcases the track in three dimensions. The fitted
curve, represented by solid black lines, accurately follows the trajectory. Curve fitting was
performed using a spline length of 10 and a polynomial order of 6. To assess the quality
of the fit, the fitting error was computed using the formula ε f = 1

N

∑N
t=1

∣∣X(t )−Xs
t

∣∣. For
the particular trajectory shown in Fig. 2.21D, the fitting error ε f is measured to be 0.2µm.
Figure 2.21E presents the distribution of fitting errors for all the trajectories. Notably, the
total fitting error remains consistently well below 1µm, indicating the high accuracy of
the curve fitting for all trajectories.
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Figure 2.21: [A-C] The X , Y , and Z components of an example trajectory, represented by red
dots, with the fitted curve X(t ) = [

X (t ) Y (t ) Z (t )
]
, shown as a solid black line. [D] Three-

dimensional view of the trajectory (red dots) with the fitted curve (solid black line). [E] The
distribution of fitting error ε f between fitted trajectory X(t ) and the filtered trajectory Xs

t for all
of the trajectories.

2.4.3. CHARACTERIZATION OF HELICAL PARAMETERS OF C. reinhardtii
TRAJECTORIES

We first characterized the helical parameters of these trajectories, specifically, velocity
(V ), pitch (P ), and radius (R). The pitch (P ) refers to the distance between consecutive
turns of the helix, representing the vertical displacement of one full revolution, and the
radius (R) defines the distance from the helix’s central axis to the outer edge of its spiral
(see Fig. 2.20). We calculated these parameters using analytic differentiation of the curve
of the form, X(t ) = [

X (t ) Y (t ) Z (t )
]
, as follows:

V (t ) = ∥X
′
(t )∥ , P (t ) = 2πτ(t )

κ(t )2 +τ(t )2 , R(t ) = κ(t )

κ(t )2 +τ(t )2

where, κ(t ) and τ(t ) were computed using Eq. 2.19 and Eq. 2.20, respectively. We then
computed time-averaged values for all of the parameters, resulting in one value for
each trajectory. Fig. 2.22A presents the distribution of time-averaged velocities (V ) for
all trajectories. The distribution is characterized as tri-modal, with modes centered
approximately at 20 µm/s, 90 µm/s, and 160 µm/s. The first mode corresponds to non-
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motile algae cells drifting in the background flow. The magnitude of this background
flow agrees with observations from passive tracer particles, and the cells exhibit similar
circular motion (see Appendix A.2 for additional details).

Excluding the non-motile cells, the remaining distribution is predominantly bi-
modal, showing the behavior of the motile and healthy cells. For our subsequent analysis
and discussion, we focus on these cells, specifically those with V ≥ 30 µm/s. The average
swimming velocity of C. Reinhardtii in our experiments was 137±42 µm/s, higher than
the average velocities reported by Barry et al. [78], yet similar to the velocity range of
80−160µm/s reported by Jin et al. [79]. The lower average velocities of 58±24 µm/s from
Barry et al. [78] can be attributed to differences in growth conditions, as C. Reinhardtii’s
motility behavior varies depending on these conditions [105].

Figure 2.22: The distributions of time-averaged helical parameters across all trajectories. [A]
velocities (V ) [B] Pitch (|P |) and [C] Radius (R)

Fig. 2.22 B and C present the distribution of time-averaged absolute pitch (|P |) and
radius (R) for all trajectories, respectively. We consider the absolute value of the pitch
(|P |) as we are interested in the scale of the pitch. The average pitch across all trajectories
was 137±64µm, and the average radius was measured as 8±7µm. These measurements
confirm that C. reinhardtii cells predominantly follow straighter trajectories, as denoted
by the higher average pitch and low average radius values. Such trajectories are similar to
the trajectories 1-4 in Fig. 2.19. However, the significant standard deviations in pitch and
radius measurements indicate considerable variability in the motility patterns across the
cell population.

We also consider the joint distributions of helical parameters. Fig. 2.23 presents the
2D joint density plot for the helix parameters velocity (V ), pitch (P ), and radius (R).
The joint density plot for velocity and radius (Fig. 2.23A) shows that with an increase
in velocity up to approximately 130 µm/s, the radius slightly increases from 2 to 5
µm. Beyond this velocity, the radius is independent of velocity, suggesting that the
relationship between these variables is not strong across all velocity values. To further
quantify this non-linear relationship, we calculated the Spearman’s rank correlation
coefficient for these parameters, which yielded a value of 0.55. This moderate positive
correlation indicates that, although an association exists between the two parameters,
it remains relatively weak. On the other hand, the distribution of velocity and pitch
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shows a strong relationship between the two parameters, where cells swim with smaller
pitch values at low velocities and with higher pitch values as the velocity increases.
The Spearman’s rank correlation coefficient reinforces this observation with a value of
0.85, underscoring the strong relationship between the two parameters. Moreover, our
findings show that approximately 70% of the algae swim with left-handed chirality, as
depicted by negative pitch values in Fig. 2.23B, consistent with previous studies [72].

Figure 2.23: 2D joint density plots for time-averaged helix parameters for C. reinhardtii
trajectories. [A] Velocity vs. Radius [B] Velocity vs. Pitch [C] Pitch vs. Radius. The color bar
represents the relative density.

An important feature of C. reinhardtii swimming is the rotation of the cell body
around its axis, previously measured at a rate of 1.4 - 2 Hz [24]. This rotation is due to the
beating asymmetry between the cis and trans flagellum, which, together with the three-
dimensional flagellar beating pattern, leads to the characteristic helical motion [24,
113]. Notably, one cell rotation corresponds to one helical turn [24]. Thus, we calculate
helical angular velocity to consider variations in cell rotation speeds. Our trajectory data
facilitates the computation of this helical angular velocity using the following equation
based on trajectory parameters:

Ω(t ) = V (t )√
P (t )2 +R(t )2

(2.21)

The distribution of time-averaged helical angular velocity (Ω) for all trajectories in our
study is illustrated in Fig. 2.24. The helical angular velocity ranges from 0.5 to 2.5 Hz,
with an average of 1.23 ± 0.36 Hz. As rotation speed directly influences the helical
trajectory, a lower rotation speed would result in straighter trajectories, as observed in
our experimental data. Furthermore, the spread of angular velocities indicates that not
all cells rotate at the same speed but experience different rotation velocities. This could
be due to the differences in force asymmetries that each algal cell experiences. Angular
velocity in our experiments is slightly lower than the previously measured rotation speed
from Rüffer and Nultsch [24]. The C. reinhardtii strain used in their study differed from
ours, which could explain the difference in the values.

The motility of C. reinhardtii cells has been shown to exhibit a certain level of
stochasticity, which varies with environmental conditions [92, 114]. The asynchronous
flagellar beating pattern causes stochastic sharp turns during the cell’s motion and is
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Figure 2.24: The distribution of time-averaged angular velocity (Ω) for all of the trajectories .

responsible for a run-and-tumble random walk [92], which leads to a diffusive behavior
on longer time scales. We computed the reorientation time and persistence length of
the cell’s motion using our extensive trajectory data set to characterize this behavior.
The reorientation time reflects the time scale at which the cell changes direction, while
the persistence length, calculated directly from the reorientation time, shows the length
scale at which the trajectory strays from a straight line. Additionally, we calculated
the translational and rotational diffusion coefficients to further describe the diffusive
behavior of the cell motion.

To calculate the reorientation time (τP ), we derive an expression for the mean
squared displacement (MSD) of a cell, assuming the correlation function of the
swimming direction decays exponentially with a characteristic timescale τP . This
timescale marks the crossover from ballistic to diffusive regimes. In the ballistic regime,
applicable at short timescales where t ≪ τP , the MSD scales as ∆t 2. Conversely, at
longer timescales where t ≫ τP , the motion transitions to a diffusive regime, and the
MSD scales linearly with ∆t .

The MSD is expressed by the equation:

MSD(∆t ) = 2〈V 2〉∆tτp

[
1− τp

∆t

(
1−e

− ∆t
τP

)]
(2.22)

Here, 〈V 2〉 is the mean squared velocity of the cell. A detailed description of our model
is provided in Appendix A.3. We compute the MSD for all trajectories in our experiments
as MSD(∆t ) = 〈|X(∆t + t◦)−X(t◦)|〉, and τp is determined by fitting Eq. 2.22 to our data as
illustrated in Fig. 2.25. Following this, we computed the persistence length translational
and rotational diffusion coefficients as follows:

LP =
√
〈V 2〉τP , DT = L2

P

3τP
, DR = 1

2τP

Table 2.2 presents the diffusion parameters investigated in this study. Our
findings regarding these parameters are consistent with previous research, indicating
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Figure 2.25: Mean square displacement (MSD) for C. reinhardtii three-dimensional trajectories as
a function of ∆t . The solid red line shows the fit used to determine reorientation time (τP )

Parameter Present Work Previous Studies

Re-orientation time (τP ) [s] 4.7 11.2 [92], 10.8 [80]
Persistence length (LP ) [µm] 729 -
Translational diffusion coefficient (DT ) [µm2/s] 3.77×104 4.7×104 [92],

5.56×103 [78]
Rotational diffusion coefficient (DR ) [rad2/s] 0.106 0.15 [61, 78]

Table 2.2: Diffusive characteristics of C. reinhardtii cells swimming in Tris medium at 5 × 104

cells/ml concentration.

the reliability of our measurements. The observed average persistence length of
approximately 729 µm suggests that C. reinhardtii cells move along relatively straight
paths. Furthermore, our study emphasizes the importance of considering dimensions
when making measurements, as evidenced by the contrasting translational diffusion
coefficients obtained from 2D and 3D studies. Specifically, our measurement yielded a
translational diffusion coefficient of 3.77×104 µm2/s, which is higher than the 5.56×103

µ m2/s reported in a 2D measurement by Barry et al. [78]. However, our translational
diffusion coefficient closely aligns with the value reported in a 3D study conducted by
Polin et al. [92]. These findings highlight the importance of accounting for the three-
dimensional motion of motile cells, as relying solely on a 2D approach may lead to an
incomplete understanding of cell diffusive behavior.

2.4.4. C. reinhardtii CELL SURFACE INTERACTIONS

In addition to studying the trajectory kinematics of C. reinhardtii cells, we have used
our tracking setup to investigate their interactions with solid surfaces. Our study has
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investigated the mechanisms underlying the accumulation of motile microswimmers
at solid interfaces, which is a critical process for surface colonization and biofilm
formation [115, 116]. To achieve this, we have employed our multi-camera microscope
to track the swimming behavior of C. reinhardtii cells in a relatively unconstrained three-
dimensional (3D) domain, including cell-surface encounters with a planar wall. We
use our large sample of 3D trajectories to study both near-wall and long-range surface
interactions. We summarize the main results here and refer the reader to Buchner et al.
[98] for more details.

In the near-wall region, we have identified a bimodality in the cell scattering
mechanisms, which corresponds to contact and non-contact interactions. Contact
interactions exhibit a consistent departure angle that is independent of the approach
angle, supporting the notion that geometric considerations determine the critical
departure angle during contact. While contact scattering occurs more frequently, we also
observe frequent non-contact scattering with planar walls, characterized by symmetrical
trajectories reflecting the time reversibility of the Stokes equations.

Away from the wall, cells swimming toward the surface rotate toward it, consistent
with long-range hydrodynamic interactions for puller-type microswimmers. Conversely,
cells moving away from the surface display a bias towards surface-directed rotation,
leading to hopping trajectories characterized by periodic surface interactions. We have
implemented Markov chain Monte Carlo (MCMC) simulations to establish a clear link
between micro-scale motility near interfaces and cell distribution on a macro-scale,
confirming that long-range interactions play a more significant role in surface cell
accumulation than near-wall scattering dynamics.

Our study highlights the importance of long-range hydrodynamic interactions in
determining the surface accumulation of C. reinhardtii cells. Therefore, efforts to
modulate cell-surface adhesion and biofilm growth through surface topography design
should consider both long-range interactions and near-wall scattering dynamics.

2.5. CONCLUSION
This chapter presents a three-dimensional tracking setup and algorithm that accurately
and reliably tracks the motion of microswimmers, specifically the unicellular green
alga C. reinhardtii. Our system represents a significant advancement over previous
microswimmer tracking methods, achieving reliable tracking even at higher image
densities of 0.06 particles per pixel (ppp), compared to 0.006 ppp for de-focused particle
tracing appraoch [82]. Our algorithm generates long trajectories with low reprojection
error, enabling detailed analysis of trajectory kinematics and cell surface interactions.

Analysis of our tracking data reveals that C. reinhardtii cells exhibit helical swimming
patterns with varying radii and pitch, as illustrated in Fig.2.19. Most cells swim
in elongated helices with larger pitches and shorter radii. Additionally, we find
that approximately 70% of the algae swim with left-handed chirality, consistent with
previous studies. We also determine the helical angular velocity, with an average
value of 1.23 ± 0.36 Hz. Lower rotation speeds result in more linear trajectories, and
variations in rotation speeds among cells suggest individual differences in flagellar force
asymmetries.

We characterize the diffusive behavior of C. reinhardtii cells by calculating
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parameters such as reorientation time, persistence length, translational diffusion
coefficients, and rotational diffusion coefficients. Our investigation of diffusion
parameters reaffirms the consistency of our measurements with previous research.
Importantly, we highlight the significance of considering dimensions when quantifying
diffusion. Specifically, our 3D measurement yields a translational diffusion coefficient
one order of magnitude higher than that previously reported in 2D measurements by
Barry et al. [78]. These findings underscore the necessity of accounting for the three-
dimensional nature of cell motion, as relying solely on a 2D approach may limit our
understanding of cell diffusion behavior.

Our investigation of C. reinhardtii cell surface interactions using our tracking
setup provide valuable insights into the mechanisms governing the accumulation of
motile microswimmers at solid interfaces. We differentiate between contact and non-
contact interactions in the near-wall region, observing consistent departure angles
during contact and symmetrical trajectories during non-contact scattering with planar
walls. Away from the wall, cells swimming toward the surface exhibit surface-directed
rotation, while those moving away from the surface display a bias towards surface-
directed rotation, resulting in hopping trajectories with periodic surface interactions.
Our findings demonstrate the significance of long-range hydrodynamic interactions in
surface cell accumulation, emphasizing the need to consider these interactions in efforts
to modulate cell-surface adhesion and biofilm growth through surface topography
design alongside near-wall scattering dynamics.

Overall, the results of our study demonstrate the effectiveness and versatility of
our tracking setup, which is a powerful tool for investigating the motile behavior of
microorganisms with high accuracy. In addition, our system can be utilized to study the
impact of environmental factors, such as light, gravity, and nutrient availability, on the
motility of various microorganisms. These investigations hold significant implications
for microbiology, ecology, and biotechnology.





3
PAIR-WISE INTERACTIONS OF

CHLAMYDOMONAS REINHARDTII

Microorganisms exhibit collective behaviors, such as biofilm formation, bioconvection,
and bacterial turbulence. The origins of these behaviors, whether they arise from
short-range, long-range, or a combination of both types of interactions, are not well
understood. This uncertainty stems from the fact that the nature of pairwise interactions
and their impact on microorganism trajectories has predominantly been explored through
numerical simulations, with only a limited number of experimental studies. To
address this gap, this chapter experimentally investigates the pairwise interactions of C.
reinhardtii cells to better understand how pairwise interactions between cells influence the
trajectories of microswimmers. Utilizing a unique multi-camera microscopy system, we
captured over 552,000 three-dimensional trajectories within the same volume of 2.5 × 2.5
× 2 mm3. These trajectories are reconstructed using an in-house tracking algorithm based
on projective geometry, allowing for the analysis of 35,135 algal pairs with interaction
distances ranging from 10µm to 100µm. Numerical simulations are also performed using
the spring-bead model to gain insights into our experimental observations. Our analysis
focused on both geometric and kinematic parameters of cell motion, investigating cell
scattering and acceleration during interactions. The results revealed significant variability
in scattering behavior, with small dependence on the distance between cells or incoming
angle. In contrast, simulated trajectories showed a clear dependence on these factors,
with scattering angles notably smaller than those observed experimentally. This difference
suggests that hydrodynamic forces alone cannot explain the observed behaviors; instead,
inherent motility factors such as variations in cell velocity and flagellar dynamics play
a critical role. Further analysis of tangential acceleration during interactions identified
distinct patterns of ‘hard’ and ‘soft’ collisions. We observed more instances of ‘soft’
collisions, where variations in acceleration were negligible during cell-cell interactions.
Overall, our findings suggest that although hydrodynamic interactions influence cell
trajectories, biological noise plays a more significant role.
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3.1. INTRODUCTION
Understanding the nature of pair-wise interactions is the first step towards unraveling
the collective behavior arising from microorganisms’ interactions. Collective behaviors
on the small scale, such as bioconvection [117], biofilm formation [116], and bacterial
turbulence [118], are reminiscent of macro-scale phenomena like bird flocking and
fish schooling and hint at the universal nature of such patterns [33]. Questions
naturally emerge regarding the origins and characteristics of collective phenomena in
microswimmers. A central question is to identify the nature of pair-wise interactions and
the relative importance of close and long-range interactions on these observed collective
behaviors [60–62]. Pair-wise interactions are the building blocks of collective behavior
and lead to the scattering of microorganisms [119–122], which, in turn, significantly
affect the overall behavior of the population [123–125]. Therefore, investigating pair-
wise interactions can provide critical insights into the mechanisms driving larger-scale
phenomena.

Numerical and analytical studies have been conducted to discern the nature of
interactions among microswimmers [119–133]. These interactions are influenced by
several factors, including the type of microorganism [119–122], whether the swimmer
can be characterized as extensile or contractile, and its shape[134]. Furthermore,
interactions between microswimmers can be broadly categorized into two types based
on the distance between the organisms: long-range (far-field) and short-range (near-
field) interactions. Long-range interactions are primarily driven by the hydrodynamic
forces generated by the microswimmers, which significantly influence the flow patterns
and hydrodynamic fields surrounding the microorganisms [121]. On the other
hand, short-range interactions are predominantly a result of direct collisions and
hydrodynamic forces, such as lubrication forces [61].

Early investigations into the interactions of microswimmers primarily focused
on hydrodynamic interactions in both the close-range and long-range [119, 120,
123, 126]. These studies are based on analytical representations of the swimmers,
including the squirmer model [135] and the three-bead swimmer model [136], which
are used in numerical simulations to predict the effects of hydrodynamic interactions by
determining swimmer trajectories. The studies demonstrate that these interactions can
be repulsive, attractive, or a combination of both, depending on factors like swimmer
type (extensile or contractile) and relative orientation. Additionally, hydrodynamic
interactions are most significant at close distances, where swimmer scattering is more
prominent, and become negligible at distances exceeding ten body lengths.

Recent studies have investigated the factors affecting interactions between
microswimmers, especially at close range. Using the squirmer model, Darveniza et
al. [122] showed that the angle at which swimmers approach each other can result in
different scattering states. These states include a permanent bound state, an orbiting
state (more common among extensile swimmers), a scattering state where swimmers
scatter in various directions, and a parallel swimming state where cells swim parallel to
each other while maintaining a constant distance. Similarly, Ziegler et al. [121] applied
the spring-bead model and found that the incoming angle also influenced the resulting

Part of this chapter has contributed to "J. Mehmood, K.Muller, and D. Tam, “Pair-wise interactions of

Chlamydomonas Reinhardtii”, Physical Review Fluids, 2024, In preparation".
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scattering behaviors, which ranged from orbiting to pair-wise swimming.

Together, these results highlight the complex nature of interactions between
microswimmers, leading to changes in motility that can be understood by examining
cell kinematics. However, translating these theoretical results to biological swimmers
in natural environments poses challenges. The analytical and numerical models
rely on assumptions such as steady-state modeling, identical velocities for both
swimmers and simplified flagellar shapes, which may affect the accuracy of interaction
predictions. The simplicity of these models limits their ability to capture the
complexity of the interactions between microswimmers. For example, C. reinhardtii
cells swim with an unsteady flow field where the stresslet sign changes with each
power and recovery stroke [137]. Furthermore, recent measurements indicate that the
unsteady flow component is equally important as the steady component within a few
body lengths [138]. Therefore, incorporating unsteady flow is essential in studying
hydrodynamic interactions. Additionally, motility is subject to biological noise, which
leads to microswimmers changing their swimming direction randomly and influences
the movement of microorganisms [3]. For example, biological noise in the motility
of bacteria and C. reinhardtii lead to a diffusive behavior that can be stronger than
the effect of long-range hydrodynamic interactions [61]. These important factors are
often overlooked in many analytical and numerical studies. Experimental studies are
crucially needed to elucidate pair-wise interaction between biological swimmers, but
such experiments are challenging, and only a few studies have attempted to characterize
pair-wise interactions, including a study of E. coli bacteria [139] and a study of protist
Paramecium caudatum [140].

The first experimental study of E. coli used a two-dimensional epifluorescent
microscopy technique to track the movements of the bacteria [139]. This study
measured the velocity correlations between individual cells and characterized the
correlation decay as a function of the inter-swimmer distances. The results suggested
that these bacteria interact with each other through the force-quadruple component
of the flow fields. The interaction mode was further investigated in an analytical
study [141]. This work proposed that the observed decay in velocity correlation,
attributed to the quadruple moment in Liao et al. [139], was instead predominantly
influenced by orientation correlations associated with a dipole moment, a factor not
accounted for in the experimental study of Liao et al. [139]. The second experimental
investigation focused specifically on interactions between Paramecium caudatum [140].
This organism is significantly larger than E. coli and other microorganisms like C.
reinhardtii. The study revealed the existence of both close and long-range interactions
between two cells, highly dependent on the initial orientation of the cells. It is
important to note that the experimental design, which included a flow device with a
small chamber between two flat plates, inherently restricted the motion of the micro-
swimmer. Consequently, surface interactions were also an influence on the observed
phenomenon.

Direct experimental observations of cell-cell interactions are challenging, and
few such studies have been attempted. An experimental setup to investigate pair-
wise interactions requires a high tracking accuracy to resolve small distances, an
unconstrained flow geometry to eliminate surface effects, and freely swimming cells.
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Meeting these conditions is challenging for conventional three-dimensional imaging
techniques, as discussed in chapter 2. Here, we use our unique multi-camera
microscope to investigate the pair-wise interactions of C. reinhardtii, a puller-type
microorganism. We image the same volume of 2.5 × 2.5 × 2 mm3 with four sCMOS
cameras recording from four different viewing angles. Three-dimensional trajectories
of microswimmers are reconstructed using an in-house tracking algorithm based on
the projective geometry framework. First, we focus on the scattering behavior of the
cells, examining the angles at which cells scatter when in close proximity. Our findings
indicate an asymmetry of scattering behavior, with one cell in each pair scattering at a
smaller angle compared to the other. Through comparison with numerical simulations
of scattering angles, we observe that biological noise, the inherent variability in the
swimming motion of microorganisms, influences these scattering behaviors. We then
explore the effects of interactions on the instantaneous motion of the cells by analyzing
trajectory curvature. Our numerical simulations demonstrate how the distance between
cells and their approach angle influence trajectory deflections due to hydrodynamic
interactions. Our experimental data is in qualitative agreement with the simulations
for cells coming within 15 µm of each other and approaching each other with parallel
incoming angles. Additionally, we investigate the variations in tangential acceleration
during close-range interactions, distinguishing between ‘hard’ and ‘soft’ collisions. In
‘hard’ collisions, at least one cell comes to a complete stop before continuing forward,
while ‘soft’ collisions exhibit no noticeable effect on cell acceleration. We observe more
instances of ‘soft’ collisions than ‘hard’ ones. Together, our findings show the effect of
hydrodynamic interaction on cell-cell interaction and highlight the need for theoretical
models to include biological noise as a critical factor to capture the complex dynamics
of these interactions accurately.

Below, we first describe our experimental methodology. Next, we discuss cell-
cell scattering in detail before examining the instantaneous effects of interactions on
three-dimensional trajectories, using both numerical simulations and our experimental
data. We then highlight the impact of pair-wise interactions on tangential acceleration.
Finally, we conclude this chapter by summarizing our findings and discussing their
implications.

3.2. METHODOLOGY

This section describes the methodology used in our study of pair-wise interactions of
C. reinhardtii. We begin by describing the tracking experiments conducted to capture
the movement and behavior of the microorganisms, including the algorithm used to
extract three-dimensional trajectories from the recorded images. We also describe the
curve-fitting algorithm used to compute relevant trajectory parameters for our analysis.
As our focus lies on understanding pair-wise interactions, we describe how we identify
trajectories corresponding to pair data within the tracking data and the methodology
employed to characterize these pairs. Finally, we outline the numerical model used in
conjunction with 3D tracking experiments to study pairwise interactions.
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3.2.1. CELL IMAGING AND 3D TRACKING
We performed cell imaging of a dilute suspension of C. reinhardtii with a concentration
of 5×104 cells per ml. The cells were loaded into a flow chamber made from an acrylic
sheet by laser cutting a hole with dimensions of 8 mm in diameter and 2 mm in height.
The chamber was sealed with two parallel glass coverslips and treated with BSA to
prevent cell adhesion to the surfaces. To capture the three-dimensional behavior of the
microorganisms, we used our unique multi-camera microscopy system, consisting of
four sCMOS cameras simultaneously imaging the same volume of 2.5× 2.5× 2 mm3. Red
laser light with a wavelength of 650 nm was used for illumination, which does not trigger
the phototactic response [27, 105]. Thirty-eight recordings were taken, each recorded
at 20 frames per second, resulting in a dataset of 2.28× 105 images per camera and a
cumulative recording time of 190 minutes.

