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Preface 2" Edition

Statistical validation of data and model remains an important topic when dealing with the
confrontation of measured data with linked mathematical models. When passed unnoticed,
observational errors, outcomes of defective instruments or erroneous assumptions about the
underlying models, may seriously deteriorate the final results of any parameter estimation process.
Testing theory provides the necessary knowledge for the detection, identification and adaptation of
such errors.

The substance of this book has a vast range of exciting applications. As examples we mention the
remote sensing and the positioning, navigation and timing (PNT) domains, in which Global Navigation
Satellite Systems, such as GPS and Galileo, play a prominent role. In this 2" edition, we have
corrected misprints and other errors, which kindly were brought to our attention by students and
lecturers who used the book in their courses.

P.J.G. Teunissen
December, 2006

Preface 3" Edition

To promote open access, this new edition of Testing Theory is published by TU Delft Open Publishing
instead of Delft Academic Press. Appendix D of the 2" edition, describing the historical context of
adjustment theory, has now been logically placed as appendix G in the book Adjustment Theory (TU
Delft Open Publishing, 2024).

July, 2024
Peter J.G. Teunissen



Foreword

This book is based on the lecture notes of the course *Testing theory’ (Inleiding Toetsingstheorie)
as it has been offered since 1989 by the Department of Mathematical Geodesy and Positioning
(MGP) of the Delft University of Technology. This course is a standard requirement and is given
in the second year. The prerequisites are a solid knowledge of adjustment theory together with
linear algebra, statistics and calculus at the undergraduate level. The theory and application of
least-squares adjustments are treated in the lecture notes Adjustment theory (Delft University
Press, 2000). The material of the present course is a follow up on this course on adjustment
theory. Its main goal is to convey the knowledge necessary to be able to judge and validate the
outcome of an adjustment. As in other physical sciences, measurements and models are used in
Geodesy to describe (parts of) physical reality. It may happen however, that some of the
measurements or some parts of the model are biased or in error. The measurements, for instance,
may be corrupted by blunders, or the chosen model may fail to give an adequate enough
description of physical reality. These mistakes can and will occasionally happen, despite the fact
that every geodesist will try his or her best to avoid making such mistakes. It is therefore of
importance to have ways of detecting and identifying such mistakes. It is the material of the
present lecture notes that provides the necessary statistical theory and testing procedures for
resolving situations like these.

Following the Introduction, the basic concepts of statistical testing are presented in Chapter 1.
In Chapter 2 the necessary theory is developed for testing simple hypotheses. As opposed to its
composite counterpart, a simple hypothesis is one which is completely specified, both in its
functional form as well as in the values of its parameters. Although simple hypotheses rarely
occur in geodetic practice, the material of this chapter serves as an introduction to the chapters
following. In Chapter 3, the generalized likelihood ratio principle is used to develop the theory
for testing composite hypotheses. This theory is then worked out in detail in Chapter 4, for the
important case of linear(ized) models. Both the parametric form (observation equations) and the
implicit form (condition equations) of linear models are treated. Five different expressions are
given for the uniformly, most powerful, invariant teststatistic. As an additional aid in
understanding the basic principles involved, a geometric interpretation is given throughout. This
chapter also introduces the important concept of reliability. The internal and external reliability
measures given, enable a user to determine in advance (i.e. at the designing stage, before the
actual measurements are collected) the size of the minimal detectable biases and the size of their
potential impact on the estimated parameters of interest.

Many colleagues of the Department of Mathematical Geodesy and Positioning whose assistance
made the completion of this book possible are greatly acknowledged. C.C.J.M. Tiberius took care
of the editing, while the typing was done by Mrs. J. van der Bijl and Mrs. M.P.M. Scholtes. The
drawings were made by Mr. A.B Smits and the statistical tables were generated by Mrs. M.
Roselaar. Various lecturers have taught the book’s material over the past years. In particular the
feedback and valuable recommendations of G.J. Husti, F. Kenselaar and N.F. Jonkman are
acknowledged.

P.J.G. Teunissen
June, 2000
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I n trOd U Ctl O n Introduction 1

The present lecture notes are a follow up on the book Adjustment theory (TU Delft Open Publishing,
2024). Adjustment theory deals with the optimal combination of redundant measurements together
with the estimation of unknown parameters. There are two main reasons for performing redundant
measurements. First, the wish to increase the accuracy of the results computed. Second, the
requirement to be able to check for mistakes or errors. The present book addresses this second topic.

In order to be able to adjust redundant observations, one first needs to choose a mathematical
model. This model consists of two parts, the functional model and the stochastic model. The
functional model contains the set of functional relations the observables are assumed to obey. For
instance, when the three angles of a triangle are observed and when it is assumed that the laws of
planar Euclidean geometry apply, the three angles should add up to ©. However, since measurements
are intrinsically uncertain (perfect measurements do not exist), one should also take the unavoidable
variability of the measurements into account. This is done by means of a stochastic model in which
the measurement uncertainty is captured through the use of stochastic (or random) variables. In
most geodetic applications it is assumed that the results of measurement, the observations, are
independent samples drawn from a normal (or Gaussian) distribution.

Once the mathematical model is specified, one can proceed with the adjustment. Although different
methods of adjustment exist, one of the leading principles is the principle of least-squares (for a brief
account on the early history of adjustment, see Appendix G of the book Adjustment theory). Apart
from the fact that properly weighted (linear) least-squares estimators are relatively easy to compute,
they also possess two important properties, namely the property of unbiasedness and the property of
minimum variance. In layman terms one could say that least-squares solutions coincide with their
target value on the average (property of unbiasedness), while the sum of squares of their
unavoidable, individual variations about this target value will be the smallest possible on the average
(property of minimum variance). These two properties only hold true, however, under the
assumption that the mathematical model is correct. They fail to hold in case the mathematical model
is misspecified. Errors or misspecifications in the functional model generally result in least-squares
estimators that are biased (off target). Similarly, misspecifications in the stochastic model will
generally result in least-squares estimators that are less precise (larger variations).

Although one always will try one’s best to avoid making mistakes, they can and will
occasionally happen. It is therefore of importance to have ways of detecting and identifying such
mistakes. In this book we will restrict ourselves and concentrate only on developing methods
for detecting and identifying errors in the functional model. Hence, throughout this book the
stochastic model is assumed to be specified correctly. This restriction is a legitimate one for many
geodetic applications. From past experience we know that if modelling errors occur, they usually
occur in the functional model and not so much in the stochastic model. Putting the exceptions
aside, one is usually quite capable of making a justifiable choice for the stochastic model.
Moreover, mistakes made in the functional model usually have more serious consequences for the
results computed than errors made in the stochastic modelling.
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Mistakes or errors in the functional model can come in many different guises. At this point it
is of importance to realize, since every model is a caricature of reality, that every model has its
shortcomings. Hence, strictly speaking, every model is already in error to begin with. This shows
that the notion of a modelling error or a model misspecification has to be considered with some
care. In order to understand this notion, it helps if one accepts that the presence of modelling
errors can only be felt in the confrontation between data and model. We therefore speak of a
modelling error when the discrepancies between the observations and the model are such that
they can not be explained by, or attributed to, the unavoidable measurement uncertainty. Such
discrepancies can have many different causes. They could be caused by mistakes made by the
observer, or by the fact that defective instruments are used, or by wrong assumptions about the
functional relations between the observables. For instance, in case of levelling, it could happen
that the observer made a mistake when reading off the leveling rod, or in case of direction
measurements, it could happen that the observer accidentally aimed the theodolite at the wrong
point. These types of mistakes affect individual observations and are usually referred to as
blunders or gross errors. Instead of a few individual observations, whole sets of observations may
become affected by errors as well. This happens in case defective instruments are used, or when
mistakes are made in formulating the functional relations between the observables. Errors with
a common cause that affect whole sets of observations are sometimes referred to as systematic
erTors.

The goal of this book is to convey the necessary knowledge for judging the validity of the model

used. Typical questions that will be addressed are: "How to check the validity of a model? How

to search for certain mistakes or errors? How well can errors be traced? How do undetected
errors affect the final results?” As to the detection and identification of errors, the general steps
involved are as follows:

) One starts with a model which is believed to give an adequate enough description of
reality. It is usually the simplest model possible which on the basis of past experience has
proven itself in similar situations. Since one will ordinarily assume that the measurements
and the modelling are done with the utmost care, one is generally not willing, at this
stage, to already make allowances for possible mistakes or errors. This is of course an
assumption or an hypothesis. This first model is therefore referred to as the null
hypothesis.

(i1) Since one can never be sure about the absence of mistakes or errors, it is always wise to
check the validity of the null hypothesis once it has been selected. Hence, one would like
to be able to detect an untrustworthy null hypothesis. This is possible in principle, when
redundant measurements are available. From the adjustment of the redundant
measurements, (least-squares) residuals can be computed. These residuals are a measure
of how well the measurements fit the model of the null hypothesis. Large residuals are
often indicative for a poor fit, while smaller residuals tend to correspond with a better fit.
These residuals are therefore used as input for deciding whether or not one is willing to
accept the null hypothesis.

(iii)) Would one decide to reject the null hypothesis, one implicitly states that the
measurements do not seem to support the assumption that the model under the null
hypothesis gives an adequate enough description of reality. One will therefore have to
look for an alternative model or an alternative hypothesis. It very seldom happens
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however, that one knows beforehand which alternative to consider. After all, many
different errors could have led to the rejection of the null hypothesis. This implies that
in practice, instead of considering a single alternative, usually various alternatives will
have to be considered. And since different types of errors may occur in different
situations, the choice of these alternatives very much depends on the particular situation
at hand.

(iv)  Once it has been decided which alternatives to consider, one can commence with the
process of identifying the most likely alternative. This in fact boils down to a search of
the alternative hypothesis which best fits the measurements. Since each alternative
hypothesis describes a particular mistake or modelling error, the most likely mistake
corresponds with the most likely hypothesis. Once one is confident that the modelling
errors have been identified, the last step consists of an adaptation of the data and/or
model. This implies either a re-measurement of the erroneous data or the inclusion of
additional parameters in the model such that the modelling errors are accounted for.

It will be intuitively clear that not all errors can be traced equally well. Some errors are better
traceable than others. Apart from being able of executing the above steps for the detection and
identification of modelling errors, one would therefore also like to know how well these errors
can be traced. This depends on the following factors. It depends on the model used (the null
hypothesis), on the type and size of the error (the alternative hypothesis), and on the decision
procedure used for accepting or rejecting the null hypothesis. Since these decisions are based on
uncertain measurements, their outcomes will be to some degree uncertain as well. As a
consequence, two kinds of wrong decisions can be made. One can decide to reject the null
hypothesis, while in fact it is true (wrong decision of the 1* kind), or one can decide to accept
the null hypothesis, although it is false (wrong decision of the 2™ kind). In the first case, one
wrongly believes that a mistake or modelling error has been made. This might then lead to an
unnecessary re-measurement of the data. In the second case, one wrongly believes that mistakes
or modelling errors are absent. As a consequence, one would then obtain biased adjustment
results. These issues and how to cope with them, will also be discussed in this book. Once
mastered, they will enable one to formulate guidelines for the reliable design of measurement
set-ups.






1 Basic concepts of hypothesis testing

1.1  Statistical hypotheses

Many social, technical and scientific problems result in the question whether a particular theory
or hypothesis is true or false. In order to answer this question one can try to design an
experiment such that its outcome can also be predicted by the postulated theory. After performing
the experiment one can then confront the experimental outcome with the theoretically predicted
value and on the basis of this comparison try to conclude whether the postulated theory or
hypothesis should be rejected. That is, if the outcome of the experiment disagrees with the
theoretically predicted value, one could conclude that the postulated theory or hypothesis should
be rejected. On the other hand, if the experimental outcome is in agreement with the theoretically
predicted value, one could conclude that as yet no evidence is available to reject the postulated
theory or hypothesis.

Example 1

According to the postulated theory or hypothesis the three points 1, 2 and 3 of Figure 1.1 lie on
one straight line. In order to test or verify this hypothesis we need to design an experiment such
that its outcome can be compared with the theoretically predicted value.

2
lip 13

1 li3 3

Figure 1.1: Three points on a straight line.

If the postulated hypothesis is correct, the three distances [/,,, [,; and [,; should satisfy the
relation:

Ly =1,+1

13 23°

Thus, under the assumption that the hypothesis is correct we have:

(1) H: l,+l,-1, =0,

13
To denote a hypothesis, we will use a capital H followed by a colon that in turn is followed by
the assertion that specifies the hypothesis. As an experiment we can now measure the three
distances [,,, /,; and /5, compute /,, + [,; — [;; and verify whether this computed value agrees or
disagrees with the theoretically predicted value of H. If it agrees, we are inclined to accept the
hypothesis that the three points lie on one straight line. In case of disagreement we are inclined
to reject hypothesis H.
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It will be clear that in practice the testing of hypotheses is complicated by the fact that
experiments (in particular experiments where measurements are involved) in general do not give
outcomes that are exact. That is, experimental outcomes are usually affected by an amount of
uncertainty, due for instance to measurement errors. In order to take care of this uncertainty, we
will, in analogy with our derivation of estimation theory in "Adjustment theory", model the
uncertainty by making use of the results from the theory of random variables. The verification
or testing of postulated hypotheses will therefore be based on the testing of hypotheses of
random variables of which the probability distribution depends on the theory or hypothesis
postulated. From now on we will therefore consider statistical hypotheses.

A statistical hypothesis is an assertion or conjecture about the probability distribution of one or
more random variables, for which it is assumed that a random sample (mostly through
measurements) is available.

The structure of a statistical hypothesis H is in general the following:

) H: y~p([x) with x fully or partially specified.

This statistical hypothesis should be read as follows: According to H the scalar or vector
observable random variable y has a probability density function given by py(y|x). The scalar,
vector or matrix parameter x used in the notation of p,0y |x) indicates that the probability density
function of y is known except for the unknown parameter x. Thus, by specifying (either fully
or partially) the parameter x, an assertion or conjecture about the density function of y is made.
In order to see how a statistical hypothesis for a particular problem can be formulated, let us
continue with our Example 1.

Example 1 (continued)

We know from experience that in many cases the uncertainty in geodetic measurements can be
adequately modelled by the normal distribution. We therefore model the three distances between
the three points 1, 2 and 3 as normally distributed random variables '. If we also assume that
the three distances are uncorrelated and all have the same known variance %02 , the simultaneous
probability density function of the three distance observables becomes:

' Note that strictly speaking distances can never be normally distributed. A distance is

always nonnegative, whereas the normal distribution, due to its infinite tails, admits
negative sample values.
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i E{ }
13 13
3) L,| -~ N(EL}|, Q) with Q = §0213.
l E{ }
23 23

Statement (3) could already be considered a statistical hypothesis, since it has the same structure
as (2). Statement (3) asserts that the three distance observables are indeed normally distributed
with unknown mean, but with known variancematrix Q. Statement (3) is however not yet the
statistical hypothesis we are looking for. What we are looking for is a statistical hypothesis of
which the probability density function depends on the theory or hypothesis postulated. For our
case this means that we have to incorporate in some way the hypothesis that the three points lie
on one straight line. We know mathematically that this assertion implies that:

@) I, +L, -1, = 0.

13
However, we cannot make this relation hold for the random variables [12, [2 , and [H. This is
simply because of the fact that random variables cannot be equal to a constant. Thus, a statement
like: [12 + [2 T [B = 0 is nonsensical. What we can do is assume that relation (4) holds for the
expected values of the random variables [12, [2 \ and {13:

5) E{112}+E{lz3}—E{ll3} = 0.

For the hypothesis considered this relation makes sense. It can namely be interpreted as stating
that if the measurement experiment were to be repeated a great number of times, then on the
average the measurements will satisfy (5). With (3) and (5) we can now state our statistical
hypothesis as:

l EU i
13 13
(6) H:|L,| ~ N(EUL}, Lo’L) with EU J+EWL J-EU ) = 0.
3 12 23 13
I ElL )
23 23

This hypothesis has the same structure of (2) with the three means playing the role of the
parameter x.

In many hypothesis-testing problems two hypotheses are discussed: The first, the hypothesis
being tested, is called the null hypothesis and is denoted by H,. The second is called the
alternative hypothesis and is denoted by H,. The thinking is that if the null hypothesis H, is
false, then the alternative hypothesis H, is true, and vice versa. We often say that H| is tested
against, or versus, H,. In studying hypotheses it is also convenient to classify them into one of
two types by means of the following definition: if a hypothesis completely specifies the
distribution, that is, if it specifies its functional form as well as the values of its parameters, it
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is called a simple hypothesis (enkelvoudige hypothese); otherwise it is called a composite
hypothesis (samengestelde hypothese).

Example 1 (continued)

In our example (6) is the hypothesis to be tested. Thus, the null hypothesis reads in our case:

1 El }
13 13
(7 Hy : |L,| ~ N(EL,), 1o’ with EU)+EU)-EQ ) = 0.
l EU )
23 23

Since we want to find out whether EY{ }+E{ J-EU } = 0 or not, we could take as alternative

the inequality E{éu} +E{£2 3} —E{[B} # 0. However, we know from the geometry of our problem
that the left hand side of the inequality can never be negative. The alternative should therefore

read: EW J+E\ J-EU } > 0. Our alternative hypothesis takes therefore the form:

Ell
13 13
®) Hy o |Ly| ~ N(EL |, 2oL with Ell )+EL}-El } > 0.
l El }
23 23

When comparing (7) and (8) we see that the type of the distribution of the observables and their
variance matrix are not in question. They are assumed to be known and identical under both H,
and H,. Both of the above hypotheses, H, and H,, are examples of composite hypotheses. The
above null hypothesis H; would become a simple hypothesis if the individual expectations of
the observables were assumed known.

1.2 Test of statistical hypotheses

After the statistical hypotheses H, and H, have been formulated, one would like to test them
in order to find out whether H, should be rejected or not.
A test of a statistical hypothesis:
H,:y -~ py(y|x) with x fully or partially specified
is a rule or procedure, in which a random sample of y is used for deciding whether to reject or

not reject H . A test of a statistical hypothesis is completely specified by the so-called crifical
region (kritiek gebied), which will be denoted by K.
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The critical region K of a test is the set of sample values of y for which H| is to be rejected.
Thus, H, is rejected if y € K.

It will be obvious that we would like to choose a critical region so as to obtain a test with
desirable properties, that is, a test that is "best" in a certain sense. Criteria for comparing tests
and the theory for obtaining "best" tests will be developed in the next and following sections.
But let us first have a look at a simple testing problem for which, on more or less intuitive
grounds, an acceptable critical region can be found.

Example 2

Let us assume that a geodesist measures a scalar variable, and that this measurement can be
modelled as a random variable y with density function:

©) y ~ — expl- (- Ep)’].

Vo

Thus, it is assumed that y has a normal distribution with unit variance. Although this assumption
constitutes a statistical hypothesis, it will not be tested here because the geodesist is quite certain
of the validity of this assumption. The geodesist is however not certain about the value of the
expectation of y. His assumption is that the value of Ely! is x,. This assumption is the statistical
hypothesis to be tested. Denote this hypothesis by H. Then:

(10) H,: Ely = x,.

Let H, denote the alternative hypothesis that Ety! # x,. Then:

(11) H,: EYy = x,.

Thus the problem is one of testing the simple hypothesis H, against the composite hypothesis
H,. To test H, a single observation on the random variable y is made. In real-life problems one
usually takes several observations, but to avoid complicating the discussion at this stage only one
observation is taken here. On the basis of the value of y obtained, denoted by y, a decision will
be made either to accept H, or reject it. The latter decision, of course, is equivalent to accepting
H,. The problem then is to determine what values of y should be selected for accepting H, and
what values for rejecting H, . If a choice has been made of the values of y that will correspond
to rejection, then the remaining values of y will necessarily correspond to acceptance. As defined
above, the rejection values of y constitute the critical region K of the test. Figure 1.2 shows the
distribution of y under H, and under two possible alternatives H A and H, .

2
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1

E{X} X, E{Z} = Xg E{Z} # X,
Figure 1.2: H, : Ely} = x, versus H, : Elyl # x,.

Looking at this figure, it seems reasonable to reject H, if the observation y is remote enough
from Etyl = x,. If H, is true, the probability of a sample of y falling in a region remote from
Elyl = x, is namely small. And if H, is true, this probability may be large. Thus the critical
region K should contain those sample values of y that are remote enough from Ely} = x,. Also,
since the alternative hypothesis can be located on either side of Ely! = x, it seems obvious to
have one portion of K located in the left tail of H, and one portion of K located in the right tail
of H,. Finally, one can argue that since the distribution is symmetric about its mean value, also
the critical region K should be symmetric about Ely! = x,. This as a result gives the form of the
critical region K as shown in Figure 1.3. Although this critical region has been found on more
or less intuitive grounds, it can be shown that it possesses some desirable properties. We will
return to this matter in a later section.

Hy
_ S~
K E{Z} = Xp K
reject -<— > accept <> reject

Figure 1.3: Critical region K for testing H, : Ely} = x, versus H, : Eiyl # x,.

1.3 Two types of errors

We have seen that a test of a statistical hypothesis is completely specified once the critical region
K of the test is given. The null hypothesis H, is rejected if the sample value or observation of
y falls in the critical region, i.e. if ye K. Otherwise the null hypothesis H, is accepted, i.e. if
y¢ K. With this kind of thinking two types of errors can be made:

Type I error: Rejection of H when in fact H, is true.

Type II error: Acceptance of H, when in fact H, is false.
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Table 1.1 shows the decision table with the type I and II errors.

H, true H, false
Reject H, Wrong Correct
yekK Type I error
Accept H, Correct Wrong
ye K Type 1II error

Table 1.1: Decision table with type I and type II error.

The size of a type I error is defined as the probability that a sample value of y falls in the
critical region when in fact H, is true. This probability is denoted by o and is called the size of
the test or the level of significance of the test (onbetrouwbaarheid van de test). Thus:

o = P(type I error) = P(rejection of H, when H true)

or

(12) o = PoeK|Hy) = [p,0|Hpdy
K

The size of the test, o, can be computed once the critical region K and the probability density
function of y is known under H,. The size of a type II error is defined as the probability that
a sample value of y falls outside the critical region when in fact H, is false. This probability
is denoted by P. Thus:

B = P(type II error) = P(acceptance of H, when H, is false)

or

(13) B = Pek|H,) = 1- [p|H)dy
K

The size of a type II error, 3, can be computed once the critical region K and the probability
density function of y is known under H,.

Example 3

Assume that y is distributed as:

(14) y ~ N(Ely},0?)

with known variance G°.
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The following two simple hypotheses are considered:

(15) H,: Ely = x,
and
(16) H,: Ely =x, > x,.
The situation is sketched in Figure 1.4.

H, Hp

Figure 1.4: The two simple hypotheses: H, : Elyl = x, and H, : Elyl = x, > x,.

Since the alternative hypothesis H, is located on the right of the null hypothesis H,, it seems
intuitively appealing to choose the critical region K right-sided. Figure 1.5a and 1.5b show two

possible right-sided critical regions K.

H, Hy

(a)

X‘O kd ‘ X‘ A K
\—> reject

(b)

Figure 1.5: Critical region K and size of test, o.

They also show the size of the test, o, which corresponds to the area under the graph of the
distribution of y under H, for the interval of the critical region K.
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The size of the test, o, can be computed once the probability density function of y under H, is
known and the form and location of the critical region K is known. In the present example the
form of the critical region has been chosen right-sided. Its location is determined by the value
of k_, the so-called critical value (kritieke waarde) of the test. Thus, for the present example the
size of the test can be computed as:

o« = [p]xdy
k(!

or, since:
pO|xy) = eXP[—ii(v—xo)zl
210 2¢%
as:
P 11
(17) o = exp[———z(y—x0)2]dy.
k, 210 20

When one is dealing with one-dimensional normally distributed random variables, one can
usually compute the size of the test, o, from tables given for the standard normal distribution
(see appendix B). In order to compute (17) with the help of such a table, we first have to apply
a transformation of variables. Since y is normally distributed under H, with mean x;, and
variance 67, it follows that the random variable z, defined as:

(18) -2

is standard normally distributed under H,. And since:

ka _xO

(19) « = P(y > k,|Hy) = Pz > |H,)

o

we can use the last expression of (19) for computing o. Application of the change of variables
(18) to (17) gives:

= L
(20) o = —— exp[--z-]dz .

