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Abstract—Memristor-based computation-in-memory (CIM)
can achieve high energy efficiency by processing the data within
the memory, which makes it well-suited for applications like
neural networks. However, memristors suffer from conductance
variation problem where their programmed conductance values
deviate from the desired values. Such variations lead to com-
putational errors that result in degraded inference accuracy
in CIM-based neural networks. In this paper, we present a
mapping-aware biased training methodology to mitigate the
impact of conductance variation on CIM-based neural networks.
We first determine which conductance states of the memristor
are inherently more immune to variation. The neural network is
then trained under the constraint that important weights can only
take numeric values which directly get mapped to such favorable
states. Simulation results show that our proposed mapping-aware
biased training achieves up to 2.4 x hardware accuracy compared
to the conventional training.

I. INTRODUCTION

Neural networks perform various cognitive tasks without
explicit programming, making them the heart of modern arti-
ficial intelligence (AI) [1]. These networks are conventionally
deployed on von-Neumann architecture-based hardware like
CPUs, GPUs, and ASICs for AI such as TPUs [2]-[4]. The
physical separation of memory and computing units in such
hardware results in low energy efficiency due to memory
wall [S]-[7]. Computation-in-memory (CIM) can overcome
this problem by performing computations within the mem-
ory [8]-[10]. It uses emerging non-volatile memory technolo-
gies such as memristors, also called resistive random access
memories (RRAMs), which are highly scalable and compatible
with CMOS technology [11]. However, memristors suffer
from conductance variation problem where their programmed
conductance deviates from the target value, due to fabrication
imperfections and stochastic device physics [12]. This leads
to an undesired change in the neural network weights stored
as memristor conductances, resulting in low accuracy.

Prior works addressing the conductance variation issue in
CIM-based neural networks can be grouped into four cate-
gories: i) on-chip training, ii) off-chip training or mapping
based on hardware characterization, iii) hardware compensa-
tion, and iv) write-verify programming. First, on-chip training
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inherently adapts the weights to conductance variation as the
network is trained on the CIM chip [13], [14]. However, it
is not scalable due to individual training necessity for each
chip, high energy consumption, and endurance issues. Second,
off-chip training using a hardware-calibrated software model
of conductance variation [15], [16] is also not scalable, as
each chip requires individual characterization and training.
Moreover, some works [17], [18] prevent large weights from
mapping to high variation memristors. This requires extensive
chip characterization and does not address errors due to the
accumulation of variations in small weights. Alternatively,
noise estimated from a non-extensive chip characterization can
be injected in off-chip training [19]-[24] to enhance the net-
work’s tolerance towards errors due to conductance variation.
However, this approach fails to address the issue of reducing
such errors, as memristors can still get mapped to high
variation conductance states, rendering it ineffective. Last,
the hardware compensation and write-verify programming
involve significant energy and area overheads with increased
design complexity [25]-[28]. Hence, there is a strong need for
an effective, scalable, and low-overhead solution to mitigate
conductance variation impact on CIM-based neural networks.
In this paper, we present a mapping-aware biased training
methodology to improve the accuracy of CIM-based neural
networks in the presence of conductance variation. We first
identify memristor conductance states with low variation im-
pact (favorable states). We then derive a favorability constraint
that only allows weight values that map to these favorable
states. During training, we determine which weights are im-
portant for CIM hardware accuracy and impose the favorability
constraint on them. The resulting post-training values of
these important weights then directly map to favorable states,
leading to high inference accuracy on CIM hardware. The key
contributions of this paper can be summarized as follows:

« A favorability constraint analysis to find the weight values
desirable for reducing conductance variation errors.

e An approach to identify the important weights which
significantly influence the hardware accuracy.

o A mapping-aware biased training with favorability con-
straint on important weights for high hardware accuracy.