Tracking was performed using our in-house algorithm based on the framework of
projective geometry. The algorithm involved initial cell detection using a peak finding
algorithm, followed by tracking within individual frames. Cell images in the different
camera views are matched in the projective geometry framework, enabling triangulation
in three dimensions. Subsequently, three-dimensional trajectories are obtained using
an iterative optimization algorithm. Data segmentation and filtration were performed
to remove the ghost tracks and artifacts due to algae blinking and poor reconstructions.
With this methodology, we extracted 5.52×105 trajectories, with an average track length
of 5± 1 seconds and an average re-projection error of 1.8± 0.4 µm. Details of the cell
culturing, microscopy setup, and tracking algorithm can be found in chapter 2.

3.2.2. CURVE FITTING
Following the precise tracking of cell pairs, we use a curve-fitting procedure on the
recorded trajectories. This step is important for three reasons. First, curve fitting
allows us to represent cell trajectories as continuously parameterized curves of the
form, X(t ) = [

X (t ) Y (t ) Z (t )
]
. This parametric representation can be analytically

differentiated to extract the relevant trajectory parameters, such as acceleration and
curvature. Second, this method reduces tracking-associated noise, which is inevitable
due to false identification and correspondences, as well as the effect of algae blinking
(see section 2.2.4 and 2.4.2). Lastly, the curve fitting procedure smooths the helical
characteristics of the cell trajectories. This helps distinguish between orientation
changes due to pair-wise interactions and periodic orientation changes resulting from
helical swimming patterns. Details of the curve fitting procedure are described below.

We begin from the trajectory parameterization based on piece-wise Legendre
polynomials as described in chapter 2.4.2. This yields continuous trajectories
with an average fitting error of less than 0.2 µm. Next, we use a least-square
minimization technique to approximate and smooth the curve by minimizing an energy
function. This energy minimization technique, specially designed for smoothing three-
dimensional curves, incorporates stretching, bending, and twisting energies, calculated
as follows [142]:

Estretch =
∫ ∣∣∣X′

(t )
∣∣∣d t , Ebend =

∫
κ2(t )

∣∣∣X′
(t )

∣∣∣d t , Etwist =
∫ ∣∣∣τ2(t )X

′
(t )

∣∣∣d t (3.1)
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Here, κ and τ represent the curvature and torsion of the curve, respectively. The
stretching energy represents the length of the curve while bending and twisting energies
depend on the curvature and torsion.

For our trajectories, we only minimized the stretching energy, as minimizing bending
and twisting energies resulted in excessive smoothing of the trajectories. To solve this
nonlinear optimization problem associated with the minimization of stretch energy
(Estretch) as described in Eq. 3.1, we use a quadratic energy function [142]:

Estretch =
∫ ∣∣∣X′

(t )
∣∣∣2

d t (3.2)

This quadratic formulation was chosen because it transforms the energy function
into a smooth and continuously differentiable form, simplifying the computation of
derivatives and the overall optimization process. Unlike the linear form, which involves
the integral of the norm and can lead to non-differentiability issues at points where
X

′
(t ) = 0, the quadratic form ensures that the gradient can be computed uniformly across

all points. Furthermore, the quadratic energy function naturally leads to linear equations
during optimization, enhancing computational efficiency and stability.

The objective function of our minimization problem combines the stretching energy
and least squares fitting error between the trajectory parametrization and the measured
position along the trajectory. This formulation differs from the method described in
section 2.4.2 due to the inclusion of the term for minimizing stretching energy, which
may lead to variations in the re-projected positions on the image. The complete
formulation is presented below:

min
β

N∑
i=0

∣∣X(ti ,β)−Xi
∣∣2 +γ

∫ N

0

∣∣∣X′
(ti ,β)

∣∣∣2
d t (3.3)

Here, γ is a weighting parameter, N represents the time steps along the trajectory,
and X(t ,β) defines our parameterized trajectory. The weighting parameter γ is critical
to our optimization problem and is calculated using N R̄/L, where R̄ represents the
average trajectory radius, and L is the trajectory length. Details of the solution to this
optimization problem are described in Appendix B.2.

Fig. 3.1 shows how a parameterized trajectory is fitted to a pair of cell trajectories.
In Fig., 3.1 A, the green and red dots represent the trajectories directly obtained from
the triangulated points directly obtained from the three-dimensional tracking algorithm.
The solid black lines illustrate the parameterized trajectories obtained from our curve-
fitting algorithm. Our approach regularizes the periodic helical movements inherent
in the cell trajectories. It bears emphasis that the regularization applied by our curve-
fitting algorithm does not change the overall direction of cell movement, which is still
preserved. In Fig. 3.1B, the dots represent the curvatures (κ) computed from the
original trajectories and the solid lines the curvature deduced from the parameterized
trajectories for the same tracks a and b in Fig. 3.1A. The original trajectory data contain
significant noise, which is effectively reduced in the parameterized trajectories.
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Figure 3.1: [A] Three different views of the trajectories of two algae cells, denoted as (a) and
(b), in three-dimensional space. Green and red dots represent the cells’ trajectories. The first
plot presents a three-dimensional perspective, while the second and third plots show the XZ
and YZ plane views, respectively. The solid black lines in each plot illustrate the parameterized
trajectories obtained from the curve-fitting algorithm. [B] Curvature of the original and smoothed
trajectories for cell (a) (left) and cell (b) (right). The solid black lines correspond to the curvature
of the smoothed trajectories. The dots represent the curvature of the unsmoothed trajectories,
highlighting the original noise level.

3.2.3. DEFINITION AND TRACKING OF PAIR INTERACTIONS

In this study, we identify pair interactions as events where two algae cells first swim
towards each other, then come within a distance of at most 100 µm, and subsequently
move away from each other. The distance between two cells is determined at each
time from the three-dimensional trajectories of each cell. Fig. 3.2 is a representative
illustration of the tracking of a pair interaction. Each image row in Fig. 3.2 A displays
the sequence of cell images captured by one of the cameras, overlaid with the cells
detected using our peak finding algorithm (see section 2.2.4 for more details). The image
sequence extends from t =−0.25s to t = 0.25s, with t = 0 defined as the time step when
two cells are at a minimal distance.

At the time step t = −0.25 s, both cells are detected separately in each of the four
cameras. As the cells approach each other and their images begin to overlap, the two
cells are no longer individually detected in all four cameras. For the pair tracked in
Fig. 3.2 A, the two cells are not separately detected at some point during the sequence in
each camera view. These occlusions can lead to uncertainties in cell detections and cell
matching across the different camera views and lead to unreliable tracking. Our multi-
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camera setup is advantageous for tracking these close interactions because, in most
cases, at a given time steps, cells can be separately detected in at least one of the four
camera views. The separate identification of cells in at least one of the cameras allowed
our three-dimensional tracking algorithm to successfully reconstruct the positions of the
algal cells, as demonstrated in Fig. 3.2 B and C. In this pair interaction, the cells pass each
other at a minimum distance of 1.6 body lengths. Fig. 3.2 D displays the re-projected
trajectories in each camera plane, illustrating the accurate tracking of algae cells.

In some cases, the cell image overlapped for over 0.5 seconds in at least two cameras.
Although the cells were detected separately in at least one camera, this overlap could
lead to uncertainties in tracking. These uncertainties lead, in some cases, to cell images
switching from one track to the other and being assigned to the wrong trajectory before
and after the point of the nearest approach. This issue was detected through manual
inspection focused on cell pairs with a minimum distance of less than 30 µm, where cell
images can overlap. The re-projected positions of these pairs were reviewed in a video
sequence from t =−1s to t = 1s. The velocities of the trajectories were also checked for
consistency before and after the point of minimum distance, as cells are expected to have
a similar velocity pattern before and after passing each other. Trajectory switching was
found in about 5% of the inspected pairs. A correction procedure was implemented to
resolve this. Further details about the trajectory switching and the correction procedure
are provided in Appendix B.1.

3.2.4. PAIR SELECTION AND CHARACTERIZATION

For our analysis, we focus on pairs that meet the following criteria. First, both cells
in a pair must exhibit an average velocity greater than 50 µm/s, ensuring that we only
consider motile swimming cells. We only considered trajectories that include at least one
second of tracking data before and after the closest approach. This selection criterion
ensures that we have sufficient trajectory information to examine the behavior of the
pairs over time. Finally, we only kept pairs where the two cells are the closest cells to each
other at each time step. This temporal restriction allows us to investigate the immediate
interaction between the cells without the influence of any third cell close by.

Pair interactions are defined using two key parameters: the approach angleϑ and the
cell-cell distance at the point of nearest approach dmin. We define the incoming angle, ϑ,
as the angle between the two unit vectors (T̂ a and T̂ b) tangent to the trajectories of two
swimmers, “a” and “b”, as they approach each other. The unit vectors (T̂ a and T̂ b) are
obtained by fitting a parameterized line to the respective trajectories from t =−1s to t =
−0.5s. This is illustrated in Fig. 3.3, where t = 0 marks the time of closest approach and
dmin is the minimum distance between the swimmers. These two parameters have been
used previously in studies considering cell-cell scattering and interaction dynamics [119,
121, 122].

Our dataset samples the full range of ϑ and dmin. Fig. 3.4A presents the joint
distribution of minimum distances and incoming angles for all the algae pairs recorded
in this investigation. We acquired 35,135 algae pairs with a cell-cell distance at the
nearest approach dmin ranging from 10 µm to 100 µm. The number of pairs in our
dataset increases with dmin, see Fig. 3.4A. Fig. 3.4B shows the distribution of incoming
angles ϑ in our dataset. While most pair interactions have an incoming angle close
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Figure 3.2: Tracking of algae cells during close interactions. [A] Series of image frames captured for
each of the four cameras, showing detected algae and their midpoints, for successive time steps.
The negative time steps depict the approach phase of the cells, while positive time steps show the
cells moving away from each other. At t = 0, the cells are at their minimum separation distance in
physical space, and their images overlap in each camera view. [B] The three-dimensional positions
of both algal cells, triangulated using the detections from multiple cameras. Arrows indicate the
direction of motion. [C] A detailed, zoomed-in view of the triangulated positions during the closest
approach phase, demonstrating the precision with which the positions are determined despite
overlapping images. [D] The re-projection of the three-dimensional tracks onto the camera plane
effectively illustrates the accurate tracking of algal cells through various stages of their interaction
and validates the robustness of the tracking algorithm during close encounters. Note that the
minimum separation distance between the cells during this interaction is 1.6 body lengths.
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Figure 3.3: The relative geometry for the trajectories of swimmer a (green) and swimmer b
(red). t = 0 represents the time of the closest approach, dmin denotes the distance at the closest
approach, and T̂ a and T̂ b are the unit direction vectors obtained by fitting a parameterized line
from t = −1s to t = −0.5s. Incoming angle, denoted by ϑ, represents the angle between T̂ a and
T̂ b .

Figure 3.4: [A] Joint distribution of minimum distance (dmi n ) and incoming angle (ϑ) for all the
algae pairs. [B] The probability density function (pdf) of incoming angle (ϑ) for all the algae pairs.
The solid red lines show the theoretical distribution, sin(ϑ)/2, of the incoming angle (ϑ) between
two particles moving randomly in three dimensions.
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to π/2, we observed a slight under-representation of angles between 0 and π/2 and
a slight over-representation between π/2 and π compared to the theoretical isotropic
distribution (solid red line in Figure 3.4B). The Wasserstein distance between the two
distributions is only about 11◦, indicating that the deviation from isotropic behavior is
minimal. The difference between the theoretical and measured distributions arises from
our sampling method, which preferentially selects pairs of cells that are approaching
each other. This results in an inherent bias towards interactions at angles between π/2
and π. This bias is due to the similar velocities of the cells, which make encounters from
the front more probable than from behind. Despite this bias, the observed distribution
closely resembles the isotropic distribution, suggesting that in our experiment, cells
swim mostly without a preferred direction.

3.2.5. NUMERICAL SIMULATIONS

This section outlines the approach used in the numerical simulations we performed
to gain insight into our 3D study of pair-wise interactions. These simulations provide
a theoretical framework to compare with our experimental results and to help in
understanding the influence of ϑ and dmin on the scattering behavior during cell-cell
interactions of C. reinhardtii.

We use the same spring-bead model used by Lushi et al. [143] to study surface
scattering of C. reinhardtii. This model was originally introduced to study the dynamics
of confined suspensions [144, 145]. The spring-bead model is a simple model that
captures the dynamics of the microswimmers’ motion and has been applied in various
contexts, including cell-surface scattering [143], investigating the effects of swimmer
size and shape [146], and analyzing pair-wise interactions [121]. In this model, each
C. reinhardtii cell is represented as a three-bead system comprising a body bead and
two smaller beads representing the flagella, each with half the radius of the body bead.
The three beads are linked to each other with linear springs. The motion of the bead
is deduced from a force balance on each bead. The forces applied on each one of
them include: (i) the elastic forces, due to the linear springs connecting the beads (ii)
the hydrodynamic drag forces (iii) a propulsion force, which acts only on the flagellum
beads. The swimming velocity is deduced from the condition that the entire swimmer
is force and torque-free. The hydrodynamic drag force on each bead is computed
using a generalized Stokes’ law, which depends on the velocity of the beads and on
the background flow velocity generated by the motion of the other beads. The flow
field generated by each bead is modelled with a regularized Stokeslet at each bead
location. For simulations involving interactions between two swimmers, we account
for hydrodynamic interactions by updating the fluid velocities at each bead’s location at
every time step, reflecting the influences of all beads from both swimmers. A complete
description and validation of this model is provided in appendix B.3.

To investigate pair-wise interactions in our study, we consider two three-bead
swimmers, “a” and “b”, as shown in Fig. 3.5. The positions of each swimmer are described
using spherical coordinates, with r the radial distance from the origin, θ the polar angle,
and φ the azimuthal angle. θ is measured from the positive Z-axis and ranges from 0
to π, and φ is measured from the positive X-axis in the XY plane towards the projection
of the radial line r and ranges from 0 to 2π. The distance between two swimmers, d ,
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Figure 3.5: Schematic illustration of the spherical coordinate system used to define the positions
and motions of two three-bead swimmers, labeled as swimmer a and swimmer b. The coordinates
(r,θ,φ) describe the position of each swimmer, where r is the radial distance from the origin, θ is
the polar angle measured from the positive Z-axis, and φ is the azimuthal angle measured from
the positive X-axis on the XY plane. The distance d between the swimmers is represented by the
magnitude of the vector difference between their positions, and ϑ represents the angle between
their velocity vectors Va and Vb .

corresponds to |rb − ra |, where rb and ra are the position vectors of each swimmer.
Additionally, the approach angle ϑ is defined as the angle between the initial velocity
vectors of each swimmer Va and Vb at t = 0.

To simulate hydrodynamic interactions between two three-bead swimmers, “a” and
“b”, we initialize the positions, velocities, and directions of motion at t = 0. Swimmer “a”
is located at ra = 200 µm, θa = π, and φa = 0, moving in the positive Z-direction with
a velocity of Va . The starting coordinates of swimmer “b”, rb , θb , and φb , are chosen
within specific ranges: rb from 200 µm to 400 µm, θb from 0 to π, and φb from 0 to
π/4. The direction of motion for swimmer “b” is adjusted by varying Vb . The propulsion
force for each swimmer is adjusted to achieve specific velocities: swimmer “a” moves
at Va = 100µm/s, and swimmer “b” at Vb = 112µm/s. These velocities are the typical
swimming speed of C. reinhardtii, with the relative speed of 12 µm/s accounting for
scenarios where one swimmer approaches the other from behind whenϑ is approaching
zero. The swimmers’ trajectories are then computed at each time step and take into
account hydrodynamic interactions as detailed in Appendix B.3. We perform 7500
simulations by varying rb , θb , φb , and Vb for each simulation. These simulations yield a
range of dmin and ϑ, and the distribution of dmin and ϑ are represented in Fig. 3.6 similar
to to the representation for our experiments Fig. 3.4.

Fig. 3.7 A presents the trajectories of three pairs of simulated swimmers to illustrate
the numerical approach used in our simulations. The larger spheres represent the body,
and the smaller spheres represent the flagella. Swimmer a in each pair starts at the same
location, swimming at 100 µm/s in the positive Z direction. Swimmer b moves with a
velocity of 112 µm/s, and the initial position of this swimmer is different in each of the
three examples, creating different incoming angles: Pair I with an angle (ϑ) of π/10 and
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Figure 3.6: [A] Joint distribution of minimum distance (dmi n ) and incoming angle (ϑ) for all the
simulated pairs. [B] The probability density function (pdf) of incoming angle (ϑ) for all the algae
pairs. The solid red line shows the theoretical distribution, sin(ϑ)/2, of the incoming angle (ϑ)
between two swimmers moving randomly in three dimensions.

a minimum distance (dmin) of 18 µm; Pair II with ϑ= π/3 and dmin = 14µm; and Pair III
with ϑ= 5π/6 and dmin = 18µm.

In the absence of hydrodynamic interactions, these swimmers would travel along
straight trajectories. Here, each swimmer influences the swimming velocity of the
other through hydrodynamic interactions, and we can characterize this scattering by
quantifying the changes in direction. The scattering is stronger for Pairs I and II
compared to pair III, even though for each pair, the cells came within a similar minimal
distance dmin to each other. We observe that the scattering of the swimming direction
begins before the swimmers reach the point of minimum distance, see in particular Pair
I. These preliminary observations motivate a more detailed exploration in the results
section, where we will expand our examination to cover the full parameter space using
this simulation setup.

3.3. CELL-CELL SCATTERING DYNAMICS

3.3.1. 3D TRAJECTORIES AND SCATTERING BEHAVIOR: ANALYSIS OF

EXAMPLE PAIRS

We begin by presenting nine examples of pairs approaching each other at different
approach angles ϑ to illustrate the nature of our dataset. For these nine pairs, the
minimum approach distance between the cells ranges from dmin = 9µm to 29 µm.
Fig. 3.8 represents the reconstructed trajectories of these pairs, which are divided into
three distinct categories based on their incoming angles: parallel (ϑ≈ 0), perpendicular
(ϑ ≈ π/2), and anti-parallel (ϑ ≈ π). For each category, we present the trajectories
associated with three pairs. The solid colored lines correspond to the three-dimensional
trajectories, and the dotted colored lines are the projections of the trajectory in the best-
fitting 2D plane. The length of the corresponding directional arrow indicates the velocity
of each swimmer. Fig. 3.9 presents the original camera images associated with these
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Figure 3.7: Example three-dimensional trajectories of the three-bead model simulation for pair
interactions: I) ϑ=π/10, dmin = 18µm, II) ϑ=π/3, dmin = 14µm, III) ϑ= 5π/6, dmin = 18µm. The
larger sphere represents the body bead, while the smaller spheres represent the flagellar beads.
The velocities of swimmer a and swimmer b are 100 and 112 µm/s, respectively.

nine pair interactions together with the reprojected trajectories on the camera plane.
For each pair, the cell images overlap in at least one camera view, which indicates that
the cells come within a small distance of each other.

To quantify the observed changes in trajectories, we define the scattering angles α
for all trajectories displayed in Fig. 3.8. The scattering angle quantifies the extent of
directional changes in a cell’s trajectory resulting from an interaction with another cell.
We compute this angle from the change in the direction of the tangential vector to the
cell’s trajectory before and after reaching the point of closest approach (see Appendix B.4
for more details). The computed scattering angles for each trajectory are shown in
Fig. 3.10. For Pair I, IV, and VII, the scattering anglesα are belowπ/6 for both trajectories,
indicating only minor deflections from the initial paths. Pair II, V, and VIII scatter
asymmetrically , with one cell deviating considerably from its path with α ∼ π/3 while
the other continues with minimal directional change α ≤ π/6. Lastly, Pairs III, VI, and
IX exhibit larger scattering angles for both cells with α≥π/6. Our dataset includes three
distinct scattering behaviors: i) no deflection for both cells, ii) significant deflection of
only one of the two cells, and iii) both cells scattering at high angles. All three of these
scattering behaviors can be observed for different values of the approaching angle ϑ.

3.3.2. SCATTERING BEHAVIOR OF MICROSWIMMERS: THE INFLUENCE OF

BIOLOGICAL NOISE
In this section, we examine the scattering dynamics of 1065 experimental pair
interactions coming within a minimal distance of at most dmin ≤ 30µm. In
characterizing the nine example pairs, we observed asymmetry in the scattering for
several pairs. Consequently, we designate the cell associated with the lower scattering
angle in each pair as ’Cell a’ and the one with the higher scattering angle as ’Cell b’.
First, we consider the results of our 3D tracking experiments. The distribution of αa ,
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Figure 3.8: Three-dimensional trajectories from experiments for pairs under different incoming
angles (ϑ), ϑ ≈ 0 (top row, pairs I-III), ϑ ≈ π/2 (middle row, pairs IV-VI), ϑ ≈ π (bottom row, pairs
VII-IX), with the closest approach distances (dmi n ) of I) 20 µm, II) 29 µm, III) 17 µm, IV) 9 µm, V)
27 µm, VI) 21 µm, VII) 12 µm, VIII) 28 µm, IX) 27 µm. The solid lines represent the 3D trajectories,
while dotted lines represent 2D projections. The black marker indicates the point of minimum
approach. The sphere at the start of each trajectory has a radius of 5 µm. Directional arrows are
scaled to represent the swimmer’s average velocity, with the reference arrow located at the bottom
left of the figure. The axis units are in µm.

the scattering angles for ’Cell a’, is shown in Fig. 3.11A. These cells, which exhibit lower
scattering angles, predominantly scatter at an angle smaller than π/4, with a median
of π/11(17◦). The scattering angles for ’Cell b’, αb in Fig. 3.11 B, exhibit a broader
range of angles, extending from 0 to π/2 with a median of π/5(36◦). ’Cell b’ can exhibit
scattering angles exceeding π/2, indicative of significant directional change. For each
pair, we compute the difference between αa and αb and present the distribution of
this difference in Fig. 3.11C. For most pairs, the difference in scattering angle ranges
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Figure 3.9: Cell images from one of the cameras for the trajectory pairs from Fig. 3.8. Solid lines
represent the reprojected tracks in the image plane. The color of the lines is the same as the three-
dimensional trajectory color from Fig. 3.8

between 0 to π/4, with a median value of π/12(15◦). Only a few pairs have a difference
in scattering angle of zero, corresponding to a symmetric scattering. For most pairs, the
scattering is asymmetric and similar to the behavior of pairs II, V, and VIII illustrated
in Fig. 3.10. This asymmetric scattering observed in our experiments is in contrast
to the results from earlier analytical and theoretical studies [121, 122], which reported
symmetric scattering for cell pairs. In these studies, the cells are identical to each
other and have the same velocity. In our experimental study, the cells approach each
other at different velocities and angles; the interactions between the flagella and the
cell body depend on the phase of the flagellar beating stroke. The conditions under
which pairwise interactions occur are complex and deviate from the often ideal initial
conditions set in theoretical studies, resulting in the asymmetry of scattering angle
observed in our experiments.
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Figure 3.10: Scattering angle (α) for each cell in pairs shown in Fig. 3.8 for different incoming angle
(ϑ). The color of the markers correspond to the trajectory color from Fig. 3.8.

Figure 3.11: Distribution of scattering angles (α) of [A] cell a and [B] cell b in experimental cell pairs
with dmin ≤ 30µm. [C] The difference in scattering angles between cell a and b in the experiments.
The dashed lines represent the median of each distribution.

We compare these results with our numerical simulations. These simulations, like
our experiments, consider cell pairs coming within a minimum distance dmin ≤ 30µm,
and we use the same terminology for cells ‘a’ and ‘b’. In our methodology, we detailed
the selection of initial conditions to account for variations in velocity and incoming
angle (see Section 3.2.5), reflecting the non-symmetric nature of the cells and their
interactions. Fig. 3.12 illustrates the distribution of scattering angles for ‘Cell a’ and ‘Cell
b’ in the simulations. Here, ‘Cell a’ scatters with a median angle of π/28 (approximately
7◦), and ’Cell b’ with a median angle of π/17 (approximately 10◦). These values are
noticeably lower than those observed in the experimental data. We find the difference in
scattering angles between ‘Cell a’ and ‘Cell b’ as shown in Fig. 3.12C, we find an average
difference of 2◦.

Our numerical simulations show that when the initial conditions are not symmetric
in terms of velocity and incoming angles, the resulting distribution of scattering angles
is also asymmetric, with one cell scattering more than the other, qualitatively similar
to the experimental data. The distributions of scattering angles in the experiments are
much broader and have higher median values than those observed in the simulations.
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Figure 3.12: Distribution of scattering angles of [A] cell a and [B] cell b for numerical simulations
of cell pairs within a 30 µm distance. [C] The difference in scattering angles between cell a and b
in the simulation. The dashed lines represent the median of each distribution.

