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Chapter 1

Introduction

Ralil traffic plays a key role in public transportation sinceambines high transport capacity
and high efficiency. More specifically, a safe, fast, punicteszergy-efficient, and comfort-
able railway system is important for the economic, envirental, and social objectives of
a country or a city. The main focus of this dissertation is avirsg energy in railway op-
erations and on enhancing the passenger satisfactionhwhit be achieved via optimal
trajectory planning for trains and the train schedulingoading to passenger demands.

In this chapter we first provide a brief introduction to raaywoperations and then present
the motivation for the research addressed in this thesicdfvelude this introductory chap-
ter with a list of our contributions and the structure of tigsis.

1.1 A brief introduction on railway operations

A railway system consists of three essential elementsastifucture (like tracks, stations,
signaling equipment, etc.), rolling stock with locomogwand cars or electric multiple units
(EMUSs), and the operation rules and procedures for a safeféiotbnt operation [28]. The
design and construction of the infrastructure and rollilogls are affected by the operation
rules; thus the performance of the railway system is alsaotgd by the operation rules.
Passenger railway systems could be classified into interurdilway systems (or standard
railway systems) and urban rail transit systems (such asosiahd subways). Rail infras-
tructure is a limited resource in interurban rail transiteyns, where lines overlap or cross
with each other and trains usually overtake or meet each.dfhrethe other hand, in urban
rail transit systems, the lines are separated from eachr atiteeach direction of the line
has a dedicated infrastructure. Moreover, in principlengao not overtake and meet each
other in urban rail transit systems.

The optimal trajectory planning (i.e., speed profile cadtioh) methods for the opera-
tion of trains proposed in this dissertation can be applat for interurban railway systems
and urban rail transit systems. However, train schedulppgy@aches we present here are
focused on urban rail transit systems.

In railway systems, the operation of trains is in generatidied through a hierarchical
control framework with five levels, i.e., scheduling, réiate (re)scheduling, remote traffic
control, interlocking and signaling, and train and infrasture control (see Figure1.1) [89].

1
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Figure 1.1: Hierarchical structure of the railway operatie (adopted from [§9])

The scheduling process for railway systems involves a cexyplocedure that includes de-
mand analysis, line planning, train scheduling, rollingcktplanning, and crew scheduling
(see Section 213 for more detailed information). When dglayterruptions, or failures,
etc. occur, dispatchers in the traffic management centpegige the railway network and
they resolve the conflicts through rescheduling. The dewssbf the dispatchers are then
forwarded to the remote traffic control level, where the lacaffic centers set the routes
and issue the speed limits for trains through interlockiygfems and signaling systems.
Moreover, there also exists an opposite information flove itiformation of train opera-
tions is gathered automatically at the train control level forwarded upwards to the traffic
management systems.

Safety is an important issue for railway systems, whereadigg systems and interlock-
ing systems are employed to prevent collisions betweendtaid ensure safe train move-
ments. There are two principles for signaling systems, fisied block signaling principle
and moving block signaling principle (for more informatisee Section 2.11.2). In practice,
advanced signaling systems for train control and safetg baen developed, such as the Eu-
ropean train control system for interurban railway syst§@&$ and communication-based
train control systems for urban rail transit systems [67]or#specifically, the European
train control system has three levels, where level 1 and Dased on the fixed block sig-
naling principle and level 3 is based on the moving block sy principle. For modern
urban ralil transit systems, the moving block signaling @gte is often implemented in the
communication-based train control system and the fixeddd@mnaling system is also im-
plemented as a back-up. The architecture of the commuaicatised train control system
may involve automatic train protection (ATP), automatgirtroperation (ATO), and auto-
matic train supervision (ATS). In particular, the ATP systis used to guarantee the safety
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of the operation of trains, where deviating driving behawigike over-speeding or passing
red signals) caused by drivers or ATO systems would triggesraergency brake. Further-
more, the ATO system can control the traction and brakingreffutomatically to operate
trains between stations (see Secfion 2.1.1 for more détafermation). In addition, there
are also some driver assistance systems that have beeoplEd@l practice to assist drivers
to drive the train optimally, such as FreightMiser|[63], kéehiser [63], and driving style
manager[39].

Train scheduling is crucial for railway operations sincédis a significant impact on
infrastructure usage and punctuality. For interurbamvajlsystems, the timetables are usu-
ally published to provide trip information to passengerke Grawback of fixed timetables
is that adjustments (due to e.g., changes of demand) areuttifto implement. However, in
urban rail transit systems, trains are operated with highuUencies and rail transport oper-
ators often do not publish the train schedule to passengéeity provide some real-time
information, such as that a train will arrive within 2 minsteFurthermore, the passenger
demands for urban rail transit systems may change rapidlytive time of the day or due
to some special events. Hence, rail transit operators cmhiddule trains in real time based
on the passenger demands to increase passenger satistaittichort and reliable travel
times.

1.2 Motivation and aim of the thesis

Due to the increasing energy prices and environmental coagcenergy efficiency in trans-
portation systems is becoming more and more important [6@}. the Beijing urban rail
transit system, the power consumption in 2008 was 6.5 miki/h, which was 1% of the
total power consumption of the city [55]. It is predicted tthiae power consumption of
Beijing urban rail transits system will rise to 13.9 milli&dvh in 2015, which would then
account for 1.2% of the total power consumption [55]. Funthare, the energy consump-
tion for the operation of trains is about 40-50% of the totalpr consumption for urban rail
transit systems [138]. Therefore, the reduction of eneagpsamption for the operation of
trains is one of the key objectives in the operation of rajisgstems. Meanwhile, the inter-
est of railway operators in energy efficiency has been rigioge and more in recent years,
as even a small improvement in the energy consumption cawe thekrailway operators
save a lot of money.

Furthermore, with the dramatical increase of passengeaddrim large cities like Bei-
jing, Shanghai, Tokyo, New York, and Paris, urban rail tiasgstem plays an increasing
role for the efficiency and sustainability for the overaditsportation system. Nowadays the
operation of trains in urban rail transit systems is chamded by a high frequency, where
the minimum headway between two successive trains is ystitdl 5 minutes, which could
even be reduced to 90 s with the development of advanced doaitrol systems [115].
When trains are operated with such a high frequency, thedsding of trains based on the
passenger demand becomes more and more important for passatisfaction and for the
reduction of operation costs. The passenger satisfaciéperitls on the waiting times, in-
vehicle times, and the number of transfers, while the operabsts are determined by the
number of train services and the energy consumption of tjérations.

The aim of the thesis is to determine and develop mathenhatiodels and solution
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approaches to shorten the travel time of passengers anduoa&nergy consumption in
railway systems. With respect to the five-level hierarchia@mtrol framework discussed

above (cf. Figuré111), scheduling, real-time (re)schieguland train control are closely
related to the energy consumption of trains and the trawet tf passengers, while the
remote traffic control and the signaling and interlockingtsyns are responsible for the
safety of the operation of trains. In the train control leuedins are operated by drivers
or ATO systems under the supervision of ATP systems. In exfiditrains are assumed to
run according to the schedule given by the train schedulimgal-time (re)scheduling, i.e.,

the fixed running times for trains between two consecutiséiasts and fixed dwell time

at stations. Generally, the scheduling of trains means temg¢e an off-line timetable for

the railway system. Based on the existing timetable datdtime rescheduling is used to
handle route conflicts due to train delays or incidents. s thesis, real-time scheduling
means that there is no existing timetable or constant heggjveait the schedule of trains
is optimized in a rolling horizon way taking passenger detisaand operation costs into
consideration. The travel time of passengers is considettbe train scheduling, where the
running times and dwell times of trains are determined. Nuaéthe energy consumption
depends on the running times of trains, so the energy sa@ng@iso be dealt with in the

train scheduling layer. In this thesis, the following tw@itts are investigated:

e Trajectory planning. A nonlinear model for the operationtrafins is derived and
several approaches are presented to calculate the optayedtories in an energy-
efficient way for trains based on a given train schedule.

e Train scheduling. To shorten the travel time of passengeid@reduce the energy
consumption, we develop a train scheduling model for urbdnransit systems and
optimization approaches to find a balanced trade-off betwetl passenger travel
time and the operation cost of the rail transport operator.

1.3 Scope and contributions of the thesis
The main contributions of the work presented in this disgen are as follows:

e We develop a new iterative convex programming (ICP) apgrdacsolve the train
scheduling problem for an urban rail transit line. Constaigiin-destination-independent
(OD-independent) passenger demands within the schedudingd is taken into ac-
count in the train scheduling problem.

¢ We include constant origin-destination-dependent (Opetdeent) passenger demands
within the time period considered in the train schedulingdelaand we propose an
efficient bi-level approach to solve the problem more effitie

e We introduce an event-driven model, which can take timgiagrOD-dependent pas-
senger demand, the splitting of passenger flows, and pamstagsfer behavior at
transfer stations into account for the train schedulingrbfan rail transit network.
This event-driven model consists of three types of everits,departure events, ar-
rival events, and passenger arrival rate change eventatétnohs.
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The contents and contributions can be found in Chaptersr8¢an be summarized as
follows:

Chapter 3: The optimal trajectory planning problem for the operatidracingle
train is considered. The varying line resistance, variapked restrictions, and vary-
ing maximum traction force are included in the problem d&éini The objective
function is a trade-off between the energy consumption baditling comfort. Two
approaches are proposed to solve this optimal control enobl

— A pseudospectral method, i.e. a state-of-the-art methodgtmal control, is
applied for the first time in optimal train control, where thjgtimal trajectory
planning problem is recast into a multiple-phase optimaticd problem.

— The optimal trajectory planning problem is reformulate@asixed-integer lin-
ear programming (MILP) problem by approximating the noa¢interms in the
problem by piecewise affine functions. The resulting MILBlgem can be
solved efficiently by existing solvers.

The main conclusion of the chapter is that if the availabieetifor computing the
solution is large enough, the pseudospectral method isime@mded since it has a
higher performance. Otherwise, the MILP approach can béiezpfo obtain the
optimal train trajectory.

The contents of Chapter 3 can be mainly found.in [130] and baen partially pre-
sented in[[127, 128, 130].

Chapter 4: We investigate the optimal trajectory planning problenmhortiple trains
under fixed block signaling systems and moving block signgadiystems. The con-
straints caused by the leading train in a fixed or moving bkigkaling system are
included into the model for the operation of trains. Two $ioluapproaches are pro-
posed to solve the resulting optimal control problem fortipté trains:

— The greedy approach optimizes the trajectory of the leattaig first and then
based on the optimal trajectory of the leading train, thiettary planning prob-
lem for the following train is solved. The MILP approach ahd pseudospectral
method are employed to solve the optimal trajectory for ¢ageling train and the
following train.

— The simultaneous approach optimizes the trajectory ohelttains in the prob-
lem formulation at the same time, where the MILP approach thedpseu-
dospectral method are also applied.

In the simulation experiment, we show that simultaneousaggh yields a better per-
formance but requires a higher computation time compartutihv greedy approach.

The contents of Chapter 4 can be mainly found.in [134] and baen partially pre-
sented in[[129, 131].

Chapter 5: The real-time train scheduling problem for an urban raihsitlline is
investigated with the aim of minimizing the total travel gnof passengers and the
energy consumption of the operation of trains. Based on ther@ependent pas-
senger demand of the urban rail transit system, the optieddure times, running
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times, and dwell times are obtained by solving the schedylioblem. Several ap-
proaches are proposed to solve this problem:

— A new iterative convex programming (ICP) approach is prega® solve the
train scheduling problem.

— Nonlinear programming approaches (sequential quadratigraming (SQP)
and pattern search in particular), a mixed integer nontipeagramming ap-
proach, and an MILP approach are also applied to solve tHegno

We find that the ICP approach provides the best trade-off éatwperformance and
computational complexity comparing with other alternatbolution approaches.

The contents of Chapter 5 can be mainly found.in [135] and baen partially pre-
sented in[[132, 133].

Chapter 6: We consider the train scheduling taking constant OD-depeinphssen-
ger demands into account for an urban rail transit line. A-stkipping strategy is
adopted to reduce the passenger travel time and the enemguroption. The train
scheduling problem results in a mixed integer nonlineagmmming problem, where
two solution approaches are proposed:

— A bi-level approach is considered to solve the train schadyroblem, where
the higher level optimizes the binary variables and the tdexeel solves a non-
linear nonconvex problem for each combination of binaryalaes.

— We also propose an efficient bi-level approach that firstiapph threshold
method to obtain a good initial solution for the problem ahdrt limits the
search space of the variables to speed up the optimizatimegs.

Experiment indicates that the bi-level approach has betietrol performance, but
the efficient bi-level approach can provide an acceptalblgisa with much less com-
putation time.

The contents of Chapter 6 can be mainly found.in [136] and baen partially pre-
sented in[[137].

Chapter 7: An event-driven model is proposed for the train schedulihgrourban
rail transit network, where a time-varying OD-dependessgager demand, splitting
of passenger flows, and passenger transfer behavior ateratetions are included.
This event-driven model involves three types of events, departure events, arrival
events, and passenger arrival rate change events at platfarhe train scheduling
problem that is constructed based on the event-driven madal real-valued non-
linear nonconvex programming problem. Several solutigr@g@ches, such as SQP,
pattern search method, mixed integer linear programmind,genetic algorithms,
can be applied to this train scheduling problem.

The simulation resultsof the case study show that the SQP method provides a better
trade-off between control performance and computaticoajdexity than the genetic
algorithm.

1The pattern search and the MILP approach are not considetke case study.
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Chapter 1:
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Conclusions and
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Figure 1.2: The road map of this dissertation

1.4 Thesis outline

A road map of the dissertation is presented in Fiduré 1.2chvhlarifies the connections
between the chapters. According to the road map, readergsted in optimal trajectory
planning could read the dissertation in the following ordehaptefd, Sectidn 2.1, Section
[2.1.2, and Sectidn 2.4 of Chapfér 2, Chapter 3, Chapter 4Chagtef 8. Those interested
in the train scheduling problem for urban rail transit sygsteould read the dissertation in
the following order: Chaptéd 1, SectibnP.3 and Sediioh 2@haptef 2, Chapté&l 5, Chapter
[6, Chaptefl7, and Chapfér 8.

Chapter 1L gives the motivation and a general introductiothéotopic of the thesis.
Chaptef 2 presents the background of the operation of teaidghe train scheduling pro-
cess and summarizes the related research work in the literaChaptel13 and Chaptéer 4
investigate on optimal trajectory planning for a singlértrand for multiple trains, respec-
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tively. Chaptefb and Chapter 6 focus on train schedulingfianrban rail transit line, where
the passenger characteristics are described in differaydg.\W he train scheduling problem
for urban rail transit networks is formulated in Chagdier hene the passenger transfers
are included. Chaptét 8 concludes the thesis with the maitribations and directions for
future research.



Chapter 2

Background: Train Operations
and Scheduling

In this chapter, background material and literature revdevthe operation of trains and on
urban rail train scheduling will be presented. In Sediidl) the operation of trains is intro-
duced, where the automatic train operation (ATO) systemptained in detail. In addition,

a brief introduction to fixed block signaling systems and mgwlock signaling systems
are also given. An overview of optimal control approacheslie trajectory planning of

a single train and multiple trains is provided in Secfion 2r2 Sectior 2.8, the urban rail
transit scheduling problem is introduced. This chapterctates with a short summary in

Sectior Z.4.

2.1 Operation of trains

Nowadays, several dedicated high-speed railway lines doahurail transit systems with
short headways are operated with a high degree of auton{&fipnT his requires advanced
train control systems to fulfill safety and operational riegments, such as the European
train control system and communication-based train cbaystems, which include equip-
ment on board of trains as well as in control centers [93]. &uobed train control systems
enable the energy-efficient driving of trains, which becemmore and more important be-
cause of the rising energy prices and environmental cosd8i}.

The ATO system of an advanced train control system driveg#ireaccording to a pre-
defined train trajectory (i.e., a speed profile) [100] to eagwunctuality and energy saving.
In addition, signaling systems in train control systemsiamgortant for running safety of
trains. In this section, we first give a brief introductionX80 systems and then provide a
short introduction to the principle of signaling systems.

2.1.1 Automatic train operation

With the development of modern railway systems, automasin tcontrol systems have
become vital equipment that ensures the running safetytestothe train headways, and

9
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Cab
T y —]
) Service| |Emergency| {[ATP ATO
Traction| | prake brake | | |
| I | Onboard
Wayside
ATS |ATP| | ATO|

Figure 2.1: The structure of an advanced automatic traintadd{ATC) system [33]

improves the quality of train operations [100]. An advanaatbmatic train control system
could consist of an automatic train protection (ATP) systamautomatic train supervision
(ATS) system, and an ATO system as shown in Figure(2./1 [33% drtboard ATP system

is responsible for supervising the train speed accordirthdsafety speed profile and for
applying an appropriate braking force if necessary. In taidi the onboard ATP system
also communicates with the wayside ATP system to excharigemition (e.g., temporary

speed limits and the limits of movement authority (i.e., th@imum position that a train

is allowed to move t0)) to guarantee the safety of the opmratof trains. The ATS system
acts as an interface between the operator and the railwgnsysianaging trains according
to the specific regulation criteria. The ATO system conttioéstraction and braking force to
keep the train speed under the speed limit established bATtResystem. The ATO system
can be used to facilitate the driver or to operate the traenfinlly automatic mode; it thus

plays a key role in ensuring accurate stopping, operatiowciality, energy saving, and
riding comfort [100].

An onboard ATO system consists of two levels of control aticas conceptually il-
lustrated in Figuré 2]2. The higher level optimizes the ropti speed-position reference
trajectory for the operation of the train, where the lindsesce, speed limits, maximum
traction and braking forces, etc. are taken into account [dtv-level control is used to
make the train track the pre-planned reference trajectiargertain control methods (such
as PID control, model predictive control, and robust cditr®he traction or braking con-
trol commands are implemented to the train and informatioe.g. the speed and position
of the train is collected by the sensors and transferreda @O system in real time.

The driving performance including punctuality, energy semption, etc. strongly de-
pends on the optimal reference trajectory both when tha tsapartly or fully controlled
by the ATO system. In addition, there exist several drivesistance systems to enhance
the driving performance of the drivers, such as the Frigh#yliMetromiser, and the driv-
ing style manager. The FrightMiser and Metromiser syste#$ \vere developed by the
scheduling and control group of the University of South Aaig in order to calculate the
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Figure 2.2: The schematic diagram of the control actionsinAd O system

optimal reference trajectory and to give advices to theadsiwf long-haul trains and subur-
ban trains respectively. That group mainly focused on miziimg the energy consumption
through Pontryagin’s principle. The driving style manaf9] developed by Bombardier
implements discrete dynamic programming to calculategnefficient train trajectories,
which are then displayed to the train driver. Whenever tam tstops at a station, the driv-
ing style manager calculates the optimal trajectory to thesequent station using real-time
information.

ATO systems and driver assistance systems are able to ta&etage of a precomputed
train speed trajectory. However, if the operational cdodi change, the ATO system will
calculate an updated optimal trajectory. Therefore, inipartant to design efficient al-
gorithms to find the optimal speed-position reference ¢ttajg. In the literature, various
algorithms have been developed to optimize the speed toajefor trains and these algo-
rithms will be reviewed in Sectidn 2.2.

2.1.2 Principles of signaling systems

Block signaling is used to maintain a safe distance betwaecessive trains on the same
track. There are two main types of signaling systems, nafixg block signaling systems

and moving block signaling systems. The main principleshose two signaling systems
are presented next.

Fixed block signaling systems

Fixed block signaling (FBS) systems are commonly used ilwagi operation systems
nowadays [98]. In FBS systems, a track is divided into blptes length of which depends
on the maximum train speed, the worst-case braking ratethenadumber of signal aspects,
such as a green, yellow, or red. Each block is exclusivelypied by only one train and
the presence of a train within a block is usually detectedhbytriack circuits [115]. Further-
more, blocks are protected by wayside signals (i.e., sigmext to the track) or cab signals
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Figure 2.3: Three aspect fixed block signaling system

(i.e., visual signals on board of trains). Wayside signagssdill typical in railways, how-
ever, cab signals are used more and more, in particular dridgiged lines where wayside
signals cannot be watched clearly by drivers because ofitiespeed. There are one-block
signaling and multiple-block signaling in FBS systems [98} one-block signaling, the
indication of the block signal depends only on the state efittock section after the signal
and every block signal must have a distant signal, whichppssed to provide the required
approach information. In multiple-block signaling systerthe indication of a block signal
depends on the state of two or more subsequent block sections

A simple example is a two-block signaling system with threpegts, i.e. red, yellow,
and green, and which is also called a three-aspect signsyistgm. Such a three-aspect
signaling system on a line equipped with an ATP system is sfas\Figur€ 2J3. Each block
carries an electronic speed code through its track circliite speed code data consists
of two parts: the authorized-speed code for this block amdtaéinget-speed code for the
next block. The speed code data is coded by the electronipreeut controlling the track
circuitry and is transmitted via tracks. This speed coda @athen picked up by antennae
on board of the train. If a train tries to enter a zero speedlbéy an occupied block, or
if it enters a section at a speed higher than that authorigedéyspeed code, the onboard
electronics will trigger an emergency brake.

Moving block signaling systems

With the increasing operational density in railway systeragway systems with an FBS
system are often suffering from a shortage in transportatégpacity. Even though the line
capacity of an FBS system can be increased by using shodek lngths, the installa-
tion and maintenance cost of the signaling and track equipmmay not be justified by
the increased capacity. Consequently, moving block signdMBS) systems have been
proposed to achieve a higher performance.

In an MBS system, the blocks are defined as dynamic safe zonaadieach train.
Regular communication between trains and local trafficexsns needed for knowing the
exact locations and speeds of all trains in the area coettdly the local traffic center at
any given time. Therefore, compared to an FBS system, an MB®m allows trains to
run closer together, thus increasing the transport capddie local traffic center computes
the so-called limit of movement authority for every traintire area it controls and makes
sure that each train will be running at a safe distance wipeet to other trains (cf. Figure
[2.4). More specifically, the limit of movement authority repents the maximum position
that a train is allowed to move to and it is determined by tlil@fdahe preceding train with
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a safety margin included. In addition, the limit of movemanthority of the following
train moves forward continuously as the leading train tivén the literature, four MBS
schemes [99] have been discussed: moving space blockisignadoving time block sig-
naling, pure MBS, and relative MBS. Takeuchi etal. [115]lested the first three schemes
and compared them with the FBS scheme based on two basiiagniie. steady-state per-
formance and perturbed performance. It is concluded tieaptiie MBS scheme gives the
best performance. In addition, Takeuchi et ial. [115] stated the concept of the relative
MBS has never been accepted for regular rail traffic evenghdiis routinely accepted for
road traffic. Therefore, we will mainly consider the pure M&®ieme later on in this thesis.
However, the proposed approaches can be extended to othersklimes too. Moreover,
the pure MBS scheme is the basis of all systems currently@mehted in practice [115].

In a pure MBS system, the minimum distance between two saisessains is basically
the sum of the instantaneous braking distance requiredéfotltowing train and a safety
margin (which is introduced to avoid collisions even if teading train comes to a sudden
halt) as shown in Figude2.4. However, the minimum distanevben trains in practice
should also take the train length and the running distancagithe reaction time of the
drivers or automatic train control systems into account.

2.2 Optimal trajectory planning of trains

In this section, we first give a literature review on the ogatitnajectory planning of a single
train and then the state-of-the-art on the trajectory plamaf multiple trains with signaling
constraints is reviewed.

2.2.1 Optimal trajectory planning of a single train

The research on optimal trajectory planning for a single tsgarted in the 1960s. A simpli-
fied train optimal control problem was studied by Ichikawé][&ho solved the problem by
using Pontryagin’s principle. Later on, many researchepfeed this optimal control prob-
lem by applying various methods, since it has significarecff for energy saving, punc-
tuality, and riding comfort. These methods can be groupgstimo main categories$ [39],
viz., analytical solution and numerical optimization. Tdien of this section is to give an
overview of the research on optimal trajectory planningerBby, the research reported in
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literature will be reviewed using these two categories.

¢ Analytical solution:
The train is usually modeled as a point mass in the optimairobproblem. Ac-
cording to whether the traction and braking force is cordgumior discrete, there are
two kinds of models, i.e. continuous-input models and @ieinput models. The re-
search on discrete-input models is mainly done by the SCGpgbthe University of
South Australia [62, 63]. A type of diesel-electric locometis considered, the throt-
tle of which can take only on a finite number of positions. Epokition determines
a constant level of power supply to the wheels. Several tgswhich include con-
sideration of varying grades and speed restrictions, wersemted. However, nowa-
days many locomotives or motor cars can provide a contintrasgon and braking
force making the use of continuous-input models neces$amya continuous-input
model, Khmelnitsky|[7]2] described the mathematical modethe train by using
the kinetic energy as the state variable. In that study, fitenal control problem
was solved under varying grade profile and speed restrtidmail lines. Liu and
Golovicher [87] developed an analytical approach which iored the Pontryagin’s
principle and some algebraic equations to obtain the optiolation, which con-
tains the sequence of optimal controls and the change péanthe continuous-input
model.

The optimal trajectory of an analytical solution typicatiyntains four optimal control
regimes: maximum acceleration, cruising at constant spessting, and maximum
deceleration. It is worth to note that the analytical methoften meet difficulties if
more realistic conditions are considered that introducepiex nonlinear terms into
the model equations and the constraints [74].

e Numerical optimization:

A number of advanced techniques such as fuzzy and genetidthlgs have been
proposed to calculate the optimal reference trajectoryréons. Chang and Xu [22]
proposed a modified differential evolution algorithm toioplly tune the fuzzy mem-

bership functions that provide a trade-off between puritleiding comfort, and en-

ergy consumption. The implementation of a genetic algorith optimize the coast-
ing regions along a line is presented by Chang and Sim [214.d4al. [56] also used
a genetic algorithm to construct the optimal referencettayy taking non-constant
grade profile, curve, and speed limits into account. Theyglkwoied that the perfor-
mance of their genetic algorithm is better than that of the\ait solution obtained

by Howlett and Pudney [63] in view of energy saving.

The train optimal control problem was solved by nonlineaxgpamming and dy-
namic programming in_[39]. The performance of a sequenti@dgatic program-
ming algorithm and discrete dynamic programming were atelll Ko et al.|[74]
applied Bellman’s dynamic programming to optimize the wyatli reference trajec-
tory. Multi-parametric quadratic programmihgas used to calculate optimal control

1The multi-parametric quadratic programming problem isrdafias follows:
min X" Hx+ (C+q"E)x

st. Ax<b+Dq
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laws for trains in|[123]. The nonlinear train model with quatit resistance was ap-
proximated by a piecewise affine function. The resultingroat control law was a

piecewise affine function, which relates the traction faieehe train position and

speed.

A disadvantage of numerical solution methods is that thérggdtsolution is not al-
ways guaranteed and the convergence speed is uncertainénafjeln addition, the
computation often takes rather long.

2.2.2 Optimal trajectory planning of multiple trains

The solution approaches for the trajectory planning of glsitrain presented in Section
[2.2.1 ignore the impact caused by signaling systems, e.§B& system or an MBS system.
In the literature, Lu and Fen@_[88] considered the operaibtwo trains on a same line
and optimized the trajectory of the following train considg the constraints caused by
the leading train in an FBS system. More specifically, a pargenetic algorithm was
used to optimize the trajectories for the leading train dredfollowing train, resulting in
a lower energy consumption_[88]. Gu et al.|[54] also congddhe trajectory planning
of two trains and they applied nonlinear programming to rojzé the trajectory for the
following train, where two situations of the leading trairg. running and stopped, were
considered. In addition, Ding et al. |31] took the constimicaused by an MBS system
into account and developed an energy-efficient multi-tcaintrol algorithm to calculate the
optimal trajectories. Three optimal control regimes, m@ximum traction, coasting, and
maximum braking, were adopted in the algorithm and the sezpseof these three regimes
were determined by a predefined logicl[31].