[0}

We can now make use of the table of the standard normal distribution. Table 1.2 shows some
typical values of the o and k, for the case that x, = 1 and ¢ = 2 .
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o k,—x, K
o

0.1 1.28 3.56

0.05 1.65 4.29

0.01 2.33 5.65

0.001 3.09 7.18

Table 1.2: Test size a, critical value k, for x, = 1 and ¢ = 2.

As we have seen the location of the critical region K is determined by the value chosen for k_,
the critical value of the test. But what value should we choose for k ? Here the geodesist should
base his judgement on his experience. Usually one first makes a choice for the size of the test,
o, and then by using (20) or Table 1.2 determines the corresponding critical value k. For
instance, if one fixes o at o0 = 0.01, the corresponding critical value & (for the present example
with x, = 1 and 6 = 2) reads k, = 5.65. The choice of o is based on the probability of a type
I error one is willing to accept. For instance, if one chooses o as oo = 0.01, one is willing to
accept that 1 out of a 100 experiments leads to rejection of H, when in fact H is true.

Let us now consider the size of a type II error, . Figure 1.6 shows for the present example the
size of a type II error, . It corresponds to the area under the graph of the distribution of y

under H, for the interval complementary to the critical region K.

Hy Hp

e

XO kd XA ) K
————» reject

Figure 1.6: The sizes of type I and type II error, o and [, for testing
H; Ely) =x, versus H, Ely} = x,>x, .

The size of a type Il error, B, can be computed once the probability density function of y underH
is known and the critical region K is known. Thus, for the present example the size of the type
IT error can be computed as:

k

B = [ Oy

or since:
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1 11
px(y|xA) = ; exp[_E ;('y_xA)2]
as:
ka
1) - expr L Ly x4y,
P fw\/ﬁo P 202@ ©1Y

Also this value can be computed with the help of the table of the standard normal distribution.
But first some transformations are needed. It will be clear that the probability that a sample or
observation of y falls in the critical region K when H, is true, is identical to 1 minus the
probability that the sample does not fall in the critical region when H, is true. Thus:

(22) B = P(y¢K|H, = 1-P(yeK|H,).

Since for the present example:

©

1 11
P(yeK|H,) = [—— exp[-- —(v-x,’1dy
ky 210 20
substitution into (22) gives:
(23) 1-p = L expl-L Ly-xpady.

V2o 2¢°

This formula has the same structure as (17). The value 1—[3 can therefore be computed in exactly
the same manner as the size of the test, o, was computed. And from 1-f it is trivial to compute
B, the size of the type II error.

Figure 1.7 gives the probability 1- of rejecting H,, when indeed H, is true, as function of the
unknown mean x, under H,. When this probability is requested to be at least 1- = 0.80, the
unknown mean under H, has to be at least x,=7.34. We return to the probability y = 1-f3, the
power, in Section 4.5 on reliability. The size of the test was fixed to o = 0.01.
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Fig. 1.7: Probability y = 1-f as function of x,, for testing
H; Ely) =x, versus H, Elyl = x,>x,, with x, = 1 and ¢ = 2.

1.4 A testing principle

We have seen that two types of errors are involved when testing a null hypothesis H, against
an alternative hypothesis H,: (1) The rejection of H, when in fact H is true (type I error); (2)
the acceptance of H, when in fact H, is false (type II error). One might reasonably use the sizes
of the two types of errors, o and [, to set up criteria for defining a best test. If this is possible,
it would automatically give us a method of choosing a critical region K. A good test should be
a test for which o is small (ideally 0) and [ is small (ideally 0). It would therefore be nice if we
could define a test, i.e. define a critical region K, that simultaneously minimizes both o and [.
Unfortunately this is not possible. As we decrease o, we tend to increase [3, and vice versa. The
Neyman-Pearson principle provides a workable solution to this situation. This principle says that
we should fix the size of the type I error, o, and minimize the size of the type II error, . Thus:

A testing principle (Neyman et al., 1933): Among all tests or critical regions possessing the same
size type I error, o, choose one for which the size of the type II error, B, is as small as possible.

The justification for fixing the size of the type I error to be o, (usually small and often taken as
0.05 or 0.01) seems to arise from those testing situations where the two hypotheses, H, and H,,
are formulated in such a way that one type of error is more serious than the other. The
hypotheses are stated so that the type I error is the more serious, and hence one wants to be
certain that it is small. Testing principles other than the above given one can of course easily be
suggested: for example, minimizing the sum of sizes of the two types of error, o + 3. However,
the Neyman-Pearson principle has proved to be very useful in practice. In this book we will
therefore base our method of finding tests on this principle. Now let us consider a testing
problem from the point of view of the Neyman-Pearson principle.
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Example 4

Assume that y has the following probability density function:
(24) pO) =xe™, x>0,y >0 2
The following two simple hypotheses are considered:

(25) H,

0:x=2 and H

A:x=1.

Figure 1.8 shows the density function of y under H, and H,.

2

Figure 1.8: The function xe **, x>0, y=0 for x = 2 and x = 1.

Contrary to our Example 3, it is now not that obvious how to choose the form of the critical
region K. Let us first consider the case of a right-sided critical region K. Thus:

(26) K = lyeR, | y>k,).

In order to compute o and 3 we need to evaluate an integral of the type:

b
(27) f xe ¥dy = e ¥ -e P,

a

For the right-sided critical region (26) this gives for the size of the type I error:

(28) o = fZe My = e e,
ka

The corresponding size of the type II error is:

> Prove yourself that this function is indeed a probability density function.
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(29) B = l—fle’y'dy = 1-e e,
k

o

Now let us consider a left-sided critical region K * as alternative. Thus:
(30) K" ={eR, |0 <y <k,

For this critical region the size of the type I error becomes:

ky
(1) o = fZe'yzdy = 1-¢ .
0

And the corresponding size of the type II error is given by:

ka
(32) B = 1-[le™dy = ¢ ™.
0
Let us now compare the two tests, that is, the one with the right-sided critical region K with the

one with the left-sided critical region K . We will base this comparison on the Neyman-Pearson
principle. According to this principle, both tests have the same size of type I error. Thus:

(33) o =o".

With (28) and (31) this gives e P g —e e or:

(34) i

H2 = (1 —e Tyl e .

(e

Using (29) and (32) this equation can be expressed in terms of B* and [ as:

(B)? = B2-P).

Hence:

35 . 2

G BT = 2B -7

Figure 1.9 shows the graph of this function. It clearly shows that:
(36) B<p.

The conclusion reads therefore that of the two tests the one having the right-sided critical region
K 1s the best in the sense of the Neyman-Pearson principle.
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2
| | | |
T T T T

0 — B 1
Figure 1.9: The function B* = (2B -B?)”.

1.5

General steps in testing hypotheses

Thus far we have discussed the basic concepts underlying most of the hypothesis-testing
problems. The same concept and guidelines will provide the basis for solving more complicated
hypothesis-testing problems as treated in the next chapters. Here we summarize the main steps
on testing hypotheses about a general probability model.

(a)

(b)

()

(d)

(e)

From the nature of the experimental data and the consideration of the assertions that are
to be examined, identify the appropriate null hypothesis and alternative hypothesis:

Hyy ~ py(y|x0) versus H,: y ~ py(y|xA).

Choose the form of the critical region K that is likely to give the best test. Use the
Neyman-Pearson principle to make this choice.

Specify the size of the type I error, o, that one wishes to assign to the testing process.
Use tables to determine the location of the critical region K from:

o = POeK|Hy) = [p0]xp)dy.
K

Compute the size of the type II error:
B = PeK|H,) = 1- [py]x)dy
K
to ensure that there exists a reasonable protection against type II errors.

After the test has been explicitly formulated, determine whether the sample or observation
y of y falls in the critical region K or not. Reject H, if ye K, and accept H, if y¢ K.
Never claim however that the hypotheses have been proved false or true by the testing.






2 Testing of simple hypotheses

2.1 The simple likelihood ratio test

In this chapter we consider testing a simple null hypothesis H, against a simple alternative
hypothesis H,. This case is actually not very useful in practical applications, but it will serve
the purpose of developing some theory of testing hypotheses. We will assume that themx1
vector random variable y is distributed as:

(1) y - 0.

mx1

The following two simple hypotheses are considered:

) Ho : X =X, versus H,: X=X,.

Our objective is, given an observation y on y, to determine from which distribution the
observation came from; from px(y]xo) or from pz(y\x )7 In this section we will give a general
method for solving this testing problem. The method is closely related to the maximum likelihood

principle as discussed in Adjustment theory.

For a fixed value of x the function p (y |x) is a function of y and for different values of x the
function py(y\x) may take different forms (see Figure 2.1).

A

Py (y %)

Py (yl Xa)

>y

Figure 2.1: The density function of y under H, and H,.

In the context of estimation theory the objective was to determine or estimate the unknown
parameter x on the basis of the observation vector y. In the present context of hypothesis
testing, the objective is to decide between H, and H,. In both cases, that is, in the case of
estimation theory and in the case of hypothesis testing, one could say that one would like to
determine the correct value of the parameter x that produced the observed y. This suggests
considering for each possible x how probable the observed y would be if x were the true value.
The higher this probability, the more one is attracted to the explanation that the x in question
produced y, and the more likely the value of x appears. In estimation theory, where no
constraints were put on x, this principle resulted in the maximum likelihood method. This
method chooses as an estimate of x that value which maximizes p (y |x) for the given observed
y. For the problem of testing the two simple hypotheses H, and H, we can now apply the same
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principle. But instead of maximizing p (y |x) as function of x, we only need to compare the two
likelihood values of p, (v|x,) and p, (y—lx ). We decide that the observation y came from H, if
p, Olx) > p, Olx,) and conversely, decide that the observation y came from H, if
p, (y|x) <p, (y|x ). This simple method of obtaining a test for testing H, against H, can be
expanded into a family of tests that, as we will see, will contain some good tests.

The simple likelihood ratio test is defined by:

, . Oy
reject Hy if ————
p,(ylx,)
3)
accept H, if ~———
p,(v|xy

where a is a positive constant.

For each different value of a we have different tests. For a fixed value of a the test says to reject H,
if the ratio of likelihoods is small; that is, reject H,, if it is more likely that the observation came
from p (y x,) than from D (v|x,). Let us con51der some examples to see how the simple
hkehhood ratio test works.

Example 1

We assume that the mx1 random vector y is normally distributed as:
“4) y -~ NO,6°1 ).

The two simple hypotheses considered are:

®) H,: o’=c, versuss H,: o’=0, > 0.

Figure 2.2 shows the distribution of y under H, and H, for m=1. For m =1, it seems intuitively
appealing to reject H if the observation y is remote from the zero-mean value. Due to the
symmetry of the distribution of y, it also seems intuitively appealing to choose the critical region
K symmetric about 0. Thus, based on these two intuitive arguments we would choose to reject H,,
if (see Figure 2.2):

©) Vs k

a
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AN

N

Vs v
K kg 0 kg K

reject -«—— —= reject

Figure 2.2: The distributions N(0,02) and N(0,6), 6> > Ov.

Figure 2.3 shows the contourlines of equal density of the distribution of y under H, and H, for
m>1. As a generalization of (6), it seems in this case intuitively appealing to reject H, if (see
Figure 2.3):

@) y*y:Zyl.2>ka_

Figure 2.3: Contourlines of equal density of N(O,Gélm) and N(O,Gf,lm), with Gf, > o?).

Now let us apply the simple likelihood ratio test for this particular example, and see how it
compares with (6) and (7) respectively. With:

pOIx) = (2m) " (0g) " expl-1-Ly Y]
%o
and

POk = @m) (o) " expl-1-Ly Yl
04

it follows that:

®)

POl (

= 2] exp[-Ly*y (L -1y].
L) jﬂxp R

[y
0 ()
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From (8) and (3) we get:

) reject H, if: (%j exp[—%y “y (% —lz)] <a.
0

Op 04

In order to compare (9) with (7), we first transform (9) into a simpler inequality. The inequality
of (9) can also be written as:

exp[-2y'y (-] < (ﬂja-
o, gy 04
Taking the logarithm gives:
1oey o1 1 o
Yy (_2_—2) < ln[(o—A) al.
G 9y

. 2 2 e . 1 1 .
Since o, > oy, division by —-_ gives:

0 A

Sy s m[(;’_jja] /(_ 1)
Go Oy

Finally, multiplication with -2 gives:
10 . ol 2 /(1 1
0 A

If we denote the right-hand side of this inequality by k_, we see that the simple likelihood ratio
test gives a critical region K which is identical to the one chosen earlier (see (7)) on intuitive
grounds. Thus, for this particular example the simple likelihood ratio test is:

(11) reject Hy if  y'y > k.

In order to perform or execute this test, we still need to choose a particular value for the critical
value k. The critical value k, can be computed once the size of the type I error, o, has been
fixed, and once the distribution of y“y is known under H,. Since y is distributed as N(O,G(Z)Im)
under H, it follows (see appendix A) that y’y is distributed under H, as a central oox’-
distribution with m degrees of freedom. In this case, there are no unknown parameters, n = 0
and hence m - n = m. Thus:

(12) H,: yy-~ 0(2) x*(m,0).
Similarly we have for the distribution of y’y under H:
(13) H, . yy-~ oi x*(m,0).

Since:
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: k
(14) @ - POy > k,[Hy = P|22 > “t|H,
Oo O

and since X*x/oé is distributed as y*(m,0) under H,, we can use a table of the x*-distribution
(see appendix B) to compute the critical value k, from the chosen size of type I error, o. Table
2.1 shows some typical values of o and k, for the case c;=2 and m=1 (on the left).

m =1 m=4
a1y k a4 k
(0 ) P o 2o o
Gy
0.1 2.71 5.41 7.78 15.56
0.05 3.84 7.68 9.49 18.98
0.01 6.63 13.27 13.28 26.55
0.001 10.83 21.66 18.47 36.93

Table 2.1: o and k, for the distribution &, 3(m.,0) with 6g=2, m=1 and m=4 .

From k_ and the distribution of y“y under H,, we can also compute the size of the type II error,
B. Since:

B =PQy<k,H) =1-PQ'y > k,[H,)
* k
=1-P & > i’HA

2 2

04 04
we may use:
(15) 1f|3zpy_2y>_“|HA

04 04

and the table of the y*-distribution to compute 3 from k. Table 2.2 shows some typical values
of k, and B for the case m=1 and o, = 4.
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k oy 1-B B
o Gi 4 O

5.41 1.35 0.24 0.76
7.68 1.92 0.17 0.83
13.27 3.32 0.07 0.93
21.66 5.41 0.02 0.98

Table 2.2: k_ and B for the distribution o} x*(m,0) with ;=4 and m=1.

Table 2.3 shows some typical values of k  and [ for the case m =4 and Gi =4.

kOL 1
ky — "k 1-B B
Ga
15.56 3.89 0.42 0.58
18.98 4.74 0.31 0.69
26.55 6.64 0.16 0.84
36.93 9.23 0.06 0.94

Table 2.3: k_ and P for the distribution o} x*(m,0) with 63 =4 and m=4.

Upon comparing Table 2.2 and Table 2.3 we note that at the same size of type I error and thus
at the same critical value k_, the 3 for the case m =4 is less than the [ for the case m=1. This
is also what one would expect, since by increasing the number of observations one would expect
to have a higher probability of correctly accepting H,. Show for yourself that the B-values of
table 3 will increase if instead of H, : Gi =4 we have the alternative H, : Gi =3.

Example 2

Assume that y is distributed as:

(16) y ~ N(Ely},0?)

with known variance 6°. The following two simple hypotheses are considered:

(17) H,: Ely =x, vemsus H,: Ey =x,>zx,.

With:
POl = @m) (@) expl- L -x,)]

and
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POl = @0 (@) expl-1 L x,7)

it follows that:

P, [xg)

(18) = = exp[-——l(y -x)> - (y -x,)].
p,0[xy) 2o 0 4

With (3) this gives:

(19) reject Hy if  exp[—- 510 -x)* -0 -xp)] < a.

Taking the logarithm of the inequality in (19) gives:
f%é{(y -x)* - (y-x)* < Ina.
Multiplication with -26* gives:
(6% —x0)2 -(y —xA)2 > o%lna

or 2

2y(x, ~xp) + (xg -x3) > o’lna"
or ,

2y(x, ~x,) > o’lna > +(x, —xq).
Since x, > x,, division by 2(x, -x,) finally gives:

_ 2 2
o’lna 1+%(xA -Xg)

y >
X4 =X

27

If we denote the right-hand side of this inequality by k_, we see that the simple likelihood ratio

test for this particular example reduces to:

(20) reject Hy if y > k.

a

The corresponding critical region K of this test is shown in Figure 2.4. Note that it is identical
to the critical region of Example 3 of the previous chapter, the one which was chosen on more
or less intuitive grounds. In Example 3 of the previous chapter we noted that a transformation

of y to the standard normal distribution was useful for computing the sizes o and 3. We might

therefore just as well write test (20) in terms of this transformed random variable. This gives:

. . Y =X k,—x, ..
(21) reject H, if > = new critical value
o o

with (y -x,)/c standard normally distributed under H,.
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XA

> reject
Figure 2.4: Critical region K for H, : Ely} = x, versus H, : Ely} = x, > x,.
Example 3

Assume that y is distributed as:

(22) y~xe”™ x>0, y=>0.

The following two simple hypotheses are considered:

(23) Hy: X =X, Versus H, X =X, < Xp-
With:

pOIx) = xge
and

p,Oxy) = xe

it follows that the simple likelihood ratio reads:

p,Olx)  x
(24) LA Dexp[-y(xy -x,)]-
pOlx)  x,
With (3) this gives:
] ) Xo
(25) reject H, if ~ —exp[-y(x,-x,)] < a.
Xa

Simplification of the inequality gives:

In[Aa] !
(26) "
Xo = X4

If we denote the right-hand side of this inequality by k_, we see that the simple likelihood ratio
test for this particular example is given by:
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27 reject Hy if y > k

a

Compare this result with Example 4 of the previous chapter.

2.2 Most powerful tests

In Section 1.4 of the previous chapter we presented the Neyman-Pearson testing principle. This
principle says to choose among all tests possessing the same size o, the one for which the size
of the type II error, B, is as small as possible. This statement is expressed in terms of [, the
probability that the sample will fall in the non critical region when in fact H, is true. It is
usually, however, more convenient to work exclusively with the critical region K. It is therefore
customary to calculate 1-[, which is the probability that the sample will fall in the critical
region K when in fact H, is true. The probability 1-f is called the power of the test and it is
denoted by vy. Thus:

The power v of a test is the probability of correctly rejecting H,. The power can be calculated
as:

(28) v = POek|H) = [p(ylxpdy
K

We can now rephrase the Neyman-Pearson testing principle in terms of the power 7y. This gives
the following definition of a most powerful test.

A test of H, : x = x, versus H, : x = x,, with a critical region K and a size o is defined to

be a most powerful test of size o if and only if:

@) a = P(yek \Ho)
and
(i) Y = P(XEK\HA) > P(yeK*\HA)

for any other test with critical region K and size o = P(yeK"|H,).

So far we have seen in our example that the simple likelihood ratio test produces critical regions
that are indeed intuitively appealing. We have however not yet considered the question of
optimality of the simple likelihood ratio test. The following important theorem, by Neyman and
Pearson, shows that the simple likelihood ratio test is a most powerful test.

Neyman-Pearson theorem: Let y be a sample or observation from p(y |x) where x is one of two
known values x, and x,, and let 0 < o0 < 1 be fixed. Let a be a positive constant and K be a
subset of the sample space which satisfies:
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(i) o = P(yeK|H,)

p,O[x) <a if yeK
(ii)

p,y [x,) >a if ye¢K.

Then the test corresponding to the critical region K, that is, the simple likelihood ratio test, is

a most powerful test of size o for testing H, : x = x, versus H, : x = x,.

Proof

To prove the Neyman-Pearson theorem, let K~ be any other critical region of size o. The
regions K and K may be represented geometrically as the regions interior to the indicated
closed surfaces in Figure 2.5.

Figure 2.5: Critical regions K and K of size a.
Since K and K" are both critical regions of size o

« = P(yeK|H,) = P(yeK"|Hy,)

or

(29) [0 xdy = [p,(v]xp)dy.
K K*

But, from Figure 2.5 it is clear that the integral over (2) which is the common part of K and K *,
will cancel from both sides of (29) and reduce it to the form:

(30) [p,01x)dy = [p,]xp)dy.
@ ®

Since the power of a test is given by the probability that the sample will fall inside the critical
region when H, is true, we have for the two critical regions K and K ":
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v = [polxpdy and v’ = [pOlx)dy.
K K*

Consequently we get for the difference in power:

vy = [p0lpdy - [pOlxpdy.
K K*

Since the integral over the common part cancels, this difference reduces to:
(31) Yy - y'= fpy(Y|xA)dy - fpy(yle)dy-
@ ®

Since region (D) lies in K, it follows from (ii) of the theorem that every point y of (1) satisfies
the inequality:

p,Ox) < ap(lxy)  for ye(D.
Hence:

1
(32) ({) PO ledy > é P,y [x)dy.

Similarly, since (B lies outside K, it follows from (ii) of the theorem that every point y of ©)
satisfies the inequality:

pOlx) > ap(ylxy)  for ye®.
Hence:

(33) [pIxpdy < % [p0/130dy.
o o

When the results (32) and (33) are used in (31), it follows that:

L1 1
vy -y > ;épy(y!xo)dy - ;épy(y!xo)dy-

But from (30), the right side of this inequality must be equal to zero, hence:

Y>>y
Since y* is the power of the test using any other critical region K * of size «, the preceding
analysis proves that the test corresponding to the critical region K is indeed a most powerful test
of size .
End of proof.
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Although the theorem does not explicitly say how to find the constant a and the region K,
implicitly it does since the form of the test, that is, the critical region K, is given by (ii) of the
theorem. In practice it is often, as shown in previous examples, not necessary to find a. Instead
the inequality of (ii) of the theorem for ye K is manipulated into an equivalent form that is easier
to work with, and the actual test is then expressed in terms of the new inequality. The following
example should make this clear.

Example 4

We will now consider the multi-dimensional generalization of Example 2. Assume therefore that
y is an mx1random vector which is distributed as:

(34) y ~ N(EY, ¢*I)

m
mx1 mx1 mxm

with known variance 6°. The following two simple hypotheses are considered:

H .

o EW = x

0

mx1 mx1 mx1 mx1

(35) versus H, : Ely = x,.

The situation is sketched in Figure 2.6. Figure 2.6 shows the location of the two simple
hypotheses H, and H, in the sample space R". It also shows the contours of constant density
of the distribution of y, and it shows the location of the sample point y.

Figure 2.6: The geometry of H, : Ely} = x, and H, : Ely} = x

Ar

In order to apply the simple likelihood ratio test we need to know the density functionsp (y|x,)
and p (y|x,). They read: B

Pl = @m) (e Pexpl -~ %) "0 %)l
and
P lxp = @m) 0% Mexpl S0 -x) (- x ]

Hence:
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P, |xp)
p,lxy

(36) = exp[—%i{(y—xo)*(y—xo) SCREANCEE AN

With (3) this gives:
(37) reject Hy if  exp [—éi{(y X)) 0-x) - (0-x)°(y —xA)}] < a.
We will now transform this inequality into an inequality that can be considered as the multi-

dimensional generalization of the inequality of (21). After taking the logarithm and multiplying
with 202, the inequality of (37) takes the form:

%) ¢ -%) — (0-x)(y-x,) > o’lna”?

or

* —
20x, ~x)) 'y +Xg Xy ~x,X, > o’lna .

By adding and subtracting 2(x, -x,)"x,, this can also be written as:

* * * 2 )
2(x, —x) (v —xy) - (x4x, —2x4x,+XyX,) > 0°lna

or as:

(38) 2(x, =X (y ~xp) > o’Ina 2 +(x, —xp)"(x, ~x,).

By denoting the length of the vector x, -x, by V:

= xol =V

and the unit vector in the direction of x, -x, by c:

X4 %o

||XA _x()”

it follows from substituting:

X,=Xy = ¢V

into (38) that:

2Ve “(y-x,) > o’lna >+ V2.

Division by 2Vo then finally gives:
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1

(39) OG- oa' 1o
o \Y 20

If we denote the right-hand side of this inequality by k_, we see that the simple likelihood ratio
test for this particular example reduces to:

X4 %o

COT L with o= AT

40) reject Hy if
Y ||.XA ~X "

This test can be considered the multi-dimensional generalization of test (21) of Example 2. The
form of the critical region K corresponding to test (40) is shown in Figure 2.7. For the case
shown we have ye K, implying that H is rejected.