This broader distribution and higher median values in experiments are likely due to the
stochasticity of the biological system inherent in real cellular interactions. To further
investigate the underlying phenomenon contributing to these differences, we consider
the scattering behavior of isolated cells from our experiments. Isolated cells provide
a baseline to characterize the inherent stochasticity in the dynamics of C. reinhardtii
in the absence of interaction with other cells. We define isolated cells as the cells for
which the minimum approach distance to the nearest neighboring cell is no less than
dmin ≥ 200µm. At such distances, the effect of hydrodynamic forces is almost zero, and
cells swim in isolation. This is supported by previous studies showing that at distances
greater than 100 µm, both steady and unsteady velocity components fall below 1 µm/s,
establishing a reference state for non-interacting cells [138, 147].

Figure 3.13: Distribution of scattering angles of isolated cells that swim at minimum distances
greater than 200µm from any other cell. The dashed line represents the median of the distribution.

Fig. 3.13 presents the distribution of scattering angles for isolated C. reinhardtii
cells. These cells exhibit an average scattering angle of π/8 (approximately 22◦).
This measurement provides a baseline, indicating that the swimming direction of C.
reinhardtii cells, deviates on average by 22◦ due to inherent biological noise. For the cells
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with dmin ≤ 30µm (as shown in Fig. 3.11), particularly for cell “b”, we observe a higher
scattering angle, more than the baseline of isolated cells by about 14◦. This increased
deviation can be attributed to interactions between cells at close distances, which can
involve both steric and hydrodynamic interactions.

Previous analytical studies have reported the existence of bound states for a pair
of interacting microswimmers, leading to a permanent state of parallel or orbiting
swimming [121, 122]. In our large set of experimental data, we did not record any
instance of interaction where microswimmers become hydrodynamically entangled and
remain trapped in each other’s neighborhood. Our experimental data consists only
of scattering events, where cells continue on their trajectories without forming any
permanent bonds. The absence of such states can be attributed to two main factors.
Firstly, permanent bound states necessitate cells to swim in the same direction at similar
velocities. Given the variations in velocity, orientation, and beating frequency of cells in
our experiment, the likelihood of this naturally occurring is low. Secondly, the stochastic
motility inherent in our experimental data may result in changes in direction that disrupt
potential bound states. This instability suggests that permanent bound states might not
withstand such disruptions. The discrepancy between our observations and theoretical
predictions underscores the need for theoretical models to incorporate the complex
dynamics and behaviors microorganisms exhibit in natural environments.

3.3.3. SCATTERING ANGLES: INFLUENCE OF MINIMUM DISTANCE AND

INCOMING ANGLE

We proceed by examining the influence of the incoming angle ϑ and the minimum
cell-cell approach distance dmin on the scattering dynamics. We first consider the
influence ofϑ and divide our dataset of pair interactions into three categories depending
on whether the cells are initially swimming in: parallel directions with ϑ = 0 − π/3,
perpendicular directions with ϑ = π/3 − 2π/3 and anti-parallel directions with ϑ =
2π/3 −π. In the previous section, we have discussed how pair interactions are often
asymmetric, with one cell scattering at a much larger angle than the other. We, therefore,
characterize an interaction event by reporting the larger scattering angle of the pair,
αb . Fig. 3.14A&C presents our experimental measurements of scattering angles αb

for all three approach angle categories for both our experiments and simulations. In
Fig. 3.14A&C, we represent the cumulative distribution function (CDF) of αb instead of
the distribution functions to allow a clearer and more straightforward comparison of the
distributions for the three ϑ-categories on a single plot. The value of the cumulative
distribution function CDF(αb) represents the fraction of all interaction events for which
the cell is scattered at an angle smaller or equal to αb .

For the experiments, we observe no significant difference between the CDFs ofαb for
perpendicular and anti-parallel approaches. We find a distinct, albeit small, difference
between the CDF of αb for parallel incoming angles compared to perpendicular and
anti-parallel approach angles, where CDF(αb) is lower for parallel compared to anti-
parallel approaches. Surprisingly, this means that the cells scatter more for a parallel
approach compared to a head-on anti-parallel approach. For example, CDF(αb =
π/4)=0.63 for a parallel approach, while it is 0.73 for the other two categories. This
indicates that a higher proportion of cells scatters at more than π/4 for parallel
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approaches (37%) compared to anti-parallel and perpendicular approaches (27%). In
our numerical simulations, we find a qualitatively similar behavior, where more cells
scatter at higher angles during parallel approach compared to perpendicular and anti-
parallel approaches, see Fig. 3.14C.

Figure 3.14: Cumulative density functions (CDFs) of scattering angles for cell “b” across different
incoming angles categories for [A] Experiments, [C] Simulations, and minimum distances
categories for [B] Experiments and [D] Simulations.

As mentioned before, our experimental dataset describes pair interactions involving
two different biological cells with different velocities, leading to intrinsically asymmetric
scattering. The parallel approaches at small ϑ involve two cells with different initial
velocities, which are almost parallel. For these pairs, the faster cell slowly approaches the
slower cell. These interactions are, therefore, characterized by lower relative velocities
between the cells and interactions that last longer. The faster cell approaches the slower
cell from behind, and the long interaction times imply that the orientation of both cells
is more significantly affected by the flow field of the other. We then turn to our numerical
model to understand why cells scatter at higher angles for parallel approaches. The
velocity and vorticity fields of the three-bead swimmer model are represented in Fig.
3.15. For this model, the magnitude of the flow velocity behind the cells, Z ≤ 0 in
Fig. 3.15 A., is higher and extends over longer distances compared to the flow field
in front of the cells. The flow fields are associated with a distribution of vorticity,
represented in Fig. 3.15B, which induces a rotation of a neighboring swimming cell.
The vorticity fields generated in the vicinity of the cell body associated with the longer
interaction times of parallel approaches contribute to the significance of hydrodynamic
interactions and lead to the increase in scattering angle forϑ= 0−π/3, which is observed
in our numerical simulations.

We now turn to the influence of the cell-cell distance on the interaction dynamics.
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Figure 3.15: [A] Velocity field and [B] Vorticity field and flow streamlines induced by a three-bead
swimmer model, presented in the plane containing the three beads. The green circle represents
the location of the body bead, while the gray circle represents the flagellar bead. Solid blue
lines define regions based on approach angles relative to the swimmer: parallel (ϑ = 0 to π/3),
perpendicular (ϑ=π/3 to 2π/3), and anti-parallel (ϑ= 2π/3 to π).

We investigate the influence of the minimum cell-cell approach distance dmin and
consider interactions for which cells come within a distance of dmin = 0− 15µm, 15−
20µm, 20− 25µm and 25− 30µm. As previously, we report the CDF of αb for each of
these distances for both experiments and simulations as shown in Fig. 3.14 B & D. In
our experiments, for the closest approaches dmin = 0−15µm, 33% of the cells scattered
at angles greater than π/4, as CDF(π/4) = 0.77 (Fig. 3.14B). In contrast, for distances
greater than 15 µm, only about 18% of cells scattered at similar angles, CDF(π/4) =
0.82, demonstrating small variations across different distance categories as shown by
the overlapping CDF values (Fig. 3.14B). Fig. 3.14 D presents the corresponding results
from the numerical simulations. For a given αb , the value of the CDF is lower when the
distance of minimal approach dmin is smaller. Hence, cells scatter on average at higher
angles when they approach each other at smaller distances. This result is expected
considering that the simulations only account for hydrodynamic interactions, which are
stronger at smaller distances from the cell body, as can be seen in Fig. 3.15.

Both experimental and simulation data indicate that the scattering behavior of the
cells is affected within the close range of dmin ≤ 15µm. The gradual decrease in scattering
angle at distances greater than 15 µm, characterized in simulations, is not present in the
experimental data. Many biological factors and variations in the cell behavior are not
accounted for in our simulations, such as stochastic motility or variations in flagellar
position and phase. These behaviors contribute to the biological noise and to the
stochasticity in our data, leading to random cell orientations. For interactions at larger
cell-cell distances, these effects could be dominant and have a larger contribution to
the cell scattering compared to the hydrodynamic forces, which decrease with cell-cell
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distance.

3.4. EFFECT OF CELL-CELL INTERACTION ON TRAJECTORY

CURVATURE
In the previous sections, our analysis focused on the scattering of cells coming within
a minimum distance of 30 µm. While the scattering angle provides a measure of
deflection for the overall trajectory, it does not capture the instantaneous changes in cell
orientation. To quantify these changes, we extend our investigation to examine the local
changes in direction and consider the curvature κ along the trajectory. κ is computed
using the Frenet-Serret frame of reference as:

κ(t ) =

∣∣∣X′
(t )×X

′′
(t )

∣∣∣∣∣X′ (t )
∣∣3 . (3.4)

Here, X
′
(t ) and X

′′
(t ) represent the first and second-time derivatives of the

parameterized continuous curve, respectively, see section 2.4.2 for more details. This
analysis is not limited to pairs coming within 30 µm but includes all pair interactions
from our 3D tracking experiments and simulations within an extended minimum
distance (dmin) of up to 100 µm. Specifically, we aim to quantify the changes in the local
curvature of the trajectory, independent of how close the cells eventually approach each
other. Our previous discussion on scattering angles highlighted the strong influence of
biological noise in our experimental data, and we expect an equally strong influence on
the measurements of local curvature. Therefore, we first analyze the results from our
numerical simulations, which do not include the effects of biological noise.

3.4.1. NUMERICAL SIMULATIONS: EFFECT ON TRAJECTORY CURVATURE
We first present the results of numerical simulations for three specific pairs of swimmers
corresponding to different approach angles ϑ, see Fig. 3.7A. The larger spheres represent
the body of the swimmers, while the smaller ones represent the flagella. Swimmers “a”
and “b” have a velocity of 100 and 112 µm/s, respectively. These pairwise interactions
are characterized by: ϑ = π/10 and dmin = 18µm for pair I, ϑ = π/3 and dmin = 14µm
for Pair II, and ϑ = 5π/6 and dmin = 18µm for Pair III. For Pairs I and II, which
have comparatively lower incoming angles, we observe larger directional changes in
the swimming direction. The cell direction begins to change and deviate from the
original direction before the swimmers reach the minimum approach distance. This is
especially clear when considering Pair I. In these simulations, the deviations are due to
hydrodynamic interactions between the swimmers.

Fig. 3.7B and C present the relative distance between the swimmers and the
curvature of each trajectory as a function of time through the interaction. For Pair I,
the curvature κ of the trajectory for both cells is initially zero, indicating that cells are too
far from each other for hydrodynamic interactions to affect the trajectory significantly.
As the cells come within 50 µm of each other, κ begins to increase, see Fig. 3.7B and C.
A similar increase in curvature is observed for Pair II as the cells approach each other,
highlighting the effects of hydrodynamic interactions. In the case of Pair III, while κ also
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increases as the cells move closer, the values are lower than those for Pairs I and II. These
smaller curvature values lead to smaller changes in the overall swimming direction for
Pair III compared to Pairs I and II, as shown in Figure 3.7A. This demonstrates that
κ provides a local measure of the magnitude of cell-cell interactions and significantly
depends on the incoming angle ϑ. These results confirm our previous discussion that
ϑ influences the duration over which the cells interact with each other’s flow fields.
For example, in Pair I, where cells approach each other in a parallel configuration,
the relative velocity remains low, resulting in longer interaction times and significant
changes in cell trajectories. Conversely, Pair III, with cells swimming in nearly anti-
parallel directions, experiences shorter interaction periods, leading to less pronounced
scattering effects and minimal changes in curvature.

We expand this discussion to include an analysis of all 7500 pairs from our
simulations, including the full range of ϑ and d . Fig. 3.17 presents the distribution of
curvature along the trajectory for the same three categories of trajectories introduced
in section 3.3.3: [A] ϑ = 0−π/3 (parallel approach), [B] ϑ = π/3− 2π/3 (perpendicular
approach), and [C] ϑ = 2π/3 − π (anti-parallel approach). The x-axis represents the
distance d between cells and ranges from d = 10 − 100µm. For each value of d , the
colormap represents the distribution of curvature κd . The insets in Fig. 3.17 reproduce
the histogram of the distribution of curvatures within the smallest 10 to 20 µm distance
bin. The curvature distributions κd are centered around lower values as the distance
between the cells d increases. When cells are separated by more than d ≥ 80µm, the
curvature values approach zero, indicating that hydrodynamic forces have no effect on
cell trajectories at such distances. This decrease in curvature is observed regardless of
the incoming angle (ϑ), see categories Fig. 3.17A, B, C.

For small values of d , we find notable differences in the distribution of curvatures for
different approach angles. From the insets in Fig. 3.17A, we can directly observe that the
peak value of the curvature distributions is higher for parallel approaches (ϑ= 0−π/3 in
Fig. 3.17A) compared to the distributions for perpendicular and anti-parallel approaches
(Fig. 3.17B & C). These higher curvatures are found for cell-cell distance as high as d =
40µm. This observation is related to the results from section 3.3.3, where we reported
larger scattering angles for parallel approaches.

To quantify the difference between the distributions of curvature, we compute the
1-Wasserstein distance [148]. This metric represents ‘the work’ required to transform
one distribution into another and is suitable for our analysis involving 1-dimensional
distributions of κd . We use the 1-Wasserstein distance to compare the curvature
distribution κd at a given distance d to a reference distribution, which we choose to
be the curvature distribution κ∞ when the cell-cell distance is large and hydrodynamic
interactions are small. The 1-Wasserstein distance is calculated as follows:

W (κd ,κ∞) =
∫
R
|Fd (x)−F∞(x)|d x (3.5)

Here, Fd and F∞ are the cumulative distribution functions(CDFs) of the distributions
κd and κ∞, respectively. This formulation computes the integral of the absolute
differences of CDFs between these two distributions. κ∞ is taken as the curvature
distribution for d = 90−100µm. The value of W between different κd and κ∞ measures
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Figure 3.16: [A]Example three-dimensional trajectories from the three-bead model simulation for
pair interactions: I) ϑ=π/10, dmin = 18µm, II) ϑ=π/3, dmin = 14µm, III) ϑ= 5π/6, dmin = 18µm.
The larger sphere represents the body bead, while the smaller spheres represent the flagellar
beads. The velocities of swimmer “a” and swimmer “b” are 100 and 112 µm/s, respectively. [B]
Relative distance of swimmers for each pair as a function of time, relative to the moment of closest
approach, t0=0. [C] Variations in trajectory curvature as a function of time, relative to the moment
of closest approach t0=0, for respective pairs.

the influence of hydrodynamic interactions within different distance ranges. These
calculations are performed separately for each category of ϑ. W is expressed in units of
κ (mm−1), offering an interpretation as the average change in κ due to hydrodynamic
interactions. For example, W of 2 mm−1 implies that, on average, the trajectory κ

changes by this value due to hydrodynamic interactions compared to scenarios where
cells are not interacting.
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Figure 3.17: Conditional probability density functions of curvature (κ) for different relative
distance (d) and incoming angle (ϑ) for pair-wise numerical simulations. Each panel corresponds
to an incoming angle range: [A] 0 to π/3 (parallel), [B] π/3 to 2π/3 (perpendicular), and [C] 2π/3
to π (anti-parallel). Distance between swimmers (10 to 100 µm) is represented on the x-axis and
binned into segments, while curvature values are depicted on the y-axis. The color-map signifies
the likelihood (pdf) of a given curvature for the corresponding swimmer distance. Insets in each
panel provide the the curvature distribution for a distance of 10 to 20 µm.

Figure 3.18: 1-Wasserstein distance between the curvature distributions κd at different relative
distance and reference distribution of κ(∞) at distance of 90-100 µm for simulated trajectories.
Solid lines represent different categories of incoming angles (ϑ).
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Fig. 3.18 represents the value of W (κd ,κ∞) as a function of the cell-cell distances
d for all three categories of ϑ. The ϑ categories are represented by three distinct solid
lines. W is nearly zero at distances greater than 80 µm, indicating negligible variation in
the distribution of κ beyond this range. W (κd ,κ∞) reaches its highest values at smaller
distances for all ϑ categories. Specifically, at distances less than 30 µm, W remains high
for parallel incoming angles of ϑ = 0 to π/3, with a maximum value of 8.3 mm−1 for
d = 10−20µm, indicative of a substantial average change in κ. For ϑ angles ranging from
π/3 to 2π/3, the maximum W is lower with W = 6.4mm−1 for the same range of d . For
anti-parallel approaches with ϑ= 2π/3 to π, the maximum W at a distance of 10–20 µm
is the lowest, at 3.4 mm−1, showing the least average change in trajectory κ.

The differences in W for different approach angles ϑ at shorter distances show the
influence of ϑ on the change in swimming direction due to hydrodynamic interactions.
The analysis using Wasserstein distance confirms our observations from Fig. 3.17 that
both ϑ and d significantly influence hydrodynamic interactions. This also provides
a quantitative basis for evaluating the impact of hydrodynamic forces on κ across
different distances and incoming angles, which can be compared against experimental
observations.

3.4.2. 3D TRACKING EXPERIMENTS: EFFECT ON TRAJECTORY CURVATURE

We now turn to our experimental data and use the same approach to investigate pairwise
interactions, including the trajectories and the curvatures of 35,135 recorded cell pairs.
Fig. 3.19 show the dependency of κ on ϑ on d using the same representation as the
one used in Fig. 3.17 for the related simulation results. ϑ is categorized into three
specific categories: [A] ϑ= 0−π/3 (parallel approach), [B] ϑ=π/3−2π/3 (perpendicular
approach), and [C] ϑ= 2π/3−π (anti-parallel approach). Additionally, we present κd for
three distance bins of 10-20, 50-60, and 90-100 µm in Fig. 3.19D, E and F for all three ϑ
categories.

We observe distinct differences from the numerical simulations in our experimental
results. The distribution of κd at large distances (d>70µm) is similar across all categories
of ϑ. These distributions maintain an average curvature of approximately 5 mm−1,
showing no significant variation with either ϑ or d . This non-zero mean curvature
at larger distances suggests a consistent deflection in the trajectories, which can be
attributed to the biological noise inherent to cell trajectories from our experimental
data. This agrees with the scattering results discussed earlier, which highlighted the
influence of biological noise in changing the swimming direction in the absence of any
interactions. At shorter distances (d<30µm), small differences in the distributions κd

can be observed. For the parallel approach (ϑ= 0 to π/3), the experimental data indicate
a slightly higher median curvature compared to other ϑ categories.

Following the approach discussed to analyze the numerical simulations, we quantify
the differences in the distributions κd for all the ϑ categories by using the Wasserstein
distances (W ). We use the 1-Wasserstein distance to compare each κd to the reference
distribution κ∞ at the 90-100 µm distance. These results are presented in Fig. 3.20.
The W values increase slightly for swimmers at very close distances for all ϑ categories.
This observation is consistent with our observation of κd discussed previously and
similar to the observations in our numerical simulations (see Fig. 3.18), suggesting
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Figure 3.19: Conditional probability density functions and probability density functions (pdfs)
illustrating the relationship between relative distance (d), curvature (κ), and incoming angle (ϑ)
based on experimental data. Panels [A], [B], and [C] are conditional probability density functions
corresponding to incoming angle ranges: 0 toπ/3 (parallel), π/3 to 2π/3 (perpendicular), and 2π/3
to π (anti-parallel), respectively. Distance between swimmers (10 to 100 µm) is represented on the
x-axis and binned into segments, while curvature values are depicted on the y-axis. The colormap
signifies the likelihood (pdf) of a given curvature for the corresponding swimmer distance. Panels
[D], [E], and [F] show the pdfs of curvature values for three specific distance ranges (10-20, 50-
60, 90-100 µm) within each incoming angle range, offering an alternative visualization of the
curvature distribution at these distances.

an influence of hydrodynamic interactions on trajectory κ at these shorter distances.
For the parallel approach (ϑ = 0 to π/3), W is higher compared to the other ϑ

categories, with this slight difference between the distribution κd and κ∞ becoming
apparent for d ≤ 30µm. This is qualitatively similar to the results from our numerical
simulations, highlighting the influence of ϑ on cell scattering. The values of the 1-
Wasserstein distance W remain below 1 mm−1, indicating that the differences in the
distributions are noticeable but modest. Considering Fig. 3.19, the dominant feature of
the curvature distribution is the broad peak with an average κ of 5 mm−1, corresponding
to the presence of curvature in the trajectories due to biological noise. The presence
of curvature due to stochastic effects masks, within the distributions, the potential
effect of hydrodynamic interactions. Only when the cell-cell distance is small and the
hydrodynamic interactions are stronger can we characterize a small difference in the
distribution of curvature.
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Figure 3.20: 1-Wasserstein distance between the curvature distributions κd at different relative
distance and reference distribution of κ(∞) at distance of 90-100 µm for experimental data. Solid
lines represent different categories of incoming angles (ϑ).

3.5. ACCELERATION EFFECTS: INVESTIGATING THE NATURE

OF COLLISIONS
In the previous sections, we have characterized cell-cell interactions by considering
changes in the orientation of the swimmers. We now consider the influence of cell-
cell interactions on another quantity, characteristic of the cell dynamics, namely the
cell velocity V (t ). We focus on cells coming in close proximity to each other, such that
dmin ≤30 µm. Our previous work on cell-surface interactions [98] has highlighted the
usefulness of considering the velocity fluctuations V̇ (t ) to identify the nature of the cell-
surface interaction. For scattering events involving direct steric interactions, we found
a distinct signature in the variations of V̇ (t ) consisting of deceleration followed by a re-
acceleration. This distinct signature was absent from the scattering event, which only
involved hydrodynamic interactions [98]. We, therefore, turn to the fluctuations in V̇ (t )
for cell-cell interaction to gain insight into the nature of the scattering events. Therefore,
we compute the tangential acceleration using the continuous parameterization of X(t ),
as:

V̇ (t ) = d

dt

(∣∣∣∣dX(t )

dt

∣∣∣∣) (3.6)

We follow [98] and non-dimensionalize V̇ (t ) using as characteristic length scale the cell
diameter (D) and as characteristic velocity scale, the average cell velocity (V ).

Figure 3.21 A shows the fluctuations in the linear acceleration for three selected cell-
cell interactions, which we have already considered earlier as Pairs II, V, and VI in Fig.3.8.
For Pair II, a significant decrease in tangential acceleration in one cell (cell “b”) indicates
that the cell stopped momentarily before scattering at an angle of π/3. Similarly, for
Pair VI, both cells exhibit an initial decrease followed by an increase in acceleration near
their point of closest approach. These dynamics are reminiscent of our findings from
the study of cell-surface interactions, where changes in tangential acceleration indicated
contact interactions with the wall.

We proceed by considering all pairs, for which the minimum cell-cell distance
during the interaction is dmin ≤ 30µm, and represent the fluctuations of the tangential
acceleration during the interactions. Fig. 3.21 C presents the distribution of V̇ (t ) for
all cell pairs as a function of the time t , where t extends from t = −1s to t = 1s, and
t = 0 is defined as the time when two cells are closest to each other at dmin. We
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Figure 3.21: Analysis of tangential acceleration (V̇ ) for cell-cell interactions for pairs with
minimum distance (dmin) of 0-30 µm. [A] Sub-panels illustrate tangential acceleration of three
specific cell pairs (Pairs II, V, and VI from Fig. 3.8), depicting temporal variations in V̇ . Green
and red solid lines represent the trajectories of cell a and cell b from Fig. 3.8. [B] Evolution of
the distribution of V̇ (t ) of tangential acceleration during cell-surface interactions, highlighting
contact interactions as acceleration decreases and increases closer to the wall. We refer to our
previous work Buchner et al. [98] for more details on this phenomenon. [C] Evolution of the
distribution of V̇ (t ) for all cell pairs with trajectories lasting with length of 2 seconds or longer and
minimum distances within 30 µm. [D] V̇ (t ) of selected trajectories with normalized tangential
accelerations below -0.01 at t = 0.25s.

find that V̇ (t ) presents no significant fluctuations before or after the closest approach,
maintaining a mean of 0 with a 0.01 standard deviation at all time steps. This is
significantly different than the distribution of V̇ (t ) we have previously measured for cell-
surface interaction [98], and represented for reference in Fig. 3.21 B. Fig. 3.21 B clearly
indicates a deceleration before the cells reach their minimal distance to the surface
and a subsequent acceleration after, for t>0. The absence of velocity fluctuations for
cell-cell interactions in figure 3.21 C indicates that the cell velocity remains constant
for most interacting pairs and that most cell-cell interactions do not involve abrupt
kinematics, which can be expected when cells directly collide with each other. It bears
emphasis, however, that for cell-surface interactions, the point of nearest approach to
the wall provides a clear reference point to use to aggregate the data and compute
the density distribution. For cell-cell interactions on the other hand, we use the time
of closest cell-cell approach as the reference point. Because acceleration changes
occur at different times for each pair relative to the time of closest approach, subtle
variations in the acceleration do not change the overall aggregated data. We investigate
the occurrence of pair interactions involving an abrupt deceleration characteristic of
a collision. To isolate these, we consider trajectories where the normalized tangential
acceleration falls below -0.01 at t = −0.25s. This threshold is based on our cell-surface
interaction study [98]. We find only 20% of our trajectories meet this criterion. When
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we consider the distribution of V̇ (t ) only for these trajectories (Fig. 3.21 D), we still
do not observe a significant kinematic akin to that seen in cell-surface interactions.
Typically, in cell-surface interactions, cells decelerate as they approach the wall at t = 0s
and then accelerate back to their normal velocity. However, for the selected trajectories,
both deceleration and acceleration occur more rapidly and before the cells reach their
minimum distance to each other, compared to cell-surface interactions.

