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Abstract 

One of the most severe deteriorations in reinforced concrete structures is associated with 

reinforcement corrosion, where the corrosion distribution shows considerable spatial 

variability. In the existing investigations of spatial variability of corrosion on the reliability 

of reinforced concrete structures, symbolic expressions are used for the structural 

performance. However, structural behaviors like stress redistribution and plasticity spread 

are not captured. In this research, a computational framework is designed to couple the 

probabilistic analysis with the nonlinear finite element analysis. Random fields is used with 

the computational framework to represent the spatial variability of corrosion.  

 

A 60 m girder of a reinforced concrete bridge is taken as the case study to explore the effect 

of spatial variability of corrosion on reliability of static indeterminate reinforced concrete 

structures. The reliability analysis is target on ultimate capacity of the beam to carry the 

traffic load. The girder is modeled as a 3 span continuous beam. The modelling of corrosion 

damages on reinforcement (area of cross section and physical properties) is based on 

assumption of pure pitting corrosion. In the axial direction of the beam, spatial variability 

is modeled with random field. In order to study the effect of different level of spatial 

variability, the correlation length of the random field is set from infinite large to 125 mm. 

Between adjacent bars, extreme cases of fully spatial correlated and totally spatial 

independent are studied.  

 

The case study shows:  

i) when corrosion develops, pitting corrosion can severely reduce resistance of the structure 

and localized damage may lead to a brittle structural response.  

ii) spatial variability of pitting corrosion in the axial direction of the beam leads to higher 

failure probability of the structure.  

iii) spatial variability of pitting corrosion between adjacent bars leads to lower failure 

probability of the structure.  

iv) the effect of spatial variability of corrosion on reliability of static indeterminate 

reinforced concrete structure is a collective effect of probabilistic and physical 

characteristic. 

 

In order to facilitate the reliability assessment of corroded reinforced concrete structures, 

additional efforts are also contributed to: quantification of uncertainty for the bond model 

of corroded reinforcement; comparison of various reliability methods with the probabilistic 

nonlinear finite element analysis framework.  

 

The thesis fills the knowledge gap of probabilistic nonlinear finite element analysis of 

reinforced concrete structures with spatial varied corrosion and quantifies the effects of 

spatial variability of corrosion on the reliability of a static indeterminate reinforced concrete 

structure. The analysis framework designed in this thesis is also applicable for other 

reliability assessment of corroded reinforced concrete structures. 
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  Introduction 

1.1 Background 
Modern societies increasingly depend on complex infrastructures. Buildings and civil 

infrastructure comprise about 80% of the national wealth of industrialized nations (Sarja, 2005). 

Hence, their prudent management is of outmost importance, since failures and outages can have 

immense economical and societal consequences. Most of the structures - comprising the 

building and infrastructure stocks - are built multiple decades ago (typically in the 1950s and 

1960s), and their intended service life is close to the end. As a result of this, the number of aging 

and deteriorating structures is rapidly increasing and putting larger and larger burden on asset 

managers. One example is in the United States where 25.8% of the 596808 existing bridges 

were structurally deficient or functionally obsolete as of the end of 2006 (Frangopol, 2009). 

 

One of the most severe type of deteriorations in concrete structures is associated with 

reinforcement corrosion. The study of Koch et al. (2001) shows that the estimated total annual 

direct cost of corrosion in the United States is a staggering $276 billion—approximately 3.1% 

of the nation’s Gross Domestic Product. Steel is transformed into iron oxides through the 

corrosion process. Effective area of the steel is reduced and the ductility of reinforcement bars 

are changed. Moreover, the concrete cover cracks due to splitting stresses generated by the 

volume expansion of iron oxides. The volume expansion also affects the bond between 

reinforcements and concrete. Because of all the effects (cross-sectional area loss of reinforcing 

bars, spalling of concrete, loss of ductility of reinforcing bar and degradation of bond), 

reinforcement corrosion can influence structural performance regarding both ultimate strength 

and serviceability. 

 

The assessment in respect to residual safety level of existing concrete structures subject to 

corrosion is currently an important research topic. The assessment of corroded structures 

requires combined models of the corrosion process and mechanical behavior. Furthermore, it 

should account for the uncertainties in the models and input data. One way to assess 

deteriorating structures is to calculate their failure probability based on residual safety level that 

can be verified on both ultimate limit state and serviceability limit state, and to compare that 

with a socially acceptable target value. This approach is referred as Probabilistic Method in 

Eurocode 1990:2002 and Reliability Based Assessment in ISO 2394:2015. Reliability-based 

methods can be used to derive semi-probabilistic methods, such as Partial Factor Method, 

which do not require fully probabilistic calculation. However, semi-probabilistic methods are 

not available for the assessment of corroded structures. This thesis is addressing research 

questions related to the reliability analysis of corroded structures and can be considered as a 

step towards establishing reliability-based calculations of corroded structures, and contributing 

to the derivation of semi-probabilistic methods.  

 

The  assessment of corroded reinforced concrete (RC) structures assumed the material 

properties and geometrical parameters either as deterministic values or as random values 
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uniformly distributed in space. Stewart (2004) found that probabilities of failure considering 

spatial variability of pitting corrosion were up to three times higher than probabilities of failure 

obtained from a non-spatial analysis in structural reliability analysis for RC members in flexure. 

Therefore, it is necessary to consider spatial randomness of corrosion effects in reliability 

assessment of corroded RC structures.  

 

Despite of the fact that a lot of researches have investigated failure probability calculation or 

spatial variability of corrosion on RC structures, the analyses to combine them are still at a level 

far from maturity. In Chapter 2, there is a concise literature review that concludes two major 

limitations as the knowledge gap of existing studies. One of the limitations is that, most of 

researchers use symbolic expressions to calculate structural strength and load effects. The 

strategies used by them are not applicable in case more realistic physical representations are 

preferred. Another limitation is that there are no well-founded probabilistic models of 

influencing parameters in the modelling of corroded reinforced structures, which leads to the 

lack of reliable inputs for the reliability analysis.  

1.2 Problem statement 
The main objective of this research is to perform reliability analysis for reinforced concrete 

structures considering spatial variability of corrosion in order to answer the research question: 

 

What are the effects of the spatial variability of corrosion on the reliability of reinforced 

concrete structures?   

 

The research question is proposed in response of the knowledge gap in existing study: that the 

reliability assessment of corroded RC structures taking account spatial variability is available 

only for simple structures with simple physical models where analytical solutions are available. 

By combining full probabilistic analysis and nonlinear finite element modelling together, 

structures with more complexity can be assessed. With using of random fields, the spatial 

variability of corrosion can be represented and the influence of the type and the level of such 

spatial variability can be explored. Thus the research can provide insights for reliability analysis 

of corroded RC structures from a practical view.  

 

With the main objective, there are many other questions addressed without available answers. 

The next section Scope and limitations introduced some of the questions that are out of the 

research scope. However, due to the fact that the model uncertainty is a relatively important 

input in the reliability analysis, a sub-research objective is devoted to quantifying model 

uncertainty for corroded RC structures and explore its influence on reliability. The uncertainty 

quantification is only focus on the bond model due to two reasons: compared with other 

properties, the bond strength is difficult to be directly measured from a real structure; and 

compared to empirical models of other properties, the proposed model of bond degradation for 

corroded reinforcement contains relatively large uncertainty. 

1.3 Scope and limitations 
The scope of the research is restricted to reliability analysis based on ultimate limit state. 

Serviceable limit state is not concerned in this thesis. The spatial variability of corrosion is 

considered in two cases: along the reinforcement and between adjacent reinforcements. Along 
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the reinforcement, one dimensional homogeneous random fields are used to model the spatial 

variability. However, the consideration of correlation between reinforcing bars are only treated 

with two extreme case: full correlation between reinforcing bars and full independency between 

reinforcing bars. The one dimensional homogeneous random fields along the reinforcements 

are coupled with the correlation between reinforcing bars.  

 

The thesis contains a case study of a corroded concrete bridge investigated by Jacinto et al. 

(2015). The analysis is about one of the girder of the bridge, as preliminary analysis proved that 

the outer girder is the critical member. The girder is treated as one dimensional beam because 

the relative small height/span ratio. Pitting corrosion is regarded only occurring at the bottom 

reinforcements, according to the investigation reported by Jacinto. Although the corrosion can 

be a combination of general corrosion and pitting corrosion, this thesis does not explore the 

further effects. Other simplifications with respect to the probabilistic and physical modelling 

are mentioned and explained in the Chapter 4 to Chapter 6. 

 

Due to the prematurity of related researches, many other questions are addressed but are treated 

with assumptions or references: i, the current research is based on a case study of concrete 

bridge where the determination of probability distributions is already available in reference and 

the data extracted from reference is assumed to be trustworthy and representative; ii, the effects 

of corrosion included in this research are limited to reduction of reinforcement bar area, change 

of reinforcement strength and ductility, and loss of bond between reinforcement and concrete; 

iii, current research only focus on the propagation stage of corrosion where the model to present 

time-dependent characteristics is directly taken from a reference.  

 

Although the research is mainly analysis at member level, the findings should also be valid for 

analysis of structural system because the influence of stress/strength redistribution and multi-

failure mechanism has be captured. The scope of this thesis is indicated with  

Fig 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 Research scope 
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1.4 Approach 
The thesis takes a concrete bridge studied by Jacinto et al. (2015) as the case study to answer 

the research question. The case is analysed step by step, moving from finite element analysis to 

reliability analysis with spatial uniform variables to reliability analysis with random field.  

 

Being able to perform reliability analyses of the chosen case, three components should be 

available: 

-Numerical modelling of the corrosion effects to predict the load bearing capacity of complex, 

realistic structures; 

-Algorithm to couple the probabilistic analysis with nonlinear finite element analysis.  

-Probabilistic models account for uncertainties of structural properties, including the spatial 

variability; 

 

Fig 1.2 Components of the research 

 

Thus, three steps are taken to develop the method used in the reliability assessment of corroded 

reinforced concrete structures. First, the numerical model of the physical problem; second, 

realizing a computational method for probabilistic nonlinear finite element analysis; third, 

including the probabilistic models into the reliability analyses. 

 

In the reliability analysis considering spatial variability of corrosion, different levels of spatial 

variability along reinforcements are considered by a parameter study. The influence of spatial 

variability between reinforcing bars are also considered. Based on the results of case study, the 

effect of using random field to represent spatial variability on corroded concrete structures is 

estimated.  

 

An analysis framework is designed and implemented in MATLAB to couple the probabilistic 

methods with finite element analysis. Fig 1.3 shows the workflow of the analysis framework. 

There are four steps in the framework: the definition of the inputs, the pre-processing to define 

the probabilistic model and the finite element model, the reliability analysis, and the post 

processing of the calculated results. External program OpenSees is applied to perform the 
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nonlinear finite element analysis. The reliability analysis is performed with MATLAB based 

tool boxes. In the following paragraphs, details of the framework will be introduced. 

 

 

Fig 1.3 Work flow of the computation scheme 

 

The framework starts with the definition of the inputs. These inputs include: name of variables, 

probabilistic distribution of variables (i.e. distribution type, mean value and standard deviation), 

information of finite element mesh, and correlation length. Furthermore, the input contains 

settings, such as the chosen reliability method, convergence criteria, etc. If spatial variability is 

included, a random field will be generated. In this study, the random field has the same 

discretization as the finite element mesh. The generation of the correlation matrix is based on 

the discretization and a selected auto-correlation function and correlation length. The type of 

the auto-correlation function and the correlation length should also be defined as inputs before 

the performance of reliability analysis. After the definition of the probabilistic distributions and 

the generation of the correlation matrix, the reliability analysis can be performed the same way 

as without a random field.  

 

In the reliability analysis part, the analysis can be conducted using different toolboxes (e.g. 

FERUM, UQLab), the available methods and settings are conditioned on the selected toolbox. 

During the reliability analysis, irrespectively of the chosen computational algorithm, the 

evaluation of the performance function is needed. The performance function is defined as g(X-

Q) = R(X-Q ) - Q , where Q is the variable of action, X-Q is a vector of random variables other 

than Q, and R(X-Q) is the value returned by after evaluating the mechanical model.  

 

For the calculation of the resistance, a finite element model is generated based on a realization 

from X and a nonlinear finite element analysis is performed. The finite element analysis returns 

the maximum load that the structure can carry, which is the resistance R(X-Q). For each exact 

evaluation of limit state function, the finite element analysis is called once. The finite element 

model is automatically generated from the realization of one set of variables that is sent by the 

reliability analysis. The MATLAB code is programmed to create and modify command files 

that can be used to generate models and analyses in the finite element program. Depending on 

the physical problem, some physical properties are set as variables that get value from the 

realization sent by the reliability analysis, while other properties and solution procedure settings 
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are fixed. The output of each finite element analysis is the load applied on the structure of each 

load step. The maximum applied load is selected as the capacity of the structure and the value 

of this capacity is returned to the performance function evaluation. 

 

The details of the calculation steps are depended on the specific computational algorithm. There 

are five algorithms used in this thesis: FORM, Subset Simulation, ADIS, AK-MCS and 

Importance Sampling. Brief introductions of the calculation steps are presented in the Annex.  

Based on the evaluation of the performance function, the reliability analysis calculates the 

failure probability and other optional outputs. The optional outputs can be: sensitivity factors 

and design point (FORM), or confidence intervals and coefficient variation of the failure 

probability (simulation methods). All the reliability analyses in this thesis are evaluated with 

three criterions. The convergence criterion is used to evaluate the accuracy; the physical 

meaning criterion is used to evaluate the reasonability; and the number of exact evaluation of 

performance function is used to evaluate efficiency.  

1.5 Thesis structure 
The thesis contains eight chapters which can be regarded as four parts. The first part is the 

introduction of the thesis that includes the research objectives, research approaches, and the 

structure of the thesis. A literature review is conducted to show the limitation of existing 

researches and the value of the present thesis. The second part explained the technique 

background that involves modelling of structural effects of corrosion, reliability methods and 

random field, probabilistic models of corroded reinforced concrete structures. The third part 

studies the effect of spatial variability of pitting corrosion based on a case study. In the case 

study, the approaches and methods described in Part I and II are used on a continuous beam of 

a RC bridge. Part IV contributes to a study of the model uncertainty of the bond model, in order 

to compliment the limitation of ignoring model uncertainties in the case study. The final part is 

the conclusions of the thesis and also recommendations on further research. Such conclusions 

and recommendations are in term of both general reliability assessment of corroded reinforced 

concrete structures and the effect of spatial variability of corrosion on the studied case. 

 

Table 1.1. Thesis structure 

Part I: Introduction 
Introduction 

Literature review 

Part II: Methods Methods 

Part III: Case study 

Nonlinear finite element analysis of the RC continuous girder 

Reliability analysis of the RC continuous girder 

Corrosion distribution on adjacent rebars 

Part IV: Model uncertainties Uncertainty of the bond model 

Part V: Conclusion Conclusion and recommendation 
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 Literature review 

2.1 Probabilistic modelling of corrosion  
In a reliability based assessment, variabilities and uncertainties are typically represented by 

probabilistic models: random variables and stochastic processes. There are two ways to 

determine the probabilistic models: to analyze data from direct measurement and to take the 

existing models based on trustable database. In many cases, direct measurements are not 

available or require too much extra cost, that general applicable probabilistic models are taken 

from guidelines or widely accepted literature. For example, CEB/fib (2016) and JCSS (2000) 

provide well established probabilistic models of concrete and reinforcement properties for non-

deteriorated structures. However, for deteriorated structures, the probabilistic models are often 

missing.  

 

Corrosion of reinforcement will influence the strength and ductility of reinforcement, as well 

as the bond strength. The empirical models to describe such influences contains certain degree 

of uncertainties or variabilities, which do not exist in the probabilistic models for sound 

structures. There are studies aiming to propose modelling uncertainty for corroded reinforced 

concrete structures (Allaix et. al, 2015). The modelling uncertainty of resistance is expressed 

as the probabilistic distribution of the ratio between actual resistance (experimental value) with 

numerical resistance (with certain combination of model parameters). This approach provides 

inspiration for involving extra uncertainties or variabilities of corroded structures with 

utilization of the probabilistic models for undeteriorated structures. However, the disadvantage 

is, the approach integral uncertainties and variabilities of a wide range sources into one 

parameter, which could be an over simplification.   

 

In terms of spatial variability of corrosion, the probabilistic model represent corrosion 

distribution is studied by Stewart and Al-Harthy (2008), Melchers (2005) for pitting corrosion. 

However, the spatial correlation in the probabilistic model is not explicitly quantified. Although 

Engelund and Sorensen (1998) and Teixeira & Soares (2008) concerned spatial correlation for 

chloride-ingress and corrosion effects, they separately applied different correlation length 

which are based on assumption rather than experimental evidence. 

2.2 Reliability assessment of corroded reinforced concrete structures 

without spatial randomness 
Since last century, several scholars started to study the reliability assessment of corroded 

reinforced concrete structures. Sheikh et al. (1990) employed pitting corrosion statistical 

models to characterize the cumulative number of leaks in pipeline and the time-to-perforation. 

D. V Val et al. (1998) studied the effect of reinforcement corrosion on the reliability of highway 

bridges taking account reduction of steel area and loss of bond. Akgül and Frangopol (2004) 

studied time-dependent interaction between load rating and reliability of deteriorating bridges 

considering reduction of steel area due to corrosion. While the early investigations focus on the 

undesirable consequences of corrosion, later studies also proposed approaches to optimize 

design against corrosion effects. Chiu et al. (2014) proposed a novel computational procedure 
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for calculating the risk of corrosion of reinforcing steel bars induced by the environmental 

hazards. The risk curve is provided to identify the minimal thicknesses of concrete cover.  