For optimal trajectory planning of trains, the analyticaéthrods often meet difficul-
ties to find analytical solutions if more realistic conditfoare considered that introduce
complex nonlinear terms into the model equations and thstcaints. For the numerical
optimization approaches, the optimal solution is not akvgyaranteed. In addition, the
computation is often too slow. In Chapfér 3 and Chalpter 4 isfttiesis, we will develop
efficient approaches to provide a balanced trade-off betvaeeuracy and computational
efficiency for the trajectory planning of trains. Furthemmosince the operation of trains
is highly influenced by signaling systems and only a few redeas studied the impact
of signaling systems in trajectory planning problem, wd al$o investigate the trajectory
planning problem with signaling constraints in this thesis

2.3 Urban rail transit scheduling process

A general scheduling both for interurban and urban railsitssystems is a highly complex
process, which is often divided into several stéps [48]: @edranalysis, line planning, train
scheduling, rolling stock planning, and crew schedulinglaswvn in Figuré 2J5. First, the
passenger demand has to be assessed and analyzed. Cotigethgesimount of travelers
wishing to go from certain origins to destinations is detewd. Next, line planning is
performed, which decides the routes or lines to be operatddtee nominal frequency of

with g a parameter.
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Figure 2.5: The hierarchical planning process of railwaytsm [43]

the service. During the train scheduling step, all deparéund arrival times at all stations
of the lines are planned, i.e., the timetable is determifiéé.rolling stock planning assigns
trains to all the lines. Similarly, the crews are distrilmite different trains through the
crew scheduling. Note that in this thesis we focus on traajettory planning and train
scheduling.

For urban rail transit systems, not all steps are equallyoitamt. There are specific
characteristics for urban rail transit systems. The degfdeeedom in the line planning
is limited because the routes for the operation of trainehseen fixed when the urban
rail lines were constructed, i.e., trains do not move frora lme to another during regular
operation. Therefore, only the frequencies of the sertieestop-skip schedule on a certain
line, and the size of train fleet can be regulated throughlazypr decoupling of multiple
train units to adapt varying passenger demands in urbatmaagit lines. In this section, the
passenger demand and the train scheduling for urban rasitrsystems will be discussed
in detail.

2.3.1 Passenger demand

Passenger demand estimation is the basis for the wholeiptpprocess. Traditionally, de-
mand estimation relies heavily on costly and unreliable ma&data collection, e.g., using
passenger surveys to estimate origin-destination (ODglyzatterns. The results obtained
by this kind of manual data collection maybe subject to bieseven error [146]. However,
nowadays most urban rail transit systems have been equipjpedautomatic passenger
counting systems and automatic fare collection systemg&hadan provide accurate pas-
senger information to rail operators. Automatic passergenting systems are used to
count the number of passengers getting on and getting ofted stations. With automatic
fare collection systems, passengers need to use theirdads when entering and exiting
urban rail transit systems, so the location and time of easBgnger’s fare transactions can
be recorded.

The passenger demand can be described by the following tws: wa
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e OD-independent passenger demands

When describing the passenger demand in an OD-independsnthre origin and
destination of each passenger are not considered. Thengassarrival rate at a
certain station is then e.g. defined as the number of passeag#ing at the station
during a predefined time period [36].

e OD-dependent passenger demands

The OD-dependent passenger demand is defined as an estimiatiee number of
people wishing to travel from an origin to a destination caeertain period of time
during the day. The OD-dependent passenger demand can teated using the
available passenger information, see [82, 143, 146] faildet

2.3.2 Train scheduling

Train scheduling has been studied for decades via difféeghniques [23], such as linear
programming|[101, 114], integer or nonlinear programmia§, [59, 75/ 81], and graph
theory [28]. In these papers, the available resources teegsingle tracks and the crossings,
are shared by trains with different origins and destinaiohhus, the trains may overtake
and cross each other at some specific locations, such agsidind crossings. However,
the lines in urban rail transit usually have double trackisere each track is used for one
direction of train operation. Train overtaking and crogsgnormally not allowed during
the operations of urban rail transit systems. Here, we adrat on urban rail transit
systems.

Scheduling of trains for urban rail transit

In 1980, Cury et al.l[26] presented a methodology to genengtienal schedules for metro
lines based on a model of the train movements and of the pgessbehavior. The per-
formance index included passenger delay, passenger cpmaufiorthe efficiency of the op-
eration of trains. The resulting nonlinear scheduling peobwas recast into several sub-
problems by Lagrangian relaxation and then solved in a hibieal manner/[26]. Since
the convergence rate of the hierarchical decompositicoritgm can be quite poor in some
cases, Assis and Milanil[4] proposed a model predictivercbatgorithm based on linear
programming to optimize the train schedule. The algoritmoppsed ini[4] can effectively
generate train schedules for the whole day. Kwan and Chdij@pplied a heuristic-based
evolutionary algorithm to solve the train scheduling pesb] where the operation costs
and the passenger dissatisfaction are included in thernpeaface index. The train schedul-
ing problem is formulated as a periodic event-schedulirdpl@m based on a graph model
in [83], which is then solved using integer programming roeith The approach proposed
by Liebchen has been applied in Berlin subway systems [88g gassenger transfer be-
havior and transfer waiting times are considered.in [142jicv presents a mixed-integer
programming optimization model to synchronize the traimestules for different urban rail
transit lines. Furthermore, a demand-oriented timetaddiyh is proposed inl[1], where the
optimal train frequency and the capacity of trains are fiesedmined and then the schedule
of trains are optimized. Vazquez et al. [124] proposed ahstskic approximation approach
to adjust the frequencies of different urban transit linesoading to the observed variable
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passenger demand. However, the energy consumption obsadperation and dwell times
at stations are not included in the modellof [124].

Real-time scheduling or rescheduling of trains

Since trains do not run exactly according to the predefineddle in practice, real-time
scheduling approaches have been proposed. In the literéitiere are several interpretations
for real-time scheduling. For interurban railway systemesl-time scheduling is based
on the existing timetable data and is used to handle routBictsrdue to train delays or
incidents|[1/7, 25, 28, 32, 0,171,176, 92, 121]. However, lvanrrail transit systems, real-
time scheduling regulates the headways between traingl lmasa train schedule with a
constant headway.

Several rescheduling approaches have been proposed & t@ibtransit systems [42]:
holding, zone scheduling, short turning, deadheadin carstibp-skipping [20, 36, 47, 111].
Holding is used to regulate the headways by holding an earlying train, or a train with
a relatively short leading headwaly [36]. In zone schedU#YJ, the whole line is divided
into several zones, where the trains stop at all stationsinvé single zone and then run
to the terminal station without stopping. The required nemdf trains and drivers and
passenger travel times may be reduced by the zone scheduliege the zones are defined
based on the passenger flows. There are short-turnning Bubeifgth trips operating on the
line in the short-turning strategy [20, 111], where the $ftoming trips serve only the zone
with high demands and the full-length trips run the wholeliThe deadheading strategy
involves some trains running empty through a number ofatatat the beginning of their
trips to reduce the headways at later stations|[35, 42]. Aadyio stop-skipping strategy is
frequently used in lines with high demands, as it allows éttosins that are late and behind
the schedule to skip certain low-demand stations and imthgincrease the running speed.

Wong and Hol[141] proposed dwell time and running time cdriwo the real-time
rescheduling problem of urban rail transit systems. Theylieg a dynamic programming
approach to their rescheduling model to devise an optintadfsgwell times and running
times [141]. In addition, Goodman and Murzatal [52] formutktiee train rescheduling prob-
lem from the perspective of passengers, where a gradientlaibn method was developed
to solve the rescheduling problem in real time. Furthermiaio et al. [94] proposed to
use passenger dissatisfaction as a criterion for the rdatihg and applied a meta-heuristics
algorithm to solve the rescheduling problem.

As demonstrated in [41, 79], the stop-skipping strategyredunice the passenger travel
time and the operation cost of rail transit operators. Thp-skipping operation was first
developed for the Chicago metro system in 1947 [41]. NowStEETA line in Philadelphia,
Helsinki commuter rail, and the metro system in SantiagdleCipply the stop-skipping
train schedule in practice. They apply a static stop-skigpirategyi[79], i.e., the A/B skip-
stop strategy, where stations are divided into three type$, and AB; A train services
stop at A stations and AB stations, while B train servicep stioB stations and AB stations.
Major stations are usually labeled with the type AB; so airts stop there. The transit
operators provide the stop-skipping information to pageesvia panels at platforms and
announcementsin the trains. The Santiago metro operatedshat passengers adapt to the
stop-skipping strategy quickly [41]. Elberlein [34] fortated the stop-skipping problem as
a mixed integer nonlinear programming problem, where ¢raan skip some station strings
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(i.e., a collection of consecutive stations). Fu etlal. [#&}resented the skipping of stations
by trains as binary variables and obtained a mixed integelimear programming problem,
which was solved using an exhaustive approach. Lee [79]iexbglenetic algorithm to
obtain the optimal train schedule and to find the best contibimaf the stop-skipping trains
and the all-stop trains based on the A/B stop-skippingegsat

The passenger demand for urban rail transit systems ireseiamatically and varies
significantly along urban rail transit lines and the timelod tlay. To satisfy the passenger
demand, trains are operated with small headway, which isnaf@-5 minutes. Therefore,
the scheduling of trains according to the passenger demeguhies more and more impor-
tant for reducing the operation costs and for guaranteeasggnger satisfactién

2.4 Summary

A brief introduction to the operation of trains and the pijre of signaling systems has been
presented in this chapter. We have briefly discussed thatiitee of the optimal trajectory
planning for trains and of the train scheduling for urbahtransit systems. In addition, we
have motivated why the work of this thesis is needed.

2passenger satisfaction can be characterized by waitirgsfimnboard times, the number of transfers, the
onboard crowdedness, etc.
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Chapter 3

Optimal Trajectory Planning for a
Single Train

In this chapter, the optimal trajectory planning problemtfte operation of a single train

under various constraints and with a fixed arrival time issid@red. The objective function
is a trade-off between the energy consumption and the rictimgfort. Two approaches are
proposed to solve this optimal control problem, viz. a pespeéctral method and a mixed
integer linear programming (MILP) approach. In the psepédosral method, the optimal

trajectory planning problem is recast into a multiple-ghaptimal control problem, which

is then transformed into a nonlinear programming problemr. the MILP approach, the

optimal trajectory planning problem is reformulated as dh®problem by approximating

the nonlinear terms by piecewise affine (PWA) functions. Ppheegormance of these two
approaches will be compared through a case study.

The research discussed in this chapter is based oh|[12713dB,

3.1 Introduction

As has been mentioned in the literature survey of ChapteisZpiportant to design efficient
algorithmsto find the optimal speed-position referengedtary. This chapter proposes two
approaches to determine the optimal trajectory, viz. agsspectral method and an MILP
approach.

Over the last decade, pseudospectral methods have risesningnce in the numerical
optimal control ared [37]. Pseudospectral methods werkeabip solving optimal control
problems|[50], such as orbit transfers, lunar guidance,natg control. However, to the
author’s best knowledge, pseudospectral methods haveseatdpplied to trajectory plan-
ning of trains. Therefore, the pseudospectral method id foethe first time to solve the
train trajectory planning problem.

On the other hand, multi-parametric quadratic programnsinged inl[123] to calculate
the optimal control law for train operations. The nonlingain model with quadratic resis-
tance is approximated by an PWA function. Inspired.by [128}his chapter we propose to
solve the optimal trajectory problem as an MILP problem.

21
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The remainder of this chapter is organized as follows. Irti6e8.2 a nonlinear model
of train operations is presented. Sectionl 3.3 formulatesoifitimal trajectory planning
problem. In Sectiof 3l4, two solution approaches are prghts solve the resulting op-
timal control problem: a pseudospectral method and a minesgher linear programming
approach. Sectidn 3.5 illustrates with a case study howItaulede the optimal reference
trajectory by the pseudospectral method and the MILP ampraad it also compares these
two approaches with the discrete dynamic programming ambro We conclude with a
short discussion of some topics for future work in Sedfidh 3.

3.2 Model formulation

3.2.1 Train model

In the literature on train optimal control, the mass-poimdal of train is often used [40].
The motion of a train can then be described by the followingpé continuous-time model
[87]:

oSy = u(t) ~ Rov) - R(s ) @D
ds
@ =V, (3.2)

wherem is the mass of the trairp is a factor that represents the rotating mass [87%,
the velocity of the trains is the position of the trainy is the control variable, i.e., the
traction or braking force, which is bounded by the maximuattion forceumax and the
maximum braking forc@imin, Umin < U < Umax Rp(V) is the basic resistance including roll
resistance and air resistance, &, v) is the line resistance caused by track grade, curves,
and tunnels.

The maximum traction forcemax is often considered as constant in the literature [62].
However, in reality it is a function of the velocity Due to the maximum adhesion and
the characteristics of the power equipment [57], the diagréithe maximum traction force
Umax as a function of the speachormally looks like the one shown in FigureB.1/[57]. This
diagram is described as a group of hyperbolic or parabohmditas in [57], where each
formula approximates the actual traction force for a cartgieed interval. For example,
if the train speed belongs to intervalvj,vj1], then the maximum traction force can be
written as

Umax(V) = C1.j + C2,jV+C3 V2, VE [Vj,Vjs1), (3.3)

or
Umax(V) = Ch,j/Vv \AS [Vj an+1]a (3.4)

for j=1,2,---,M -1, wherevj, vj;1, C.j, C2,j, C3j, andcy j are determined by the char-
acteristics of the train.

According to the arguments for the maximum braking forcegiin [57], the full brak-
ing effort is reserved for an emergency stop. More specifioahder normal circumstances
the train driver or automatic train operation system brakes comfort mode, where the
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Figure 3.1: Maximum traction force as a function of train splg57]

maximum force for the service breaking is 0.75 times thahefémergency braking, i.e.,
the full braking effort. On the other hand, the braking effamcluding the maximum brak-
ing effort) is considered as constant by some common safstgiss, such as the European
Train Control System and the German continuous train cbsysiem [5]7]. Therefore, the
maximum force for service braking is taken to be constantimc¢hapter.

In practice, according to the Strahl formula [103] the basisistanceR,(v) can be
described as

Ro(V) = m(ag + ax\?),

where the coefficienta; anda, depend on the train characteristics and the wind speed.
These coefficients can be estimated from the known data #hetrain.

The line resistancR (s,v) caused by track slope, curves, and tunnels can be described
as [90]

Ri(s,v) = mgsina(s) + fe(r(s)) + fi(li(s),v), (3.5)

whereg is the gravitational accelerationys), r(s), andli(s) are the slope, the radius of

the curve, and the length of the tunnel along the track, &i@dy. The curve resistance

fe(-) and the tunnel resistandg-) are given by empirical formulas. An example of such
an empirical formula of the curve resistance is Roeck!'salia [64]:

—63 _m for r(s)>300
fc<r<s>>={ R =

4.91

s —soM for r(s) <300m

When running in tunnels, the train experiences a higheresistance that depends on the
tunnel form, the smoothness of tunnel walls, the exteriofase of the train, and so on.
An example of an expression for the tunnel resistance is lisvi® [43,164]. If there is a
limiting gradient in the tunnel, then an empirical formula for the tunnel riasise is

fi(1¢(s),v) = 1.296- 10~ (s)mgVF.

1A limiting gradient is defined as the maximum railway graditiat can be climbed without the help of a
second power unit.
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If there does not exist a limiting gradient, the tunnel regise can be calculated by the
following empirical formula:

fi(I¢(s),v) = 1.3-10""I(s)mg
For the tracks outside the tunnels, the tunnel resistaregual to zero.

Remark 3.1 Different types of rolling stock can be modeled by the magisiamodel, the
parameters of which, such as mass, maximum traction foragresistance coefficients,
may vary according to different types of rolling stock. Théséng infrastructure of tracks
can be described accurately by using the line resistanBg (8hich includes track slope,
curves, tunnels. In addition, the signaling aspects andiisterbances caused by other
trains are assumed to be taken care of by a lower control |IBuvethermore, different train
categories (high speed trains, regional and intercitpgdreight trains) can be handled by
a higher control level during train scheduling, which sfiesidifferent running times and
dwell times for each train. The approaches proposed in trapter can then be applied to
obtain the optimal trajectory for each trip between twoistet to save energy and to ensure
passenger comfort based on the given timetable. O

3.2.2 An assumption about the line resistance

The line resistanci(s,v) caused by track slope, curves, and tunnels is a nonlineatifum
of the train’s position and speed. In order to simplify thesideration of the line resistance,
we rewriteR|(s,v) in (33) as

R(sV) = &1(s) + &2(S)V?, (3.6)

wheregi(s) collects terms that do not depend on the train’s speed. Is¢heel of this

chapter,&1(s) and &;(s) are assumed to be piecewise constant functions, which can be

written as , L
&a(9) =& for sely)g']

] ) ) 3.7
Ea(s9) =8y for sels).g"], &0

fori=1,2,--- Ng, whereNg is the number of the piecewise constant subfunctis{ﬁ)s,:
Sstart IS the position at the beginning of the romg\',R) = Sngis the position at the end of the

route, andsg“) = sEi) fori=1,2,--- ,Nr — 1. Therefore, the line resistance can be written
R(s,v) :E(l')JrE(Z')vz, for se [s(()'),sg')]. (3.8)

3.3 Mathematical formulation of the single train trajec-
tory planning problem

As stated inl[87], reference trajectory planning for tradas be formulated as an optimal
control problem. The traction or braking forceis then the control variable. The state
variables are the train positigand speed. The objective function to be minimized could
be the trip time, the energy consumption for a given trip tiorethe total operation cost (a



3.3 Mathematical formulation of the single train trajegtptanning problem 25

weighted sum of energy consumption and trip time). In thiaptar, we consider the ob-
jective criterion to be the energy consumption in a fixed tspan[0, T] with T determined
by a fixed or a flexible timetablé [29, 57], or being the restith oescheduling operation of
railway traffic after disturbances [76]. In addition, theing comfortis considered, which is
expressed as a function of the change of the control varnialsiace reducing the number of
transitions and the rate of changeuwnfay improve passenger comfart[22]. The objective
function can thus be written as:

J:/OT (u(t)~v(t)+)\-’duT(t)Ddt (3.9)

wherelJ is the weighted integral of the energy consumption and gidiomfort and\ > 0 is
the weight which can be decided by rail operators based oerexge. This function will
be minimized subject to the train dynamicts{3.1) dndl (3 donstraints

Umin < U(t) < Umax(V) (3.10)
0 < V(t) < Vimax(9) (3.12)
and the boundary conditions
S(0) = Sstar, V(0) = Vstart (3.12)
S(T) =Sens, V(T) = Vends (3.13)

where the maximum allowable velocinax(s) depends on the train characteristics and the
line conditions, and as such it is usually a piecewise coms$tenction of the coordinate
[[72,1877; vstart andveng are the velocity at the beginning and the end of the route.

As proposed in some previous works|[40, 62,172, 87], it isdveti choose the position
sas an independent variable rather than the tin@@n the one hand, the choice of the posi-
tion sas the independent variable will simplify the considematidtrack-related data, such
as line resistance and speed limits. On the other hand, #igtmal and numerical study
of the optimal control problem will be significantly simpéfi then. Furthermore, Khmel-
nitsky |[72] chose the total energy of the train and titres states where the total energy
includes kinetic and potential energy. Similarly, Frankele[40] used kinetic energy per
mass unit and time as states. The choice of kinetic energgadof speed will facilitate
the study of the optimal control problem, because this @elitcninates some (but not all) of
the model nonlinearities. Therefore, we also choose kiregtergy per mass urft = 0.5v2
and timet as states, and the positisras the independent variable. The continuous-time
model [3.1) and(3]2) can then be rewritten as the followimtinuous-space modél

mp = = u(s) — Ro(V2E) ~R(sV), (3.14)
dt 1

2The transformation fron% to %—E goes as follows:

& dvds  dv dE

d dsdt Vds  ds
whereE = 0.5v2.
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The optimal control problem corresponding fo {3[9)-(B.648) be stated as: minimize the

objective functio

J= s:: (u(s)+)\-‘¥‘)ds (3.16)

subject to the mode[ (3.14) arld (3115), the constraints

Umin < U(S) < Umax(V), (3.17)
0<E(s) < Emax(9), (3.18)
and the boundary conditions,
E(Sstar) = Estart. E(Send) = Eeng (3.19)
t(Sstart) = 0, t(Send) =T, (3.20)

whereEmax(s) = 0.5V2,(S), Estart= 0.5VZ 4, andEeng= 0.5V2,4 For the above equations, it
is assumed that the unit kinetic eneigs) satisfiesE (S) > Enin > 0 with Eyin a small pos-
itive number, which means the train’s speed is always btiliatger than zero, i.e., the train
travels nonstop. Khmelnitsky [72] states that this assiongs$ not restrictive in practice for
two reasons. First, the speed of the initial start and thaiteal stop can be approximated
by small nonzero velocities. Second, stops at an internteedi@int of the trip will in prin-
ciple not be planned deliberately in the optimal controligieor a single train’s operation
since intermediate stops and the corresponding restartilwesult in an increased energy
consumption.

Remark 3.2 There may also exist some other constraints that result fhantimetable,
real-time operation restrictions, or the real-time resietieg process. Albrecht et al.l[2, 3]
classified these operational constraints into two grougget points and target windows.
Target points correspond to fixed passing times, which cbeldrrival and departure times
at stations. In dense networks, target points could alsoalssipg times at certain places
where overtaking and crossing of trains is planned. Thedided arrival times at minor
stations without connections with other trains can be iregairegarded as target windows.
If the train reaches a certain place exactly on time accgrttinthe defined target point
or in the target window, then conflicts can be avoided. It suased that the positions
corresponding to target points or target window constsames; with kj in {1,2,...,N}.
The operational constraints can be included in the optimatrol problem as follows:

o for target points:
t(skj) = Ttargetj (3.22)

3The transformation frorovdt to uds goes as follows:
ds
u-vdt=u—dt=uds.
dt

In addition, the transformation fror‘r% dt to %‘; ds goes as follows:
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o for target windows:
Ttargefyin,j < t(S«j) < Ttargetyay i » (3.22)

where Trargetj IS the fixed passing time for train to pass posit®p and Trarget,,,j and
Ttarget,,j @re the minimum and maximum passing time at posigigrespect to the target
window constraints. O

Remark 3.3 In order to deal with disturbance, we can apply a rolling bomi approach

when solving the trajectory planning problem. A detailedatgtion on how to do this for

the case of train scheduling for an urban rail transit neltvi®given in Sectiof 714. Those
ideas can be adopted to the setting of the current chapter. O

3.4 Solution approaches

In this section, the train trajectory planning problem is/ed by a pseudospectral method
and a mixed integer linear programming approach.

3.4.1 Pseudospectral method
A brief introduction

Pseudospectral methods were researched widely in the 1&7Qslving partial differential
equations (PDESs) in fluid dynamics [19]. Later on, they beeamimportant methodology
for the numerical solution of PDEs. From the 1990s on, psspelctral methods were
applied for solving optimal control problems [50], such abibtransfers, lunar guidance,
and magnetic control. Recently, the scope of applicatiantdeen broadened as a result of
significant progress in large-scale computation.

The pseudospectral method directly formulates the origipémal control problem into
a nonlinear programming problem, which can be solved nuraklyiusing a sparse nonlin-
ear programming solver to find approximate locally optin@utons [37]. It is shown by
approximation theory and practice that the pseudospengtidod is well-suited for approx-
imating smooth functions, integrations, and differeibias [19]. All those approximations
are relevant to optimal control problems, e.g., the diffiéied equations of the optimal con-
trol problem can then be approximated by algebraic equa{bdb]. The main advantages
of the pseudospectral method are the exponential rate ¥ecgence and that it is possible
to achieve a good accuracy with coarse grids|[19, 51].

In the pseudospectral method, the continuous-time statecantrol functions are ap-
proximated using orthogonal polynomials based on inteot at orthogonal collocation
points [38], such as the commonly used Legendre-Gausstiogtizints, which are the roots

of (1—x2) dLg‘)((X) , whereLy is the Legendre polynomial of ordét [1S]. The derivative of
the approximated state can be expressed in terms of thexapated state vector by using a
differentiation matrix at the collocation points [106]. \&the optimal control problem in-
cludes discontinuities in states, control inputs, obyectinctional, or dynamic constraints,
the pseudospectral method is employed in the form of a nkedppase approach, where the
problem is divided into a relatively small number of subimtds and global collocation is
performed in each subinterval [106].
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There exist several commercial and free packages that igriethe pseudospectral
method: PROPT [107] and DIDQ [104] are examples of commksofaware that run under
Matlab. A Matlab-based open source tool that uses the Gaasdpspectral method is
GPOPS|[102]. PSOPT is an open source optimal control packdgen in C++, including
Legendre and Chebyshev pseudospectral discretizati@ns [9

Formulation of the optimal trajectory planning problem

We can reformulate the train trajectory planning probleni43(3.20) into the following
general optimal control problem witR, phases|[8, 106]. It is worth noting thil is not
equal toNr of [3.4)-(3.8), but it will in general be larger. The objeetifunction [3.16) to
be minimized can be rewritten as

J= E‘ l /S;i) [U“)(s) +7\‘ du((;)s(s) H ds] . (3.23)

Given that non-smoothness causes problems in gradieatdbamlinear optimization, a
smooth version of the absolute value function can be writen
2

o

ol ~y(0) = ———,

wherec is a constant deciding the smoothness of the function. Tthessmooth objective
function can be written as

(3.24)

(i)

J= 2 l/S; [u¥s) +>\w(du((;)s(s) )] ds] . (3.25)

The objective functior (3.25) is subject to the differehtianstraints
x0(s) = @ (xV(9),u(s),5), sels).g"], (3.26)

wherex()(s) is the state of the system in tfith phase, i.e.x(s) = [E()(s) t“)(s)]T,
and the functiongp?)(-) are defined by model equatioris (3.14)-(3.15) and the piseewi
line resistance[(318). The path constraints of the optiratmol problem are defined by
B3), (34), and[(317). Note that the path constraintsedlby the maximum traction
force are non-smooth. They can be approximated by smootstredmts by introducing a
smooth version of the Heaviside functibi{c), defined a$i (o) = 1if 6 > 0, andH (o) =0
otherwise[[69]. The approximation is implemented as

H(o) = 0.5(1+tankao/h)) (3.27)
whereh > 0 is a small real number. The path constraints can then btewas
p <p®(x0(9),ul(s),5) <pf), sels.g] (3.28)

For the train trajectory planning problem, the initial gmsi of the(i 4+ 1)th phase is equal
to the final position of théh phase, so one of the phase boundary constraints can benwrit
as

-9 =0 (3.29)
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In addition, the states and the control variables are coatis across the phase boundary,
which is

, (3.30)
_ (3.31)

x5 ™) -x(g") =0
us ™) —ug’) =0

In general, phase boundary constraints [8, 12] that linknalistates and control inputs
across the boundaries can be included in

W< Wi ), i) XV (g), ub (), 5",
(557),u® (7)), (57) 57 57,

1)

3

>

2
x2(s),u
(3.32)
N N, N, N N, N
XM)(557), U (557)), X (™), U (™), 5 5™) < wu
Note that[(3.20)E(3.31) are special cased of (3.32) With = Wy ;.
The bound constraints can be written as
u <ue <uy, selsy.g, (3.33)
X <x(g <x), selg).s"). '

The resulting multiple-phase optimal control problem cansblved using the nonlinear
programing methods.