Hp

Figure 2.7: Critical region K for testing H, : Ely} = x, versus H, : Elyl = x

"
Note that the scalar random variable:

c'(¥-xp)

o

(41) L -

has a standard normal distribution under H,. It is therefore rather straightforward to compute
from a table of the standard normal distribution the critical value k, and power v of the test for
a fixed size o. The critical value k  follows from:

“2) a = [@m) Pexp(-1 12z,
k o

[+2

Since the power 7y is given by:

y = P(yeK|H,) = P(z > k_|H,)
and since z is distributed as z ~ N(2,1) under H ,» 1t follows that:
v = [@m) Pexpl-1- - )l
k. ?

which can be transformed into an integral of the standard normal distribution as:
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(43) y = f(zn)’”zexp(—%zz)dz.
ka—Vlo

Note that the power 7, for a fixed critical value k_, is a monotone increasing function of V/c.
Thus vy gets larger if V gets larger. This is what one would expect. The further H, and H, are
apart (see Figure 2.7) the higher one would expect the power 7y to be. The power 7y also gets
larger if the standard deviation ¢ gets smaller. This is also what one would expect. The better
the precision of the observations, the higher one would expect the power 7 to be.

2.3 The w-teststatistic

Recall from Adjustment theory the linear model of observation equations:

(44) Ely} = Ax ; Dl = Q,, with  rankd=n, rankQ =m.

mx1 mxn nxl mxm mxm
Let us now try to find out if and how the theory of hypothesis testing, as developed in the
previous sections, can be applied for testing a model like (44). First of all we have to assume
a probability distribution for y. Since the normal distribution is adequate for most of the geodetic
applications, we assume that the mx1 random vector y is normally distributed with mean
Ely} = Ax and variance matrix Dfy! = Q. Our null hypothesis H, reads therefore:

“s) ok ML)

Note that the nx1 parameter vector x in (45) is unspecified. Hence, the above null hypothesis H,,
is a composite hypothesis. It seems therefore that our theory which so far only holds for simple
hypotheses, cannot be applied. The theory can be applied, however, if we are able to transform
(45) into a simple hypothesis. Recall from Adjustment theory the linear model of condition
equations:

(46) B'Elyl = 0 ; Dy} = Q,, with rankB=>b, rankQ =m.

bxm mx1 bx1 mxm nmxm

As we know, this model is completely equivalent to (44). We also know that the two matrices
A and B respectively of (44) and (46) satisfy the relation:

(A7) B"A -0.

bxm mxn bxn

Using this relation, we may also write (45) as:

H .

mx1 mx1 nmxm bxm mx1 bx1

This hypothesis is equivalent to the null hypotheses of (45), just like (46) is equivalent to (44).
H, of (48) is of course still a composite hypothesis. This follows since only b < m linear
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independent functions of Ely} are specified in (48). This leaves m-b linear independent
functions of Ely} unspecified. And m-b is equal to n, the number of unspecified parameters
in (45). Thus, since (48) is composite as well, no direct application of our theory is possible. As
was mentioned above however, the theory can be applied if we are able to transform (48) into
a simple hypothesis. This is therefore the approach we will take in this section. We define the
bx1random vector ¢ as:

(49) t =B y.

bx1 bxmmx1
Recall from Adjustment theory that this is the vector of misclosures (tegenspraken). Under the
null hypothesis of (48) the random vector ¢ is normally distributed with mean Ef#} = 0 and
variance-matrix Q, = B'Q B. Thus under H, we have:

/

(50) Hy: t ~ N(C0,Q, = B*QyB)

bx1 bx1 bxb

Note that this null hypothesis H, is a simple hypothesis. But, also note that (50) is not
equivalent to (48). That is, the hypothesis Ho/ follows from H, but H, does not follow from
H; . This is due to the fact that the matrix B of (49) is not invertible. Although the simple
hypothesis H, is not equivalent to the composite hypothesis H,, we will settle with HO/ and try
to test it against an alternative hypothesis. Then, if H, gets rejected, H, should be rejected too.
This is because H cannot be true while H, is false. On the other hand, if H, gets accepted one
should be very careful in accepting H,. H, can namely be false while H, is true. The following
example makes this clear.

Example 5

Assume that the true hypothesis is:
H_ y ~ N(Ax +Vy, Qy +VQy).

true
(51) mx1 mxnnx1l  mx1l mxm mxm

If Vy # 0 and/or VQ # 0, this hypothesis is clearly different from H, of (45). Now consider
the effect of H,__ on the distribution of ¢ = B"y. For the mean of 7 under H__ we have:

Eit|H_ J = B'ElAx+Vy = B'Vy.

And for the variance matrix of ¢ under H__ we have:

true

Qt‘Htrue - B *(Qy " VQ,V)B - Qt +B *VQ)’B.

Hence, the distribution of ¢ under H__ reads:
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(52) Htrue : r -~ N(B *Vy, Qt+B *VQyB)
bx1 bx1 bxb

In general this hypothesis differs from H, of (50). But if the vector Vy and the columns of
matrix VQy lie in the nullspace of B, that is, Vye N(B ") and R(VQ},)CN(B ), thenB *Vy = 0
and B *VQyB = 0. In this case H__ of (52) becomes identical to HO/ of (50), while H_ of (51)

true

still differs from H,, of (45). This shows that H can be false while HO/ is true.

Now let us have a look at an alternative hypothesis for H . Many different types of alternative
hypotheses may be considered. For instance, the alternative hypothesis may specify that y has
a mean Ax, a variance matrix Qy, but a distribution that differs from the normal distribution. Or,
the alternative hypothesis may specify that y is normally distributed with mean Ax, but with a
variance matrix that differs from Q . In these lecture notes however we will primarily be
concerned with alternative hypotheses that differ from the null hypothesis in the mean of y. The
reason is that in most geodetic applications the alternative hypotheses are used to model errors
or blunders in the observations. For instance, if we want to find out whether the ith-observation
is erroneous or not we may model the alternative hypothesis as:

(53) H, : y] ~ N( Ax 1+V)i, Q})
with
Vy = c, v, c, = ©O©-~010- 07 VeR.

(54)

mx1 mx1 1x1 ith

In this case, the scalar V is the error or blunder in the observation and the vector c, models the
error V to be in the ith-observation.

The vector Vy in (53) may also be used to model systematic errors in the observations. For
instance, if all observations contain a systematic error of V, the vector Vy of (53) takes instead
of (54) the form:

(55) Vy = Cy V ’ Cy = (1 1 1 1)*

mx1 mx11x1

These two examples show that one can model different types of errors in the observations
through an appropriate choice of the vector ¢ . Now let us consider the effect of H, on the
distribution of ¢ = By. It follows that the distribution of ¢ under H, is given by:

(56) Hy: t~NVt=BW,Q).

With the definitions:
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(57) Vy=1¢V and c, = B*cy

t
mx1 mx11x1 bx1 bxmmx1

we can write (56) also as:

(58) H, t ~N(c, V,Q,)

bx1 bx11x1 bxb

This hypothesis can be considered the alternative of H, of (50). The hypothesis H f( is a
composite hypothesis if the parameter V remains unspecified. In order to make it into a simple
hypothesis we will therefore assume that beside ¢, also V is known. For most geodetic
applications this is not very realistic, because one will hardly ever know a priori how large an
error in an observation will be if it occurs. In the next chapter we will therefore relax this
assumption and assume V unknown.

For the present application of the theory we have to assume however that (58) is a simple
hypothesis and therefore that V is known and positive. Now that we formulated the two simple
hypotheses H, and H A/ , we are in the position to apply our theory of hypothesis-testing. In order
to apply the simple likelihood ratio test we need to know the probability density functions of
t under H, and H, respectively. They read:

p,(t|Hy = @m) Q| exp[-+1°Q; 1]

and
p(t|Hy) = @m) Q" exp[-5(t-¢V)'Q, 't ¢ V.
Hence:
(59) p(tlHo = exp[-L1t"Q, 't -(t-¢V)'Q, 't -c W]
p(t|H,) 2
With (3) this gives:
(60) reject Hy (Hy) it exp[—~'Q; 't - (-¢V'Q, ' t-c V< a.

The inequality can be simplified to:

(61) ¢/ Q't >

1+l
36 Q, ¢V.

Since ¢,'Q, 't is distributed under H, as N(0,c,'Q, 'c), we may bring (61) into the standard
normal form by dividing by (c,"Q, 'c)". This gives:
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* ~-1
c t -1
(62) reject Hy (H,) if (@t el e’ Qe V.
\/CI*Q"ct \/ct*QtflctV

If we denote the right-hand side of this inequality by k_, and define the random variable w as:

* ~-1
Cc I3
(63) w= "1 Q1

* o~ -1
Ve, Q, c,

the simple likelihood ratio test reduces to:

(64) reject HO/ (Hy if  w>k, .

Note that the random variable w is distributed under HO/ (H) and H A/ (H,) as:
(65) HJ(H): w~NQO,1); H{(H): w-~N(c;Q, "cV.1.

The random variable w is called the w-teststatistic (w-toetsgrootheid) and, as we will see in later
chapters, it plays a very important role in hypothesis-testing for geodetic applications.

It is very illustrative if we interpret the simple likelihood ratio test (64) and the w -teststatistic
(63) geometrically. In order to do so we define the following innerproduct in the space R’:

(66) innerproduct between u,veR?: (U, v)g, = u QM.

The norm (or length) of a vector in R’ and the innerproduct of two vectors in R’ can be written
as:

xy 1
67) lulg = yu'Q us Vg = lulgvligecose o = <uy.

With these definitions we may write (63) also as:
(cog, _ llelg ltlgcose

/(ct, Ct)Qt "ct“Q

This shows that w is the orthogonal projection of 7 onto the line with direction vector ¢, (see
Figure 2.8).

= ltlg cosa.

1€

Figure 2.8: w is the orthogonal projection of ¢ onto c,.



40 Testing theory

In a similar way we may now also illustrate test (64) geometrically. This is done in Figure 2.9.
For the case shown we have ¢ K, implying that H, gets accepted.

Figure 2.9: Critical region K for testing HO/ versus H A/.

The w-teststatisic (63) has been formulated in terms of 7,0 and c¢,. We may however also
express w in terms of the original quantities y,Q and c . Substitution of:

t=B'y , Q = B*QyB and c, = B*cy

into (63) gives:

c.B(B'Q.B)'B*
68) w = yBB'QB) By

Je,BB'QB) 'B’c,

Now, recall from Adjustment theory that the least-squares residual vector é and its variance
matrix Q,, expressed in quantities belonging to the model of condition equations, read:

¢ - QBB'QB 'B'y
and
Q, = QB(B'QB)'B'Q,.

If we substitute this into (68) we get:

* o~y =1 A
(69) wo o 9@
V Cy* Qyiloéoyilcy

This shows that the w-teststatistic can be computed directly form the results of the least- squares
adjustment of either the model of observation equations (44) or the model of condition equations
(46). Also expression (69) can be interpreted geometrically. Recall from Adjustment theory that:
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é =U-P)y =Py,

(70) Q, = P;QP, = QP,'Q,'P,Q, ,

Q,'Py =P, Q'P, .
Using these results in (69) gives:
(Pyc) Q, (Pyy)

[(Pie)'Q, ' Psc)

(71)

Note that this expression has the same structure as (63). The geometric interpretation is therefore
very similar to the previous given one. We define the following innerproduct in the sample space
R":

(72) innerproduct between u,v,eR": (u,v), = u *nylv.
y
With this innerproduct we may write (71) as:

o (Pyc,Pay)o, i IPac,lg IP4¥lgcose

= ||PZy||QVcos o.

P,c
«ﬁ%mqo Facle,

This shows that w is the orthogonal projection of PAL y onto the line with direction vector P Al c,-
Note that PAL y and P Al c, are both the orthogonal projections of y and ¢ respectively on R(A)*,
the orthogonal complement of the rangespace, R(A), of A. Figure 2.10 gives a sketch of test (64)
in terms of quantities that are located in the sample space R".

R(A) Ly E{y|H,}
P V//rz;///);

dL
PAc

R(A)"
Figure 2.10: Critical region KcR" for test (64).

In order to see the theory at work we now will consider a typical geodetic example.



42  Testing theory

Example 6

Figure 2.11 shows a typical levelling network of four points with two loops.

Figure 2.11: A levelling network.

If we assume that the height x, of point 0 is known and equal to zero, the linear model of

observation equations reads:

—_

[\

(73)

K K k= K
w
Il

N

<
v

S O O

p—

Note that we have assumed that the variancematrix of the observables is equal to a scaled
identity matrix. We will also assume that the observables are normally distributed. The linear
model can of course also be expressed in terms of condition equations. In terms of condition

equations we get:

(74)

11100
o 01011

E

—_

w

y
XZ
y
y

N

s

The models (73) or (74) together with the assumption of normally distributed observables,
constitute our null hypothesis H, . Let us now consider the alternative hypothesis H,. For this
particular example we assume to know that if H, is false, then an error in observation y, has
been made of a known amount V. The alternative hypothesis in terms of observation equations

reads therefore:
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y, 1 0 0 0
vl |1 1 o] |1

(75) Hy: E{(up={0-1 0f|ln]|+|0|V ; Q =0
Y, 0 -1 1f|x) |0
Yy 1 0 -1 0

(76)

5

IIIOOE{)Z} 1V Q I
0101 1 3| > o T 9

With (74) and (76) we are now in the position to compute the quantities which are needed in the
w-teststatistic (63). The vector of misclosures, ¢ = By, and its variancematrix,Q, = B *QyB
follow from (74) as:

t) (v vy +y
17 P I
ZZ yZ * y4 * yS

10
11100 bl 31
(78) = o’l. |1 0| = o® .
< (0 101 1) > 13
01
01
The vector ¢, = B *cy follows from (76) as:
(79) c, = (1D

Substitution of (77), (78) and (79) into (63) results in:
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L3 )N TR TS
(1 Do
13 )Z2+)Z4+)Z5

Jo 1)

X1+2X2+X3+X4+¥5 ZleZZ
w = = .

022 022

I<
|

which gives:

(80)

With this result and a computed value for k, we are now able to execute the simple likelihood
ratio test. The power of this test follows from:

y = P(w>k, |H,)

v
02

or, since w is distributed under H, as w ~ N( ,1), from:

y = [ @m) " expl-Low-— -y 1dw
k, 62

f Qn) 2 exp[—%wz] dw.

81)

Again we note that the power y gets larger if V gets larger or ¢ gets smaller. Thus the
probability of detecting an error of size V in the observable y, gets larger if the size of the error
gets larger or when the precision of the observables gets better. But, apart from these two effects,
the power 7y can also be shown to depend on the design or structure of the levelling network. In
the case of Figure 2.11 the observable Yy, occurs in both levelling loops. Hence we have two
linearly independent condition equations with which a possible error in the observation can be
detected. One would expect that the power decreases if Y, would occur in only one condition
equation. In order to verify this we consider the situation as sketched in Figure 2.12. In this case
Yy, occurs only in one levelling loop.
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Figure 2.12: A levelling network with one loop.

Following the same kind of derivation as above one can show that the w-teststatistic for
detecting an error of size V in the observation y, reads:

(82) wi=s ——— ==, (prove this yourself)

Since w" is distributed under the alternative hypothesis as w"~N( v ,1), the power of the test
becomes: cy3

o

(83) y' o= f (2m) Pexpl - w?ldw.

k*v
LI

A comparison of (83) with (81) clearly shows that y > y". Thus a simple likelihood ratio test
of size o based on the configuration of Figure 2.11 has a higher probability of detecting an error
of size V in the observation y,, than a simple likelihood ratio test of size o based on the
configuration of Figure 2.12. This conclusion shows how important it is when designing geodetic
networks to make sure that an observation occurs in enough condition equations.

In the previous example we have seen that the power of the simple likelihood ratio test of size
o. depends on:

1) V, the size of the error;
2) o, the precision of the observations; and
3) the design or structure of the network.

It is important to realize that this is not only valid for the case considered in the previous
example, but that it is also valid for the likelihood ratio test (64) in general. This can be seen as
follows. We know that the power of the simple likelihood ratio test of size o (64) can be
computed as:
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y = P(yeK|H,) = Pw > k |H,).

Since w is distributed under H, as w~N ( ct*Q[lct V.1), it follows that:

v = [ @) Pexpl-L(w-e/Q, ¢ 9 1dw
k(!

or that:

©

(84) y = f (2m) Pexpl 1w dw.
kg - \/c:Q;lctV

. . . . -1
This shows that vy, for a fixed size o, decreases if V decreases or ¢, Q, c, decreases. The
precision of the observations and the structure of the network are contained in the scalar
* -1 . . . * -1
¢, O, c,. This can be seen if we write ¢, Q, ¢, as:

* o~ 1 * * - *
(85) ¢, Q, ¢, = ¢,BB'QB 'Bc,

The structure of the network is reflected in matrix B and the precision of the observations in
matrix Qy.

To conclude this section we have summarized in Table 2.4 the various steps which were
followed in deriving the w-teststatistic.
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y normally distributed with D{y} = Q, rankQ = m

mx1 mx1 mxm
Ely} = Ax ,rankA = n Elyl = Ax +¢ V
mx1 mxnnx1 mx1 mxnnx1l  mx11x1
HO: or H K or

B'Ely} = 0, rankB = b B'Ely} =B'c V

bxm  mx1 bx1 b=m-n bxm  mxl bxmmx11x1

composite \L \L composite
Transformation
t=BYy

EWl = B'EY ; Q,=B'QB

t

\ \J

Hy: Elt} =0 Hi: Elt} = ¢V , ¢, =B'c,
bxl bxI bx1 bxlixl  bxm  bxmmxl
simple simple

Simple likelihood ratio test of size o

reject H, (H) if w>k,

* ~ -1 ¥ s
Ct Qt £ Cy Qy g
K = =

Je'0le,  |e/0,'00 ",

Table 2.4: The simple likelihood ratio test by the w-teststatistic.
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2.4 The v-teststatistic

In the previous section it was shown that the simple likelihood ratio test of size o for testing:
@0 h:EW -0 , D = Q versus Hy Ei) =B'eV=cV , D = Q,

was given by:

(87) reject HO/ it w>k,
with

¢Q 't
(88) w=——

* o~ -1
/e, Q, c,

The simple hypotheses of (86) were obtained from the composite hypotheses:

(39) Hy Ely} = Ax, Dly} = Q, versus H,: Ely} = Ax+c )V, Dyl = Q

Yy

through the transformation ¢ = By with B"A = 0. It was also shown that the w-teststatistic
(88) could be expressed in terms of quantities located in the sample space R" as:

* =1 A

(90) w =

Furthermore it was pointed out that rejection of Ho/ implies rejection of H,, but that acceptance
of HO/ not necessarily implies that one should accept H,,. Finally an example was given, showing
how the theory could be applied for detecting errors of known size in the observations.

In this section we consider a testing problem that, although mathematically equivalent to the
above given testing problem, occurs when one wants to test the significance of parameters. We
will derive the appropriate simple likelihood ratio test of size o and the corresponding v-
teststatistic. Let us assume as before that the mx1 random vector y is normally distributed with
full rank variancematrix Q. The following two hypotheses are considered:

(91) Hy Elyy = Ax ; b'x =0 versus  H, Elyl = Ax ; b'x =V .

mx1 mxnnxl  1xnnxl 1x1 mx1 mxnnx1l  1xnnx1 1x1

The two hypotheses H, and H, differ in the sense that under H, it is assumed that the linear
function of x, b "x, is identical to zero, whereas under H, it is assumed that this function is

identical to the known scalar V#0 Thus, what we would like to find out is whether

b *x 0 or b *x =Y. Note that H of (91) is of the mixed model type which was discussed in
Chapter 5.3 of Adjustment theory. In order to be able to apply the theory of the previous section
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we will first show how to rewrite the above H, and H, in such a form that their structure is
equivalent to the hypotheses H, and H, of (89).

Consider the inhomogeneous equation:

(92) b'x = V.

Ixnnx1 1x1
We know that its solution is given by the sum of a particular solution and the homogeneous

solution. A particular solution of (92) is:

(93) x.. =bbb)'V.

part.
In order to find the solution of the homogeneous equation:
94) bx =0
1xnnx1 1x1

we denote the nx(n-1) matrix of which the columnvectors are orthogonal to b by b*. Then:

(95) b b+ = 0

1xnnx(n-1) 1x(n-1)
With (95) the parametric representation of the homogeneous equation (94) becomes:
(96) x = bt A

nx1 nx(mn-1)(n-1)x1

The general solution of the inhomogeneous equation (92) is therefore given by the sum of (93)
and (96):

O7) x = b'A + b(b°b)'V.

Now, since (96) is equivalent to (94) and (97) is equivalent to (92), the hypotheses of (91) may
also be written as:

(98) Hy: Elyl = Ab*L versus H,: Ely} = Ab*L +Ab(b'b) 'V.

Comparison of (98) with (89) shows the equivalence in structure. That is, the matrix Ab~* of
(98) plays the role of the matrix A in (89), and the vector Ab(b *b)™" of (98) plays the role of the
vector ¢ in (89). Because of this equivalence in structure of the hypotheses, the simple
likelihood ratio test for the present testing problem will have the same structure as the test
developed in the previous section. The corresponding teststatistic, which will be denoted by v,
follows then if we replace c, in (90) by Ab(b "b)™":

(b'b)'b'AQ, ¢

99) v = :
J®°'b)'b°4°Q,'Q,Q, 'Ab(b b) !

The least-squares residual vector ¢ and its variancematrix Q, in formula (99) correspond to the
least-squares solution of model H in (91). Recall from Chapter 5.3 of Adjustment theory that
the least-squares solution of the mixed model:
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(100) Ey} =Ax , bx=0
reads:

£,=0AQYY . Q, =AQ D"
o £ = [1-Q,bb'Q )b I,

v = AX

é =y-y.

From this follows that:

é =y-AX +AQ,b('Q.b)'b'%, , and
(102) A A A A

- * * -1z, * *
Q, = Q-AQ. A" +AQ, b(b'Q, b 'h'Q A" .
In (99) we need A°Q,'¢ and A'Q,'0,0,"'A. With (102) this gives:

Q¢ - b'Q )bt . and
‘Q,'0,0,'4 = bb°Q, b)'b" .

(103)

Substitution of these results into (99) gives the following simple expression for v-teststatistic:

b'x
4

/pQ, b

The corresponding simple likelihood ratio test of size o for the testing problem (91) reads
therefore:

(104) v =

(105) reject H, if v > k_.

Note that this test is also intuitively appealing. For instance, if b = (0 ... 1 0 ... 0)"
ith
then @A =X and b'Q.b = (5?, and the v-teststatistic reduces to v = £ / ¢., implying that
T, A A - - i, Iy

H, gets rejected if £ is larger than k_  times G,. Since ﬁA is distributed underH,

as £ ~N(b*A+b(b'b)'V,Q,) it follows that v is distributed under H, as v~N (L,l).
—A Ay - -

The power of the test (105) reads therefore: N4 *QﬁAb
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(106) v= [ e expl-lvidy.

Example 7

We assume to have measured the levelling network as shown in Figure 2.13.

2

Figure 2.13: A levelling network.

We assume that the observables are normally distributed, uncorrelated and have equal variance
6. The following two hypotheses are considered:

) 1 0
Xy X1
Hy: El|y,|1=|-1 1 [ J a —1){ ]=0
X, Xy
0 -1 ‘
313 /
(107) versus:
Yy 1 0
Xy Xy
H, : E|y|i-|- 1[ ] a -l '|=v.
u7) Xy
y] L0 -1

Thus, what we would like to find out is whether the height difference between the points 1 and
2 equals zero or equals V. In order to compute the teststatistic v of (104) we need the vectors
b and XA , and the variancematrix QXA. According to (107) vector breads b=(1 -1)". The VectorﬁA
and matrix Q«fA follow from a least-squares adjustment of the model:
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Y, 1 0
Xy
E{Y |1 =|-1 1
X2
Y, 0 -1
this gives:
2 -1 1 (21
-2 -1 2
= (o = —0
Q*A ( (—1 2)) 3 (1 2)
and
A yl‘
A_El_ 171072X_12y1_2_y3
I P “lo 1 -1 3y +y -2y
X3
Substituting these results into (104) finally gives:
_ ¥, =29, *y,

0/6




3 Testing of composite hypotheses

3.1  The generalized likelihood ratio test

In the previous chapter we considered testing a simple hypothesis against a simple alternative.
We return now to the more general hypotheses-testing problem, that of testing composite
hypotheses. We will assume that the ;%1 vector random variable y is distributed as:

(1) y ~pOx) with x €

mx1 nxl

where @ is a set of possible values the nx1 vector x may take. The following two composite
hypotheses are considered:

2) Hy: xe€®, versus H, : x e®\D,.

nx1 nx1

Where ®\®, is the subset of @ that is complementary to ®@,. Thus @\ = xe D [xg D .
We begin by discussing a general method of constructing a test for testing H,, against H,.