 

Methods are also proposed to improve the efficiency of calculation, especially to get rid of the 

time-consuming Monte Carlo Simulation. Zhang et al. (2015) developed a third-moment (TM) 

method to evaluate the time-dependent probability of chloride-induced corrosion of reinforced 

concrete structures in marine environments. It is shown that the third-moment method is simpler 

and more efficient than traditional approaches such as Monte Carlo in analyzing the corrosion-

induced probability. Nogueira and Leonel (2013) used FORM with direct coupling approach to 

determine corrosion occurrence probability in order to evaluate the concrete structures strength. 

The FORM analysis was compared with Monte-Carlo simulation method. It was verified that 

the direct coupling procedure gives accurate results and stable convergence rate with low 

number of mechanical analyses. Shayanfar et al. (2015) used meta-heuristic approach of 

charged system search (CSS) to calculate corrosion occurrence probability due to chloride ions 

penetration. The model efficiency is verified by comparing the available examples in technical 

literature and results of Monte Carlo analysis.  

 

The common limitation of these researches is that the spatial randomness is never included. 

The same limitation also exists in the studies of corrosion initiation progress, where the 

corrosion initiation progress is assumed uniformly distributed over the structures (Han et al. 

2013, Ryan and O’Connor (2013)). 

2.3 Involvement of spatial randomness on reliability assessment of corroded 

reinforced concrete structures 
The great importance of spatial randomness of material properties and environmental 

conditions are gradually involved since more realistic probabilistic models have been 

developed by research community (Lay and Schießl (2003), fib 2006). Frier and Sørensen 

(2007) conducted a research to estimate the effect of randomness of main parameters on 

corrosion initiation. Meanwhile, scholars like Li (2004) and Lim et al. (2016) contributed to 

measurement and representation of spatial variability of corrosion.  

 

With the available knowledge as foundation, reliability assessment of corroded concrete 

structures with spatial randomness have been widely investigated. Stewart and Suo (2009) 

assessed reliability of a simply supported beam with pitting corrosion at both ultimate limit 

state and serviceability limit state using one dimensional random fields. Kenshel and O'Connor 

(2009) did a similar reliability assessment and compare the influence of general corrosion and 

pitting corrosion. Papakonstantinou and Shinozuka (2013) presented a comprehensive model 

to simulate the concrete cracking induced by corrosion in concrete structures that appropriate 

for implementation on large-scale structures. Table 2.1 shows an overview of the related 

researches, where noticeable distinctions present among the involvement of corrosion effects 

and interpretation of spatial randomness. For instance, Marsh and Frangopol (2008) used 

Lognormal fields for the distribution of corrosion while Hajializadeh et al. (2015) used Normal 

fields and D. V  Val (2007) used Gumbel fields. It is remarkable that the reliability assessment 

is not necessarily based on failure probability. B. Sudret (2008) used a probabilistic distribution 

of the Damage Length instead of failure probability to express the reliability of structures. 
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Although there are plenty of studies that involve spatial randomness into the assessment of 

time-developed corrosion effects, most of them perform reliability assessment based on a 

symbolic expression for the failure of cross sections or simple structural members. Except 

Allaix et al. (2011) combined Monte Carlo Simulation with Finite Element Analysis for 

corrosion progress, but evaluation of structural capacity is not included. The main reason of 

such limitation relates to the impletion of traditional compute methods such as the Monte Carlo 

simulation which is extremely unpractical to be combined with numerical structural 

computation.  

2.4 Concluding remarks 
The review of literature drives to the conclusion that has already been mentioned in Chapter 1, 

that the analysis to combine failure probability calculation and spatial variability of corrosion 

effects on reinforced concrete structures has two major limitations:  

 

One of the limitations is that, most of researchers use symbolic expression to calculate structural 

strength and load effects, which is only applicable for simple structures. There are some studies 

that combined structural reliability with finite element analysis to calculate structural resistance 

but never included corrosion. One example is the research of Cheng (2014), that FORM 

analysis is performed with the models including spatial variability of Young’s modulus and 

sectional moment.  

 

Another limitation is that the probabilistic models in term of corrosion are not well established. 

The structural influence of corrosion is not expressed in a statistical term where the 

uncertainties are quantified. Also the statistic model of corrosion distribution is proposed 

without the concern of spatial correlation and even the experimental quantification of the spatial 

correlation is not available.   
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Table 2.1 Overview of related studies 

Reference Structure Corrosion effects Spatial variability Methods 
 

Load 
effects 

Time 
dependence Concrete 

crack 
Bar 
area 

Steel 
property 

Bond 
loss 

Stewart & Suo, 2009 Simply supported beam √ √ √  1D Gumbel field MCS with AS √ √ 

Stewart & Mullard, 2007 Cover of a deck √    2D Normal field MCS with AS No √ 

Marsh & Frangopol 2008 Critical section of a slab  √   2D Lognormal field MCS with AS √ √ 

Hajializadeh et al. 2016 Simply supported beam  √ √  2D Normal field MCS with AS √ √ 

Kenshel & O'Connor 2009 Simply supported beam √ √   1D Normal field MCS with AS √ √ 

Sudret, 2007 Bar area  √   1D Lognormal field FORM and MSC with AS No √ 

Allaix et al. 2011 Cross-section √ √ √  2D Normal field MCS with FEA for corrosion progress No √ 

Papakonstantinou &  
Shinozuka, 2013 

Surface of a slab √    2D Normal and 
lognormal field 

MCS with AS No √ 

Li, 2004 Surface of a beam √    1D Normal field MCS with AS No √ 

Val, 2007 Simply supported beam  √   1D Gumbel field MCS with AS √ √ 

Cheng, 2014 Fixed end beam ULS and SLS considering Young’s modulus, 
sectional moments of inertia  

1D Lognormal field FORM with FEA √ No 

Lim et al., 2016 Simply supported beam √ √ √ √ 2D Gumbel field Single FEA of experimental sample √ No 

Akgül & Frangopol, 2004 Critical section of girders √ √   No MCS with  AS √ √ 

Val at al. 1998 2D Slab  √  √ No FORM with FEA √ √ 

Sheikh et al. 1990 Pipe Pipe leaking occurance No MCS with AS No √ 

Frier & Sørensen, 2007 Surface of piers Corrosion initiation 2D Lognormal field MCS with FEA for corrosion progress No √ 

Shayanfar et al. 2015 No detail Corrosion initiation No MCS and CSS with AS No √ 

Nogueira & Leonel, 2013 No detail Corrosion initiation No MCS and FORM with AS No √ 

Zhang et al. 2015 No detail √    No MCS and TM with AS No √ 

Chiu et al. 2015 No detail √    No MCS with AS No √ 

Ryan & O’Connor, 2013 No detail Corrosion initiation No MCS with AS No √ 

Han et al. 2013 Surface of harbor facilities Corrosion initiation No FORM with AS No √ 

Note: 

MCS=Mote-Carlo Simulation;  AS=Analytical Solution;  CSS= Charged System Search method;  TM= Third-Moment method 

FORM=First Order Reliability Method;  FEA=Finite Element Analysis;  ULS=Ultimate Limit State;  SLS=Serviceability Limit State
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 Methods 

3.1 Modelling of corrosion of reinforcement in concrete 
Reinforcement corrosion is one of the most common deterioration mechanism in concrete 

structures. Mechanical behaviors of reinforced concrete structures including the strength, 

stiffness and force redistribution are affected by reinforcement corrosion. Reinforcement 

corrosion also can cause severe surface cracking that expose the structure to detrimental 

environment and aggravate the deterioration progress.  

3.1.1 Deterioration process  

3.1.1.1 Corrosion initiation 

In reinforced concrete, the reinforcements are protected from corrosion by the concrete, not 

only because of the physical resistance, but also a protective passive layer forms on the surface 

of steel due to the high PH within the concrete. However, two factors may break this passive 

layer and initiate corrosion: chloride ions that come mostly from deicing salts or seawater, and 

carbon dioxide from the atmosphere.  

 

Chloride ions penetration is a complex process. Different transport mechanisms are involved, 

such as ionic diffusion, permeation, migration and convection. Simpler models based on Fick’s 

second law of diffusion are often used in practice. By solving equation of Fick’s second law of 

diffusion for the constant surface chloride conditions, chloride ion penetration equation is 

written in terms of depth (c) over time (t) as C(c,t). 

 

Carbon dioxide (CO2) from the atmospheric can have chemical reactions with the alkaline 

components of the cement paste and the carbonation of concrete will introduce corrosion. There 

are two conditions that allow the reactions occur: a certain amount of water and significantly 

decrease of the PH in concrete. The critical carbonation depth is used to judge the initiation of 

steel corrosion in fully carbonated concrete. Carbonation depth is the average distance from the 

surface of concrete to where carbon dioxide reacts with the alkalinity in the cement. In the mid-

1970s Martin et al. (1975) and Schiessl (1976) presented a modified model based on Fick’s first 

law taking into account the influence of the moisture content of the concrete on the diffusion 

coefficient of CO2 and the back diffusion of Ca(OH)2. They ended up with the conclusion that 

there was a final carbonation depth given in the equation by Kropp and Hilsdorf (1995). 

3.1.1.2 Corrosion propagation  

Corrosion rate is an important parameter used to quantitatively predict the corrosion 

deterioration of reinforced concrete structures. The corrosion rate is usually described in terms 

of the corrosion current density, icorr (µ A/cm2). 

 

An empirical model has been developed by Liu (1998). 2927 measurements were recorded 

during a 5-year outdoor exposure of the large reinforced concrete slab specimens. According to 

the test results, the corrosion current density icorr depended on the chloride concentration, 

temperature, ohmic resistance of the concrete cover and time. Based on the data of Liu, Vu and 
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Stewart (2000) developed a simplified model with assumption that oxygen availability on the 

steel surface is the governing corrosion factor. This model is expressed as: 

 0.29

corr p corr( ) (1) 0.85i t i t   (3-1) 

where t is time since corrosion initiation and corr (1)i is the corrosion rate at the start of corrosion.  

 

The model proposed by Vu and Stewart only depends on concrete characteristics (water/cement 

ratio and concrete cover) and time, which is more suitable for the case study in this thesis. 

However, the model may not be applicable to cases where concrete resistivity is the dominant 

factor. 

3.1.2 Effects of corrosion 

3.1.2.1 Bar-section reduction and change of steel properties 

In report of CEB/fib (2000), corrosion of reinforcement is classified into general corrosion and 

local corrosion. General corrosion is caused by chloride contamination or carbonation. Its main 

consequence is the volume expansion of iron oxides, which lead to concrete cracking and 

spalling before large reduction of steel cross section. On the contrary, local corrosion is caused 

by chloride contamination and has a consequence of extreme loss of bar section as well as loss 

of strength and ductility of reinforcement.  

 

Reduction of the reinforcement bar area leads to decrease of shear and moment capacities as 

well as decrease of stiffness of the structure. Both general and local corrosion reduce the 

reinforcement bar area. However, the models of decreased bar area caused by general corrosion 

and local corrosion are different. Fig 3.1 shows simplified models to take account (a) general 

corrosion (b) local corrosion and (c) a mix of them. All of the models use the corrosion 

penetration index 0/p D   to measure the reduction of the cross-section, where p stands for 

the corrosion penetration depth and D0 is the original diameter of the bar. For general corrosion, 

p=2x and s s s0( ) [1 ( )]A A     , where s (2 )     For local corrosion, D. V. Val and 

Melchersz (1997) proposed the model to predict the loss of cross-sectional area of a reinforcing 

bar assuming that p=xmax.  
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Where 2

0 0 2 1/b D     , 
1

2arcsin  , 
2

2arcsin( )/ 2   . 

 

Fig 3.1 Models of reduction of reinforcement bar area (Biondini & Vergan, 2012) 
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In the case of local corrosion, the ultimate strain of reinforcement is severely reduced and 

ductility is lost. Du et al. (2005) proposed a linear expression 
su su0(1 )a X     to assess the 

reduction of ductility, and suggested that with only 10 % of local corrosion the ductility of bars 

embedded in the concrete can be reduced to below the minimum requirement specified in design 

codes for use in high ductility situation. Furthermore, Almusallam (2001) found that 

reinforcements show brittle behaviour when corrosion loss exceeds 12.6% and others found 

complete loss of ductility when corrosion loss = 20%. A change in rebar ductility directly 

influences the stiffness of the structure, which leads to force redistribution and limits the load-

carrying capacity of a statically indeterminate structure. Based on the results of experimental 

tests reported in Apostolopoulos & Papadakis (2008), the steel ultimate strain can be related to 

the damage index δ as follows (Vergani, 2010): 

 
su0 s

su 0.4583

su0 s

                      ,0 0.016

0.1521  ,0.016 1s

 


  

 
 

 
 (3-3) 

 

 
Fig 3.2 Reduction of reinforcement ultimate strain with corrosion loss (Du et al. 2005) 

 
Fig 3.3 Reduction of reinforcement ultimate strain with corrosion loss (Vergani. 2010) 
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Yield strength and tensile strength of reinforcement are also reduced by local corrosion. Du et 

al. (2005) concluded the following equation that yield strength and tensile strength reduces 

linearly with corrosion loss:
s s0(1 )f b X f   , where X is the weight loss of reinforcement. 

They also provided b  regressed from test results of different types of reinforcement, for both 

yield strength reduction and tensile strength reduction. 

 

Fig 3.4 Reduction of reinforcement yield stress with corrosion loss (Du et al. 2005) 

 

3.1.2.2 Loss of bond  

The loss of the bond between reinforcement and concrete is a consequence caused by the 

volume expansion of the oxidation of metallic iron produced by reinforcement corrosion. 

Additional radial pressure at the steel-concrete interface and hoop tensile stresses in the 

surrounding concrete are generated by the volume expansion. Once the maximum hoop tensile 

stress exceeds the tensile strength of the concrete, the concrete will start to crack and the bond 

between reinforcement and concrete is weaken.  

 

According to CEB-fib (2000), bond strength changes qualitatively as indicated in Fig 3.5. At 

the precracking stage for limited corrosion levels, the bond strength slightly increases due to 

the extra confinement introduced by the radical pressure develops at the concrete–steel 

interface. After the occurrence of corrosion-induced cracking, the splitting of the concrete cover 

leads to decrease of the bond strength. CEB-fib (2000) mentioned a linear reduction empirical 

model to take account the loss of bond for concrete with stirrup:  

 b 4.75 6.64f x  for Ptr > 0.25 (3-4) 

 tr
b 10.04+(-6.62+1.98 ) (1.14 )

0.25

P
f x    for Ptr < 0.25 (3-5) 

Where Ptr is the ratiro of transverse reinforcement area at anchorage length versus the area of 

the main bars and x is the corrosion level measured by corrosion penetration depth. 
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Fig 3.5 Relation between bond strength and corrosion level (fib, 2000) 

 

Bhargava et al. (2008) reviewed a large set of experimental data from flexural testing and 

pullout testing. In spite of their large scattering, an empirical model to numerically evaluate the 

progressive bond degradation between the concrete and the reinforcing steel for the concrete 

specimens without stirrups is proposed.  

             

           (a)                                           (b) 

Fig 3.6 Normalized bond strength as function of corrosion level for experimental data of (a) 

flexural testing and (b) pullout testing (Bhargava et al. 2008) 

 

Based on flexural testing experimental data :  

 Rfb = 1.0 for X <1.5%; Rfb = 1.346e−0.198X for X > 1.5%  (3-6) 

Based on pullout testing experimental data:  

 Rfb = 1.0 for X < 1.5%; Rfb = 1.192e−0.117X for X > 1.5% (3-7) 

Where corrosion level X is defined as the loss of weight of reinforcing bar due to corrosion 

expressed as a percentage of the original bar weight and Rfb is defined as the ratio of bond 

strength at X to the original bond strength for the uncorroded specimen. 

 

Compared to the linear reduction model of fib, the model has three advantages: 
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a) The model is presented in the normalized form to take care of the varied primitive bond 

strength due to differences in strength of concrete, type of reinforcements and confinement 

conditions.  

b) The model is in exponential format, which is capable to capture the nonlinearity when 

corrosion level changes from low to high. 

c) The model separately takes account for flexural testing and pull-out testing, which prevents 

obstructions caused by large variety between test methods. 

Therefore the exponential model is used in this thesis.  

 

3.1.2.3 Concrete cracking and spalling 

Despite of the loss of bond, another consequence of the volume expansion is concrete spalling 

after severe concrete cracking occurs. Cover spalling results in reduction of the concrete cross 

section, which leads to a decrease of the internal lever arm and a decrease of the bending 

moment capacity. Severe loss of cover may result in full exposure of tension reinforcements 

that could change the structural behavior from flexural to tied arch with secondary effects 

(Zandi, 2015).  

 

There are two approaches to model the local deterioration of concrete: one is with a degradation 

law of the effective area of concrete and the other one is to reduce the concrete strength. The 

degradation law of effective area of concrete can be expressed as Ac [1 c ()] Ac0 (F.  

Biondini, 2004). However, the relationship between damage function δc and corrosion 

penetration index δ is not straightforward to establish. The reduction of concrete compression 

strength is a more direct approach. Coronelli and Gambarova (2004) provided detailed 

explanation for the expression fc [1 c  
()] fc0 .  

The reduction of concrete strength is generally 

applied to the entire concrete cover. For the case that the corroded reinforcing bars are limited 

in the tensile zones and zero tensile strength is assumed for concrete, there is no necessity to 

model the local deterioration for concrete. 

3.2 Random field and reliability methods 

3.2.1 Random field: modelling of spatial variability 

During the manufacturing, erection, and utilization of structural elements, random variability 

in spatial distribution is shown in many structural parameters, such as material properties, 

geometric parameters and loads show. Random fields are usually used to represent the uncertain 

quantities in consideration of the spatial variability. A random field H(x, ϑ) can be defined as a 

curve in L2(Θ, F,P), where L2(Θ, F,P) refers to vectoral space of real random variables with 

finite second moment (E[X2]<∞). H(x, ϑ) is a collection of random variables indexed by a 

continuous parameter x (B Sudret & Der Kiureghian, 2000). 