The proposed training methodology is effective and scalable,
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Fig. 1. Vector-matrix multiplication using memristor-based CIM.

as it does not require extensive chip characterization and relies
only on the order of conductance states based on their variation
impact. It achieves up to 2.4x hardware accuracy compared
to conventional training, without any hardware overhead.
The rest of this paper is organized as follows: Section II
presents the basics of CIM. The details of the proposed
training methodology are described in Section III, followed by
simulation results in Section IV and conclusion in Section V.

II. BACKGROUND
A. Computation-In-Memory Architecture for Neural Networks

Computation-in-memory (CIM) hardware provides energy-
efficient inference for software-trained neural networks. It
achieves this by in-situ vector-matrix multiplication as shown
in Fig. 1. The full-precision weights and inputs are split into
smaller slices as i) bit-capacity of memristors is insufficient
for weights and ii) full-precision inputs need digital-to-analog
converters (DACs) and analog-to-digital converters (ADCs)
which consume huge energy and area [29]. Weight slices are
mapped to memristor conductances (G’s) and input slices are
converted to voltages (V’s) by DACs. The ADCs then convert
output currents (I’s) to digital values, which undergo shift-
and-add post-processing to obtain the full-precision output.

B. Memristor Technology

Memristor, also called resistive random access memory
(RRAM), typically consists of an oxide layer sandwiched
between two metal electrodes as shown in Fig 2. It stores data
in the form of conductance. “SET” process creates oxygen
vacancies in the oxide to increase its conductance, while
“RESET” process depletes the oxygen vacancies to reduce its
conductance. As shown in Fig 2, a single memristor can store
multiple bits by partial SET/RESET processes [30]. To read
the data (conductance) stored in the memristor, a small voltage
is applied across it and the resulting current is measured.
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Top Top Top Top
Electrode partial Electrode partial Elegtrode partial Electrode
SET SET SET
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Oxide Oxide Oxide Oxide
@
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Fig. 2. Operation of memristor device storing two bits.
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(a) Concept illustration.

(b) Measurements in [31].
Fig. 3. Conductance variation in memristors.

C. Conductance Variation

The programmed conductance of a memristor deviates from
its target value due to the stochastic nature of oxygen vacancy
creation/depletion and fabrication imperfections like variable
oxide thickness [18]. This phenomenon is called conductance
variation, shown in Fig. 3. It leads to incorrect weight storage
as memristor conductance, resulting in poor accuracy. In this
paper, we improve the accuracy of memristor-based neural
network architectures in the presence of conductance variation.

III. PROPOSED MAPPING-AWARE BIASED TRAINING
A. Favorable Conductance States Analysis

Fig. 4 shows a CIM-based multiply-accumulate operation,
where .o 1S the error current in a single memristor device
due to conductance variation. As small I, is desirable, the
preference order of states in Fig. 4 is: Ggg (best), Go1, Gii,
Gy (worst). Despite having a higher variation percentage, Goo
and Gy, are preferred over G;; and Gy as their small mean
values result in small I Hence, the preference order of
conductance states must be based on I, contribution instead
of the variation percentage. The ordered conductance states
are then grouped into: i) unfavorable states (U) to avoid for
mapping, and ii) favorable states (F) to prefer for mapping.
Based on Fig. 4, the possible grouping configurations are:

. Conﬁg-l: F:{GOO}, U:{G()l,G]l,G]()}

. Conﬁg-2: F:{Goo, G01}, U:{GII,GIO}

. Conﬁg—3: F:{Go(), G01, G“}, U:{Glo}

Config-1 sets weights only to zero while config-2 forces them
to the same sign. This is undesirable as the neural network
requires both positive and negative non-zero weights. As
config-3 can represent non-zero weights with different signs,
it is used in our mapping-aware biased training methodology.
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Fig. 4. Favorable conductance states analysis for a 2-bit memristor (four con-
ductance states). The used conductance variation data is obtained from [32].
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Fig. 5. Overview of the conventional and proposed training methodologies.