However, the computation of the pseudospectral methodgeireral too slow for the
real-time application of ATO system. When the operatiowoalditions (e.g., speed limits or
trip time) change while the train is driving (e.g., due to agident or bad weather condi-
tions), the ATO system needs to recalculate the optimaddtajy. If the algorithm of the
ATO system takes a large computation time to calculate thienaptrajectory, then it is too
late for the train to react timely. Therefore, in the nextsediion we propose an alternative
approach, i.e., an MILP approach, to calculate the optirag@dctory. It is worth to note that
the optimal solution of the pseudospectral method satisiiesrecessary (but not always
sufficient) conditions of optimality [107]. So it is guaraet that the returned solution can-
not be improved by an infinitesimal change in the trajectiouythere may exist completely
different trajectories that yield a better performance ti@ncontrary, an MILP problem can
be solved efficiently by existing solvers that guaranteegtbbal optimum for the proposed
MILP problem.

3.4.2 Mixed integer linear programming

VaSak et al.|[123] proposed a discrete-time model of thie toperation to calculate the
optimal control law by multi-parametric quadratic prograing. They split the time period
into K intervals and assumed the traction force or braking forcket@onstant on each
interval [kTs, (k+ 1)Ts), whereTs is the sampling time. Franke et &l. [40] similarly split the
position horizonsstar, Seng iNto N intervals to get a discrete-space model. They assumed
that the track and train parameters as well as traction @kiomg force can be considered
as constant in each interviak, s¢+1] with lengthAsc = 11 — &, fork=1,2,...,N. Note



30 3 Optimal Trajectory Planning for a Single Train

thats; = Sstart and Sy+1 = Seng |0 this chapter, we obtain a discrete-space model in a
similar way as in|[40], since the optimal control problemtisted by the choice afas the
independentvariable. By redefining the discretizatiomefintervalssiar, Send if Nnecessary,
we can assume without loss of generality thgts) and&x(s) (cf. Sectiorf3.2R) are of the
following form:

€1(s) =&k for se [s,Sel,

&2(s) =&k for se [s Sl

fork=1,2,...,N.

Transformation properties

First, we introduce three properties according to [140]n€lder the statemerft(f() <0,
wheref : R" — R is affine,X’e x with x C R" and let

M = maxf (%), m=minf(%). (3.34)
REX %ex

If we introduce the logical variabl@< {0,1}, then the following equivalence holds:

f(x

f® 3)
(%) >

<M(1—
e+ (M—g)d

(M
wheree is a small positive number (typically the machine preciyithrat is introduced to
transform a strict equality into a non-strict inequalityhieh fits the mixed integer linear
programming (MILP) frameworks [10].

The product of two logical variablég &, can be replaced by an auxiliary logical variable
03 =010, i.e.,[03 = 1] <> [01 = 1] A [02 = 1], which is equivalent to

{ *61+63§07

[f(®) <0< [3=1] istrueiff { (3.35)

—&+8<0, (3.36)
0+0,—03< 1.

Moreover, the producﬁf(i) can be replaced by the auxiliary real variable éf(i),
which satisfiegd = 0] = [z= 0] and[8 = 1] = [z= f(X)]. Thenz= 5 (X) is equivalent to
M3,
ﬁﬁ)

m(1-19),
) —M(1-3).

(3.37)

Xy N N
IV IA

(%)
(

It is noted that[(3.35)[(3.36), and (3]137) yield linear inalities sincef is affine.

—y =y
X

V4
4

IV IA

The mixed logical dynamic model

In the interval[s, %+ 1], the differential equation of the kinetic enerdy (3.14) canw be
rewritten as .
2
de iu(k)f (a2 +&2k)

~ 1
ds - mp 0 E(s) — 5(a1+51,k),
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whereu(k) is a constant in the intervéd,sc.1]. By defining{ = % Nk = 7@’
Yk = —%(al +&1), this equation can be rewritten as

dE .

s = Cu(k) +NkE(S) + k- (3.38)

We have to solve this differential equation with initial ctition E(s¢) = E(k). Then we
obtain the following formula foE (s + 1):

E(sc+ 1) = eAXE(gy) + (€A% — 1)niu(k) + (eNKBs — 1):”]—k (3.39)
k k
with E(s;) = EstarrandE(sn11) = Eeng

Remark 3.4 For the sake of simplicity, we ugg(k) as a short-hand notation f&i(s,) from
now on. O

Defining ax = €%, by = (&% — 1)% andcy = (€A% — 1)%, (3:39) can now be
simplified as follows:
E(k+ 1) = akE (k) + bru(k) + cx. (3.40)
Note that this is an affine equation. As regards the difféataguation[(3.15), we approxi-
mate it by using a trapezoidal integration rule [6]:

1 1 1
t(k+ 1):t(k)+§(\/2E(k) + \/2E(k+1)>ASk (3.41)

with t(1) = 0. In addition, the nonlinear part in this equation will bepegximated by an
PWA function. There are various methods for approximaturgfions in an PWA way, see
e.g., the overview by Azuma et all [7]. In this chapter, we Biedect the number of regions
of the PWA function and then optimize the interval lengthd garameters of the affine
functions using least-squares optimization, minimizing squared difference between the
original function and the approximation. Recall th&ti, denotes the minimum kinetic
energy. Define the maximum kinetic energy

1
Enoc= 2%, (Enoll0) = 1, (5K

Then the nonlinear functioh(E) = ﬁ can be approximated over the inter{Bhin, Emax
by an PWA function with 3 continuous affine subfunctions. Heer, the speed limit de-
pends on the space interval, i.e., different space intenvely have different speed limit,
which may be less than the overall maximum of the speed liffierefore, we adapt their
coefficients of the PWA approximations depending on the espaterval indexk, i.e., we
can have different PWA subfunctions for different spacernvels within valid speed inter-
vals. In this way the approximation error will be reducedr Ewample, if we consider an
approximation using 3 affine subfunctions (cf. Figure 3ti2¢, PWA approximatichof the

4The approximation error can be reduced by taking more region
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Figure 3.2: The PWA approximation of the nonlinear functign

nonlinear functionf (E(k)) = 5 21E(k) can be written as

agkE(K)+Brk for Egx < E(K) < Eqyy,
fpwa(E(K)) = ¢ 02kE(K) + B2k for Erx < E(K) < Epg, (3.42)
azkE(K) +Bzk for Exx < E(K) < Ezy,

with Egkx = Emin @ndEzx = Emax(K) for the interval[s,sc;1]. Furthermore, the values of
E1k andEy are determined by least-squares optimization.
Now the time dynamic$(3.41) can be approximated as

t(k+1) =t(k) + (o1 KE(K) + B k + Omk+1E(K+ 1) + Bmk+ 1) A%, (3.43)

with E_1k < E(k) < Bk Em-1k41 < E(k+1) < Emks1 forl,me {1,2,3}.

Furthermore, the maximum traction foragay is a nonlinear function of the velocity as
given in [3.3) or[(3.14) that can be reformulated as a nonlifgzction of the kinetic energy.
In a similar way as the approximation of the nonlinear fumeti(-), we can obtain an PWA
approximation of the maximum traction force. If we considarapproximation usirfg3
affine subfunctions (cf[{3.42)), then the approximation ba written as

AkE(K) + ik for Eqx <E(K) < Esy,
UmaxPwa(E(K)) = ¢ A2kE(K) + 2k for Esk < E(k) < Es, (3.44)
Ag’kE(k) + M3k for EG,k < E(k) < E77k,

5ForM affine subfunctions with > 3 a similar procedure can be used.
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with E4x = Emin andE7 x = Emax(k) and where the values &y andEg ) are decided by
the approximation process.

The above PWA model with PWA constraints can be transformema mixed logical
dynamic model by introducing some auxiliary logical vateb[10]. First considef(3.42).
In order to transform this equation, we introduce auxiliagical variable; (k) andd; (k),

defined as
[E(K) < Eii < [0a1(k) = 1],

[E(K) < Exy] < [82(K) = 1]. (3.45)
Then we get
fwa (E(K)) =81(K)8 (K)o kE (K) + Br] + (1= 81(K))3(K) [z kE (K) + Ba]
+(1-81(K)) (1~ B2()) [z kE (K) + Bal- (3.46)

Since the maximum and minimum valuestfk) are Emax(k) and Enin, according to the
transformation property (3.85), the logical conditionst® can be rewritten as linear in-
equalities. Furthermore, an auxiliary logical variaBlgk) is introduced to replace the
productd; (k)dz(k). The conditioms(k) = 81 (k)d2(k) can be rewritten as a system of linear
inequalities according td (3.B6). By defining new auxiliagriablesz; (k) = &1 (k)E(k),
2(k) = &(K)E(K), andzz(k) = 83(k)E(k), which can be expressed as a system of linear
inequalities according t@ (3.B7), the functifswa(-) can be rewritten as

fowa(E(K)) = [—0sk Opx—0O3k O1x—Oak+03k| [22(k)  z(K) Za(k)]T

+ [~Bak Bak—Bsk Bik—Bak+PBak| [01(k) S2(K) 53(k)}T (3.47)
+ agkE(K) +Bsk,

In order to deal with the PWA constraints of the maximum ficforce (cf. [3.44)),
auxiliary logical variable®s(k) andds(k) are introduced that are defined by
I,
.
Similar to [3.45), the logical conditiong (3148) can be stas linear inequalities by ap-
plying transformation property (3.B5). In addition, anmthbinary variableds(k) is intro-
duced similarly as(k), and it is defined adg(k) = d4(k)ds(k). Furthermore, auxiliary
variablesz (k) = 04(K)E(K), z5(k) = 05(k)E(k), andzs(k) = ds(K)E(k) are defined in or-
der to rewrite the constraints into a system of linear inétjes. The PWA constraints
u(k) < umaxpwa(E(k)) can then be written as

[E(K) < Esk] < [0a(Kk)
[E(K) < Egx] < [0s5(K)

1 3.48
. (3.48)

u(k) <[-Ask Aok—Azk Ark—Aak+Asy] [za(k) zs(k) Zs(k)}T

+[—Mak Mok—Hok Hik— Mo+ Hak] [0a(k) Bs(k) Bs(K)]" +AskE(K) + Hak-
(3.49)

Now the dynamics of the system can be rewritten as the fofigumixed logical dy-
namic model

X(k+1) = Ax(k) 4+ Bu(K) +Cqxd(K) +Co k8(k+ 1) + D1 xz(k) + Do kz(k+ 1) + &, (3.50)
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where
x(k) = [E(K) t(k)]T A= {Ask(O(&k ikakd3,k+1) 2] Bk = [AS«U:,leJ ’
0 0 0 00
Cric= A [Bs,k Bok—Bsk PBik—PBak+PBsk 0 O (j 7
0 0 0 0 O
Core= D% [__BS,k+l Bokt1—PBakrr PBrkrri—PBakii+Bskis 0 O (j 7
D= Asc _—83,k Gz,k(—)u&k al,k_ugk"’u&k 8 g (()1 ’
r 0 0 0 0 0
D ‘__0‘3,k+1 O2k+1—03k+1 Opki1—Ozki1+03krz O O (j 7
and &= | AS (03 +1Ck Jcrkﬁs,k +Bakr1)]

The mixed logical dynamic moddl (3550) is subject to thedineonstraints of the form
(3:38), [3.36), and (3.37) resulting from the transformatis well as the upper bound and
lower bound constraints fdE(k), t(k), andu(k). All these constraints can be written more
compactly as

Ry kO(K) + Rz kd(k+ 1) + Rg kz(K) + Raxz(k+ 1) < Rsku(k) + Rekx(K) + Rrk,  (3.51)

with appropriately defined coefficient matridgg,, fori=1,2,...,7.
The objective functior (3.16) can be discretized as

N N-1

J= K)A AlBu(k)], 3.52
k;U() Sﬁk; [Au(k)| (3.52)

whereAu(k) = u(k+ 1) —u(k). We introduce a new variabte(k) to deal with the absolute
value ofAu(k), and we add the linear inequalities:

k) > u(k+1) —u(k
(k) = u(k+1) - u(k), .59
(k) > u(k) —u(k+1).
SinceA > 0, minimizing [3.52) is equivalent to minimizing
N N—1
J= 35 u)asc+ S Ao(k). (3.54)
K=1 K=1

subject to[(3.53). Indeed, it is easy to verify that when waimize the objective function
(3.54) subject to[{3.33), the optimal value @fk) will be equal to|Au(k)|, so [3.52) will
also be minimized.
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The mixed integer linear programming problem

Now the optimal control problem can be recast as an MILP gobivhere some of decision
variables are binary (i.ed) and some are real variables (i.&.(d;Z) with

u(l) o(1) Z(1) w(1)
u(2) ~ 3(2) z2(2) . w(2)

a=| | s=| | = T | e- 7
u(N) S(N+1) 2N+1) (N —1)

Furthermore, if we defing = [ a7 &7 Z7 &' ]T, the equivalent formulation of the
optimal control problem is obtained as follows:

min CJV, (3.55)
v
subject to
FV < Fox(1) + f3 (3.56)
FaV = Fsx(1) + fg (3.57)
whereC;=[As; -+ Asy 0 -+ 0O A - A ]T. This can be shown as follows.

The constraints for the MILP problefn (3]151) are consideoeét = 1,2,...,N. We can sub-
stitutex(k) in the constraints by using the state equation (3.50) realys The substituted
form is obtained as the following expression:

= (e 3 Ao el

[ |_| i|A|CI 12+GCi1)d(i) +Ci-1,28(K)

H:l\

=

NM‘H

k-1 k-1 k-1 _
+ [J Aj} D112(1) + ; [j mlAj} (ADi_12+ Di1)z(i)
k=1 k-1
+ Dk-1,22(K) + Z [julAJ} 8.

In addition, the end point conditia{N + 1) = [Eeng T]" needs to be considered [N (3157).
Because we know the value »fN + 1), the values ofr,,, andf, in (3:43) are also known.
So the state equation at the end point can be written as

X(N + 1) = ANX(N) + BNU(N) +C1,N5(N) + Dj_’NZ(N) +en

an 0 bn
whereAy = ,Bn = , and
N |:A5N (03N +0mN+18N) 1] N |:A5Nam,N+le:|

N -
= . By properly definind~, P, f3, Fs, Fs, andfs, we
. [ASN(O‘m,NJrlCN +BmN+1+ Bs,N)] y properly G R, T3, Fa, Fs 6

can write all these constraints in the forim (3.56) dnd (3.5Me MILP problem[(3.55)-
(3:57) can be solved by several existing commercial and $odeers, such as CPLEX,
Xpress-MP, GLPK (see e.g., [5,/86]).
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Figure 3.3: The speed limits along the track

Remark 3.5 The variablet(sy;) in (3.21) and[(3.22) is one of the state variables of the
model [3:50) -[(3.51). Note thdi (3121) aiid (3.22) are linmmnstraints. Hence, we still
have an MILP problem if the target point and target windowstmains are included. O

3.5 Case study

In order to demonstrate the performance of the pseudospactthod and the MILP ap-
proach, we use a case study (inspired by Vasak et al. [1@8frmpare these two approaches
to the discrete dynamic programming (DDP) approach prapws|f89]. The reason for se-
lecting the DDP approach for comparison is that [39] conetutthat the performance of the
DDP approach is better than that of the sequential quagmaigramming approach and the
coasting strategy obtained by the maximum principle. Thevag trajectories obtained by
those the pseudospectral, MILP approach, and DDP apprea@ahecompared with each
other. In addition, both the computation time and the pentorce with respect to the opti-
mization objective and constraints violations of thoserapphes are analyzed.

3.5.1 Set-up

The case study in this chapter is inspired by that of [123Jemtthe track length between
the departure station and arrival station is 10 km.| In [1#8ye were no speed limit and
grade profile. We add them as shown in Figure$ 3.3[add 3.4. dllwegrstock includes
an SBB Re 460 locomotive [39, 46, 108], the parameters of hvhie shown in Table 3.1.
The rotating mass factor is often chosen as 1.06 in the fitexra57] and therefore we also
adopt this value. According to the assumption made in Sei8, the unit kinetic energy
should be larger than zero. In this test case, the minimumticienergy is chosen as 0.1 J.
The maximum traction force of the SBB Re 460 locomotive is alimear function of the
train’s velocity and the maximum value of this function isO3N as shown in Figure 3.1.
The objective function of the optimal train control probleensidered here is a weighted
sum of the energy consumption and passenger comfort, wieredight is taken as 500.
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Table 3.1: Parameters of the train and the line path

| Property | Symbol Value |
Train mass [kg] m 5.07-10°
Basic resistance [N/kg] Ry 0.014+ 2.564-10%?
Mass factor [-] p 1.06
Line length [m] s 104
Minimum kinetic energy [J] Emin 0.1
Maximum braking force (regular) [N]| Umin —4.475-10°

The total running time for this trip is given by the timetalolethe rescheduling process.
Here, the total running time is 450 s, which consists of theimiim running time plus 5%
running time supplements.

Two cases will be considered here:

e Case A: the maximum traction force is constant.
e Case B: the maximum traction force is a nonlinear functiothefvelocity.

In Case A, just like the case study in [123], we assume thanthgimum traction
force Enax is constant:Emax = 300 kN. First, the optimal trajectory planning problem is
solved using PSOPT|[8], which implements a pseudospecttiad. In this case study, the
problem is solved using the Legendre pseudospectral tisations, with local automatic
mesh refinement, starting with 40 nodes.

Second, the problem is solved using the MILP approach. Sheenaximum traction
force is constant, in this case the linear constraints chiogehe PWA constraint§ (3.#4) of
the maximum traction force will not be considered here. s thapter, the PWA approx-
imations of the nonlinear functioh(E) = ﬁ may depend on the space interval index
as stated in Sectidn 3.4.2, i.e.,we can have different PWi#usictions for different space
intervals. In Figuré3]3 there are five speed limits, i.erl$§, 20 m/s, 30 m/s, 40 m/s, and
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Table 3.2: The PWA approximations of the nonlinear funcfion

a B Em—Emt1
Approx. no. Segmenm m m mo- omE
PP ? [(s/mY’] [s/m] [(m/sy]

Segment 1 —5.0943-10 % 0.0767 01-712
Approx. 1 4

Segment 2 —1.7393 10 0.0528 712—-1125

Segment 1 —3.1153-10% 0.0665 01-115
Approx. 2 s

Segment 2 —6.7188-10 0.0384 115-200

Segment 1 —9.4977-10°° 0.0443 01-240
Approx. 3 s

Segment 2 —2.3470-10 0.0272 240- 450

Segment 1 —4.4240-10°° 0.0346 01-415
Approx. 4 -6

Segment 2 —9.6462-10 0.0202 415-800

Segment 1 —1.8122-10°° 0.0251 01-640
Approx. 5 5

Segment 2 —6.2127-10 0.0175 640- 1250

Table 3.3: PWA approximations of the nonlinear functidn for the first and the last space

intervals
a Em—Emt1
Approx. no. Segmenmn m m mo o omt
[(s/m)y’] [s/m] [(m/sY]
Segment 1 —4.6463-10% 0.0734 01-808
Approx. 6 4
Segment 2 —4.6463-10 0.0734 808 — 3125
Segment 1 —1.4458.10% 0.0534 01-—2299
Approx. 7 6
Segment 2 —1.4514-10 0.0235 229 —450

50 m/s. Therefore, five different approximations with 2 suations off () are obtained,
the parameters of which are given in Tablel 3.2. For each sipéeeval, an appropriate
PWA approximation can be chosen based on the given spedd limaddition, we intro-
duce two additional PWA approximations bf ) for the first space intervagsiar, 2] and the
last space intervdéy, Send. The train speed in these intervals will usually be low; heric
order to obtain a good fit we apply a weighted least-squarsization to optimize the co-
efficients of the PWA approximations for these intervalsevethe weight function should
have a high value in the low-speed range. The parameterg &f\t#¥A approximations for
the first and the last space intervals are given in Table 3.3.

The lengthAs for the interval[sq, sc;1] depends on the speed limits, gradient profile,
tunnels, and so on. In addition, if the number of space iadsiV is larger, then the compu-
tation time of the MILP approach will be longer, but the aamyrwill be better. According
to the speed limits and grade profile given in Figuré 3.3 agdife[3.4, the length of each
interval is chosen to equal 500 m, i&s, = 500 m fork = 1,2,...,20, which provides a
good balance between the computation time and the accurseWILP solver, we use
CPLEX, implemented through the cplex interface functionhef Matlab Tomlab toolbox.
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Table 3.4: The coefficients of the varying maximum tractiwoef

: C1 C2 Ca,j Vi — Vi1
Segment kg - m/<] [kg/s] [kg/m] [m/s]
1 3.000- 10° “112510° 0 0-22.22
2 7.263-10° 272610 3128 1C7 22.22-38.89
3 4.237.10° ~1120-10*  1.000-1C? 38.89-50

Table 3.5: The coefficients of the PWA approximation of mamirtraction force

| Segmenm | Am [kg/m] Um [Kg- m/S] Em— Ems1 [(M/s)] |
1 —2.9396- 107 4.1992-10° 0.1—500
2 —0.9637- 107 3.2112.10° 500— 1250

For the DDP approach, the continuous nonlinear model af {&I4)-[3.1b) is discretized
in space. The number of the space intervals is 100 and théhlefigach space interval is
100 m. To compute the optimal trajectory with DDP, we use dabdtinction for dynamic
programming that was introduced [n [113].

For Case B, we consider a varying maximum traction force asvshin Figure[3.11,
the coefficients of which according to_(B.3) are based 0n|489,108] and listed here in
Table[3.4. In PSOPT, non-smooth path constraints can bdethhd introducing a smooth
version of the Heaviside function (see Secfion 3.4.1). lmNHLP approach we need to
approximate the nonlinear maximum traction force by PWAcfions in [3.44), where the
coefficients may also depend on the space interval ikdébere, for simplicity, we just use
one PWA approximation with two affine subfunctions forkallThe parameters of the PWA
function are listed in Table-3.5.

3.5.2 Results and discussion
Results for Case A: the maximum traction force is constant

The optimal solution of the pseudospectral method usingfPS@hich is obtained after 7
mesh refinement iterations, has 179 nodes. The calculatienfor PSOPT is 6 min and
10s on a 1.8 GHz Intel Core2 Duo CPU running a 64-bit Linux afieg system and the
computation time for DDP is 2 min and 8 s with 100 space intsres shown in Table
[3.d. However, the calculation time for the MILP approach.2% on the same CPU and
operation system as above, which is much shorter than tealatibn time of PSOPT and
DDP.

Figure[35 shows the optimal control inputs with constankimam traction force,
where the dotted line, the solid line, and the dashed lineesgmt the results calculated
by PSOPT, MILP, and DDP, respectively. It can be seen fromfel@.5 that the results ob-
tained by these three approaches show a similar trend, éngt &xist more discrete changes
but with a smaller magnitude in the control signals of PSORd@ BDP. This is mainly
caused by the larger number of space intervals: there ar@dd@800 space intervals in
PSOPT and DDP, respectively, but in the MILP approach, thezgust 20 space intervals.



40

3 Optimal Trajectory Planning for a Single Train
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Table 3.6: Performance comparison of PSOPT, MILP, and DDFClase A with constant
maximum traction force

| || PSOPT MILP DDP |
Jmin [-] 2.424.1C° 2.696-10° 2.482.1C°
CPU time [s] 370 0.32 128
End positiorsgng violation [m] 0 0 0
End kinetic energyEeng violation [m/] || 0.1 0.005 0.596
End timeTgnqVviolation [s] 0.496 9.560 6.049
Speed limit violation No No No

The optimal control inputs calculated by these three appresare applied to the nonlinear
continuous-time train model (3.1)-(3.2). The differeh@guation of the nonlinear model
is solved numerically using a variable step Runge-Kuttaheetand the resulting speed-
position trajectories for the train are shown in Figuré 3.6e dashed line shows the speed
limit for the trip, which is determined by the characteqdstdf the train, line, etc. The dot-
ted line, the solid line, and the dash-dotted line show thiera trajectories obtained using
control inputs generated by PSOPT, MILP, and DDP, respalgtiyt can be observed that
these optimal trajectories are below the speed limit, whiefans that the speed constraints
are satisfied, i.e., there is no speed limit violation. Ini&dd, we can see from Figufe 3.6
that the optimal trajectories obtained using control ispyenerated by PSOPT and DDP
are smoother than the one obtained with the MILP approactchas mainly caused by the
number of space intervals as stated before.

In Table[3.6, the values of the objective function, the cotapon time, and the con-
straints violations (i.e. speed limit violation, end pasitviolation, end kinetic energy vi-
olation, and end time violation) are compared for the cdntouts generated by PSOPT,
MILP and DDP applied to the nonlinear continuous-time traiodel [3.1){(3.2). The val-
ues of the objective function obtained by the PSOPT, the MHrR the DDP approach
are 2.424108 and 2.696x 108, and 2.48% 1%, respectively. The relative differences of
the MILP and DDP control performance are 11.2% and 2.4% dfdhthe pseudospectral
method. Therefore, the pseudospectral approach yieldsti#lest objective value and the
constraints violations for the pseudospectral method lacesmall.

Results for Case B: the maximum traction force is a nonlineafunction

Figure[3.T shows the optimal control inputs for Case B. Thiteddine, the solid line, and
the dashed line in Figufe_3.7 represent the optimal commitis obtained using PSOPT,
MILP, and DDP, respectively. When we compare Fiduré 3.7 tui€[3.5, the maximum
traction force in Figure3]7 is no longer equal to 300 kN fa MiILP approach in the space
interval [3000 4000, but it becomes smaller and smaller when the speed grows ighi
caused by the varying maximum traction force, which is dasireg when the speed goes
up. Similar results can be observed for the optimal inpulisutated by PSOPT and DDP.
Figure[3.8 shows the speed-position trajectories for thie titnder varying maximum trac-
tion force constraints when applying these inputs to thdinear train model[(311)E(312).
The dashed line, the dotted line, the solid line, and the-dasted line show the speed lim-
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Table 3.7: Performance comparison of PSOPT, MILP, and DDPCfase B with varying
maximum traction force

| || PSOPT MILP DDP |
Jmin [-] 2.625.1C° 2.819:10° 2.683.1C°
CPU time [s] 1147 0.54 134
End positiorsgng violation [m] 0 0 0
End kinetic energyEeng violation [m/] || 0.1 0.005 0.0328
End timeTgnqVviolation [s] 0 4.170 5.404
Speed limit violation No No No

its and the trajectories obtained using control inputs geged by PSOPT, MILP, and DDP,

respectively. These trajectories are still below the sgmeitl so there is no speed limit

violation. In addition, we can see from Figurel3.8 that thepsk of these three optimal
trajectories obtained in the space interi@80Q 5000 are smaller than those of Figure3.6,
because the maximum traction force is becoming smaller thighincrease of the train’s

speed.

The values of the objective function, the computation tiare] the constraints violations
are compared for PSOPT, MILP, and DDP in Tablel 3.7. Similathasresults in Case
A, the pseudospectral approach obtains the minimum obgefiinction value 525- 10°,
which is higher than that in Tab[e=3.6 (this is due to the initin of the constraint of the
varying maximum traction force). The relative differenoéshe MILP and DDP approach
in control performance are 7.4% and 2.2% when compared toofithe pseudospectral
method. PSOPT includes a local automatic mesh refinemenhidrcase study, we take
40 nodes as initial value. The finial solution is obtaine@mat mesh refinement iterations
and has 199 nodes. The calculation time is 19 min and 7 s. Qeaipéth the problem in
Case A, 20 nodes are added and the computation time is al@asihllonger. For the DDP
approach, the computation time is 2 min and 14 s, which is @igdothan that of Case A.
In the MILP approach, for each space interval an extra bigariable and an auxiliary real
variable are introduced in the mixed logical dynamic moaehpared with Case A, since
the maximum traction force is considered as a nonlineartiom¢hat is approximated by
an PWA approximation with 2 subfunctions. Therefore, 40alzles are added to the MILP
problem since the number of the space intervals is 20. Thepatation time is now 0.54 s,
which is larger than the 0.32's of Case A, but it still is muchédo than the computation
time the pseudospectral method and the DDP approach. $imithe results shown in
Table[3.6, there are no speed limit violations and the endtidrenergy violation is very
small. Furthermore, the end time violation for the pseudospl method is also very small,
but for the MILP and DDP approach this violation is about 1%haf total running time.