 

In terms of the physical problem in this thesis, x can be regarded as the location in the space. If 

the random field H(x, ϑ) is considered at a fixed location, x, it is a random variable and is called 

a sample. For a fixed outcome, ϑ, of all the possible outcomes in the sample space, H(x, ϑ) is a 

deterministic function of x and is called a realization of the field. A random field can also be 

denoted with H(x) in short. If the quantity H(x) attached to location x is a random variable then 

the random field is called univariate. If the quantity H(x) attached to location x is a random 
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vector, the random field is called multivariate. The random field can be defined in one 

dimension or in multiple dimensions according to the dimension of x.  

 

Fig 3.7  Illustration of a one dimensional random field 

 

The random fields used in this thesis are characterized by the probability distribution function 

and correlation function between points (x). Moreover, the random field is homogeneous as the 

probability distribution is constant and the correlation function is only depend on the difference 

of xi-xj only. The probability distribution function is parameterized by distribution type and 

stochastic moments. For random fields, the moments can become functions over space as well. 

The correlation function between points is described by correlation length or scale of fluctuation. 

Correlation length or scale of fluctuation 
corl  is a measure of the distance within which points 

are significantly correlated (Vanmarcke 1984). Take the exponential auto-correlation function 

for a one dimensional problem as an example, the correlation coefficient between location i and 

j is: 

  
cor

| |
exp

i j

ij

x x

l


  
  

 
 (3-8)

 

Where ij  is the correlation coefficient, ix  and jx  are the locations in the one dimensional 

space, and corl  is correlation length. 

        

Fig 3.8 Realization of a one dimensional random field with different correlation length 

(from left to right, the correlation length increases)  

 

Points separated by a larger distance than corl  will show little correlation, and practically no 

correlation will be observed when points are separated by a significant larger distance than corl . 

 

3.2.2 Discretization of random field 

If the random fields are to be treated numerically, an approximation of continuous random fields 

 

 

 

 
x1 x2 

H(x1) H(x2) 

f(H) f(H) 

x 
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by means of a finite set of random variables is required, which is called. random field 

discretization. The discretization reduces the random fields to a set of random variables which 

are contained in the vector X. The distance between two adjacent random variables in a 

discretization is limited by an upper bound and a lower bound. First, an upper bound of the 

distance is given based on the correlation length. In order to capture the essential features of the 

random field, the distance between two adjacent random variables has to be short enough. The 

element size should be smaller than half of the correlation length for a satisfactory 

representation of the random field. However, an excessively fine mesh yields highly correlated 

random variables and may result in a nearly singular correlation matrix. A nearly singular 

correlation matrix may cause numerical difficulties when a transformation to the standard 

normal space is required (Matthies et al., 1997). 

 

The discretization methods can be divided into three groups: point discretization, average 

discretization and series expansion methods. Only point discretization and especially midpoint 

method is detailed explained here, as it is the chosen method used in this thesis.  

 

Point discretization refers to that the random variables are selected values of H(x, ϑ) at some 

given points xi. There are three advantages of the point discretization methods: 

i. the covariance matrix is easy to compute; 

ii. the covariance matrix is positive defined; 

iii. there is no restriction to Gaussian random fields. 

 

The midpoint method (MP) introduced by Der Kiureghian and Ke (1988), approximates the 

random field in each element by a single random variable defined as the value of the field at 

the centroid xc of this element. The approximated field is then entirely defined by the random 

vector. Its mean and covariance matrix are obtained from the mean, variance and 

autocorrelation coefficient functions of H(x, ϑ) evaluated at the element centroids. Each 

realization of H(x, ϑ) is piecewise constant, the discontinuities being localized at the element 

boundaries. (Sudret and Der Kiureghian, 2000) 

 

There are three disadvantages of midpoint method: 

i. the MP method tends to over-represent the variability of the random field; 

ii. the point discretization methods are only useful for medium to long correlation distances 

due to the requirement of the small mesh size; 

iii. the shape and size of all these elements should be the same. 

3.2.3 Theories and methods of the reliability analysis  

Reliability methods aim at evaluating the failure probability of a system where randomness is 

taken into account in the modelling. Classically, the system is decomposed into components 

and the system failure is defined by the joint failure of components in terms of various scenario. 

The determination of the failure probability of each component is of paramount importance.  

3.2.3.1 Limit states of concrete structures 

The concept of limit state is used to define failure in the context of structural reliability analyses. 

A limit state is a boundary between desired and undesired performance of structures. The 

desired performance and undesired performance can be expressed by a performance function g 
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(X), which is defined as follows: 

 g(X) > 0 defines the safe state. 

g(X) < 0 defines the failure state.  

 g(X) = 0 defines the limit state. 

The failure state does not necessarily mean the breakdown of the structure, but the fact that 

certain requirements of serviceability or safety limit states have been reached or exceeded. 

 

Limit states can be of different categories. The principal categories are ultimate limit states and 

serviceability limit states. The ultimate limit state represents a situation where the structure 

starts to lose its integrity. From the ultimate limit state, the structure passes into an irreversible 

state that may have a catastrophic nature. A serviceability limit-state corresponds to the limit 

between an acceptable and a not acceptable state under normal use. The serviceability limit-

state is with respect to reversible damage of the structure that the structure can back to the safe 

set by unloading.  

 

For serviceability limit-state of corroded reinforced concrete structures, controlling of the 

maximum width of surface cracking is one of the requirements. Another commonly 

consideration for serviceability is the maximum deflection. As for ultimate limit states, the 

losing of integrity can be interpreted in several ways. The most evident representation is the 

resistance to applied load. However, sometimes it is difficult to directly calculate the resistance 

in terms of the load. Then the resistance in terms of critical load effects should be chosen as the 

criteria. For example, tensile strength of concrete or bond-slip strength between reinforcement 

and concrete.  

3.2.3.2 Compute methods 

Reliability methods can be classified into four groups according to Probabilistic Model Code 

proposed by the Joint Committee on Structural Safety: 

Level IV risk-based methods: Risk is used as a measure of the consequences of failure. 

Different designs are compared on an economic basis taking into account uncertainty, costs 

and benefits. 

Level III fully probabilistic methods: The uncertain quantities are modelled by their joint 

distribution functions. The probability of failure is calculated exactly. 

Level II probabilistic methods with approximations: The stochastic variables are implicitly 

assumed to be normally distributed, which are modelled by the mean values, the standard 

deviations and the correlation coefficients.  

Level I semi-probabilistic methods: The uncertain parameters are modelled by one 

characteristic value for load and resistance with safety factors. 

 

In structural design and assessment, level I semi-probabilistic methods are already widely used. 

The simplifications regarding the probabilistic component in the modelling makes this method 

suitable for relatively fast design calculations. Level IV risk-based method is aimed at decision 

making on an economic basis, which is not the objective of this research. Therefore, 

representative computation methods on level III and level II are introduced here. 

 

For fully probabilistic analysis, the calculation of the probability of failure Pf through numerical 
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integration is computationally not feasible for more than five variables. In those cases, a 

commonly used solution to calculate Pf is by generating random samples, such as using the 

Monte-Carlo simulation (MCS) method. Variables can be drawn from a known joint probability 

distribution function. For each variable xi (i = 1, …, m), one simulates N realizations xi1, …, xiN. 

For each set j (j = 1, …, N), one calculates g(x1j, …, xmj). In case g(.) < 0, a counter Nf is increased 

by one. After N simulations one calculates: 
f fN /NP  . In case N → , one obtains the failure 

probability Pf. The number of simulations N is determined by the desired relative accuracy of 

Pf. Different "variance reducing" techniques have been developed to improve the efficiency of 

simulation. Importance sampling technique is one of the most widely used one. However, 

Importance Sampling requires pre-knowledge of the most likely failure point, which are not 

always available. Subset Simulation overcomes this disadvantage of Importance Sampling. 

Thus Subset Simulation is used in this thesis. 

 

Subset Simulation is a technique introduced by Au and Beck (2001) that improve the efficiency 

of simulation by solving a series of simpler reliability problems with intermediate failure 

thresholds. Consider a sequence of failure domains
1 2

...
m f

D D D D     that 1

m

kf k
D D  . 

The probability mass of each intermediate failure region can be combined by means of 

conditional probability. With an appropriate choice of the intermediate thresholds for each 

failure domain, Pf can be evaluated as a series of structural reliability problems with relatively 

high probabilities of failure that are then solved with MCS. The convergence of each 

intermediate estimation is therefore much faster than the direct search for Pf. 

 

Fig 3.9 Illustration of Subset simulation (Bourinet, 2010) 

 

In level II methods the variables need to be transferred into normal distributions where mean 

of the base variables and their covariance matrix are taken into account to determine the failure 

probability. The joint probability density function is simplified and the limit state function is 

approximated at the design point. The first order reliability method (FORM) and the second 

order reliability method (SORM) are two common used solutions to approximate the nonlinear 

limit state function. The two methods have similar steps. The first step is mapping the problem 

in the standard normal space by using an iso-probabilistic transformation. The second step is to 

evaluate reliability index and find the design point. The last step is to obtain an approximation 

of the probability of failure from the reliability index.  

 

The concepts of reliability index and design point often come with probabilistic analysis with 

approximations. The most complete form of these concept is credited to Hasofer and Lind, who 

gave it a precise definition. Hasofer and Lind proposed not considering a physical variable 
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space, but performing a transformation of variables to a new space of statistically independent 

Gaussian variables, with zero mean and unit standard deviations. In the standard Gaussian space 

of variables ui, P
∗
is the point closest to the origin in the limit-state surface and is defined as the 

design point or the point with most probable failure. The reliability index β is defined as the 

distance between the origin O and the point P
∗
. Reliability index β is considered positive if the 

origin point belongs to the safety domain; if the origin point belongs to the failure domain, β is 

defined as negative. 

 

Apart from the index, important information is given by the direction cosines αi. αi is the cosine 

value of the vector P*O oriented from P
∗
toward O. The value αi represents the influence of the 

random variable ui in the limit state and an approximation of the influence of the physical 

variable xi which is associated with it. The direction cosines αi is also called sensitivity factor 

in a sensitivity analysis. One important application of the sensitivity factor is found by 

Mahadevan and Haldar (1991). From their numerical investigation, only variable xi with |αi| > 

0.3 deserves to be modelled with random fields for a better accuracy of the results.  

 

Fig 3.10 Definition of reliability index and design point 

 

The difference between FORM and SORM is that FORM replace the limit state surface by a 

linear surface while SORM replace the limit state surface by a quadratic surface. FORM is used 

as the level II method in thesis. Although FORM is proven to be very effective, that require 

much less evaluation of the limit state function to yield a convergent result than Subset 

Simulation, it can be inaccurate for nonlinear limit state function with high failure probability 

and can be difficult to solve for multi-design point problem. 

 

During the probabilistic finite element analysis, a number of evaluations of limit state function 

is carried out. For probabilistic finite element analysis, the exact limit state function evaluations 

are evaluations of limit state function, G(X), where the structural response, R(X), is computed 

by finite element analyses. The exact limit state function evaluation is computationally 

expensive and drastically reduces the efficiency of the probabilistic finite element analysis.  

 

The response surface function, G*, is constructed and updated by fitting a symbolic expression 

to the exact limit state evaluations. In other word, the response surface function provides an 

approximation of the structural response. Approximate limit state function evaluations refer to 

the evaluation of limit state function where the response surface function is applied to compute 
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the structural response. The approximate limit state function evaluation is computationally 

cheap and significantly increases the efficiency of the probabilistic finite element analysis.  

 

There are two types of response surface used in this thesis: polynomial response surface and 

kriging response surface. For the polynomial response surface, a polynomial expression (up to 

three order) is regressed from a collection of the exact limit state evaluations. The exact limit 

state evaluations lay around the approximated polynomial fitting but not necessarily lay on it. 

For the Kriging response surface, it is a stochastic interpolation algorithm which assumes that 

the model output is a realization of a Gaussian process. Given a set of exact limit state 

evaluations, a Kriging predictor returns the mean and the variance of a Gaussian process that 

interpolates them. One great advantage of Kriging model is that not only one best expression is 

given, but a confident interval is also indicated.  

3.3 Probabilistic models for corroded reinforced concrete structures 

3.3.1 Probabilistic models for properties of the non-deteriorated structures 

For a particular failure mode under consideration, uncertainty modelling must take in account 

of those variables whose variability is judged to be important in the corresponding performance 

function. Calculation models shall describe the structure and its behavior according to the limit 

state under consideration, including relevant actions and environmental influences. Models 

should generally be regarded as simplifications that involve the decisive factors while neglect 

the less important ones. 

  

Most engineering structures are affected by the following four types of uncertainty: 

- intrinsic physical or mechanical uncertainty  

- measurement uncertainty arisen from random and systematic errors in the measurement of the 

physical quantities 

- statistical uncertainty due to reliance on limited information and finite samples 

- model uncertainty related to the predictive accuracy of calculation models used. 

 

Probabilistic models of non-deteriorated structures exist in literatures with two format: 

statistical analysis of measurement of test based on specific cases, or standardizations in 

guidelines or codes based on a wide range of data resources. Some influential standardizations 

of probabilistic models are Probabilistic Model Code (JCSS, 2000), Bases for design of 

structures - Assessment of existing structures (ISO, 2010), General Principles on Reliability for 

Structures (ISO, 2015), and Partial Factor Methods for Existing Concrete Structures (fib, 2016). 

The standardizations often classify the probabilistic models for: 

- action models 

- structural models which give action effects (internal forces, moments etc.) 

- resistance models which give resistances corresponding to the action effects 

- material models and geometry models . 

 

Table 3.1 Summary of probabilistic models provided by JCSS and fib.  

Variable JCSS fib 

Concrete 

compressive strength 

Basic property fc0 follows 

lognormal distribution. Mean and 
Lognormal distribution. COV is 0.15 
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COV* depend on the concrete class 

Other concrete 

characteristics 

Related to fc0 with additional 

parameters 
N/A* 

Steel tensile strength 
Normal distribution with Std. 

40MPa 
N/A 

Steel yield strength 
Normal distribution with Std 

30MPa 
Lognormal distribution. COV is 0.05 

Steel ultimate strain Normal distribution with COV 0.09 N/A 

Model uncertainty of 

concrete 

 

Lognormal distribution with mean 

of 1.2 and COV of 0.15 

(static , bending moment capacity) 

Lognormal distribution. If concrete 

governs then COV is 0.14. If 

reinforcement governs then COV is 

0.06 

Permanente load 
Normal distribution, COV depends 

on the source of the load 
Normal distribution with COV 0.1 

Traffic load N/A 

Annual maximum value is Gumbel 

distribution of COV 0.75. Time 

invariant component is lognormal 

distribution with COV 0.1 

*Note: COV=Coefficient of variation   N/A=Not available 

 

In addition to the standardization, there are individual researchers provided statistical analysis 

of experimental data or numerical simulations based on some specific cases. Their works 

commensurate the lacking models in standardization and gives a view from practical use. For 

example: Unanwa and Mahan (2014) performed statistical analysis of compressive strength of 

concrete for highway bridges; Engen et al. (2017) quantified the modelling uncertainty of non-

linear finite element analyses of large concrete structures. 

3.3.2 Model uncertainties for the corroded reinforced concrete structures 

The corrosion effects on ultimate limit state is introduced in Chapter 4. Accordingly, the models 

considering such effects also contain uncertainties, which are rarely studied before. Generally 

speaking, the models used to describe relation between corrosion level with material properties 

leads to higher level of model uncertainty. fib (2016) gives suggestions on model uncertainty 

variables of corroded structures. Allaix et. al (2015) conducted statistical analysis of model 

uncertainty for the loadbearing capacity of corroded simply supported RC beams. These works 

provide valuable information for reliability assessment of corroded reinforced concrete 

structures. However, the model uncertainty terms integral the uncertainties of different models 

together, and also account for the variabilities in corrosion. Such integral brings convenience 

for calculation, but can be an over simplified or over general approach for specific cases.   

 

An alternative way is to quantify the model uncertainty of each model describe the corrosion 

effect. Such quantification can be derived from existing experimental data. Sajedi and Huang 

(2015) proposed a probabilistic prediction model for average bond strength considering 

corrosion effect. This probabilistic prediction model is inspired for uncertainty quantification 

for models of corroded reinforced concrete structures. There are two disadvantages of this 

model: first, the model is in a complex form that contains seven variables; second, the model is 
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expressed in terms of concrete compressive strength that will repeatedly account uncertainty of 

concrete properties. In the present thesis, the uncertainty of bond model is quantified in a 

different method, which can be also used to quantify uncertainties for other models of corrosion 

effect. Meanwhile, the coupled probabilistic finite element analysis scheme is used to 

propagation the uncertainty of bond model into reliability analysis of a simply supported RC 

beam. The computation is also served as an example of the utilization of the computation 

scheme. 

3.3.3 Spatial variability of corrosion 

Pitting corrosion is described with pitting factor R= p/Pav, where p is the maximum pit depth 

and Pav is the penetration calculated based on general corrosion (Pav = 0.0116icorrt). A popular 

approach to modeling the spatial variety of pitting corrosion is based on statistical 

characterization of maximum pit depth using extreme value theory, in particular, the Gumbel 

distribution. The pitting factor R for each discretized element is treated as a random variable 

modeled by the Gumbel distribution where the Gumbel parameter are modified from suggested 

value by Stewart (2009).  

 

The cumulative distribution function and equation to modify the Gumbel parameter are:

   ( ) exp exp ( )F x x       (3-9) 
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   (3-11) 

Where 
0 and 

0  are Gumbel parameter measured from specimens with length of 
0L ,  and 

 are Gumbel parameter for an element in discretization with length of uL . 

Equation (5-1) is based on the following assumption that when a larger element of length 
uL  

is divided into
u 0/L L  smaller elements of length 

0L : 

i. Variables for each smaller elements are independent from each other; 

ii. The capacity of the larger element is determined by the smaller element with largest pitting 

depth. 