The generalized likelihood ratio test is defined by:

max p,(y|x)
xed
reject Hy if ——° <
max p,(y|x)
xed
3)
max p,(y1)

o XED
accept H, if L(y!) >

max p (y|x
xed ¥

where a is a nonnegative constant.

Note that the ratio of (3) lies in the closed interval [0,1]. The ratio is larger or equal to zero since
we have a ratio of nonnegative quantities, and the ratio is less than or equal to one since the
maximum taken in the denominator is over a larger set of parameter values than that in the
numerator; hence the denominator cannot be smaller than the numerator. Also note that although
(3) resembles the simple likelihood ratio test (see (3) of Chapter 2), it does not reduce to the
simple likelihood ratio test for @ = {x,,x,. The simple likelihood ratio is namely not restricted
to the closed interval [0,1]. The nonnegative constant a is taken to lie in the open interval (0,1).
The value a = 0 is excluded, since we would like to reject H,, if the ratio in (3) equals zero. And
the value a=1 is excluded, since would like to accept H, if the ratio in (3) equals one. The
generalized likelihood ratio test makes good intuitive sense since the ratio in (3) will tend to be
small when H, is not true, since then the denominator of the ratio tends to be larger than the
numerator. In general (but not always), a generalized likelihood ratio test will be a good test. One
possible drawback of the test is that it is sometimes difficult to find maxp (y |x) ; another is that
it can be difficult to find the probability distribution of the ratio which is required to evaluate
the size o0 and the power v of the test.
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Example 1

Assume that the scalar random variable y has the following probability density function:

4) pOxX) = x>, x>0,y 2>0.

The following two hypotheses are considered:

(5) Hy:x =x, versus H, :x < x,.

Thus in this case ® = xeR|0 < x < x}, @, = {x} and P\P, = xeR|0 < x < x,}. Note that H,

is a simple hypothesis, whereas H, is a composite hypothesis. In order to perform the

generalized likelihood ratio test we need:

max py(y|x)
X:XO
and
max  p (y[x).
0<ux < Xo
The first maximum is trivial and reads:
(6) max p(y|x) = xge .

X:XO

The second maximum is a bit more complicated to derive. Let us first consider the maximum
problem without the restrictions on x:

(7) max p (y[x) = max xe .
X X

From Elementary calculus you know that a necessary condition for x_  to be a solution of (7)
is:

d yx
PO, = € Ay = 0.

From this follows that:

®) X o=

max

< |-

From Elementary calculus you also know that x_  corresponds to a maximum if:

d? yx
QPXQ’PC)X -y Y€ P2 -yx .0 < 0.

Substitution of (8) shows that the inequality is indeed fulfilled. Thus, x = i maximizes:
xe " and Y



Testing of composite hypotheses 55

max p(y|x) = iel.

Let us now consider the maximization problem with the restrictions on x:

max p(y|x) = max xe .
0<x<x 0<x<x
We know that x_ = 1/y produces the maximum for the case without restrictions. But if

x = 1/y < x,, it will also produce the maximum for the case with the restrictions. Hence:

ma:

< X,

) max p (y|x) = ie‘ if o

0<x <X

|-

Let us now consider what happens if l > x,. Figure 3.1 shows a sketch of xe ™ with its
maximum at x = 1/y:

; -
Xp Xmax=1'y X

Figure 3.1 : Sketch of graph of xe .

. 1 . .
This shows that for the case 0 < x < x, and x_ = — > x, the maximum of p (y|x) is reached

at x,. Thus: Y
(10) max  p Y = xe 0 i L > x.
0<x <x
From (6), (9) and (10) follows therefore:
max p,(y|[x) 1 if yx, <1
(11) 7% -
Ofiafx() p,O®) Xo€ RIS VX, > L.

Since ae (0,1) we may restrict ourselves to the second equation of (11). This gives with (3) the
generalized likelihood ratio test:

(12) reject Hy if yx, > 1 and yx.e 0% o g
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Write:

(13) 2 = yx,,

and note that the function ze " has its maximum at z = 1 (prove this yourself). Hencez > 1
and ze ©" < a if and only if z > k, where k is a constant satisfying k > 1 (see Figure 3.2).
We see therefore that the generalized likelihood ratio test reduces to:

reject H, if yx, > k, where k > 1

or

(14) reject H, if y > k_, where k, > Xy

Compare this with Example 4 of Chapter 1.

-(z-1)

1 k z

Figure 3.2 : Graph of ze ¢V,
Example 2

Assume that the scalar random variable y is normally distributed with variance o*. The
following two hypotheses are considered:

(15) H, : Ely} = x, versus H, : Ely > x,.
The numerator of the likelihood ratio reads:

(162) max p(yx) = pOlxg) = @n) "*(0?) Pexp[-~(-xp)’].

x=x0

The denominator of the likelihood ratio is given as:

(16b) max p (y|x) = max (2n)’l/2(02)’1/2exp[—%i2(y—x)2].

)CZ)CO )CZ)CO

The solution to this maximization problem is given by (see Figure 3.3):
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(2n) Y2 (o?) 12 if y = x,

max p,(y]x) -

(17)
x 2 %, 2n) P(eH) 1 exp[f%#(yfxo)z] if y< x,

(a)

Y  ZXmax“X0

(b)

Figure3.3:0 (a) Maximizationmﬂj)y(y]x) for y 2 x,, x 2 x,
(b) Maximization of p (v|x) for y < x, x > x,.

From (16a) and (17) follows:

max p(yx)  fexp[- -~ (r-xp)°] if ¥z x,

(18) i S o

mai pOo® | T
This gives with (3) the generalized likelihood ratio test:
(19) reject Hyif y > x, and exp[f%é(yfxo)z] <a.

The second inequality can be rewritten as:

2
(y—xo] > Ina 2.

o

This, together with the first inequality of (19) gives:

-X -X
Y, 0 and Y, (Ing )2
o o

57

or simply (y -x,)/c > k, with k > 0. The generalized likelihood ratio test reduces therefore to:
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Yy —X
(o)

reject H if > k, with k, > 0.

Note that (y -x,)/c has a standard normal distribution under H,. Compare the above result with
Example 3 of Chapter 1.

Example 3

Again it is assumed that the scalar random variable y is normally distributed with variance 67.
The following two hypotheses are considered:

(21) H, : Ely} = x, versus H, : Elyl # x,.

Again the numerator of the likelihood ratio reads:

(22) max p(y[x) = 2n) "*(6?) " exp[-2—(y -xp)].

- 20'
X = Xy

The denominator follows as:

(23) max p,(y[x) = max 2m) *(c®) " exp[-- (-] = @n) (D).

X X

From (22) and (23) follows therefore that:
max p,(y/)

(24) o N LI AT
max Py()’|X) expl 202(y %)l

With (3) this gives:
reject H, if exp[f%iz(yfxo)z] <a.
If we denote Ina 2 by k. this reduces to:

Y =X
g

2
reject H if ( ) > k, with k, > 0

or to:

—X — X,
(25) reject Hy if 20 < -k o 105 gl
o o

Compare this result with Example 2 of Chapter 1.
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Example 4
It is assumed that the mx1 vector random variable y has a probability density function:

(20 POI%,0Y) = @m) (@) expl-2L(-ex) (- en)]

with e = (1,1,-,1,1)". The following two hypotheses are considered:

mx1
2 2
(27) Hy x =x;, o’ = o, versus H, x = x;, o’ > Og-

The numerator of the likelihood ratio reads:

_ 2_ 2
X =X, 0" =0y

(28) max  p(y|x,0%) = (2m) "(op) " expl -1y -ex)) (v -exp)l.
%o

The denominator follows from:

(29) max  p(y[x,0%) = max 1) (6% ™" exp[- (v -ex) (v -exp)l.
2. 2 2 2 o
X =Xp,0 20, 0" 20

59

Let us first consider the unrestricted maximum of p (y|x,,0%). The following holds (prove

yourself):
(30) é P,0150:0) = plxg.0?) Lot - (-mo” 4 (y-ex) (v -exp)
and
i; P,01%,0%) = 15,0 - 0 - I+ Do? = (r-exg) & -exglP = (7 + Do,
(31)

Setting (30) equal to zero gives:

(32) ofm = i(yfexo)*(yfexo).
Substitution of (32) into (31) shows that the second derivative of pv(y|x0,(52) at 62 = o
negative; hence 0. maximizes pv(y|x0,(52). This shows that: B

max

(33) max 2py(y|x,02) = (27) "(0pg) " expl 1 ~€x) (¢ ~ex)] i Opyy > 0.

_ 2
X=Xj,0” 20

For the case that G, <(5(2) it follows from Figure 3.4 that:

max —

max

I



60 Testing theory

(34) max plnod) = @m)"P(og) " expl-1 L0 -ex) G -expl i opy < op.
Lh)

_ 2
X=Xg, 0”20

o

py(y|x0,0?)

o2

o

2
Omax o

Figure 3.4: Graph of p (y[x,.6%).

We may now collect our results. From (28), (32), (33) and (34) follows then that:

m
) 2 \7 2
max pX(Y|x90) O max |2 1 max . 2 2
22 exp[-——m -1 if o, > o
(35) X =Xq,0” =0 2 2 2 max
~\ % Go
2
max p, (y[x,0%)
. 2 2
xrxo,ozzo(z) 1 if Omax < Op
Hence, the generalized likelihood ratio test becomes:
2 \Z 2
(36) . . 2 2 Omax | 2 1 max
reject H, if o, = o, and exp[--m——-1]1<a
Og o
Write:
52
(3’7) Z — max
2
Go

and note that the function z ;exp[—%m(z -1)] has its maximum at z=1 (prove this yourself).
Hence, z= 1 and z Zexp| —%m(z -1)]<a ifand only if z>k_, where k_ is a constant satisfyingk =1
(see Figure 3.5). We see therefore that the generalized likelihood ratio test (36) reduces to:

2

max

S > k,, where k> 1

To

reject Hy if

or with (32) to:

(v —exy) (v -ex,)
2

mag

(38) reject H, if > k,, where k> 1.
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1 22expl-im(z-1)]
a
>
1 kq z

m

Figure 3.5: The graph of z 7exp[—%m(z -1)].

Compare this result with Example 1 of Chapter 2. Note that (y -ex ) (y —ex,)/ o, is distributed
under H, as a central x’-distribution with m degrees of freedom.

Example 5

It is assumed that y has the same probalility density function as in the previous example. The
following two hypotheses are considered:

39 . - 2 _ 42 . - 2 2
(39) Hy. x =x,,0" =0, versus H,. x =1x,, 0" # 0.

The numerator of the likelihood ratio is identical to (28) and reads:

(40) max  p(y|x, 0% = 2m)"X(0p) ™" expl-1-L(y-ex) (v ~exp)l.

_ 2_ 2
X =X, 0" =0

The denominator of the likelihood ratio is given by the unrestricted maximum of py(y|x0,(52).
From the previous example we know that: B

(41) 2 (y-exy) (v -exp)

Omax

m

maximizes p, (y|x,,0%): Hence:
42) max p (y|x,0%) = 21) "(0},,) " eXP[—éo%(v ~exy)"(y ~exp)].

X =X, 0

From (40), (41) and (42) follows then:

max  p (y|x,0%) , \m X

43 x=%,,0%=0p O max |2 1 O max

(43) - | expl-om|——-1]I.
max p,(y|x,0%) o og

X=Xg,0
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The generalized likelihood ratio test reads therefore:

m

44) reject Hy if 2 expl-m(z-D] < a
with

02
(45) z = m;ax.

Op

Since the function in (44) has a maximum of 1 at z = 1, it follows that the generalized likelihood
ratio test may also be written as:

reject Hyif 0 <z <k, or =z >k, where kK, < 1and k, > 1.

1

With (41) and (45) this gives:

(y_ex())*(y_ex()) <k or (y_exo)*(y_exo) >k

2 1 2 2
moy mog

(46) reject Hy if 0 <

where /’cl <1 and /’c2 > 1.

A sketch of the critical region K of this test is given in Figure 3.6. Compare this figure with
Figure 2.3 of Chapter 2.

FigureD3.6:riticaldegionX forkstl46).

3.2 Uniformly most powerful tests

Recall that the power y of a test is defined as the probability of correctly rejecting H, . In case
of a simple alternative hypothesis H, the power can be calculated as (see (28) of Section 2.2):

(47) v = pQeK|Hy) = [p,0v]x,)dy.
K

For more general classes of alternative hypotheses, the power will depend on the particular
alternative value of the parameter x being considered. In order to determine how good the chosen
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test may be, compared to a competing test, it is therefore necessary to compare the power for
all possible alternative values of x rather than for just one alternative value as in (47). For this
purpose, it is necessary to consider the calculation of the power as a function of x. This leads
to the concept of the powerfunction y(x).

The powerfunction y(x) of a test is the function of the parameter x that gives the probability that
the sample or observation will fall in the critical region of the test when x is the true value of

the parameter.

The powerfunction y(x) can be calculated as:

(48) v = [po]0dy
K

In terms of the powerfunction we now define an optimum property that a test may possess. Let
Y(x) be the powerfunction corresponding to the critical region K, and let y'(x) be the
powerfunction corresponding to the critical region K. A test of H,: xe @, versus H,: xe P\ @,
with critical region K, is defined to be a uniformly most powerful test of size o if and only if:

) a = max y(x) , and
xe®d,
(i1) Y(X) z v'(x) , Vxe®\®, and for any test with critical region K and size
o =max Y'(x).
xe®,

The adverb uniformly in the above definition refers to all alternative x values. As we will see,
a uniformly most powerful test does not exist for all testing problems, but when one does exist,
we can see that it is quite a nice test since among all test of size o it has the greatest chance of
rejecting H, whenever it should.

In some cases when H, is simple and H, is composite it is possible to find a uniformly most
0 p A p p y
powerful test with the help of the Neyman-Pearson theorem. Assume:

(49) Hy; x=x, versus H,; xe®\ix/.

Now choose a particular x say x, from ®\{x,/. Then according to the Neyman-Pearson theorem
the simple likelihood ratio test:

<a

(50) reject Hy if ———
p,(|x)

is a most powerful test for testing:
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Gh Hy, x =x, versus H/;: X =X,
Now, if it is possible to show that the same test (50) follows when x,€ ®\lx,! is replaced by
another arbitrary parameter from ®\lx, then this test is a uniformly most powerful test. If this
is not possible, then no uniformly most powerful test for testing (49) exists.

Example 6

Let the probability density function of y be given as:

(52) pOxX) =xe™, x>0,y >0,

From Example 3 of Chapter 2 we know that the simple likelihood ratio test for testing:

(33) Hy.  x=x,  versus H/;: X=X,< X
reads:
54 i if 0
(54) reject H, if = exp[ -y(x, ~x,)] < a.
4
The inequality can also be written as:
Xg
(55) y(x,-x,) > In[=a] ™.
%o
And this inequality reduces for all x, < x, to:
X
In[“4q]!
(56) X,
y >
Yo "%
Thus the test:
(57) reject Hy if y >k,
is a uniformly most powerful test for testing:
(58) Hy x=x, versus H;: x < x,.

On the other hand, inequality (55) reduces for all x, > x, to:
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(59) X
Xo " X4
This shows that the test:

(60) reject Hy if y <k,

is a uniformly most powerful test for testing:

(61) HO: X =X, Versus HA: X > X,

Since the two tests (57) and (60) which correspond to (58) and (61) respectively, are not
identical, it follows that no uniformly most powerful test exists for testing:

(62) H,: X =X, versus  H,: X # Xy

Thus the generalized likelihood ratio test for testing (62) cannot be a uniformly most powerful
test.

Example 7

Assume that the scalar random variable y has a y*(m,\) distribution. Its probability density
function reads then:

(63) pOIA) = e

The following two hypotheses are considered:

(64) H,:

o A =0 versus H,: A>0.

In order to derive a uniformly most powerful test, we first consider the following two simple
hypotheses:

(65) H.-

o A =0 Versus H/;: A=x, >0.

The simple likelihood ratio reads then:
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m

yz_lexp[—éy]
P00 2%11(%)
p,v[1y eA_ZAXw: (%)j)”_;%1 GXP[_%)’]
R S V)
or
00 1
p,v[Ay) ) g (%)jyjf‘(%).
o 7

RN CR)

This function is clearly a monotone decreasing function for y. From this follows that
p,(»0) / p,y|A,) <a if and only if y>k,, where k_ is some positive constant. Hence, the most
powerful test for testing (65) is:

(66) reject H, if y >k where  k, > 0.

o b

Since the inequality y>k_ is independent of A,> 0, it follows that (66) is the uniformly most
powerful test for testing (64).

Example 8

Assume that the scalar random variable y has an F(m, n, A) distribution. Its probability density
function reads then:
o (Pyy2?
5 Yy

1(m

7ty

1w ’_zn T omen
i =) T+
2 n 2

0<y<oo.

(67) pO[A) = e _
"I TE )

The following two hypotheses are considered:

(68) Hy:

o A=0 wversus H,. 1>0.

A

In order to derive a uniformly most powerful test, we first consider the following two simple
hypotheses:
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(69) H: A=0 versus Hf;: A=1,>0.

The simple likelihood ratio reads then:

m m

y? ()T

G0 N
p,|0) (1+2y)>" "TE ()
py(y | )”A) Q J %*f

a= ()Y
>

71(m)’_2n +j F(m+n +~)
2 " 2

e

1 (m

=0 . m ) n m | o
7Oy T T )

or
P00 1
POTD e iy Teres
7T 1L+ Y T )
or
pOI0) 1
P12 4 (%)j(%)jr(g)r("’z*"+,)
e

7 1 YT I )

This function is clearly a monotone decreasing function of y. From this follows that
0y 10) / Oy M) <a if and only if y > k_, where k_ is some positive constant. Hence the most
powerful test for testing (69) is:

(70) reject H,if y >k, , wherek, > 0.

Since the inequality y>k_ is independent of A,>0, it follows that (70) is the uniformly most
powerful test for testing (68).

In the above Example 6 we discussed a testing problem for which no uniformly most powerful
test exists. Unfortunately there are many such hypothesis-testing problems for which no
uniformly most powerful test exists. In fact, this is the case for all testing problems that will be
considered in the remaining part of these lecture notes. The reason why a uniformly most
powerful test does not exists for a particular testing problem is usually due to the fact that one
considers a class of critical regions which is too large. The idea is therefore to restrict the class
of critical regions and to search for a uniformly most powerful test in this restricted class. One
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way to restrict the class of critical regions is based on the principle of invariance. The following
example should make this idea clear.

Example 9

It is assumed that the mx1 random vector y is distributed under H, and H, as:

H .

71 oo Y~NO,I) versus H: y~Nx#0,1 ).

mx1 mx1 mxm mx1 mx1 mxm

Now consider the invertible linear transformation:

(72) v = Ry (R exists).

mx1 mxm mx1

Then in terms of v the hypotheses H, and H, become:

H .

(73) oo ¥ ~ NO.RR" versus H: v ~ NRx# 0 ,RR").

mx1 mx1 mxm mx1 mxm

Now we note that if RR" = I,, (R is an orthogonal matrix), then (73) can be written as:

H_:

(74) 0 v ~NO,I ) versus H;: v ~NRx#0,1 ).

mx1 mx1 mxm mx1 mx1 mxm

Comparison of (74) with (71) shows the equivalence of the two testing problems. We say that
the testing problem (71) is invariant under the transformation (72) if matrix R is orthogonal
(RR " =1 ). Because of the equivalence of (71) and (74), we would of course also like to have
the same test for both problems. This implies that if K is the critical region for the test of (71),
K should also be the critical region for the test of (74). Thus, if ye K then also ve K and ify¢ K
then also v¢ K. But since v = Ry, this implies that K should be invariant for this transformation.
From (72) follows with RR* =1 or R* = R that:

(75) v'v =y'R'Ry = y'R 'Ry = yy.

From this follows that the critical region K must have a (hyper) spherical shape with its centre
at 0. Hence this leaves us with the following two possibilities:

K. = {yeR™ ‘y < ¢}, or
a6) = | yy <c
K, = yeR" | y'y > c,).

Within this restricted class of critical regions we may now try to find a uniformly most powerful
test. If it exists, it is called the uniformly most powerful invariant test. The scalar random
variable y’y has a y’-distribution and is distributed under H, and H, as:
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(77) Hy:

o Yy -~ x2(m,0) versus H: yy ~ x2(m, A).

From Example 7 we know that the critical region K, of (76) gives the most power. Hence, the
uniformly most powerful invariant test of (71) reads:

(78) reject Hy if y'y > k.
Now let us have a look at the generalized likelihood ratio test of (71). It is given as:

max p(y[X)  2m) 2 exp[-1y°y]
x=0 _ 2 < a.

max X -z

‘ p,O|%) om)

But this inequality reduces to the same inequality of (78). We have reached therefore the

important conclusion that the generalized likelihood ratio test of (71) is a uniformly most
powerful invariant test.

Without proof we now state that all generalized likelihood ratio tests of the next chapters are in
fact uniformly most powerful invariant tests (for a proof see (Arnold, 1981)).






4 Hypothesis testing in linear models

4.1 The models of condition and observation equations

In this chapter we will derive and discuss the generalized likelihood ratio test for the important
case of linear models. In this section we consider the linear models of both condition equations
and observation equations.

We assume that the mx1 vector of observables y is normally distributed with known
variancematrix Q :
y

(1) ¥y~ NEYL Q).

mx1 mx1  mxm
It is assumed that matrix Q is of full rank. The hypotheses that will be considered in this
chapter are all hypotheses on the mean, Efy}, of y. The following two hypotheses are
considered:

) H,: B'E{y) =0 wversus H,: B'Ely} =C,V, V+0

bxm  mx1 bx1 bxm  mxl bxqgx1

It is assumed that rankB = b, rankC, = ¢ and that the gx1 vector V is unknown under H,. Note
that both the hypotheses H, and H, are composite if b < m. If b = m, then the hypothesis H,
reduces to a simple hypothesis. The hypotheses of (2) are formulated in terms of condition
equations. As we know a completely equivalent formulation is possible in terms of observation
equations. In order to transform (2) into observation equations we consider the inhomogeneous
system of linear equations:

3) B'EWl=CV.

bxmmx1 bxggx1

We know that the solution of this inhomogeneous system is given by the sum of a particular
solution and the solution of the homogeneous system. If the mxg matrix C, is defined such that
it satisfies B'C =C,, the particular solution of (3) is given by:
(4) Elyl,, = CV, rankC = gq.

mx1 mxqqgx1
The homogeneous solution is the solution of B "Efy}=0. If we denote the mx(m - b) matrix of
which the columnvectors are orthogonal to the columnvectors of matrix B by A, thenB "A =0
and the homogeneous solution becomes:
(5) Elyl = Ax , with m-n = b.

hom
mx1 mxnnx1

Taking the sum of (4) and (5) given the solution to (3):



72 Testing theory

(6) Elyl = Ax + C,V.

mx1 mxnnx1 m><qq><1

In terms of observation equations the two hypotheses of (2) read therefore:

@) Hy:E{yl= Ax versus H, : Ely} = Ax +C,V, V #0

0 -
mx1 mxnnx1 mx1 mxnnx1 m><q gx1

Both the matrices A and C, are of full rank. Thus rank A = n and rank C =q. Furthermore rank
(AiCy) = n+q. In practical applications the formulation of the hypotheses of (2) and (7) is
usually achieved in the following way. In geodetic practice one generally has a good idea of how
to model a particular problem in terms of either condition equations or observation equations.
This then results in the null hypothesis H,. However, while formulating the null hypothesis H,,,
usually a number of assumptions are made. For instance, one assumes that the data are free from
blunders, or that the effect of refraction is negligible, or that the points of a geodetic network lie
in a two dimensional Euclidean plane etc. In order to find out whether these assumptions are
valid or not, one opposes the null hypothesis H, to a more relaxed alternative hypothesis H, in
which more explanatory variables, namely V in (2) and (7), are introduced. The explanatory
variables V are then supposed to model those effects which were assumed absent in H,. For
instance, through V one may model the presence of one or more blunders in the data, or the
presence of refraction, etc. The test of H, versus H, informs us then on whether or not the
additional explanatory variables V should be taken into account. That is, the test should then
inform us on whether for instance blunders in the data are absent or not. However, referring to
the two types of errors one can make in testing, the type I and the type II error, and to the fact
that every model is only an approximation, one should never forget that the result of a test is
only indicative and never a proof of the correctness of one model over another!