Discussion

It is concluded that for the given case study the pseudospegiproach obtains the best
control performance, which considers the value of the dbjefunction and the constraints
violations. However, when the computation time is also telkéo consideration, the MILP
approach yields the best overall performance.
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It is worth to note that we apply a trapezoidal integratiole o approximate the time
differential equatior{3.15) and then use PWA functiongtpraximate the nonlinear func-
tion (3.41) in the MILP approach. Therefore, the end timdation in Table[3.b of the
MILP approach is probably caused by these approximationsth&rmore, we can make
the error even smaller by adjusting the PWA approximatiarm®ading to FootnotEl4 on
pagd 31, but then the CPU time goes up.

3.6 Conclusions

In this chapter, the optimal trajectory planning problemdcsingle train has been consid-
ered. We have proposed two approaches to solve this prolienmseudospectral method
and the mixed integer linear programming (MILP) based apgino In the pseudospectral
method, the optimal trajectory planning problem is forntedaas a multiple-phase opti-
mal control problem based on piecewise line resistance peedslimits. The constraints
caused by the varying maximum traction force are defined ainear path constraints.
In the MILP approach, the nonlinear train operation modébisulated as a mixed logi-
cal dynamic model by using piecewise affine approximatidriee variable line resistance
(including variable grade profile, tunnels, curves) andegpestrictions are included in the
constraints of the mixed logical dynamic model. Furthereptine optimal control problem
is recast as an MILP problem. The case study shows that thelpspectral method has
the best control performance and the MILP has the best dymebrmance if the com-
putation time is also taken into account. In addition, thenpatation time of the MILP
approach is much shorter compared with that of the pseudtygpmethod and the discrete
dynamic programming approach. For the given case studygethtive difference between
the performance of the MILP approach and that of the pseubdisp approach is about
10%.

When the timetable is known, the two approaches proposekisnchapter (i.e., the
MILP and the pseudospectral approach) can be applied talatécthe optimal trajectory
for trains between stations to save energy and to ensuremqggascomfort. If there are some
disturbances in the network, then one could use a rescimgdaiproach to reorder trains
and determine new timetables [29, 57]. Next, the affectath$rhave to optimize their
trajectories according to the new timetable. In this cdse,ttajectory planning problem
needs to be solved quickly to satisfy the real-time requéinets; so then the MILP approach
could be applied since it gives the best trade-off betweempedational speed and accuracy.

An extensive comparison and assessment of the pseud@@peethod, the MILP ap-
proach, and other approaches in the literature for variage studies and a wide range of
scenarios will be a topic for future work. In addition, inghihapter we have focused on
the trajectory planning for a single train between two staiwith the assumption that the
constraints and disturbances caused by signaling systahwtlaer trains are handled by the
lower control level. However, in practice these constraarid disturbances are significant
for the capacity of the railway network, and therefore somteresting conflict detection and
resolution approaches have been proposed to manage tmsseaats and disturbances dur-
ing the rescheduling phases [24, 27, 28]. In future work, @mdd combine these conflict
detection and resolution approaches with the traject@ynghg approaches proposed here
to solve the trajectory planning for multiple trains. There could also use the MILP ap-
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proach (including hierarchical and distributed optimizatf the problem grows too large).
Furthermore, the pseudospectral and MILP solvers usedsithiapter are general-purpose
solvers. By making use of the specific structure and progeeati the optimal trajectory plan-
ning problem, significant speed-ups can be expected. Tdrerahilored pseudospectral and
MILP solvers for the optimal trajectory planning problemn frains could be developed.

3.A A general formulation of the pseudospectral method

The optimal train trajectory planning problem of Chapien be formulated as a multiple
phase optimal control problem and then can be solved by thedaospectral method. Be-
low we describe a general optimal control problem with npldtiphases and the solution
procedure of the general optimal control problem using teudospectral method. This
explanation is based on [9,/19/ 37| 51,/106].

3.A.1 The multiple-phase optimal control problem

The general optimal control problem witli, phases is formulated as follows [106]. The
objective function is

Np

J:i; <¢(I)(X(I)(tf())7p(l)’tf())+/t(()i) L<)(x()(t),u()(t),p”,t)dt), (3.58)

whereft",t"] is the time interval for théth phaseu®(-) andx((-) are the control trajec-
tories and state trajectorigs!) are the static parameters, for 1,2, .. ., Np. The objective
function [3.58) is subject to the differential constraints

(1) = 10 (x0(0),ud 1), p 1), te i, (3.59)
the path constraints
h < h® (xt),ud ), p0 1) <hl), tep (), (3.60)
the event constraints
o <& (), ul (i) ) u i) 0t ) < e, ey, (3.61)
the linkage constraints
W< W "), i ") X ) o ), 7
2 2 2 2 2 2
X2(167),u (167), % (1), u? ). p®. 157 .

(3.62)
XM (1)), UM (1)), x(M) (1)) U (™)) pM) 11 ) < gy,
the bound constraints
gl @ el

pl(_i) < p(i) < pEiJ), 'L(()i) Stéi) S,E(i) E(i) Stf(i) St—fﬁi)
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and the time constraints

)~ > 0. (3.64)

3.A.2 The solution process of the optimal control problem

Leti € {1,2,...,Np} be a particular phase of the optimal control problem (3&34) and
let (-)) denote information for thith phase. Théth phase of the optimal control problem

can be transformed from the interva [téi),tf(i)] totheintervat € [-1,1]fori=1,2,...,N,
by introducing the following transformation [106]:

2 )

UM ORNONNO)

T=

(3.65)

Now we approxmate the state and control functions usinghdge pseudospectral ap-
prOX|mat|on The stath ( ), T € [—1,1] is approximated by thith order Lagrange poly-
nomlalxk ( ) based on interpolation at the Legendre-Gauss-Lobatto Jlg8Ints [19]:

Ni

WA= 5 el o), (260

Wherexk' (rn) is a discrete approximation of the LGL poityt and the Lagrange basis
polynom|alscp1 (1) forn=0,1,--- ,N; are defined as

N; 0]
i -1
(1) = (_)7"”'(_)7 (3.67)

m= ,m;én'fnI *Tn|1
andTE,i) forn=0,1,...,N; are the LGL points, which are defined B(()Q =-1, T§\',I) =1,
andt, forn=1,2,... N; — 1 being the subsequent roots of the derivative of the Legendr
polynomial

1 dv

Ln(T) = ZTI\MW(TZ -\

in the interval[— 1 1] The controlu (1) can be approximated in a similar way. The

derivative ofxE' ) at the LGL points, can be obtained by differentiatinig (3166), which
can be expressed as a matrix multiplication as follows:

. o N
(1) ~ Q0 (1) = %Dg‘fﬁj*(') (1)), (3.68)
J:

whereD() is the(N; + 1) x (N; + 1) differential approximation matrix [50] given by

A L
0 (ﬁ(\I‘(J)Tnija ?fn?éjlv
Dp| = Ni(Ni4+1)/4, ifn=j=0, (3.69)
N.(N.+ 1)/4, ifn=j=N,
0 otherwise.

)



3.A A general formulation of the pseudospectral method a7

The differential constraints can be recast into algebraitstraints via the differential ap-
proximation matrix. In addition, the path constrairis (§.6an be discretized at the LGL
points. Note that the dynamic constraints and path comssraire only considered at the
LGL points, which means both the dynamic and path constainght be violated in be-

tween the LGL points [107]. The objective functidn (3.58h ¢z approximated using the
LGL points as

Np

J— Z <¢<i> (gNi,a)(fl),)zNi,(i)(l), p<i>7tg>7tf<i>)

. (3.70)
t® _t® N » »
o > 0o 5 LM (XN.,<|>(TH)7@°«.,<|>(T”>,p<>7Tn)wn :
n=|
wherew, are weights given by
Wy = 2 1 forn=0,1,...,N;. (3.72)

N(N+1) (L (Tn))?’

If we include all the decision variables in vectgithe optimal control problem can then
be expressed as a nonlinear programming problem:

myinJ(y) (3.72)
subject to
GL <G(y) <Gu

YL <y<yu.

By defining G(y), GL, Gu, Y., andyy properly, we can write all constraints in the form
G13).

There exist several commercial and free packages that igriethe pseudospectral
method: SOCS| [13] and DIRCOL _[112] are Fortran-based petgry packages, while
PROPT[107] and DIDQO_[104] are commercial software packagtdsMatlab interface. A
Matlab-based open source tool that uses the Gauss pseuattaspethod is GPOPS [102].
PSOPT is an open source optimal control package written i @€luding Legendre and
Chebyshev pseudospectral discretizations [9]. Theseamtpackages start with a general
optimal problem formulated ak (3158)-(3164), then tramsfthis problem into a nonlinear
programing problem with objective functidn (3172) and doaists [3.78), and finally solve
it possibly using an NLP solver, such as SNOPT [49].

(3.73)
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Chapter 4

Optimal Trajectory Planning for
Multiple Trains

In this chapter, the optimal trajectory planning problemrfaltiple trains under fixed block
signaling systems and moving block signaling systems isidened. Two solution ap-
proaches are proposed to solve this optimal control prolid@mmultiple trains: the greedy
approach and the simultaneous approach. The greedy appptimizes the trajectories of
trains sequentially, where first the trajectory of the legdiain is optimized and then the
trajectory of the following train is optimized based on thegectory of the leading train. In
the simultaneous approach, the trajectories of all thegrai the problem formulation are
optimized at the same time. In each approach, the trajeglanning problem is similar
to the problem of Chaptél 3, and therefore it can also be dahging the pseudospectral
method and the mixed integer linear programming (MILP) apph. The performance of
the proposed approaches is compared via a case study.
This chapter is based on [134] and is supported by the rgza@sented in [129, 131].

4.1 Introduction

The approaches proposed in Chapter 3 ignore the impactdthysignaling systems, e.g.,
a fixed block signaling (FBS) systems or a moving block signga(MBS) systems (see
Section 2.1 for more detailed information about sigriagstems). In this chapter, the
constraints caused by the leading train in an FBS system MBS system are included
into the trajectory planning problem. For the MILP approaitie constraints caused by
signaling systems are discretized and then recast as lxoestraints by piecewise affine
(PWA) approximations. Hence, these constraints can ehsilincluded into the MILP
formulation.

The remainder of this chapter is structured as follows. IctiSe[4.2, the train model is
summarized based on Sectlon312.1. In addition, the contri@r the operation of trains
in an FBS system and an MBS system are also formulated inahtis. Sectioh 4]3 gives
the mathematical formulation of the trajectory planninglgem for multiple trains. In
Sectior{ 4.4, we propose two solution schemes to solve tfextosy planning problem for
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multiple trains. For the MILP approach, Sectlon]4.5 preséme transformation process of
the FBS constraints and the MBS constraints. In additiosmniode vector constraints are
proposed to reduce the computation time of the MILP approSelatio 4.5 illustrates the
performance of the proposed approaches via a case studgluSiams are finally presented

in Sectiorf 4.V.

4.2 Model formulation

In this section, the formulation of operation of trains ie thBS system and in the MBS
system are presented.

4.2.1 Train dynamics

Although the model for the operation of trains has been desdrin the previous chapter,
we here repeat the main equations that will be referred thermrémainder of this chapter.
As shown in Chaptéd 3, the continuous-space madell3.14(F&nh8) of train operations can
be discretized in space: the position horizon between twis@outive stationfstart, Send|

is split intoN intervals and it is assumed that the track and train parasagewell as the
traction or the breaking force can be considered as conist&atch intervals, Sq;1] with
lengthAs, = s 1 — S, fork=1,2,... N. The discrete-space model is then transcribed into
an PWA model by approximating the nonlinear terms througPWctions. Furthermore,
by applying the transformation properties described intise.4.2, the PWA model is
formulated as the following mixed logical dynamic model:

X(K+ l) = AkX(k) + Bku(k) + Cl,ké(k) + Cg,ké(k—i— l) + DlykZ(k) + DzykZ(k-i- l) + €,
(4.2)
Rlyké(k) + Rg!k5(k+ 1) + R37kZ(k) + R4!k2(k+ 1) < R5’ku(k) + RG!kX(k) + R7’k, (4.2)

wherex(k) = [E(K) t(k)]T, d(-) andz(-) are the binary variables and auxiliary variables

introduced by the transformation, and (4.2) also inclublesipper bounds and lower bounds
constraints folE(k), t(k), andu(k). The coefficient matrices in the mixed logical dynamic
model are determined by the train model, the PWA approxonatiupper bounds and lower
bounds constraints, etc.

4.2.2 Operation of trains in a fixed block signaling system

Figure[4.1 shows an example of a three-aspect signalingrayaiith ATP speed codes.
Later on, we will discuss the constraints caused by fixedkosignaling system using this
simple three-aspect signaling system. However, the metbgy proposed in this chapter
can be extended to other types of FBS systems.

In the FBS system given in Figure #.1, the speed code datastens$two parts/[115],
the authorized-speed code for this block and the targedespede for the next block as
illustrated in Figuré_4]1. When a train in Block 4 approachia Signal 3 will receive a
Vmax/Wyellow €Ode, to indicate a permitted speedvefy in this block and a target speed of
Wellow fOr the next. When the train enters Block 2, the code char@gg,fow/Vmin because
the next block (Block 1) is occupied by train 1, so the speedtrbevyin (usually taking
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Direction of travel
—_—
Signal 3 Signal 2 Signal 1
Train 2 _O Train 1
/d--—---(ﬂ ﬁE(-_ﬂ-
( y
Block 4 Block 3 . Block 2 -1 Block 1
Code Code
Vmax / Vyellow
Vimen i Code Vyellow / Vmin Code Vmin/ Vmin

Figure 4.1: Three-aspect fixed block signaling system witR Apeed codes

the value 0 m/s) by the time train reaches the end of Block ¢hdftrain attempts to pass
the indication point for service braking distance befogmal 1, the onboard equipment will
cause an emergency brake application.

Minimum headway for an FBS system

In order to ensure that a train’s operation is not impededhieysignaling system, i.e., a
train’s operation is not then affected by the train in frahg minimum headway is intro-
duced. The minimum headway is the minimum time separatitwd®n successive trains
at stations. For undisturbed running in FBS system, thermini headway can be defined
as [60]

F 2 F L
Humin Fas = ta {2+ INT{ bt (VE‘EX) /(22) H + \;FL? g+ A+l L+ S
max a ab aacc

where INT{-} is a celling function that maps a real number to the leasgertgreater or
equal to the argument, is the block lengthLF is the distance that the following train
will travel during the reaction tim& of the driver and/or train control equipment of the
following train, Vi, is the maximum speed of the following traief is the maximum
service braking rate'd- is the station dwell time of the leading traid; is the length of the
leading trainLs is the length of the secure section (a special section teptrdte leading
train), andak.. is the acceleration of the leading train.

The constraints caused by an FBS system

We assume that the total number of fixed block sections betivee consecutive stations,
i.e., in the intervalSstart Send iS M. The index of block sections is denotedrasand the
boundaries of the block sections are denoted-gs, with me {1,2,...,M}. We assume
that there exists an indéx € {1,2,...,N+ 1} such that

SFB,m = amv (44)
and we define a piecewise constant function such that

(Ky=m, for Im<k<lm, for me{1,2... .M} (4.5)
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Thens is in the fixed block(sw(),a[<

k)+1]' The constraints caused by the leading train in

a three-aspect fixed block signaling system shown in Figulleedn be formulated as the
follows:

If the following train and the leading train are in the samechlsection, i.etF(s) €
(t"(sre.m),t-(srBmr1) | With S€ [Srem, Sre.m+1], Which is in fact not allowed by sig-
naling system, then the speed of the following train musaétpthe minimum speed,
ie.

VF(S) = Vmin. (4.6)

If the leading train is just one block section before thedaing train, i.e.tF(s) €
(t*(srB,mt1).t- (SeBmi-2)] With s € [Sem, Srem+1], then the speed of the following
train at positionsrg m andsrg m+1 should be less than or equalvgqw and equal
to Vmin, respectively, i.e.

VF(SFB,m) < Vvellow

VF(SFB,m+1) = Vmin-

The deceleration is assumed as a constant for the entinevahtgrg m, Srg,m-1]-
Based on the relationship among position, speed, and aatiele we have

4.7)

ZaFB,m(SFB,erl - SFB,m) = Vr2nin - V\z(ellowv (4-8)

ZaFB.,m(S_ SFB,m) = \?Yellow (S) - V\z(ellowa (4.9)

whereargm is the deceleration andyejow(S) is the maximum speed for trains at
positionsfor s € [Seg m, Sre m+-1]- BY eliminatingagg m in (4.8) and[(4.D), we obtain

_ S—SFBm
VYeIIOW(S) = \/V\z(ellow + (Vﬁﬂn - V\Z(ellow) SrB.mi1— SFB m, (4'10)

wherevyeliow(+) is @ function only depending an Therefore, in this case we have the
constraint
VE(9) < Wellow().- (4.11)

If the leading train is two blocks before the following traire. tF(s) € (t"(srg m+2),
tL(SFB’m+3)] with s € [Segm, SFB,m+1]), then the speed of the following train at posi-
tionssre m andsrg m+1 should be less than or equali@ax andvyeliow, respectively,
i.e.

VF(SFB,m) < Vmax,

. (4.12)
V7 (srBm+1) < Wellow-
Similarly asvyeliow(-), we can obtain
_ S—SFBm
Vmax(S) = \/ Vaax+ (Kellow — Virax) F———— (4.13)

wherevimax(s) is the maximum speed for trains at posit@nNote thatvmax(s) only
depends os. Therefore, we in this case have the constraint

VE(S) < Vmax(9)- (4.14)
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Direction of travel

Braking curve
or Train 2

Braking curve
for Train 1

Wil 2 Train 1

= ey,
| brake.2 | SSM | Lt | brake1 |
| T ) 1 |

Figure 4.2: An moving block signaling system

4.2.3 Operation of trains in a moving block signaling system

In a pure MBS systef the distance between two consecutive trains should berl#ngn
the minimum distance at any time as shown in Figuré 4.2. Tmenmim distance between
two successive trains is basically the instantaneous hgadtistance required by the fol-
lowing train plus a safety margin. As mentioned in Secfidh2.in practice the minimum
distance in the MBS system is larger than that defined in {hbecause the driver or the
automatic train control system need time to react to sitati The distance between the
leading train and the following train in an MBS system shaatisfy [115]

sH(t) = s7(t) > Lf + (VF(1))%/(2af) + Ssm+ Ly, (4.15)

wheres-(t) ands"(t) are the positions of the front of the leading train and théofaing
train at timet, V7 (t) is the speed of the following traiaf is the maximal deceleratioSsm

is the safety margin distanckf is the distance that the following train will travel during
the reaction time’™ of the driver and/or train equipment of the following traemdL}- is the
length of the leading train. The value of the reaction timeldde obtained from historical
data.

Minimum headway for a MBS system

The minimum distance between two successive trains|(4dbpe recast as the minimum
time difference of two successive trains

tH(s) —tH(s) > tF +tf () +t5ed9), (4.16)

wheret! (s) andt™(s) are the time instants at which the front of the leading traid the
following train pass positios, respectively. The braking time of the following traﬁ(s)

and the time margitf,.(s) caused by the safe margin distance and the train length can be
computed as

th(s) =V (s)/af, (4.17)

1As stated in Chaptéd 2, there exist four MBS schemes: mowagesblocking signaling, moving time block
signaling, pure MBS, and relative MBS. In this thesis, weyardnsider the pure MBS system, so the MBS system
later on refers to the pure MBS system.
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tSarelS) = (Ssm+ Lt) V' (9), (4.18)
wherevF(s) is the speed of the following train at positien
In order to ensure that near stations a train’s operationtisnmpeded by the signaling
system, i.e. a train’s operation is not then affected by theinciple slowly moving or
stopped) train in front, the minimum headway is introduc@dhe minimum headway is
the minimum time separation between successive traingiat $tations, and it is defined
as [115]
Huminmes =t +tin—out = tg +tf +th max+ tate (4.19)

with the run-in/run-out timein_out =t +tf o+ thae Wherety . is the time it takes the

following train to come to a full stop when it is running at iteaximum speed, i.egmax =
Vhax/a5, and the run-out time . is the time that the leading train needs to completely clear
the secure section (i.e. a special section to protect tligrig#rain), if present, and including

a safety margin, i.ets..= /2(Ssm+LF +Ls)/a.e The acceleration of the leading train

safe ™
al..is usually considered as a constant value for the minimurdwsas calculation/[60].

The constraints caused by an MBS system

The constraints caused by the leading train in MBS systeriffexent in open track and in
the station area. In open track area, the minimum time diffee between the leading train
and the following train should satisfy (4]16). In the statarea, the minimum time distance
should be larger than the minimum headway definein (4.19), i

tF(s) —t~(s) > Huminmes. (4.20)

4.3 Mathematical formulation of the multiple trains tra-
jectory planning problem

For simplicity, we consider the optimal trajectory plangpproblem for two trains. However,
the solution approaches can be extended to multiple tratmstrajectory planning problem
for two trains (i.e., the leading train and the followingitacan be formulated as:

J= sendmax(O, u-(s))ds+ sendmax(o, uF(s))ds (4.21)
Sstart Sstart
subject to
Umin < US(S) < Umax,  Umin < U(S) < Umax, VS € [Sstart Send
0<EM(s) <ELax(S), O0<EF(s) <Efa(S), VSE [SstartSend
E" (sstar) = Egtare E" (Sstar) = Eary
E'(send) = Egne E' (Send) = Eéna
th (Sstart) - Tslfarb tF(SStart) - Tsﬁarb
tL(Send) = TeLndv tF(Send) = Tanda

the train model constraints (4.1) alid {4.2) for the leadmmtand the following train, and
the constraints caused by the signaling systems in Seci@l and Section 4.2.3 (i.e.,

(4.22)
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@5), [4T),[(4.11)[(412)(4.14].(4]16), and (4.20)here the objective functiod is the

energy consumption for these two trains without regenmdiiaking;ﬁ#\ax(-) is equal to
0.5 (Vhad-)? with VL. (-) the maximum allowable velocity, which depends on the train
characteristics and line conditions, and as such it is isagbiecewise constant function
of the coordinates [[72, 87]; Sstart EL(sstan), andt(sstart) are the position, the kinetic en-
ergy per mass, and the departure time for the leading tratineabeginning of the route;
Send: EL(send), andtL(send) are the position, the kinetic energy per mass, and the &rriva
time for the leading train at the end of the route. The notadiefinitions for the following
train are similar. Itis assumed that the unit kinetic endelys) > 0 andEF(s) > 0 for the
leading train and the following train, which means the tsagpeed is always strictly larger
than zero, i.e. the train travels nonstop|[72]. This assionps nonrestrictive in practice
because the initial start and terminal stop can be modelednay nonzero velocities. Fur-
thermore, in principle the traffic management system doéplaa stops intentionally at an
intermediate point of the trip.

In addition, the constraints caused by the FBS system or B8 bystem proposed in
Sectior4.2.P and Sectién 4.P.3 should also be includeckitrédjectory planning problem.

Remark 4.1 The ideas on solving the train scheduling problem in a rgllorizon way
in Section_Z.b could be adopted to the train trajectory glagfior multiple trains in this
chapter. |

4.4 Solution approaches

Now two solution approaches, i.e., the greedy approachtensitultaneous approach, are
proposed for solving the optimal control problem for mukigrains under an FBS and or
an MBS system.

4.4.1 Greedy approach

In the greedy approach, the leading train’s trajectory & fietermined and then the trajec-
tory of the following train is optimized based on the reswitghe leading train. For the
trajectory planning problem of the leading train, the objecis only part of [4.211), i.e.
Send
= max(0,u"(s))ds, (4.23)
Sstart
and the constraints are those related to the leading trai@.constraints pertain to both the
leading train and the following train are discarded for flagetctory planning for the leading
train. The optimization problem of the leading train is tlaene as the problem solved in
Chapte[B, and it can be solved using the pseudospectrabthettihe MILP approach.
The optimal trajectory planning problem for the followimain is similar with that of
the leading train. When optimizing the trajectory of thddaling train, the trajectory of the
leader train is already fixed and the valuelbfis also fixed. The objective for the planning
problem of the following train is
Send

JF= A max(0,u(s))ds. (4.24)
tart
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The constraints do not only include thoselin (4.22) reladetti¢ following train, but also the
constraints caused by the FBS or the MBS system as preserSetfion§ 4.2]2 ¢r4.2.3.

In the pseudospectral method, the constraints caused Bigtiaing system can be eas-
ily formulated as the path constraints (see Se¢tion B.4 théwe information). However, for
the MILP approach, we need to approximate the nonlineartrings into linear constraints
by using the transformation properties in Secfion 3.4.2e détails for the transformation
process of the FBS constraints and MBS constraints will bergin Sectiof 4]5.

4.4.2 Simultaneous approach

The simultaneous approach optimizes the trajectoriessofeidding train and the following
train simultaneously. When optimizing the trajectoriesmfitiple trains at the same time,
the model for each train is a model of the fofm {3.1). The ttjges of the leading train
and the following train are obtained at the same time andahe\of the objective function
@.21) is minimized by solving an optimization problem itwing multiple trains. This
problem is similar with the trajectory planning problem éosingle train and therefore it can
also be solved by the pseudospectral method or the MILP apprdhe constraints caused
by the FBS system and MBS system can be handled similarlythg igreedy approach.

However, compared to the case of a single train, the numbtreastate variables and
constraints of the problem for multiple trains increasaedirly with the number of trains.
Therefore, the size of the optimal trajectory planning peobfor multiple trains is much
bigger than the problem for a single train and the computatioe of the bigger problem
will be much longer. However, since we are now optimizing titaén trajectories of two
trains at the same time instead of optimizing them one by ties;ontrol performance will
in general be better than that of the greedy approach.

Remark 4.2 For the trajectory planning for large number of trains, thewtaneous ap-
proach will become slow. So distributed optimization agmtees [18] can be applied, where
the trajectory of each train could be calculated separatily consideration of constraints
caused by other trains, then these trains negotiate with ether and finally converge to a
global equilibrium. O

4.5 Mixed logical dynamic formulation for signaling sys-
tem constraints

As shown in previous chapter, the optimal control problemlzarecast as an MILP prob-
lem of the following form:
min CJV, (4.25)
v

subject to ~

F1V < Fx(1) + f3,
FaV = Fsx(1) + f.
In order to include the constraints caused by the FBS systetiVilBS system (shown in
Section 4.2 and Sectign 4.P.3) in the MILP problem, thesestraints should be trans-
formed into linear constraints by using the transformapooperties in Section 3.4.2. The
transformation of these constraints is given as below next.

(4.26)
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4.5.1 Multiple trains under fixed block signaling system

The constraints caused by the leading train in the FBS syaterfirst discretized at each
grid points for k=1,2,--- N+ 1. These logical constraints are then transformed into
linear constraints, which can be easily included in the Mdgproach.

Discretizing the FBS system constraints

As described in Sectidn4.2.2, the fixed block sections atexad by m wittme {1,2,...,M}
and the boundaries for the block sections are densdgg and grid points is in the fixed
block(a[ 0y k)+1] The constraints caused by the leading train in a threeeafiped block
S|gnal|ng system shown in Figure #.1 can be transformecthtdiacrete poirgy as follows:

e If the following train and the leading train are in the samedkl section, i.et™ (k) €
(tL(I[(k)),tL(I[(kHl)], then the speed of the following train must equal to the mini-
mum speed, i.e.