 

Then, for the small element:   

   f 0 1 1 0
( ) 1 exp exp ( )P P R x x           (3-12) 

For the large element: 
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Which leads to equation (3-9)-(3-11). 

 

If condition (i) is not satisfied: for smaller elements are fully correlated,
f u 1 0

( )P P R x P    ; 

for unknown correlation, u 0
/

0 f 0
1 (1 )

L L
P P P     which leads to

0 0 u 0 0[ln( / )] /L L      . 

If condition (ii) is not satisfied, Gumbel distribution is not suitable to model the pitting depth. 

For a finite element model, if the mesh is optimized to a convergent one, then the element length 

equal to the mesh size can be regarded to satisfy condition (ii). 
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There is no general conclusion of the spatial correlation of pitting corrosion. While some 

scholars (Stewart, Val, Kioumarsi) assume no spatial correlation of pitting corrosion, Kenshel 

and O'Connor (2009) adopted auto correlation function with correlation length 2000 mm. 

Therefore, the effect of the spatial correlation of pitting corrosion in reliability assessment of 

corroded RC structures will be studied for the case study.  
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 Nonlinear finite element analysis of a RC 

continuous girder 

A reinforced concrete continuous girder is adopted as the case study to illustrate the influence 

of spatial variability of corrosion on structural reliability. In this chapter, the case will be 

concisely introduced. The finite element modelling of the continuous girder will be described. 

Modelling of corrosion effects in the finite element model will be explained. Nonlinear finite 

element analyses of the continuous girder will be performed for the case with and without 

corrosion. A comparison will be presented to show the difference in structural response of 

uniform distributed corrosion and localized distributed corrosion.  

4.1 Description of the case study 
The case study is based on a real, corroded, reinforced concrete bridge. The bridge was built in 

the seventies, located in Portugal, and was in a very advanced state of degradation. Finally, the 

bridge was demolished. The bridge is composed of a deck of four longitudinal beams joined by 

a slab. The deck is supported by two abutments and two piers founded in the bed of the river 

Lis. All structural elements are reinforced, non-prestressed concrete. The bridge is located near 

to the mouth of the river, where a marine environment is formed due to the saline water of the 

Atlantic Ocean. As a consequence, the bottom side of beams are heavily corroded due to the 

high level chloride contamination level, especially for the beam near sea side.  

 

The total length of the deck is 60 m, distributed in three spans: 18.6 m, 22.8 m and 18.6 m. 

Dimensions of the structure and cross-sections are shown in Fig 4.1 and Fig 4.2. The four 

longitudinal beams have identical geometry. The cross section changes linearly from 

rectangular shape into T shape from support to span. The beam height is 1.25 m. The width of 

the flange is 1.1 m along the entire beam. The width of the web is 0.5 m at the center of side 

span and at the middle span. The reinforcement arrangement of reinforcement also differs in 

the side span, at supports and in the middle span.  

 

In this study, only the ultimate limit state of the bridge is considered, that is flexural failure. 

Furthermore, solely the governing load combination is analyzed: combination of permanent 

loads and traffic load. The permanent load on the beam includes self-weight of the beam and 

extra dead load equal to 20 % of the self-weight. After Jacinto et al.(2015) the traffic load is 

assumed to be a tridem truck (3 axes). To reduce the computational burden the transverse load 

distribution of the bridge is treated in a simplified manner. This way the loads are reduced to a 

single beam that is analyzed separately. All subsequent analyses concern a single, isolated beam. 

On the single beam, the live load can be presented as three identical point load. Each point load 

is 150 kN and the distance between point loads are 1.5 m. 
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Fig 4.1 Geometry, with dimensions in meter (Jacinto et al., 2015) 

 

Fig 4.2 Cross-section of side span (left), mid span (middle) and supports (right), with the 

dimensions in meters and the bar diameters in millimeter (Jacinto 2011) 

 

4.2 Finite element modelling 

4.2.1 Physical model of sound structure 

In this work, only one of the continuous beam is considered. Although the shape of the cross 

section varies along the length of the beam, it can be modeled as rectangular shape with constant 

area (width 1100 mm, height 1250 mm) along the entire length, if ultimate limit state is the 

criteria to assess the structure. The rectangular cross section approximation is appropriate since : 

(i) at ultimate stage the compression zone of concrete is inside the flange, and (ii) the concrete 

outside the flange zone does not contribute to the flexural resistance, and (iii) the critical cross 

section is in the midspan. The following section describes the applied finite element model that 

is based on the above assumptions and then verifies these three assumption through the results 

of finite element analysis.  

 

A schematic representation of the model used in later analyses is shown in Fig 4.3 and important 

information as material properties, element type and load conditions are provided in Table 4.1, 

Table 4.2 and Table 4.3, respectively. Considering the real situation, the traffic load is live load 
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that can occur at any location along the beam. However, the ultimate capacity of the structure 

depends on the most unfavorable position of the traffic load. Under uniform distributed 

damages, the most critical sections of the structure are at the supports and in the midspan. As 

on-site observation indicates only bottom reinforcements suffered from corrosion, it can be 

regarded that the midspan is the critical section after corrosion. Thus, the traffic load is placed 

at the most unfavorable position for midspan cross-section, namely at the midspan.  

 

 

 

 

Fig 4.3 Schematic representation of the boundary condition and load condition  

 

Table 4.1  Applied material models and properties 

Material Parameters Constitutive model 

Concrete fcc=-51.2 MPa,  

ft=0 

ε1=0.002 

εu=0.0035   

 

 

 

Steel fsy=440 MPa,  

fsu=550 MPa 

Es=200 GPa 

εsu=0.08  

 

  

          * Uniaxial constitutive models 

 

The behavior of the concrete under tension is fully neglected. The behavior of the concrete 

under compression is modelled with an uniaxial parabolic-rectangular stress-strain curve. This 

parabolic-rectangular curve is described in Eurocode 2 for the design of concrete sections. 

Although the parabola-rectangular diagram is not an advisable model for nonlinear structural 

analysis of concrete due to the lack of a softening branch, it can be used for simplification of 

the concrete behavior with checking of the largest strain in concrete.  

 

Uniaxial elasto-plastic material model with hardening is used for reinforcement. Failure of 

reinforcement is defined as rupture at ultimate strain. In the reliability analysis of the case study, 

with the inclusion of corrosion effect and the uncertainty of yield strength and ultimate strength, 

rarely the ultimate strength of corroded reinforcement is smaller than the yield stress of the 

corroded reinforcement. Such a conflict is a purely numerical phenomenon and does not have 

any physical meaning. In order to avoid physically impossible inputs and in turn an error in the 

finite element analysis, the ultimate strength is enforced to not smaller than the yield stress. In 

Q Q Q 

Dead load 
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symbolic expression: if sy suf f  then su syf f .  

 

Perfect bond is assumed, although corrosion may weaken the bond and increase slip between 

concrete and reinforcement. Due to proper anchorage, enough strength can always be developed 

in reinforcement even with weak bond. The ultimate strength of the continuous beam will not 

be influenced by the weak bond as long as the anchorage is adequate. As the limit state of the 

structure is targeted on the ultimate strength, the perfect bond assumption will not influence the 

calculated failure probability.  

 

Table 4.2 Applied element types 

Element Number Length Component IPs along length Section 

Displacement-

Based Beam-

Column 

Element 

200 300 mm Concrete fiber and 

steel fiber 

5 Width 1100 mm 

Height 1250 mm 

 

 
 

 

Fig 4.4 Elements used in numerical simulations. 

 

The discretized element is defined as displacement beam element with fiber section, that is 

discretized along their length (integration points) and across their cross-sections (fibers) to 

explicitly model the spread of plasticity. Displacement based element is different to 

concentrated plasticity models where elastic element is with rotational springs at the ends. 

Displacement based element permit spread of plasticity along the element and allows yielding 

to occur at any location along the element. To approximate nonlinear element response, constant 

axial deformation and linear curvature distribution are enforced along the element length. The 

beam element is discretized along their length by five integration points and across their depth 

by ten concrete fibers. Since the beam is subjected to unidirectional bending, only a single fiber 

is considered in transverse direction. Each individual reinforcing bar is represented by a steel 

fiber.  

 

The permanent load is applied as uniformly distributed line load while the traffic load is 

modeled as three equal point loads. OpenSees take care of the equal loads, though the traffic 

load is in displacement control. The load step and convergence criteria are listed in Table 4.3. 

Regular Newton-Raphson algorithm is used for the nonlinear analysis. First the permanent load 

is applied to the structure with its full intensity, then the traffic load is gradually added until 
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failure (increase of displacements without further load increment). 

 

Table 4.3 Load conditions 

Load Dead load Traffic load 

Descriptions 30 kN/m 3 point loads 

Control method Load control Displacement control 

Load step 1.5 kN/m per step, 20 steps 0.2 mm per step 

Convergence Displacement norm 10-3 Energy norm 10-4 

 

4.2.2 Modeling of corrosion effects  

In the case study, corrosion is assumed only occurs for (all) bottom reinforcements and is 

classified as pitting corrosion. The pitting factor R= p/Pav is used to define the extent of pitting 

corrosion, where p is the maximum pit depth and Pav is the penetration calculated based on 

general corrosion (Pav = 0.0116icorrt). The maximum pit depth along a reinforcing bar affects 

the load capacity. For a given value of pitting factor R, the pitting depth after corrosion ignition 

time t is: p(t) = 0.0116 icorr R t. Where icorr is the corrosion rate in µA/cm2, and t is the time in 

years since corrosion has initiated. In this study icorr is set to 2 µA/cm2 corresponding to a stage 

with rapid propagating corrosion. 

 

The corrosion effects included in this study are the reduction of rebar area (As), rebar yield 

strength (fsy), rebar ultimate strength (fsu), and rebar ultimate strain (εsu). The bond strength 

could also be affected by corrosion. However in the studied bridge, the reinforcements are 

properly anchored, and hence for this ultimate limit state verification no differences in structural 

behavior are expected between the case considering bond without and with corrosion. All 

corrosion effects are quantified by equations in terms of penetration index δ= p/D0. As 

mentioned in Chapter 3, the remaining area of reinforcement is expressed as:

0( ) [1 ( )]s s sA A    , and 
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Where 2

0 0 2 1/b D     , 
1

2arcsin  , 
2

2arcsin( )/ 2   . 

Yield strength and tensile strength of reinforcement follows the expression: 0(1 )s s sf b f   . 

The value of b is adopted from Du et al. (2005), using b = 0.0016 when calculating the yield 

strength and b = 0.0026 for the tensile strength. For ultimate strain of the reinforcement, the 

relation proposed by Vergani (2010) is adopted in thesis: 
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Fig 4.5 shows the normalized residual properties of the reinforcement with different level of 

average loss of cross section, assuming a corrosion initiation time of 50 years, which is 

approximated the existing life of the bridge, Fig 4.6 shows the relation between average loss of 
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cross-section with the pitting factor, with the corrosion ignition time t ranging from 20 years to 

50 years. If t increases, corrosion will be more severe for the same pitting factor and reduction 

of the rebar cross-section will be more apparent.  

 

Fig 4.5 Normalized residual of properties with cross section loss (t=50 years, icorr=2 µA/cm2 ) 

  

Fig 4.6 Normalized loss of rebar area  (R=10, icorr = 2 µA/cm2) 

4.3 Results nonlinear finite element analysis 

4.3.1 Sound structure 

Fig 4.7 shows the deflection and moment distribution of the structure at ultimate stage (failure) 

with combination of dead load and traffic load. The failure at ultimate stage is the rupture of 

the bottom reinforcement at midspan. Despite of the larger moment at support, the support has 

higher capacity compared to the midspan and it is in hardening stage when the midspan fails. 

Fig 4.8 shows the strain distribution in the cross section at midspan and at support. The strain 

distribution at midspan also confirms that the compression zone of concrete lays inside the 

flange. Thus, the modelling assumptions are satisfied. The strain distribution also shows that 

the concrete compressive strain is lower than the ultimate strain, which confirms the parabolic-

rectangular diagram is proper to be used. Fig 4.9 shows the curve of value of one point load 

and deflection at midspan. Stage A corresponds to the yielding at midspan, stage B corresponds 

to the yielding at support and stage C corresponds to the rupture of reinforcement at midspan.  

 

 

 

  

Pitting factor 
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Fig 4.10 shows a comparison of the simplified model used in this thesis (OpenSees model) and 

a more complex model built in Diana. The Diana model reflects the change of cross section 

dimension along the beam and use a more advanced concrete model. The compressive strength 

of concrete is modeled with parabolic compression diagram where compressive strength is 51.2 

MPa and fracture energy is 37.1 N/mm. The tensile strength of concrete is modeled by Hordijk 

softening, where the tensile strength is 3.69 MPa and fracture energy is 0.148 N/mm. The steel 

model is the same as the OpenSees model. The dead load is line load applied by force control 

and the point load is applied by arc-length control. In the comparison, it can be noticed that the 

load-deflection curves are very close and the capacity of the Dinana model is slightly higher 

(0.4 %) than the OpenSees model due to the tensile strength of the concrete.  

 

 (i) 

 

 

(ii) 

Fig 4.7 (i) Deflection and (ii) moment distribution at ultimate stage 
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                (i)                         (ii) 

Fig 4.8 Strain distribution at (i) midspan and (ii) support (ultimate stage) 

 

Fig 4.9 Load-deflection curve (value of one point load vs. deflection at midspan) 

 

Fig 4.10 Comparison of the finite element analysis in OpenSees and in Diana 

4.3.2 Corroded structure 

In the analyses ignoring the spatial variability of corrosion, the pitting factor is assumed as 

uniform distributed along the entire beam (the pitting factor of each element has the same value). 

This pattern of corrosion is referred as uniform damage in the following text. It should be 

noticed that the uniform damage is also pitting corrosion rather than general corrosion. The 

uniform pattern indicates that the pits at different location has same depth. Fig 4.11 shows the 

different between an uniform damage and a spatial various damage. Under the assumption of  

uniform damage, Fig 4.12 shows the normalized residual capacity of the structure with different 
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value of pitting factors (t=50 year). The corrosion damages are also “isolated” from each other 

to show how the corrosion influenced the capacity. The isolated influence means only one of 

the corrosion damage is considered. Such isolated influence will not occur in reality. According 

to Fig 4.12, corrosion influence the capacity mainly through the reduction of reinforcing bar 

area.  

 

 

Fig 4.11 Comparison of uniform damage and spatial various damage  

 
Fig 4.12 Normalized structural capacity with pitting factor 

 

The above discussion is based on the uniformly distributed pitting corrosion. However, in reality, 

the pitting corrosion is not uniformly distributed and spatial variability is observed. One of the 

consequence of spatial varying pitting corrosion is the occurrence of localized damage. Fig 4.13 

shows an example of localized damage, where pitting corrosion is with pitting factor 9 at the 

midspan and with pitting factor 7 at other locations. Fig 4.14, Fig 4.15 and Fig 4.16 present the 

different structural responses of the localized damage and the uniform damage corresponding 

to Fig 4.13.  

 

Fig 4.13 Localized damage compared with uniform damage 
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Fig 4.14 Load-deflection curve (value of one point load vs. deflection at midspan) 

 

Fig 4.15 Moment distribution at ultimate stage 

 

Fig 4.16 Rotation of cross section at ultimate stage 

 

For uniform damage, the structure is able to develop certain ductility after the midspan starts to 

yield. On the contrary, with localized damage, the structure loses ductility very soon after the 

midspan starts to yield. Therefore, the uniformly damaged structure shows more ductile 

structural response and has higher capacity. The moment distribution and rotation of cross 

section reveal the cause.  
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For uniform damage, a ductile area is formed at the midspan after the yielding of bottom 

reinforcement. The ductile area covers several elements and allows relatively large deformation 

to developed. Due to uniform damage, no sudden change exists between neighboring elements 

and the stress distribution of the reinforcements follows same trend of the moment distribution. 

The strains of the reinforcements in the neighboring elements between load points gradually 

increase and reach the peak at midspan. The large deformation in the sagging part leads to a 

large deformation of the element at the supports. As result, the strain and stress of the 

reinforcement at hogging part increase. When the reinforcement at hogging part is in elastic 

stage while reinforcement at sagging part start to yield, the stress of reinforcement at hogging 

part develops more fast than the stress of reinforcement at sagging part. As result, the ratio 

between moment carried at supports and moment carried at the midspan keep increasing, which 

is also called moment redistribution. When the hogging parts are also yield, the structure forms 

plastic hinges at the midspan and at the supports, the load carried by the structure can slowly 

increase as the reinforcement can harden and the structure fails when the plastic hinge at the 

midspan fails due to reinforcement rupture. 

 

For localized damage, the ductile area is not developed among elements and only the element 

with the largest damage developed considerable deformation. There is a sudden change between 

the element with the largest damage and the other neighboring elements. The stress distribution 

of the reinforcements do not follow the same trend of the moment distribution. Instead, the 

stress and strain increases rapidly in the element with the largest damage. While the 

reinforcements yield at the localized damage, the reinforcements at neighboring locations are 

in elastic stage. As result, the plastic hinge is only formed in one element and the deformation 

at hogging part is not as large as with the uniform damage. Although there are moment 

redistribution during the period where sagging part start to yield and hogging part is in elastic 

deformation, this period ends fast as the plastic hinge at midspan soon fails because of 

reinforcement rupture. When the structure fails, the reinforcements at hogging part are still in 

elastic stage. The structure fails before forming a plastic mechanism, 

 

 

  



37 

  

 Reliability analysis of a RC continuous 

girder 

In order to study the effect of spatial variability of corrosion on structural reliability, a series of 

reliability analyses are performed for the RC continuous girder. First, exploratory analyses are 

conducted to determine the influential variables and the range of the beam that should be 

modelled with random field. Then, part of the beam is modelled with a random field and the 

level of spatial variability is represented by correlation length. The presented analyses study the 

influence of different correlation length and reveals that spatial variability of corrosion has a 

significant influence on the failure probability.  