Now let us derive the generalized likelihood ratio test for testing H, against H,. From the
previous chapter (see (3) in Section 3.1) we know that this test can be computed from the
probability density function of y under H, and H . The probability density function of y underH,
reads:

_m

®) 6% - @) 110, | expl-L Ly -49Q, (v -Ax)].
And under H, it reads:

©) PO,V = @m) *[Q| * expl-1(y-Ax-CV)'Q; (v -4x-C,V)]

The numerator of the generalized likelihood ratio test is given by max p, (y|x). Let us denote the
value of x that maximizes p, (v|x) by £,. The index "0" is used to 1ndlcate that the density
function of y under H, is taken Since £, maximizes py(y\x) we have:
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(10) max p (y[x) = Xo) -

x€R"
Recall from Adjustment theory that X, is the maximum likelihood estimate of x and that the
maximum likelihood estimate, in case of a normal distribution, is identical to the least-squares
estimate of x. Since the least-squares residual vector is given by:

(11) ¢, = y-A%,

it follows from (8) and (10) that the numerator of the generalized likelihood ratio test is given
by:

_m

(12) max p(y[x) = @n) *|Q,| * exp[——e‘o*oy’léol.

xcR"

Now let us have a look at the denominator of the generalized likelihood ratio test. It is given
by maX p, (y|x,V). Let us denote the value of x and the value of V that maximize p, |x,V)
by x Fand V respectively. Then:

(13) max p([x) = p[£,V)

xeR™,VeR4
In this case £, and V are the maximum likelihood estimates of x and V under H , Tespectively.
They are therefore also the least-squares estimates of x and V under H, respectively. Since the
least-squares residual vector under H, is given by:

A

X
(14) ¢y = y-(4:C)

it follows from (9) and (13) that the denominator of the generalized likelihood ratio test is given
by:

_m 1

(15) max p(ylx) = 2n) *|Q,| * exp[f%é;Qy_léA].

xeR",VeR4

From (12) and (15) it follows that:

max p,(y |x)

xeR"

max p (y[x,V)

xcR",VeR4

1,a* 1A P N
= exp[—;(e0 Q, ¢,-¢,0, é)].

Since this ratio is less than a positive constant if and only if the term within the brackets [...] is
larger than a positive constant, it follows that the generalized likelihood ratio test for testing H,
against H, reads:

(16) reject Hy if  6,Q, '¢,-¢,Q, ¢, > k,

The left-hand side of the inequality in (16) is expressed in terms of &, and ¢é,. It is also possible
however to express the left-hand side of the inequality in (16) solely in terms of:



74 Testing theory

A7) Jo = A%, and 3§, = Ax,+C\V.
In order to see this, note that:

€0Q, 66,0, ¢, = (,-€°Q, '(6-€,) +2(6,-¢,)'Q, 'é,
or that:

(18) 80Q, '6y-6,Q,'¢, = Gy=3)°Q, ' Fy=3,) 20 -3,)Q, 'é,.

The second term on the right-hand side of (18) can be written with the help of (17) as:
(19) “2(9,-90)'Q, ¢, = 2[A(%y-%,) -C¥V'Q, '¢,.

But this term is identical to zero. Thus:

(20) “2(5,-9,)'Q, ¢, = 0.

In order to see this, recall from Adjustment theory that one of the properties of the least-squares
method is that the least-squares residual vector is orthogonal to the columns of the designmatrix.
In the present context this means that é, is orthogonal to the columnvectors of the matrix
(A:C)), where orthogonal is "measured" with respect to the Qy’1 -metric. This implies that:

a7 0
(21) - leéA ={ ]

With (21), equation (20) follows from (19). Substitution of (20) into (18) gives with (16):

(22) reject Hy if  (9,-3,°Q, Gy, > k,

Note that intuitively this test makes sense. One would expect to reject H if §, differs
considerably from §,, that is, one would expect to reject H, if (§, -9 A)*nyl()?o -y,) is large. Also
note that since the left-hand side of the inequality in (22) is always non-negative, éO*Qy’]éO must
always be larger than or equal to é A*Qy’lé ,- This corresponds with our earlier remark in the
previous chapter that the denominator of the generalized likelihood ratio is always larger than
or equal to the numerator. It seems, the way in which (16) and (22) are formulated, that we need
both &, and é, or y, and y, in order to perform the test. This would imply that a least-squares
computation under both H, and H, is needed. Fortunately this is not the case. We will show thaté,
in (16) or y, in (22) are not explicitly needed in order to perform the test. In order to show this,
we will first write y, in terms of y, and V. Consider therefore the two systems of normal
equations that correspond to H, and H ,:
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-1

(23) A'Q,'A i = A"Qy

and

(24) 4°Qa  4°Q7C,| (%] [4°Q.y
* -1 * -1 A - * -1 ’
c,0'a co'c)\v) \col

These systems of equations have a unique solution since rank A = n, rank (A:C)) = n+q.
Substitution of (23) into (24) gives:

A'Q'A  A'Q,'C | (%) |47Q, 'A%,
(25) - .
* -1 * o~ 1 A * o~ -1
c,Q'a co'cllv) |cQly

Pre-multiplication of this system of equations with the square and full rank matrix:

I 0
* -1 s | _
-C;Q,'AA QA" 1

gives:
A *Qy—lA A *Qy—lcy x"A A *Qy*leAO
0 C,Q,'10,-4A"Q,'4)'4"1Q,'C, | v) (C,Q,'I-4A4°Q, ' '4°Q, Ty
(26)

Now recall from Adjustment theory that:

é =[[-AA"Q,'4)'4°Q, "1y and
(27)
Q, = Q,-AA ‘Q,'4) A"

Substitution of (27) into (26) gives:

k-1 k-1 5 1.

28) A'Q A A7Q, C, Xy RE Q, 'A%,
* -1 -1 A * 14 '

0 Cy Qy Qéooy Cy \Y Cy Qy €

From the first equation of (28) follows that:
. . R N TR I
X, =X%-A Qy A 'A7Q, CyV

or that:
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Ak, +CV = A% + [[-AA"Q,'A)'A°Q,'ICV
or with the second equation of (27) that:
. . 1
(29) yA = yO +QéOQy Cyv'

This formula expresses §, in terms of §, and V. 1In (22) we need ¥, -9 A)*nyl(fio -y, . With (29)
this gives:

(30) (o 30°Q, B3, = V'C/Q,'0,0,'Q,0,'CV.
Now we know from Adjustment theory that:

31 - -

S 0,0, = @,

(verify this yourself). Substitution of (31) into (30) gives together with (22) the test:

(32) reject Hy if  V'C;Q,'Q,Q,'CV > k,

Again note that this test makes sense. It says to reject H, if V, which is supposed to be zero
under H,, is large. From the second equation of (28) follows that the inverse of the error
estimator’s variance matrix reads Qv =C, Q Q Q C which is the central term in (32). The
test (32) is formulated in terms of V and therefore st111 does not show that an explicit least-
squares computation under H, is not needed. We will now express V in terms of é,. From the
second equation of (28) also follows that:

(33) V=(C/Q'Q,0,'C)lcQ,'e

Substitution of (33) into (32) then finally gives:

(34) reject Hy if  é,Q,'C,(C,Q,'Q,Q,'C)'CQ, ¢, > k,

This result shows that é,,y, and V are not explicitly needed to perform the generalized
likelihood ratio test for testing H,, against H,. So far we have seen four different expressions
for the generalized likelihood ratio test, namely (16), (22), (32) and (34). There is however also
a fifth useful expression. This expression is in particular useful if the hypotheses are formulated
in terms of condition equations like in (2). The expression is formulated in terms of ¢, the vector
of misclosures. Recall that €, and Qéo may be written is terms of 7 = By and Q, = B *QyB as:

é - QB(BQB)'By -QBQ't, and
(35) ’ ’

_ * -1 * _ -1 %
Q, - QB(B'QB) 'B'Q, - 0,BQ, 'BQ,.
Substitution of (35) into (34) gives with C, = B *Cy:

(36) reject Hy if 7'Q, 'C(C,Q,'C)'C;Q,'t > k,
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The random variable defined by the left-hand side of the inequalities in (16), (22), (32), (34) and
(36) will be denoted by Zq. Thus in terms of the expression in (36) we have:

(37 T -rQ/'c(Cc/Q'c)'c/Q

Now in order to compute the critical value k, from the size o of the test, we need the
distribution of 7 . Substitution of:
q

(38) z-=CQ'"t and Q. =CQC
into (37) gives:

(39) T, = 2'Q. 'z.

Since the random variable z of (38) is distributed under H, and H, as:

Hy: z ~N(0,Q) ; H,: z ~ NQV,Q)

gx1 gx1 gxq gx1 gx1l gxq

it follows from Appendix A that 7 is distributed under H, and H, as:
q

(40) Hy: T~ x*@0) 5 H,:T - x*@h), » = VQYV
with

* -1 * -1 -1
(41) QZ = Cz Ql‘ Cl = Cy Qy Qéoor Cy

this finally gives for the distribution of T :
q

Hy: T ~-x*@q0) ; Hy: T ~x*(g.),

42 - i
“2) with noncentrality parameter = V'C,'Q,'CV = V'C;Q,'Q,Q,'C,V

To conclude this section a summary of the important results is given in Table 4.1.
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Hypotheses
H, : E{myl} = Ax , rankA=n Hy,: B'Ely) = 0, rankB=b
X mxnnx1
bxm  mx1 bx1
versus versus

H,:Ely}= Ax +C, V, rank(4:C) H,: B'Ely} = C,V, rankC,=¢

mx1 mxnnx1  mxggx1 b |
1
= n+q xm  mx bxggx
B"A =0,
bxmmxn bxn
m-n =b,
B'C, = C,
bxmmxgq bxq
Teststatistic 7T :
- q
T =¢éQ,'¢ -¢Q,'¢
g T0TY 0 TATY T4

= (9,-9)°Q,'G,-)

Ak * ,1 ,I A
=V Cy Qy QéOQy ny

JRS | * o~ -1 -1 - * o~ =1 A
= QOQ’ Cy(Cy Qy QéOQy Cy) ICy Qy QO
- 1'Q,'c(c;Q,'c)'c/Q 't

Distribution of Zq :

Hy: T - x*@0) ; Hy: T~ x*q.})
" * -1 Yol -1 -1
A =vCQ'cy -ve'e0,'cy

Generalized likelihood ratio test :

reject H if Tq>ka

Table 4.1: Overview of the teststatistic Iq
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4.2 A geometric interpretation of Zq

In the previous section it was shown algebraically that:

_A* - — -
T =¢0Q,¢-¢€0, ¢

q 0 0 A

N BT 2
- (9,-3)°Q,'¢,-5)
43 S 1
( ) - y Cy Qy QéOQ’ ny

_ axpy ] * -1 -1 Ak la
- gOQy Cy(Cy Qy QéOQy Cy) Cy Qy g0
= 1'Q,'C(C/Q,'C)'CQ, 't

In the present section the equality of these expressions will be shown geometrically. Let us first
consider the hypotheses H, and H,.

(44) Hy:Ely} = Ax versus H, : Ely} = Ax + C,V,V=#0.

mx1 mxnnx1 mx1 mxnnx1 mxqqx1

Since it was assumed that rank A = n and rank (A:C|) = n+q, the dimensions of the range
spaces of A and (AECy) are respectively: dimR(A) = n and dimR(AiCy) = n+q. Since the
matrices A and (AiCy) have m-number of rows, it follows that the columnvectors of these
matrices are elements of R". Thus R(A) < R" and R(A: Cy) c R". Since the columns of matrix
A can be written as linear combinations of the columns of matrix (AECy) it follows that
R(A) c R(A: Cy). Thus the rangespace of A is a linear subspace of the rangespace of (A Cy).
The equation of H, in (44) states that Ely} under H, can be written as a linear combination of
the columnvectors of matrix A. This implies that Ely|H e R(A). Similarly the equation of H, in
(44) can be translated into Ely|H A}e R(A: Cy). The above results can be summarized as:

s) Ely|H))eR(A) < RA:C) « R"; Ely|HJeRA:C) <« R"

dimR(A) = n ; dim R(AsCy) = n+q.
A sketch of (45) is given in Figure 4.1.

R(Cy) ~~R(AIC))

E{y/H,}

IRm

R(A)
Figure 4.1: The hypotheses H, : Ely|H} and H, : Ely|H}.

Recall from Adjustment theory that the method of least-squares can be interpreted geometrically
as a method of orthogonal projection. That is 20 follows from the orthogonal projection of

y onto the rangespace of A, and QA follows from the orthogonal projection of y onto the
rangespace of (A:C). Thus:
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(45) $, =Py and § = P(Afcy)y.

fan R(A: Cy)

IRm

R(A)

Figure 4.2: ye R", XAO = P yeR(A) , QA = P(ASC‘)XGR(AiC}‘).

This is shown in Figure 4.2. Recall that orthogonality is "measured" with respect to the Qy’1 -
metric. This means that the innerproduct and norm in R”" are defined as:

innerproduct: (u,v) = u*nylv , u,veR”
(46)

orm ol = @'Q,'w" , u,eR™,
Since QO is the orthogonal projection of y onto R(A), it follows that X—QO is orthogonal to QO
Thus (y —QO,QO) = 0, see also Figure 4.2. Since QA is the orthogonal projection of y onto
R(A:C) it follows that y-3, is orthogonal to R(A:C) and thus also orthogonal to
Jy € R(A:C). Thus: (X—QA,QA) = 0, see also Figure 4.2. Since y-3, is orthogonal to R(A:C)),

it is also orthogonal to R(A) < R(A: C). But Qoe R(A). Hence, X‘XAA is also orthogonal to QO
Thus: (y —QA, QO) = 0. Summarizing we have:

(47) @) -9,.9) =0, @) (-3,.9) =0, (@) (y-3,.5)=0.
If we substract (47ii) from (47iii) we get:

(48) (035,78, = O.

The four orthogonality relations of (47) and (48) are shown in Figure 4.3.

Y
R(cy)/ﬂ ~~R(AICy)
0 Ia
P R™
20
R(A)

Figure 4.3: The right-angled triangle y, 20, jA.
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The right-angled triangle y, QO,QA of Figure 4.3 has been shown again in Figure 4.4.

y y
&0 N I8, I,
_
Yo o-Ia b/ Yo o (gl Ya

(@) (b)
Figure 4.4: The right-angled triangle y, QO, QA.

From Figure 4.4 and the Pythagoras theorem we learn that:

51215 12 = 16 —o |2
(49) I, I? - 1e, 1> = 15,3,

In terms of the matrix nyl this can be written as:

50 ok —lA_A -1 A (5 5\ —lA_A
(50) ¢,Q,¢,-¢,Q, ¢, = (-3 )°Q, (¢,-3).

~4A
Compare this result with the first two equations of (43).
Let us now consider the third equation of (43). We know that J, can be written as:
(51) y, =A% +CV.
This decomposition of QA is shown in Figure 4.5.
R(Cy)

R(A: Cy)
CyV

A):(N

R(A)

Figure 4.5: Decomposition of QA into A@A and CVY.

81
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The vector Cyz can be further decomposed in a part that lies in the range space of A, R(A), and
in a part that lies in the orthogonal complement of R(A), R(A)*". This gives:

52 - y Lo %
(52) CV=P,CV + P,CV.

This orthogonal decomposition of C‘z is shown in Figure 4.6. Substitution of (52) into (51)
gives:

(53) y, =4t +P,CV +P,CV.

R(A)

Figure 4.6: Orthogonal decomposition of CVY into P ACyY and P; Cyz.

We know that y —Qoe R(A)* and Qoe R(A). From this follows that P; @ —QO) =9y —X”O and
LA A A A !
P, ('XA _Xo) = PAXA, and thus that:

S 9,3y = Pad,-
Substitution of (53) into the right-hand side of (54) gives:
y,-%, = P4Ai,+P,CN+P,CN) = P;P,CV
or:
(55) 3,39, = P,CYV.

This is shown in Figure 4.7. If we take the norm of (55) we get:

(56) I9,-3 I = IP,C V|
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R(A)

A

Figure 4.7: y -§, = P,CV.

In terms of matrices this can be written as:

(,-2)°Q,'0,-2) = (P,CV'Q, (P,CY)
or as:
(57) 0,-$)'Q,'(,-8) = V'C P, Q,'P,CV.
Now recall from Adjustment theory that:
(58) P,'Q,'P, = Q,'P; = Q,'Q,Q, .
Substitution of (58) into (57) gives:
(59) #,-2,)'Q, 0,3y = ¥(,Q,'Q,Q,'CV.
Compare this result with the second and third equation of (43).

Let us now consider the fourth equation of (43). According to (55) QA —QO = PALC)Z From this
follows that:

(60) é,-¢, = P,CV (see Figure 4.8).

Since ¢ eR(A:C)" and R(P,C)) < R(A:C) it follows that:
(61) P,.é =0.

PACy_A
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Premultiplication of (60) with PPAiC‘ gives therefore with (61):
(62) Py, = PpcP4CY = P,CV.

P,C,%

If we take the norm of (62) we get:

1 - _ A
"PAC),y" - ||ijcy€0||

(63)
]Rm
)
S R(A)"
o
R(AICy) P,Cy 0 &
kR(P;cy)
. s _ pl A s _ pt
Figure 4.8: é =P, C}V e, ijc‘fo =P, Cﬁ-

This is shown in Figure 4.8. The right-hand side of (63) can be written in terms of matrices as:

64 i 5 |2 = i 5 )" - n o

(64) IPpic @)’ = (Ppic )'Q) ' (Pp.c &)

or as:

65 e =¢éP 'p.é =¢Q'P,. ¢
(65) “PPACyQOH QOPP;CYQY PPACyQO QOQY PPACng.
The matrix PPALC‘_ is given as:

Ppoc = (PAC)I(PLC)'Q, (P4C)I ' (P4C)'Q)"
(66) = P,C(C,P, Q,'P,C)"'C,P; Q"
- QP, Q,'C,(C,Q,'0,0,'C) 'C;Q,'P;.
Substitution of (66) into (65) gives:

(67) \P chyé ”2 - (Pj éo)*Qy_lcy(cy*Qy_IQéOQy_lcy)_lcy*Qy_l(P f; é0)'

0

Since P; éo = ¢ this finally gives:

é
[N

(68) IPpicé)l = 6,0,'C(C,Q,'Q,Q,'C)'C/Q, ",

Compare this result with the fourth equation of (43).



Hypothesis testing in linear models 85

Let us now consider the fifth and last equation of (43). The geometry of this equation is quite
different from the geometry of the previous four equations. Note namely that the first four
quadratic forms of (43) are all expressed in terms of vectors that are elements of R". That is:
QO eR”, QAG R", Qoe R", QAE R", and CyVeR”. The fifth quadratic form of (43) is expressed
however in the vector of misclosures, 7, which is an element of R, Thus re R’ and ¢ R". If we
consider R’ to have an innerproduct defined by the Q,'-matrix, it is still possible to interpret
the fifth quadratic form of (43) geometrically. In fact:

(69) IP.2I? = £'Q,'C(C/Q,'C)'C/Q, 't

This follows since:

1Pt = (P Q, ' (P)

and
P.t = C(C/Q'C)'C/Q't.

A summary of the results of this section is given in Table 4.2.

y
IRm

R(A:Cy)
"Algebra" of T, "Geometry" of T
siyla  axy-la . R
¢Q,¢-¢0Q,¢, = le,I? - le,I? =
0,~9)Q, ¢, -») = I9,-3,1> =
Sk -] Apme L2
y Cy Qy QéOQ’ ny - "PACy YH -
£:0,'C(€,0,'Q,0,'¢)'C;Q, "¢, - 1Pl =
Fo Xy Ty\Ty Xy X<y Vy y Xy % AEO
Q. 'c(c/Q ',/ Q! = IP 2.

Table 4.2: The geometry of 7.
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4.3 The case g=1: w-teststatistic

In the previous two sections we have seen that the generalized likelihood ratio test for testing:

X
(70) H,: Ely} = Ax versus HA:E{y}—(AsCy)() , V=0
mx1 mxnnx1 mx1 XM
e (n+g)x1
or
(71) H,: B'Elyl =0 wversus H, : B'TElyl=C,V, V=#0
bxm mx1 bx1 bxm mx1 bxqgx1

is given by (see Figure 4.9):
(72) reject Hy if T, > k,.

R(AiCy)

R(A)

Figure 4.9: The teststatistic Zq.

Because it was assumed that rank(4:C ) = n+g, it follows that g can never be larger than m-n.
If g would be larger than m-n, then rank (A:C) would be larger than m, which is impossible
since the matrix (4:C) only has m rows. The value of q can also not be chosen equal to zero.
If ¢ = 0, then the matrix C, would not exist and the two hypotheses H, and H, would be
identical. Thus we may conclude that the range of g is given by:

(73) 1 <q <m-n.

In this section we consider the case g=1. For this case the following three expressions of
T are of interest:
—q

T = 1rQ'C(C/Q'c) '/ QM

74 syl * =1 -1 Ak y-la
74 - 6'Q,'C(C,Q,'Q,0,'c)'c;Q,
k-] 14
= y Cer QéQr ny'

We have dropped the index "0", because it will be clear by now that the least-squares residual
vector € belongs to model H,. If g = 1, the bxq matrix C, and the mxqg matrix C, reduce to bx1
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and mx1 vectors respectively. In order to accentuate this, we will replace the capitals "C," and
"C," by the small letters "c," and "c,". In this case the first expression of (74) can be written as:

1 * o~ -1 P |
T =1 Qt Ct(cz Qt Cz) ¢, Qt t

g=1

or as:

€'y

(75) L.
q=1 Ct*Qt—]Ct

Remembering the w-teststatistic of Section 2.3 we note that T = (w)*. Hence, the test (72)
o 4=
may also be written as:

1/2
o -

(76) reject Hy if w < —k;/z or w>k

In a similar way we find for the second expression of (74):

* -1 2

c,, e
(77 T - ({ IQ’ ). (see (69) of Section 2.3).
Cy Qy QéQy ‘y

For the third expression of (74) we find:
) v
- * -1 1o

(78) T
q

=1

The estimator for the model error (33) reduces for g=1 to:

,lé
y =

* -1 17
cy Qy QéQy cy

*
5 Cy

the denominator of (78) equals the variance of Y, Gé (see also equation (28) of Section 4.1) and
we may write (78) as:

(79) T =

With (75), (77) and (79) we have three expressions for the 1-dimensional 7'-teststatistic or the
square of the w-teststatistic. The first two of them are the more useful ones because they do not
need explicitly the results of least-squares computation under H,. The first expression (75) is
useful when the hypotheses are formulated in terms of condition equations. The second
expression is however the most commonly used expression in practice.
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An important application in geodetic practice of the 1-dimensional 7-teststatistic or the w-
teststatistic is for blunder detection in the observations. From experience we know that in
geodetic applications misspecifications in the null hypothesis H, are very often caused by
blunders or gross errors in the observations. Of course one never knows whether blunders are
present, or how many of them are present, or in which observations they are present. In order
to test for the presence of blunders we will therefore follow the convention that only one blunder
is assumed to be present at a time. In this way only one additional explanatory variable is needed
in the corresponding conventional alternative hypothesis H, . For instance, if we want to test for
the presence of a blunder in the ith- observation, the hypotheses take the form:

X

(80) Hy Ely) = Ax versus H 4} Efyl = Aicy) vl v, = 0.
1
with
(81) ¢, = O.,...,1,0,..)".
mx’l ith

The corresponding test reads then:
(82) reject H, if w, < —k;lz or wi>kol/2
with

c*Qflé
(83) w,om ——

\/Cy*,-Qy{QéQyilcy,-

If test (82) comes to reject H,, a blunder or gross error in the ith observation is suspected.
Checking and/or remeasurement will then be necessary. By taking i in the above test to be
successively 1,...,m the whole observations vector can be screened for observational blunders.
This procedure is called datasnooping. Generally the observation with the largest value of (83),
in absolute sense, should be rejected.