We have found pair interactions in our data set, where abrupt fluctuations of the
velocity clearly show that the cells came into direct contact during hard collisions; see,
for example, pair II in fig.3.8. We find, however, that the majority of cell-cell pair
interactions coming within a close range do not result in significant changes in the
velocity. This suggests that, in most cases, cell-cell interactions at short distances remain
soft in nature and are due to hydrodynamic interactions and soft interactions between
the cell body of one microalgae and the flagella of the other.

3.6. DISCUSSION
This study investigated the pairwise interactions of (C. reinhardtii) cells by capturing
their three-dimensional motion using a unique multi-camera microscopy system. Using
an in-house tracking algorithm based on the projective geometry, we tracked cells in
3D physical space, acquiring 5.52 × 105 trajectories for detailed analysis of pairwise
interactions. A pair interaction was defined as two cells swimming towards each
other, coming within 100 µm, and then moving apart. We characterized these pair
interactions based on the closest approach distance (dmin) and the incoming angle
(ϑ), identifying 35,135 algae pairs with dmin ranging from 10 µm to 100 µm. Most
pairs exhibited an incoming angle of ϑ = π/2, indicating an isotropic system with
no preferred swimming direction. A Curve-fitting of the recorded trajectories yielded
a continuous representation of the trajectories as parameterized curves, enabling
extraction of interaction metrics, such as scattering angle (α), curvature (κ), and
tangential acceleration (V̇ ). We also performed numerical simulations using the spring-
bead model [143] to get insights into the importance of hydrodynamic interactions in
our experimental results.

First, we investigated the scattering behavior of (C. reinhardtii). Our primary focus
was on cell pairs approaching each other within a dmin of 30 µm. We analyzed 3D
trajectories and scattering behavior for nine pairs with different ϑ, as shown in Fig. 3.8.
The analysis revealed a range of scattering patterns, from minor to significant trajectory
deflections for one or both cells in each pair. Extending this to all 1065 pair interactions
within dmin of 30 µm, we examined the distribution of α for each cell in a pair (Fig.
3.11). The scattering behavior varied significantly across cells in each pair. Typically,
one cell in each pair deviated minimally, with a median α of π/11 (17◦), while the other
exhibited a broader range of scattering angles up toπ/2 (90◦), with a median ofπ/5 (36◦).
The difference in scattering angles between the cells varied from 0 to π/4 (Fig. 3.11C),
indicating an asymmetry in scattering behavior, which contrasts with previous studies
reporting symmetrical scattering for both cells [121, 122].

Our numerical simulations, in comparison to the experimental results,
demonstrated a lower α for both cells (Fig. 3.12). This difference between experimental
observations and simulation results suggests that hydrodynamic forces alone may not
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account for the scattering behaviors observed in the experiments. To identify the factors
driving the scattering behavior of cells in our experiments, we compared the behavior of
cells in close proximity (dmin <30 µm) to those swimming in isolation (Fig. 3.13). These
isolated cells, swimming independently at distances greater than 200 µm from any other
cell, exhibited an average α of π/8 (approximately 22◦). The behavior of these isolated
cells provided a baseline, indicating that the inherent motility of the cells, dependent on
variations in cell velocity, flagellar beating frequency, and flagellar asynchrony, plays an
important role in determining overall scattering behaviors.

Moreover, the observed scattering behavior of (C. reinhardtii) in our experiments
involved only scattering states where cells approach each other, scatter, and continue
on their trajectories without forming a permanent bond. This observation differs from
earlier analytical predictions of permanent bound states [121, 122], suggesting that
stochastic motility, whereby cells randomly change their orientation, may disrupt the
stability of such states. The absence of predicted pairwise or orbiting swimming states
in our experimental data underscores the need for theoretical models to consider more
complex and dynamic behaviors exhibited by microorganisms in natural environments,
including testing the stability of bound states to perturbations.

Furthermore, we observed that ϑ, categorized as parallel, perpendicular, and anti-
parallel, had a minimal impact on the scattering dynamics (Fig. 3.14), except when
cells interacted at a parallel incoming angle. The results from both experiments and
simulations show that cells approaching from behind one another (parallel) undergo
higher trajectory deflections compared to other approaches. Moreover, our experiments
show that cells scatter with relatively high α at very close distances (0-15 µm), and
beyond 15 µm, distance has no effect on scattering angles. In contrast, numerical
simulations predict a steady decrease in α with increasing distance, reflecting the
primary influence of hydrodynamic forces, which diminish over distance.

We also considered the effect of cell-cell interaction on instantaneous changes in
cell trajectory. The analysis of trajectory curvature (κ), a metric for understanding
instantaneous changes in cell orientation, was conducted using both 3D tracking
experiments and numerical simulations. Our numerical simulations (Fig. 3.16 clearly
demonstrate the influence of hydrodynamic interactions on κ. These interactions
were most pronounced at closer distances, particularly under parallel incoming angles
(ϑ = 0 to π/3), with trajectory curvature showing notable changes when swimmers
were within 10 to 40 µm of each other. The impact of these hydrodynamic forces
diminished with increasing distance, becoming negligible beyond approximately 80
µm. This observation was quantitatively substantiated by the 1-Wasserstein distances
(Fig. 3.18), which showed the average change in curvature due to hydrodynamic
interactions, emphasizing the dependence of κ on both ϑ and relative distance (d)
between swimmers. The results from our 3D tracking experiments presented a different
picture (Fig. 3.19). Here, no clear trends emerged to indicate a significant effect of either
ϑ or the d on κ except at very small d of 10-20 µm and when cells were approaching each
other with parallel ϑ, where higher κ was recorded, compared to other approaches. The
experimental data showed an average curvature value of approximately 5 mm−1 across
all d for all ϑ, indicating a characteristic deflection in the trajectories of (C. reinhardtii)
cells.
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The dynamics of tangential acceleration during cell-cell interactions is another
important finding of our study. A subset of cell pairs demonstrates a decrease in
acceleration as they approach minimum distances, indicative of hard collisions, with
velocity recovered post-collision. Conversely, for most of the cell pairs, acceleration does
not change throughout the interaction demonstrating soft collisions.

Taken together, our findings suggest that while hydrodynamic interactions
contribute to changes in cell trajectories, they are not the sole determinants. The
asymmetric scattering patterns and higher scattering angles observed in our study are
largely attributable to the inherent motility characteristics of these microorganisms.
The stochastic nature of their movement, characterized by random changes in
orientation and speed, emerges as a fundamental factor influencing cell interactions,
overshadowing the effects of cellular interactions. Moreover, our study highlights the
complexity of microorganism behavior and the challenges associated with predicting
interactions based solely on theoretical models. The differences between simulation
and experimental results underscore the importance of empirical data in understanding
the dynamics of cell-cell interactions. In light of these insights, future research on
microorganism interactions should incorporate the stochastic elements of cell motility
into theoretical and computational models.
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KINEMATICS & SURFACE

INTERACTIONS OF

Chlamydomonas Reinhardtii IN

COMPLEX FLUIDS

Microorganisms propel themselves through a range of complex fluidic media, for example
mucus or blood plasma, which exhibit non-Newtonian properties like viscoelasticity
and shear-thinning. However, studies investigating microorganism motility in such
environments are typically limited to either two-dimensional microscopy or theoretical
and numerical analyses. This study investigates the effects of non-Newtonian rheological
properties of the suspending fluid on the kinematics and surface interactions of
Chlamydomonas reinhardtii cells within these complex fluids in three dimensions.
Utilizing a multi-camera microscope, we captured the three-dimensional swimming
behaviors of these microorganisms in the same volume of 2.5 × 2.5 × 2 mm3. We also
performed 2D microscopy to analyze flagellar beating frequency. Our findings show
that C. reinhardtii cells exhibit a higher flagellar beating frequency in viscoelastic media
compared to Newtonian fluids of similar viscosities, yet swim slower due to an increase
in cell velocity during recovery stroke. We also show that viscoelasticity significantly
influences microswimmers’ 3D locomotion due to changes in swimming speed, radius and
pitch of their helical trajectories, and persistence length. Interestingly, the angular velocity
along the helical path remained nearly constant across both Newtonian and viscoelastic
media of different viscosities, suggesting an adaptive mechanism to maintain a constant
environmental scanning rate for phototaxis. Additionally, our results demonstrate that
viscoelastic media affect cell-surface interactions. Cells in viscoelastic fluids exhibit an
increase in residence time and approach the surface at shallower angles compared to the
cells in Newtonian media. Consequently, an increase in near-surface cell accumulation is
observed for viscoelastic solutions.
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4.1. INTRODUCTION
Microorganisms often navigate complex environments and biological fluids with
complex rheological properties. Bacteria such as Pseudomonas aeruginosa and
Escherichia coli swim through the mucus of respiratory and gastrointestinal tracts,
leading to diseases [149, 150]. Bacteria also reside within extracellular polymeric
substances, forming biofilms [10, 151]. Similarly, mammalian spermatozoa move
through cervical mucus [42, 152, 153], and the unicellular protozoan parasite
Plasmodium falciparum swims in blood plasma to cause malaria [154]. Biological
fluids, such as mucus, blood plasma, and biofilms, are non-Newtonian and exhibit
viscoelastic and shear-thinning rheologies [46, 155–157]. By studying the movement
and interactions of microorganisms within these non-Newtonian fluids, we can better
understand their locomotion in such environments, leading to applications like
improving fertilization processes [158], preventing biofouling [11], developing cell
manipulation strategies [76], and designing artificial microswimmers [159].

Despite the ubiquity of non-Newtonian fluids in natural microbial environments,
most work on the locomotion of microorganisms has focused on swimming in
Newtonian fluids, and we refer the reader to recent texts for reviews [3, 160]. Only
recently, the effects of non-Newtonian rheology on microorganism motility have drawn
significant attention. This work has been predominantly theoretical [40, 41, 161–176]
and numerical [177–187] with some early experimental investigations [43–45, 188–192].
Much of this work has investigated how viscoelasticity affects the swimming speed of
microorganisms.

Early theoretical studies using Taylor’s waving sheet model found that the velocity
of a two-dimensional waving sheet decreases in a viscoelastic fluid, compared to a
Newtonian fluid with similar viscosity [40, 163, 164]. This theoretical observation
was confirmed by experimental studies of the swimming behavior of Caenorhabditis
elegans in a viscoelastic medium [188]. Numerical simulations using the squirmer
model have also shown a decrease in swimming speed for a pusher-type microswimmer
in viscoelastic fluids [179]. Recent numerical studies have highlighted the complex
interplay of kinematics, swimmer geometry, and elasticity in locomotion. For example,
the swimming speed of a 2D waving sheet in a viscoelastic fluid can either increase or
decrease based on fluid elasticity and the direction of the traveling wave [177, 183] and
the swimming speed of a model pusher-type swimmers, made of two counter-rotating
spheres, increases due to elastic properties [186]. Experimental investigations of E. coli
in polymeric viscoelastic fluids have demonstrated an increase in swimming speed,
which depends on the polymer concentration [43, 44]. The polymeric solutions used
in this study exhibited both viscoelastic and shear-thinning behavior, and it remained
unclear which non-Newtonian rheological property led to the velocity increase of E.
coli. Three-dimensional tracking experiments of E. coli [193] have attributed the speed
enhancement to shear-thinning properties, as the flagellum beats at a higher frequency
and thus experiences less viscosity than the cell body, thereby leading to increased
speed.

Part of this chapter has contributed to "J. Mehmood, A. J. Buchner, and D. Tam, “Kinematics & surface
interactions of Chlamydomonas Reinhardtii in complex fluids”, Journal of the Royal Society Interface, 2024,

In preparation".
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The rheological properties of the surrounding fluid determine the stresses exerted by
the fluid on microorganisms and, therefore, have a strong influence on the swimming
gait exhibited by living organisms. For instance, the behavior of human sperm cells
depends on the viscosity. At lower viscosities, the flagellum of a sperm cell functions
as a puller during its beat cycle, but its time-averaged flow field exhibits characteristics
similar to a pusher [194]. On the other hand, at higher viscosities, the swimming gait
of human sperm changes, making both its instantaneous and time-averaged flow field
resemble that of a pusher-type microswimmer [194].

Similarly, the flagellar cycle of C. Reinhardtii distinctly changes due to fluid
properties [45]. In this work, Qin et al. used 2D microscopy to study the effects
of viscosity and elasticity on the swimming kinematics of C. reinhardtii. Significant
changes were observed in both the swimming velocity and the flagellar beating
frequency of C. reinhardtii due to viscous and elastic effects. The increase in the
viscosity of a Newtonian medium reduced the flagellar frequency and, consequently,
the swimming speed. The behavior of cells in viscoelastic solutions showed distinct
differences from those in Newtonian media of similar viscosity. Specifically, at high
polymer concentrations, when viscosity (η) > 2.6,mPas.s, the flagellar beating frequency
was higher compared to the one observed in a Newtonian medium of similar viscosity.
This higher flagellar frequency in the viscoelastic media did not translate into a higher
swimming speed. An analysis of the beating kinematics revealed that the rheology
altered the flagellar gait, resulting in higher velocities in the recovery stroke, thereby
decreasing the overall swimming speed [45]. This illustrates how the interactions
between soft living microorganisms and the surrounding complex fluids lead to non-
linear coupling, which strongly influences locomotion.

The interactions between microorganisms and solid substrates represent another
important process in which the rheology of the medium has a significant influence.
Biological examples of transport at physical boundaries involving complex fluids include
the ciliary transport of mucus in the respiratory tract and the swimming of sperm
cells in the oviduct. Recent work has been predominantly theoretical [167, 172, 173,
175, 176], and numerical [182, 184, 185] with few experimental observations [192].
These studies have provided insights into the effect of viscoelasticity on cell scattering
and residence time near surfaces. Studies using a time-averaged 2D squirmer model
for microswimmers combined with the Oldroyd-B fluid model showed an attraction
layer near a no-slip boundary. This layer led to the entrapment of both pusher and
puller-type swimmers near the surface [172]. For a 3D squirmer model swimming
in a viscoelastic fluid defined by the Giesekus constitutive equation, entrapment
was observed exclusively for pusher-type swimmers [182]. In both models, cells in
viscoelastic media had longer residence times near surfaces than those in Newtonian
media. Subsequent investigations using a 2D squirmer model, factoring in time-
independent boundary conditions, highlighted the emergence of spiral trajectories for
both pusher and puller-type swimmers, which were determined by the initial orientation
towards the surface [173]. Additionally, the residence time near the surface depended
on the approach angle and distance from the surface, irrespective of the swimmer
type. For a more complex 3D squirmer model, the previously observed attraction layer
was absent [175]. Consequently, neither pusher nor puller swimmers get permanently
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trapped near a no-slip boundary.

Finally, viscoelasticity has been suggested to influence the scattering from surfaces,
resulting in a slight reduction in scattering angle [182, 184]. Residence time and
scattering dynamics are critical in determining cell accumulation near surfaces and are
relevant to biofilm formation. A 3D tracking study indicates that in viscoelastic media, E.
coli accumulates less on surfaces compared to Newtonian solutions [192]. The observed
difference is attributed to lift forces near surfaces in a viscoelastic medium caused by
rotating flagella. These forces weaken hydrodynamic effects, leading to reduced surface
accumulation.

These studies of microbial motility in complex fluids have yielded a complex picture
of the effect of rheological properties on locomotion. Most of the previous experimental
investigations have used two-dimensional microscopy, but microorganism motility is
inherently three-dimensional. A comprehensive understanding of the motility and cell-
surface interactions requires detailed three-dimensional studies to capture essential
aspects like helical motion, cell reorientation, and tactic behavior, which are all
inherently three-dimensional.

Here, we investigate the swimming kinematics and surface interactions of C.
reinhardtii cells suspended in complex fluids. These cells were imaged using our
unique multi-camera microscope in a 2.5 × 2.5 × 2 mm3 viewing volume. An in-house
tracking algorithm was used to track the algae cell. The resulting three-dimensional
trajectories provide an extended data set to investigate the three-dimensional motility
and cell-surface interactions. We also perform two-dimensional microscopy at higher
magnification to measure the beating frequency and the velocities during the power
and recovery strokes, similar to the work of Qin et al. [45]. We use different polymeric
solutions to characterize the effect of increasing viscosity and viscoelasticity. We find
that C. reinhardtii cells in viscoelastic fluids swim slower, despite a higher flagellar
beating frequency, compared to cells in Newtonian fluids. This is due to the effect of
fluid elasticity on their swimming strokes, especially during their recovery stroke. In
addition, we find that the 3D swimming trajectories are strongly affected by the viscosity
and elasticity of the fluid. Cells swim along tighter helices in more viscous and elastic
fluids. Remarkably, despite the strong variations in the helical trajectories, we find that
cells maintain a constant angular rotation velocity for all polymeric solutions tested,
which allows them to scan their environment at a constant frequency. The rheological
properties of the medium also have a strong influence on the persistence of the
swimming direction. In more elastic fluids, the swimming trajectories are straighter, and
the cells change their direction less frequently. Considering cell-surface interactions,
we find that cells have a higher residence time in viscoelastic fluids, approach and
depart at shallower angles, and show more spiraling trajectories near the surface than
in Newtonian fluids. Finally, we find more cell accumulation near the surfaces in
viscoelastic media compared to Newtonian media.

This chapter is divided into four sections. Experimental methods are described in
section 4.2. The trajectory kinematics and cell surface interaction results are discussed
in sections 4.3 and 4.4. The final section summarizes the main findings and the
implications of these results for future research.
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4.2. EXPERIMENTAL METHODOLOGY
In this section, we present our approach to study the effects of rheology on the motility
of C. reinhardtii and scattering interactions with a solid surface. We first describe the
different fluid media used in the study and their rheological characterization. We also
present further details on the method used to image C. reinhardtii cells in polymeric
solutions.

4.2.1. PREPARATION OF FLUIDS AND RHEOLOGICAL MEASUREMENTS
In this study, we use two different polymeric solutions: (1) Solutions of varying
concentration of Ficoll400, which correspond to Newtonian fluids of varying viscosities,
and (2) solutions of Polyacrylamide (PAAm) with a molecular weight (MW) of 1.8×107

g/mol, which have viscoelastic properties. We first obtained concentrated solutions of
13% (w/w) Ficoll in Tris minimal and 1000 ppm w/w PAAm in DI water. We then varied
the polymer concentration through successive dilutions in Tris minimal buffer of the
concentrated solution. Rheological measurements of solutions of both Ficoll400 and
PAAm were conducted using the Anton Paar MCR302 rheometer with a 50 mm parallel
plate tool. The measurements were performed at a controlled temperature of 25 ◦C ,
corresponding to the temperature in our tracking experiments.

Our measurements of the effect of polymer concentrations on viscosity are presented
in Fig. 4.1 A and B. The viscosity increases with the polymer concentration for both
solutions. Ficoll solutions have a constant viscosity regardless of the shear rate (Fig.
4.1 B) corresponding to a Newtonian behavior, as previously reported [45, 193]. The
PAAm solutions are slightly shear thinning within the range of shear rates investigated,
in particular for concentrations exceeding 520ppm.

Our viscosity measurements for PAAm deviate from previously reported values that
indicate a strong shear thinning behavior even at lower PAAm concentrations [45, 195].
This variation is due to the salt content (0.4 wt%) in our Tris-diluted solutions. It is well-
established that salt concentrations, ranging from 0.05% [196] to 1% [195], alter PAAm’s
rheological properties, typically reducing its viscosity. To confirm this salt-induced
deviation, we conducted additional viscosity measurements for PAAm in DI water. These
findings aligned with earlier studies [45, 195], underscoring the influence of salt in our
measurements.

In designing our methodology, we emulated the natural growth environment of
the C. reinhardtii cells, grown in the Tris medium, while concurrently mitigating the
effects of salt on PAAm’s rheological behavior. To achieve this, we prepared the PAAm
stock solution in DI water, which eliminated the immediate impact of salt. However,
subsequent dilutions with the Tris minimal buffer ensured the solutions maintained
the properties intrinsic to the Tris buffer. This approach was crucial, given that the
physiological responses [197] and motility of C. reinhardtii are dependent on their
environment. Our observations corroborate this, revealing marked differences in the
swimming speeds of C. reinhardtii between Tris and Tap solutions, as discussed in
Section 2.4.3.

Here, we use a polymeric solution of increasing Ficoll concentration to study the
effect of increasing the viscosity of a Newtonian medium and solutions of increasing
PAAm concentration to get insight into the effect of low viscoelasticity. To compare
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Figure 4.1: Viscosity Characterizations and effective viscosity calculations for PAAm and Ficoll
solutions: Shear viscosity of [A] PAAm and [B] Ficoll solutions at various concentrations. The
vertical dashed lines at shear rates of 10 and 60 s−1 indicate typical shear rates experienced by C.
reinhardtii. Effective viscosity of [C] PAAm and [D] Ficoll solutions as a function of concentration,
calculated by averaging viscosity values between the indicated shear rates.

the results of our experiments for Ficoll and PAAm at different concentrations, we
compute an effective viscosity (η) for both solutions. This way, we can compare the
swimming properties in Newtonian and viscoelastic fluids with similar viscosity values.
The effective viscosity is determined by averaging the viscosity values within the shear
rates of 10 to 60 s−1. This range corresponds to the typical shear rates experienced by a C.
reinhardtii cell, which has a radius of R = 5µm, swimming at a speed V = 100µm/s and
exhibits a flagellar beat frequency of f = 60 Hz. Fig. 4.1 C and D show how the effective
viscosity increases with concentration. We use the measurements in Fig. 4.1 C and D to
deduce the effective viscosity in each tracking experiment.

Table 4.1 lists all the concentrations and their corresponding effective viscosity
values used in this study. The viscosity of Tris minimal buffer alone was measured to
be ∼1 mPa.s, serving as a baseline Newtonian solution. Henceforth, we will generally
identify Ficoll and PAAm solutions by their effective viscosity; table 4.1 and Fig. 4.1 can
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then be used to trace back the polymer concentration. This approach is consistent with
the study of Qin et al. [45], which have used the same polymers, Ficoll400 and PAAm. It
should be noted that [45] report the viscosities of PAAm dissolved in DI water, which
are significantly higher than the viscosities of PAAm in salt solutions [195, 196]. We
have chosen to report the viscosities in salt solutions to be consistent with our motility
experiments, in which we always add a fixed volume of C. reinhardtii in salt-rich growth
medium to the concentrated PAAm solution.

PAAm (ppm w/w) Viscosity (mPa.s) Ficcol (wt %) Viscosity (mPa.s)

40 1.20 4 2.03
80 1.34 5.5 2.67
120 1.49 6.6 3.27
160 1.67 7.5 3.85
200 1.86 8.4 4.53
240 2.07 9 5.06
280 2.31 10.4 6.53
320 2.57 11.5 7.98
360 2.87
400 3.20
440 3.57
480 3.97
520 4.43
560 4.94
600 5.51
640 6.14
680 6.84
720 7.63

Table 4.1: Effective viscosity for various PAAm and Ficoll concentrations used in this study.

In our discussion thus far, we have primarily focused on the measurement of
the viscous properties of the polymeric solutions. We now shift our focus to the
characterization of the elastic properties of PAAm solutions. The measurement of elastic
properties requires the estimation of the storage modulus (G

′
) and the loss modulus

(G
′′

). For PAAm above 2500 ppm concentration, these quantities have been extensively
characterized [198]. However, determining these properties for lower concentrations,
such as those used in our experiments, proves challenging. This is due to the
limitations of commercially available rheometers, like the Anton Paar MCR302, which
we used in our research. While there are non-conventional methods available, such as
optical tweezers [195] and microfluidic rheometers [199], they necessitate customized
experimental setups which were not feasible for our study.

PAAm has demonstrated viscoelastic properties even at these lower concentrations,
where the relaxation time has been observed to increase with concentration [45, 195].
An increase in relaxation time corresponds to an increase in the elasticity of the solution.
For the purposes of our research, an exact relaxation time value was not crucial. We were
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able to discern the elastic effects by comparing solutions with similar viscosities.

4.2.2. CELL IMAGING

3D TRACKING EXPERIMENTS

C. Reinhardtii cells of the CC-125 strain were cultured in Tris minimal medium and
harvested during their exponential growth phase when the cell concentration reached
O(106) cells/ml. Cell culturing and harvesting procedures are detailed in section 2.2.3.
We use the cell concentration of 5 × 104 cells/ml for our tracking experiments. This
concentration was achieved by mixing the algae culture with different Newtonian and
viscoelastic solution concentrations as listed in table 4.1.

Approximately 100 µl of each solution containing algae cells was loaded into an
acrylic flow chamber. The 2 mm deep chamber is made by laser-cutting an 8 mm
hole and sealing it with two BSA-treated glass slides to form a flow chamber. The
chamber was then positioned on our multi-camera microscope, composed of 4 Imager
sCMOS cameras, a common objective of 1.5x magnification, and red laser light (650 nm
wavelength) illumination, a wavelength that does not trigger a phototactic response in
C. reinhardtii [27, 105]. This system can capture the microorganisms’ three-dimensional
behavior within a measurement volume of 2.5 × 2.5 × 2 mm3. Experimental recordings
started an hour after the solution preparation to allow the cells to acclimate to the
polymeric medium. For all solutions, a minimum of 10 minutes of data was recorded
at a frame rate of 20 fps.