VF(K) = Vinin. (4.27)

e If the leading train is one block section before the follogitrain, i.e. t7(k) €
(tL(Ia K)+1)5 tL(I,( K)+2 )] then the speed of the following train at posmcnn,%( and

Si1 should be less than or equalNe. 0w and equal t&/min, respectively, i.e.
V{Zk) < Vellow;
F (4.28)
legga = Ymin-
For the grid points € (544(@ ,s.[(k)ﬂ), we have
V(K) < Wellow k. (4.29)
where
_ S~ Sy
Wellow k = V\Z(ellow + (Vﬁqin - V\z(ellow)iw' (4.30)
S'f(k)+l - S'f(k)

o If the leading train is two blocks before the following traire. tF (k) € (t-(I;42),
tL(I4<k>+3)], then the speed of the following train at positi&Q&) andsié(k)+1 should
be less than or equal ¥nax andVyeliow, respectively, i.e.

Vﬁ(k) S VmaXa (4 31)
VE<1<)+1 < Vvellow-
For the grid pointsy € (SM) ,s.ak)ﬂ), we have
V(K) < Vmaxk, (4.32)
where
— &% —9
Vmaxk = V%]aer (V\Z(ellow - V%\ax) 7%)' (4.33)
S'f(k)+l - S'f(k)
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Considering the FBS constraints into the MILP approach

In order to transform above logical constraints into lineanstraints, the following binary
variables are introduced:

], (4.34)

Note that an extra constraint is needed, i.e.
tt (k) > th(k), (4.35)

because the passing time of the following train at posioshould be larger than that of
the leading train in order to avoid the collision of traing.addition, based on the definition
of 81(k), 82(k), anddz(k), the following logical conditions are satisfied

[B1(K) = 1] = [B2(K) = d3(k) = 1],

(4.36)
[B2(K) = 1] & [83(k) = 1].

The constraints caused by the leading train in the threeeadfBS system can then be
reformulated as:

81.(K)V" (K) < Vinin, (4.37)
(1—81(K))B2(K)V" (K) < Wellowks (4.38)
(1—32(k))33(K)V (K) < Vmaxk, (4.39)

where <’ is used in [4.3F) instead of’ in (.27) becaus&; (k)" (k) is equal to 0 and is
not equal to/min whend; (k) = 0.

By definingMj = Tha— th(I,ai) that is larger than mai (k) —t-(I,p.4i)), M =
min(t™ (k) —t-(I,4i)) that is larger thai5; —t-(I,i), and by applying transformation
property [[3.3b) the logical constrainfs (4.34) can be shimAse equivalent to the following
inequalities: 5

tF(K) — - (g ) < Ni(L— &(K)),
tF(k) =t (I 4i) = €+ (T —€)&i (K),

fori = 1,2,3, whereT?F,, is the arrival time of the following train at the final destiioa,
TF. the departure time of the following train, ards the machine precision. In addi-
tion, we define binary variable€s (k) = 81 (k)d2(k) andds(k) = 62(k)d3(k) to deal with the
nonlinear terms; (k)d2(k) andd(k)d3(k) in (4.38)-[4.39) respectively. According to the
transformation properties in Section 314.2, the definitiofds(k) andds(k) are equivalent
to linear constraints of the forri(3136). In addition, aiafy variables? (k) are introduced
to deal with the nonlinear tern&(k)v© (k), which is defined as

(4.40)

Z (k) = & (kv (k), for i=1,2345. (4.41)

This definition is equivalent to linear constraints of thenid(3.37). The constraints caused
by the leading train in fixed block systems can thus be fortedlanto the MILP problem
setting.
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In the greedy approach, first the trajectory of the leadiaintis determined by solving
the MILP problem. Next, the optimal control problem of thédwing train is solved, which
is similar to the one of ChaptEt 3 but with the extra constsaiaused by the leading train
in FBS system. The coefficient matrices in the mixed logicaiaiic model[(411)E(4]2)
are determined by the following train. Since the trajectofyhe leading train is known,
tL(Ig(kHi) is also known. Therefordfl; andni are constants and {4}40) is a system of linear
constraints.

When optimizing the trajectories of multiple trains sinaueously, the models for these
two trains are determined by a model of the fofm(4L1)1(4T2)e optimal control problem
of these two successive trains can also be rewritten in time &6 the MILP problem[(4.25)-
(4.28) but including the model and constraints of each taaid the constraints caused by
the FBS system. HowevetlL,(I[(kHi) is now also a variable in this case since the leading
train’s trajectory also has to be optimized. The constsafii40) can be rewritten as

(Tn'”:nax_t (lé ))6I( ) _tF(k)'i'Tnﬁam

(4.42)
(Tin— tL(lf(k)+i) —&)8i (k) <tF(k) — & —t" (I 4i)-
In order to deal with the nonlinear terms [in_(4.42), we define
7 (K) =t (lgg4)8i(K), for =123, (4.43)

Similar to Z(k), (4.43) is equivalent to linear constraints according ® ttansformation
properties in Sectidn 3.4.2.

4.5.2 Multiple trains under moving block signaling system

Just as the constraints caused by the FBS system, the dotsstraused by the MBS sys-
tem are first discretized at the grid poigs k= 1,...,N+ 1. Next, these constraints are
approximated by linear constraints, which can easily bkided in the MILP formulation

(4.23)-(4.26).
Discretizing the MBS constraints
We discretize the constraifi(4]16) caused by the MBS syatehe grid pointsy as
th(k) > th (k) +tF +tf (k) +thk), for k=1,2,...,N, (4.44)

tF(K) > tH(K) + 17+t o+ 1] +teare  fOr k=N+1. (4.45)
In addition, some intermediate constraints are introdtoezhsure that the points between
the grid points also satisfy the constraints caused by th& lgN&stem. According t¢(4.16),
we obtain the following constraint for easke [, S«+1] as:

t7(s) —tr —t5 () —tsarelS) = t°(5). (4.46)
If we assume the left-hand side 6f(4.46) to be an affine fondn the intervals, S 1],
then we can add the following constraints:
(1—a)(t"(k) =t —t5 (K) — t&seK)) + a(tF(k+ 1) —t7 —t5 (k+1) —tgedk+ 1)

4.47
>th(s+asy), (4.47)
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for some values! in a finite subse&, < [0,1), e.g. S = {0.1,0.2,...,0.9}, wheret-(s+
0As) is known if the optimal trajectory of the leading train is fikeNote that fora = 0
anda = 1, the constrainf(4.44) is retrieved (except i N — 1). However, when we solve
the trajectory planning problem for multiple trains usitg tsimultaneous approach, the
leading train’s trajectory is not known beforehand. So #rentt" (s-+ aAs) is unknown.

If we assume the right-hand side &f (4.46) is also an affinetfan, i.e.t"(s+ als) =
(1—a)t-(k) +att(k+ 1), then it is sufficient to check(4.46) at the poiktandk+ 1 (i.e.,
for a = 0 anda = 1), since due to linearity (4.46) will then also automaticake satisfied
for all intermediary points.

Considering the MBS constraints into the MILP approach

Note that the constraints (4]44), (4.45), and (4.47) aesiinint" (k), t-(k+ 1), andtF (k).
However, they are nonlinear irf (k) andvF (k4 1) since the time safety margin (4118) is a
nonlinear function of the following train’s velocity™ (k). Furthermore, the kinetic energy
per mas<€F (K) is one of the states instead (k) with EF(k) = 0.5(v"(k))? (cf. Section
[4.2.3). Therefore, both the braking tirtfgk) and the safe time margtfy, (k) are nonlinear

functions ofE"(k), where
th (k) = %,/2EF(|<) (4.48)

1
V2EF(K)

The nonlinear function$; (-) : EF — v2EF and f,(-) : EF — \/21? could be approximated

and

téareK) = (Ssm+ L) (4.49)

F

by PWA functions as follows (see Chapiér 3 for more detaitiaBPWA approximation):

Fon | 01EF(K)+B1  for Emin < EF(K) < Eq,
FLewa(E (k) = { CEF(K) + B2 for Ex < EF(K) < Ema (4.50)
MEF(K)+w  for Emin <EF(k) <E
F _ 1 1 min > 1,
T2ewa(E"(k)) = { NEF(K) 1tz for Ey < EF(K) < Emas (4.51)

with optimized parameterss, a2, B1, B2, A1, A2, M1, K2, andE;. For more details of this
transformation into PWA functions, see [127]. Now the coaist (4.44) can be approxi-
mated as the following linear constraint:

tF(k) >t (k) +tf+%<a1EF<k> +B1) + (Ssw+ LD MEF(K) + ), if Enin < EF(K) < Ex

(4.52)
th(k) > th (k) +tF + %(quF(k) +B2) + (Ssm+ Lt ) A2EF(K) + ko), if Ex < EF(K) < Emax
(4.53)

Similarly, the constraint§ (4.45) anld (4146) can also bétemias linear constraints. These
approximated linear constraints caused by the MBS systenbeaeasily included in the
MILP approach and we still get an MILP problem.

The greedy approach and the simultaneous approach preserectiof 4.4 can be
applied for trajectory planning of multiple trains in MBSs$gms. In the greedy approach
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t- (k) andt- (s+ aAs;) are known for the trajectory planning problem for the foliogtrain
since the trajectory of the leading train is known by the zomaroller or the following train.
The trajectory planning problem for the following train isndar to the one of Chaptéd 3
but with the MBS constraints of Sectibn 4.6.2. When optimigthe trajectories of multiple
trains at the same time, the model for each of these trainstermined by a model of
the form [41){(4.2). The optimal control problem of thesecessive trains can also be
rewritten in the form of the MILP probleni (4.25)-(4126).

45.3 Extension: mode vector constraints

The computation time needed for solving an MILP problem fairgle train is usually
small if we take a small value fod. However, the computation time increases quickly with
the value olN and the number of trains considered in the MILP problem foltiple trains.

In the worst case, the computation time grows exponentigitly the number of integer
variables. In order to solve the MILP problem for multiplaitrs in a reasonable time, we
introduce the so-called mode vector constraints , whicle lsdneady been applied to sewer
networks[63].

A mode of the MLD model for a single train refers to a specifilueanf the binary vec-
tord =[3, & ... éiwi}T, wherei represents thigh train andV; denotes the dimension
of the binary vector of théh train (see the MILP formulatiofi (4.PH)-(4]26)). Furtimarre,

a mode vector is defined as a tuple of binary vectors for eaih ¢onsidered in the MILP
problem, i.e.A = (3'7,8%T,...,8'T)T, wherel is the number of trains considered in the
problem. Leta = (8'7,8°T,...,8'T)T be a reference mode vector of the MILP problem for
multiple trains. Note however that this comes at a cost aficed optimality; the optimal-
ity can next be improved again by solving the fllirains MILP problem with the mode
constraints. The mode vector constraints can be defined as

M _

S Bn—8y <Di for i=12..,I, (4.54)

m=1

oras "
| [ .
Z > 18m— 3 <D, (4.55)
i=1lm=1

whereD; andD are preselected bounds (a nonnegative integer value) onutimber of
0-1switches (or vice versa) in the entires of the updatedenadtor with respect to the
reference mode vector. Note that the mode vector conssr@ifi4) and (4.35) can be recast
as linear constraints by introducing some auxiliary velgalo deal with the absolute values
|8, — 8| fori =1,2,...,1 andm= 1,2,...,M;. Furthermore, the mode vector constraints
can be seen as the Hamming distance betweandA if we would expandA andA into
binary strings|[68]. _

An important practical problem is to find a reference modemet. It is stated in[[95]
that physics or heuristic knowledge of the system can oftended to find\ that fulfills
the physical constraints of the system. A good candidatthoreference mode vector can
be obtained by solving the optimal control problem for npiétitrains sequentially since
the computation time of the solvidgsingle-train MILP problems will be much less than
solving the fulll-trains MILP problem all at once.
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Table 4.1: Parameters of train and line path

| Property Symbol Value |
Train mass [kg] m 2.78-10°
Basic resistance [N/kg] Ro 0.0142+ 1.0393- 10 42
Mass factor [-] p 1.06
Maximum velocity [m/s] Vimax 22.2
Line length [m] Send 1332
Minimum kinetic energy [J] Emin 0.1
Maximum traction force [N] Umax 2.224.1(°
Maximum braking force (regular) [N]  Umin —2.224.10°

Table 4.2: Parameters for the calculation of the minimumdveay

| Property Symbol Valug

Train length [m] Lt 90
Safety margin [m] Ssm 30
Length of the secure section [m] Lg 60
Initial acceleration [mA] alee 1

Braking deceleration [m#$ af 0.9
Braking reaction time [s] ty 1

Station dwell time [s] ty 25

By using the MILP approach with mode vector constraintscthraputation time can be
reduced significantly. A case study illustrate this is pnésé in [131], see there for more
information.

4.6 Case study

In order to illustrate the performance of the proposed greedl simultaneous approaches
for the optimal trajectory planning for multiple trains werdan FBS system and an MBS
system, a part of the Beijing Yizhuang subway line is usedtastacase study.

4.6.1 Set-up

The performance of the MILP approach is compared with theelyidsed pseudospectral
method and for both approaches we consider both the greetdyarsimultaneous variant.
For the sake of simplicity, we only consider tvetations in the Yizhuang subway line:
Songjiazhuang station and Xiaocun station. The track kebgtween these two stations is
1332 m and the speed limits and grade profile are shown in &@08r The parameters of the
train and the line path are listed in Tablel4.1. The rotatimg®sfactor is often chosen as 1.06
in the literaturel[57] and therefore we also adopt this valsecording to the assumptions

2Note however that the MILP approaches and the pseudospetaods can also be applied if more than 2
stations are considered.
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Figure 4.3: The speed limits and the grade profile betweergfgarhuang station and Xi-
aocun station

made in Sectioh 313, the unit kinetic energy should be latty@m some positive threshold
Enmin. In this test case, the minimum kinetic energy is chosenkd.0r’he maximum trac-
tion force of the train is a nonlinear function of the traim&locity and the maximum value
of this function is 315 kN. Moreover, the maximum accelenatand maximum decelera-
tion used for trajectory planning along the line are assutoeae 0.8 m/$ and -0.8 m/$
respectively in order to make sure that the planned trajgcan be followed by the train
controlled by the lower level controller. Since the traingmaere is 2.780° kg, the maxi-
mum traction force and maximum braking force are 222.4 kN-&22@.4 kN, respectively.
The objective function of the optimal train control probleomsidered in this chapter is the
energy consumption of the train operation without regetiardraking (cf.[4.21)).

In this case study, two trains are scheduled to run from Sarfgjang station with a
headway of 75 s to Xiaocun station. We consider two caseFB&system and the MBS
system. Moreover, we assume that the leading train has aineéién during the whole
simulation and as a consequence its maximum speed is rettud®km/h, i.e. 11.1 m/s.
In addition, the leading train and the following train wilireve at different platforms in
Xiaoxun station and the following train will overtake theténg train at Xiaocun station.
The parameters for the calculation of the minimum headwaygaren in Tablé 4J2. The
length of the train is 90 m and the reaction time of the driget 5. For the FBS system,
we assume that there exist four fixed block sections betweagjBzhuang station and
Xiaocun station and all fixed block sections are of equaltlenige. 333 m. The minimum
headway of the FBS system can be calculated according fp 4AdBit is equal to 98.4 s.
Based on the parameters of Table] 4.2, the run-in/run-ou tjmg; in (4.19) is equal to
44.6 s and the minimum headway of the MBS system equals 68l6te.that the headway
75 s is smaller than the minimum headway of the FBS system$Be4 s) and is larger than
the minimum headway of the MBS system (i.e., 69.6 s).
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In the MILP approaches, the lengths; of the intervalgs,, ;1] depend on the speed
limits, gradient profile, fixed block length, and so on. If tember of the space intervais
is large, then the accuracy will be better but the computatine of the MILP approaches
will be larger. For this case study, the number of spacevateN is chosen as 20, 40,
and 60, respectively. Moreover, the space intervals arentad have equal length being
66.6 m, 33.3 m, and 22.2 m respectively for the differentghvaues oN. In addition, the
nonlinear terms in the trajectory planning problem, sucthasionlinear terms in the differ-
ential equations of the train model, are approximated by R\&tions (see ChaptEt 3 for
more details). If we take PWA approximations with more sucfions, the approximation
accuracy will be better. Here, PWA functions with 2 subfimres and 3 subfunctions are
compared. We use the CPLEX solver via the Torflaterface to Matlab for solving the
MILP problems.

The pseudospectral method is a state-of-the-art meth@bfaing optimal control prob-
lems (cf. Chapter]3, Appendix 3l A, [37], and [51]). The apmeation error of the pseu-
dospectral method can be reduced by taking more collocptiorts. The numbers of LGL
points are taken as 20, 40, 80, and 120, respectively. Theresaeral packages that imple-
ment the pseudospectral method (see Appdndik 3.A for ddtaiformation). One of them
is PROPT, which supports the description of the differéatigebraic equations and can call
many solvers, such as MINOS and SNOPT, to solve the resuitim¢jnear programming
problem. We in our case study use PROPT solver through thdaboimterface to Matlab
and SNOPT is used to solve the resulting nonlinear prograimmrioblem. Note that both
SNOPT and PROPT are implemented in object code.

4.6.2 Results for the fixed block signaling system

Table[4.3 shows the performance of the MILP approaches anggbudospectral methods
for the trajectory planning of two trains in the FBS systenheTperformance mentioned
here, such as the energy consumption and the end time wio|agicalculated by applying
the obtained optimal control inputs into the nonlinearrtraiodel [3.1). The total energy
consumption is the sum of the energy consumption of the mggiiain and the following
train. The end time violation is the sum of the absolute vahfehe differences between the
real running times and the planned running times of the teplain and the following train.
The energy consumption for each train is influenced by the sfghe difference between
the real running time and the planned running time. If thén@aning time is larger than the
planned running time, e.g. 105 s for the following train rtti@e energy consumption usually

3Tomlab website: http://tomopt.com.

4For the greedy and simultaneous MILP approachesnihethe notationn/mis the number of subfunctions
used in the PWA approximations of the nonlinear terms in ifferdntial equations of the nonlinear train model
andmis the number of the space intervals. For the greedy and sinedus pseudospectral methodsthelicates
the number of collocation points used.

SFor all four approaches, the numbrin the notatiom; /nz/nz is the number of real-valued variables,is
the number of integer-valued variables, ands the number of constraints. Note that for the greedy anditim
neous MILP approach, all the constraints are linear. Furibee, in the greedy MILP and greedy pseudospectral
methods, two subproblems are solved. One is for the trajeglanning problem of the leading train, the size of
which is shown as Ln; /nz/ns. The other is for the trajectory planning problem for thédwing train consider-
ing the constraints caused by the leading train, the sizehidtwis shown as Fay/nz/n3. For the simultaneous
MILP and simultaneous pseudospectral approaches, tleetvaps of the leading train and the following train are
obtained by solving a combined optimization problem.
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Table 4.3: Performance comparison of the greedy and simatias approach using the
MILP and the pseudospectral method for the FBS system

Total energy| Totalend| Total
Approach|| Method | Variant | Problemsiz& | consumption| time vio- | CPU
[MJ] lation [s] | time [s]

L: 99/40/462
2/20 F-199/140/1116 114.48 3.17 1.34

L: 199/80/922
2/40 F- 399/280/2326 113.77 1.95 14.22

L:299/120/1382
L 2/60 F: 599/420/3486 110.60 1.48 24.26

L:179/120/962
3/20 F- 979/220/1686 114.79 2.82 6.87

L: 359/240/1542
3/40 F: 550/440/3366 112.58 2.21 96.56

Greedy
L: 539/360/2702
3/60 F- 839/660/5046 110.03 1.41 229.72
L: 60/0/1107
20 F- 60/0/1307 112.59 2.52 231.83
L: 120/0/1207
Pseudo- 40 F- 120/0/1607 110.04 1.43 1381.71
L: 240/0/1407
spectral 80 F- 240/0/2207 109.48 0.76 1935.09
L: 360/0/1607
120 F- 360/0/2807 109.17 0.45 3588.10
2/20 358/180/1837 109.65 4.07 2.76
2/40 718/360/3697 108.06 2.91 78.40
MILP 2/60 1078/540/5557 106.32 1.65 204.38
3/20 518/340/2877 108.44 3.19 24.13
Simul- 3/40 1038/680/5777 106.58 1.73 184.76
taneous 3/60 1558/1020/8677 106.19 1.08 349.31
20 120/0/2414 109.53 3.58 445,52
Pseudo- 40 240/0/2814 106.44 1.68 1521.30
spectral 80 480/0/3614 105.92 0.78 3005.71

120 720/0/4414 105.68 0.54 4875.23
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becomes less since a train can run with a smaller averagd.speethe greedy approach,
the CPU time is the sum of the time used to solve the optimatoboroblem for the leading
train and the optimal control problem for the following train a 1.8 GHz Intel Core 2 Duo
CPU running a 64-bit Linux operating system. In the simwtauns approach, the total CPU
time is equal to the time spent by solving the optimal conpralblem since the optimal
control inputs for the leading train and the following traire obtained simultaneously.

Furthermore, Figurés 4.4 and#.5 show the optimal contpltmand the speed-position
trajectories obtained by the MILP approaches and the pspadtral methods for the FBS
system, where the number of space intervals for the MILP @gagires and the number of
the collocation points for the pseudospectral methodsalent as 40 and the nonlinear
terms in the nonlinear train model are approximated usind\ Ritictions with 3 affine
subfunctions for the MILP approach. The speed-positiojettaries of the leading train
and the following train were produced by applying the optiotntrol inputs obtained by
solving the optimal control problems to the nonlinear traindel. It is observed from
Figures 4.1 and 415 that the operation of the following tisiaffected by the leading train
inthe FBS system, where the signal at position 666 m showkawyaspect to the following
train. Because the headway between the leading train arfiolkning train is taken as 75 s,
which is less than the minimum headway of the FBS systenB8.d.s. Thus, the following
train must slow down to satisfy the speed limit caused by oy signal aspect, which is
40 km/h,i.e. 11.1 m/s.

In the case study for the FBS system, the corresponding giergsumption, the end
time violation, and the computation time of the greedy MILspeach are 112.58 MJ,
2.21s, and 96.56 s, respectively. For the greedy pseudnapeethod, the energy con-
sumption, the end time violation, and the calculation timidath trains are 110.04 MJ,
1.43s, and 1381.71 s, respectively. It can be seen that #rgyeconsumption and the end
time violation of the greedy MILP approach are a bit largertthose of the greed pseu-
dospectral method. However, the computation time of thedy@seudospectral method is
more than one order of magnitude longer than than that ofriedy MILP approach.

The energy consumption, end time violation, and calcutetiioe are 106.58 MJ, 1.73 s,
and 184.76 s, respectively, using the simultaneous MILRaguh. For the simultaneous
pseudospectral method, they are 106.44 MJ, 1.68 s, and3b& respectively. When com-
pared with the greedy MILP approach, the energy consumptiahthe end time violation
of the simultaneous MILP approach become smaller sincestiirig train’s trajectory can
also be optimized with respect to the following train. Hoeewthe computation time of
the simultaneous MILP approach becomes longer than thelgi#_P approach because
in the simultaneous MILP approach, the size of the optinopaproblem is almost dou-
bled. In addition, the simultaneous pseudospectral megiedds better performance, i.e.,
lower energy consumption and lower end time violation whemgaring with the greedy
pseudospectral method.

As can be observed in Talle ¥.3, the energy consumption andrtti time violation
of the greedy MILP approach are generally larger than thahefgreedy pseudospectral
method for the same number of discrete intervals and cditmtgoints. However, the
computation time of the greedy pseudospectral method ig@teo orders of magnitude
higher than that of the greedy MILP approach. In additioe, ¢énergy consumption and
the end time violation become less if we take more spacevaltefor the greedy MILP
approach and more collocation points for the greedy psgedtisal method. The results
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obtained for the greedy MILP approach and the greedy pseedtsl method also hold for
the simultaneous MILP approach and the simultaneous pspedtral method. Moreover,
it can be observed that the energy consumption of the simedtas MILP approach is less
than that of the greedy MILP approach, while the computatiimes of the simultaneous
MILP approach are higher than those of the greedy MILP apyroghis also holds for the
greedy and simultaneous pseudospectral method.

4.6.3 Results for the moving block signaling system

The performance of the greedy and simultaneous approagisesivn in Tablg 4]4 for the
MBS system. In particular, Figures 4.6 dndl4.7 show the sjpesdion trajectories and the
optimal control inputs for the MBS system with the same se&si Sectioh 4.612. Similarly,
the speed-position trajectories, the end time violatido, are obtained by applying the
optimal control inputs to the nonlinear train model (3.1} e can see from FigurEs 1.6
and[4.Y, the operation of the following train is not affectsdthe leading train since the
scheduled headway (75 s) is larger than the minimum headfthg 8BS system (69.6 s).
In the case study for the MBS system, the energy consumiitierend time violation,

and the computation time for the greedy MILP approach ar@®vL], 1.68 s, and 75.98 s.
In addition, the energy consumption, the end time violagtanmd the computation time for
the greedy pseudospectral method are 67.42 MJ, 1.66 s, &4/ The energy consump-
tion and the end time violation of the greedy MILP approaghgightly larger than those
of the greedy pseudospectral method. However, the conputéine of the greedy pseu-
dospectral method is almost one order of magnitude larger that of the greedy MILP
approach. This also holds for the results obtained by thellsimeous MILP and pseu-
dospectral approach. In general, the total energy consamand the total end time viola-
tion decrease with the increase of the number of the spaee/ais in MILP approach and
the number of collocation points in pseudospectral methdevertheless, the total CPU
time increases quickly with respect to the number of the spatervals and collocation
points. For the greedy and/or simultaneous MILP approdcheitake PWA approxima-
tions with more subfunctions, the end time violation alsordases. Furthermore, when
compared with the greedy MILP (or pseudospectral) appraaehsimultaneous MILP (or
pseudospectral) approach in principle has a better cop&rdbrmance in principle but it
is characterized by a much higher computational burderedime size of the optimization
problem is almost doubled.

4.6.4 Discussion

The simulation results show that when compared with thedyr@seudospectral method,
the energy consumption and the end time violation of thedyr@¢ILP approach are in-

considerably larger, but the computation time is one to twades of magnitude shorter.
Similarly, the energy consumption and the end time viotatié the simultaneous MILP

approach are lightly larger than those of the simultane@esigpospectral method. How-
ever, the computation time of the simultaneous MILP appntosieuch smaller than that of
the simultaneous pseudospectral method. Moreover, thgynensumption of the greedy
MILP approach is larger than that of the simultaneous MILBrapch, but the computa-
tion time of the simultaneous MILP approach is longer in gahd-urthermore, the energy
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Table 4.4: Performance comparison of the greedy and simatias approach using the
MILP and the pseudospectral method for the MBS system

Total energy| Totalend| Total
Approach || Method | Variant Problem size | consumption| time vio- CPU
[MJ] lation [s] | time [S]
L: 99/40/462
2/20 - 99/40/632 69.16 3.45 1.41
L: 199/80/922
2/40 F- 199/80/1292 68.34 2.47 12.03
L: 299/120/1382
iLp 2/60 F- 299/120/1952 67.56 1.08 24.19
L: 179/120/962
3/20 F- 179/120/1152 68.76 2.79 9.87
L: 359/240/1542
Gresdy 3/40 E- 359/240/2332 67.89 1.68 75.98
L: 539/360/2702
3/60 F- 539/360/3662 67.12 1.34 254.80
L: 60/0/1107
20 F- 60/0/1157 68.88 3.94 89.71
L: 120/0/1207
Pseudo-| 40 E- 120/0/1257 67.42 1.66 729.24
L: 240/0/1407
spectral 80 E- 240/0/1457 67.03 0.75 1483.42
L: 360/0/1607
120 E- 360/0/1657 66.85 0.29 4542.20
2/20 198/80/1094 68.14 2.58 2.45
2/40 398/160/2214 67.52 1.53 56.17
MILP 2/60 598/240/3334 66.62 1.26 150.67
3/20 358/240/2134 67.73 1.71 13.49
Simul- 3/40 718/480/4294 67.03 1.04 121.29
taneous 3/60 1078/720/6454 66.87 0.85 420.37
20 120/0/2264 68.62 3.61 161.15
Pseudo-| 40 240/0/2464 67.50 1.37 1051.06
spectral 80 480/0/2864 67.07 0.66 2984.23
120 720/0/3264 66.26 0.31 6954.37
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Figure 4.6: Trajectory planning for two trains under the MB$stem with headway 75 s

Figure 4.7: Trajectory planning for two trains under MBS ®ra with headway 75 s using
the simultaneous MILP and the pseudospectral approaches
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consumption of the simultaneous pseudospectral methawisrithan that of the greedy
pseudospectral method, but it requires a much higher catipntiime.