 

Potential factors that could influence the reliability analysis are tested. The range covered by 

random field is enough and the approach to correlate area covered by random field and 

remaining area of the structure is adequate. Discretization of the structure will have complex 

influence on reliability analysis. However, for the case study, the discretization do not lead to 

considerable effects. 

5.1 Exploratory reliability analysis  
In order to identify (i) the important random variables, and (ii) the critical area that need to 

apply random field of corrosion damage, exploratory reliability analyses are performed with 

and without a random field. The random field will be applied to the entire beam. Each element 

will be attached with a variable stands for the maximum pitting factor within the element. In 

order to limit the dimension of the reliability problem (amount of variables) in a 

reasonable/practical range, relatively coarse mesh is used in the exploratory analyses. In total,  

60 beam elements are used and the element size is listed in Table 5.1. Compared with the finite 

element analysis with 200 beam elements, the coarse mesh has an relative error of 7% of the 

ultimate capacity.  

 

Table 5.1 Discretization  

Element Span Number Length 

Displacement-Based 

Beam-Column Element 

Left span 20 930 mm 

Mid span 20 1100 mm, 1500 mm 

Right span 20 930 mm 

 

FORM is used to calculate the failure probability and the sensitivity factors of the random 

variables. The sensitivity factors are used to compare the relative importance of variables, to 

identify the most essential ones and to reduce the dimensionality of the reliability problem. The 

convergence criteria of the FORM analysis is 0.05 for both the search of limit state and search 

of design point. The performance function is defined as ( , ) ( )Q QG Q R QX X    , where X-Q 

is a set of variables including material properties, geometrical properties and corrosion, R(X-Q) 

is the structural capacity calculated by the finite element analysis based on the value of X-Q, Q 

is the traffic load (value of one point load). 
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5.1.1 Reliability analysis without spatial variability 

Table 5.2 shows the random variables and their probabilistic models used in the case without 

spatial variability. The following parameters are considered as random variables: the concrete 

compressive strength, the yield strength and the tensile strength of reinforcement, the ultimate 

strain of reinforcement, the area of top and bottom reinforcement, the pitting factor and the 

traffic load. The coefficient of variation of traffic load is taken from CEB/fib (2016). The 

coefficients of variation of other variables are taken from JCSS (2000). The mean values of the 

material and geometric properties are taken from Jacinto 2011. Gumbel parameters of the 

pitting factor R is modified from the suggested value for a bar with diameter 27 mm and length 

100 mm, where 0 6.55  and 0 1.07  . The modification of the Gumbel parameters follows 

equation (3-10). The
uL is set to be the average element length. After modifying the Gumbel 

parameter, the mean value of variable R is 9.24 and the coefficient of variance is 0.13.  

 

Table 5.2 Input parameters for reliability analysis 

Variables Symbol Distribution Mean Coefficient of variation 

Concrete compressive 

strength 
fcc Lognormal 51.2 MPa 0.07 

Reinforcement yield 

strength 
fsy Lognormal 440 MPa 0.065 

Reinforcement 

ultimate strength 
fsu Lognormal 550 MPa 0.07 

Reinforcement 

ultimate strain 
εsu Lognormal 0.08 0.09 

Top rebar area (total) Ast Lognormal 7856 mm2 0.02 

Bottom rebar area 

(total) in midspan 
Asm Lognormal 5400 mm2 0.02 

Bottom rebar area 

(total) in side span 
Ass Lognormal 7364 mm2 0.02 

Pitting factor R Gumbel 9.24 0.13 

Traffic load (one point) Q Gumbel 150 kN 0.1 

 

Pitting corrosion is assumed to occur in bottom reinforcement along the entire length. Corrosion 

effects on the material properties, as discussed in Chapter 4 are considered and a constant 

corrosion rate of 2 µA/cm2 is assumed. Three corrosion ignition times are considered: 0, 20 and 

50 years. With the constant corrosion rate assumption, the development of time since corrosion 

initiation represents different levels of corrosion.  

 

Table 5.3 Comparation of results  

 t=0 t=20 t=50 

Symbol α Design point α Design point α Design point 

fcc -0.0010 51.05 MPa -0.0014 51.05 MPa -0.0120 50.94 MPa 

fsy -0.1431 415.9 MPa -0.1798 412.3 MPa -0.0010 439.0 MPa 

fsu -0.3323 481.2 MPa -0.3317 485.3 MPa -0.0419 543.6 MPa 
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εsu -0.0095 0.0792 -0.0077 0.07935 -0.1042 0.0775 

Ast -0.0745 7790 mm2 -0.0763 7793 mm2 -0.0252 7845 mm2 

Asm -0.0533 5364 mm2 -0.0529 5368 mm2 -0.0102 5395 mm2 

Ass -0.0014 7361 mm2 -0.0014 7361 mm2 -0.0041 7361 mm2 

R 0 8.992 0.1169 10.00 0.9773 16.05 

Q 0.9277 340368 0.9139 313773 0.1772 155794 

β 5.7414 5.3608 2.9259 

Pf 4.6946∙10-9 4.1439∙10-8 1.7173∙10-3 

 

 

Fig 5.1 Change of sensitivity factors 

 

Table 5.3 and Fig 5.1 show the comparison among the results for 0, 20 and 50 years since 

corrosion initiation. In the table, α is the sensitivity factor, β is the reliability index and Pf is the 

failure probability. As time develops the probability of failure increases and importance of 

pitting factor in reliability analysis (indicated by the value of α) grows. It corresponds to the 

finding that corrosion become severe (with a constant pitting factor) and structural resistance 

decreases as time develops. 

 

5.1.2 Reliability analysis with spatial variability 

Midpoint discretization is used for the random field. The discretization of random field is the 

same as discretization of finite element model. For each element in the finite element model, a 

variable is attached to represent the maximum pitting depth within the element. Because of 

relative large size of discretization, correlation is assumed to be zero between elements. Gumbel 

distribution of R remains the same as in the reliability analysis without spatial variability. An 

example of the realization of random field is shown in Fig 5.2. 
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Fig 5.2 Example of realization of the random field 

 

Based on the analysis without spatial variability, the variables fc, Ast, Asm, and Ass are identified 

not important for both t=0, t=20 and t=50, as the sensitivity factor of such variables are less 

than 0.1. In order to reduce the number of variables, the concrete compressive strength , and 

the uncorroded reinforcement area are treated as deterministic. FORM analysis is also 

performed to identify the most important region of the structure. The convergence criteria of 

the FORM analysis is 0.05 for both the search of limit state and search of design point.  

 

Table 5.4 Input parameters for reliability analysis 

Random variable Distribution Mean COV 

Pitting factor (Ri) Gumbel 9.24  0.13 

Steel yield strength (fsy) Lognormal 440 MPa 0.065 

Steel tensile strength (fsu) Lognormal 550 MPa 0.07 

Steel ultimate strain (εsu) Lognormal 0.08 0.09 

Live load for each point (Q) Gumbel 150 kN 0.1 

Deterministic term Value 

Concrete compressive strength (fcc) -51.2 MPa 

Top rebar area (total) (Ast) 7856 mm2 

Bottom rebar area (total) in midspan(Asm) 5400 mm2 

Bottom rebar area (total) in sidespan(Ass) 7364 mm2 

Self-weight (P) 30 kN/m 

 

Table 5.5 shows a comparison between the results of analyses with a corrosion ignition time of 

20 years and 50 years, without spatial variability and with spatial variability. In the table, α is 

the sensitivity factor, β is the reliability index and Pf is the failure probability. While the analyses 

with and without spatial variability have no apparent difference for t=20 years, using random 

fields increases probability of failure more than 10 times for t=50 years. This finding is expected 
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based on reliability analysis without using random fields. For t=20 years, the traffic load Q is 

the dominant variable and using random field for nondominant variable R should not lead to 

much difference. For t=50 years, pitting factor R is the dominant variable and is on ‘action side’ 

(increase value of R will reduce resistance and increase probability of failure). Using random 

field increase the variability of R and leads to higher probability of failure. 

 

Table 5.5 Comparison of results 

 t=20 t=50 

No RF RF No RF RF 

Variabel α α α α 

fsy -0.1798 -0.1387 -0.0010 -0.0079 

fsu -0.3317 -0.3262 -0.0419 -0.2261 

εsu -0.0077 0.0204 -0.1042 0.0079 

Rmid (R at midspan) 0.1169 0.1572 0.9773 0.8713 

Q 0.9139 0.9215 0.1772 0.3366 

β 5.3608 5.4759 2.9259 2.2368 

Pf 4.1439∙10-8 2.1759∙10-8 1.7173∙10-3 1.2648∙10-2 

 

Another finding is that the structural behavior may change in the reliability analysis for t=50 

years. Fig 5.3 shows the load-deflection curves of the finite element analysis called by reliability 

analysis. For t=50, some curves reflect less ductile structural behavior, where the midspan fails 

due to rupture of bottom reinforcement while elements at supports are at elastic stage. For t=20 

years, all curves shows ductile structural behavior where midspan fails due to rupture of bottom 

reinforcement while elements at supports are at hardening stage. The less ductile structural 

behavior is caused by severe localized corrosion of t=50 years and contributes to the increase 

of probability of failure.  

 

(i)  t=20 years 
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(ii)  t=50 years 

Fig 5.3 Load-deflection curves in reliability analysis 

 

For both the case t=20 years and t=50 years, only the pitting factor of element at midspan has 

a sensitivity factor larger than 0.1. The sensitivity factors of the pitting factor of other elements 

are minimal. It reveals that the area near midspan is the essential/most sensitive part of the 

structure. For the following analyses, the pitting corrosion in the zone around the midspan 

should be modelled with a random field, while the pitting corrosion at the other zones of the 

beam can be represented by a single random variable.  

5.1.3 Discussion of the exploratory study  

The exploratory FORM reliability calculations reveal that, the pitting corrosion near the 

midspan is most essential for the failure probability of the structure. The moment distribution 

also indicates that the capacity of elements near the midspan determines the capacity of the 

structure. Based on the calculated sensitivity factors, the pitting factor of the element near the 

midspan is the important variable that need to be modeled by random field. 

 

The reliability analyses also show, that of the case t=50 variables of the concrete compressive 

strength, the area of uncorroded reinforcements and the dead load, are relatively less important 

and can be modeled with deterministic values. The structural reliability is relatively sensitive 

to the reinforcement properties and the traffic load. Thus the reinforcement properties and the 

traffic load should be modeled with probabilistic distributions. 

5.2 Parameter study of spatial variability 

5.2.1 Introduction 

The uncertainty of the pitting corrosion along the continuous beam is considered in two 

different ways. In the zone around the midspan and the traffic load, the pitting corrosion factor 

R is represented as a random field (indicated by zone 1 in Fig 5.4). This zone has a length of 3 

m, corresponding to the dimension of the traffic load vehicle. In the left and right part of the 

beam, indicated by zone 2 in Fig 5.4, R is represented by a single random variable.  

 

As before, the random field discretization is coupled to the finite element discretization. The 

element size in zone 1 is set to 125 mm, which leads to 24 elements in this zone. The element 

size in zone 2 is set to 300 mm, resulting in 214 elements.  
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Fig 5.4 Zone 1 and 2 along the continuous beam. 

  

When averaged element size is 300 mm, the relative change of computation result is 0.6 % if 

the amount of element doubles. The Gumbel parameters are also modified according to the 

element length. The mean value of pitting factor for element with 125 mm length is 7.30, while 

the mean value of pitting factor for element with 300 mm length is 8.12. The standard deviation 

for all the element is 1.20.  

 

Table 5.6 Element type 

Element Number Length Component Section 

Beam 

element 

214 

(24 in region 1) 

300 mm for zone 2, 

 125 mm for zone 1 

Concrete fiber 

and steel fiber 

 

Width 1100 mm 

Height 1250 mm 

 

Midpoint discretization is used for the random field, see chapter 3. An exponential correlation 

function according to equation (3-8) used to describe the correlation between the elements in 

zone 1. Since the quantified spatial correlation of pitting corrosion is unknown for the presented 

concrete bridge and no general applicable information is available, correlation length of 125 

mm, 250 mm, 500 mm, 1000 mm and 2000 mm are used to study the effect of different levels 

of spatial variety. Larger correlation length results in higher level of correlation between 

elements and lower level of spatial variety of the pitting corrosion.  

 

The uncertainty of the pitting factor in zone 2 is represented by a single random variable for the 

left part (R1) and the right part (R2). The distribution of pitting factor along the beam is assumed 

to be uniform. The random variables R1 and R2 are correlated with the pitting factors in zone 1, 

via 1| |ix x and 2| |jx x , where ix and jx are the location of midpoint of the edge elements in 

zone 1, x1 and x2 are the representative location in zone 2. There are two bounds of the value of 

x1 and x2. One is the midpoint of the closest element to region 1 and the other one is the midpoint 

of the farthest element to zone 1. The two bounds of the value of x1 and x2 are sequentially used 

in the following analyses to evaluate the influence of this choice. 

 

In addition, the maximum pit depth is equal to p(t) = 0.0116 icorr R t, where icorr = 2 µA/cm2 

corresponds to a high corrosion rate and t=50 years corresponds to the age of the bridge. The 

corrosion effects included in this study are the reduction of rebar area (As), rebar yield strength 
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(fsy), rebar ultimate strength (fsu), and rebar ultimate strain (εsu). The corrosion damage is only 

applied to the bottom reinforcement. 

5.2.2 Inputs of reliability analysis 

Reliability analyses are conducted with the probabilistic models as listed in  

Table 5.7. Compared with the exploratory analyses in section 7.1, the only changed value is the 

mean value of pitting factor. Four reliability methods are used: Subset Simulation (SS), First 

Order Reliability Method (FORM), Adaptive Directional Importance Sampling (ADIS) and 

Adaptive Kriging Monte Carlo Simulation (AK-MCS) are used. For Subset Simulation and 

First Order Reliability Method, only exact limit state evaluations are used. For Adaptive 

Directional Importance Sampling and Adaptive Kriging Monte Carlo Simulation, methods 

include the generation of a response surface on the basis of exact performance function 

evaluations, which is used to calculate the failure probability. Table 5.8 summarized all relevant 

settings of the different reliability methods. The limit state function is defined as 

( , ) ( )Q QG Q R QX X    , where X-Q is a set of variables including material properties, 

geometrical properties and corrosion, R(X-Q) is the structural capacity calculated by the finite 

element analysis based on the value of X-Q, Q is the traffic load (value of one point load). 

 

Table 5.7 Input parameters for reliability analysis 

Random variable Distribution Mean COV 

Pitting factor (Ri) Gumbel 7.30 for 125mm element 0.164 

Pitting factor (R1, R2) Gumbel 8.12 for 300 mm element 0.148 

Steel yield strength (fsy) Lognormal 440 MPa 0.065 

Steel tensile strength (fsu) Lognormal 550 MPa 0.07 

Steel ultimate strain (εsu) Lognormal 0.08 0.09 

Live load for each point (Q) Gumbel 150 kN 0.1 

Deterministic term Value 

Concrete compressive strength (fc) -51.2 MPa 

Top rebar area (total) (Ast) 7856 mm2 

Bottom rebar area (total) in midspan(Asm) 5400 mm2 

Bottom rebar area (total) in sidespan(Ass) 7364 mm2 

Self-weight (P) 30 kN/m 

 

Table 5.8 Settings for reliability methods 

Method Convergence criteria Other settings 

Subset Simulation COV (Pf) < 0.1 Each subset contains 1000 samples 

Predefined intermediate failure 

probability is 0.1 

FORM Error of 0.05 for both finding of limit 

state and finding of design point 

N/A 

AK-MCS 
f f f( ) /P P P   <0.05 20 experimental design samples with 

maximum 500 added samples 

ADIS COV (Pf) < 0.1 The maximum order of polynomial in 

ADIS is third  
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5.3 Results and discussion 

5.3.1 Performance of different reliability methods 

Table 5.9 and Fig 5.6 present a comparison between the failure probabilities obtained from the 

FORM and Subset Simulation. The FORM results show smaller failure probabilities than 

Subset Simulation. Subset Simulation is a more general method that requires no precondition. 

The results indicate that FORM underestimates the failure probability. A possible reason is that 

the limit state function is nonlinear and the failure probability is relatively high. This hypothesis 

is confirmed by Fig 5.7 which shows the performance function in the Rmid-G plane near the 

design point. Rmid is the pitting factor of the element at midspan. The high nonlinearity cannot 

be well approximated by the linear function, or even polynomial, which leads to the 

underestimate of the failure probability of FORM. Furthermore, this may also explain the 

reason why the response surface based methods fail.  

 

Table 5.9 Reliability analysis results 

Correlation 

length 

(mm) 

FORM Pf 

Subset Simulation Pf AK-MCS 

Lower bound  Mean Higher 

bound 

 

125 2.26∙10-2 4.04∙10-2 5.20∙10-2 6.36∙10-2 / 

500 1.75∙10-2 2.08∙10-2 2.89∙10-2 3.70∙10-2 2.55∙10-2 

2000 0.98∙10-2 1.24∙10-2 1.79∙10-2 2.34∙10-2 / 

 

Among the four methods used for reliability analysis, FORM and Subset Simulation give 

convergent result for all correlation length. However, the AK-MCS results in a non-convergent 

meta model (the criteria f f f( ) /P P P   <0.05 is not satisfied) and ADIS leads to a total failure 

to generate a proper meta model (third order polynomial). Fig 5.5 shows the failure probability 

calculated by AK-MCS up to 500 added exact samples. Although the convergence criteria is 

not met, the failure probability calculated by AK-MCS is close to the result of Subset 

Simulation. 

 

Fig 5.5 Failure probability calculated by AK-MCS 
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Fig 5.6 Failure probability with different correlation length. 