Trajectories are reconstructed in three dimensions from the recordings, using our
custom-made three-dimensional Lagrangian tracking algorithm, detailed in section
2.2.4. The algorithm uses a peak-finding approach for initial cell detection, followed
by frame-wise tracking. Cell images from the multiple camera views are matched
and triangulated using linear ray tracing in the projective geometry framework. Data
segmentation and filtration were used to remove ghost tracks, the periodic blinking
of algae due to their 3D trajectories, and poor reconstructions. Following this, the
curve fitting algorithm, as discussed in section 2.4.2, was used to obtain a continuous
representation of three-dimensional trajectories. We obtained approximately 5000
trajectories to analyze for each recorded concentration.

2D MICROSCOPY

3D tracking experiments offer detailed insights into cell trajectories but are insufficient
to extract the cell beating frequency f and the velocity during the power and recovery
stroke. Measurement of these parameters is crucial when investigating the effect of
viscoelasticity on C. reinhardtii motility. The core limitation is the frame rate of the 3D
microscopic setup. The maximum frame rate of 50 Hz is too low to accurately capture
the C. reinhardtii beating frequency, which is also around 50 Hz [45, 137]. Consequently,
even at the highest frame rate, the aliasing requirement of fsampling ≥ 2fexperiment is
not satisfied. Hence, we adopted a 2D experimental approach to measure the beating
frequency and velocities during the power and recovery strokes. We used an inverted
microscope equipped with a single sCMOS camera with a smaller image size (2560 ×
402) to record at a high frame rate of 500 fps. Imaging was performed for Newtonian
and viscoelastic solutions by dispensing a droplet on a glass slide and recording under
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white light. Each recording lasted 30 seconds and was conducted at a 15x magnification.
Fig. 4.2 A presents a representative example of a recorded image from the Tris minimal
solution. We adapted our Lagrangian tracking algorithm for two-dimensional tracking.

Figure 4.2: [A] Representative image captured with a 15x magnified inverted microscope, depicting
swimming algae cells in Tris medium solution. The solid magenta line indicates the two-
dimensional trajectory of the cell enclosed by the green circle. [B] Enlarged image of a detected
algae cell, with the arrow indicating its mean travel direction. [C] Time-dependent variation in
velocity, with forward (red markers) and backward (blue markers) peak velocities. [D] Amplitude
spectrum of velocity signal from panel [C], obtained using the Fast Fourier Transform (FFT). The
dominant frequency, marked by the vertical dashed line at 56 Hz, corresponds to the flagellar
beating frequency.

The generated trajectories were manually inspected for all tracked cells. We selected
for analysis the trajectories in which the cell remained in focus for at least 1 second,
identified by their brighter appearance compared to cells that moved out of focus. Fig.
4.2 B represents one such cell and its corresponding trajectory. The cell exhibits forward
and backward motion due to the power and recovery stroke.

To extract the velocities during power and recovery strokes, we plotted the directional
velocity against time (see Fig. 4.2 C). Peaks in the direction of the average motion of the
cells represent forward velocity, while those in the opposite direction indicate backward
velocity (see Fig. 4.2 C). We derived each cell’s forward and backward velocities from
the mean value of these peaks. For the particular cell shown in Fig. 4.2 B, the forward
velocity (V+) was 503 µm/s and the backward velocity (V−) was 198 µm/s. The cell
beating frequency f was deduced from the discrete Fourier transform of the velocity
signal, which is computed with fast Fourier transform (FFT). The amplitude spectrum of
the velocity signal is shown in Fig. 4.2 D, where the dominant frequency represents the
cell beating frequency. For the example cell, the frequency was 56 Hz. This procedure
was applied to extract forward and backward velocities and beating frequencies for cells
suspended in Newtonian and viscoelastic solutions. We gathered an average of 15 data
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points for all solutions, except those with viscosity exceeding 5 mPa.s, where only 4 to 7
cell trajectories could be further analyzed.

4.3. CELL KINEMATICS
We analyzed the swimming kinematics of C. reinhardtii cells in both two and three
dimensions to provide a comprehensive understanding of cell motility. We performed
two-dimensional (2D) microscopy experiments to examine the effects of viscosity and
viscoelasticity on the details of the cell’s motion. Specifically, we characterized forward
and backward velocities during the power and recovery strokes of the flagella and
measured the flagella beating frequencies. In our three-dimensional (3D) analysis, we
focused on the complex, helical trajectories of the cells. In particular, we investigated
how the rheology of the fluid influences these trajectories, specifically the helical
parameters and diffusive behavior.

4.3.1. BEATING FREQUENCY AND VELOCITIES DURING POWER &
RECOVERY STROKE

We used our 2D microscopy data to examine the effects of polymer concentration
on cell beating frequencies f and average swimming speed V in both Newtonian
(Ficoll solutions) and viscoelastic (PAAm solutions) media (Fig 4.3), following a similar
approach to Qin et al. [45]. At low polymeric concentrations, the viscosity of both
media is η≈ 1−2mPa.s, comparable to that of the tris growth medium, and the beating
frequency is f ≈ 60 Hz, close to the value recorded in tris-medium. For increasing
concentrations of ficoll, f monotonically decreases from 60 Hz to 30 Hz, at viscosities
around η ≈ 8mPa.s corresponding to 11.5% Ficoll. These results are in agreement with
previous studies [200, 201]. In contrast, the beating frequency f remains nearly constant
at a high value of f ≈ 55−60 Hz, for PAAm concentration up to 720 ppm and η≈ 8mPa.s,
see Fig. 4.3 A. Our results agree with the study from Qin et al. [45], reporting that flagella
maintain a high beating frequency in a viscoelastic medium.

The swimming velocity V decreases with the concentration of both ficoll and PAAm
(Fig. 4.3B). For Newtoninan solution of Ficoll, V decreases monotonically from V =
120µm.s−1 to very low speeds of 7µm.s−1 at the highest Ficoll concentration of 11.5%
(η ≈ 8mPa.s). For viscoelastic PAAm solution, the decrease in V is much stronger at
lower polymer concentration, leading to lower swimming velocities for PAAm solution of
viscosities between 1−5mPa.s compared to the Ficoll solution of equivalent viscosities.
For effective viscosities beyond 5 mPa.s, the swimming velocity in the PAAm solution
is constant with a value of V ≈ 20µm.s−1. Only at the highest polymer concentration,
corresponding to an effective viscosity η ≈ 8 mPa.s, do cells swim faster in PAAm
solutions compared to ficoll solutions. Our findings on average velocity across both
viscoelastic and Newtonian media are consistent with the results reported by Qin et
al. [45].

The higher beating frequency f , together with the lower swimming velocity V
in viscoelastic solutions, imply that the net displacement of the microswimmer per
beating stroke is significantly smaller in the viscoelastic solutions compared to the
Newtonian ones. The net displacement of C. reinhardtii per stroke depends on the
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Figure 4.3: [A] Mean swimming speed and [B] Mean beating frequency for algae cells in Newtonian
and viscoelastic fluids at different viscosity. Error bars represent the standard deviation across all
measured cells.

relative magnitude of the forward and backward motion during the power and recovery
strokes of the flagella. Therefore, we separately report the swimming speeds of the cells
during the power (V+) and recovery strokes (V−), see Fig. 4.4. Forward velocities during
the power stroke decrease with polymer concentration for both polymeric solutions.
This decrease in V+ is stronger in ficoll compared to PAAm solutions, for which V+
reaches a constant value for the highest effective viscosities, see Fig. 4.4A. This disparity
can be quantified by normalizing V+ with the cell forward velocity in Tris solution
(Fig. 4.4C). In Newtonian fluids, V+ decreases by 80% at the highest concentration
(η≈ 8 mPa.s), while for viscoelastic fluids, V+ decreases by 30% for PAAm concentration
of 560 ppm (η = 5 mPa.s) with no significant decrease beyond this concentration.
The backward velocities V− during the recovery stroke are reported in Fig. 4.4B. In
Newtonian ficoll solutions, V− decreases with ficoll concentration up to 60% at the
highest concentration (η ≈ 8 mPa.s), see Fig. 4.4D. In viscoelastic PAAm solutions, we
observe the opposite and find the backward velocity in the recovery stroke to increase
with polymer concentration. Fig. 4.4 D shows an increase in V− in viscoelastic fluids of
∼ 20% even for low concentrations of PAAm (η ≤ 2 mPa.s) and remains at these higher
values for the largest PAAm concentration of 720 ppm (η≈ 8 mPa.s).

The average swimming velocity V is directly influenced by the forward V+ and
backward V− velocities during the power and recovery strokes. For Newtonian ficoll
solutions, both the power and recovery stroke velocities continuously decrease with
viscosity, though the decrease in V− is not as strong as the decrease in V+. This leads
to an overall decrease in the swimming speed. For the viscoelastic medium, the sharp
decrease in swimming velocity observed at low polymer concentrations is due to the
decrease in forward velocity V+ and also to the surprising increase in backward velocity
during the recovery stroke. Given that f is independent of PAAm concentration, this
increase in the backward velocity suggests that viscoelasticity increases the backward
displacement during the recovery stroke. These results obtained from our study are
in agreement with the prior experimental work by Qin et al. [45]. Specifically, Qin
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Figure 4.4: The effect of viscosity on mean velocity during [A] power stroke and [B] recovery stroke
for algae cells in Newtonian and viscoelastic fluids. Error bars represent the standard deviation
across all measured cells. The tris normalized velocity values for [C] power stroke and [D] recovery
stroke as a function of viscosity.

et al. [45] emphasized the influence of elasticity on the kinematics of the flagellar
deformations during both power and recovery strokes. Our findings corroborate their
results, particularly in terms of the elastic effect on swimmer velocity. Additionally, we
explored the polymer concentrations resulting in viscosities exceeding 5 mPa.s. This
analysis extends on the research of Qin et al. [45]. We show that at such high viscosities,
the presence of elasticity enables the organism to maintain constant power and recovery
stroke velocities, resulting in constant swimming speed.

4.3.2. 3D TRAJECTORIES OF C. reinhardtii IN NEWTONIAN &
VISCOELASTIC FLUIDS

We extend our analysis from two-dimensional velocity measurements to 3D
measurements. Here, we characterize the 3D kinematics of C. reinhardtii, considering all
cell trajectories from our experiments in Newtonian and viscoelastic fluids. We present
our 3D measurements for polymer concentrations corresponding to viscosities up to 5
mPa.s. We do not present data for higher polymer concentration (viscosities ranging
from 5 to 8 mPa.s) because the 3D-motility of the cells is inconsistent in these solutions,
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and the swimming velocity is very low (see Fig. 4.3 B).

Figure 4.5: Sample trajectories for various [A-E] Newtonian and [F-I] viscoelastic fluids. Polymer
concentrations correspond to viscosity ranging from 1 to 5 mPa.s. The axis scale is consistent for
the same viscosity value.

Figure 4.5 presents a representative sample of 10-second long trajectories of C.
reinhardtii in both Ficoll and PAAm solutions of different concentrations, with effective
viscosities ranging from 1 to 5 mPa.s. The trajectories are helical for all solutions,
which is characteristic of C. reinhardtii’s swimming behavior. Increasing the polymer
concentration leads to cells swimming in tighter helices for both solutions. Cell
trajectories in the Newtonian solutions of Ficoll concentrations larger than 4% display
sharper turns and frequent abrupt changes in the swimming direction (see Fig. 4.5 C-E).
In comparison, cell trajectories in viscoelastic solutions are straighter with less frequent
changes in direction for PAAm concentration up to 440ppm (Fig. 4.5 F-H). In Fig. 4.5,
This difference is clear when comparing trajectories at similar viscosity of 4 mPa.s
corresponding to Ficoll 7.5% (Fig. 4.5D) and PAAm 440ppm (Fig. 4.5H). At the highest
polymer concentration for η≈ 5mPa.s (Fig. 4.5 E & I), cells turn at a higher rate in tighter
helices and are qualitatively similar in both fluids. Qualitatively, we observe that cells
maintain their swimming direction for longer periods and change direction at a lower
rate, resulting in straighter trajectories in viscoelastic solutions compared to Newtonian
solutions. The following section quantifies these effects by examining velocity, radius,
pitch, and helical angular velocity.
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4.3.3. EFFECT OF FLUID PROPERTIES ON HELICAL SWIMMING

PARAMETERS
We now consider the effect of fluid properties on the helical parameters of 3D
trajectories, specifically, the velocity V , the radius R, the pitch P , and the angular velocity
Ω, for both Newtonian and viscoelastic solutions. These parameters are computed by
analytic differentiation of the position vector, X(t ) = [

X (t ) Y (t ) Z (t )
]
, as follows:

V (t ) = |X′
(t )|, R(t ) = κ(t )

κ(t )2 +τ(t )2 , P (t ) = 2πτ(t )

κ(t )2 +τ(t )2

where κ(t ) and τ(t ) represent the curvature and torsion of the curve, respectively,
calculated in the Frenet-Serret frame of reference (see Section 2.4.2 for more details).
These geometric parameters are computed at each time step for all 3D trajectories.
For our analysis, we compute the time-averaged values for velocity, radius, and pitch
represented by V , R, and P , respectively.

Our experimental results are presented in Fig. 4.6, which provides joint distributions
of the trajectory parameters V , R, P , and Fig. 4.7, which focuses on the dependence
of V , R, P on polymer concentration. Fig. 4.6A.-F. presents the joint distribution of V
and R and shows that the swimming velocity decreases with increasing concentration
of Ficoll (Fig. 4.6A.,C.,E.) and PAAm (Fig. 4.6B.,D.,F.). In addition, a comparison between
the distribution of V for the Ficoll and PAAm solutions of equivalent viscosity shows that
the cells swim faster in the Newtonian medium compared to the viscoelastic medium.
These observations are summarized in Fig. 4.7A, which encompasses all concentrations
studied for both types of solutions.

We verify the consistency of our measurements by comparing the velocity
measurements obtained with our 3D microscope to those from our previous
measurement (see Section 4.3.1) using two-dimensional microscopy. This comparison
is depicted in the inset of Fig. 4.7A, illustrating the swimming velocity (V ) obtained
from 3D microscopy plotted against that from 2D microscopy across all concentrations
for both types of polymer solutions. The values fall on the first bisector and demonstrate
the consistency of the 2D and 3D measurements.

We now focus on the chirality and geometric parameters defining each trajectory.
Figure 4.6G.-L. presents the joint distribution of P and V , used to characterize the
helicity of 3-dimensional trajectories [54, 87]. These joint distributions are given for
both Newtonian and viscoelastic solutions at increasing polymer concentrations. In all
our experiments, we find that the sign of the pitch is always predominantly negative.
This signifies that C. Reinhardtii cells swim in left-handed helices regardless of the
rheology of the fluid medium. Helical trajectories allow algae cells to navigate and adjust
their orientation in response to light stimuli [202, 203]. This shows that the kinematics of
the flagellar beat of C. Reinhardtii robustly supports the chirality of the helical swimming
pattern in media of different rheologies.

While the overall helical nature and chirality of the trajectories are preserved in
the different media, the geometric parameters R and P are strongly influenced by the
rheology and polymer concentration. The radius of the helices remains small for the
trajectories in all media and remains within the range of 2−5µm in all experiments. R
decreases moderately with polymer concentration from 5 µm to 3 µm in Ficoll solutions
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Figure 4.6: Joint distributions of trajectory behavior characterized by time-averaged velocity (V ),
radius (R), and pitch (P ) for Newtonian and viscoelastic fluids at the viscosity of 1, 2, and 3 mPa.s
[A-F] Velocity vs. radius. [G-L] Velocity vs. Pitch [M-R] Pitch vs. radius. The color bar represents
the relative density.

of 0 to 9% and from 4.6 µm at 1.2 mPa.s to approximately 2 µm in PAAm solutions of
40 to 560 ppm (see Fig. 4.7B). In addition, we find the cells swim with smaller radii in
viscoelastic solutions compared to Newtonian fluids of similar viscosities, though the
differences are moderate (see Fig. 4.7B).

The pitch P corresponds to the height of one complete revolution of the helix
and decreases with polymer concentration in a qualitatively similar fashion as R. In
Newtonian Ficoll solutions, P decreases from about 98 µm (0% ficoll) to 27 µm (9%); in
viscoelastic PAAm solutions, P decreases from 65µm (40ppm) to about 20µm (560ppm).
Similar to the radius R, the pitch values P are lower, corresponding to tighter helices,
in viscoelastic solutions compared to Newtonian solutions of equivalent viscosity (see
Fig. 4.7C).

The decrease in the helical geometric parameters R and P for Newtonian fluids
implies that the stroke kinematics of the flagella is not constant and that it depends
on the hydrodynamic forces experienced. Such variations in the stroke patterns due
to changes in the rheology or due to changes in external hydrodynamic loads have
been previously reported through direct microscopic observations of the flagella [45,
204]. The decrease in the geometric parameters of the helix R and P are indicative of a



4

94 4. SWIMMING OF Chlamydomonas Reinhardtii IN COMPLEX FLUIDS

decrease in the stroke amplitude of the flagella with increasing polymer concentration
and effective viscosity.

Figure 4.7: Box plots of time-averaged velocity (V ), radius (R), pitch (P ), and helical angular
velocity (Ω) of 3D trajectories in different Newtonian and viscoelastic solutions. The median
value is represented by the central bar in each box, with the lower and upper bounds of the box
indicating the 25th and 75th percentiles, respectively, forming the interquartile range. The top and
bottom whiskers represent the 10th and 90th percentiles. The inset in [A] shows the agreement
between 2D and 3D velocity measurements, with circle markers representing the velocity in
Newtonian solutions and squares in viscoelastic solutions.

A striking characteristic of the overall distributions of V , R, and P is how broad
the distributions are, particularly the distributions in Newtonian Ficoll solutions. This
can be seen from the larger whiskers in Fig. 4.7 A.-C. and the broader peaks in
Fig. 4.6 G.-R. for the Newtonian Ficoll solutions compared to the viscoelastic PAAm
solution of comparable viscosity. Close inspection reveals a bimodal distribution in
the joint distribution of V and R in Fig. 4.6 A-C-E as well as in the distribution of
V and P in Fig. 4.6 G-I-K. The two peaks correspond to two different modes with
different swimming speeds, one faster than the other. In low viscosity Tris medium,
the faster swimming mode corresponds to the weaker peak with swimming velocities
V ≈ 150µm.s−1 and the slower swimming mode corresponds to the main peak with V ≈
80−90µm.s−1. This bimodality is conserved for Newtonian fluids of increased viscosity
at higher Ficoll concentration, Fig. 4.6 A-C-E. Remarkably, this bimodal distribution is
significantly altered by viscoelasticity. At the lower PAAm concentration in fig 4.6 B, the
medium is weakly viscoelastic, and the predominance of the two swimming modes is
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reversed, with the faster swimming mode being prevalent. Upon increasing the PAAm
concentration in fig 4.6 D-F, the slower mode disappears, and only the faster swimming
mode remains. C. Reinhardtii cells have been reported previously to swim in two
gears, in an eukaryotic equivalent of a run-and-tumble motion [92]. The “run”-mode
corresponds to the cell swimming with its two flagella synchronized and is characterized
by fast swimming, while in the “tumble”-mode the two flagella beat asynchronously,
inducing a reorientation of the swimming direction and slower swimming velocity. We
can, therefore, assume that the two modes identified in our distributions Fig. 4.6 A-C-E
correspond to two sub-populations of cells, characterized by their swimming modes:
the faster mode corresponds to fast swimming cells whose flagella remain mostly
synchronized, and the slower mode corresponds to cells with a higher incidence of
asynchronous beating, leading to cell reorientation and slower swimming velocities.
This characterization of the two swimming modes agrees with our earlier qualitative
description of the trajectories, see Fig. 4.5. First, the prevalence of the slower swimming
mode in the Newtonian medium implies that the cells have a higher incidence of
tumbles, agreeing with the observation of trajectories with a higher rate of sharp turns.
Second, the prevalence of the faster swimming mode and disappearance of the slower
swimming mode in viscoelastic flow indicate that cells swim in a “run”-mode for most of
the time, agreeing with our recording of trajectories, which are significantly straighter
in a viscoelastic medium. Together, our result strongly suggests that the viscoelastic
rheology of the fluid modulates the flagellar synchronization, with increased elasticity
promoting robust synchrony. Recent work has demonstrated that the synchronization
between the two flagella of C. Reinhardtii is due to internal elastic stresses in the
fibrous structures connecting the two flagella as opposed to viscous stresses acting
through the fluid [103, 205, 206]. This new result points to the fundamental role of
elasticity in promoting synchrony, both through structural elasticity and through fluid
viscoelasticity.

We conclude this section by considering the correlations between V , R, and P . The
joint distributions between V and R, and between R and P , show weak correlations
for all of the polymer solutions, with Spearman’s rank correlation coefficients ranging
from 0.2 to 0.5 and 0.3 to 0.5, respectively (see Fig. 4.6A.-F. and M.-R.). On the other
hand, the joint distribution of V and P clusters around a straight line through the origin,
indicative of a linear relation between the geometric parameter P and the kinematic
parameter V , see Fig. 4.6 G.-L. We find an extremely strong correlation with Spearman’s
rank correlation coefficients varying between 0.8 and 0.9 for different solutions between
the swimming velocity V and the helical pitch P . This strong correlation has a few
outstanding features. First, in comparison to the significant variability and broad
distributions of R, P , and V as shown in Fig. 4.7, the correlation between V and P is
surprisingly strong and the joint distribution narrow. Also, the two peaks corresponding
to the faster “run”-dominated mode and the slower “tumble”-dominated mode in the
joint distribution fall along the same line, see 4.6 G-H-I, such that the linear relation
between velocity and pitch holds for both modes. Finally, the robustness of this linear
correlation to changes in the rheology is remarkable. Cells swimming in the Newtonian
solution of increased viscosity exhibit the same linear correlation between velocity and
pitch, with the joint distribution clustering along a line with the slope of ∼0.85, see
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Fig. 4.6 G-I-K. The same observation holds for the viscoelastic solutions at all PAAm
concentrations, see Fig. 4.6 H-J-L. The fact that the slope of the velocity/pitch correlation
remains the same for all the tested polymeric solutions is all the more unexpected,
considering our earlier discussion that rheology strongly affects the kinematics of the
flagellar stroke, the geometry of the trajectories, the beating frequency, and swimming
velocity.

The slope of the linear correlation is the ratio between V and P and corresponds
to the inverse of the characteristic time required for the cell to swim over the distance
between two consecutive turns of the helix. Since the radius of the helices is significantly
smaller than the pitch, this time scale is closely related to the time scale to complete a
full turn of the helix, or equivalently, the rotation rateΩ along the helix. We compute the
instantaneous rotation rate as follows:

Ω(t ) = V (t )√
P (t )2 +R(t )2

,

and report for each trajectory the average valueΩ. In Fig. 4.7 D, we present our results as
a function of the effective viscosity of the Ficoll and PAAm polymeric solutions. We find
indeed that the rotation rate along the helix is the same for Newtonian Ficoll solutions
and viscoelastic PAAm solutions and does not depend on the polymer concentration,
see fig 4.7 D. In addition, for each concentration of polymeric solution, the distribution
is narrow in both solutions, as can be seen from the small whiskers in fig 4.7 D, and in
stark contrast with the wide distribution in swimming velocity in fig 4.7 A.

The rotation rateΩ along the helical trajectory is, therefore, a motility invariant, with
Ω ≈ 1.25 Hz in all tested solutions. This result underlines the biological significance of
the rotation rate Ω, compared to other motility parameters such as V , P , R, or f, which
are not invariant. Helical trajectories allow microalgae cells to survey and keep track of
the light intensity in different directions [28, 207] and are central to the reorientation in
response to light stimuli required for phototaxis [202, 203]. An invariant Ω guarantees
that cells retain the ability to scan the light distribution around them, regardless of the
complex nature of their environment. How this invariance is achieved and its origin
remains open questions. The helical swimming in C. reinhardtii cells originate from a
force asymmetry between the flagella and the out-of-plane beating component of the
flagella [113]. We hypothesize the existence of an active regulation mechanism for the
asymmetric and out-of-plane beating component of the flagellar beat, supporting the
invariance of Ω. In fact, in Newtonian solutions of increasing viscosities, the flagellar
beating frequency decreases, see Fig. 4.3 A), which can only be compensated by an
increase in the 3D beating component to keep Ω constant. In viscoelastic solutions,
the increase in viscoelasticity leads to surprising changes in the forward and backward
velocities during the power and the recovery stroke, see Fig. 4.4, and the changes in the
stress on the flagella lead to modulations in the flagellar deformations and swimming
gait Qin et al. [45]. Despite these changes in swimming gait, the cells still maintain
a constant Ω, which is, in fact, equal to the value measured for Newtonian solutions.
Hence, the invariance of rotation rateΩ requires complex modulation of the 3D beating
gait that strongly depends on the beating frequency and the nature of the complex stress
experienced in media of varying rheological properties; these modulations are therefore
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likely active in nature. What sets the value of the rotation rate Ω ≈ 1.25 Hz, and how
does a cell sense that it has completed a full rotation also remain open questions. The
helical motion plays an important role in phototaxis, and it is therefore reasonable to
look for an environmental origin to the value of Ω. The presence of a light source
could provide an environmental signal to support a constant rotation rate. However,
our experiments were performed under red light and in complete darkness to avoid any
influence of phototactic response in the 3D trajectories of C. Reinhardtii. In the absence
of environmental factors, our results could also point to a cellular mechanism allowing
the cell to sense its own rotation.