In many applications of datasnooping the variancematrix Q is a diagonal matrix. If this is the
case, then (83) simplifies to:

|

(84) wo=

Q

A summary of the results of this section is given in Table 4.3.
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Hypotheses
Hy Elyl = Ax H: B'Ely) = 0
Versus
or Versus
. X . R -
H, Ely = (A:cy)(v) H,;: B'Elyl = ¢V
¢, = B'c,
Datasnooping
c: c, = (00,.,10,..)"
Y i ith
i = 1,..m
w-Teststatistic
* -1 * -1 A A
w = AL &5 € _ Y

* =1 * -1 -1 O¢
\/Ct Q ¢ \/Cy Qy Qe‘Qy ¢ v

Distribution of w

Hy: w ~ NQO,1) ; H;:w ~ N(Vw,1)

W = e/ Q eV = /e, Q,'QQ, ¢,V

Generalized likelihood ratio test

reject Hy if w < —k;/z or w > +k0l/2

Table 4.3: Overview of w-teststatistic.
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4.4 The case g = m-n: &°-teststatistic

Consider again testing the hypotheses:

x
(85) H,:Elyl= Ax  versus HA:E{y}—(ASCy)(V) , V0
mx1 mxnnx1 mx1 mxn mxq (i)«
or
(86) Hy: B'Ely} =0 versus H,:B'Ely} =C,V,V=0.

bxm mxl1 bx1 bxm mxl1 bxqgx1

We know that the corresponding generalized likelihood ratio test reads:

(87) reject Hy if T, >k,. (see Figure 4.10).

IRm

R(AICy)

Figure 4.10: The teststatistic 7" .
q

In the previous section we considered the case ¢ = 1. In this section we consider the other
extreme, namely g = m-n. For this case the following two expressions of 7 are of interest:
—q
T =¢ -é
(88) Tq Q) 0 Qy 4
* -1
= 1'Q,'C(C,;Q,'C)'C,Q, 't

Since it was assumed that rank (A: C ) =n +q, it follows that if g = m-n then rank (A C J=m.In
this case matrix C is chosen such that the matrix (A:C)) is square and of full rank. But this
means that no restrictions are placed on Efy} under H,. That is, since R(A: Cy) = R" if g=m-n
we have Ely|H JeR". In other words, by choosing g=m-n, the number of explanatory variables
that are added to H, in order to form H, are such that the redundancy (overtalligheid) of the
linear model under H, equals zero! But this implies that:

(89) y =y and é =0.

This is shown is Figure 4.11.
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R(A)
Figure 4.11: If g = m-n = R" = R(AsCy) =y

1]

<
1>

1]
o

A

With (89) the first expression of (88) becomes:

q=m

(90) T .. =¢Qe

We have again dropped the index "0", because it will be clear that the least-squares residual
vector é of (90) belongs to model H,,. Now let us see what happens with the second expression
of (88) if ¢ = m—n. If ¢ = m—n, then the full rank matrix C, of (86) has b-number of rows and
(m—n)-number of columns. But we know that b = m—n. Hence, in case ¢ = m—n the matrix C,
is square and of full rank. But this means that the matrix C, is invertible and therefore gets
eliminated from the second expression of (88). Thus if g = m—n, then:

91 T  =tQ't

q=m-n

With (90) or (91) the generalized likelihood ratio test for testing the hypotheses:

92) H, : Ely} = Ax versus H, : ElyleR"
or

(93) H,: B'Ely) =0 versus H, : Ely}eR"
reads:

(94) reject Hy if T _ . > k.

The distribution of T under H, and H, follows from (42) as:
q=m-n

H, . T
(95) q=-m-n

with & = V'C/Q,'CV = V'C;Q,'Q,Q,'C V.

~ x*(m-n0) ; H,.T

T g=m-n

- Xz(m _ns)")
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In many publications where the generalized likelihood ratio test for testing (92) or (93) is
described one will see that not the teststatistic 7 is used, but instead of T the teststatistic

=m-n —q=m-n

Zq:min/(m -n). This teststatistic is denoted by Qg. Thus:

(96) 6% =

The test reads then instead of (94) as:

o7 reject Hy if 6% > k,

o

k; = k,/(m-n).

The distribution of &> under H, and H, is given as (see also appendix A):

o - 6% ~ F(m-n,»,0) ; H,: 6% ~ F(m-n,»,\)
(98)

ith A = V'C;/Q,'CV = V'C;Q,'QQ, 'C,V.

It will be clear of course that test (97) is completely identical to test (94). Hence there is no
special reason why the teststatistic 6> should be used instead if Zq:min. However, there does exist
a special reason why the notation "&*" is used in (96). Recall from Adjustment theory (Section
2.4) that:

(99) E¢'Q,'¢) = m-n.

This implies that if the variancematrix of y is given as Diy} = O = 6°Q, where o° is the
variance factor of unit weight, and thus Ei¢*Diyl"'é} = (m-n), we have:

Ele*Q '¢} = o> (m-n)

or with: (96)
(100) E6Y = o,

Hence, 6* can be considered an unbiased estimator of the variance factor of unit weight G°.
This is the reason why the notation "6*" is used in (96).

The practical importance of the above given test ((94) or (97)) for testing (92) or (93) lies in the
fact that no restrictions are imposed in the mean of y under H,, that is Ely|H JeR". In other
words, for the case ¢ = m-n no matrix Cy or matrix C, needs to be specified. This in contrast
to all those cases for which g <m-n. For all those cases for which g < m-n one needs to specify C,
or C,, and therefore one has to have some idea of what kind of misspecifications to expect in
H,. In some cases this is possible. For instance, experience has learned that the class of
conventional alternative hypotheses used in datasnooping is one class that should always be taken
into account in geodetic network applications. But still this class may not cover the totality of



Hypothesis testing in linear models 93

misspecifications in H, that occur in a particular application. In fact, one will never be able to
completely specify the class of alternative hypotheses for a particular problem, simply because
one never knows beforehand what misspecification has occured in H,. In this light one should
see test (94) or (97) as an important safeguard. The test gives an indication of the validity of H,,
without the need to specify the alternative hypothesis through C or C,. As such it can be
considered an overall model test. Appendix C elaborates on the relation between the overall
model test and the w-test of the previous section. A summary of the results of this section is
given in Table 4.4.

Hypotheses
Hy:Ely} = Ax H,:B'Ely}l =10
mx1 mxnnx|1 bxm mx1 bx1
versus or versus
H, : Ely)eR"” H, : Ely/eR"”
&2 -Teststatistic
U o1
5 - T... _€Q ¢ 1ot
o m-n -n m-n

Distribution of &2

H

0 . QZ -~ F(mfn’OOQO) > HA . QZ ~ F(minaooa}\‘)

A= V'C/Q'CY =V(Q'QQ,'CV

Generalized likelihood ratio test
overall model test

reject H, if 6> > k_

Table 4.4: Overview of overall model test.
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4.5 Internal reliability

From section 4.1 we know that the generalized likelihood ratio test for testing:

(101) . _ . RN
Hy: Ely} = Ax  versus HA.E{y}—(A:Cy)V , V=0
mx1 mxnnxl mx1 mxn mxq
(n+q)x1
is given by:
(102) reject Hy if T, > 12(q.0)
where:
oAkl * o~ -1 -1 Aty LA
(103) T -¢Q,'c(c/0,'20Q,'c)'c/Q,"e
and
(104) H, : Iq ~ x*q0) ; H,: Iq ~ x*(g,\)
with
1 _ vk oy -1
(105) »=VCQ, QQ CV.

In (102) we have used the notation " Xi(q,O) " for the critical value instead of the notation
" k, ". The notation " x(zx(q,O) " makes it clearer that the critical value should be computed
from the central > -distribution with ¢ degrees of freedom. Instead of test (102) we may also
write:

T
(106) reject Hy if — > F (g,%,0)
q
where:
T T
(107) H, : ;‘1 ~ F(g=0) ; H,: ;‘1 ~ F(q,»,1).

The two tests (102) and (106) are of course identical. In order to perform the generalized

likelihood ratio test (102) or (106), one needs to compute the critical value,
x(zx(q,O) or F (q,~,0) , for a chosen size o and a fixed number g of degrees of freedom. Let

us denote the probability density distributions of ¥*(g,A) and F(g,o,A) respectively by
plz(leq,k) and pE(F |g,2,A). Then:

o = [ pp(x*lg.00dy
(108) 12@.0)

o

= [ pFlg.=0)dF.

F(g,=0)
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These relations can be used to compute the critical values xi(q,O) or F (g,,0) from o and g.
Standard tables exist that give x(zx(q,O) or F (g,~,0) for various values o and g (see appendix
B). Some typical values of xi(q,O) or F (q,~,0) are given in Table 4.5 and Table 4.6
respectively. Note from these tables that for a fixed number of degrees of freedom, the critical
values xi(q,O) or F (q,~,0) get smaller for larger o. This is also what one would expect. One
would expect that if H, is true, the occurence of large values of 7 in (102) is less frequent than
the occurence of smaller values of 7.

q=1 q=10 q=20 q=30
o = 0.001 10.83 29.59 45.31 59.70
o = 0.005 7.88 25.19 40.00 53.67
o = 0.01 6.63 23.21 37.57 50.89
o =0.05 3.84 18.31 31.41 43.77
o=0.1 2.71 15.99 28.41 40.26

Table 4.5: Critical values Xi(q,O).

g=1 q=10 q=20 q=30
o = 0.001 10.83 2.96 2.27 1.99
o = 0.005 7.88 2.52 2.00 1.79
o = 0.01 6.63 2.32 1.88 1.70
o =0.05 3.84 1.83 1.57 1.46
o =0.1 2.71 1.60 1.42 1.34

Table 4.6: Critical values F_(g,%,0).

Also note from Table 4.5 that for a fixed o, the critical values xi(q,O) get larger for larger gq.
This is also what one would expect. Since the y?-distribution is defined as a sum of squares of
independent standard normal random variables, one would expect that the right tail of the -
distribution gets thicker for larger sums (see Figure 4.12). Note on the other hand from Table
4.6 that for a fixed size o, the critical values F (g,,0) get smaller for larger g. This is of course
due to the division by ¢ in (106).

q=q;

Figure 4.12: Density of x*(¢,0) for ¢, > ¢,.
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In Section 1.5 where the general steps for testing hypotheses were outlined, it was pointed out
that one should compute the size of the type II error in order to ensure that a reasonable
protection exists against type Il errors. Since the size of a type Il error equals one minus the
power of the test, we might as well compute the power y. The power of test (102) or (106)
follows as:

©

v= [ pilandy’
(109) 12@0)

o

= [ pyFlg>ndF.

F,(q,»,0)

Note that the power y depends on: 1) the chosen size o; 2) the number of degrees of freedom
q; 3) the non-centrality parameter A. In Table 4.7 some typical values of y are given. Table 4.7
shows that the power 7y gets larger if the size o of the test is chosen larger. This is also what one
would expect. A larger size oo implies a smaller critical value Xfx(q,O) or F (q,%,0), and therefore
with (109) a larger power . Table 4.7 also shows that the power y gets smaller for larger g.

a=0.01 qg=1 q="1
A=2 0.1227 0.0415
A=8 0.5997 0.2710
A =18 0.9522 0.7430
o = 0.05 q= q="1
A=2 0.2930 0.1378
A=8 0.8074 0.5017
A =18 0.9888 0.8946
o=0.1 qg=1 q="1
A=2 0.4099 0.2272
A=8 0.8817 0.6287
A =18 0.9953 0.9413

Table 4.7: The power of test (102) or (106) for different values of o, ¢ and A.

This is understandable if one thinks of g as the number of additional parameters in H,. The
smaller ¢ is, the less additional parameters are used in H, and therefore the more "information"
is used in formulating H,. For such an alternative hypothesis one would expect that if H, is true
the probability of accepting it is higher. Finally note that Table 4.7 shows that the power gets
larger if the non-centrality parameter A gets larger. This is understandable if one looks at the
geometry of the testing problem. Substitution of:
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-1 -1 Lk N1yl
(110) Q '0Q,' =P,'Q P,
into (105) shows that:

(111) A = |P,C V.

Since Ely|H,} = Ely|H,} +C,V (see (101)), it follows that:

(112) |Ely|H,} - Ey[Hy)I? = IC, VI

Thus IICyVII is the separation or distance between H, and H, (see Figure 4.13). Now, one would
expect that the power of the test increases if the distance between H, and H,, thus IICyVII,
increases. But IICyVII gets larger if A of (111) gets larger. Hence, one would indeed expect that
the power gets larger if A gets larger.

R(A)"

Figure 4.13: Ely|H,} = Ey|H}+CV ; |CV]|* larger if ||PAleV||2 = A larger.
We may summarize the above discussion as [Ghosh, 1973]:

1) The power 7y of test (102) or (106) is monotonic increasing in o for fixed ¢ and A
(i1) The power 7y of test (102) or (106) is monotonic decreasing in ¢ for fixed o and A
(iii)  The power v of test (102) or (106) is monotonic increasing in A for fixed o and gq.

Since the power Y of the test (102) or (106) depends on o, ¢ and A, it seems that we have
three possibilities to construct a test which has a reasonable protection against type II errors. We
could increase o.. But increasing o implies increasing the probability of a type I error. The size &
is therefore usually chosen at a fixed value. We could also decrease g. But usually we are not
free in choosing ¢g. The value of ¢ depends on the particular alternative hypothesis against
which one wants to test H,. Finally one could try to increase the non-centrality parameter A.
What possibilities do we have to increase A? With:

Q, = Q,-A4’Q,'A)'A"

it follows from (105) that:
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(113) L= (CV)Q,' -Q,'AAQ,'4)'A"Q,'I(CV).
This formula shows that the non-centrality parameter A depends on:

(1) 0, the precision of the observables

(114) (i) A the designmatrix
(iii) CV the difference of Ely|H,! and Efy|H.

Let us now investigate what the effect on A is when either Qy, A or CyV are changed.
ad i:

It will intuitively be clear that one can increase A by increasing the precision of the observables.
For instance if one uses uQ , where y is a positive scalar, instead if Q , then the non-centrality
parameter kﬂ becomes (see (113)):

)”u = u A,

This shows that the non-centrality parameter increases if p decreases, that is if the observables
have a higher precision. Compare this with example 4 of Section 2.2. The dependence of A onQ_
and therefore the dependence of the power y of the test on Q , makes it possible to obtain a test
with sufficient power if the variance matrix Q is appropriately chosen. Since Q depends on
the precision of the measurement equipment, an appropriate choice of measurement equipment
enables one to obtain a test with sufficient power.

ad ii:

In geodetic network applications matrix A depends on the structure of the network. Hence by
changing the structure of the network one changes A and therefore also changes A. This is an
important result, because it shows that one can look for a design or structure of a network that
is optimal in the sense that it gives a test with sufficient power. It will intuitively be clear that
one can increase A and therefore also increase the power of the test, by increasing the number
of observables. In order to prove this, let us consider the following two situations. We have a
network for which the following model holds:

(115) Elyt = A x , Dly = Q,

mx1 mxnnxl mxm mxm

and we have a network for which holds:
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e’} 4 ol %0
= x ) = .

(116) z a* z 0 o
(m+1)x1 (m+1)xn nx1 (m+1)x(@m+1) (m+1)x(m+1)

The two models, that is the two networks, differ in the sense that the second model consists of
the first model plus one additional observation equation, namely FElz} = a 'x. In terms of
condition equations the two models can be written as:

(117) B'Elyty = 0 , DY = Q,
(m -n)xm mx1 (m-n)x1 mxm mxm
and
B> 0| [y 0 ¥ Q 0
* E|"]) = , D|"| - .
(118) b, b, Z 0 Z 0 o
(m-n+1)x(m+1) (m+1)x1 (m-n+1)x1 (m+1)x(m+1) (m+1)x(m+1)

with B'A =0 and b,/A +b,a” = 0. Note that the additional observation equation in (116)
implies an additional condition equation in (118). We will now show that the non-centrality
parameter of model (118), denoted by A, , is always larger than the non-centrality parameter of
model (116) denoted by A, The non-centrality parameter of model (116) reads (see (42)):

(119) = (C,V)'B(B'QB)'B*(C)V).

Similarly we find for the non-centrality parameter of model (118):

-1
(120) - (cy V)*B b\B'QB  B'Qp, B" 0 (Cy
b * * *

c.) \0 by b;QB (b'Qpb,+byo))) (b by,
Since:
B'QB B'Qp,
b'QB (b/Qpb, +b;a))

I 0\(B"Q,B 0 I (B'QB)'B'Qpb)

b/QBB'QB) " I] 0 b/[Q,-QBB QB 'B Qb +b;0’ )0 I

(verify this yourself), inversion gives:
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B'QB B'Qp, .
b QB (b/Qpb, +b;a))

* -1
I _(B*QyB)—lB*bel (B QyB) 0 I 0
0 {b,1Q,-Q,B(B'Q,B)'B"Q,1b, :
0 I +bial} ! -b,QBB QOB I

From this follows with (120) that:
B b,
0 b,

B [I_B(B*QyB)ilB*Qy]bl‘ (B*QyB)*l
0  b1Q,-QBBQB"

-1

B°QB B'Qp, B 0

b’ b,

b/QB (b/Qpb, +b,0?)
0 B 0

b/[I-QBB'QB) 'B’] b,

0 b, B'QJb+all"
(121)
If we abbreviate [/ -B(B *QyB)"B ‘Q,lb, as:
(122) b, = I-B(B"QB) 'B'Qb,
we can write (121) as:

B bl B*QyB B*be] -1 B* 0

* * 2 2 * -

(123) 0 5,)b/QB (BQpb +b0)) \bi b,

B I;l (B*Q)B)*1 0 B 0

0 b 0  BQb b)) |b b)

Substitution of (123) into (120) gives:

B'C, (B'QB)™ 0 B'C,

bl*Cy +b,c,

*

(124) Ay = ( V).

b, C, by,

| 0 (b,Q,b, +by0))"!

From this follows with (119) that:

(125) Ay = A+[(b,C +byc )VI'(b;Q,b, +by02) '[(b,C, +byc )V].
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Since the quadratic form on the right-hand side of (125) is always non negative, equation (125)
shows that:

(126) A

v
>

This shows that the power of the test indeed gets larger if the number of observations or the
number of condition equations gets larger. Compare this with Example 6 of Section 2.3.

ad iii:

Equation (113) shows that A and therefore the power of the test can be changed by changing
C\V = Ely|H}-Ely|H}. From Figure 4.13 we learn that in general A gets larger if the
separation between Ely|H,} and Ely|H,} is increased. Note however that the component of C,V
which lies in R(A) has no effect on A. In practice of course CyV i1s unknown. Hence one will
never be able to compute the actual power of the test. Still, by choosing some representative
values for the separation, CV = Ely|H,} -Ely|H/}, between H, and H,, one can compute what
the power of the test would be if CyV were the "true" separation. In this way one can find out
how well the test can detect a particular misspecification CyV in H,. For instance in blunder
detection the scalar V models the size of the blunder. By choosing a representative value for the
blunder, one can compute through A the probability that the test will detect the blunder with the
chosen size V. If one considers this probability too low, one has two possibilities to increase this
probability, either by changing Q or by changing A.

So far we have been concentrating on the power Yy of the test, that is, on the probability of
rejecting H, when in fact H, is true. We have seen that the power Y can be computed from the
size of the test, o, from the degrees of freedom, ¢, and from the non-centrality parameter A.
Symbolically this may be written as:

(127) v = v(a,g,A).

In geodetic practice one is however not so much interested in the power of the test. One is much
more interested in the misspecification or modelerror C|V that generates 7. That is, one is much
more interested in the model error that can be detected with a certain probability y. The approach
taken in geodetic practice is therefore to fix y at a reference value v,, for instance y, = 50%,
or 60%, or 70%, but usually 80%. From o, g and the chosen reference value y = vy, one can
then compute the corresponding value for the non-centrality parameter, symbolically:

(128) Ao = Ale,g,y =vy)-

The non-centrality parameter plays an important role in linking the overall model test and the
w-test in Appendix C. From A = A, one can now compute the corresponding modelerror CyV.
This is done by solving the quadratic form (see (105)):

(129) o = V'CQ,'QQ,'CV
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for V. Once V is known, the modelerror Vy=E{y|H,}-E{y|H,} follows as:

Vy =C V

mx1 mxqgx1

(130)

The mx1 vector Vy is said to describe the internal reliability (inwendige betrouwbaarheid) of H,
with respect to H,. One should not confuse the geodetic usage of the word "betrouwbaarheid"
with its usage in mathematical statistics. The internal reliability as described by Vy is thus a
measure of the model error that can be detected with a probability y = v, by test (102) or (106).
How can we compute the gx1 vector V from (129)? Unfortunately (129) has no unique solution
for V. We will consider the following two cases: ¢ = 1 and 1 < ¢ < m-n.

The case q=1:1f g=1, then the mxq matrix C  reduces to the mx1 vector €y and thegx1
vector V reduces to the scalar V. For this case equation (129) can also be written as:

Ao = ¢,Q,'QQ, ¢, V.

The solution in terms of V reads therefore:

12
(131) V| = ko ) ( |V| is called a minimal detectable bias

¢, Q, ! Q,Q, ] ¢, (grenswaarde)).

Note that one is only able to determine the size of V, but not its sign. In order to give a
geometric interpretation to (131), recall that:

Q,'00,' =P, Q,'P, =0Q,'P,.

Hence:

(132) ¢,Q,'QQ, ¢, = (P4c)'Q, ' (Psc) = |Pyc |’
and

(133) ¢,Q,'Q,Q,'c, = ¢,Q, ' (P4c)) = lc,|.1P4c | cosb

where use is made of the cosine rule. From (132) and (133) follows that:
134 0! T e 1RPeac2
(134) ¢,Q, QQ, ¢, =lc|cos’®.

A sketch is given in Figure 4.14.
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R(A)

P;cyv

Figure 4.14: Ely|H,} = Ely|H}+c V.

Formula (134) shows that the denominator of (131) is small, and thus |V| is large, if the angle ®
is close to %n. Thus |V| gets smaller and the internal reliability improves, the smaller the angle
6 between ¢, and R(A)* gets. If 6 = %n, then ¢ ,€R(A) and |V| = . This implies that the
corresponding model error can never be detected by the test. The internal reliability is then said
to be infinitely poor. Since 0 < cos?® < 1, it follows from (134) and (131) that:

172
<|V|< e

* o~ -1
y <y CY

(135) &
C

In case of datasnooping we have:

c,i=¢ = ©0,-,1,0,-)".

(136) y .
ith

For this case the bound of (135) can be written as:

(137) V.| > oy,-()“o)llz'

In many practical applications the variance matrix Qy is a diagonal matrix (see also (84)). If
Qy is diagonal, it follows with the choice (136) that:

* o~ -1 -1 T
CyiQy QéQy Cyi - Oyi CyiQéCyi

or with Q, = Qy—QyA that:

1

(138) ¢,0,'0,0,'c, = 0,4(a} - 0}).

Substitution of (138) into (131) gives then for the minimal detectable bias:

1/2

)

(139) Vil = oy
(1-02/02)

This shows that |V | is large if (5§ is close to 6}2“, and that |V [ is small if (5§ is small
compared to Gi. The dimensionless number:
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(140) r, = 170;/0;

1

is called the ith local redundancy number. Note that since 0 < (5; < (5;, the ith local redundancy
number r, always lies in the closed interval:

(141) 0<r <1

1

The reason why r, is called the ith local redundancy number follows from the fact that:

m

(142) Yr=Ya —o;/oi) = m-n.
i1

i=1

Thus the sum of the local redundancy numbers equals the total redundancy. The proof of (142)
goes as follows. From (140) follows that:

_ * _ -1 _ * _ _ * g |
rp = ¢, (I-QQ, )Cy,- ¢, d-P A)Cy,. ¢y Pyc, .

Hence:

(143) Y r, =Y ¢ Pyc, = trace Py.
i-1 i1 !