B. Mapping-aware Biased Training Methodology

1) Overview: The deployment of a neural network on
CIM hardware for inference involves two phases as shown
in Fig. 5: i) Training the neural network weights to obtain
high classification accuracy. ii) Mapping the trained weights
to memristor conductances for inference on CIM hardware.
Conventional training can result in the mapping of weights to
conductance states having a high variation impact (unfavorable
states). This can lead to low hardware accuracy despite high
software accuracy. Our proposed mapping-aware biased train-
ing restricts the neural network weights during training, so that
their post-training values directly get mapped to conductance
states having a low variation impact (favorable states). How-
ever, restricting too many weights hinders backpropagation
and leads to low software accuracy. This in turn results in
low hardware accuracy, as it is upper bounded by software
accuracy. Conversely, if too few weights are restricted, the
hardware accuracy will be poor as many memristors can get
mapped to unfavorable states. Hence, our proposed mapping-
aware biased training only restricts the important weights. This
leads to high software accuracy due to the adaptability of non-
important weights and also provides high hardware accuracy

Given: Memristor bit capacity, CIM mapping scheme,
important columns percentage, favorable states,
standard (hardware unaware) trained weights
)

| Determine the favorability constraint |
)

[ Perform a backpropagation epoch with training data |, _
7
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1

| Apply favorability constraint to important weights |
¥

[ Evaluate post-constraint test accuracy (Atest) |

YES Is Atest the best accuracy till now?
Save the

constrained NO
weights

NO

Last epoch?

| Map the saved weights to CIM hardware |

Fig. 6. Flowchart of the proposed mapping-aware biased training.
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Fig. 7. Tllustration of favorability constraint derivation for mapping MSB
slice of 8-bit weight to favorable conductance states in a 2-bit memristor.

— O

as important weights get mapped to favorable memristor states.

2) Biased Training: The flowchart of our mapping-aware
biased training is shown in Fig. 6. We first train the neural net-
work in a standard (hardware-unaware) manner. These weights
are used as initial weights for mapping-aware biased training
for faster convergence. We then determine a favorability con-
straint on the weights to ensure the mapping of desired weight
bits to favorable conductance states. It depends on memristor
bit capacity and CIM mapping scheme details like fixed-
point format, underlying CIM architecture, etc. For example,
consider 2-bit memristors (slices), 8-bit fixed-point weights
(6-bit fraction), and CIM architecture in [29]. The mapping
scheme first converts trained weights to 2’s complement fixed-
point format. It then shifts the 2’s complement weight range by
27 to overcome the difficulty in isolating the sign contribution
from a multi-bit slice [29]. Fig. 7 then shows the favorability
constraint to map the most significant 2-bit slice to favorable
states in Section III-A (Ggg, Go1, and Gjp) for this example.

We now perform a new epoch of backpropagation using
training data and then determine which weights are important
for high hardware accuracy. In a neural network, some weights
have more importance than others for high software accuracy.
However, in CIM hardware design for the same network,
instead of individual weights, some crossbar columns (groups
of weights) are more important than others for high hardware
accuracy. This is because the basic computation in CIM is the
column-wise multiply-accumulate operation. Let HI. denote
the importance of a CIM column for high hardware accuracy
and SI,, denote the importance of a weight for high software
accuracy. If P denotes the network output (without softmax)
and L denotes the one hot label, then SI,, is given by Eq. 1.

8Q Batch size
SIM:%,whereQ: ; P, x L; (1)

HI,. is then obtained by dividing the software weight matrix
into crossbar-sized chunks and adding SI, of weights per
column across all chunks. A high HI. value indicates more
influence on hardware accuracy. We now select m% columns
with the highest HI. (m is obtained by design-space explo-
ration, details in Section IV-B). Weights in these columns are
restricted as per the favorability constraint and test accuracy
is evaluated. This process is repeated for a given number
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Fig. 8. Design-space exploration for the percentage of important columns per
neural network layer. Circle denotes the peak hardware accuracy per dataset.
of biased training epochs and weights with the best post-
restriction test accuracy are mapped to CIM hardware.