 

 

Fig 5.7 Performance function in Rmid-G plane near the design point 

 

5.3.2 Influence of correlation length 

Correlation lengths of 125 mm, 250 mm, 500 mm, 1000 mm and 2000 mm are used for 

reliability analysis. The results of Subset Simulation are listed in Table 5.10 and plotted in Fig 

5.8 Failure probability with correlation lengthThe settings of the reliability method are the same 

as above mentioned setting for Subset Simulation. 

 

Table 5.10 Reliability analysis results 

Correlation 

length (mm) 

Subset Simulation Pf 

Lower bound  Mean Higher bound 

125 4.04∙10-2 5.20∙10-2 6.36∙10-2 

250 3.33∙10-2 4.37∙10-2 5.41∙10-2 

500 2.08∙10-2 2.89∙10-2 3.70∙10-2 

1000 1.74∙10-2 2.43∙10-2 3.12∙10-2 

2000 1.24∙10-2 1.79∙10-2 2.34∙10-2 

     

Correlation length (mm) 
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Fig 5.8 Failure probability with correlation length 

 

Fig 5.8 shows that when the correlation length increases, the failure probability decreases. This 

trend matches with our expectation, both from a probabilistic viewpoint and a mechanical 

viewpoint:  

 

(1) From the probabilistic viewpoint, an increased correlation length corresponds to a higher 

level of spatial correlation and thus a lower level of spatial variability of the corrosion damage. 

A low level of spatial variability of the corrosion damage leads to a low probability to have an 

extremely weak element among all the elements. This can be illustrated by consideration of the 

following two extreme cases. If 100 variables
iR  ( 0 100i   ) have the same probabilistic 

distribution, of which 0 0( )iP R R P   , then for fully correlated variables (i.e. low level of 

spatial variability) 0 0( )iP R R P    and for fully independent variables (i.e. uncorrelated and 

thus a high level of spatial variability)
100

0 0 0( ) 1 (1 )iP R R P P      . On the continuous 

beam, the random field covers the area with the largest moment. Hence, the probability to have 

an extremely weak among all the elements is negatively related to the structural capacity and 

thus positively related to the failure probability of the structure (although, these relations are 

not linear). 

 

(2) From the mechanics viewpoint, an high level of spatial correlation and low level of spatial 

variability mean that the damage is more uniformly distributed rather than localized distributed. 

In another word, for a realization of the distribution of pitting factor, the pitting factor changes 

smoothly in space rather than rapidly. In the exploratory study, the finite element analysis 

reveals that the localized damage results in a lack of development of ductile area in plastic hinge 

and insufficient moment redistribution between hogging and sagging. As a result, the localized 

damage leads to loss of ductility of structure and a low structural capacity.  

 

Beyond the case study, the above two interpretations still have advisable meaning for general 

cases. First, if the structure or part of the structure can be approximated as a series system 

composed of several equal elements, the failure of the system depends on the failure of one of 

the elements in that system. In such a situation, spatial variability of damage increases the 

probability to have at least one heavily damaged element and thus increases the failure 

probability of the series system. Second, for a statistic-undetermined structure with ductility or 

plasticity assumed, localized damage could be more unfavorable than uniform damage. Spatial 

Correlation length (mm) 
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variability of damage leads to a more unfavorable structural response and increases the failure 

probability. High level of spatial variability of corrosion increases the failure probability of the 

structure. Therefore, it is advised to further explore the spatial variability of corrosion and 

gather information to facilitate more accurate reliability analysis. 

5.3.3 Influence of discretization  

In the case study, the discretization of random field is the same as of the finite element model. 

The discretization can influence the reliability analysis on three aspects: 

 

(1) The Gumbel distribution of the pitting factor is modified by the discretization in order to 

reflect the size effect. In the analyses, the parameters of the Gumbel distribution are determined 

by the element size according to equation (3-10). The equation is based on assumption of spatial 

independency of variables, as discussed in Chapter 3. If spatial correlation is included, the 

Gumbel distribution modified according to (3-10) is not equivalent to the Gumbel distribution 

of the new discretization. The model error will become more apparent when the spatial 

correlation becomes stronger (correlation length is large). 

 

(2) If spatial variability of corrosion is considered, the discretization of the finite element model 

will influence the modelling of the localized damage. With a fine discretization, the damage 

can be modelled with an extremely small size. If the spatial correlation is relatively small 

(spatial variability is relatively large), the effect of localized damage can be reflected with fine 

discretization. However, with a coarse discretization (where the element size is larger than half 

of the correlation length), the localized damage cannot be proper modelled. Even with high 

spatial variability, the influence of localization is limited reflected. This phenomena only 

influences analyses where correlation length is small. 

 

(3) For variables with spatial correlation, which are represented by an auto-correlation function, 

there is a lower bound and an upper bound for the element size, expressed by correlation length. 

A too large element size will result in inaccuracy of modelling the field. For exponential auto-

correlation function, B Sudret and Der Kiureghian (2000) gives an estimation of the error of 

generated random field for different ration of element size with correlation length. The error 

( )eE   represents:  

 
sup

( ) ( )
( )

( )
e

x

e

Var H x H x
E

Var H x


 

  
  

Naturally, smaller element results in more accurate random field. However, a too small element 

size may lead to numerical difficulties in the calculation of the correlation matrix. If the element 

size is changed, the random field may not be properly generated and influence the reliability 

analysis. The influence on reliability analysis is difficult to quantify, as there is no ‘accurate’ 

result to compare with.  
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Fig 5.9 Error of random field (B Sudret and Der Kiureghian (2000)) 

 

The three aspects interact and the their separate influences cannot be easily distinguished. In 

order to estimate the total influence, a new calculation is made in which the discretization of 

the random field adopts element sizes of 300 mm. The same reliability analysis is carried out 

with the series of correlation length. Fig 5.10 shows the failure probabilities of the two sets of 

analyses. In addition to the mean value of the failure probability, the 95% confidence interval 

is also presented. 

 

 

Fig 5.10 Failure probabilities by varying correlation lengths 

 

Table 5.11 Comparison of reliability analysis with different discretization 

Correlation 

length 

(mm) 

Pf of 125mm element Pf of 300 mm element 

Lower 

bound 
Mean 

Higher 

bound 

Lower 

bound 
Mean 

Higher 

bound 

125 4.04∙10-2 5.20∙10-2 6.36∙10-2 3.05∙10-2 4.03∙10-2 5.01∙10-2 

250 3.33∙10-2 4.37∙10-2 5.41∙10-2 2.69∙10-2 3.60∙10-2 4.51∙10-2 

500 2.08∙10-2 2.89∙10-2 3.70∙10-2 2.06∙10-2 2.86∙10-2 3.66∙10-2 

1000 1.74∙10-2 2.43∙10-2 3.12∙10-2 1.52∙10-2 2.22∙10-2 2.92∙10-2 

Correlation length (mm) 

 

F
ai

lu
re

 p
ro

b
ab

il
it

y
 

 



50 

  

 

The trend in Fig 5.10 indicates that for correlation lengths of 125 mm and 200 mm, the analyses 

with 300 mm element sizes result in lower failure probabilities compared to those with 125 mm 

element sizes. For correlation lengths of 500 mm, 1000 mm, and 2000 mm, no apparent 

influence of the discretization is observed. For infinite large correlation length, the analysis 

with 300 mm element size leads to a slightly higher failure probability. This trend cannot be 

mathematically proven or explicitly explained by one of the aspects mentioned above. 

However, the trend can be interpreted by combining the three aspects. 

 

In the above analyses, the Gumbel parameters are modified according to the element size, based 

on assumption of spatial independency among variables (i.e. the correlation length should be 

relatively small compared to the element size). The modification rule prescribe that for a larger 

element size, the mean value of Gumbel distribution will also be larger. In the case study, the 

variable is the pitting factor. Thus, larger element size leads to larger mean value of pitting 

factor and larger damage due to corrosion. Ideally, if the spatial independency assumption is 

satisfied, the modified Gumbel parameters will lead to equivalent probability distribution of 

pitting factor for a different discretization. The failure probability should not change. If there is 

spatial correlation, the modified Gumbel parameter (based on spatial independency) will lead 

to an overestimation of the mean value for a larger element size. Thus, the failure probability 

increases with a larger element size when the correlation length is infinite.    

 

According to aspect (2), the larger element sets a limitation for modelling localized damage. 

With small spatial correlation between variables (small correlation length), there is a chance for 

the occurrence of a large change of the pitting factor within a small spatial distance, which is 

referred as localized damage in this thesis. The influence of the localized damage depends on 

the size of element. If the element is fine enough, the localized damage can be captured and 

reduce the capacity of the structure. If element is coarse, any localized damage that is smaller 

than the element size cannot be modelled. Thus, the larger element size results in less influence 

of the localized damage and decrease the failure probability when correlation length is small.  

 

In conclusion, the influence of element size on the reliability analysis is a collective effect. With 

a large correlation length, the discretization with larger element sizes will increase the failure 

probability because of the existence of spatial correlation against the precondition of modifying 

the size-dependent Gumbel parameters. With a small correlation length, the discretization with 

larger element sizes will decrease the failure probability because of limiting the modelling of 

localized damage. With a medium correlation length, these two effect compensate each other 

to some extent and leads to insensitivity to element size. The influence of discretization of 

random field and of finite element model on reliability analysis could depend on cases. Such 

aspect requires further study. 

5.3.4 Discussion on the length covered by random field  

There are two other factors that should be considered for the random field. One is the length of 

the area covered by the random field. In order to reduce the dimension of the problem (amount 

2000 1.24∙10-2 1.79∙10-2 2.34∙10-2 1.17∙10-2 1.72∙10-2 2.27∙10-2 

+∞  2.40∙10-3   2.91∙10-3  
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of variables), only the most essential area is covered by random field. For the above analyses, 

the random field covers 3000 mm of the beam. The influence of this length on the failure 

probability is studied by adopting a random field that covers 9000 mm of the beam. Table 7.6 

compares the failure probability calculated by Subset Simulation with random field covering 

3000 mm length and with random field covering 9000 mm length. The difference is less than 

10 %, which is smaller than the coefficient of variance of failure probability. Such differences 

can be regarded as minimal.  

 

Table 5.12 Comparison of failure probabilities by varying lengths of the random field and 

correlation lengths. 

Correlation length 3000 mm 9000 mm 

125 mm 5.20∙10-2 5.15∙10-2 

2000 mm 1.79∙10-2 1.65∙10-2 

 

The other factor that is checked is how the part covered by random field is correlated to the part 

represented by variable. The random variables R1 and R2 are correlated with the pitting factors 

Ri and Rj, via 
1| |ix x  and 2| |jx x  where ix  and jx  are the location of midpoint of the edge 

elements in zone 1, x1 and x2 are the representative location in zone 2. There are two bounds of 

the value of x1 and x2. In above reliability analyses, x1 and x2 is the location of the midpoint of 

the closest element to zone 1. The other bound of the value of x1 and x2 is the midpoint of the 

farthest element to zone 1. Table 7.7 compares the failure probability with two approach to 

correlate the two regions. The difference of the failure probability is also minimal 

 

Fig 5.11 Zone 1 and 2 along the continuous beam. 

Table 5.13 Comparison of correlation choices 

Correlation length Correlated to closest element Correlated to farthest element 

125 mm 5.20∙10-2 5.10∙10-2 

2000 mm 1.79∙10-2 1.51∙10-2 
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 Corrosion distribution on adjacent rebars 

6.1 Overview 
In the previous analysis in Chapter 5, the spatial variability of corrosion is assumed to exist 

along the length of the beam. The level of pitting corrosion is represented by pitting factors. 

Accordingly, the spatial variability is represented by a random field distributed in axial direction 

of the beam. The random field contains a set of variables that are set to the location of midpoint 

of each element. The variable stands for the pitting factor within the element. The values in the 

set of variables are different and thus the corrosion level varies along the axial of the beam (Fig 

6.1). 

 

Fig 6.1 Assumed pitting corrosion distribution (side view) 

 

Within the cross section, it was assumed that all bottom reinforcements in one element have the 

same pitting corrosion. However, such an assumption conflicts with the reality. The spatial 

variability not only exist along a single reinforcing bar, but also exist between adjacent 

reinforcing bars (Fig 6.2). Because the pits can occur at any location along reinforcing bars, the 

adjacent bars are likely to have pits at different locations. Also, the corrosion level could be 

different at adjacent bars. In order to reflect the spatial variability between adjacent bars, the 

pitting factor of adjacent bars should be represented by separate variables. 

 

Fig 6.2 Independent pitting corrosion distributed at adjacent bars (side view) 

6.2 Interference of pits  
The pitting corrosion not only varies along the reinforcing bars, but also differs between them. 

The disparities of localized pitting corrosion between the reinforcing bars may result in 

interference of the cracks due to mechanical loading. Kioumarsi et al. (2016) studied an 

idealized case to quantify the interference of localized pitting corrosion on adjacent rebars in 

an reinforced concrete beam subjected to bending. There were two adjacent rebars in the beam, 

each with one corrosion pit within the maximum bending zone (Fig 6.3). The two corrosion pits 

were equal in size. The influence of two variables on the ultimate bending moment resistance 

was quantified through nonlinear finite element analyses: the ratio of the distance between pits 

in two adjacent rebars to the distance between the rebars, lp/lr , and the ratio of the cross-section 

reduction of the rebar due to localized corrosion to the initial cross-section of rebar Apit/A0.  
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Fig 6.3 Bottom view of interference of pits (Kioumarsi et al., 2017) 

 

From the numerical simulations it was found that pits interference occurs within a critical 

distance between pits. Interference of localized corrosions reduces gradually for increasing 

distance between pits in two adjacent rebars. The interference of pits can be physical interpreted 

with the orientation and number of bending cracks. Coalescence of cracks can be observed with 

the occurrence of interference of pits. Kioumarsi et al. (2017) proposed to use a modified total 

residual cross-section of corroded tensile rebars in an analytical analysis of the strength of the 

cross-section: 

 res(mod) 0 uni pit int pit2 (2 )A A A A A     (6-1) 

 2

int 0.76( / ) 0.16( / ) 1p r p rl l l l      (6-2) 

Where (mod)resA is the modified total residual cross section of two rebars,
0A is the initial cross 

section of a rebar, uniA is the cross section reduction of a rebar due to uniform corrosion, pitA is 

the cross section reduction of a rebar due to pitting corrosion, and int reflects interference of 

the pits.  

 

Fig 6.4 Influence of interference of pits on bending capacity (Kioumarsi et al., 2017) 

6.3 Independent adjacent rebars 

Although the spatial variability of corrosion between adjacent bars are widely recognized, the 

correlation of corrosion between adjacent bars is never quantified. In order to estimate the 

influence of such spatial variability, the analysis is targeted on two bounds of the problem: fully 

dependency and total independency. Chapter 5 shows the results of a reliability analysis 

assuming fully dependency of corrosion between adjacent bars. In this section, the same 

reliability analysis is performed with the assumption of total independency between the 

adjacent bars. In reality, the pits could occur at different locations at adjacent bars (Fig 6.5(a)) 

and results in a certain degree of interference. In the following analyses, the pits at adjacent 

bars within an discretized element are modelled as totally ‘interferent’ ( int 1   ), and the 
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capacity of one bar in an element is modeled based on the deepest pit on the bar (Fig 6.5 (b)).  

 

(a)                        (b) 

 Fig 6.5 Modeling approach (example of a beam element containing two bars) 

 

In the previous section, there is one variable representing pitting factor applied to one element. 

All reinforcements within one element is assumed to have same pitting factor. In this section, 

there is one variable representing pitting factor applied to each reinforcement in the element. 

The reinforcements are assumed to have independent pitting factors. There are 11 random fields 

set to the 11 bottom reinforcements in the midspan region. Fig 6.6 shows a cross section view 

where the 11 bottom reinforcements have independent pitting corrosion. The finite element and 

random field discretization has element sizes of 300 mm. The random field covers the range of 

3000 mm length in axial direction at the midspan. In total, there are 110 variables used to 

represent the pitting factor in the random fields. Subset Simulation is performed with the same 

settings as in Chapter 5. The convergence criteria of Subset Simulation is COV (Pf) < 0.1. Each 

subset contains 1000 samples. The predefined intermediate failure probability is 0.1s. 

 

Fig 6.6 Cross section view of the independent pitting corrosion at adjacent bars 

 

Table 6.1Input parameters for reliability analysis 

Random variable Distribution Mean COV 

Pitting factor (Ri) Gumbel 8.05 for 300 mm element 0.149 

Steel yield strength (fsy) Lognormal 440 MPa 0.065 

Steel tensile strength (fsu) Lognormal 550 MPa 0.07 

Steel ultimate strain (εsu) Lognormal 0.08 0.09 

Live load for each point (Q) Gumbel 150 kN 0.1 

Deterministic term Value 

Concrete compressive strength (fcc) -51.2 MPa 

Top rebar area (total) (Ast) 7856 mm2 

Bottom rebar area (total) in midspan(Asm) 5400 mm2 

Bottom rebar area (total) in sidespan(Ass) 7364 mm2 

Self-weight (P) 30 kN/m 
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Four spatial correlation situations in the axial direction are considered. Subset Simulation is 

performed for a fully correlated pitting corrosion along the axial direction of the reinforcing 

bars and with correlation length of 500 mm, 1000 mm and 2000 mm. Table 6.2 presents the 

failure probabilities of the four reliability analyses. 

 

Table 6.2 Results of reliability analysis 

Correlation length Independent adjacent bars Fully correlated adjacent bars 

500 mm 7.73∙10-5 2.86∙10-2 

1000 mm 3.39∙10-5 2.22∙10-2 

2000 mm 2.58∙10-5 1.72∙10-2 

Fully correlated 2.27∙10-6 2.40∙10-3 

 

 

 
Fig 6.7 Failure probability with correlation length 

 

Compared to fully correlated pitting corrosion at adjacent bars, the independency causes a 

difference of failure probability near three order of magnitude. In order to estimate the 

reasonability of such large difference, a Sanity check is performed based on probabilistic theory. 