4.3.4. CELL DIFFUSIVE BEHAVIOR IN NEWTONIAN & VISCOELASTIC

FLUIDS
In the previous section, we quantified the effect of rheology on geometric trajectory
parameters P and V and kinematic parameters V , f , andΩ. These quantities are locally
defined at a point along the trajectory and are derived from the motion of the cell. In the
following, we quantify the effect of rheology on the long-term behavior of the cell and
define new parameters characterizing the trajectories over long time scales. Over such
long time scales, the motion of C. Reinhardtii is known to be diffusive in nature [92].
We characterize the diffusive behavior of cells by computing the reorientation time τp

and persistence length Lp for each cell’s trajectories in both Newtonian and viscoelastic
fluids. The reorientation time τp represents the duration over which the travel direction
of a cell no longer correlates with its initial travel direction. Related to τp , we compute
the persistence length Lp , corresponding to the total distance the cell covers during the
time interval τp , and over which the correlation in the swimming direction is lost.

Assuming that the correlation function of the swimming direction follows an
exponential decay of the characteristic timescale τp , we can derive an expression for
the mean squared displacement of the cell (MSD):

MSD(∆t ) = 2〈V 2〉∆tτp

[
1− τp

∆t

(
1−e

− ∆t
τP

)]
, (4.1)

where (〈V 2〉) is the mean square velocity. This derivation is equivalent to established
definitions of the persistence length in polymer dynamics [208], see Appendix A.3
for more details. In our experiments, the mean square displacement (MSD) of the
cell is directly deduced for each trajectory from the extracted position vector X(t ), as
MSD(∆t ) = 〈|X(∆t + t◦)−X(t◦)|〉, and τp can be readily deduced by fitting the model in
equation 4.1 to our experimental data. The persistence length LP is directly deduced
from the reorientation time scale as:

Lp =
√
〈V 2〉τp . (4.2)

Figure 4.8 presents the distributions of our measured τp and persistence length LP

for both Newtonian and viscoelastic fluids. For the Newtonian solutions, the average
reorientation time remains constant, with a value of around 4s for all concentrations.
The cells in viscoelastic media exhibit an average reorientation time that is higher
than that of cells in Newtonian solutions of equivalent viscosity. Additionally, as
the concentration of the viscoelastic solution increases, the reorientation time also
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increases, reaching a maximum of 10s for PAAm 320ppm with a viscosity (µ) of 2.6 mPa.s.
This is 3-fold larger than in the Newtonian ficoll solution of equivalent viscosity. When
considering persistence length (Fig. 4.8 B), we find that cells reorient more frequently in a
Newtonian solution of increasing ficoll concentration, as demonstrated by the reduction
in persistence length from approximately 500 µm to 100 µm as Ficoll concentration
increases from 0 to 9% corresponding to η = 1mPa.s to η = 5mPa.s. As for viscoelastic
solutions, the average persistence length varies between 250 µm and 400 µm for all
concentrations, except for PAAm 560 ppm (η = 5mPa.s). Moreover, the persistence
length in viscoelastic solutions is higher than in Newtonian solutions, corroborating the
observation from 3D trajectories presented in Fig. 4.5.

Figure 4.8: Box plots of [A] Reorientation time τP and [B] Persistence length LP for three-
dimensional trajectories swimming in Newtonian and viscoelastic fluids. The median value is
represented by the central bar in each box, with the lower and upper bounds of the box indicating
the 25th and 75th percentiles, respectively, forming the interquartile range. The top and bottom
whiskers represent the 10th and 90th percentiles.

Our quantitative characterization of the long-term behavior of cell trajectories
reveals a strong effect of fluid rheology on the diffusive behavior of cells. Our
main result is the significant increase in reorientation time and associated increase
in persistence length in viscoelastic solutions compared to Newtonian solutions of
equivalent viscosities. The diffusive behavior of cells originates in the random walk-
like run-and-tumble motion, where the tumbles are caused by the cell reorientations
due to asynchronous flagellar beating [92]. The primary phenomenon that causes
asynchrony is the phase slip of the trans flagellum [204]. The decrease in diffusivity
observed in viscoelastic solutions suggests a strong effect of viscoelasticity in reducing
the occurrence of phase slip and, consequently, in promoting flagellar synchrony. These
results agree with our earlier observation that the slower swimming mode in Newtonian
solutions is suppressed in viscoelastic solutions, see Fig. 4.6 and that elasticity supports
synchronous flagellar beating.

4.4. SURFACE INTERACTIONS
This section presents our study of the surface interactions of C. reinhardtii cells in both
Newtonian and viscoelastic fluids of varying polymer concentrations. Here, we consider
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only solutions with low effective viscosities of 1 mPa.s and 2 mPa.s. Previously, we found
that, for these low polymeric concentrations, the trajectories maintain their orientations
for longer times, as indicated by the high persistence length (see section 4.3.4). For
high polymeric concentrations, cells frequently turn and swim at low velocities, making
it challenging to isolate cell reorientation due to surface effects from the inherent cell
motion. We, therefore, limit this study to two Newtonian solutions, namely Tris minimal
and 4% Ficoll solutions, and two viscoelastic solutions of comparable viscosities, namely
PAAm solutions at 40 ppm and 200 ppm. We use our three-dimensional microscope to
investigate how rheology affects the scattering dynamics, residence time, and surface
accumulation of cells.

4.4.1. NEAR-SURFACE SCATTERING

Figure 4.9: [A] Illustration of a cell surface interaction and the nomenclature used throughout this
section. [B] The distributions of closest approach distance (Z◦) for all cell trajectories for both
Newtonian (Tris & Ficoll 4%) and Viscoelastic (PAAm 40 ppm & 200 ppm) solutions.

First, we examine the scattering dynamics of motile C. reinhardtii cells in the near-
surface region. For this, we identify a near-surface region characterized by a length scale
Zr es determined as follows. For each trajectory, we identify the time t◦ when the cell
is at its minimum distance to the surface and call this minimum distance Z (t◦) = Z◦
(see Fig. 4.9A). Fig. 4.9B represents the distribution of minimal approach distance Z◦ for
all four solutions. For all solutions, the distribution increases significantly close to the
surface, indicating that a significant number of cells approach and subsequently depart
from the surface. Beyond a distance of 50 µm, the distribution is uniform, indicating
that the surface has a limited effect beyond this distance. Therefore, we consider that the
near-surface region extends to a distance of 50 µm from the surface, i.e., Zr es = 50µm,
and consider here only those trajectories for which the minimal approach distance is
such that Z◦ ≤ Zr es . For these trajectories, we define X2D (t ) as the distance traveled
in the x y-plane parallel to the surface and present the trajectories in (X2D (t ), Z (t ))
coordinates. Fig. 4.10 presents the distribution of these trajectories for the four solutions.
We follow the same methodology as in our previous work on cell-surface scattering
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dynamics in a Newtonian medium [98] and re-center all trajectories around the position
of minimal approach X2D (t0).

Figure 4.10: The distribution of cell trajectories in (X2D , Z ) coordinates centered at X2D (t0) for
different media. Green markers represent the average trajectory with cells moving from blue
towards the cyan marker.

For Newtonian solutions, the addition of Ficoll results in shallower trajectories that
remain on average closer to the surface, see Fig. 4.10B compared to A. Also, the cells
approach and depart from the surface at shallower angles in the 4% Ficoll solution
compared to the Tris medium. In viscoelastic solutions (PAAm 40 and 200 ppm), the
increase of the polymeric concentration has a similar effect on the trajectories, see
Fig. 4.10C and D. We compare the distribution of trajectories for solutions with similar
viscosity, such as Tris vs. PAAm 40 (1 mPa.s) and Ficoll 4% vs. PAAm 200 ppm (2
mPa.s). In viscoelastic solutions, the average cell trajectories remain closer to the surface
compared to the trajectories in the Newtonian solution, see Fig. 4.10A, C and Fig. 4.10B,
D.

We further quantify how shallow the trajectories are and report the approach and
departure angles. The approach angle θin and the departure angle θout correspond to
the angle at which a cell enters and exits from the near-surface region (Z = Zres), see
Fig. 4.9. Figure 4.11 presents the distribution of θin and θout. In Tris medium, the median
approach angle is 30◦. With the addition of Ficoll, this decreases to a median angle of
24◦. For PAAm at 40 ppm, the median approach angle is 27◦, while at PAAm 200 ppm, it
decreases to 20◦. We find a similar decrease for the departure angles. In the Ficoll 4% and
PAAm 200 ppm solutions, cells depart at smaller median angles, 20◦ and 18◦ respectively,
compared to 24◦, in the Tris medium. Both the approach and the departure angles
are lower in the viscoelastic fluids compared to the Newtonian fluid of similar effective
viscosity, see Fig. 4.11. These measurements of θin and θout confirm our observation
from the trajectory distributions in Fig. 4.10 that cells remain closer to the surface in
polymeric viscoelastic solutions compared to cells in Newtonian solutions.

We can directly characterize the effect of rheology on surface scattering by
computing the expected value of departure angles E(θout) conditional to the incoming
angle θin. Fig. 4.11E & F shows that for the same incoming angle θin, cells in
viscoelastic solutions scatter at a smaller departure angle θout compared to cells in the
Newtonian medium of similar viscosity. This effect is stronger at the higher polymeric
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concentration, see Fig. 4.11E & F for cells in 4% Ficoll and PAAm 200 ppm. Our
experimental results agree with previous numerical studies [182, 184], where increase
in viscoelasitcity (Higher Weissenberg and Deborah number) resulted in shallower
scattering angles. An increase in elastic properties promotes cell repulsion from the
surface [184]. This elastic repulsion prevents cells from approaching the surface
closely [184], thereby minimizing steric interactions. Instead, cells predominantly
interact with the surface through hydrodynamic forces, causing them to scatter at
shallower angles. Consequently, cells in viscoelastic solutions exhibit smaller scattering
angles compared to those in Newtonian solutions, where closer approach leads to
higher scattering angles due to steric interactions. The shallow scattering in viscoelastic
solutions is a fundamental mechanism, leading directly to cells remaining in the near-
surface region for longer time periods compare to cells in Newtonian media.

Figure 4.11: [A-D]The distributions of approach angle (θin) and departure angle (θout) for
Newtonian and Viscoelastic fluids at different concentrations. Solid black lines represent the
median value. [E-F] Expected value of θout for range of θin for solutions of 1 mPa.s(left) and 2
mPa.s viscosity(right).
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4.4.2. RESIDENCE TIME & TRAJECTORY BEHAVIOR

surface-interactions can also be characterized by how long cells remain in the vicinity
of the surface. We define the residence time tr as the time spent by the cells within
the near-surface region (Z < 50µm). Fig. 4.12 presents the distributions of residence
time. In the Tris medium, the average residence time is 1.4s, indicating that prolonged
trapping is rare and aligns with the deterministic departure mechanism as highlighted
by earlier numerical and experimental research [143, 209]. We explored this mechanism
in detail in our previous work on cell-surface scattering in a Newtonian medium [98].
In the 4% Ficoll solution, the cell residence time increases by 1.2 seconds compared to
cells in the Tris medium. Cells in the viscoelastic solutions of PAAm 40 ppm and PAAm
200 ppm also exhibit longer residence times than in the Tris medium. When comparing
solutions of similar viscosities, such as Tris versus PAAm 40 ppm and Ficoll 4% versus
PAAm 200 ppm, cells in viscoelastic media have longer residence times than those in
Newtonian media. This demonstrates the role of elasticity in increasing residence time
and agrees with prior numerical [182] and analytical [172, 173] studies. It is worth noting,
however, that Yazdi et al. [172, 173] reported instances where, based on cell orientation
and distance to the surface, residence times could increase by an order of magnitude
compared to swimming in Newtonian medium, leading to permanent entrapment. In
our experiments, we observe no such instance of permanent entrapment. While some
cells exhibited higher residence times, as seen in the distributions for PAAm 40 ppm and
200 ppm (Fig. 4.12C & D), the increase remained moderate.

We focus on the trajectories with longer residence times in the near-surface region
for all different media. Through this examination, we identified two interaction types:
cells that approach the surface and depart immediately, and others that exhibit spiral or
hopping trajectories as illustrated in Fig. 4.13, where cells periodically move closer and
away from the surface, leading to repeated surface interactions. For the Tris medium,
30% of the cell surface interactions show a hopping behavior. In the case of Ficoll
4%, PAAm 40 ppm, and PAAm 200 ppm, these percentages are 45%, 47%, and 58%,
respectively. These spiral trajectories extend the overall duration cells spend in the near-
surface region for Ficoll and PAAm solutions. In our previous work, we demonstrated
that hopping trajectories were consistent with long-range hydrodynamic interactions
with the surface [98]. The observed increase in hopping trajectories in both Ficoll and
PAAm solutions implies that both viscosity and elasticity enhance this interaction. Our
observation of spiral trajectories in viscoelastic media is in agreement with a previous
numerical study on surface scattering in weakly viscoelastic fluids, which highlights
the presence of spiral trajectories for puller-type swimmers [173]. However, while the
numerical work did not indicate spiral trajectories in Newtonian fluids, we did observe
them. This discrepancy could be due to the numerical study’s assumption of a 2D
swimmer, which influences hydrodynamic behaviors near a no-slip boundary.

4.4.3. SURFACE ACCUMULATION

In previous sections, we have characterized the scattering dynamics of puller-type
C. reinhardtii cells in viscous and elastic solutions. A crucial question that remains
to be investigated is whether the rheological properties of the medium influence the
distribution of cells in the flow cell and, particularly, whether it leads to different degrees
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Figure 4.12: The distribution of residence time (tr ) for different solutions. Solid black lines
represent the average value.

Figure 4.13: [A] Spiral trajectories in the near-surface region for PAAm concentration of 40 ppm.
[B] Changes in cell orientation relative to the surface for trajectories shown in [A]. Negative θ values
represent cells oriented to the surface, while positive represents orientation away from the surface.

of cell accumulation at the surface. We, therefore, use our experimental data to evaluate
the distribution of cell density within our flow chamber and investigate how surface
interactions in different media influence surface accumulation. For each solution, we
computed the cell density. We first divided the total depth of the flow chamber into
discrete bins, each spanning 20 µm. We then averaged the number of cells in each
of these bins for the entire recording and divided this cell count by the volume of the
respective bins. We normalize the cell density by the bulk density, which is defined as
the average cell density in the middle of the flow chamber, specifically 500 µm away
from the surfaces, a region least influenced by surface interactions. Fig. 4.14A presents
the normalized cell density for all tested solutions.

For all media, we observe an increased concentration of cells near the surface.
For both of the Newtonian media, accumulation near the surface decreases quickly.
However, in viscoelastic media, cell density remains higher near the surface over
a greater distance than Newtonian solutions. To characterize the extent of surface
accumulation and determine how far into the fluid the influence of the surface extends,
we calculate the penetration length. It is defined as

∫ 1000
0 (ρ(Z)−ρ(bulk))/(ρ(0)−ρ(bulk)).

For Newtonian fluids, the penetration length is approximately ∼ 100µm, similar to the
one reported in [98]. For viscoelastic fluids, the penetration length increases to nearly ∼
200 µ m,. This increased penetration length in viscoelastic mediums demonstrates that
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elasticity increases cell accumulation near the surfaces for C. reinhardtii cells.
A recent experimental study showed that elasticity results in reduced surface

accumulation for Escherichia coli bacteria [192]. This phenomenon arises due to a
lift force generated by the rotating flagellum when swimming in a viscoelastic fluid,
counteracting the hydrodynamic effects and thus reducing the surface accumulation
for E. Coli. While E. Coli propels itself using a counter-rotating flagellum bundle, C.
reinhardtii uses a breaststroke motion to swim. As a result, the lift forces attributed to
the rotating flagellum in E. Coli would not be present for C. reinhardtii cells. Without
such lift forces, the hydrodynamic interactions predominantly determine the surface
accumulation [98]. Our observation of the surface accumulation in a viscoelastic
medium indicates that the elasticity enhances these hydrodynamic interactions, leading
to increased surface accumulation for C. reinhardtii cells. This increased surface
accumulation can be explained by our prior results that, in viscoelastic solutions, cells
depart at more shallow angles and spend a longer duration near the surfaces compared
to a Newtonian solution.

Figure 4.14: [A] Cell density distribution along the Z direction and [B] Penetration length for
different fluid media.

4.5. CONCLUSION
In this study, we investigated the effects of non-Newtonian rheology on cell kinematics
and surface interactions of C. reinhardtii cells. We used two media for our experiments:
Ficoll400 solutions as Newtonian fluids of varying viscosities and Polyacrylamide
(PAAm) solutions with viscoelastic properties. Our experiment included 2D and 3D
tracking of C. reinhardtii cells. We used an inverted microscope for two-dimensional
tracking to measure the beating frequency and velocities during power and recovery
strokes. For 3D imaging, we used a multi-camera microscope that captured the
microorganisms’ three-dimensional behavior in an unconstrained environment. We
then tracked the movement of cells in three dimensions using our in-house Lagrangian
tracking algorithm.

Our study shows that C. reinhardtii cells swim with a higher beating frequency in
viscoelastic solutions compared to those in Newtonian media of similar viscosities.
This increase in beating frequency does not induce an increase in swimming speed.
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Instead, the cells in viscoelastic fluids swim at lower speeds than those in Newtonian
fluids of equivalent viscosities. Our measurements highlight the distinct impact of
viscoelasticity on the velocities during power and recovery strokes. Specifically, an
increase in backward velocities during the recovery stroke was observed in viscoelastic
fluids, contributing to an overall lower swimming speed. These results are in agreement
with the experimental work conducted by Qin et al. [45], providing further empirical
support for their conclusions. We further investigated the influence of non-Newtonian
rheology on the 3D kinematics of the C. reinhardtii cells. We found that the cell’s velocity,
radius, and pitch of the helical path are strongly influenced by the viscosity and elasticity
of the surrounding medium. As the viscosity increased in Newtonian and viscoelastic
solutions, cells adapted their swimming along a helical path with a smaller radius and
pitch at low velocity. Cells in viscoelastic solutions swam with lower velocity, radius, and
pitch values compared to cells in Newtonian solutions of equivalent viscosity.

We found that the distribution of swimming velocities and helical geometric
parameters was rather broad for cells swimming in Newtonian media. These
distributions were significantly broader in Newtonian compared to viscoelastic media.
Close inspection of these distributions revealed bimodality for cells in Newtonian fluids,
with a faster swimming mode, which arguably corresponds to cells swimming mostly
with synchronized flagella, and a slower swimming mode, which corresponds to cells
with a higher incidence of asynchronous tumble events. This bimodality disappears
in viscoelastic media, and only the faster swimming mode remains, suggesting that
viscoelasticity is responsible for reducing asynchrony between the flagella. These
results are confirmed by a characterization of the long-term diffusive behavior of cells.
We computed the persistence length of the cell trajectories, quantifying how long
the cell maintains its direction. We found that the persistence length also depends
significantly on the rheology. For viscoelastic solutions, the persistence length is
higher than in Newtonian solutions, and therefore, cells in viscoelastic solutions display
less diffusive dynamics than cells in Newtonian solutions. Our work also highlights
how fluid properties can impact the directional changes and persistence of the cells’
trajectory. The reorientation time of cells in viscoelastic fluids consistently exceeds that
in Newtonian fluids of similar viscosity. This difference in reorientation time can be
attributed to asynchronous flagellar beating, which is known to be responsible for the
sharp turns exhibited by algae cells [92]. This asynchronous behavior is primarily driven
by the phase slip of the trans flagellum [204]. While phase slips are generally considered
random events [210], the difference in reorientation time between the two fluid types
indicates that the elasticity of the medium reduces the asynchronous flagellar beating
and promotes synchrony.

Despite the significant differences in the helical swimming of C. reinhardtii in the
different media, the distribution of swimming parameters is consistent between all
polymeric solutions in one surprising aspect. We found a very robust linear correlation
between the swimming velocity and the pitch of the helix. This correlation is closely
related to the angular velocity along the helix, which we found to be close to invariant
and equal to 1.25 Hz in all solutions. This helical angular velocity is the rate at which
algae cells scan their environment as they swim along their helical trajectory. To achieve
this constant scanning frequency, cells likely tune the out-of-plane beating component
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of their flagella, especially when traversing tighter helices in more viscous and elastic
conditions. Such a stable scanning rate is crucial for C. reinhardtii’s phototactic
behaviors, aiding in efficiently locating light sources essential for their photosynthesis.
In changing environments, maintaining this rate ensures a rapid response to stimuli.

Finally, we examined the surface interactions of cells in Newtonian and viscoelastic
fluids. The surface interactions of the cells displayed differences in scattering dynamics
between the Newtonian and non-Newtonian solutions. Notably, in viscoelastic media,
the approach and departure angles were shallower, especially in high-concentration
PAAm solutions, leading to cells remaining closer to the wall. This agrees with previous
numerical studies [182, 184], which suggested that the increased elasticity resulted in
cells departing at relatively shallow angles due to hydrodynamic interactions. The
residence time of the cells near the surface was also affected by the properties of the
fluid. In both Ficoll and PAAm solutions, we observed an increase in residence time
compared to the Tris medium, demonstrating the impact of both viscosity and elasticity.
We identified two types of cell-surface interactions, one where cells left immediately
after approaching the surface and another where cells displayed spiral trajectories near
the surface. The latter was more prevalent in viscoelastic solutions, increasing residence
time. Although previous numerical studies reported the existence of these spirals in
weakly viscoelastic fluids [173], our study revealed their presence even in Newtonian
fluids.

We characterized the effect of the elasticity of the fluid on the accumulation of
cells near surfaces. Cells in the viscoelastic fluids exhibit a higher cell density near
the surface, which we quantified with a significant increase in the penetration length.
This observation supports our earlier findings of an extended residence time and the
presence of spiral trajectories in viscoelastic solutions. In viscoelastic media, the
higher accumulation near surfaces could enhance cell-cell interactions, thus extending
the duration for extracellular communication among algae cells, leading to biofilm
formation at a much shortened time scale. For applications such as photobioreactors, it
becomes essential to consider the cell scattering dynamics we have observed. Given that
cells in these reactors swim in complex fluids, the strategic design of surface topologies
is crucial. By doing so, excessive cell accumulation and, consequently, biofilm formation
can be inhibited on the reactor walls.
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IMPACT & OUTLOOK

"You can never know everything, and part of what you know is always wrong. Perhaps
even the most important part. A portion of wisdom lies in knowing that. A portion of

courage lies in going on anyway."

Lan Mandragoran in Winter’s Heart, Robert Jordon

107



5

108 5. IMPACT & OUTLOOK

This dissertation introduces a new 3D imaging technique designed to deepen our
understanding of microorganism motility in three dimensions. Using a novel multi-
camera microscopy system introduced in Chapter 2, we have improved the tracking
capabilities for microswimmers such as C. reinhardtii, achieving tracking at higher
densities with more accuracy and precision compare to de-focused and holographic
tracking methods. Our system has facilitated detailed analysis of their 3D trajectories
and interactions. Chapter 3 and Chapter 4 demonstrate the application of our
technology in understanding the dynamics of microswimmer interactions and the
effects of fluid properties on their motility. We observed interesting scattering patterns
and interaction dynamics critical for theoretical and practical implications in microbial
ecology and biophysics. The following sections discuss the broader implications of our
findings and future research possibilities.

5.1. SCIENTIFIC CONTRIBUTIONS AND IMPACT
This dissertation advances microorganism motility research by developing and
implementing a multi-camera microscopy system for the three-dimensional tracking of
microswimmers. This method enhances experimental research capabilities by providing
detailed insights into the behaviors and interactions of microorganisms in a three-
dimensional environment. Previously, research using multiple camera systems [110,
211] was restricted to macro scales due to technical constraints. This study adapts these
methodologies for microscopic applications, enabling the exploration of microorganism
dynamics. For instance, it can reveal the mechanisms behind the collective behavior
of algae, contributing to advancements in algal biofuel production. Additionally, the
new imaging technology can be used to investigate the chemotactic responses of
bacteria to different nutrient gradients, providing a deeper understanding of microbial
ecology. The ability to track interactions in three dimensions also aids in studying
pathogen-host interactions, leading to novel antimicrobial strategies. Consequently,
this work facilitates further studies into the taxis, collective behavior, and interactions of
microorganisms, advancing microbiology, environmental science, and biotechnology.

This dissertation also introduces two innovative techniques that significantly
enhance microscale research capabilities. The first is a volume-based calibration
technique that uses projective geometry frameworks for microscale applications.
This technique achieves high precision through linear computational approaches,
simplifying the calibration process compared to traditional methods that require
complex non-linear optimization [212, 213], hence computationally intensive. This
process reduces computation time and resources, improving calibration and tracking
applications across different scales. The second technique is the Lagrangian polynomial
curve-fitting algorithm that converts discrete-time series data into continuous
trajectories. This method facilitates accurate extraction of trajectory parameters,
reducing potential errors and improving the reliability of trajectory analysis. However,
selecting an inappropriate polynomial degree can lead to overfitting, which may
introduce artificial oscillations (Runge’s phenomenon), or underfitting, which might fail
to capture essential dynamics of cell movements. Despite these limitations, this new tool
benefits data analysis within this dissertation and serves as a resource for future research
for 3D tracking studies.
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Further, this dissertation provides a detailed analysis of the three-dimensional
kinematics and interactions of microorganisms, specifically C. reinhardtii. This
research overcomes the limitations of two-dimensional studies, offering a more accurate
depiction of microorganism motility by precisely measuring parameters like swimming
velocity, helical pitch and radius, and angular velocities. This 3D experimental data
supports refining and enhancing analytical and numerical models for simulating
microswimmer behaviors under different conditions.