From Linear algebra you know that the trace of a matrix equals the sum of its eigenvalues. Thus:
(144) trace P, = Y A,
i=1

where A,i=1,.,m, are the m eigenvalues of PAL. We know that PAL is an orthogonal projector
with the properties:

P,z = z for zeR(A)*
(145) 4 “
2 = 0 for zeR(A).
Since dimR(A) = n and dimR(A)* = m -n, it follows from (145) that PAL has (m -n) number
of eigenvalues that equal 1 and n» number of eigenvalues that equal 0. This together with (144)

and (143) shows that (142) must hold. Since the sum of the local redundancy numbers equals
the total redundancy m -n, we may define the average redundancy r as:

(146) 27,

If we replace the local redundancy numbers in (139) by the average redundancy, we get the
following rough approximation of |V |:
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Y 12
i ¥

(m-n)/m

The case 1 < g < m-n: For the case ¢ = 2 the quadratic form:
(148) b = V'CQ,'QQ,'CV

describes an ellipse, for the case g = 3 it describes an ellipsoid and for the case g > 3 it
describes a hyperellipsoid. In order to get a form that resembles formula (131) we parametrize
the vector V as:

(149) V = |V|d, with d a unit vector.

gx1 gx1 gx1

Substitution of (149) into (148) gives:
Ao = d°CQ,'QQ,'Cd |VI*.

This together with (149) shows that V may be written as:

12

d

gx1

A

P | -1
d Cy Qy QéQy Cyd

V =
(150) ax1

with d a unit vector

By letting the vector d scan the unit sphere in R?, the vector V of (150) scans the ellipsoid as
described by (148). If one is interested in the principle axes of the ellipsoid (148) one should
choose d as one of the ¢ number of eigenvectors of the matrix Cy*nylQényle:

C,Q,'QQ,'Cd, = \d, k= 12..q.

For the principal axes, expression (150) reduces then to:

)\. 12
(151) v, - (_0] d, k=124

gx1 k) gxl

where d_is a normalized eigenvector and A, is the corresponding eigenvalue.

We have seen that the model error that can be detected with a probability Y = v, is given by the mx1
vector Vy = CyV. In some practical applications however it can be rather cumbersome to
evaluate Vy. Note namely that the number of vectors Vy that need to be evaluated equals the
number of alternative hypotheses H, considered. This implies that one has to evaluate the m
elements of Vy for every alternative hypothesis considered. This amounts to a lot of evaluations
and may therefore not be very practical. A notable exception occurs in case of datasnooping,
where the vector Vy has only one non-zero element. In order to reduce the number of
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evaluations one could try to replace the vectorial measure Vy by a scalar measure. The measure A
defined below is a scalar measure that can be used as such. If we consider Vy as a possibly non-
detected "bias" in y and the variance matrix @ as a description of the "noise" in y, we may
define a scalar squared bias-to-noise ratio [Papoulis, 1985] for y as:

(152) Ay = WQ, Wy

A large value of ky indicates that the model error Vy is significant, and a small value of A
indicates that the model error is insignificant. Note that ky = ||CyV||2. Thus ky is the separation
squared between Ely|H, and Efy|H,} (see Figure 4.14).

Substitution of Vy = CyV with (150) for the case I < g < m-n into (152) gives:
* * -1
(153) ), - d'C,Q, Cyd
P | -1
d'C,Q, QQ, Cyd

In case of datasnooping the case g=/ with a diagonal variancematrix Qy, formula (153)
simplifies to:

- 2, 24-1
(154) A, = (1-0a5/0.)" Ay

Let us denote the maximum value of the ratio in (153) by A_ . Thus:

max  d'C,Q,'Cd
deR? 4'c;Q,'Q0,'cd

With A we have the following upperbound for A :
A, <A A

y max “°0°

Recall from Linear algebra that A equals the largest eigenvalue of the generalized eigenvalue
problem:

* o~ -1 * o~ -1
(155) C,Q, C,-1C,Q, QQ, C,| = 0.

A summary of the results of this section is given in Table 4.8.

Example 1

Figure 4.15 shows a typical levelling network of four points with two loops.
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Figure 4.15: A levelling network.

We assume that the variance matrix of the normally distributed observables is equal to a scaled
identity matrix. The linear model of condition equations reads then:

—_

(156)

11100
01011

&
< O
w (3]
Il
_—
oo
~————
L)
1l
Q
(3]
o

N

<
v

We are interested in the minimal detectable bias |V | of Y, Since c, = = (01000)" and 0, is
diagonal we may use formula (139). Computation of G _ according to:

2

(157) oy, = ¢'[Q,-QB(B'QB)'B'Q]c,

gives with (156):

With (5)2,2 = 02, this gives for (139) and for (152):
|V, = 02"
\/)Th = 2A9".

Now consider the network of Figure 4.16.

(158)

Figure 4.16: A levelling network of one loop.
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Its linear model of condition equations reads:

(159) (11 1)Ex)=0; Q =dI,.

Again we are interested in the minimal detectable bias |V,| of Y, Computation of Gi
according to (157) gives for the model (159):

2 2 2
g, = —0".
Y 3

With 052 = @2, this gives for (139) and for (152):

V| = 032"

e = B

Comparison of (158) with (160) shows that a blunder in the second observation is better
detectable with the two loop network than with the one loop network. Compare this with our
discussion in Example 6 of Section 2.3.

(160)
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Hypotheses
H, : E{yl} = Ax H,: B'Ely) = 0
mx mxn nx1 PR bl
versus
or versus
X
HA:E{y}z(AsCy)( ) H,: B'Ely} = C,V
v bxm bxm bxggx1
mx1 mxn mxq (n+q)x1
C, = B'C,

Generalized likelihood ratio test

H,

: T
q

reject H, if Tq > xi(q,O)

- x(g0) s Hy: T -

kv k eyl -1 _ wxo iyl _ wx L
b= V'CQ'QQ,'CV = VC'QCY = VQ, 'V

x*(g,1)

Internal reliability

Vy = C, V and A = Vy*QTIVy

Ao = AMo,gy = ¥y

nmx1 mxq gxl
with:
)\»0 12
for g = 1: V| = — =
Cy Q, QQ, ¢
Ao
for 1l <g<m-n V =
gx1

e | -1
d'c/Q,'QQ,'Cd

)\»0 12
c,*Qt_lct

12

d , d = unit vector
gx1

Table 4.8: Overview of the internal reliability.
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4.6 External reliability

In the previous section internal reliability was defined as the model error that can be detected
with the generalized likelihood ratio test with a probability y = 7. It is described by themx1
vector:

Vy = C\V = Ely|H,}-Ely|H)

with the gx1 vector V satisfying:

o = V'CQ,'QQ,'CV.

In this section we consider the external reliability (uitwendige betrouwbaarheid). External
reliability is defined as the influence of the model error Vy on the final results of a geodetic
computation or adjustment. The importance of external reliability stems from the fact that the
final results of a geodetic computation are usually not the adjusted observations, but instead
derived quantities such as coordinates. It is therefore of importance to know how the final results
are influenced by possibly non-detected model errors Vy. Let £ be the least-squares estimator
of x under H,. The following three cases will be considered in this section:

(i) The influence of Vy on £

(i) The influence of Vy on a part of £, namely £

(iii) The influence of Vy on a linear function of £ namely, 8 =a" % .

1x1 1xn nx1

ad (i):
The least-squares estimator of x under H, is given by:

£=A4Q'NH'4Qy.

From this follows that:

Eix

H}=@A'Q,'A)'4°Q,'Ey|H,}.
Substitution of Ely|H,} = Ax+C V and Ei£|H} = x gives:

(161) Ei%

H, - Ei

Hy +(4"Q,'4)'A"Q,'C V.

If we use the abbreviations Vy = CV = Ely|H }-Ely|H/} and Vi=Et|H }-E£|H} ,wemay
write (161) as:

(162) Vi = (4°Q,'A)'4"Q, Wy

nx1 nxm mx1
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This vector describes the influence of the model error Vy on £. From (162) follows that
AVi = P, Vy. Therefore:

Vy

P.Ny+P,V

AVi +P,Vy.

This orthogonal decomposition of the model error Vy into R(A) and R(A)* is shown in Figure
4.17.

Py = Avk _» Cyv=vy
R(AT ? v
A% Ay
X
l ” L; R(A)*
A o
0 P,vy

Figure 4.17: Vy = AVi+P,Vy.

If we consider Vi of (162) as the possibly non-detected "bias" in £ and Q, as a description of
the "noise" in £, we may define a scalar squared bias-to-noise ratio for X as:

(164) A, = VE'Q; Vi

A large value of A, indicates that the influence of the model error Vy on £ is significant, and
a small value of A, indicates that this influence is insignificant. Since 0.' =A *nylA, it follows
from (164) that:

(165) A, = VE'A'Q,'AVE = (P,V)'Q, ' (P,Vy) = |P,Wy|*.

This is also shown in Figure 4.17. Using the Pythagoras’ theorem we may now relate A to A, .
Application of the Pythagoras’ theorem to (163) gives:

(166) IVyI? = 1P, VI + P, Vyl>.

Since A, = IPLVyl, A, = [P, Vy|* (see (165)), and 7»), = |Vy|?* (see (157)), it follows from
(166) that (see Figure 4.17):

(167) A= A -A

With (164) and (167) we have two ways of computing A : either via V¢ 45in (164) or via A

as in (167). Since the computation of 7»), is rather straightforward (especially if the variance
matrix Q is diagonal), one usually uses (167) for computing A,. The scalar A, may be used for
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constructing an upperbound of an individual element of V£. Let us assume that we are interested
in the ith element VX of Vi. Then:

V&, = ¢, V&, with ¢, = (0,-,1,0,-,0)".
1

1x1 Ixnnx1 nx1 ith

(168)

Substitution of (162) into (168) gives:

VX,

1

¢ (A0, 'A)'4Q 'y

= ¢/ A°Q, A - (4°Q,'4) A Q, 'Vy.
This is an inner product which can be written with the help of the cosine rule as:
(169) Vi, = [c; (A4°Q,'4) 'c]'" - [Vy"Q, A4 Q, '4) 'A"Q, ' W] - cosh,.

In this expression we recognize [c; (A *Qy*lA)’lci]”2 as o,
and[Vy *Qy’]A(A *Q}flA)’l A *Q}"IVy]”z as |P,Vy| = L. Since |cosB,| < 1, the upperbound
follows therefore from (169):

Vi,
(170) | < A7

O,
i

In the previous section for the case I < g < m-n the expression for V of (150) was substituted
into the expression for A . Similarly we can substitute V into the expression for A,. Since:

A, = VR'Q; Vi

x

P a w1 - 1
V'C,Q,'AAQ,'4)'AQ,'C Y

e | -1
\ Cy Qy Q}‘Qy Cyv

substitution of (150) gives:

P P | -1
. d'c;Q,'QQ, Cd -
d*C)’* Qyiloéoyilc)’d

171)

Substitution of Qy = Qy—Qé gives:
* * -1
dC,Q, Cyd )
P | -1
d’C,Q, QQ, Cyd

1

which shows once again with (153) that (167) holds. In case of data snooping with a diagonal
variance matrix Q , formula (171) simplifies to:

(172) A, = (oi/oifl)'l Ao

This can be written in terms of the local redundancy number r, as:
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Ay = [A-r)fr] A,
ad (ii):
Let us partition £ as £ = (£'.£)". The partitioned system of normal equations reads then:

* =1 * ~ -1 ° * o~ -1
(173) A] Qy A1 A] Qy A2 l1 Al Qy X

AZ* ny lA 1 AZ* ny 1142 iZ A2* ny ly

This system corresponds to the partitioned linear model:

Hy: E} = (4, 1 4) (2)

mx1 mxn;  mxn, (f;+ny)x1

In order to find the solution for )_?1 , we premultiply (173) with the square and regular matrix:

I -4,Q,'4,4,0,'4,)"
0 I

This gives:

AZ* ny lA 1 AZ* ny 1A2, i2 AZ* ny ly

A7Q,'I-4,4,0,'4)7'4,0,14, 0 |£) [4/Q,'I-4,4,0Q,'4,)'4,Q, Iy

(174)

In this expression we recognize the orthogonal projector:
(175) Py - I-A4,4,Q,'4))'4,Q, .
Using the abbreviation:
(176) A, - PA,
and noting that:

Q,'Pi = PLQ =P, Q P,
we may write (174) also as:

io'a o |E) (40

4,0,'4, 4,0,'4,)%) 4,0,y
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From this result follows that we may write the least-squares estimator of x, under H as:
(177) £ = (4'Q,'4)"'4/Q,y.

From this follows that:

E(x

It

H) = (4,Q,'4)"'4,Q,'Ey|H,).

Substitution of Ely|H,} = Ax, +Ax,+CV gives:

(178) EG |H} = (4'Q,'4) '4/Q, ' (4x, +4yx,+C V).
Since:

’Zl*QyilAl - _1*Q>71P;2A1 - /II*Q);I_I
and

/Il*QyilAz - AI*P,;;Q:lAz - Al*Qyilp,:zAz =0
equation (178) simplifies to:
(179) ER |H, = x,+(4,Q,'4)'4/Q,'CV.

If we use the abbreviations Vy = CV and V%, = E{)_E1 H,} —Eb_?l |H)} and x, = Ebc:l |H,}, we may
write (179) as:

~ T EA~-l T 217 * -]
(180) VX, = (4,0, A) IAIQ, Vy

nyx1 nyxm mx1

This vector describes the influence of the model error Vy on )_21. Compare this result with (162).
From (180) follows that A V&, = P;Vy. What is the relation between A Vi, and AVi = P, Vy?
Since A, = PALZA it follows that:

R(A,:A,) = R4, :4,).
Therefore:
(181) Py =Py .ay = P ay
We also know that:

A/Q,'A, = A/Q,'P4, - 0.

This implies that R(.Xl) 1 R(A,), and therefore that:
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(182) P(Z,aAQ) = PZ, +PA2'

Hence, it follows from (181) and (182) that:

(183) P, =P; P, .

But this implies that P,Vy = P;Vy+P, Vy or that:
184 ¢ = AV
(134) AVE = A\Vi, +P, Vy.
This orthogonal decomposition of AVX = P,Vy into R(X]) and R(A,) is shown in Figure 4.18.

Compare this with Figure 4.17.

R(A) = R(A{A,) = R(AfA,)

—~

R(A,)
Byy=Avk / vy=Cyv
/\\\\\
/ \ I:\zvy
SR
_ / A %
R(Al) // ‘X — Ay -
\//\}\V}
“NCRy N
PAlvy=A1vx ” > R(A)
— — |
Ao Pyvy

Figure 4.18: P, Vy = XIV)EI +P, Vy.

If we consider Vx, of (180) as the possibly non-detected "bias" in @l and Q. as a description
of the "noise" in )_21, we may define analogous to (164) the squared "bias-to-noise" ratio for)_é1
as:

(185) Ay = VA Q; VA,

Since Q,

X

"= A0, A, (see (177)), it follows that:

(186) Ay = VEA[QAVE = (PzV))'Q, (V) = Pz Vyl*

This is shown in Figure 4.18. Using the Pythagoras’ theorem we may now relate A, to A..
Application to (184) gives:

(187) JAVEI? = 14, V%[> + P, Wy,

Since |AVE|* = |P, Vy|* = A, and ||1¢T1V)21 I> = |P;Vyl* = A,, it follows from (187) that (see
Figure 4.18):

b = APy VP

X

or that:
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(188) by = A~V Q,'4,(4,Q,'4) 14, Q' Wy

Substitution of (167) into (188) gives:

(189) }\«)21 = }Ly*)uOny *Qy_lAz(AZ*Qy_lAz)_IAQ*QY_IV'Y

Formula (170) gives an upperbound for the "bias-to-noise" ratio of an individual element of £.
In a completely analogous way one can derive the following upperbound for the "bias-to-noise"
ratio of an individual element £, of £

V&,
(190) —1| < 2

X

12
)zl

i

Since A, < A, the bound of (190) is sharper than the bound of (170).
ad (iii):

Now consider an arbitrary linear function of £:

(191) 6 =a%.
1x1 Ixnnxl
Then:
(192) E@|H} = a'EX|H,} = a*(E&|H)+V%) = EB|Hy} +a Vi

If we use the abbreviation VO = E0|H,}-EB|H}, we may write (192) as:

(193) VO = a*Vi

1x1 1xnnx1

This shows how an arbitrary linear function of £ is influenced by model errors. If we write (193)

as VO = a"0.70,"”V#, application of the cosine rule gives:

(194) V0 = @'Qa)' - (Vi'Q; Vi)' - cosg.

In this expression we recognize 6, = (a ‘Q.)"* and M = (V£°Q,'V£)"2. The upperbound
follows therefore from (194):

12
x

(195) |V—e| < A
Og

This result shows that k;m gives an upperbound for the "bias-to-noise" ratio of every arbitrary
function of %.

A summary of the results of this section is given in Table 4.9.
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Influence on £

Vi = (4°Q, A '4°Q,'Wy

hp = VETQ'VE = A -4,

12
i

Vija.| < A

Influence on )_61

Vi, = (/Il*Q:l‘I])ilfIl*levy
Ay = V)EI*QJ{IIVJ% - )“f)“o*V*Cy*Qy_lAz(Az*Qy_lAz)_IAZ*QY_ICyV

. 12
lei/of.i‘ < Ay

Influence on 6 = a”

| &>

Datasnooping & Q, = diagonal

V| = 0,[A/ (105 [a})]"
Ay, = [1-03/0,1" 4q

Ay = [oy/o; - 1174,

Table 4.9: Overview of the external reliability.
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4.7 Reliability: an example

In this section we will give an example of a linear model of observation equations:

(196) H, : Elyl - (AlsAz)(il) , Dy = Q,
2

for which the variance matrix Q is assumed to be diagonal. This means that in case of
datasnooping the following formulae of internal and external reliability may be applied:

@ |V = o,[2/(1-0;/0;)]"
® 2, = Vo
(197) © Ay = A ko = (0, )05 DA

@ 2y = Ak 0,Q ' 4,4,Q,'4)'4,Q, e, [V,

© Ay = A ho-c Q) A(47Q'4)4/Q, e, V[,

X

The model that will be considered is given as:

Y, l a
Yy 1 a,|*
E|7?) = 2 ; Dyl = o’ .
(198) RN N
Yy, l a,
mx1 mx2 2x1

The observables are assumed to be normally distributed. Since the observation equations are
of the form Efy} = x, +ax,, they describe the equation of a straight line with intercept x, and

i

slope x,. This is shown in Figure 4.19.

Efy}§

E{y}=x,+ax

E {)!6} s 2
E{Xs}
E{Y4}

E{y,}
Ely,}

3 4
/} ) !

> a

a a, 2, a ag ag

Figure 4.19: The line Efy} = x, +ax, with intercept x, and slope tang = x,.
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The least-squares estimates of x, and x, follow from the minimization problem:

1o
(199) m1n—zz 0, - x, —a,x,)*.

XXy 07 i=1

Since |y, -x,-ax,| is the vertical distance from the point (a,y) to the straight line
Elyl = x, +ax,, the least-squares estimates £, and £, follow from a minimization of the sum of
the squares of these vertical distances (see Figure 4.20).

E{y}

E{y}=x,+ax,

a; a, 2, a, ag ag

m
: . D o : _ _ 2
Figure 4.20: £, and £, follow from mm?E (v, —x, —a,x,)*.
XXy i=1

Let us first derive the minimal detectable bias |V,| of the ith observable. According to (197a)
one can compute ]Vl.] from 7»0, O'i and Gé. Since 7»0 is fixed and Gi = 0%, we only need to
compute:

2 2 _ * _ * x o~ 1 14 *
(200) o, CYiQﬁC)'i cyiA(A Q6 A) A c, -

Yi

With Q= c’l and

1 a,
A=
(201) mx2 .
1 a,
it follows that:
1 m jXI:aj
202 sy lgy -
(202) aeom-— |
2x2 2
Zaj Y a
RS

The inverse of this matrix reads therefore:
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(203) A'Q, A" = o’ mY.a’ -} a)”! ’
IS

2x2

In order to simplify expression (203) somewhat we define:

m

lz a, (average value of the a,'s)

>

(204) m
a; & a;-a, (centred with respect to a,).
Then:
Yy 5].2 =Y (aj2 -2aa, va))
i1 1
205 - Y al mal
(205) = 21: a; -ma,
i

1 m m
—[my. a; -} ).
m -1 j=1

We may write (203) therefore also as:

(206) 4Q, 4" = 21—
2x2 =2 1

Jj=1

From the structure of the variance matrix of (206) three conclusions can be drawn:

1. The least-squares estimators @1 and )_22 are uncorrelated if and only if a, = 0, that is, if
the coordinates a, i = 1,..,m are distributed symmetrically about a = 0.

2. The covariance between @1 and 22 is negative if and only if a_ is positive, that is, if the
cluster of points (a,y,) is situated in the first or fourth quadrant. This means that ifa,
is positive, an increase in x, implies a decrease in x, for an optimal fit (see Figure 4.21).
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E{y} A

Figure 4.21: If x| > x, then x, = tan¢’ < x, = tan¢.

3. The closer the coordinates a, J = L..,m,are to a_, the larger the variances of @1 and )_22
get. In the extreme case that a, =a, V j = 1,.,m, the two columns of matrix A of (201)
are linearly dependent and the variances of )_21 and )_22 are infinite. Thus the closer the
coordinates a, J = L,..,m, are to a_, the more difficult it becomes to estimate x, and x,
(see Figure 4.22).

Efy} A

E{y}=x,* a§z2

> a
Figure 4.22: The line Ely! = x, +ax, is poorly determinable.

In case of datasnooping the mx1 vector ¢ takes the form:
Cy_ = (0591509)*
! 1
ith
With (201) this gives:

(207) c, A =(1a).

Substitution of (206) and (207) into (200) gives:
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2 m
9 > aj2 -2maaq_+ maiz)
(208) o} = Mt
14 m -
a;
j=1
With (204) and (205) this can also be written as:
209 o2 = o> L a
( ) yi m m -
J

Substitution of (209) into (197a) gives with Gi = o2 for the minimal detectable bias of the ith-
observable:

)\, 1/2
(210) Vil = o 1 : 2
I-[—+ m' 1
m J:Zlajz

Note that the rough approximation given in (147) of Section 4.5, corresponds for the present case
to the approximation:

It follows from (210) that |V | is smaller for points that have coordinates a, closer to a_. Hence,
a blunder in the ith observable is better detectable if the corresponding point (a,y,) lies near the
centre of the cluster (aj,yi) Jj = l,.,m, than when it would be near the left or right edges of the
cluster. A similar effect can be seen for A_. Substitution of (209) into (197c) gives namely:

(211) * 1 & 0

m
Y
j=1

Let us now consider the "bias-to-noise" ratios of the individual estimators £ and £ . First we
will compute 7% . With Qy = Gzlm and A, = (a,,~a, )" it follows that:

(212) C):Q)T IAZ(A;Q; ]Az) - IA;Q; : cyi =

Substitution of (210), (211) and (212) into (197d) gives:
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(213) L= i 1

This shows that A, = (V%,/0, )2 is small if a, is large and/or g, is small. Thus the effect of a
possibly non- detected blunder in the ith observable on the intercept estimator xl, is less
significant for points with large coordinates a, than for points with smaller coordinates a,. And
it is even less significant if also a, is close to a,. With Qy = (521m and A, = (1,-,1)" it follows
that:

(214) ¢, Q, '4,4,Q,'A)'4,Q, ¢, = —

Substitution of (210), (211) and (214) into (197e) gives:

A, = ;—IA

215 2 ma 0
(e13) [1-———]

m

-2

(m-DY° a
Jj=1

This result shows that A, = 0 if a, = 0. Hence the effect of a possibly non-detected blunder in
the ith observable on the slope estimator £ is insignificant if a, is close enough to a_. This
effect increases however the more a, differs from a,_.
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Appendix A
Some standard distributions

The normal distribution

Definition: An nx1 random vector x is said to be normally distributed if its probability density
function, p (x), is given as:

o ) = 27 *|Q| *exp[-1(x-1)'Q 7 (r- )]

with Q an nxn positive definite matrix, and p an nx1 vector. Note that a normal distribution
is completely specified once Q and y are given. The following notation will be used for an nx1
normally distributed vector x:

2) x ~ N(p, Q).

nx1 nx1 nxn

Theorem: The expectation, Elx}, and dispersion (or variancematrix), Dix}, of x ~ N(u,Q) are:

(3) Elxt = p and Dl = Q.