The reinforcing bars within one elements can be regarded as a parallel system. On the contrary 

of series system, the failure of parallel system does not depend on the weakest element. The 

parallel system can be further classified into ductile parallel system and brittle parallel system. 

For ductile parallel system, the element can remain the strength in the plastic stage and the 

capacity of the system is the ‘sum’ of the capacity of elements. For brittle system, the element 

lose strength after failure and the strength of the system depends on  1 2max ,( 1) ,..., nnS n S S , 

where
iS is the strength of element i and 1 2 ... nS S S   .  

        
(a)                                   (b) 

Fig 6.8 System of (a) the fully correlated rebars and (b) the fully independent rebars 

 

Correlation length (mm) 
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The reinforcing bar system is neither totally brittle or ductile. Before yielding stage, the system 

can be regarded as ductile, while after yielding, the system is brittle for reaching ultimate strain. 

In addition, the reinforcing bars do not reach to same strength simultaneously. For bars at same 

layer, they have same strain simultaneously but could develop different force. The yielding 

strength, ultimate strength, ultimate strain and area of the bars are all varied. In the Sanity check, 

the reinforcing bar system is simplified as a ductile parallel system. However, such 

simplification could introduce unjustified effects and are not advised for reliability assessment. 

For fully correlated reinforcing bars, one variable represent the pitting factor for all bars in one 

element. The resistance of one element is a function of the pitting factor of this element. The 

failure of the element under a certain load can be regarded as the value of pitting factor exceed 

a threshold xth. For fully independent reinforcing bar, each bar has a variable to represent pitting 

factor of this bar in the element. If the reinforcing bar system is simplified as a ductile parallel 

system, the resistance of the element can be approximated by a function of the averaged pitting 

factor of all bars in the element. The failure can be regarded as the average value of pitting 

factor of all bars exceed a threshold xth’. 

In both cases, the pitting factor of one reinforcing bar in an element is represented by variable 

R and is modeled with Gumbel distribution. 

For dependent reinforcing bars: ( ) 1 exp( exp( ( )))th thP R x x         (6-3) 

For independent reinforcing bars: ( ') 1 exp( exp( '( ' ')))th thP R x x       ,  (6-4) 

where R is the average value of pitting factor of all bars 
11

1

1

11
iR R  , and  ' , '  are 

Gumbel parameter of the distribution of R .The distribution of R is also Gumbel, however
11

1

1 1 ( )
( ) ( ) 11 ( )

11 11 11
i

R
R R R


          (6-5) 

Because 
6





  , 

( ) 1

' ( ) 11

R

R

 

 
    (6-6) 

First, a guess of the value of threshold xth and xth’: 

If ' ' 2th thx x        

 
2

( ) 2
6 6

thx
 

  


        (6-7) 

 
2 11

'( ' ') 11 2
6 6

thx
 

  


        (6-8) 

 

2
1 exp( exp( ))

( ) 6
366.6

( ') 2 11
1 exp( exp( ))

6

th

th

P R x

P R x





  


 


  

 (6-9) 

If ' ' 2.5th thx x       

 
2.5

( ) 2.5
6 6

thx
 

  


        (6-10) 
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2.5 11

'( ' ') 11 2.5
6 6

thx
 

  


        (6-11) 

 

2.5
1 exp( exp( ))

( ) 6
1648.8

( ') 2.5 11
1 exp( exp( ))

6

th

th

P R x

P R x





  


 


  

 (6-12) 

The simulation result is: 
3

f

6

f

2.40 10
1057.3

' 2.27 10

P

P






 


. ' ' 2.5th thx x      is a more close 

guess. 

Assume ' ' 2.5th thx x      and the design value of other four variables are near the mean 

value, for the dependent reinforcing bars: 

 4 4 3

f

2.5
0.5 ( ) 0.5 (1 exp( exp( ))) 2.48 10

6
thP R x P

            (6-13) 

The Sanity check suggests the order of magnitude of the difference between reliability analysis 

of fully correlated rebars and total independent rebars is reasonable. The methods and 

assumptions used in the sanity check is not advised to be used in a reliability assessment of 

independent rebars.  

Although the failure probability of independent rebars are much lower, the trend of the change 

of failure probability with correlation length remains. As the correlation length increase, the 

failure probability decrease. The spatial variability of corrosion in adjacent bars do not change 

the influence of the spatial variability of corrosion in axial direction in the reinforcements. In 

conclusion: 

(1) Correlation of adjacent bars decrease the spatial variability of pitting corrosion in the 

transverse direction. 

(2) Large correlation length of random field increase the spatial correlation at different locations 

and decrease the spatial variability of pitting corrosion in the axial direction. 

(3) High spatial variability of corrosion in axial direction increase the failure probability of the 

structure while high spatial variability of corrosion in transverse direction decrease the failure 

probability of the structure. 

6.4 Corroded external layer with sound internal layer 
All above analysis are based on assumption that all 11 bottom reinforcements suffer from pitting 

corrosion (Fig 6.9(a)). However, often the outer layers of the reinforcements are more severely 

corroded than the internal layers. Assuming all bottom reinforcements have same chance of 

getting corroded is a conservative assumption and results in an upper bound of the failure 

probability of the structure. On the contrary, assuming only external rebars are corroded results 

is a lower bound of the failure probability of the structure in the case study. The previous 

reliability analysis only target on the upper bound. In order to estimate the lower bound of the 

failure probability, the reliability analysis is performed with assumption that only the outer layer 

of reinforcements are corroded (Fig 6.9 (b)). 
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(a)                           (b) 

Fig 6.9 Corrosion only at external layer and corrosion at all bottom reinforcements  

 

The probabilistic inputs and settings of reliability analysis are the same. Subset Simulation is 

performed with correlation length of 125 mm, 250 mm, 500 mm, 1000 mm and 2000 mm, 

assuming fully correlation between adjacent bars. The discretization is for area outside the 

random field the element length is 300 mm and for area inside the random field the element 

length is 125 mm. The random field covers 3000 mm length at the midspan. The results are 

listed in Table 6.3 and are plotted in Fig 6.10. As expected, the failure probability is smaller for 

approximately one order of magnitude. 

 

Table 6.3 Comparison of failure probability for fully correlated bars 

Correlation length All corroded External layer corroded 

125 mm 5.20∙10-2 4.86∙10-3 

250 mm 4.37∙10-2 2.68∙10-3 

500 mm 2.89∙10-2 2.53∙10-3 

1000 mm 2.43∙10-2 1.23∙10-3 

 2000 mm 1.79∙10-2 9.02∙10-4 

 

 
Fig 6.10 Failure probability with correlation length for fully correlated bars 

 

Same reliability analysis is performed with correlation length of 500 mm, 1000 mm and 2000 

mm, assuming fully independency between adjacent bars. The discretization is 300 mm element 

length for the entire beam. The results are listed in Table 6.4 and are plotted in Fig 6.11. The 

failure probability is also smaller for approximately one order of magnitude, which corresponds 

to the above analysis. 
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Table 6.4 Comparison of failure probability for independent bars 

Correlation length All corroded External layer corroded 

500 mm 7.73∙10-5 5.85∙10-6 

1000 mm 3.39∙10-5 5.57∙10-6 

2000 mm 2.58∙10-5 2.12∙10-6 

 

 

Fig 6.11 Failure probability with correlation length for independent bars 

 

For both the case of fully correlated adjacent bars and fully independent adjacent bars, the 

situation with only external bars corroded shows lower failure probability. Also, in all the 

situations, the trend of larger correlation length resulting in lower failure probability remains.  
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 Uncertainty of the bond model  

As mentioned in Chapter 2 and 3, the probabilistic models for corroded RC structures such as 

quantified model uncertainties are not well founded. The analyses in Chapter 4, Chapter 5 and 

Chapter 6 do not take account the model uncertainties. This chapter is aimed at giving 

suggestions of the quantifications of model uncertainties for corroded RC structures and explore 

the influences on a simple case.  

 

One of the corrosion damages is degradation of bond. Degradation of bond is not practicable to 

measure on site and affects anchorage capacity and composite interactions which leads to loss 

of ultimate strength or ductility of the concrete structures. Many researchers have studied the 

bond behaviour of corroded reinforcement and empirical models have also been proposed for 

predicting the bond strength of corroded reinforcement (Al-Sulaimani et al. (1990); Rodriguez 

et al. (1994); Cabrera (1996); Stanish et al. (1999); Coronelli (2002); Chung et al. (2004)). All 

the models are not expressed in probabilistic term, in spite that the reviews of test data 

(Bhargava et al. (2008); Mancini and Tondolo (2014)) reveal considerable uncertainty. Thus the 

quantification of uncertainty in empirical models is necessary.  

 

In this chapter, the uncertainty of bond model is quantified, which can be also used to quantify 

uncertainties for other models of corrosion damage. Meanwhile, the coupled probabilistic finite 

element analysis scheme is used to propagation the uncertainty of bond model into reliability 

analysis of a simply supported RC beam.  

7.1 Empirical bond model for corroded reinforcement 
Bhargava et al. (2008) reviewed experimental data from a wide range of bending tests and pull-

out specimen tests and proposed an empirical model to describe the progressive bond 

degradation for concrete specimens without stirrups. The model has three advantages: 

a) The model is presented in the normalized form to take care of the varied primitive bond 

strength due to differences in strength of concrete, type of reinforcements and confinement 

conditions.  

b) The model is in exponential format, which is capable to capture the nonlinearity when 

corrosion level changes from low to high. 

c) The model separately takes account for flexural testing and pull-out testing, which prevents 

obstructions caused by large variety between test methods. 

 

The uncertainty quantification and propagation is target on the model derived from flexural 

testing. For the model derived from pull-out testing, similar procedure can be applied. Based 

on the experimental data obtained from bending tests, the bond strength reduction is described 

by: 

    

 fb 0.198

1.0 if 1.5%
( )

1.346 e otherwise

  
X

R X
X




 


 (7-1) 

In these equations, X is the corrosion level defined as the loss of weight of reinforcing bar due 



61 

  

to corrosion expressed as a percentage of the original bar weight, and Rfb is defined as the 

ratio of bond strength at X to the original bond strength for the uncorroded specimen. 

7.2 Uncertainty quantification for the bond model 
The bond model uncertainty is quantified using experimental data – collected in Bhargava et al. 

(2008) – on corroded, reinforcing bars embedded in concrete flexural members. The  

probabilistic model proposed satisfies the following requirements: 

 

a) Its functional form follows that of the Bhargava model. 

b) Respects the physically possible range of R (non-negative). 

c) Has a relatively constant standard deviation along x (homoscedasticity).  

This is a typical assumption in statistics and allows for a reasonable extrapolation outside of 

the data range that is often needed in structural reliability. This assumption is not driven by data 

but for the sake of convenience. 

 

The mathematical structure of the model proposed by Bhargava et al. (2008) is used as the basis 

of the uncertainty quantification. In a parametric form: 

 
th

fb

th

1 0
( )

b X

X X
R X

a e X X

 
 

 
 (7-2) 

Where 𝑎, 𝑏, and Xth are the model parameters.  

 

The continuity requirement at Xth makes these parameters dependent, hence only two of them 

are free. Compared to the model proposed by Bhargava et al., the enforcement of R(X)=1 before 

corrosion reaching the critical level Xth is kept to follow the widely accepted suggestion that 

bond strength of corroded structures should not be higher of the sound ones in structural 

assessment (fib, 2000). However, the value of crtical level Xth needs to be determined by a new 

fitting. It is because the value of Xth in Bhargava et al. is determined by pre-knowledge from 

experience rather than from analysis of the data. The bond model uncertainty is introduced as 

an explicit model uncertainty term in the form of a random variable. To ensure the non-

negativity of R, the model uncertainty term is added in the log space: 

  fb' ( ) exp log ( )R X R X E      (7-3) 

Where the accent is indicating that model uncertainty is included and E is a random variable 

that is distributed as: 

 
 

E,0 th

2

th

(0, ) 0
~

0, ( )

X X
E

c x d X X

  


  

  (7-4) 

E is normally distributed in the log space, centered at zero and its standard deviation varies 

quadratically in log space, in the X>Xth range. σE,0is the standard deviation in the 0≤ X ≤ Xth 

range. Equations (2)-(4) constitute the proposed probabilistic model, apparently it has six 

parameters [𝑎, 𝑏, Xth, 𝑐,d, σE,0]  out of which only four are independent (free) if we want to 

ensure the continuity (C0) of R and the standard deviation of the model uncertainty as well. So 

the original, two-parameter, deterministic model is enriched by additional two to account for 

model uncertainty. 
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Before fitting the probabilistic model, a simplified analysis is made by the least square fitting 

without considering model uncertainty. The two-parameter model is fitted (in the least square 

sense) to different subsets of the available experimental data. The fitted models along with the 

Bhargava model are compared in Fig 7.1. It is salient that the fit which uses data only from 

Chung et al. (2004) agrees the best with the Bhargava model. The data form Al-Sulaimani et al, 

(1990) mainly lay in the range of where bond strength could be increased by low level of 

corrosion and contribute little to the fitting of bond degradation stage. The data from Al-

Sulaimani et al. (1990) is far off from the bulk of other experimental results and only contains 

four measurements, which is not a proper data resource from the statistic view. As a result. The 

data from Chuang el al. (2004) is selected to be the data source in further fitting and analyses. 

This decision is expected to have a small influence in the descending part and can be easily 

revised in the future if needed. Moreover, using a different subset of data is not expected to 

change the results qualitatively or their order of magnitude. 

 

 
 

Fig 7.1 Experimental data of normalized bond strength and fitted models. A: Chung et al. 

(2004); B: Stanish et al. (1999); C: Al-Sulaimani et al. (1990); D: Bhargava et al. (2008). 

 

The probabilistic bond model is fitted to Chung et al. (2004). To ensure requirement c), 

parameter 𝑐 is fixed to meet the relatively constant standard deviation along the x axis. This is 

deemed to an acceptable approximation in the current context and considering the degree of 

accuracy the nature of the problem allows. The remaining three parameters are estimated using 

the maximum likelihood method. Maximum likelihood method is to determine the unknown 

parameters in the probability distribution of the events by maximizing the probability of getting 

a certain realization of the events (the measurements). The least square fit is equivalent to a 

maximum likelihood fit with an additive, normally distributed model error in the original 

(physical) space. The estimated parameters are summarized in Table 7.1. The models should 

not be used outside of the [0, 16%] interval. The fitted model is visualized in Fig 7.2 with a 70% 

confidence band. 
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Table 7.1 Summary of the considered bond strength reduction models. 

Bond model 𝑎 𝑏 Xth[%] σE,0 𝑐 d 

Bhargava model, (1). 1.35 -0.198 1.50 NA NA NA 

Deterministic, (2). 

least square fit 
1.54 -0.216 2.00† NA NA NA 

Probabilistic, (2) - (4) 

maximum likelihood fit 
1.55 -0.219 2.00† 0.143 0.004§ -3.99‡ 

† uniquely determined by 𝑎 and 𝑏. 

‡ uniquely determined by 𝑎, 𝑏 , 𝑐, and σE,0. 

§ Fixed (not the outcome of the maximum likelihood fit) to impose the prior knowledge we have on the 

mechanical problem and to ensure a relatively constant uncertainty band in the original space. 

  
 

Fig 7.2 Data of normalized bond strength and fitted model with a 70% confidence band. 

7.3 Case study : Uncertainty propagation  

7.3.1 Simply supported beam with lap splices 

To estimate the importance of the uncertainty of the bond model, a reliability assessment of an 

illustrative example is completed with a fully probabilistic approach. The reliability 

calculations concern ultimate limit state verifications, using non-linear finite element analysis. 

 

The illustrative example is adopted from an experiment of beams with tension lap splices in the 

central region. Details of the experiment are described by Pantazopoulou et al. (2017). Fifteen 

beams were first subjected to different chloride contents in the lap region and different levels 

of bar section loss and cover cracking were obtained. Subsequently, the corroded beams and 

nine uncorroded control specimens were tested under four-point loading (see Fig 7.3), such that 

the corroded lap splice zones were placed in tension. To prevent corrosion outside the overlap 

region and premature shear failure, the beams were wrapped with fiber outside the constant 

moment region. 

 

In the experiment, the mean value of cylinder compressive strength of concrete is determined 

as 42 MPa (A-series) and 45 MPa (B-series) at the time of testing. Four different spliced lengths, 

as 70 mm, 210 mm, 420 mm and 630 mm are considered. The reliability assessment in this 
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article only concerns the specimen with a spliced length of 630 mm and a mean cylinder 

concrete compressive strength of 42 MPa. With the exception of a few bar ruptures at pitted 

locations (B-series with 630 spliced length), the other specimens failed in the lap splice zone 

after extensive cracking and spalling of cover. The control specimen with lap length of 630 mm 

was sufficient to develop the reinforcement ultimate strength beyond yielding. Corroded 

specimens underwent slip along the lap early on and bond strength was seriously reduced by 

corrosion, converting the mechanism of failure from ductile to brittle.  

 

 
 

Fig 7.3 Layout overview of the beam. 

 

7.3.2 Finite element model 

The nonlinear finite element analysis (NLFEA) is performed with OpenSees (2016). The 

concrete is modelled with 88 beam elements, using a multilinear diagram that approximates an 

ideal plastic stress-strain diagram in compression and an exponential softening diagram in 

tension. The beam element is defined as displacement beam element with fiber section.  

 
(a) Displacement beam element with fiber section     (b) Two-node link 

 
 

 

 

(c) Assemble of the elements  

 

Fig 7.4 Elements used in numerical simulations. 

 



65 

  

 

Fig 7.5 Material properties used in the numerical simulation. 