A significant impact of this dissertation is its introduction of methods to quantify
and analyze microorganism interactions in three dimensions. This study introduces
metrics for analyzing cell interactions based on relative distance and incoming angle.
These metrics help characterize cell behavior and set a foundation for future studies
to validate or expand upon our experimental findings. The observed asymmetry in
scattering behaviors and the avoidance of permanent bound states suggest that cell-cell
interactions are influenced by individual cell characteristics and environmental factors,
highlighting the need for further investigation into cell-cell interactions.

Additionally, applying this imaging technique to study the effects of non-
Newtonian fluid dynamics on microorganism motility marks an advancement in
understanding how fluid properties influence microorganism behavior. Observing how
microorganisms adjust their motility in response to fluid rheology provides essential
insights for biophysical and environmental sciences. This understanding is crucial for
environmental monitoring and developing strategies to control and utilize microbial
processes in wastewater treatment and bioremediation industries.

The discussion thus far has primarily focused on future research directions and the
application of methods from this study to other areas. Another measure of impact is
the societal relevance of research. This thesis addresses fundamental questions about
microorganism motility and interactions and has a limited direct impact on society in
the short term. However, its foundational contributions are crucial. By enhancing our
understanding of microorganisms motility, this work informs future scientific efforts and
aids in developing strategies to manage microbial activity in both environmental and
clinical contexts. Potential applications of significant societal relevance might include
optimizing bioreactor designs, improving wastewater treatment processes, or enhancing
antimicrobial treatments by leveraging pathogen motility dynamics.

5.2. OUTLOOK AND FUTURE DIRECTIONS
Our study provides a foundation for understanding microorganism motility and
behavior in three dimensions, but much remains to be explored. In this section, we
outline potential future research directions.

5.2.1. FURTHER REFINEMENTS IN 3D TRACKING TECHNOLOGY

The 3D tracking system we developed represents a notable advancement in
understanding the behaviors of microorganisms like C. reinhardtii. Although the current
system provides valuable insights, there is still potential for further refinements and
improvements to enhance its capabilities.
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IMAGING OF SMALLER MICROORGANISMS

One of the primary limitations of the current 3D imaging system is its diffraction limit,
which is 8 µm. When studying microorganisms smaller than this threshold, image
overlap becomes a prevalent issue. Such overlaps make it challenging to determine
whether microorganisms are truly in close proximity or merely appear overlapped due
to the resolution constraints. Consequently, this ambiguity hinders accurate assessment
of physical interactions between microorganisms, leaving many research questions
regarding smaller organisms unexplored. One way to surpass this limitation is to replace
the current lens in this imaging system. The system’s resolution can be increased
by introducing the objective lens with a focal length of 10 mm and a magnification
of 2, compared to the current objective, which has a focal length of 30 mm and a
magnification of 1.5. Another modification lies in adjusting the pinhole diameter to 3
mm. These modifications strike a better balance between resolution and depth of field
for this setup. With these proposed modifications, the system’s diffraction limit would
be less than 2 µm. This would also ensure a maximum depth of field of 50 µm. The
resulting system would be capable of imaging smaller microorganisms such as bacteria
and spermatozoa and maintaining compatibility with 3D microscopy.

IMAGING AT HIGH DENSITIES

Successfully imaging and tracking microorganisms at high densities presents
multiple challenges beyond our current system’s capabilities. At such densities,
microorganisms will likely have overlapping trajectories and exhibit complex multi-
organism interactions. Enhancements in both tracking algorithms and imaging
technology can help address these hurdles more effectively.

Improvement in Tracking:
On the computational side, while our current algorithms are adept at handling

moderate densities, the complexity brought about by high densities necessitates more
sophisticated methods. One such method involves using the Kalman filter [214],
renowned for its efficiency in predicting and refining system states over time. This
method could replace the polynomial fit during the time-resolved tracking step
of our algorithm. By dynamically updating and predicting the trajectory of each
microorganism, the Kalman filter can reduce errors caused by overlapping trajectories
or sudden movements. Furthermore, machine learning and neural networks [215]
can further refine the ability to discern individual trajectories amidst densely packed
environments.

3D Fluorescence microscopy:
Highly dense particle suspension investigations are necessary to understand the

collective behavior of microorganisms. However, particle tracking becomes infeasible
when individual organisms cannot be differentiated separately, especially at high
densities. Fluorescence microscopy [216] stands out as a promising technique to image
suspensions at these densities. Fluorescence microscopy is an imaging technique
that uses fluorescent dyes or genetically modified organisms to produce high-contrast
images when exposed to specific wavelengths of light. By incorporating filters in front
of the cameras that selectively allow light emitted by fluorescently tagged particles while
blocking all other light, our 3D microscopy system can effectively reduce background
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noise. This selective imaging enhances the visibility of individual tagged particles within
densely populated environments, making it feasible to track their dynamics and study
collective behavior even at very high densities.

5.2.2. INFLUENCE OF EXTERNAL STIMULI
Understanding how microorganisms respond to external stimuli is paramount to
grasping their ecological roles and physiological adaptations. Using the 3D microscopy
system, microorganisms like C. reinhardtii under varying environmental conditions can
be observed and analyzed. This system allows various flow chambers, which can be
modified to study the effects of external stimuli.

LIGHT

Phototaxis, or the movement of an organism in response to light, is a well-documented
behavior in many microorganisms [27, 31]. Adjusting factors like light intensity,
direction, or wavelength enables us to study how these organisms navigate and adapt.
These investigations can elucidate microorganisms’ strategies in natural environments,
such as seeking nutrient-dense areas or avoiding harmful UV radiation. The microalgae
C. reinhardtii is known to display phototaxis under light wavelengths ranging from 420-
500 nm [217]. Using our experimental setup, we conducted exploratory analyses on
the phototactic response of the model microswimmer C. reinhardtii to two different
wavelengths: 650nm (Red) and 500nm (Green) laser light.

In our experimental design, the light source’s positioning ensured the incoming light
rays aligned along the negative z-axis (Fig. 2.1). We analyzed our three-dimensional
tracking data to determine the algae cells’ orientation relative to these light rays.
Specifically, the orientation angle, θℓ, is calculated using θℓ = cos−1(T · −Z), where T
represents the orientation vector of the cell at a different time step, and Z denotes the
Z-axis direction.

Fig. 5.1 presents the distribution of θℓ for all of the algae cells for all the time steps
for both red and green wavelengths. There is a marked contrast in the microswimmer’s
population orientation between the red light (650 nm) and green light (500 nm). In
the presence of red light, the orientation distribution peaks at θℓ = π/2, suggesting
the cells swim without any specific direction preference. This orientation matches the
expected distribution for an isotropic system, as indicated by the solid blue lines in
Fig. 5.1. Under green light exposure, however, the algae cells predominantly swim
parallel or opposite to the light direction (shown by peaks around θℓ = 0 and θℓ = π)
in Fig. 5.1. This exploratory analysis illustrates the impact of varying wavelengths on
algae swimming. Future extensions of this study could consider cell distribution under
specific light conditions.

TEMPERATURE

Temperature plays a pivotal role in influencing microbial motility [218]. By varying
the ambient temperature, we can study alterations in the speed, trajectory, and overall
behavior of microorganisms. Some species may exhibit heightened activity at elevated
temperatures, while others might show optimal motility in cooler conditions. This
research can also show how increasing global temperatures might affect ocean microbial
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Figure 5.1: Comparison of the distributions of algae cell orientation in relation to light direction
under red (left) and green (right) wavelengths. The solid blue line represents the theoretical
distribution, given by sin(θ)/2, for the orientation angle of a particle moving randomly in three
dimensions relative to the wall.

movements [219]. Our advanced 3D microscopy system offers a setup to study the
microorganisms’ thermal adaptations. In our group, we are already investigating the
design of a specialized flow chamber for controlled temperature alterations to facilitate
these observations. This chamber features an external bath, where the temperature is
adjusted using water, and an internal reservoir for the microswimmers. One potential
limitation of this setup is the possibility of uncontrolled background flows influencing
microorganism motility. Nevertheless, we can model this influence and refine the flow
chamber’s design to minimize such disturbances.

SHEAR RATE

Microorganisms in natural habitats encounter a range of flow conditions, especially in
aquatic environments. We can study how microorganisms cope with such conditions
by introducing varying shear rates in our flow chamber. This will provide a deeper
understanding of their behavior in natural water columns, where they navigate varying
currents and turbulence. One such effort is already underway in our group where we
aim to study the effect of shear rate on the three-dimensional motility of the cells by
observing these cells under various shear stress conditions.

CHEMICAL GRADIENTS

Beyond the physical stimuli, chemical gradients, ranging from nutrient concentration
to the presence of toxins, can influence microorganism behavior [22]. Chemotaxis, the
directed motion of microorganisms along the gradient of a chemical substance, was
one of the first forms of taxis investigated using 3D microscopy. Tracking microscopy
was used to investigate bacterial chemotaxis [220]. Since then, this phenomenon has
been explored extensively for various microorganisms and has provided important



5.2. OUTLOOK AND FUTURE DIRECTIONS

5

113

insights into biofilm formation [221, 222], quorum sensing [223], pathogenesis [224],
and virulence [225]. Most of these studies concern the chemical pathways that
trigger chemotactic responses. Few studies have explored the effect of chemotaxis on
physiological roles [226] and its effect on population behavior [227]. Our 3D microscopy
setup, when combined with custom flow chambers, can offer important insights into
both physiological and population effects due to chemotaxis.

5.2.3. INVESTIGATING MICROORGANISM’S INTERACTIONS
Building on the insights obtained during our research on cell-cell interaction, several
promising avenues emerge for a deeper understanding of microorganism interactions.

INCORPORATING STOCHASTICITY INTO THEORETICAL MODELS

One clear area of development lies in incorporating stochasticity into theoretical models
to simulate microorganism motility to better represent biological complexities and
variabilities. This could be achieved by either adding noise to swimmers’ trajectories,
considering the diffusive characteristics of these swimmers, or by simulating the
swimmers with varying velocities, flagellar frequencies, and phases. Few efforts
have been made to understand the run-and-tumble behavior of C. reinhardtii [228].
Integrating stochasticity into theoretical models and investigating its impact on
interaction dynamics is essential for improving the models’ predictive power, bridging
the gap between theory and observed behaviors.

COLLECTIVE BEHAVIOR

Individual microorganism interactions, while important, represent only a small portion
of what there is to understand about microbial ecosystems. These individual
interactions underpin more complex, larger-scale collective behaviors such as bio-
convection [117, 229], bacterial turbulence [118] and sperm aggregation [230]. Such
collective behaviors influence survival strategies, where microorganisms perform
coordinated action to inhibit competition [231]. Reproductive strategies, too, are
intertwined with these collective behaviors. Clustering or swarming, for instance, might
increase reproductive success by conserving the energy of the whole population [232].

Our advanced 3D microscopy system can be used to explore these collective
dynamics experimentally. Its ability to accurately track multiple microorganisms allows
for an understanding of how singular interactions scale up and shape group behaviors.
For instance, how do short-range interactions compare with long-range hydrodynamic
interactions in influencing group behavior? Can these long-range interactions induce
large-scale patterns or steer the group in specific directions?

We have already taken the first step in answering these questions in this dissertation
in chapter 3, where we explored the effect of cell-cell interaction on trajectory
kinematics. The next step in this research is to investigate how these effects translate
to the collective behavior of microswimmers. One difficulty we faced was isolating
the effects of biological noise from interaction effects. Future efforts could focus on
microswimmers with lower diffusion coefficients to minimize the impact of biological
noise. We can better isolate and analyze the distinct effects of close-range and



5

114 5. IMPACT & OUTLOOK

long-range interactions on collective behavior by utilizing microswimmers with lower
diffusion coefficients. This could be achieved by studying these microswimmers
at increasing densities and evaluating the relative effect of close and long-range
interactions on their trajectory kinematics.

5.2.4. COMPLEX FLUID EXPLORATION
Our study on the motility of C. reinhardtii in viscoelastic fluids has pointed towards the
adaptability and resilience of this microorganism in complex fluid environments. The
findings offer insights into cellular behaviors and open doors to many research areas.

ROTATION SPEED AND PHOTOTAXIS

One of the important findings from our research was the adaptability of C. reinhardtii to
modulate its rotation speed in both viscous and elastic environments. We hypothesized
the existence of an active regulation mechanism for the asymmetric and out-of-
plane beating component of the flagellar beat. Future studies could explore this
hypothesis by measuring the out-of-plane beating component in both viscous and
elastic environments, similar to the study of Cortese and Wan [113].

ELASTICITY AND ASYNCHRONOUS FLAGELLAR BEATING

The effects of fluid elasticity on the flagellar beating patterns of C. reinhardtii offer
another rich avenue for exploration. Asynchronous beating patterns result in run and
tumble behavior in C. reinhardtii. Future studies could focus on the following:

• How do varying degrees of elasticity influence the degree of asynchronicity in
flagellar beats?

• What is the origin of this response? Is it hydrodynamic, or does the adaptability of
swimming gait in viscoelastic environments result in reduced asynchrony?
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A
SUPPLEMENTARY MATERIAL -

CHAPTER 2

This appendix belongs to chapter 2.

A.1. CURVE FITTING ALGORITHM
Trajectory in the object domain is defined as a discrete vector function Xt . where
t ∈ [0, 0.05, 0.1, 0.15, . . . , tN ] and X = [X Y Z ]T are position values. We aim to find a
continuous vector function X(t ,β), where t ∈ [0 tN ] and β is a vector of coefficients.
X(t ,β) is a parameterized curve that can be obtained by minimizing the sum of least
squares as follows:

min
β

N∑
i=0

∥∥X(ti ,β)−Xti

∥∥2 (A.1)

In matrix notation, this can be written as follow:

min
βX ,βY ,βZ

N∑
i=0

∥∥∥∥∥∥
X (ti ,βX )

X (ti ,βY )
X (ti ,βZ )

−
X

Y
Z

∥∥∥∥∥∥
2

(A.2)

Where βX ,βY ,βZ are coefficients concerning X , Y and Z dimension. Equation A.2
shows that X , Y and Z components can be solved independently.

We can write the A.2 in the linear formulation as follows:

min
β

∥∥Aβ−b
∥∥

s.t. Iβ= d
(A.3)

Where A is called the design matrix and I is the constraint matrix. From Karush-Kuhn-
Tucker (KKT) conditions, the optimal value of β obeys:
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[
2AT A I T

I O

][
β

z

]
=

[
2AT b

O

]
(A.4)

Where z is a Lagrangian multiplier. We aim to find the design and constraint matrices to
solve the equation A.3.

X(t ,β) is assumed to be a piecewise Legendre polynomial. For piece-wise
polynomials, we first define the following sub-intervals based on kernel size l :

t1 ≤ ti ≤ tl , tl ≤ ti ≤ t2l . . . t(n−2)l ≤ ti ≤ t(n−1)l , t(n−1)l ≤ ti ≤ tnl

Where n is the number of the sub-interval. In total, we have n +1 knots.
For simplicity, we will only focus on the X component for further discussion.

Let X (ti ,βX ) be a piece wise polynomial composed of X1(ti ,βX ,1), X2(ti ,βX ,2),
X3(ti ,βX ,3),. . ., Xn(ti ,βX ,n) where Xn(ti ,βX ,m) denotes the mth spline, for m = 1,2, . . . ,n.
The following conditions are imposed:

1. At the interior knots, adjacent splines are joined.
Xm(tm ,βX ,m) = Xm+1(tm ,βX ,m+1), for m = 1,2, . . . ,n −1.

2. The first time derivatives matches at the interior knots.
X

′
m(tm ,βX ,m) = X

′
m+1(tm ,βX ,m+1), for m = 1,2, . . . ,n −1.

3. The second time derivatives matches at the interior knots.
X

′′
m(tm ,βX ,m) = X

′′
m+1(tm ,βX ,m+1), for m = 1,2, . . . ,n −1.

We represent each spline as a sum of Legendre polynomials of k th order as follows:

X (ti ,βX ) =


β0

X ,1L
0(ti )+β1

X ,1L
1(ti )+β2

X ,1L
2(ti )+ . . .+βk

X ,1L
k (ti ) if t1 ≥ ti ≥ tl

β0
X ,2L

0(ti )+β1
X ,2L

1(ti )+β2
X ,2L

2(ti )+ . . .+βk
X ,2L

k (ti ) if tl ≥ ti ≥ t2l

β0
X ,3L

0(ti )+β1
X ,3L

1(ti )+β2
X ,3L

2(ti )+ . . .+βk
X ,3L

k (ti ) if t2l ≥ ti ≥ t3l

(A.5)
Where as βk

x,m is the k th order coefficient for the mth spline. L k (ti ) is k th order

Legendre polynomial as a function of ti . Legendre polynomial up until 5th order are
listed in the table A.1:

Legendre polynomials are only orthogonal over the interval [-1, 1]. Thus for each
sub-interval, ti is first normalized between -1 and 1 as follows:

t̃i =−1+2

(
ti − tm

tm+1 − tm

)
if tm ≥ ti ≥ tm+1 (A.6)

A design matrix A1
x can be construed for first spline in equation A.5 as follows:

X1(ti ,βX ,1) =


L 0(t̃0) L 1(t̃0) L 2(t̃0) . . . L k (t̃0)
L 0(t̃1) L 1(t̃1) L 2(t̃1) . . . L k (t̃1)
L 0(t̃2) L 1(t̃2) L 2(t̃2) . . . L k (t̃2)

...
...

...
. . .

...
L 0(t̃l ) L 1(t̃l ) L 2(t̃l ) . . . L k (t̃l )




β0

X ,1
β1

X ,1
β2

X ,1
...

βk
X ,1

 if −1 ≥ t̃i ≥ 1 (A.7)
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Label Order L k (t̃ )

L 0(t̃ ) 0 1

L 1(t̃ ) 1 t̃

L 2(t̃ ) 2 1
2 (3t̃ 2 −1)

L 3(t̃ ) 3 1
2 (5t̃ 3 −3t̃ )

L 4(t̃ ) 4 1
8 (35t̃ 4 −30t̃ 2 +3)

L 5(t̃ ) 5 1
8 (63t̃ 5 −70t̃ 3 +15t̃

Table A.1: Legendre Polynomials.

In its compact form, equation A.7 can be written as follows:

Xm(ti ,βX ,m) = Am
X β

K
X ,m if −1 ≥ t̃i ≥ 1 (A.8)

Where Am
X is design matrix for mth spline and βK

X ,m is a vector of coefficients for mth

spline for X dimension. Similarly, a design matrix for other splines can be derived, and
equation A.5 takes the following form:

X (ti ,βX ) = AXβX =
A1

X O O
O A2

X O
O O A3

X


β

K
X ,1

βK
X ,2

βK
X ,3

 (A.9)

Where A1
X , A2

X and A3
X are design matrices for spline 1, 2, and 3 and O is zero matrix.

Size of O is l × k. Equation A.9 is written for only 3 splines, but it can be extended to m
splines in a similar fashion.

We can calculate design matrices for Y and Z dimensions like the discussion above.

X (ti ,βY ) = AY βY =
A1

Y O O
O A2

Y O
O O A3

Y


β

K
Y ,1

βK
Y ,2

βK
Y ,3

 (A.10)

X (ti ,βZ ) = AZβZ =
A1

Z O O
O A2

Z O
O O A3

Z


β

K
Z ,k

βK
Z ,k

βK
Z ,k

 (A.11)

We can write a combined design matrix A and coefficient vector β to minimize objective
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functions in equation A.2.

Aβ=



A1
X O O O O O O O O

O A2
X O O O O O O O

O O A3
X O O O O O O

O O O A1
Y O O O O O

O O O O A2
Y O O O O

O O O O O A3
Y O O O

O O O O O O A1
Z O O

O O O O O O O A2
Z O

O O O O O O O O A3
Z





β1
X ,k

β2
X ,k

β3
X ,k

β1
Y ,k

β2
Y ,k

β3
Y ,k

β1
Z ,k

β2
Z ,k

β3
Z ,k


(A.12)

Let us now discuss how we formed the constraint matrix.
First constraint for first and second splines states that X1(l ,β1) = X2(l ,β2). For a

normalized time, each spline starts at t̃ =−1, and the end is at t̃ = 1.
Let L K(t̃i ) = [

L 0(t̃i ) L 1(t̃i ) L 2(t̃i ) . . . L k (t̃i )
]
. The first condition can be

written as follows:

LK(1)βK
X ,1 −LK(−1)βK

X ,2 = [LK(1) −LK(−1) ]

[
βK

X ,1

βK
X ,2

]
= 0 (A.13)

For 3 splines, we can write the first constraint in matrix notation:

[
LK(1) −LK(−1) O

O LK(1) −LK(−1)

]βK
X ,1

βK
X ,2

βK
X ,3

= 0 (A.14)

Size of zero matrix O is 1 ×k.
Similarly, we can define the first constraint for Y and Z components. The overall first

constraint would take the following form:


LK(1) −LK(−1) O O O O O O O

O LK(1) −LK(−1) O O O O O O
O O O LK(1) −LK(−1) O O O O
O O O O LK(1) −LK(−1) O O O
O O O O O O LK(1) −LK(−1) O
O O O O O O O LK(1) −LK(t̃−1)





βK
X ,1

βK
X ,2

βK
X ,3

βK
Y ,1

βK
Y ,2

βK
Y ,3

βK
Z ,1

βK
Z ,2

βK
Z ,3


= 0 (A.15)

The second and third constraints deal with time derivatives. Chain rules are used to
define derivatives with respect to t as follows:

X
′
m(t ,βX ,m) = d

dt̃

[
β0

X ,mL 0(ti )+β1
X ,mL 1(ti )+ . . .+βk

X ,mL k (ti )
]
· dt̃

dt
(A.16)

From equation A.16 we can write an expression for L
′

K(t ):

L
′

K(t̃ ) = d

dt̃

[
L0(t̃ )+L1(t̃ )+ . . .+Lk (t̃ )

] · dt̃

dt
(A.17)
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For second-order time derivative, we can write:

L
′′

K (t̃ ) = d2

dt̃ 2

[
L0(t̃ )+L1(t̃ )+ . . .+Lk (t̃ )

] ·(dt̃

dt

)2

(A.18)

We can do the same for the second and third constraints as we have constructed a matrix
for the first constraint.

All of the constraints are written in the following form:

Iβ=



LK(1) −LK(−1) O O O O O O O
O LK(1) −LK(−1) O O O O O O
O O O LK(1) −LK(−1) O O O O
O O O O LK(1) −LK(−1) O O O
O O O O O O LK(1) −LK(−1) O
O O O O O O O LK(1) −LK(t̃−1)

L
′

K(1) −L
′

K(−1) O O O O O O O

O L
′

K(1) −L
′

K(−1) O O O O O O

O O O L
′

K(1) −L
′

K(−1) O O O O

O O O O L
′

K(1) −L
′

K(−1) O O O

O O O O O O L
′

K(1) −L
′

K(−1) O

O O O O O O O L
′

K(1) −L
′

K(t̃−1)

L
′′

K (1) −L
′′

K (−1) O O O O O O O

O L
′′

K (1) −L
′′

K (−1) O O O O O O

O O O L
′′

K (1) −L
′′

K (−1) O O O O

O O O O L
′′

K (1) −L
′′

K (−1) O O O

O O O O O O L
′′

K (1) −L
′′

K (−1) O

O O O O O O O L
′′

K (1) −L
′′

K (t̃−1)





βK
X ,1

βK
X ,2

βK
X ,3

βK
Y ,1

βK
Y ,2

βK
Y ,3

βK
Z ,1

βK
Z ,2

βK
Z ,3


= 0

(A.19)
As discussed above, the KKT condition is used to solve for β after the design and

constraint matrix are computed. For our case b in equation A.4 takes the form of
[Xi Yi Zi ]T , while d is zero column vector. Solution vector β is computed as follows:[

β

z

]
=

[
2AT A I T

I O

]−1 [
2AT X

O

]
(A.20)

A.2. BACKGROUND FLOW

A.2.1. TOMO-PIV RECONSTRUCTION
Experiments were conducted using flow chambers of different sizes ranging from 8mm
to 12mm in diameter to characterize the background flow inside the reservoir. Potter’s
hollow spherical particles were used as passive tracers, and recording was performed
using four imager sCMOS cameras at a frame rate of 20 fps for 1 minute. The Lavision
Tomo-PIV toolbox was utilized to reconstruct the flow fields, as depicted in Fig. A.1.

A.2.2. COMSOL SIMULATIONS
COMSOL Multiphysics software was used to conduct the simulations. Fig. A.2 illustrates
the geometry and mesh utilized for the simulation. The gravity vector was aligned
with the negative Y-axis, consistent with the experimental setup. In addition, a small
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Figure A.1: Background flow for [A] 8mm and [B] 10mm diameter flow chambers.

temperature difference of 1 ◦C was introduced on the inside left wall of the flow chamber
(see Fig. A.2 A).