4.7 Conclusions

In this chapter, we have proposed two approaches, namelgrtéesly approach and the
simultaneous approach, to solve the optimal trajectomrpteg problem for multiple trains.
Inthe greedy approach, the optimal trajectory planningfenm of the leading train is solved
first and then based on the optimal control inputs of the legattain, the trajectory planning
problem for the following train is solved. For the simultans approach, the trajectories
of the leading train and the following train are optimizedrad same time. The constraints
caused by the leading train in a fixed block signaling systathaamoving block signaling
system are included in the optimal trajectory planning feobfor multiple trains. In the
MILP approach, the nonlinear terms in the train model andstramts are approximated by
piecewise affine functions. In this way, the optimal trapegiplanning problem for multiple
trains can then be recast as a mixed integer linear progragh(MILP) problem. The
performance of the greedy and the simultaneous MILP apprbas been compared with
the greedy and the simultaneous pseudospectral methodadeeastudy. The simulation
results have shown that the MILP approaches yield a simdatrol performance as the
pseudospectral methods but they require a much less cotigputiae.

A topic for future work will be an extensive comparison andessment between the
MILP approach, the pseudospectral method (also using othrdinear programming sub-
solvers, e.g., MINOS and KNITRO), a dynamic programmingpathm [58], and other
approaches and frameworks (such as AMPL, APMonitor, and Q) described in the
literature for various case studies and a wide range of sicena
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Chapter 5

OD-Independent Train
Scheduling for an Urban Rall
Transit Line

In the previous two chapters, we have discussed traject@annng for trains in a rail-
way network based on given train schedules. In this chahieischeduling problem based
on origin-destination-independent (OD-independentspager demands for an urban rail
transit line is considered with the aim of minimizing theaiaravel time of passengers and
the energy consumption of trains. We propose a new iteratimeex programming (ICP)
approach to solve this train scheduling problem. The peréorce of the ICP approach is
compared via a case study with other alternative approashieb as nonlinear program-
ming approaches, a mixed integer nonlinear programmin{\¥l) approach, and a mixed
integer linear programming (MILP) approach.
The research discussed in this chapter has been publisfiE8Lin1 33| 135].

5.1 Introduction

As has been pointed out in Chapkér 2, the train schedulingledrurail transit systems
becomes more and more important for reducing the operatists ©f railway operators
and for guaranteeing passenger satisfaction. In the udhtransit systems considered
here, the lines are assumed to be separated from each otheaeim direction of the line
has a separate rail track. Therefore, trains do not ovedagi other. In addition, for urban
rail transit systems with high frequencies, it is not a m#&sue to the passengers anymore
whether or not the train schedule is cyclic since new traingeat a station every 2 to 5
minutes. In practice, rail transport operators therefaraéndt announce the train schedule
to passengers but only provide some information, such asattrain will arrive within 2
minutes. Hence, rail transport operators can schedutestiareal time based on the current
situation, such as the number of waiting passengers abistatine passenger arrival rates,
and the number and position of running trains.

73
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In this chapter, we propose a real-time scheduling apprmesthedule trains in a reced-
ing horizon way based on the OD-independent passenger disnfaman urban rail transit
line, where a predefined timetable or service headway is @eded. The train scheduling
problem is essentially a multi-objective optimization Ipiem because it should consider
both the benefits of the rail operators and the passenger®¥48, 124]. This chapter
considers multi-objective optimization for the train sdhlng problem, where the energy
consumption of the trains and the total travel time of pagsenare minimized. Since the
train scheduling problem here is a non-smooth non-convelslpm, we propose a new it-
erative convex programming (ICP) approach to solve thelpmbThe performance of the
ICP approach is compared with a pattern search method, adnmkeger nonlinear pro-
gramming (MINLP) approach, a mixed integer linear prograngn{MILP) approach, and
a sequential quadratic programming (SQP) method.

The rest of this chapter is structured as follows. Sedfi@hférmulates the evolution
equations for the arrivals and departures of trains, theqrager demand characteristics, and
the passenger/vehicle interaction. Secfiod 5.3 desctimemulti-objective cost function
and the constraints of the real-time train scheduling goblSection 514 proposes several
solution approaches for the train scheduling problem, itiqdar, the new iterative convex
programming approach. In addition, we show that the prohiétim stop-skipping can be
solved using an MINLP approach or an MILP approach. SeEtiffusther extends the train
scheduling model to a model with stop-skipping at smalietst Sectiof 516 compares the
performance of the proposed solution approaches in Sési#bwith a case study. Finally,
conclusions and recommendations are provided in Secfibn 5.

5.2 Model formulation

This chapter considers one direction of an urban trangitdonsisting of stations as shown
in Figure[5.1. Station 1 is the origin station and statias the final station of each trip.
We make the following assumptions when formulating the-tisaé scheduling model:

A.1 Stationj for j € {2,3,...,J— 1} can only accommodate one train at a time and no
passing can occur at any point in the line.

A.2 Passengers arrive at a constant'rateat station;.

A.3 The number of passengers alighting from trains at stgtifor j € {1,2,...,J} isa
fixed proportiorp; of the number of passengers on board of trains when theyearriv
at station;.

A.4 The number of passengers waiting at a station and the evofipassengers on board
immediately after a train’s departure are approximatecdday mumbers.

A.5 The operation of trains only consists of three phases: atceleration phase, the
speed holding phase, and the deceleration phase. Mord¢loeergceleration and the
deceleration are taken to be fixed constants.

IHere we use a deterministic model to describe the passermiyal arocess.
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Direction of travel
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1 2 e I+ J

Figure 5.1: lllustration of a subway line

Assumption A.1 generally holds for most urban transit systewhich are usually operated
in first-in first-out order from station 1 th Assumption A.2 is consistent with observed ran-
dom passengers arrivals for short headway (less than 1Gesiraervices [96]. An estimate
of these passenger arrival ratgat stations can be obtained by analyzing historical data of
the passenger flow. Assumption A.3 is made according to [13Bhilar as the passenger
arrival rate, the passenger alighting proporfigrean be estimated by analyzing historical
data. For Assumption A.4, if the number of passengers is, ltiigin the error made by this
assumption is small. Furthermore, this assumption simapltfie optimization problem later
on. In order to simplify the operation model for the trairtse tetailed dynamics are not
included in the model formulation, but only the three phasestioned in Assumption A.5
are considered. However, once the running times betweesecative stations are fixed,
a more accurate speed profile for the operation of trains eagalrulated as a lower level
control problem (see Chapfér 3 for more information).

5.2.1 Arrivals and departures

In the literature on train scheduling [28, 36, 57, 59, 81§ dperation of trains is usually
described by the departure times, arrival times, runnmegsi, and dwell times. As has been
discussed in Chaptét 2, the operation of trains is conttdheough a multi-layer control
framework. This chapter focus on the train scheduling. B sbheduling layer, we use
an online model-based approach; this means the model neddsdimulated repeatedly.
In order to obtain a balanced trade-off between the accuaadythe computation speed, a
macroscopic model is used. The detailed train dynamicgdiséion of block signals, the
detection of trains, etc. can then be taken into account®jotler level control layer.
The departure timd; j as shown in Figurie 5.2 of trairat stationj is

dij=aj+Tij, (5.1)

whereag; j andT; j are the arrival time and the dwell time of trairat stationj. In the
literature, the dwell time is usually considered as a caristélowever, in practice, it is
influenced by the number of passengers boarding and alggfrom a train. Therefore, we
consider a variable dwell time, as will be explained in Sud6.2.3.

The track section between statiprand stationj + 1 is denoted as segmejas illus-
trated in Figuré5J2. So the arrival tinag;11 of traini at stationj 4 1 equals the sum of the
departure time; ; at stationj and the running time ; on segmenf for traini:

aij+1=0ij+rij. (5.2)



76 5 OD-Independent Train Scheduling for an Urban Rail Titarise

di; o dij+1
Gj ; Traini r Tije1;
Station j & . Fj+1
Wi Wij+1
n;; Nij+1

Figure 5.2: The variables for the operation of trains and gasger characteristics

Remark 5.1 Max-plus algebra has been adopted for the train reschegatid timetable
analysis|[58| 70, 120]. However, it is not suitable for thelem proposed here because
the max operation will not be used since there is no fixed tivetyet. Moreover, it would
result in a bilinear varying max-plus model since both rmgniimes and dwell times are
variables. O

According to Assumption A.5, we denote the accelerationtaedieceleration aa,acc
anda1 fc, respectively. If we define the speed in the speed holdingehav, j, then the
running distance of these three phases can be calculated as

V2

2
< Ve
Vi, J ) Id .
b e S L

dec’ )
28]

wheres; is the length of segment Therefore, the running time of trairior segmenf can

be written asg ; = t2°+ 1+ 7 which can then be recast as

S Vi Vi j
li,j= Viij 2a1a(J:c Zaldec (5.3)
i
Note that the speed j of the holding phase should satisfy
Vi,j € [Vi,j,min, Vi,j,max, (5.4)

wherev; j min andvi j max are the minimal and maximal running speed for the speed mgldi
phase of train at segmenf, respectively. The maximum running speed is limited by the
train characteristics and the condition of the line. Theimum running speed is introduced
to ensure passenger satisfaction since if trains run tog #he passengers may complain.

Remark 5.2 The coasting phase of the operation of trains can be incladddllows (at
the cost of an increased number of variables and an increaseputational complexity).
In the coasting phase, both the traction force and brakiraggfare equal to zero, where the
train speed slows down because of the resistance. With thelrgiven above, the entering
speed (i.e., the holding speed) of the coasting phagg.i¥Ve denote the speed at the end of
the coasting phase &;. The resistance varies with the train speed. Here, we appete
the resistance using the mean spegd; = (vi,j + V| ;)/2 of the coasting phase:

R = m(kyi + KaiVim,ij) + KaiVi .

wheremis the mass of the train itself and of the passengers on béénd train andky;, k;,
andks; are the resistance coefficients of traiin this way, the running distance and running
time of the coasting phase can be calculated. The coastaspptan then be included in the
model formulation for the optimization of train schedule. O
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The minimum headway is the minimum time interval between swocessive trains so
that they can enter and depart from a station safely [98]af ttannot enter a station until
a minimum headwatjg after the preceding train’s departure, which can be fortedlas

aj,j—di—1,j > ho. (5.5)

In addition, we select the order in which the trains run shelitehiclé — 1 always precedes
traini fori € {1,2,3,...,1} with | the total number of trains.

5.2.2 Passenger demand characteristics

The number of passengers still remaining at the station #feedeparture of train— 1
immediately after its departure at statipis defined asvi_1 j. The number of passengers
who want to get on traihat stationj can then be formulated as

W' = Wiy j A (ch j — diog ), (5.6)

whereAj(di j —di_1j) is the number of the passengers that arrived during the tlepanf
traini — 1 and the departure of train

By defining the number of passengers on tiammediately after its departure at station
j—1 asn; j_1, the remaining capacity of trairat stationj immediately after the alighting
process of the passengers is

remain
N =

= Cimax— i j-1(1—pj), (5.7)

whereCi max is the effective maximal capacity of trainandn; j_1(1— p;) is the number of
passengers remaining on traimmediately after all the passengers that wanted to leave th
train have gotten off. Note that the effective maximal céiyazan be estimated based on the
data from the daily operations, where the distribution di@ard passengers and the effect
of the distribution of waiting passengers on the platforats, can be taken into account.

The number of passengers boarding tiiadth stationj is equal to the minimum of the
remaining capacity and the number of waiting passengers, i.

pooard _ iy (nre_main Wwait)_ (5.8)

i, YA

The number of passengers at statipimmediately after the departure of traini.e. the
passengers who cannot get on trigiis then given by

wait board
Wi j =W — N (5.9)

The number of passengers on traiwhen it departs from statiopis equal to the sum of
the passengers arriving but not getting off at stafi@md the passengers boarding on train
i at stationj, which can be formulated as

n.j =nj-1(1-p;) +nod (5.10)
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5.2.3 Passenger/vehicle interaction

The dwell time is influenced by the number of alighting andrdoay passengers, the num-
ber on waiting passengers at platform, and the distributfgpassengers on board of a train
and of passengers waiting at platform etc. Basedlon [85]nihénum dwell time can be
described by a linear model

board
Ti,j,min =01,d+ 02.dNj j—1Pj + A3 dN; ?ar (5.11)

or a nonlinear model

ait

3
alight i
Tijmin = 01+ 02,an7 7"+ 03,9+ 0y (nd;m) npoard (5.12)

whereay 4, 024, 034, andaag are coefficients that can be estimated based on historical
data,n%°° is the number of doors of the train, aw}i"""‘/ndoor is the average number of
passengers waiting at each door. The dwell trrr]ShouId satisfy

max(fmim'[i,j,min) <Ti,j < Ti,j,max (5.13)

whereTmin is the minimum dwell time predefined by railway operator. Theell timeT; |
should be larger than the predefined minimum dwell tigg and it should also be larger
than the minimal dwell time; ; min such that the passengers can get on and get off the train.
In addition,t; ; should be less than a maximum dwell timg max to ensure the passenger
satisfaction.

5.3 Mathematical formulation of the train scheduling prob-
lem

Based on the model formulationin Section]5.2, we now forietze real-time train schedul-
ing problem. The total travel time of all passengers and tieggy consumption caused by
the operation of trains are minimized using a weighted-suategyy for the real-time train
scheduling problem. The total travel time is the sum of thespager waiting time and the
passenger in-vehicle time. The passenger waiting tXYﬁéat stationj for traini includes
the waiting time of both passengers left by the prewousmw 1 and the newly arrived
passengers, and it can be calculated by

: 1
M = wi_gj(dhj —di1j) + E}\j (dij—di-1))?, (5.14)

where the first term represents the waiting time of the pagsreft by trairi — 1 at station

j, and the second term represents the waiting time of randarrilying passengers between
the departures of train- 1 and train. The passenger in-vehicle time for traimunning from
stationj to j + 1 includes the running time for all passengers on traifter its departure
form stationj and the waiting time of the passengers who do not get off Hie &t station

j + 1, which can be formulated as

tii?j-vehicle: N jri,j -+ Nij (1- pj+l)Ti,j+1- (5.15)
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The total travel time of passengers can be described as dtedigum of the passenger
waiting time and the passenger in-vehicle time, i.e.,

1 J-1 . ) )
tiotal = Z Z (yWaitti,jalt+tilr}-veh|0| . (516)
=

Remark 5.3 Since the passengers usually feel that time goes slowly Wiesnare waiting
at the platform|[122], a weight larger than one can be addelde@assenger waiting time
in the problem formulation. O

In [48], the energy consumption is proportional to the masise, which includes the
rolling resistance, air resistance, and grade resistarimavever, the computation of the
energy consumption is more precise in this chapter bechesepteration model of a train
considered here includes the acceleration phase, the Bp&didg phase, and the deceler-
ation phase. The deceleration phase usually does not censnengy. In addition, if the
electric motor on board of a train can be used as an electniergéor (so-called regenerative
braking), then the regenerative energy can be fed backhetpower supply system. The
energy consumptions for each phase are then calculatetiasso

e The energy consumption for the acceleration phase of tr@irnsegment is
tia(;c
%= /0 ’ ((me,i ) (885°-+ Ky + kav(t) + gsin(;) ) + kav(t) ) v(t)et,

(5.17)

wheremg; is the mass of trainitself, m, is the mass of one passengene; + n; jmyp)

is the mass of traiin and the passengers on board of triaat stationj, ki;, ks, and

ksi are the resistance coefficients of train(t) is equal toa’(t, and6; is the grade

profile of segmeni.

e The energy consumption for the speed holding phase ofit@irsegment is
tiajcc+tih?ld

Eil:njjld:/t' ' ((%7i+ni7jnb)(k1i+k2ivi7j+gsin(6j))+k3ivfj)vi,jdt. (5.18)

acc
1]

e The energy generated by the regenerative braking in thdetatien phase can be
calculated as

i) .
Effe= pie /t. — <(meJ + i jmp) (\aﬁ?" — kai — kaiv(t) — gsin(@; ))

(5.19)
- ksivz(t))v(wdt,
where[3§jec is the ratio for regenerative energy fed back to the poweplsugystem
since there is power loss in electric generator of train

The total energy consumption for dltrains running withJ stations can then be formulated
as

J
Etotal = (ERSCy ghold _ pdeo). (5.20)
ota IZ‘; (N 1,] 1,]
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We apply a weighted-sum strategy to solve the multi-objeatiptimization of the train
scheduling problem, i.e., we consider the following objexfunction

E t
fopt o total Ty total (5.21)

- 3
Etotal,nom ttotal, nom

wherey is a non-negative weight, and the normalization facEggnom andtiotainom are
the nominal values of the total energy consumption and tta tiavel time of passengers,
respectively. These nominal values can e.g. be determinadhining trains using a feasible
initial schedule.

The constraints of the real-time scheduling problem cormdishe running time con-
straints, dwell time constraints, headway constraintd,@pacity of trains, given as (5.1)-

(5.13) in Sectiofi 5]2.

Remark 5.4 The train scheduling problem presented here can be sohgetbiting horizon
way. A detailed description on how to do this for train scHawyis given in Sectiof 715.
See there for more details. |

5.4 Solution approaches

The resulting train scheduling problem with objective ftime (5.21) and constraints (5.1)-
(5.13) is a non-smooth non-convex problem, where the nometimess is caused by the
min function in [5.8), and the non-convexity is due to the lir@ar non-convex objective
function and the non-convex set defined by constraints. \e sloe train scheduling prob-
lem using several alternative approaches in this sectiowe. i©a gradient-free non-smooth
optimization approach, e.g., pattern search. Another @aegradient-based nonlinear pro-
gramming approach, e.g., sequential quadratic programniinrthermore, a general pur-
pose nonlinear integer programming approach, e.g., brandhibound algorithm, is also
used. By approximating the nonlinear objective functiomgd?WA functions, the train
scheduling problem can be recast into an MILP problem. FEuntiore, we propose a hew
iterative convex programming (ICP) approach to solve thmtscheduling problem.

5.4.1 Gradient-free nonlinear programming

Nonlinear programming approaches can be grouped in griaftemapproaches and gradient-
based approaches. The gradient-free approaches do nithxpquire gradient and Hes-
sian information but only require that the values of the otiye function can be ranked.
Moreover, gradient-free methods are suitable for non-smpimblems. Since the real-time
train scheduling problem is non-smooth due to the min fumtour first choice is to use
a gradient-free method. Here, in particular we propose éothis pattern search method,
since it can handle optimization problems with nonlindagdr, and bound constraints, and
does not require objective functions to be differentiableantinuous. The pattern search
method was first proposed by Hooke and Jeeves [61], and itdexs iroved successful in
practice even for objective functions with many local miainn particular when used in
combination with a multi-start method [91], in order to irope the probability of obtaining
a solution that is close to a globally optimal solution.
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When solving the scheduling problem using the pattern earthod, the variables are
the departure timed j, the running times; j, and the dwell times; j. The other variables,
such as the number of passengeis waiting at stations, the number of passenggjson
board of the trains, the passenger waiting tih@s; j, and the passenger onboard times
tinvehiclei,j, Can be eliminated. The pattern search method has beennmapted in the
global optimization toolbox of Matlab [118].

5.4.2 Gradient-based nonlinear programming

Gradient-based nonlinear programming methods rely onigmadr Hessian information.
If this information is not available, it can be approximatagnerically. We consider the
gradient-based sequential quadratic programming (SQ@®@yitim here since it is widely
used to solve nonlinear programming problems. A requirgfioethe SQP algorithm is that
the objective function and the constraints of the nonligagramming problem should be
continuously differentiable [15]. In the SQP method, thalimear programming problem
is recast as a sequence of quadratic programming problenit) wan be solved easily and
efficiently. The train scheduling problem considered irs tbhapter is non-differentiable
because of the min function. Even though the SQP algorithangsadient-based method,
we also apply it to our problem settifigsince it yields good solutions in the case study in
practice in Section 516).

When solving the real-time scheduling problem using the &@Brithm, the variables
are the same as those in the pattern search method. The SQRhatghas been imple-
mented in many packages, such as SNOPT and the optimizatititok of MATLAB [117].

5.4.3 Mixed integer nonlinear programming

In the MINLP approach, we introduce auxiliary binary vategband auxiliary real variables
to deal with the non-smooth min function in_(5.8). By intr@ihg a binary variablé; j €
{0,1} and defining

fij = wiej +Aj(dij = diogj) — [Cimax—Mij-1(1—pj)], (5.22)
the following equivalence holds [140]:
[fij <0« [6=1] (5.23)

which is true iff . .
fij <Mij(1-8i))
{ fij>e+(M—e)dij (524
whereeg is a small positive number that is introduced to transforntriatsequality into a
non-strict inequality, andl/; ; andnfi ; are the maximum value and the minimum value of
fi j, respectively. Equatiofi (5.8) can now be rewritten as

PO 9= & (Wi} +Aj(dhij — dimg,j)] + (1— & })[Cimax— Ni,j—1(1— pj)]. (5.25)

2When the SQP algorithm is applied to a nonlinear programrpinglem with a non-differentiable objective
function, it might get stuck in a local solution. In the near programming problem proposed in this chapter,
the minimum value of the objective function is usually notasbed at the points where the objective function is
non-differentiable, so the SQP algorithm will jump overdéeoints. Therefore, the SQP approach with multiple
initial points works well in this case.
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Note that in[(5.25) there are four nonlinear terms (&giwi—1,j, & jdi j, & jdi—1,j, & jNij—1),
which are the products of the binary variabig and real variables. Four auxiliary real vari-
ables can then be introduced to transform these four narlieems into linear terms with
linear constraints. The detailed information about thésm&formation is given in Section
B.42.
The variables of the resulting MINLP problem involve the depre timesd; j, the run-
ning timesr; j, and the dwell timeg; j, the passengers waiting at statioms, the pas-
sengers on board of the traing;j, the binary variable$; ;, and the auxiliary variables.
The other variables like the passenger waiting tirggs; ; and the passenger onboard
times tin.veniclei,j can be eliminated. The MINLP problem can be solved using diran
and-bound method, such as the MINLP BB sofvand SCIP (Solving Constraint Integer
Programs)/[11]. Because the computation time of the MINLP$Brer are too long, so
we now propose a bi-level optimization method to solve th&lM? problem. This method
consists of two levels of optimization. The high-level aptiation optimizes the binary
variables, where a brute force approach can be used to findeatombinations for the
binary variables when the size of the problem is small. Aliively, integer programming
approaches, such as genetic algorithms, can be applied imdgh-level optimization. For
each combination of binary variables, the nonlinear oation problem in the lower level
is now a smooth non-convex optimization problem with realied variables only, which
can be solved using gradient-based approaches, such as@oripoint algorithm.

5.4.4 Mixed integer linear programming

In ChapteiB, we have shown that the mixed integer linearnaragiing (MILP) approach
can be very efficient for train trajectory planning problerifierefore, we also apply the
MILP approach to the real-time train scheduling problenthia approach, we approximate
the nonlinear terms in the objective function by piecewifiea (PWA) approximations and
then transform the hon-smooth non-convex problem into aoMfiroblem. The MILP ap-
proach deals with the min function df (5.8) in the same wayhasMINLP approach. In
the MINLP problem in Section 5.4.3, the constraints aredinbut the objective function is
nonlinear and non-convex. Therefore, in order to solve ¢adtime rescheduling problem
as an MILP problem, we need to approximate the nonlinearsesoch asvi_1 jd; j, ni jri,j,
andn; ;T j, as PWA functions. These nonlinear terms are products oféabvalued vari-
ables. Here, we use the general foxsnto denote such a nonlinear term, which can be
rewritten as|[77, 139]

FOHY2 - 3 (x- Y2 (5.26)

Definegp= x+yand = x—y. Then we havey = ¢+ %EZ, where the quadratic terngd
and&?, or 2 in general notation, can be approximated by a PWA functiatheffollowing
form:

1
Xy=—

a1z+ By for z<Zy,

Ozz+B2 for z>2. (5.27)

frwa(z) = {

For each nonlinear term in the objective function, the valof, B, andZ; are optimized
based on least-squares optimization (see Sdction 3.4n2di@ details). By introducing the

3For more details about MINLP BB solver, see http://tomaptc
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binary variables and auxiliary variables, the productan be recast as a linear expression
with linear constraints (see Section 314.2 for more infdiamg.

The variables of the resulting MILP problem include the &hhés in the MINLP prob-
lem and the binary variables and the auxiliary variablethiced by the approximations
of nonlinear terms in the objective function. The MILP pretol can be solved by branch-
and-bound algorithms implemented in several existing cencial and free solvers, such as
CPLEX, Xpress-MP, or GLPK_[5, 86].

5.4.5 A new approach: iterative convex programming

The non-differentiability of the train scheduling problésrintroduced by the min function
in (5.8). In addition, the non-convexity of the problem isisad by the variables; ; and
ni j. Therefore, we propose the iterative convex programmi@g)lapproach, where we use
estimated values; j andri j for w; j andn; j, respectively. This eliminates the min function
and the nonlinear terma; jdi j, wi jdi—1j, Nnijrij andni T j+1 in the objective function.
Hence, the resulting optimization problem is a smooth amyen problem, which can be
solved for the global optimum using e.g. interior point altfons [16] and ellipsoid algo-
rithm [109], which are implemented in the Matlab softwareXChér convex programmirty
Based on the optimum of the convex problem, the new estimaitees forw; j andn; j can
be calculated. By solving the convex problems iterativatyapproximation of the global
optimum of the original non-smooth non-convex problem carobtained. The procedure
of the ICP method is given in Algorithm 1.

Algorithm 1 ICP method

1: Input : afeasible initial solution of departure times, runnimgés, and dwell times, i.e.,
di.j(0), ri,j(0), andt; ;(0) fori=1,...,1 andj =1,...,J, pmax, CONvergence tolerance
¢, maximum number of iterationSmax;
iteration indexp « 0;
calculate initial estimates; j(p) andri j(p) using [5.9) and{5.10) based an;(p),
ri,j(p), andti j(p);
4: calculate the initial objectivéyp(p) using [5.21) ;
5. Repeat
6
7

p=p+1;
substitute the estimateg ;Tp— 1) andr j(p— 1) into the original problem to get
a convex problem;
8: obtain optimal departure timg;(p), running timer;’; (p), and dwell timetj’; (p)
by solving the convex problem;
o: computew j(p) andri j (p) using [5.9) and(5.10) based dfy (p), r{';(p), and
T(P);
10: caIClJJIate the objectivé,p(p) using [(5.21);
11: Until p = pmax Or | fopt(P) — fopt(P—1)[ < ¢
12: p* = argmin, fop(p);
13: Output = df'; (p*), i’ (%), T3 (p%), fopt(P").

w

“More information about Matlab software CVX, see http:/ice@m/cvx.
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For the ICP approach, the variables of the real-time sclimgiptoblem are the departure
timesd; j, the running times; j, and the dwell times; ;. The number of passengess;
waiting at stations and the number of passenggren board of the trains are estimated by
Wi j andri j, respectively. The other variables, such as the passemgEmgtimet,,iti j and
the passenger onboard timgs veniclej,j, are functions of the decision variables and hence
are not explicitly represented in the solution process. 3tiation obtained by the ICP
approach is not necessarily the global minimum of the foatad scheduling problem since
the ICP approach solves a sequence of convex approximatiahs formulated nonlinear
non-convex problem. For the ICP approach, we should in génse multiple starting
points. However, for the case study in Secfiod 5.6, we fohatdne random feasible initial
point yields comparable results with respect to other adtéve approaches.