 

Reinforcements are modeled with truss elements, adopting a bilinear stress-strain curve with 

hardening. The nodes in concrete at the location of reinforcement are connected with the nodes 

at the location of beam center with two-node link elements, of which stiffness is set to form a 

rigid connection. The bond behavior is modelled by two-node link elements, which connect the 

nodes in concrete and nodes in reinforcement at the very same location. The stiffness and 

strength of the bond interface is modeled with multilinear diagram suggested in the Model Code 

2010 (fib, 2012). Fig 7.4 and Fig 7.5 demonstrate the finite element model and adopted material 

properties.  

 

The loads are applied with two phases: for self-weight, the distributed load is applied with 10 

equal steps with load control; for point load, displacement control is used with 0.005 mm per 

step. Krylov-Newton algorithm (Scott, 2010) is used with displacement convergence criteria of 

0.001. Krylov-Newton algorithm is an accelerated Newton algorithm based on Krylov 

subspaces. The algorithm uses a low-rank least-squares analysis to advance the search for 

equilibrium at the degrees of freedom where the largest changes in structural state occur; then 

it corrects for smaller changes at the remaining degrees of freedom using a modified Newton 

computation.  

 

The nonlinear finite element model is tested with given bond strength of 3.9 MPa (0 % section 

loss), 3.2 MPa (6.45 % section loss) and 3.0 MPa (9.77 % section loss) to compare with the 

experimental results. Fig 7.6 shows the comparison between numerical simulations and 

experimental tests. The ultimate load capacity shows a good consistency. The finite element 

analysis also shows the structure lose ductility with insufficient bond, which was observed by 

the experiment. Although no loss of stiffness before failure was shown by the corroded 

specimens in experiment, the simulation is sufficient to capture the decrease of ultimate strength 

and lose of ductility due to corrosion.  

 

(a) beam element (concrete) 
 

(b) truss element (reinforcement) 
 

(c) zero length spring (bond). 
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Fig 7.6 Load-deflection curves from numerical simulations and experimental tests. 

 

7.3.3 Reliability analysis 

The reliability analysis targets on ultimate limit state, where external load – the point load Q – 

reaches the resistance capacity R(X-Q) of the structure. When the limit state function 𝐺(𝑿) =

𝑅(𝑿 −𝑄  ) − 𝑄 < 0, the structure is defined as failed. The probabilistic models are based on the 

recommendations in the Probabilistic Model Code (JCSS, 2000) and fib bulletin 80 (fib, 2010). 

Table 7.2 summarizes the probabilistic models for inputs. In case of mean value of the concrete 

compressive strength, steel yield strength and steel tensile strength, direct measurements are 

available from the experimental report and so the measured value are used in reliability analysis. 

Corrosion is represented with the average cross section loss of bar. Severe corrosion (mean 

value 7 % for average section loss) is assumed, where the failure caused by insufficient bond 

strength (bond fails before yielding of reinforcements). Standard deviation of average section 

loss is assumed to be 0.1, which is a reasonable value in reality. Standard deviation of the model 

uncertainty term is 0.483, which corresponds to the 7 % section loss according to equation (4). 

Because the specimen does not have realistic/practical structural dimensions, the value of live 

load is chosen such that with the reliability index will be close to the target reliability index 3.1 

(for low failure consequence in ULS). 

 

Table 7.2  Probabilistic models for inputs. 

Random variable Distribution Mean COV 

Concrete compressive strength (fcc) Lognormal 42 MPa 0.15 

Steel yield strength (fsy) Lognormal 560 MPa 0.05 

Steel tensile strength (fsu) Lognormal 660 MPa 0.06 

Steel ultimate strain (εsu) Lognormal 0.05 0.09 

Cross section loss (X) Normal 7 % 0.1 

Model uncertainty for bond reduction 

(E) 

Normal 0 see (4) 

Self-weight (P) Normal 1500 N/m 0.04 

Live load (Q) Normal 45000 N 0.1 

 

 

The yield strength, ultimate tensile strength and ultimate strain of the reinforcing bars are all 

treated as random variables, which are independent from each other. For the concrete material, 

the compressive strength is the only random variable. The tensile strength, bond strength of 

 

 

FEM τmax=3.9 MPa 

FEM τmax=3.2 MPa 

FEM τmax=3.0 MPa 

Experiment τmax=3.2 MPa 

Experiment τmax=3.9 MPa 

Experiment τmax=3.0 MPa 

Midspan Deflection (mm) 
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uncorroded structures, fracture energy and Young’s modulus are derived from the value of 

compressive strength according to the relations in Model Code 2010 (fib, 2012):  

  

Two reliability assessments are compared here: (i) including the model uncertainty E of the 

bond model for corroded reinforcement; and (ii) without this model uncertainty E. Both 

reliability calculations are performed with an adaptive response surface reliability method, 

Adaptive Directional Importance Sampling (ADIS) (Grooteman, 2011). The ADIS algorithm is 

based on a directional simulation scheme. In a directional simulation scheme, only the 

important directions are sampled exactly and the other directions are sampled with a response 

surface approach. These most important directions are determined by a β-sphere enclosing the 

most important part(s) of the limit state. The β-sphere and response surface are constantly 

updated during sampling. From the exact evaluations information becomes available to make 

the scheme adaptive. The ADIS method has been demonstrated as highly efficient, accurate and 

robust with a low probability of failure and medium number (up to about 40) of variables.  

 

The approximate design point from the result of ADIS is subsequently verified by importance 

sampling, using exact evaluation of limit state. Table 7.3 presents the main results of the two 

reliability calculations in terms of probability of failure Pf, reliability index β, and the number 

of NLFEA calls. These results reveal that the neglect of uncertainties in the bond models for 

corroded reinforcement considerably influences the failure probability, changing an order of 

magnitude from 3.17∙10-3 to 2.69∙10-4. If the target reliability index is chosen as 5.3 (low failure 

consequence in ULS), then including the bond model uncertainty results in a unsafe conclusion, 

while neglecting the bond model uncertainty results in a safe conclusion. 

 

Table 7.3  ADIS, importance sampling and FORM results. 

 With model uncertainty Without model uncertainty 

ADIS Results   

 Number of NLFEA calls 175 199 

 Probability of failure Pf 3.17∙10-3 2.69∙10-4 

 Reliability index β 2.73 3.46 

 Convergence criteria for Pf 0.1 0.1 

IS Results   

 Number of NLFEA calls 1780 6200 

 Probability of failure Pf 4.60∙10-3 3.38∙10-4 

 Reliability index β 2.60 3.37 

 Convergence criteria for Pf 0.1 0.1 

FORM Results α Design point α Design point 

 Concrete compressive strength (fcc) -0.53 34.03 MPa -0.49 32.38 MPa 

 Steel yield strength (fsy) 0.02 560.5 MPa 0.001 559.4 MPa 

 Steel tensile strength (fsu) -0.01 657.8 MPa -0.03 654.7 MPa 

 Steel ultimate strain (εsu) 0.03 0.0502 0.015 0.0500 

 Cross section loss (X) 0.40 8.24 % 0.76 10.86 % 

 Model uncertainty for bond reduction 

(E) 

-0.60 -0.7223 -- -- 

 Self-weight (P) 0.02 1503 N/m 0.006 1485 N/m 

 Live load (Q) 0.44 49962 N 0.42 51018 N 

 

Table 7.3 also includes a first order reliability method (FORM) analysis using the response 

surface generated by ADIS, where approximate sensitivity factors are obtained. The sensitivity 

factors suggest that the relative importance of variables changes when uncertainty of bond 



68 

  

degradation model is taken into account. The major change is the importance of the corrosion 

level X (expressed by average section loss) reduced while additional importance of the model 

uncertainty term raised. The sensitivity factors correspond to the expectation of the physical 

problem, which also confirms the reasonability of the generated response surface.  

7.4 Discussion 
This chapter studies the effect of the prevalently neglected bond strength model uncertainty on 

corroded reinforced concrete structures. First, the uncertainty is quantified: a probabilistic bond 

strength reduction model is fitted to experimental data on corroded, reinforcing bars embedded 

in concrete members under flexure. Then, the uncertainty is propagated to structural reliability 

using an illustrative example – a simply supported beam with lap splices – with and without 

bond model uncertainty. 

 

It is shown that the inclusion of bond model uncertainty increases the calculated failure 

probability by an order of magnitude. This indicates the importance of bond model uncertainty 

in the assessment of concrete structures affected by reinforcement corrosion. The large change 

in calculated failure probability is validated for the illustrative example in the present chapter. 

In reality, the influence of bond strength on global reliability of a structure may varies, 

depending on whether bond is the dominant component of the structure and whether its model 

uncertainty can be well controlled. However, the force transferred between concrete and steel 

should be verified in any cases before the assessment of other potential failures. In the 

verification of bond strength of corroded reinforcement, its uncertainty is advised to be taken 

into account.  
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  Conclusion and recommendation 

8.1 Conclusion 
The thesis fills the knowledge gap of probabilistic nonlinear finite element analysis of 

reinforced concrete structures with spatial varied corrosion and shows the effects of spatial 

variability of corrosion. A computational scheme to couple reliability analysis with finite 

element analysis is designed. With this scheme, nonlinear structural behavior and response of 

static indeterminate structures can be captured in the limit state function for reliability analysis. 

Model uncertainty of the bond property of corroded reinforcement is quantified, which can 

facilitate the reliability analysis of corroded reinforced concrete structures. 

 

The research question of this research is: 

 

What are the effects of the spatial variability of corrosion on the reliability of reinforced 

concrete structures?   

 

A series analyses is conducted for the case study to answer the research question. First, finite 

element analysis is performed to study the mechanics characteristic. Then, reliability analysis 

without spatial variability is performed to determine the important variables. Third, reliability 

analyses with random field are performed to study the effect of spatial variability of corrosion. 

Finally, extra reliability analysis with random field is performed to check the influence of some 

assumptions. The following conclusions are drawn based on the analyses: 

 

(1) When corrosion develops, pitting corrosion can severely reduce resistance of the structure 

and very localized damages can lead to a brittle structural response of the statically 

indeterminate structure. For the case study when corrosion has initiated for 50 years, the 

localized damage at the most sensitive location could reduce the structural capacity of 

approximately 20 % compared to the same level uniform damage.  

 

(2) In the case study, high spatial variability of corrosion in axial direction of the beam increase 

the failure probability of the beam. Compared to fully spatial correlated corrosion (infinite long 

correlation length), the spatial varied corrosion with 125 mm correlation length increase the 

failure probability for approximately 20 times. This result is the collective effect of the 

probabilistic characteristic of a series system and the physical characteristic of static 

indeterminate structure. 

 

(3) In the case study, high spatial variability of corrosion in transverse direction of the beam 

decrease the failure probability of the beam. Compared to fully correlated adjacent bars, the 

totally independent adjacent bars decrease the failure probability for approximately 1000 times. 

This result is caused by the probabilistic characteristic of a parallel system. 

 

(4) If only external layer of reinforcements are corroded, the failure probability would be 
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decreased, but the above conclusions are still valid. The value of failure probability and the 

quantified effect of spatial variability of corrosion would change in terms of different level of 

corrosion. The qualitative effect of spatial variability of corrosion is not determined by the 

corrosion level. 

 

In addition to answer the research question, there are two other findings in the thesis: 

(1) The model of bond property of corroded reinforcement contains considerable model 

uncertainty which may have significant influence on the global reliability of corroded 

reinforced concrete structure. The quantified influence may varies according to the specific 

structures, but can be as large as one order of magnitude.  

 

(2) Reliability method with evaluation of approximated limit state (surrogate modelling of the 

exact results) is effective in computation compared to reliability method with evaluation of 

exact limit state (exact results of nonlinear finite element analysis). However, the surrogate 

modelling methods are not robust to capture nonlinear performance function. The surrogate 

models used in for the case study are either unable to capture irregular nonlinear functions or 

too sensitive to small fluctuation of the performance function. 

8.2 Recommendations 
The analysis of the case study reveals the considerable effect of spatial variability of corrosion 

on structural reliability. However, the study of spatial variability of corrosion is far from 

thorough. For example, there are rare measurements of the spatial distribution of corrosion and 

little existing data of the correlation of corrosion along reinforcement or between adjacent bars. 

In the current guideline of assessment of existing structures, whether with full probabilistic 

method or semi probabilistic method, the spatial variability of corrosion is not carefully 

involved. In addition, the probabilistic models for corroded reinforced concrete structures are 

not yet well founded and the probabilistic approaches to solve high dimensional reliability 

problem are not well developed. Therefore, the following research topics are recommended for 

further study. 

 

To provide reliable input data for study of spatial variability of corrosion: 

(1) Measurements of the spatial variability of corrosion in reinforced concrete structures.  

(2) Quantification the spatial correlation of corrosion in probabilistic format. 

 

To further study the influence of spatial variability of corrosion on different types of structures 

and with different level/type of corrosion: 

(3) Reliability analysis of corroded reinforced concrete structures involving the spatial 

variability of corrosion  

(4) Quantification of the uncertainties in structural verifications of corroded reinforced concrete 

structures in probabilistic format. 

 

To facilitate reliability assessment of corroded reinforced concrete in practice and improve the 

efficiency of computation: 

(5) Development of semi-probabilistic methods to equivalent the influence of spatial variability 

of corrosion in reliability analysis.  
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(6) Improvement of the performance of surrogate modelling approaches to robustly capture 

nonlinear performance function.  
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Annex 

Usage of the computational framework  
The framework starts with the definition of the inputs. These inputs include: name of variables, 

probabilistic distribution of variables (i.e. distribution type, mean value and standard deviation), 

information of finite element mesh, and correlation length. Furthermore, the input contains 

settings, such as the chosen reliability method, convergence criteria, etc. Fig (i) shows how the 

inputs are defined in MATLAB. 

 

(a) Structure of the inputs 

 

(b) Name of the variables 

 

(c) Probabilistic distribution of the variables 

 

(d) Correlation matrix of the variables 

Fig (i) Inputs of the program 
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Before the analysis, the finite element model and analysis settings should be specified. The 

MATLAB code for finite element model generation should be modified accordingly if 

necessary. All the inputs, including name of the variables, probabilistic distribution of variables, 

field discretization (default setting is the same as finite element discretization) and correlation 

length, should be specified in the main code as required by the template. The toolboxes used 

for reliability analyses in this thesis are FERUM and UQLAB. For each toolbox, there are 

templates for reliability method settings. The methods and settings should be specified before 

all analysis. Fig (ii) shows examples of settings of the methods. 

 

(a) Settings for the FORM (FERUM toolbox) 

 

(b) Settings for the Subset Simulation (UQLAB toolbox) 

Fig (ii) Settings for reliability methods 

 

With the application of methods available in the toolboxes, the outputs should be interpreted in 

terms of convergence, physical meanings and calculation efficiency. First, information of 

convergence is available in the outputs of all methods and can be compared with an acceptable 

criterion. For FORM and SORM, the convergence criteria are based on the closeness to the 

limit state and the vector point from origin to the design point in the standard Gaussian space. 

For simulation approaches, the convergence criteria are based on the coefficient variation of the 

failure probability. For analysis with response surface, additional convergence criteria for the 

formation of response surface is also necessary. 

 

In addition to the convergence criteria, the reliability analysis results should correspond to the 

physical domain of the problem. For example, the sensitivity factor and design point obtained 

from the FORM analysis can be used to interpret a physical problem and the values should have 

valid physical meanings. The third important criterion is to judge the efficiency of the 

calculation: the number of the exact evaluation of performance function. With same accuracy 

of the failure probability, the calculation is more efficient if fewer exact performance function 

evaluations are performed. 
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Algorithm of reliability methods  
The FORM approach contains three steps: 

(1) An isoprobabilistic transformation of the input random vector ( )XX f x   into a space 

spanned by independent standard normal variables (0, )MU N I . Nataf transformation is used 

in this work. 

(2) A search for the most likely failure point in the standard normal space, known as the design 

point u*. Finding the coordinates of the U* consists solving the following constrained 

optimization problem:  * argmin || || ( ( ), ) ( , ) 0g gU U g x U G U     

(3) A linearization of the limit-state surface at the design point u* and the analytical computation 

of the resulting integral that is an approximation of Pf . 

 

The subset simulation algorithm can be summarized in the following steps: 

(1) Sample the original space with standard MC sampling. 

(2) Calculate the empirical quantile tk in the current subset such that
0kP P    

(3) Use the samples below the identified quantile as the seeds of parallel MCMC chains, sample 

1 |k kD D
 until a predetermined number of samples is available. 

(4) Repeat Steps 2 and 3 until the identified quantile tm < 0 

(5) Calculate the failure probability of the last subset Pm by setting tm = 0 

(6) Combine the intermediate calculated failure probabilities into the final estimate of Pf. 

 

The adaptive experimental design algorithm for Kriging based Monte-Carlo simulation is 

summarized as follows: 

(1) Generate a small initial experimental design  0( )(1) ,...,
N

X x x and evaluate the 

corresponding limit-state function responses    0 0( ) ( )(1) (1),..., ( ),..., ( )
N N

Y y y g x g x   

(2) Train a Kriging metamodel ĝ based on the experimental design  ,X Y  

(3) Generate a large set of NMC candidate samples  ( )(1) ,..., MCN
S s s and predict the 

corresponding metamodel responses  0( )(1)ˆ ˆ( ),..., ( )
N

g s g s  

 

The algorithm of polynomial response surface based adaptive importance sampling follows the 

steps: 

(1) An isoprobabilistic transform of the input random vector ( )XX f x  into a standard normal 

vector (0, )MU N I  

(2) A number of directional simulations are pre-sampled. 

(3) The obtained performance function information is used to construct a response surface (RS) 

and is used to determine a threshold β-sphere βth. 

(4) If an important direction is sampled having an (approximated) distance to the limit-state 

lying within the threshold β-sphere, then this direction is re-evaluated using exact g-function 

evaluations. 

(5) After each directional simulation the convergence is checked. At convergence, it is checked 

whether new exact g-function evaluations have performed resulting in an update of the response 

surface and threshold β-sphere. 

 