IV. SIMULATION RESULTS
A. Simulation Setup

We have developed a Python-based framework for behav-
ioral simulation of neural network inference on CIM hardware.
It is based on in-situ multiply-accumulate (IMA) unit in state-
of-the-art CIM architectures [29], [33]. Power and area for
various IMA components are also obtained from [29]. We
consider 8-bit weights split across four memristors of 2-
bit capacity. Memristor device parameters and conductance
variation data are obtained from [32] which presents experi-
ments on real RRAM devices. We have performed evaluations
using MNIST [34], Fashion MNIST (FMNIST) [35], and
EMNIST letters (EMNIST-L) [36] datasets on LeNet-5 neural
network [34]. The mapping-aware biased training is carried out
in software and trained weights are used in our Python-based
framework to evaluate the hardware inference accuracy.

B. Neural Network Accuracy

1) Design-space Exploration: We perform design space
exploration to determine the optimal percentage of crossbar
columns, which are designated as important and subjected to
favorability constraints in all neural network layers, as depicted
in Fig. 8. A high percentage results in low software accuracy
as restricting more weights obstructs the minimization of
the cost function. The hardware accuracy is also reduced
as it is upper bounded by software accuracy. A moderate

O Software (Conventional) @ Software (Proposed)
@ CIM Hardware (Conventional) = CIM Hardware (Proposed)

100

B [e)] @
o o o

Inference Accuracy (%)

N
o

MNIST FMNIST EMNIST-L

Fig. 9. Neural network inference accuracy comparison across various datasets.

TABLE I
HARDWARE METRICS PER IN-SITU MULTIPLY-ACCUMULATE UNIT.

Proposed Mapping-aware

Metric Biased Training

Conventional Training

FMNIST accuracy (%) 354 85.2
Energy consumption (pJ) 3738 3738
Area (um?) 21765 21765
Correct operations per unit 96.9 2334

energy for FMNIST (GOP/J)

percentage can provide high accuracy in both software and
hardware by balancing the freedom of non-important weights
and restriction on important weights. The optimal percentage
varies from one dataset to another as indicated in Fig. 8.

2) Accuracy Comparison: The accuracy comparison be-
tween proposed mapping-aware biased training and conven-
tional training (backpropagation) is shown in Fig. 9. The
proposed mapping-aware biased training has a slightly lower
software accuracy compared to conventional training. This
is because cost function minimization during training be-
comes difficult due to the favorability constraint on important
weights. Our proposed biased training provides up to 2.4x
hardware accuracy compared to conventional training. This
can be attributed to the mapping of important weights to
conductance states having a low variation impact. The accu-
racy improvement is higher for complex datasets (FMNIST,
EMNIST-L) than simpler ones (MNIST), as they need more
error-free computations for correct classification.

C. Hardware Metrics

The comparison of hardware metrics between the proposed
mapping-aware biased training and the conventional training
(backpropagation) is shown in Table 1. They both need identi-
cal hardware components and hence consume the same energy
and area. We define a new metric “correct operations per unit
energy” as the ratio of the number of correct operations to
energy consumption (unit: Giga-operations per joule (GOP/J)).
Here, the number of correct operations is the product of
accuracy (as fraction) and the total number of operations.
Table I shows that the proposed mapping-aware biased training
achieves up to 2.4x correct operations per unit energy than
conventional training without any hardware overhead.

V. CONCLUSION

We have presented a mapping-aware biased training to
mitigate the impact of conductance variation on CIM-based
neural networks. This was achieved by restricting the impor-
tant weights during training, so that their post-training values
directly get mapped to conductance states with low variation
impact. The proposed biased training achieves up to 2.4x
hardware accuracy and up to 2.4Xx correct operations per
unit energy compared to the conventional training, without
incurring any hardware overhead. Such high accuracy and
energy efficiency can facilitate the deployment of CIM-based
neural networks for edge-Al
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