Figure A.2: [A] Geometry representing the flow chamber with an 8mm diameter reservoir. The red
area indicates the wall where the temperature was increased by 1 ◦C compared to the rest of the

flow chamber. [B] Mesh for the simulation.

Fig. A.3A presents the simulation results in terms of the vector field across the entire
flow chamber. Additionally, we display the simulated flow field corresponding to the
image volume used in our tomo-PIV experiments. The simulated results qualitatively
match our experimental results, suggesting that the observed background flow in the
experiments is attributed to the temperature difference of 1 ◦C .

A.2.3. ALGAE CELL DRIFT
Fig. A.4 illustrates the drifting of algae cells within the background flow with the velocity
of 10 µm/s. The flow pattern of drifting cells is the same as observed via simulations and
experiments using passive particles.
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Figure A.3: [A] Vector field representing simulated background flow across the flow chamber for
an 8mm diameter reservoir. [B] Simulated background flow at the same location as the passive

tracer particles.

Figure A.4: Algae cells drifting with the background flow.

A.3. PERSISTENCE LENGTH AND DIFFUSION COEFFICIENTS
Persistence length is a key concept in polymer physics and plays an essential role in the
modeling and analysis of polymer chains. It measures the chain’s rigidity or flexibility
and describes the length scale over which correlations in the direction of the tangent are
lost [208]. This quantity is especially useful in worm-like chain models for describing
the behavior of rigid and semiflexible polymers.

For a polymer chain of length L and end-to-end distance E (see Figure A.5A), the
autocorrelation of tangent vectors relate to the persistence length as follows:

〈T(s) ·T(s′)〉 = e
− |s−s′ |

LP . (A.21)

Here, T(s) represents the tangent vector at position s along the chain, and 〈·〉 denotes
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an ensemble average.
The persistence length can be computed by considering the mean square of the end-

to-end vector E [208]. Specifically, we have:

〈E 2〉 = 〈E ·E〉 = 〈
∫ L

0
T(s)d s ·

∫ L

0
T(s′)d s′〉. (A.22)

Substituting Equation A.21 into the above equation and integrating yields:

〈E 2〉 = 2LP L

{
1− LP

L

[
1−e

(
− L

LP

)]}
, (A.23)

Where L is the length of the polymer chain, this expression gives a relationship
between E, L, and LP , which can be used to calculate the persistence length of the chain.

Figure A.5: [A] An illustration of the worm like chain of length L with unit tangent vectors (T) at
different location along the chain. [B] An algae cell moves along a three-dimensional curve with

velocity V at different time steps.

Cell trajectory is similar to the polymer chain, and we can use the same formulation
to define the persistence length of a cell trajectory. To determine the persistence length
of a cell trajectory, we use the decay of the auto-correlation function of velocity to
compute the reorientation time τP , which is the time the cell has traveled on a straight
path before taking a sharp turn. From reorientation time, persistence length can be
calculated by LP =

√
〈V 2〉τP , where 〈V 2〉 is the cell mean square velocity.

For a cell trajectory as displayed in Figure A.5B, the decay of the auto-correlation
function of velocity is described by:

〈V(t ) ·V(t ′)〉 = 〈V 2〉e
(
− t−t ′

τP

)
, (A.24)

where 〈V 2〉 is the cell mean square velocity.
Mean square displacement (MSD) can be defined analogously to mean square end-

to-end vector distance for the worm-like chain as follows:

MSD(∆t ) = 〈
∫ ∆t

0
V(t )d t ·

∫ ∆t

0
V(t ′)d t ′〉. (A.25)

This equation can be solved by using Eq. A.24, resulting in the following relationship:

MSD(∆t ) = 2〈V 2〉∆tτP

[
1− τP

∆t

(
1−e

− ∆t
τP

)]
(A.26)
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It is important to note that Eq. A.26 takes into account both the ballistic and diffusive
behavior of the cell trajectory. Specifically, for short time scales where t ≪ τP , the motion
is ballistic, and the mean square displacement is well approximated by 〈V 2〉∆t 2. In
contrast, the motion becomes diffusive for long time scales where t ≫ τP , and the mean
square displacement is approximated by 〈V 2〉∆t . Furthermore, in the diffusive regime,
the mean square displacement is related to the translational diffusion coefficient DT

by MSD(∆t ) = 6DT (∆t ). By taking the limit of Eq. A.26 for t ≫ τP , we can compute the

translational diffusion coefficient as DT = L2
P

3τP
. In addition, for active Brownian particles,

the reorientation time τP is directly related to the rotational diffusion coefficient DR

through the relationship DR = 1/(2τP ) [233]. Therefore, if the reorientation time (τP )
is known, the persistence length, translational, and rotational diffusion coefficients can
be easily computed.

The trajectory data obtained from our experiments consisted of individual tracks
with varying lengths. We have two approaches to determine the reorientation time (τP )
from MSD(∆t ) and 〈V 2〉. First, we can use Eq. A.26 for each long trajectory individually
to obtain its τP . This method results in a distribution of trajectory parameters for all of
the trajectories. Alternatively, we can concatenate all the individual tracks to create a
single long trajectory, which we can then use to estimate the average τP for the whole
population. In this thesis, we used both methods to calculate the parameters. However,
we only considered the tracks at least 200 µm away from the surfaces to acquire the bulk
statistics. Here we also provide details of our algorithm to obtain a single long trajectory
from the individual tracks.

Let PA(t ) and VA(t ) be the position and velocity of track A, respectively. Let PB (t )
and VB (t ) be the position and velocity of track B, respectively. To join track B with track
A, we first calculate the position of the last point in track A, denoted as PA(tL), plus the
displacement of that point due to its velocity over a given time step ∆t , which is 0.05
seconds in our case. This gives us the position value XA :

XA = PA(tL)+VA(tL)∆t

We then determine the unit vectors in the direction of the velocity vectors of tracks A
and B, denoted as ÛA(tL) and ÛB (t1), respectively:

ÛA(tL) = VA(tL)

∥VA(tL)∥
ÛB (t1) = VB (t1)

∥VB (t1)∥

Using Rodrigues’ rotation formula, we compute the rotation matrix R that rotates
ÛB (t1) onto ÛA(tL). To do this, we first compute the vector V that is perpendicular to
both ÛA(tL) and ÛB (t1), and whose magnitude is equal to |ÛA(tL)||ÛB (t1)|sin(θ), where
θ is the angle between the two vectors. The skew-symmetric matrix associated with V is
then denoted as S:
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S =
 0 −V3 V2

V3 0 −V1

−V2 V1 0


Using V and S, we can compute the rotation matrix R:

R = I+ sin(θ)S+ (1−cos(θ))S2

where I is the 3 × 3 identity matrix. With the rotation matrix R known, we can then
translate the position and velocity of track B to align with the end point of track A:

PB ′ (t ) = R(PB (t )−PB (t1))+XA

VB ′ = RVB

Finally, we concatenate the transformed position and velocities of track B with track
A to acquire joined trajectory:

PA,B = [
PA PB ′

]
VA,B = [

VA VB ′
]

To obtain a complete trajectory, we repeated the procedure mentioned above for all
the individual trajectories and concatenated them. Figure A.6 shows the resulting long
trajectory. We computed the mean square displacement MSD(∆t ) and the mean square
velocity 〈V 2〉 using this trajectory. To determine the reorientation time τP , we performed
a linear least squares fit of the form described in Equation A.26 (see Fig 2.25). Once we
obtained the reorientation time, we calculated the persistence length and the diffusion
coefficients using the equations above.
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Figure A.6: Concatenated trajectory for 6667 individual tracks for the concentration of 5×104

cells/ml. Insets show different trajectory locations. The total track length for all of the insets is 5
minutes.
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This appendix belongs to chapter 3.

B.1. CORRECTION PROCEDURE FOR TRAJECTORY SWITCHING

IN CELL TRACKING
In this appendix, we provide a comprehensive description of the trajectory switching
problem observed during the cell tracking process and elaborate on the correction
procedure implemented to rectify this issue. The problem is primarily identified through
manual inspection focused on cell pairs with a minimum three-dimensional distance of
less than 30 µm, where cell images are likely to overlap. The primary consequence of
this cell overlap is an uncertainty in cell tracking, leading to a phenomenon we term as
trajectory switching. This is where trajectories are mistakenly assigned to the wrong cells.

Fig. B.1 A exhibits the three-dimensional positions of one such pair of cells. For
this pair, the minimum distance between the cells is 15 µm. At first glance, the
trajectories suggest a head-to-head steric interaction, where the cells collide and then
proceed in opposite directions. To delve deeper, we consider the velocities of these cells,
represented as a color marker on Fig. B.1 B. Prior to the cell interaction, the velocity of
track a was approximately 100 µm/s, whereas the velocity of track b was approximately
150 µm/s. However, after the interaction, a sudden velocity change is observed, with
track a increasing to about 150 µm/s and track b decreasing. This irregularity is the first
hint that a trajectory switch might have occurred during the passing event.

To further investigate, we re-projected the three-dimensional positions onto the
camera plane and produced a video sequence of the entire interaction. Fig. B.1 C
presents the positions of the cells and their re-projected positions from t = −0.25s to
t = 0.25s. Initially, track a (depicted by a green dot) is above track b (depicted by a red
dot). As the cells approach each other, the green dot starts shifting towards the lower
cell, signifying a possible switch in trajectory.

143
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To provide a clearer perspective, we display only the cell images in Fig. B.1 D. Here,
two distinct algae images can be seen in all camera views, except for camera 3, where
the images overlap between time steps t = −0.20 to t = 0s. We assigned labels (i) and
(ii) to the algae, independent of the labels a and b, as at this juncture we are uncertain
about the precise algae-track correlation. Alga (i) moves from right to left in all camera
frames, while alga (ii) moves from left to right. Importantly, cell (i) passes over cell (ii) in
all camera views.

Now, by consolidating information from Fig. B.1 C and D, it becomes apparent
that before the passing event, cell (i) correlates with track a and cell (ii) with track b.
However, post the event, a switch in trajectory assignment is observed, resulting in
wrong allocation of the tracks to the cells. This analysis underscores the necessity for
a corrective procedure to resolve such trajectory switching.

We now consider the underlying cause of trajectory switching. Fig. B.2 illustrates
the output from the object detection step, displaying conics and midpoints for the pair
of cells under consideration. Apart from camera 3, both cells are accurately detected
from time steps t =−0.25s to t =−0.05s. This situation parallels the one depicted in Fig.
3.2A, where the tracking algorithm functioned correctly, thereby preventing trajectory
switching. The crucial difference between these two instances lies in the duration of
overlap between the cells. A close examination of the images from camera 2 and 3 in Fig.
B.2 reveals that the cell overlap commences 5 frames before the closest approach. This
duration exceeds that observed in Fig. 3.2A, where the overlap began just 2 frames prior.
A prolonged overlap period increases the likelihood of both cells meeting the appending
conditions related to the re-projection error. The trajectory switching observed in this
scenario can be traced back to an implementation detail linked to the re-projection
error. The algorithm is designed to prioritize appending the track that is longer when two
cells satisfy the re-projection conditions. This preference, derived from the algorithm’s
objective to generate longer trajectories, can occasionally lead to trajectory switching, as
demonstrated in the scenario discussed here.

The switched trajectory pairs are rectified using the same iterative optimization
algorithm. However, this time we adjust the optimization criterion by decreasing the
tolerance for re-projection error. This adjustment is performed exclusively for switched
pairs.

Fig. B.3 A illustrates the corrected three-dimensional positions of the previously
discussed switched pair, with the minimum distance between trajectories now
measured at 25 µm. The velocity plot in Fig. B.3 B further demonstrates the effectiveness
of the correction process as the velocities of both trajectories maintain consistency
throughout the entire passing event. Moreover, we also present the reprojected positions
on the camera images in Fig. B.3 C. With the trajectory switching error rectified, both the
green and red reprojected trajectories accurately follow their respective cell paths.
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Figure B.1: [A] Three-dimensional positions of a pair of cells (tracks a and b) demonstrating a
potential steric interaction. The minimum distance between the cells is 15 µm. [B] Velocities of
the cells shown with color markers representing each track. [C] Re-projected positions of cells on
the camera plane from t =−0.25s to t = 0.25s. As the cells approach each other, track a (green dot)
appears to shift towards the lower cell (track b, red dot), indicating a potential trajectory switch.
[D] Cell images in all camera views, except for camera 3, where the images overlap from time steps
t =−0.20s to t = 0s. Two distinct algae images can be observed, labeled as (i) and (ii). Cell (i) moves
from right to left and cell (ii) moves from left to right in all camera frames. Cell (i) is seen to pass
over cell (ii) in all camera views.
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Figure B.2: Conics and midpoints obtained via the peak-finding algorithm during the object
detection step of cell tracking for the pair of cells where trajectory switching occurred.

Figure B.3: [A] Three-dimensional positions of the corrected trajectories. [B] Velocities of both of
the corrected trajectories. [C] Reprojected position of corrected positions on the camera images.
Green and red solid lines display the re-projected track for successive time steps.
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B.2. ENERGY MINIMIZING CURVE FITTING
The objective function of our minimization problem combines least square and stretch
energy:

min
β

N∑
i=0

∣∣X(ti ,β)−Xi
∣∣2 +γ

∫ N

0

∣∣∣X′
(ti ,β)

∣∣∣2
d t

Representation of χ(t ,β) is performed via a piecewise Legendre polynomial.
The Hessian matrix (Hs ) for the objective function from equation 3.3 is calculated
analytically. Karush-Kuhn-Tucker (KKT) conditions [234] are employed to find the β

parameters which minimize the objective function.[
β

z

]
=

[
2AT A+Hs I T

I O

]−1 [
2AT X

O

]
(B.1)

Here, A is the design matrix for the least square fit, I is the constraint matrix, X is a
column vector of the positions of the swimmers and z is the Lagrange multiplier.

Details about the calculation of the design matrix, and the constraint matrix, as well
as the specifics of the optimization problem setup are provided in appendix A.1.

B.3. SPRING BEAD MODEL

B.3.1. MODEL OUTLINE
In this model, each C. reinhardtii cell is represented as a three-bead connected system,
as depicted in Fig. B.4. The swimmer moves in a specific direction denoted by n̂, which
is computed by normalizing n = (XL +XR )/2−XB , where XL , XR , and XB are the locations
of the left, right, and the body beads, respectively. The propulsion force F f acts only
on the left and right beads in the direction of n̂. In response, these beads exert equal
and opposite forces −F f on the fluid. The beads are connected by springs, where the
length of the spring between the left and right bead, denoted as ℓRL , depends on the
angleϕ between the springs BR and LB that connect the body to the right and left beads,
respectively. The springs BR and LB are of equal length ℓF .

The equation of motion for each bead is determined by considering the zero-force
condition:

Fc
k +δk,(L,R)F f

k +Fh
k = 0 (B.2)

where k = { B: Body, L: Left, R: Right } represents the bead type. In this equation,

δ is the Kronecker delta function for the left and right flagellar force F f
j , Fh

k is the

hydrodynamic drag force, and Fc
k is the spring force acting on each bead. We

only consider hydrodynamic interactions for our simulations so no collision force is
considered for this force balance.

The hydrodynamic drag force on a bead is given by:

Fh
k =−6πηak (Vk −Uk) (B.3)

Here, ak represents the radii of the bead, which is set to 5 µm for the Body bead and 2.5
µm for the Left and Right beads. The variable η is the water’s viscosity, Vk = dXk/dt is the
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Figure B.4: A schematic of the three-bead swimmer model of a C. reinhardtii cell. Each cell
is represented by three beads: B (Body), L (Left), and R (Right), with radius aB , aL , and aR ,
respectively. The swimmer’s movement direction n̂ is determined by the relative positions of the
beads. The propulsion force F f is exerted on the left and right beads in the direction of n̂. The
beads are interconnected by springs, with ℓRL depicting the spring length between the left and
right beads, dependent on the angleϕ between the springs BR and LB. The springs BR and LB are
of equal length ℓF .

velocity of bead k, and Uk is the velocity of the fluid at the location of the k-th bead of
swimmer. By combining Eq. B.2 and B.3, we obtain the equation for bead position:

dXk

dt
= Uk +

1

6πηak

(
Fc

k +δk,(L,R)F f
k

)
(B.4)

In this equation, F f
k is the propulsion force acting on the left and right bead,

which is dependent upon the desired cell velocity (V). The fluid velocity at the bead
location, denoted as (Uk), is zero for a single swimmer, as the swimmer’s own movement
primarily influences the surrounding fluid dynamics. However, in simulations involving
interactions between pairs of swimmers, Uk is determined by computing the velocity
of the fluid at the bead location due to the other swimmer. The spring forces Fc are
calculated using the Finitely Extensible Nonlinear Elastic (FENE) spring model, and
the methodology to compute these forces along with the velocity due to swimmer
movement is discussed below:

Spring Force Calculation:
The force exerted by the springs in our model is determined using the Finitely Extensible
Nonlinear Elastic (FENE) spring model [145]:

Fc = hQ
1− ℓ

|Q|

1−
[ |Q|−ℓ
ℓm−ℓ

]2 (B.5)

In this equation, h represents the spring constant, Q is the vector connecting one
bead to the next, ℓ denotes the length of the spring, and ℓm is the maximum spring
extension that can be accommodated. The terms h and ℓm are variables intrinsic to the
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model, while ℓ specifies the spring lengths, denoting ℓF for the LB and BR springs, and
ℓRL for the RL spring. In our simulations, we have set h = f f /0.1ℓ and ℓm = 1.15ℓ, values
that are consistent with those used in the previous study [145].

The connector vectors for each spring are defined as follows:

QLB = XB −XL (B.6)

QRL = XL −XR (B.7)

QBR = XR −XB (B.8)

These values are then used to calculate the spring force for each spring, BR, LB and
RL according to Equation B.5. Finally, the spring force on each bead is calculated as
follows:

Fc
B = Fc

BR −Fc
LB (B.9)

Fc
L = Fc

LB −Fc
RL (B.10)

Fc
R = Fc

RL −Fc
BR (B.11)

Fluid Velocity Calculations:
At any location X in the fluid, the fluid velocity is determined by the sum of bead point
forces and flagellar propulsion forces. This can be expressed as follows:

U(X) = ∑
k∈{B ,L,R}

Gak (X,Xk) ·
(
−Fh

k −δk,(L,R)F f
k

)
(B.12)

Considering force balance, Equation B.12 can be simplified to:

U (X) =
∑

k∈{B ,L,R}
Gak (X,Xk) ·Fc

k (B.13)

In Equation B.13, Gak (X,Xk) represents the regularized stokeslet [235]:

Gak (X,Xk) = 1

8π

[
r 2 +2a2

k(
r 2 +a2

k

)3/2
I+ (X−Xk) (X−Xk)T(

r 2 +a2
k

)3/2

]
(B.14)

while r = ∥X−Xk∥.

The swimmer’s motion is simulated by integrating Eq. B.4, where the swimmer’s velocity
is contingent upon the flagellar force, denoted as F f . By applying Stokes’ law, F =
6πηaV , the flagellar force can be computed using predetermined velocity and the bead’s
radius values. For instance, for the velocity of 100µm/s and the total bead radius of
10µm; the required flagellar force is 20 pN. Additionally, we set the ℓF to be 16µm and
the angle ϕ between springs BR and LB to be 120◦. The simulation results, including
the generated flow field, are depicted in Fig. B.5, showing the fluid streamlines at several
time intervals.
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Figure B.5: Fluid streamlines for to the C. reinhardtii spring-bead model at different time steps,
depicted in the plane of the beads.

B.3.2. MODEL VALIDATION
To validate our model, we initially configure it to generate the flow field of a single
swimmer, as visualized in Fig. B.6 A. This flow field exhibits qualitative similarities
with those models in prior studies [143, 147]. We set the simulation parameters for a
more rigorous quantitative comparison to compare our swimmer flow field with the
one presented in Drescher et al. [147]. In the scenario where f f = 4 pN, aB = 5µm,
ℓF = 16µm, and ϕ = 120◦, there is a good agreement between the two models, as
demonstrated in Fig. B.6 B.

Figure B.6: Flow field of C. reinhardtii. [A] Streamlines of the azimuthally averaged flow field of the
3-bead swimmer model. [B] Magnitude of the flow field U normalized by U◦ = 100µm/s in two
directions (represented by different colors solid lines in the inset), with results from Drescher et al.
[147] (dashed lines).

B.3.3. PAIRWISE SIMULATIONS
We described the coordinate system (Fig. 3.5) and the initialization setup for pairwise
simulation in section 3.2.5. Here, we discuss these simulations in detail.

For each of the pairwise simulation, we initialize their positions, velocities, and
directions of motion at t = 0. Swimmer “a” is positioned at ra = 200 µm, θa = π, and
φa = 0, moving in the positive Z-direction with a velocity of Va (see Fig. B.7 a). The
starting coordinates of swimmer “b”, rb , θb , and φb , are chosen within specific ranges:
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rb from 180 µm to 220 µm, θb from 0 to π, and φb from 0 to π/4. This is depicted in
Fig. B.7A by spheres of blue to pink color. The direction of motion for swimmer “b” is
adjusted by varying Vb as shown in Fig. B.7B for two of the starting position of swimmer
“b”. The propulsion force for each swimmer is adjusted to achieve specific velocities:
swimmer “a” moves at Va = 100µm/s, and swimmer “b” at Vb = 112µm/s.

Figure B.7: Pair-wise Simulation setup illustrating the initial positions of two swimmers. [A]
Swimmer “a” is denoted by a green sphere and travels in the Positive Z direction, while the
starting positions of swimmer “b” are depicted by spheres of color gradient from blue to pink,
indicating the difference in initial rb from 180 to 220 µm, φb from 0 to π/4 and θb from -π to π [B]
Swimmer “a” and two of the starting position of swimmer “b”. The direction vectors of swimmer
“b”, indicated by color-coded arrows, represent the initial direction Vb , with each color denoting a
distinct minimum approach distance ranging from 10 µm to 100 µm.

The movement of each bead of the swimmers is governed by Eq. B.4, which states:

dXk

dt
= Uk +

1

6πηak

(
Fc

k +δk,(L,R)F f
k

)
The fluid velocity Uk at the location of each k-th bead is calculated as follows:

Uk =
∑

j∈{B ,L,R}
Gj(Xk,X

′
j) ·Fc ′

j (B.15)

This calculation includes contributions from all beads (B ,L,R) of the other swimmer,
denoted by their positions (X′) and the forces acting on them (Fc ′ ).

In our simulations, we initialize the swimmer’s positions, their velocity and their
direction of motion. The movement of both swimmers is then simulated using Eq.
B.4, which updates each bead’s position based on the forces acting on them and their

velocity. The propulsion force, F f
k , drives both swimmers at velocities Va = 100µm/s and

Vb = 112µm/s, respectively. We calculate spring forces (Fc
k) using the FENE model, as
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described previously. The hydrodynamic interactions are considered by calculating the
fluid velocity at each bead’s location (Uk) in each time step, incorporating the influence
of the adjacent swimmer’s beads, as outlined in Eq. B.15.

B.4. SCATTERING ANGLE
The scattering angle, denoted asα, quantifies the deviation in the path of cell trajectories
as two cells pass each other. To compute the scattering angle, we analyze the trajectory
of each cell in a series of time intervals around the point of their closest approach. The
closest approach is defined as the time step t = 0. The trajectory is divided into several
intervals before and after this closest approach point using a sliding window approach,
as illustrated in Fig. B.8.

Figure B.8: The computation of the scattering angle (α). [A] Three-dimensional trajectories of a
pair of cells approaching each other at a minimum distance (dmin) of 20.8 µm. [B] Illustrations
of the division of one of the trajectories into half-second intervals using a sliding window. The
red dots denote the positional values at each selected window both before (i ) and after ( j ) the
minimum distance point. Each i and j varies from 1 to 10, representing each window. [C] A
schematic of the calculation of the scattering angle for one of the intervals. Sbef,1 and Saft,1 are the
line segments fitted on points corresponding to the 1st trajectory interval. α1 is the angle between
Sbef

i and Saft
i . Similarly, α2 to α10 are computed, and the mean value of these angles corresponds

to the scattering angle α for the respective trajectory.

For the intervals before the closest approach, denoted as bef, the time t is defined in
a range of t ∈ [−1,0] s. Similarly, for the interval after the closest approach, labeled aft,
the time t encompasses [0,1]s. Each interval is of half-second length, as indicated by the
red circles in Fig. B.8 B. For the bef part of the trajectory, we define the index i to denote
specific intervals within this phase. Conversely, for the aft part, the index j is used to
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similarly denote specific intervals following the closest approach.
For each interval before and after the closest approach, we fit a parameterized line

segment using a linear least squares approximation on X(t ):

argmin
A,B

N∑
t=1

|X(t )−S(t )|2 where S = A+ tB =
AX

AY

AZ

+ t

BX

BY

BZ

 (B.16)

With these line segments, the scattering angle is computed as the average angle
between direction vectors B of corresponding pairs of line segments:

α= 1

10

10∑
i= j=1

cos−1

 Bbef
i ·Baft

j∣∣Bbef
i

∣∣ ∣∣∣Baft
j

∣∣∣
 (B.17)

Here, Bbef
i and Baft

j represent the direction vectors for line segments before and after

the minimum approach distance.
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