Theorem: Let the expectation and dispersion of the random nx1 vector x be given as: Elx} = x
and Dlx} = Q_. Let the random mx1 vector y be defined by y = A x + a . Then:

mx1 mxnnxl mxl
4) Ely} = Ax+a and Dfy) = AQA".

Theorem: If x ~ N(x,Q) and y = Ax+a, then:

Q) y ~ N(Ax+a, AQA").

The non-central y>-distribution

Definition: A scalar random variable x is said to have a noncentral Chi-square distribution with
n degrees of freedom and non-centrality parameter A if its probability density function,p (x),
is given as: B

et .
(GY x> exp[—3]
for 0 < x < =

er

(6) €

n
-+

jt 2 0 <))

for x <0

with



Appendix A 125

I'(x) = ft“e'tdt, x > 0.
0

The following notation will be used for a Chi-square random variable x with n degrees of
freedom and non-centrality parameter A:

(7 x = xXmh).
We speak of a central Chi-square distribution if A = 0.

Theorem: The expectation, Eix}, and dispersion, Dix}, of x ~ x*(n,A) are:
(®) Ex} = n+A and Dix} = 2n+4Ai.

Theorem: If x ~ N(x,Q) and y = x'Q, 'x, then:
nx1 nxlnxn

©) y ~ x*(m,A) with A = x*Qxflx.

The non-central F-distribution

Definition: A scalar random variable x is said to have a non-central F-distribution with m and
n degrees of freedom and non-centrality parameter A if its probability density function, p (x),
is given as: B

. Baj-1 24 2 ]
e (Y x 2T m? n? TR+t
2 2
e ? , for 0 <x<

2
(10) 5 F BN
p() T )T m)? J

0 for x <0

The following notation will be used for an F-distribution with m and n degrees of freedom and
non-centrality parameter A:

(11) x ~ F(m,n,1).

We speak of a central F-distribution if A = 0.

Theorem: 1If u ~ Nu,Q,), v ~ N@O,Q) and u and y are uncorrelated, then

mx1 mx1mxm nxl nx1 nxn

x = Q,'u/m)y/ Q,'v /n) is distributed as:

(12) x ~ F(mn,)) with A = u"Q, u.

Remark: The distribution of z = (Z*Quflg /m) is sometimes noted down as: z ~ F(m,»,A).
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Appendix B
Statistical tables

Normal distribution: computation of one-sided level of significance

k 0 1 2 3 4 5 6 7 8 9
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 ©0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 ©0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

Table B.1: Standard normal distribution. N(0O, 1); given is o, probability in right-hand tail, for
critical values k, e.g. k=1.96 yields a= 0.0250.

calculation in Matlab:
alpha = (1-normcdf (critical value, mu, sigma))

Matlab is a registered trademark of The MathWorks Inc., Natick, MA, USA



Chi-square distribution: computation of critical value
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Appendix B

right-hand tail, and q, degrees of freedom, e.g. 0=0.010 and q=10 yield k = 23.21;
k = %2(q,0) for test (102) in Section 4.5.

calculation in Matlab:
critical value = chi2inv (1-alpha, degrees of freedom)

127
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Central F-distribution: computation of critical value

o=0.10
a,\q; 1 2 3 4 5 6 8 10 20 100
1 39.86 49.50 53.59 55.83 57.24 58.20 59.44 60.19 61.74 63.01
2 8.526 9.000 9.162 9.243 9.293 9.326 9.367 9.392 9.441 9.481
3 5.538 5.462 5.391 5.343 5.309 5.285 5.252 5.230 5.184 5.144
4 4.545 4.325 4.191 4.107 4.051 4.010 3.955 3.920 3.844 3.778
5 4.060 3.780 3.619 3.520 3.453 3.405 3.339 3.297 3.207 3.126
6 3.776 3.463 3.289 3.181 3.108 3.055 2.983 2.937 2.836 2.746
8 3.458 3.113 2.924 2.806 2.726 2.668 2.589 2.538 2.425 2.321
10 3.285 2.924 2.728 2.605 2.522 2.461 2.377 2.323 2.201 2.087
20 2.975 2.589 2.380 2.249 2.158 2.091 1.999 1.937 1.794 1.650
100 2.756 2.356 2.139 2.002 1.906 1.834 1.732 1.663 1.494 1.293
- 2.706 2.303 2.084 1.945 1.847 1.774 1.670 1.599 1.421 1.185

o =0.05
q,\q, 1 2 3 4 5 6 8 10 20 100
1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 241.9 248.0 253.0
2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.40 19.45 19.49
3 10.13 9.552 9.277 9.117 9.013 8.941 8.845 8.786 8.660 8.554
4 7.709 6.944 6.591 6.388 6.256 6.163 6.041 5.964 5.803 5.664
5 6.608 5.786 5.409 5.192 5.050 4.950 4.818 4.735 4.558 4.405
6 5.987 5.143 4.757 4.534 4.387 4.284 4.147 4.060 3.874 3.712
8 5.318 4.459 4.066 3.838 3.687 3.581 3.438 3.347 3.150 2.975
10 4.965 4.103 3.708 3.478 3.326 3.217 3.072 2.978 2.774 2.588
20 4.351 3.493 3.098 2.866 2.711 2.599 2.447 2.348 2.124 1.907
100 3.936 3.087 2.696 2.463 2.305 2.191 2.032 1.927 1.676 1.392
o 3.841 2.996 2.605 2.372 2.214 2.099 1.938 1.831 1.571 1.243

o =0.01
q,\q, 1 2 3 4 5 6 8 10 20 100
1 4052. 5000. 5403. 5625. 5764. 5859. 5981. 6056. 6209. 6334.
2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.40 99.45 99.49
3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.23 26.69 26.24
4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.55 14.02 13.58
5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 10.05 9.553 9.130
6 13.75 10.92 9.780 9.148 8.746 8.466 8.102 7.874 7.396 6.987
8 11.26 8.649 7.591 7.006 6.632 6.371 6.029 5.814 5.359 4.963
10 10.04 7.559 6.552 5.994 5.636 5.386 5.057 4.849 4.405 4.014
20 8.096 5.849 4.938 4.431 4.103 3.871 3.564 3.368 2.938 2.535
100 6.895 4.824 3.984 3.513 3.206 2.988 2.694 2.503 2.067 1.598
- 6.635 4.605 3.782 3.319 3.017 2.802 2.511 2.321 1.878 1.358

Table B.3: Central F-distribution. F' (q;, q,, 0); given is k, critical value, for q, and q,,
degrees of freedom, for some values of o, probability in right-hand tail, e.g. a=0.01,
q,=10, g,= yield k = 2.321; k=F,, (q, oo, 0) for test (106) in Section 4.5.

calculation in Matlab:
critical value = finv (1-alpha, degrees of freedom ql, q2)



Non-central F-distribution: computation of type II error probability

o =0.10 and q,=1

CAVS 1 2 6 10 15 21 1 2
1 0.85 0.82 0.70 0.62 0.54 0.47 0.88 0.86 0
2 0.82 0.74 0.51 0.35 0.22 0.12 0.8 0.81 0
3 0.80 0.70 0.41 0.23 0.11 0.04 0.84 0.78 0
4 0.78 0.68 0.35 0.17 0.07 0.02 0.83 0.76 0
5 0.78 0.66 0.32 0.15 0.05 0.0l 0.82 0.75 0
6 0.77 0.65 0.30 0.13 0.04 0.01 0.82 0.74 0
8 0.76 0.64 0.28 0.11 0.03 0.0l 0.81 0.72 0
10 0.76 0.63 0.26 0.10 0.03 0.00 0.81 0.71 0
20 0.75 0.61 0.24 0.08 0.02 0.00 0.80 0.69 0
100 0.74 0.59 0.22 0.07 0.0l 0.00 0.79 0.67 0
oo 0.74 0.59 0.21 0.06 0.0l 0.00 0.78 0.67 0
o = 0.10 and q,=6
AV 1 2 6 10 15 21 1 2
1 0.89 0.88 0.86 0.84 0.81 0.78 0.90 0.89 0
2 0.88 0.87 0.8l 0.76 0.69 0.63 0.89 0.88 0
3 0.88 0.86 0.77 0.69 0.59 0.49 0.89 0.87 0
4 0.87 0.85 0.74 0.63 0.51 0.38 0.88 0.87 0
5 0.87 0.84 0.71 0.58 0.44 0.31 0.88 0.86 0
6 0.87 0.83 0.69 0.55 0.39 0.25 0.88 0.86 0
8 0.86 0.82 0.65 0.49 0.32 0.18 0.88 0.85 0
10 0.86 0.81 0.63 0.45 0.28 0.14 0.87 0.84 0
20 0.85 0.79 0.56 0.36 0.18 0.07 0.87 0.83 0
100 0.84 0.77 0.49 0.27 0.11 0.03 0.85 0.80 0
oo 0.83 0.76 0.47 0.25 0.09 0.02 0.85 0.80 0

6

.79
.67
.58
.52
.48
.45
.42
.39
.35
.31
.30

6

.87
.85
.82
.80
.78
.76
.74
.72
.66
.58
.55

O O OO O OO oo oo

O O OO OO OO o oo

10

.74
.55
.42
.34
.29
.26
.22
.19
.15
.12
.11

10

.86
.81
.77
.73
.70
.67
.62
.59
.49
.37
.33

o = 0.10 and q,=2

O O OO O OO oo oo

O O OO OO OO o oo
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15

.69
.43
.27
.19
.14
.12
.09
.07
.05
.03
.03

o = 0.10 and q,=10

15

.84
.77
.70
.64
.59
.55
.48
.43
.31
.18
.15

O O OO OO OO o oo

O O OO OO OO o oo

21

.64
.31
.16
.09
.06
.04
.03
.02
.01
.01
.00

21

.82
.72
.63
.55
.48
.42
.34
.28
.16
.07
.05
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Table B.4: Non-central F-distribution. F (q,, q,, A); given is 3, probability in left-hand tail of
F(q,, q,, A), for A, non-centrality parameter, and q,, degrees of freedom, for 0=0.10,

probability in right-hand tail of F(q,, q,, 0), for some values of q,, degrees of freedom, e.g.
q,=1, q,=cc and 0=0.10 yield, with A=2, =0.59 and hence y=0.41, see also Table 4.7 in

Section 4.5; ©
o = f Pe(F|q,=,0)dF.
F(g,=0)
and

B=1- [ puFlg=ndF
F(g,=0)
for test (106).

calculation in Matlab:
critical value = finv (1-alpha, degrees of freedom ql, q2)
beta = ncfcdf (critical value, degrees of freedom ql, q2, lambda)
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Non-central F-distribution: computation of type II error probability

o = 0.05 and q,=1 o = 0.05 and q,=2
AV 1 2 6 10 15 21 1 2 6 10 15 21
1 0.93 0.91 0.85 0.80 0.76 0.72 0.94 0.93 0.89 0.87 0.84 0.81
2 0.90 0.86 0.71 0.58 0.46 0.34 0.93 0.90 0.82 0.74 0.65 0.56
3 0.89 0.83 0.60 0.43 0.27 0.15 0.92 0.88 0.75 0.62 0.48 0.35
4 0.88 0.80 0.54 0.34 0.18 0.08 0.91 0.87 0.69 0.53 0.37 0.23
5 0.87 0.79 0.49 0.28 0.13 0.05 0.90 0.86 0.65 0.47 0.29 0.16
6 0.86 0.78 0.46 0.25 0.11 0.03 0.90 0.85 0.62 0.42 0.24 0.12
8 0.86 0.76 0.42 0.21 0.08 0.02 0.89 0.83 0.57 0.36 0.18 0.07
10 0.85 0.75 0.40 0.19 0.06 0.02 0.89 0.82 0.55 0.32 0.15 0.05
20 0.84 0.73 0.36 0.15 0.04 0.01 0.88 0.80 0.48 0.25 0.10 0.03
100 0.83 0.71 0.32 0.12 0.03 0.00 0.87 0.78 0.43 0.20 0.06 0.01
oo 0.83 0.71 0.31 0.11 0.03 0.00 0.87 0.77 0.42 0.18 0.06 0.01
o = 0.05 and q,=6 o = 0.05 and q,=10
AV 1 2 6 10 15 21 1 2 6 10 15 21
1 0.95 0.94 0.93 0.92 0.90 0.89 0.95 0.95 0.94 0.93 0.92 0.91
2 0.94 0.93 0.90 0.87 0.84 0.80 0.95 0.94 0.92 0.90 0.88 0.85
3 0.94 0.93 0.88 0.83 0.76 0.69 0.94 0.94 0.91 0.88 0.84 0.79
4 0.94 0.92 0.85 0.78 0.69 0.58 0.94 0.93 0.89 0.85 0.79 0.72
5 0.93 0.91 0.83 0.74 0.63 0.50 0.94 0.93 0.88 0.82 0.75 0.66
6 0.93 0.91 0.81 0.71 0.58 0.43 0.94 0.93 0.87 0.80 0.71 0.61
8 0.93 0.90 0.78 0.65 0.49 0.33 0.94 0.92 0.85 0.76 0.65 0.52
10 0.93 0.90 0.76 0.61 0.44 0.27 0.93 0.92 0.83 0.73 0.60 0.45
20 0.92 0.88 0.70 0.50 0.30 0.14 0.93 0.90 0.78 0.63 0.45 0.28
100 0.91 0.86 0.62 0.39 0.18 0.06 0.92 0.89 0.71 0.50 0.29 0.13
oo 0.91 0.85 0.60 0.36 0.16 0.05 0.92 0.88 0.68 0.46 0.24 0.09

Table B.5: Non-central F-distribution. F (q;, q,, A) given is [, probability in left-hand tail of
F(q,, q,, M), for A, non-centrality parameter, and q,, degrees of freedom, for a=0.05, probability
in right-hand tail of F(q,, q,, 0), for some values of q,, degrees of freedom.

calculation in Matlab:
critical value = finv (1-alpha, degrees of freedom ql, q2)
beta = ncfcdf (critical value, degrees of freedom ql, q2, lambda)
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Table B.6: Non-central F-distribution. F (q,, q,, A); given is 3, probability in left-hand tail of

F (q;, q,, A) for A, non-centrality parameter, and q,, degrees of freedom, for 0=0.01,
probability in right-hand tail of F (q,, q,, 0), for some values of q,, degrees of freedom.

calculation in Matlab:

critical value = finv (1-alpha, degrees of freedom ql, q2)

beta = ncfcdf (critical value, degrees of freedom ql, q2, lambda)
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Appendix C
Detection, identification and adaptation

We have given the teststatistic for testing the null hypothesis H, against a particular alternative
hypothesis H,. In most practical applications however, it is usually not only one model error one
is concerned about, but quite often many more than one. This implies that one needs a testing
procedure for handling the various alternative hypotheses. In this appendix we will discuss a way
of structuring such a testing procedure. It will consist of the following three steps: detection,
identification and adaptation.

Detection

Since one usually first wants to know whether one can have any confidence in the assumed null
hypothesis without the need to specify any particular alternative hypothesis, the first step consists
of a check on the overall validity of H,. This implies that one opposes the null hypothesis to the
most relaxed alternative hypothesis possible (see Section 4.4). The most relaxed alternative
hypothesis is the one that leaves the observables completely free. Hence, under this alternative
hypothesis no restrictions at all are imposed on the observables. We therefore have the situation:

(1) H_:Ely} = Ax versus H :EiyleR".

It can be shown that in this case, the appropriate teststatistic reads:

2) T = ¢'Q, 'é.

“g=m-n -y =

The appropriate teststatistic for testing the null hypothesis against the most relaxed alternative
hypothesis, is thus equal to the weighted sum-of-squares of the least-squares residuals. The null
hypothesis will then be rejected when:

3) T, o > Xelm-n.0)

with o, the chosen level of significance, and m-n, the redundancy.

The 6 test: In the literature one often sees the above overall model test also formulated in a
slightly different way. Let us use the factorization Dfiy}=Q =6Q , where ¢” is the variance
factor of unit weight and Q is the corresponding cofactor matrix. It can be shown that:

Q!

m-n

>

& =

is an unbiased estimator of 6* (see also (100) in Section 4.4). Thus E{6%=0>. The test (3) can
now also be formulated as:
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) 2

ol Xo(m-n,0)

Sk A F (m-n,=,0)
2 m-n

Q

where F(m-n,»,0) is the central F-distribution having m-n and «~ degrees of freedom.
Identification

In the detection phase, one tests the overall validity of the null hypothesis. If this leads to a
rejection of the null hypothesis, one has to search for possible model misspecifications. That is,
one will have to try to identify the model error which caused the rejection of the null hypothesis.
This implies that one will have to specify the type of likely model errors. This specification of
possible alternative hypotheses is application dependent and is one of the more difficult tasks in
hypothesis testing. It depends very much on ones experience.

The I-dimensional case: In case the model error can be represented by a scalar, the alternative

hypothesis takes the form:
4) H, : Ely} = Ax+c V.

The alternative hypothesis is specified, once the vector ¢, is specified (see Section 4.3). The
appropriate teststatistic for testing the null hypothesis against the above alternative hypothesis
H, is given as:

*y -14572
. [¢/Q, "l

q=1 * o~ -1 -1
Cer Qé y Cy

or when the square-root is taken:

c’Q.'e
(5) w = y xy =

/e, Q,'0.0Q, ¢,

This teststatistic has a standard normal distribution N(0,1) under H,. The evidence on whether
the model error as specified by (4) did or did not occur, is based on the two-sided test:

(©) w| > Ny, (0.1)

with o, the chosen level of significance.

Data snooping: Apart from the possibility of having a one dimensional test as (6), it is standard
practice in geodesy to always first check the individual observations for potentional blunders.
This implies that the alternative hypotheses take the form:

(7 H, : Eyl = Ax+c V, i=1,..m

with

¢, =(0....,0,1,0,...0)".
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Thus ¢/ is a unit vector having the 1 as its ith entry. The additional term ¢, V. models the
presence of a blunder in the ith observation. The appropriate teststatistic for testmg the null
hypothesis against the above alternative hypothesis H,, is again of the general form of (5), but
now with the c-vector chosen as c,, see also (83) in Section 4.3:

®) w.o=

This teststatistic has of course also a standard normal distribution N (0,1) under H,. By letting
i run from 1 up to and including m, one can screen the whole data set on the presence of
potential blunders in the individual observations. The teststatistic w; which returns the in absolute
value largest value, then pinpoints the observation which is most likely corrupted with a blunder.
Its significance is measured by comparing the value of the teststatistic with the critical value.
Thus the jth observation is suspected to have a blunder, when:

) lw|>|w;|Vi and [w,[>N1, (0,1)
21

This procedure of screening each individual observation for the presence of a blunder, is known
as data snooping.

In many applications in practice, the variance matrix Q, is diagonal. If that is the case, the
expression of the above teststatistic simplifies considerably. With a diagonal Q -matrix, we have:

|

wo =
i

Q

€;

The appropriate teststatistic is then thus equal to the least-squares residual of the ith observation
divided by the standard deviation of the residual.

The higher dimensional case: It may happen that a particular model error can not be represented
by a single scalar. In that case ¢ > / and V becomes a vector. The appropriate teststatistic is
then the one we met earlier, namely:

Akl * o~ -1 -1 Ak ey 1a
(10) T =¢é'Q,C(CQ,QQ, C)'C/Q ¢
It is through the matrix C, that one specifies the type of model error.
Adaptation

Once one or more likely model errors have been identified, a corrective action needs to be
undertaken in order to get the null hypothesis accepted. Here, one of the two following
approaches can be used in principle. Either one replaces the data or part of the data with new
data such that the null hypothesis does get accepted, or, one replaces the original null hypothesis
with a new hypothesis that does take the identified model errors into account. The first approach
amounts to a remeasurement of (part of) the data. This approach is feasible for instance, when
in case of datasnooping some individual observations are identified as being potentially corrupted



Appendix C 135

by blunders. These are then the observations which get remeasured. In the second approach no
remeasurement is undertaken. Instead the model of the null hypothesis is enlarged by adding
additional parameters such that all identified model errors are taken care of. Thus with this
approach, the identified alternative hypothesis becomes the new null hypothesis.

Once the adaptation step is completed, one of course still has to make sure whether the newly
created situation is acceptable or not. This at least implies a repetition of the detection step. It
is possible that a gross error in one observation masks the gross error in another observation.
This may have as consequence that the gross error which is masked, fails to have a large enough
effect on its w-teststatistic; in other words, this w-test is not rejected. It is therefore good
practice, once an observation is rejected, to repeat the adjustment without the rejected observation
and again apply to this result the datasnooping procedure. In this way, one can infer whether it
is likely that any gross errors remained undetected in the first step. Of course, if redundancy
permits, one can repeat this again after the second step. This procedure is called iterative
datasnooping.

When adaptation is applied, one also has to be aware of the fact that since the model may have
changed, also the ’strength of the model’ may have changed. In fact, when the model is adapted
through the addition of more explanatory parameters, the model has become weaker in the sense
that the teststatistics will now have less detection and identification power. That is, the reliability
has become poorer. It depends on the particular application at hand, whether this is considered
acceptable or not.

On the choice of testing parameters

When executing the above tests, choices need to be made about the testing parameters so as to
control the errors of the first and second type. Although various approaches are possible, we only
present briefly one such approach, namely the B-method of testing (Baarda, 1968). For a more
detailed discussion on this topic, including the possible pittfalls involved, we refer to (Miller,
1966 and Arnold, 1981).

In the B-method of testing, the 7,_, -test of the detection step and the w-test of the identification

g=m-n

step are related to each other by a special choice of their testing parameters:

(11) }\‘0 = }\'(a:q:m_ny'Y:YO) = }“(a]:qzla'Y:YO)'

The procedure is then to make a choice for o, and 7y, and compute A, and o from the above
relation. This choice of equal values for the non-centrality parameter A = A, and power y = v,
in both tests, implies that a certain model error can be found with the same probability by both
the 7,_,,, and the w-test. Both tests will therefore have the same reliability, i.e. the same values
for the minimal detectable biases (MDB). Thus if the null hypothesis is accepted in the detection
step, no further testing is necessary and the reliability for any I1-dimensional alternative

hypothesis is given by its corresponding MDB computed on the basis of the value A,,.

One consequence of the above coupling that one should be aware of, is the dependence of o on
the redundancy m-n. Due to this coupling the value of o will increase when the redundancy
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increases (see Figure C.1). For a large redundancy this may lead to a too large value of o, so
that the null hypothesis gets too often falsely rejected. For such situations, Baarda proposes to
carry out the adjustment and testing in steps.

level of significance o
© © o o o o o
w e (4] (2] ~ [oe] [
: : : :

o
()

0.1

10° 10' 10° 10°
redundancy m-n

Figure C.1: Level of significance o versus redundancy m-n according to the B-method of
testing (11); a, = 0.001, v, = 0.80.
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Testing theory:

an introduction

Peter J.G. Teunissen

These lecture notes are a follow up on Adjustment theory. Adjustment theory deals

with the optimal combination of redundant measurements together with the estimation
of unknown parameters. There are two main reasons for performing redundant
measurements. First, the wish to increase the accuracy of the results computed. Second,
the requirement to be able to check for mistakes or errors. The present book addresses
this second topic. Although one always will try one’s best to avoid making mistakes, they
can and will occasionally happen. It is therefore of importance to have ways of detecting
and identifying such mistakes. Mistakes or errors can come in many different guises.
They could be caused by mistakes made by the observer, or by the fact that defective
instruments are used, or by wrong assumptions about the functional relations between
the observables. When passed unnoticed, these errors will deteriorate the final results.

The goal of this introductory course on testing theory is therefore to convey the
necessary knowledge for testing the validity of both the measurements and the
mathematical model. Typical questions that will be addressed are: ‘How to check the
validity of the mathematical model? How to search for certain mistakes or errors? How
well can errors be traced? And how do undetected errors affect the final results?” The
theory is worked out in detail for the important case of linear(ized) models. Both the
parametric form (observation equations) and the implicit form (condition equations) of
linear models are treated. As an additional aid in understanding the basic principles
involved, a geometric interpretation is given throughout. Attention is also paid to the
performance of the testing procedures. The closely related concept of reliability is
introduced and diagnostic measures are given to determine the size of the minimal
detectable biases. In this introductory text the methodology of testing is emphasized,
although various examples are given to illustrate the theory. The methods discussed form
the basis for geodetic quality control and they provide the ingredients for the formulation

of guidelines for the reliable design of measurement set-ups. I U D e I f‘t
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