5.5 Extension: stop-skipping at small stations

In order to reduce the passenger travel time and energy ogign further, a stop-skipping
scheme can be adopted, which has already been applied iicpratich as the SEPTA line
in Philadelphia and the urban rail transit system in Santi@hile (see Chaptét 2 for more
detailed information). The stop-skipping strategy is e for both the rail operator (e.g.,
less energy consumption and higher operation speed) apa#sengers (e.g., shorter travel
time and lower train occupation). With the help of the infation provided via personal
digital assistant (PDA) devices and the real-time disptaybannouncements at stations, we
assume that passengers can obtain enough information and the right train. However,
the passengers at the skipped stations experience longirgtene and thus a longer total
travel time. Therefore, the skipping of trains at statiohswsd be carefully coordinated.
For example, additional constraints can be considered wbtleaduling the trains, such as:
two successive trains should not skip the same station. isrvthy, the waiting time of
passengers can be limited to an acceptable value.

In practice, if the passenger alighting proportion and tagspnger arrival rate are high
at a station, a train will not skip that station. Therefore assume here that trains may
only skip small stations with low passenger alighting pmien p; and that the effect of
stop-skipping on passengers is then negligible for thessl stations. Hence we define a
skipping setSkip = {(i, j)|traini may potentially skip statiof}.

We introduce a binary variabig to indicate whether trainstops at statiorn or not:

Vii— { 1 iftraini will stop at stationj,
ij =

0 iftraini will skip station . (5.28)

For the sake of simplicity of the expression, we considee lige variabley; j to be defined

for pairs(i,j) € {1,2,...,1} x {1,2,...,3}. However, actually; j is only a free variable if
(i,]) € Skip and otherwise; ; = 1 by definition. Hence, instead ¢f (5.1) we get
diyj =& j+ViTij- (5.29)

Since traini may skip stationj or stationj + 1, the running distance of the speed holding
phase is then rewritten as

id v V2
old _ «. .. ) .. s
é’?] - SJ - y|~,J 2a1§?c+y|;]+12ald?c7 (530)
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which means that if trainskips stationj, then traini will run with the holding speed; j in

the running distance of the acceleration phase. Simildrisgain i skips stationj + 1, train

i will run with the holding speed; j in the distance of the deceleration phase. Note that we
have

(1=Yij+2) (Vi j+1—Vi,j) =0, (5.31)

since when trairi skips stationj +1, i.e.,y;i j+1 = 0, the operation of the train between
stationj and stationj + 2 only contains three phases.
The running time of traim for segmen{ can be written as

Vi

4 (5.32)
245

li,j = +y' JZaIa(J:c Yij+1
The remaining capacity of trainat stationj immediately after the passengers alight is
reformulated as

remaln = Ci,max— Ni,j—1(1—Vi,iPj)

instead of[(5.)7). Instead dﬂ5.8), the number of passergmasding train at stationj can
be calculated using

nlb?ard_ mm( remam,yI walt), (5_33)
wherey; J\/\/"V"j“t is the number of passengers who want to get on irairstationj. Further-
more, the number of passengers at stajionmediately after the departure of trainan be
computed by[(5]9). Instead ¢f(5]10), the number of pasgergetraini when it departs
from stationj is now reformulated as
..... board
nij=nij-1(1=Yijpj) -+ (5.34)

For the train scheduling problem with stop-skipping, thtaltenergy consumption should

be calculated as

Etotal = ZZ Yi,j Eacc Et‘?ld_)/i,iJrlEic,jje") (5.35)
i

instead of[(5.200). In addition, the passenger in-vehiaetfor traini running from station
jto j+ 1is reformulated as

tin-vehiclei,j = Mi,jfi,j + Yij+1Ni,j (1 —Pj+1)Ti,j+1 (5.36)

instead of[(5.15). The total travel time for the stop-skiggpproblem can then be calculated
by 5.16).

The train scheduling problem with stop-skipping has ofyjedunction [5.21) and con-
straints[(5.R),[(514):(519), and (5]29)-(5.14). This optation problem is an MINLP prob-
lem, where the stoping variablgs; are the binary variables and the objective function are
nonlinear and nonconvex. The MINLP approach and the MILR@ggh in Section 5.413
and Sectiof 5.414 can be directly applied to solve the trefieduling problem with stop-
skipping since they can easily deal with binary variables.
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Figure 5.3: The layout of the Yizhuang subway line

5.6 Case Study

5.6.1 Set-up

In order to demonstrate the approaches proposed in Séc#bfobthe real-time train
scheduling problem (with stop-skipping) and to comparé gherformance, the train char-
acteristics and the line data of the Yizhuang subway line&ijilyy are used as a test case
study. The Yizhuang line has 14 stations as shown in Fig@eahid the speed limit for the
line is 80 km/h (i.e., 22.2 m/s). The detailed informatiomatthese 14 stations is listed in
Table[5.1. The minimum running time in Taljle 5.1 is calcudatg taking a fixed acceler-
ation of 0.8 m/é and a fixed deceleration of0.8 m/€. Furthermore, the speeg; of the
holding phase in (5]3) is taken to be equal to the maximumds@@e2 m/s for computing
the minimum running time. We assume the maximum running t81¢;j max = {ri j min
where( is larger than 1. We have chosénr= 1.2 in order to ensure that the passengers do
not complain that the train is too slow. Based on the maximunming time, the minimal
holding speed can be calculated.

The mass of the train itself and the standard mass of onemqessare given in Tab[e5.2.
In addition, we choose the linear model (3.11) for the minmmdwell time, the coefficients
of which given in Tabld_5]2 are chosen accordinglto [145]. Teximal dwell time is
chosen as 150 s. The effective capacity of each train is 1d68gmgers. A communication-
based train control system (i.e., a moving block signalicliesne) is implemented in the
Beijing Yizhuang subway line and the minimum headwaypetween two successive trains
is 90 s.

The initial state of the network at the start of the simulati® defined as follows: the
train scheduling at the beginning of a day is considered. sbedule of train 0, i.e., the
first train entering the urban rail transit line, is fixed. Téare no passengers left by train 0
because not too many passengers wait for the first train imtivaing. The schedule for the
following trains should be optimized in this case study.tRermore, in order to compare
the performance of the schedules obtained by differentegmbres proposed in this chapter,
a reference schedule with a fixed departure headway defingidhvws a state-of-the-art
method used in practice, where the departure headway cbaldge several times a day
based on the peak hours and off-peak hours. For the schgqeiiod considered in this
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Table 5.1: Information of the Yizhuang subway line

Station Distance Passenger Passenger Minimum
number to next arrival rate alighting running
station [m] [passenger/s] proportion[-] time[s
1 1332 3 0 87.721
2 1286 0.5 0.05 85.651
3 2086 3 0.3 121.654
4 2265 4 0.38 129.710
5 2331 0.4 0.04 132.680
6 1354 4 0.32 88.711
7 1280 4 0.38 85.380
8 1544 3 0.7 97.260
9 992 3 0.6 72.420
10 1975 3 0.7 116.659
11 2369 3 0.7 134.391
12 1349 2 0.5 88.486
13 2610 2 0.5 145.237
14 - 0 1 -
Table 5.2: parameters of the trains and the passengers
| Property | Symbol Value |
Train mass [ka] Mej 199-10°
Mass of one passenger [kol My 60
Capacity of trains [passengers]| GCimax 1468
Minimum dwell time [s] Tmin 30
Maximum dwell time [s] Tmax 150
Coefficients [s] O14 4.002
of the minimal [s/passengery] o024 0.047
dwell time [s/passengersg] azg 0.051
[m/s?] Kij 0.012
Coefficients of resistance [s™1] Koi 5.04910°4
[mY Ksi 2.05310°°

case study, the schedule of trains is taken the same as taid the constant departure
headway is taken as 210 s (i.e., the sum of the minimum headnéyhe maximum dwell

time).

Two cases will be considered here:

e Case A: the train scheduling problem without stop-skipping

e Case B: the train scheduling problem with stop-skipping.

For Case A, we have applied the approaches proposed in 8Ectoto solve the train
scheduling problem. For the pattern search method, we hsepdatternsearch function in
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Table 5.3: The nominal values of the energy consumptionfamgassenger travel time

Scenario 1 &J Nominal passenger Nominal energy
index travel time [s] consumption [J
1 1=2,J=3 6.402-10° 1.216-1C°
2 |=3J=4 1.954.10° 3.285.10°
3 |=4J=5 6.457-10° 4.780-1C8
4 |=5J=6 7.211-1C° 1.402-10°
5 l=6,J=7 158210’ 1.992.10°
6 |=7,J=8 2.537-10’ 1.943.10°
7 | =7,0=10 2943.10° 2.859.10°
8 1=7,J=12 352310’ 2.557-10°
9 |=7J=14 3298. 107 4.926-10°

the global optimization toolbox of Matlab. The SNOPT soliraplemented in the Matlab
Tomlab toolbox is adopted for the SQP algorithm to solve thelinear non-convex train
scheduling problem. In the ICP approach, the resulting $haid convex problem is also
solved by the SNOPT. The MINLP BB solver is used for the MINIgpwach. In addition,
for the bi-level approach for MINLP problem, the low-levedtomization problem is also
solved using SNOPT and the ga function in the global optitionatoolbox of Matlab is
applied for the high-level optimization. Furthermore, vee CPLEX, implemented through
the cplex interface function of the Matlab Tomlab toolboxX\i& P solver.

Remark 5.5 SNOPT, MINLP BB and CPLEX are implemented in object code witfile
patternsearch and ga functions are implemented in pure s fige, they need to be inter-
preted and thus usually seem slower than the functions imgaiéed in object code. So, in
principle, the current computation time comparison is it fHowever, since we limited
ourselves to the methods and functions available to us, dvewdibest to compare the results
of these approaches in the fairest possible way. Note haovilkeatas explained above the
computation time for the patternsearch and ga functionddvoe improved if they would
also be implemented in object code. |

In order to illustrate the performance of the solution apgtees proposed for different-sized
problems, we considered 9 scenarios with different prolderas as shown in Table 5.3,
where the values dfandJ are the number of trains and stations involved. For the stena
with J less than 14, the passenger arrival datand the passenger alighting rateat station
Jis set to 0 and 1, respectively, because we assume thansiasdhe last station of the
trip. The weighty in the multi-objective function(5.21) is chosen as 1. Inifidd, the
nominal values of the passenger travel time and the energuoaption shown in Table 5.3
are obtained using feasible train schedules, where thengtimes of trains are uniformly
distributed random values [nmin, 1.2 rmin) and the dwell times are constants.

In Case B, we have applied the MINLP approach and the MILP agagr to solve the
train scheduling problem with stop-skipping based on $affi.4. The resulting MINLP
problem is solved using a direct MINLP approach, the bruteddi-level method, and
the bi-level method with a genetic algorithm for the higlidebinary optimization. The
corresponding solvers and settings of these methods aselite same as those mentioned
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Figure 5.4: The train schedule of scenario 5 with 6 trains dredations for Case A obtained
by the sequential quadratic programming approach

for Case A. According to the information given in Table]5 thtion 2 and station 5 are small
stations since the passenger arrival rate and the passaligiging proportion are smaller
compared with other stations. In this case study, we allamsrto skip station 2 or/and
station 5.

5.6.2 Results and discussion
Results of Case A: the train scheduling problem

The schedule of trains for scenario 5 obtained by solvingrdia scheduling problem for 6
trains (i.e., train € {1,2,...,6}) and 7 stations (i.e., statidne {1,2,...,7}) using the SQP
approach is shown in Figute b.4. The running times, dwelesimand critical headways
corresponding to Figufe 3.4 are shown in Tablé 5.4. The nfodelulation in this chapter
allows the presence of waiting passengers at platformseabelyinning of the scheduling
period and allows trains to be running somewhere on theitrims. As we can observe
from Figurd 5.4, the departure headways between trainih,2r&and train 3 at station 1 are
larger than those between the later trains. This is becdube schedule of train 0, which
stops at each station with a dwell time of 120 s. Thereforerdter to satisfy the headway
constraints at all stations, the departure headway at #ti@stl must be much larger than
the minimum headway 90 s.

We applied a multi-start pattern search and a multi-staf® $&re and we started the
calculation with 10 feasible random initial points. As redgmthe ICP algorithm, we should
also solve it using multiple initial points. However, we stwat the random feasible initial
points yielded a comparable result with respect to eachrotimeaddition, this result is
also quite close to the solutions obtained by the other ambres. Therefore, we use one
feasible random initial point for the ICP approach in thiseatudy. When we solve the
MINLP problem using the bi-level optimization approacte fmincon function in the lower
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Table 5.4: The total running times, dwell times, and critineinimum headways of each
train for the train schedule of scenario 5 with 6 trains andtd@t®ns for Case A
obtained by the sequential quadratic programming approach

| Train | o 1 2 3 4 5 6 |

Total running time [s] || 646.1 775.4 775.4 7754 7754 7754 775%.4
Total dwell time [s] 720 538.1 438.3 343.4 256.3 246.0 272.1
Minimum headway [s] - 90 90 90 90 90 90

optimization is executed for 10 feasible random initialngei For the MILP approach, only
one feasible random initial point is needed to obtain thédagloninimum of the MILP
problem.

The control performancé,: and the computation time of these methods for the 9 sce-
narios are shown in Figures®.5 dnd|5.6. The value of the tisgefanction is influenced by
the nominal values and weights [n_(5121). A smaller valuéhefdbjective function means
a better performance since we solve a minimization probldote that the control perfor-
mance of the MILP approach is calculated using the origioalinear objective function
based on the obtained optimal results. We set the upper lafuhd computation time as 5
hours on a 1.8 GHz Intel Core2 Duo CPU running a 64-bit Linugraging system. If the
computation cannot finish within 5 hours, no results are meplp so we cannot determine
the control performance index. In order to visualize thenac®s of which the computation
cannot finish within 5 hours, we have set the total perforreandex of these scenarios
larger than 3.5 as shown in Figlirel5.5 and set the computitieniarger than 4 10* s as
shown in Figur€sJ6. It is noted that only the performancécieslof the SQP algorithm and
the ICP algorithm are reported for scenario 9 in Fiduré 518 the calculation of other algo-
rithms for scenario 9 cannot finish within 5 hours. It is olvserthat the reference schedule
has the worst control performance but also the lowest coatiputtime. In addition, the
performance of the MILP approach is worse compared with thercsolution approaches
that yield similar control performance. The computationdiof the ICP approach and the
SQP approach is less than 15 s and 120 s for scenario 9, regpedin addition, we can
observe that the function values of the ICP approach arelyngpsite close to those of the
solutions of the SQP approach, where for 7 scenarios thévesfzerformance difference is
less than 5% and for the other two scenarios the relativerdifice is around 10%.

Results for Case B: the scheduling problem with stop-skippig at small stations

The schedule of trains with stop-skipping for scenario Hiitrains and 7 stations obtained
by the bi-level method with a genetic algorithm for the higliel optimization is shown in
Figure[5.7. The corresponding running times, dwell times|, aitical headways are shown
in Table[5.5. Note that the normalize rate[in (5.21) is theesfanboth Case A and Case B.
It can be observed that train 3 and train 5 skip station 2 aid & and train 5 skip station
5 since trains are allowed to skip the small stations 2 andthErmore, the headways
between trains at stations are influenced by the skippingpofs at station 2 and station 5
in order to satisfy the headway constraints at all stations.

The comparison of the performance index for Case A and CasétBined by the bi-
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Figure 5.5: Performance comparison of the solution apphesc for the real-time train
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Figure 5.7: The train schedule of scenario 5 with 6 trains dredations for Case B obtained
by the bi-level optimization method with a genetic algaritfor the high-level

optimization

Table 5.5: The total running times, dwell times, and critionéinimum headways of each
train for the train schedule of scenario 5 with 6 trains andt@t®ns for Case
B obtained by the bi-level optimization method with a genaigorithm for the

high-level optimization

Train | © 1 2 3

4 5 6 |

Total running time [s] || 646.1 775.4 749.2 750.5
Total dwell time [s] 720 538.1 465.5 420.0
Minimum headway [s] - 90 90 90

767.9 7243 7754
306.1 3479 2218

90 90 90
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level optimization approach with a genetic algorithm fae tigh-level integer optimization,
is given in Tabld 5J6. It is observed that the performancéeslof Case B, i.e. the train
scheduling problem with stop-skipping, are better (i.dqveer performance index means
a better performance) than those of Case A, i.e. the traiedadimg problem without stop-
skipping, in general. The energy consumption is reducetkstome trains do not need to
decelerate and accelerate again at those small statioipil@k some small stations may
reduce the travel time of most passengers due to the zerd tilwelat small stations and
lower running times, however, it will increase the traveiei of these passengers influenced
by the skipping of trains. Therefore, the skipping of trashsuld be carefully coordinated.
The performance index and the computation time of the MINppraach and the MILP
approach for the 9 scenarios with stop-skipping are shovirigored 5.8 and 519. The ref-
erence schedule is same as Case A and it has the lowest cdimptitae and the worst
performance. The performance index of the MILP approachalisutated using the orig-
inal nonlinear objective function based on the obtainednhagdtresults. Due to the errors
introduced by the PWA approximations of nonlinear termshia objective function, the
performance index of the MILP approach is much higher thaermgolution methods. The
performance of the direct MINLP approach, the brute forciebel optimization, and the
bi-level optimization with a genetic algorithm for the rdamhe train scheduling problem
with stop-skipping is similar to each other. However, weyalport the results of scenario
1 and 2 for the brute force bi-level approach and the restiksenarios 1-3 for the direct
MINLP approach since the computation for other scenaridsdt finish within 5 hours.
In addition, the bi-level optimization approach with a génalgorithm for the high-level
optimization did not finish the calculations within 5 houos §cenarios 8 and 9. Therefore,
the performance indices of the MINLP approach and the MILpr@gch are set higher than
3.5in Figurd 5.B. It is observed that the MILP approach néesis computation effort but
at the cost of much less optimal performance. The bi-levéhtdpation methods with a
genetic algorithm require a longer computation time, baytyield a better performance.

Discussion

For the train scheduling problem in Case A, the performaridh@ results obtained by
the ICP approach is close to the best results obtained by atteznative approaches. In
addition, the computation time of the ICP approach is sméfian that of other alternative
approaches except the reference schedule that has a bachpante. Therefore, for the
given cases studies the ICP approach produces the besuoffduween performance and
computational complexity.

Based on the simulation results for Case B, the bi-levelnoigtition with a genetic
algorithm is recommended for solving the train schedulingbfem with stop-skipping.
Using parallel processing, the computation of this appnoaould still be tractable for
small-sized problems (up to, say 20 stations and 10 tralisyvever, this approach is too
slow for large-scale real-time applications. So in the fefinew approaches need to be
investigated to solve the train scheduling problem witlpstkipping efficiently.

Remark 5.6 Stop-skipping strategy could result in shorter circulatione of trains; so the

turn-around operation at terminal stations may becomeatitor the operation of trains.

However, the turn-around time can be reduced further withiribreasing automation of the
operation of trains, e.g., automatic turn-around of trains O
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Table 5.6: Comparison of the total performance index fomtischeduling with and without stop-skipping using theaviell optimization with

a genetic algorithm for the high-level integer optimizatio

| Scenario| 1 2 3 4 5 6 7 8 9
Performance Case A 1.500 1.473 1.713 1.360 1.246 1.532 1.407 -
index [-] Case B 1.086 1.402 1.689 1.175 1.159 1.413 1.404 -
Total energy Case A]] 1.32810°F 3.37910° 6.5891CF 1.10210° 1.60210° 2.16510° 2.67310° — —
consumption[J] Case B|| 8.42110"7 2.9331¢° 6.23110° 8.66510° 1.39610° 1.90210° 2.45510° - -
Total travel Case A|| 2.61010° 8.68310° 2.16110° 4.13710° 6.99310° 1.06010° 1.388107 - -—
time [s] Case B || 2.51510° 9.95110° 2.48710° 4.0171C° 7.24710° 1.10410° 1.60510" - -

Apmis ased 9'g
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5.7 Conclusions

In this chapter, the train scheduling problem with OD-inelegent passenger demands for
an urban rail transit line has been investigated. We havpgsed a new iterative con-
vex programming (ICP) approach to solve this train schedutiroblem. In addition, we
have also considered other solution approaches, i.e.déegtafree nonlinear programming
approach (in particular pattern search method), a grathas¢d nonlinear programming ap-
proach (in particular sequential quadratic programmin@Ry, a mixed integer nonlinear
programming (MINLP) approach (which includes 3 submethods an MINLP approach,
brute force bi-level optimization, and a bi-level optintia approach with a genetic algo-
rithm), and a mixed integer linear programming (MILP) apmio. Furthermore, the train
scheduling model with stop-skipping has been formulatethtrgducing binary variables
to indicate whether a trains stops at a station or not. ThelNldpproach and the MILP
approach are applied to solve this scheduling problem dimee can handle integer vari-
ables.

The simulation results for train scheduling without stégpping have shown that the
optimal solutions obtained by the ICP approach, the pateanch method, the SQP ap-
proach, and the MINLP approach are close to each other. Hawéwve ICP approach
can provide a better trade-off between performance and atatipnal complexity. Fur-
thermore, for the train scheduling problem with stop-skigpthe experiment results have
shown that the control performance of the MILP approach issesthan that of the MINLP
approach. Among the 3 submethods of the MINLP approach, ithe/él approach with
a genetic algorithm offers the best trade-off between perémce and computational effi-
ciency.

In the future, one could investigate the effect of more dieamodels (modeling the
operation of trains in terminals, short turns, the stodbastriability in passenger flow,
the distribution of onboard passengers and waiting passerj platforms, the passengers
appearing at platforms after the last train has passed,abgsepger flows as described by
origin-destination matrices) on the trade-off betweerigrarance and computational com-
plexity. In addition, decomposition approaches can beldgeel to solve large-size instance
of the train scheduling problem. Moreover, an extensiveganson and assessment of the
approaches proposed in this chapter for a wide range ofpsesind scenarios could also be
a topic for future work.



Chapter 6

OD-Dependent Train Scheduling
for an Urban Rall Transit Line

In this chapter, in order to capture more detailed infororaéibout passengers we consider
train scheduling with origin-destination-dependent (G€pendent) passenger demands for
an urban rail transit line. A stop-skipping strategy is aédgo reduce the total passenger
travel time and the energy consumption. The resulting saireduling problem is a mixed
integer nonlinear programming problem. A bi-level apploand an efficient bi-level ap-
proach are proposed to solve this problem. These two appesare compared through a
case study inspired by real data from the Beijing Yizhuane.li

The results discussed in this chapter have been preserEgkin137].

6.1 Introduction

In Sectior{ 5.5, the train scheduling model has been extesuigtthat trains can skip small
stations with low passenger alighting proportions whiksussing that the effect of skipping
is negligible. Because Ovdependenpassenger demands are used in Chapter 5, the effect
on the passengers who have the skipped stations as théiradiest is not taken into account
in Sectiori5.b. Therefore, in this chapter, a train scheduinodel based on OBependent
passenger demands is presented. Since OD-dependentgeasemands vary significantly
along the urban rail transit line and the time of the day, esgme stations (e.g., those in
the central business district) may have a relatively largelber of passengers boarding
and alighting and others may have few passengers, fixedoplltsain schedules cannot
efficiently satisfy such OD-dependent demand patterns.célea dynamic stop-skipping
strategy (i.e., the stop-skipping stations for each tragnnemt fixed before the optimization
process) based on OD-dependent passenger demands isamortboth passengers and
rail operators.

This chapter is structured as follows. Secfion 6.2 forneddhe operation of trains at
the terminal station, at stations, and in between statiand,the passenger demand char-
acteristics. Sectio 8.3 describes the multi-objectiva fanction of the train scheduling
problem with stop-skipping. Sectign 6.4 proposes a billepéimization approach and an

97
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Figure 6.1: lllustration of the urban rail transit line

efficient bi-level approach for the train scheduling probleith stop-skipping. Sectidn 8.5
illustrates the performance of the proposed solution agugres with a case study. Finally,
Sectior 6.6 concludes the chapter.

6.2 Model formulation

This chapter considers an urban rail transit line as showigare[6.1, where the terminal
station and stations in the line are numbered increasihgyJ denote the total number of
stations (terminal station not included). The index of #rtinal station is set equal to 0.
The track section between statipand statiorj + 1 is denoted as segmentThe scheduling
time period for the train scheduling problem is denote@t@&ng. In order to distinguish
the different running cycles of the physical trains, soezillrain services are introduced,
where the train service number in a unique way identifiesia &nad its current cycle. After
the arrival of a physical train at the terminal station, &svice number will be augmented
when the train departs. More specifically, the transit linslfphysical trains in total, which

are numbered as train2,...,|. However, the service number of trains increases with the
cycle of the operation of trains. During the scheduling@erthe service number of trains is
L2, L 1+11+2,....21,...,Neyel , whereNeyc is number of the cycles of the operation

of trains for the given time periofty, tend. The service number of a train is increased with
| when the train departs from the terminal station. Therefwain servicea corresponds to
physical train(i — 1) modl]+ 1. For the sake of simplicity, we use “traithas a short-hand
for “train servicei” from now on.

We make the following assumptichior the terminal station and the stations:

A.1 Multiple trains can be present at terminal station 0,clhias a maximum capacity
C¥'. In addition, the trains in terminal station O will deparin the terminal station
in a first-in-first-out manner.

A.2 Stationj for j € {1,2,...J} can only accommodate one train at a time and no over-
taking can occur at any point of the line.

A.3 Trains can skip some stations in the urban transit lireere we define the skipping
setSyip = {(i, j)| traini may potentially skip station;j}.

1Assumption A.2, A.5, and A.7 are also considered in Chdgter 5
2A binary variable will be introduced to indicate whetheiirirastops at statior or skips statiorj (see Section
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A.4 In view of pre-announcement for passengers about theesitpping schedule, there
is detailed stop-skipping information displayed in thetistaand/or the urban rail
transit operator provides this information to passendemigh mobile devices.

A.5 The operation of trains only consists of three phases: aitceleration phase, the
speed holding phase, and the deceleration phase. Mord¢loeergceleration and the
deceleration are taken to be fixed constants.

A.6 Each passenger only takes one train to arrive at hisfbslirdhtion, i.e., the transfer
between different trains along the line is not allowed.

A.7 The number of passengers waiting at a station and the evofipassengers on board
immediately after a train’s departure are approximatecdday mumbers.

Assumption A.1 can be motivated as follows: multiple tratas be present at the termi-
nal station since we assume that there are multiple tradiosscn the terminal station.
Furthermore, a first-in-first-out operation for trains i tierminal station is not difficult to
realize in practice since it depends on the dispatchinga@rigrin the terminal station and it
is a matter of renumbering of trains. Assumption A.2 gemgtadlds for most urban transit
systems, which are usually operated in this way [36, 125kprBWough the stop-skipping
strategy is not yet widely used in urban rail transit netvgattkroughout the world, there
are several lines which apply it as mentioned before, éhg. SEPTA line in Philadelphia.
Therefore, Assumption A.3 is possible in practice. Withridxeent development in informa-
tion and communication technologies, it is possible to leypersonalized transportation
information to passengers via their mobile devices (likagmhone, PDAs, etc.). In addi-
tion, many stations in urban rail transit systems have ssré display travel information
to passengers at platforms. Hence, Assumption A.4 is reddenin order to simplify the
operation model for the trains, the detailed dynamics atéctuded in the model formula-
tion, but only the three phases mentioned in Assumption resansidered. However, once
the running times between consecutive stations are fixeayra eccurate speed profile for
the operation of trains can be calculated as a lower levdtalgoroblem (see Chaptgl 3 for
more information). Since we only consider a single line andesin Assumption A.2 we
assume that no overtaking can happen at any point of thelia¢ransfer between different
trains for passengers is useless. Therefore, it is reaBt@bssume that passengers will
wait at their origin for the right train to get to their destion as is stated in Assumption
A.6. For Assumption A.7, the number of passengers is usiglye, so the error made by
this assumption is small. Furthermore, this assumptiopl#ies the optimization problem
later on.

Remark 6.1 When realizing the stop-skipping strategy in practicel, trainsit operators
should be aware that some passengers may not like it singevting to keep their journey
as simple as possible, e.g. when a train arrives at the plattoey want to broad the train.
In addition, passenger could get on wrong trains which wall stop at their destinations,
then they would feel frustrated. Furthermore, the passesajisfaction to urban rail transit
systems would go down because passengers waiting at thargkigtations will watch a

for more details). The values of these binary varg@hl#l be optimized to minimize the objective function
of the train scheduling problem.
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train passing away without stop. Therefore, a sophisticpgssenger information system
is essential for the stop-skipping strategy. O

6.2.1 Arrivals and departures with stop-skipping

As has been indicated in Section 5]2.1, in order to obtainianbead trade-off between the
accuracy and the computation speed, a macroscopic mod&dsfar the train scheduling.
Sectio 5.Z11 has derived the arrival and departure equsatar the operation of trains at
stations. Here, the operation of trains in the terminaiatat also included. We will first
formulate the operation of trains at the terminal statiod toen at the stations.

Operation of trains in the terminal station

A train can depart from the terminal station only after it laasved. Moreover, the train
number is increased withwhen it departs from the terminal station. So we have

dio > ai—1.0+ Tomin, (6.1)

whered, o is the departure time of trainat the terminal stationg_, is the arrival time
of traini — I, andtgmin is the minimum dwell time for the trains at the terminal siati
The minimum dwell time could be equal to the minimum turntard time or the minimum
running time at a terminal station. In addition, there is pper bound for the dwell time
of trains at the terminal station. Since we assume that #erenultiple tracks in terminal
station to accommodate trains, the running distance fordtaetween stations and the ter-
minal station varies and depends on the route setting iretimeinal station. However, the
layout of the terminal station and the scheduling of tramthie terminal station are out of
the scope of this chapter. Here, we assume an average @isgdoctrains running between
the terminal station and station 1 and an average distgrfoe the trains running between
stationJ and the terminal station. The arrival time of traiat the terminal station can then
be written as

aio=0dj+riJ, (6.2)

wherer; j is the running time on segmedt
The headway constraints in the terminal station can be ftat®di as

dio > di—1,0+ hodep, (6.3)

wherehg gep is the minimum departure headway at the terminal stationadition, the
minimum arrival headway at the terminal station should &lsdaken into account, which
can be formulated as

80> 8i—10+ hoar, (6.4)
wherehg 4 is the minimum arrival headway at the terminal station.
As mentioned in assumption A.2, the capacity of the ternstetion isC§". Therefore,

at any timet the number of trains in the terminal station should be leas the capacity,
which can be formulated as

; J(ao<t)— ; J(t>dig) <Cg', forallt
1€ Srains i€ Srains
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where Syains IS the set of trains considered in the scheduling problemthadndicator
functionJ(-) is defined as
3(x) = { 1 if xis true,

0 if xis false.

The number of trains in the terminal station only increaskema train arrives at the termi-
nal station. Therefore, we should only check the capacitstraint when a train arrives at
a terminal station; so the constraints can be reformuleged a

J(aio <ayp)— ; J(ay0 > dig) <CFT, (6.5)
1€Srains

1€ Srains

for each? € Syains

Operation of trains at stations

By assumption A.3, trains can skip any station in the skigmietSyp. If a train skips a
station, then the train passes that station without stappim the dwell time is then equal
to zero. A binary variable has been introduced in Seéfigidbindicate whether a train will
stop at a station or not (sde (5.28)):

[ 1 iftraini will stop at stationj,
Yii=1Y 0 iftraini will skip stationj.

In Sectiori5.2.11, the departure tirdg of traini at stationj is equal to the sum of the arrival
timea; j and the dwell time; ; of traini at stationj as shown in[(5]1). Here, we reformulate
(5.7) as the following two inequalities, i.e., the depaettimed, ; should satisfy

di!j > 8 j +VYijTijmin (6.6)

and
dij <aj+YiTijmax (6.7)

wherea; j is the arrival time of trairi at stationj, the minimum dwell timeg; j min is in-
fluenced by the number of passengers boarding and alightimg the train (see Section
for more details), and the maximum dwell timg max iS introduced to ensure pas-
senger satisfaction. The arrival tinagj,1 of traini at stationj + 1 can be calculated by
(5.2) in Sectiom 5.2]1. The running timg; should be calculated by (5132) instead[of(5.3).
Furthermore, the minimum headway is the samé_as$ (5.5). Mereif traini skips station
j+1,i.e.yij+1 =0, then the operation of the train between stafi@amd stationj + 2 only
contains three phases and the holding speed should s&igfl) {n Sectioh 515.

6.2.2 OD-dependent passenger demand characteristics

Sectiof 5. 2.2 has described OD-independent passengendaharacteristics. Passenger
demands with origin and destination are more complex thanhithSectiof 5.212. The
relationship between the variables used for describin@tbelependent passenger charac-
teristics is illustrated in Figuie 8.2. The number of wagt'qmassenger\ﬂsv}’j’j""it for traini at
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stationj is equal to the sum of the number of waiting passeng@’ﬁ with destinatiorm
forallme {j+1,j+2,....m,....J},i.e.,

J _
Wit =S Wit (6.8)
m=]+1

The number of waiting passengert*#jait with destinatiorm can be calculated by
WY = Wig jm+Ajm(dhj — digj), (6.9)

wherewi_1 j m is the number of passengers with destination statioemaining at station
j immediately after the departure of trédir- 1, Aj m(di j —di—1,j) iS the number of newly
arrived passengers in between the departures of it traini — 1, andAj n, is the pas-
senger arrival rate at statignfor passengers with destinatiom Note that the passenger
arrival rate at the final statiof is assumed to be zero since we only consider one direction
of the line.

The number of passengers alighting from traat stationj is denoted as:
can be computed using

alight

i andit

oo = /Z nPoard (6.10)

wherenbo"]Ird is the number of passengers that have statias their destination and have
boarded train at statiorv, i.e.,

Ib?ejlrd \I\IWalt Wiz (6.11)

No passenger will get off the train if trairskips statiorj because the passengers at upstream
stations were informed that traimould not stop at statioj so in that case those passengers
with station as destination would not get on traginThe number of passengers who want
to board trainri at stationj and have statiomas their destination is denoted\tsiﬁ]""“t -to-board

The number of passengem%?"’j"‘t “to-boardgepends on whether trairstops at statiorj and
whether train stops at statlomfor me{j+1,j+2,...,3}, e,

W/\/ant -to-board_ ViV mWYVJaIan (6.12)

So if traini skips stationj, i.e., yi j = 0, then no passengers want to board tiaine.,
W}’j’f‘”t'to‘boam: 0. If traini stops at station, i.e.,y; j = 1, then the number of passengers
who want to board is decided by whether trastops at their destinatiam, i.e., y; mvv}"’f“r%
Note that all the trains stop at the terminal stationyigds equal to 1 foi € {1,2,...,1}.

The number of passengem@’f‘“"to'boardwho want to board traihat stationj is

J
vaant ~to-board__ Z W ant to-board (6.13)
' m=]+1

The number of passengers on treimmediately after its departure at statipis defined
asn; j, which can be computed as

nij = i j_g— npoM 4 nPeard (6.14)
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Figure 6.2: The variables for the passenger charactersstic

where the number of boarding passengé}?"d equals the minimum of the number of
passengers that want to board traémd the remaining capacity of the train:

nikf?ard: min(nirﬁ_main, \A,}/:/jzalnt-to-boar ) (6.15)

In addition, the number of passengeff%%afd boarding train at station;j is also equal to

J
board board
o= Mjm-
m=]+1

Moreover, the remaining capacity of trdiat stationj immediately after the alighting pro-
cessis '
n{i—ma'“: Crax— Nij—1+ nﬁljlght. (616)
The number of passengené{*j“ left by traini depends on whether trainwill stop at
stationj or not. We have the following two cases:
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e Traini skips stationj, i.e.,yij =0

If train i will skip station , then the number of boarding passenggfédis equal to
zero. All the passengers waiting at statiowill then be left by train.

e Traini will stop at stationj, i.e.,yij j =1

If W‘"’am‘to'boa’d< nremain then all the passengers that want to board can get onitrain

However there WI|| be passengers left by triifw}"2"°- -board., n“jma'“ The number
of passengers who want to board but cannot get onltemstatlonj immediately after
the departure of trainis

eft ant-to-board ; remain ant-to-boar B
wieft = w L min(nfeman w) g ifyj=1

In this case, if train stops statiomforme {j+1,j+2,...,J—1},i.e..yim=1, we
assume that the number of passengers that have statigndestination and are left
by traini is proportional to the number of passengers who want to bd@drel number
of passengers who have destinatioand are left by traim can be formulated as

vaant -to-board

ft Vi, j,m .
Wi, j,m = Wllel WWant ohoard | Yij=landyim=1

However, if traini skips statiormforme {j+1,j+2,...,J—1},i.e.,yim=0, then
the number of passengers that have statioas destination will not board. So we
have
Wijm= W}Nf"m, if Vi = 1 anin,m =0.
Hence, the number of passengers who are left by fraind with destinatioom can be
calculated as

ant-to-board

Wi jm=Yij <y| et Wﬁ (1- Yi,m)\’\fil,vﬁirtn) + (L= yi )W/, (6.17)

Furthermore, the total number of waiting passengers abstaimmediately after the de-

parture of train is
J
Wij = Z Wi j,m- (6.18)
m=]+1

Remark 6.2 The minimum dwell time for the passengers to get on and gétaiffs can be
calculated using the linear model (5 11) and the nonlineateh(5.12) presented in Section
£.2.3. See there for more information. O

6.3 Mathematical formulation of the scheduling problem
The train scheduling problem with stop-skipping is a malijective optimization problem.

In this chapter, the objective is similar &5 (3.21) define@attion 5.8, where the energy
consumption of trains and the travel time of passengersarsidered.
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For the train scheduling problem with stop-skipping, thergy consumption of trains
can be calculated by (5.117), (5]118), ahd (5.35) in Se¢ii8h Bhe total travel time can be
calculated by[(5.16), which is repeated as follows:

I J-1
tiotal = Z > (Vwaittwait,ij + tin-vehictei.)-
i=1]=1

However, since we consider OD-dependent passenger denmatids chapter, instead of
(5132) and[(5.155), the computation for the passenger vgaitine and passenger in-vehicle
time will be calculated as follows:

NI =

J
twaitij =Wi-1j(dij —di-1j)+5 Ajm(dhj—dio1j)%, (6.19)
m=|+1

and .
tin-vehiclei,j = Ni,jfij + (Nij — nﬁljlght)Ti,jH- (6.20)
In order to spread trains over the entire scheduling tim®gdewe add a penalty term for
the waiting time of the passengers left by the last thl during the scheduling period:

J 1 J
fpenaltyl = Z <WNCyCI,j (tend* chycI,j ) + EZ Z )\j,m(tend* chycI,j )2 ) (6-21)
j=1 m=J+1

If =1, the waiting time for the newly arrived passengers betweendeparture time
chych and the end timé&qis also considered. However,{f= 0, the waiting time of the
newly arrived passengers after the last train is not consitige.g., the trains coming later
will pick up these passengers). But in the latter case, we ie@add a penalty term for
the arrival time of the last traiNgycl at the terminal station to avoid all the trains operating
close to each other at the start of the peftadend:

foenalty2 = |a'NcyC| 0—tend- (6.22)
The objective function of the train scheduling problem cambitten as
Etotal tiotal fpenaity1 fpenalty2
fopt = VY1 S be—— Hpenaltylw + Hpenaltyzwa (6.23)
Etotal,nom ttotal,nom fpenaltyl,nom fpenaltyz,nom

wherey, Y2, Upenalty1, @NdUpenalty2 are non-negative weights, and the normalization factors
Etotalnom: trotatnom: fpenalty1,nom: @nd fpenaity2,nom are “nominal” values of the total energy
consumption and the total travel time of passengers, régpbt These nominal values can
e.g. be determined by running trains using a feasible Irsithedule.

Remark 6.3 A rolling horizon approach can be adopted to solve the trefireduling prob-
lem. See Sectidn 1.4 for more details on this. O

6.4 Solution approaches

The resulting train scheduling problem is a mixed integedimear programming (MINLP)
problem with objective functioi (6.23) and constraiisIj§6.18). The objective func-
tion (6.23) is nonlinear and nonconvex. In addition, we hémeenon-smooth min function
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in constraints[(6.14)[(6.15), and (6117). This MINLP pexhl can be solved using e.g.
the branch-and-bound method, but the computation timeite tpng even for small-sized
problemsin practice. We could also approximate the noatiterms in the MINLP problem
using piecewise affine (PWA) functions and transform the MPNbroblem into a mixed in-
teger linear programming problem. However, we need to afiprate many nonlinear terms
of the scheduling problem; so the performance of the MILR-@agh is not optimal due to
the big approximation error.

In this section, we propose a bi-level optimization apphotcsolve the optimization
problem under consideration. However, the computatioe tiriithis bi-level optimization
method is too long in practice. Therefore, we also proposefficient bi-level solution
approach for the MINLP problem, where the search space gbrihiglem is limited and a
threshold method is presented to obtain a good initial goifor the MINLP problem.

6.4.1 Bi-level optimization approach

The free variables in the real-time scheduling problemlzeeaieparture timed; j, the hold-
ing speeds; j, and the binary variableg ; for all trains and stations. The other variables
like the number of passengers waiting at stationg and the number of passengers on-
board the trains; j can be eliminated using the model equati¢ns (6.8)-(6.118. proposed
bi-level optimization method consists of two levels of opitiation:

e The high-level optimization optimizes the binary variayg; (only if (i, j) € Sskip
yi.j could be equal to 0), where a brute force approach can be osexptore all
the combinations for the binary variables in case the sizén@fproblem is small.
Alternatively, integer programming approaches, such aetealgorithms, can be
applied in the high-level optimization.

e For each combination of binary variables, the low-levelimptation solves a non-
linear nonconvex problem using e.g., multi-start seqaéiadratic programming
(SQP) algorithm([15] or a pattern search method [61].

The procedure of the bi-level optimization method is giverlgorithm[2, where - for
illustration purpose - the high level optimization problensolved using a genetic algorithm
and a multi-start optimization algorithm is used in the lowevel. The feasibility of the
low-level optimization problem depends on the value of theatky variables. If the low-
level optimization problem is infeasible, we introduce &apenalty valu€& for the fithess
function as shown in Algorithial2. Furthermore, in order ®estinfeasible binary variables
towards feasible ones, we also add the norm ofé; in the fitness function wher& is a
feasible value od and can be decided using the known information about thenurdia
transit line, e.g., passenger flows and line conditions.

6.4.2 Efficient bi-level optimization approach

In the efficient bi-level optimization problem, we propos¢haeshold method to obtain
good initial solutions for the MINLP problem. In additionewimit the search space of
train scheduling problem in the neighborhood of theseah#blutions.
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Algorithm 2 Bi-level optimization approach for the train scheduling@lglem with stop-
skipping
1: Input : maximum number of generatio@ population sizes,, initial populationPy of
the binary variables, number of initial poirkgax used in the low-level optimization, a
large valueF for the fitness function to indicate infeasibility, feagitdinary solution
o, positive weighfs;
2: forg=0,1,...,G—1do
3 forl=12..,5do
4: binary variables « ¢-th paren®y(¢) from theg-th generation;
5
6

fork=1,2,...,knaxdo
generate an initial random feasible solutioh;(¢,0), ri;(¢,0), Ti;(¢,0),
Wi j(¢,0), andn; j(¢,0)fori=1,...,landj=1,...,J;

7 if low-level optimization problem turns out to be feasibledshsn current val-
ues ofé and initial solutionghen

8: dij(¢,k), rij(£,K), Tij(¢,K), wi j(¢,K), i (4 k), and fopt(¢,K) < solution of

the low-level optimization problem;

9: else

10: fopt(4,K) <= F + A¢[|0— &||2;

11: end if

12: end for

13: value of fitness functiorligpt(ﬂ) for the(-th parent— mink—1,_kyax fopt(4, K);

14:  end for

15:  select new parents from the current population based ontttes$ functiorfopy;
16: generate a new generation population of binary variablesitih crossover and mu-
tation;
17: end for
18: Output : choose the best offspring solution at generaoand calculata j, r; j, Ti j,
Wi j, andni,j.

Threshold method for obtaining good initial solutions

In order to obtain a good initial solution for the train schidg problem, we first introduce
a threshold function to determine the value of the stopparéable as follows:

= 3 gnieooart gl (0" gfhon) ) (6:24)

whereJ(-) is the indicator function (see Sectign612.1 for more infation) 6" andej ;>
are the thresholds, which are free variables and deternbipdide optimization procedure.
In this case, the value of the stopping variables dependb@pdssenger flows in the ur-
ban rail transit line. By introducing the threshold functiove can reformulate the MINLP
problem as a real-valued nonlinear programming problenichvban be solved by e.g. a
sequential quadratic programming method. The resultihgiso then yields an initial so-
lution of the stopping variables, the departure times, aadblding speeds for the original,
full MINLP problem.
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Limiting the search space

After a initial solution is obtained using the threshold hat, we can limit the search space
of the train scheduling problem within a neighborhood of itligal solution to reduce the
computation time. For the high-level optimization, thersbaspace of the integer variables

y=[y11y12,-.-,¥2.1,--- s YNy ,J]T can be limited by the 1-norm constraint:

Iy = Yinit[l2 < Xo. (6.25)

which means that only a limited number, i.gg, of binary variables can change their val-
ues in the bi-level optimization approach. x4 is small, the search space can be reduced
dramatically. A brute force method could be applied for tighHevel optimization ifyg is
chosen as 1 or 2 if the number of trains and stations is notaige! Otherwise, a genetic
algorithm could be applied.

In addition, we can also limit the search space of the depatitmes and holding speeds
as follows [45] 73]:

[|d — dinit||2 < X2+ X3B, (6.26)

and
[IV— Vinit]|2 < X3+ X4B, (6.27)

and the objective functiofi (6.23) is revised as

fopt = Topt+ VaB, (6.28)

wheref3 is a slack variable which introduces an element of slackirgssthe problem to
make sure the resulting optimization problem is alwaysibdas The relative degree of
under- or over-achievement of the goals is controlled byntaightsys, X4 andy.

6.5 Case study

6.5.1 Set-up

In order to demonstrate the effectiveness of the proposeatehformulation and the per-
formance of the proposed efficient bi-level optimizatiopigach, we consider a cyclic line
with 1 terminal station and 12 stations following the stuwetshown in Figure6l1. There
are 6 physical trains in the cyclic line and the number ofitsarvices considered in the train
scheduling problem is 10. The train characteristics anditlieedata are inspired by the data
of Beijing Yizhuang subway line, and are given in Taliles d[6.2. In Tabl€ 6]2, station
0 represents the terminal station. The minimum running fimEable[6.2 is calculated by
taking a fixed acceleration of 0.8 ri/and a fixed deceleration 6f0.8 m/$; furthermore,
when calculating the minimum running time the trains areias to run at the maximum
speed of 22.2 m/s during the holding phase. The maximum ngrinhe is assumed to be
ri,j,max = Cri,j,min, Where( is larger than 1. We have choséas 1.2 to ensure that the pas-
sengers do not complain that the train is too slow. The masseotrain, the mass of one
passenger, and the coefficients for the minimum dwell tim@.ih2) are given in Table §.1.
Here, we use the nonlinear model(35.12) for the calculatidch@minimum dwell time. In
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Table 6.1: parameters of the trains and the passengers

| Property | Symbol Value |
Train mass [ka] Mej 199.10°
Mass of one passenger [kg] my 60
Capacity of trains [passengers] Ci max 1468
Minimum dwell time [s] Tmin 30
Maximum dwell time [s] Tmax 150
[s] O1d 4.002
Coefficients of the [s/passengers] O24 0.047
minimal dwell time [s/passengers] O34 0.051
[s/passengerd] O4gd 1.010°6
[m/s?] kyi 0.012
Coefficients of resistance [s™1] Koi 5.04910 4
m—] Ksi 2.05310°°

addition, the minimum dwell tim&n,;, predefined by the rail operator n{5113) is chosen as
30s. The OD-dependent passenger arrival rates at statiesiawvn in TablE6]3.

The initial states at tim& (chosen as 1300 s for this case study) of the trains are as
follows: train 1 and 2 are running to station 8 and 5, respebti Since we assume that
the schedule of a train can only be changed at stations, tivaldimes of these two trains
at station 3 and station 2 are fixed and they are 1400 s and 13d§pectively. Train 3
is stopped at station 3 and its arrival time is 1270s. The rarmbf passengers on train
1, 2, and 3 at timéy and their destination are given in Tablel6.4. In additioeré¢hare 3
trains at the terminal station, so the corresponding prevteain services finished before
to. A communication-based train control system (a moving kkignaling system) is im-
plemented in Beijing Yizhuang subway line, where the mimmieadway between two
successive trains is 90 s. In addition, a maximum depadaparture headway is included
to ensure the passenger satisfaction, which is chosen as #aBthermore, the numbers of
passengers waiting at the various stationty aind the destination of these passengers are
shown in Tablé¢ €]5. The nominal values for the total travakti the energy consumption,
and the waiting time for the passengers who did not travéiérstheduling period are cal-
culated based on a schedule with constant headway; they2#® 20" s, 7.013-10° J, and
1.387-10" s, respectively.

6.5.2 Results and discussion
The train scheduling problem is solved using the followimge approaches:

e All-stop approach: Trains in the scheduling period stopvatgstation, i.e., there is
no stop-skipping at all. In this case, the train schedulirabfem is a nonlinear pro-
gramming problem, which is solved here using the sequemtiadiratic programming
(SQP) method implemented by the fmincon function of Matlpbroization toolbox.

¢ Bi-level approach with stop-skipping: The train schedglimoblem with stop-skipping
is a mixed integer nonlinear programming problem, whictolged using the bi-level



Table 6.2: Information of the cyclic line of the case stud$ettio 6.6

Station number | o 1 2 3 4 5 6 7 8 9 10 11 12]

Distance to next station [m

1050 1832 1786 2086 2265 1030 1354 1280 1544 992 1975 2369 [1349
Minimal running time [s]

75.0 110.2 108.2 121.7 129.7 741 88.7 854 973 724 116.A.413885

Table 6.3: Origin-destination-dependent passenger atnigtes at stations [passengers/s]

[Station[T 2 3 4 5 6 7 8 9 10 11 12

1 0O 006 030 035 003 0.18 036 0.06 0.34 0.27 0.03 0.12
2 0O O 005 006 002 001 004 0.02 002 001 0.02 q.03
3 0O O 0 0.2 0.03 0.27 0.18 0.02 0.25 0.17 0.03 0|36
4 0O ©O 0 0O 002 025 025 0.04 022 032 0.02 034
5 0O O 0 0 0O 005 002 001 001 0.04 001 0p3
6 0O O 0 0 0 0 021 0.08 024 0.27 0.05 0.39
7 0O ©O 0 0 0 0 0O 002 035 0.23 0.03 0.34
8 0O ©O 0 0 0 0 0 0O 0.03 0.04 0.02 0.05
9 0O O 0 0 0 0 0 0 0 027 0.03 0.3p
10 0O ©O 0 0 0 0 0 0 0 0 0.03 0.3%
11 0O ©O 0 0 0 0 0 0 0 0 0 0.0¢
12 0O O 0 0 0 0 0 0 0 0 0 0

0Tt
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Table 6.4: Number of passengers on train 1, 2, and 3 at tynaadl their destination

Destinationstatiof 1 2 3 4 5 6 7 8 9 10 11 12 Total number of passengets
Train 1 0O 0 O 0 0 0 0 0 131 395 263 13@ 921
Train 2 0O 0 O 0 0 89 33 111 44 333 166 2% 798
Train 3 O 0O O 106 100 20 144 216 31 103 144 21 885

Table 6.5: Number of passengers waiting at stationg atid their destination

| Destination][ 1 2 3 4 5 6 7 8 9 10 11 13 Total number of passengefs

Station 1 0O 8 75 54 65 15 26 32 15 68 33 21 421
Station 2 0 0 19 19 19 14 16 13 15 13 11 1a 153
Staton3 [0 O O 29 91 15 45 32 12 41 33 14 312
Station4 || 0 0 O 0 57 22 52 43 22 11 24 3p 266
Station 5 0O 0 O 0 0O 13 22 29 26 14 26 24 154
Staton6 {0 0O O O O 0 25 23 26 5 30 14 123
Staton7 {0 0O O O O 0O 0 23 25 13 27 29 117
Station 8 0O 0 O 0 0 0 0 0 25 9 19 14§ 71
Staton9 (0O 0O 0 O O O O O 0 24 20 24 67
Staton10{0 0 O O O O O O O O 21 2§ 46
Station11 |0 0 O 0 0 0 0 0 0 0 0 27 27
Staton12|{0 0 0O O O O O O O O o0 o0 0
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approach. A genetic algorithm is applied for the integerojziation of the high level,
where the ga function of the global optimization toolbox cdthb is employed. The
nonlinear optimization problem in the lower level is solvesing the SQP algorithm
of the fmincon function of the Matlab optimization toolbox.

o Efficient bi-level approach with stop-skipping: First, aoghoinitial solution for the
mixed integer nonlinear problem is obtained by solving taetscheduling problem
with threshold functior(6.24), which is a nonlinear pragraing problem and which
is solved using the SQP algorithm of the fmincon functiorhef Matlab optimization
toolbox. Based on an initial train schedule, we assign tteevaf Xo in (6.28) as 1,
2, and 3 to vary the search space. kge= 1, we apply a brute force approach for the
high-level optimization since the search space of the pimariables is small then.
Forxo = 2 or 3, the genetic algorithm function ga of the global opzation toolbox
of Matlab is used to optimize the binary variables.

Results

The train schedules obtained by the all-stop approach,itfevél approach, and the effi-
cient bi-level approach are shown in Figured[6.3-6.8. Thase schedules look similar to
each other; however, there are some differences between thearticular, for the all-stop
approach (Figurie 6l 3) all trains stop at all stations, wdteeral trains skip some stations in
the train schedules obtained by the bi-level approach amédffitient bi-level approach (see
Figured6.4-618). In the train schedule obtained by thet@llapproach shown in Figure
6.4, trains 4, 6, 7, 8, 9, and 10 skip some stations. More fipaity, train 4 skips stations 2,
5, 8, and 11, so the stopping variables of train 4 for thes®stare equal to 0 as shown in
Table[6.6. In addition, we can observe that the travel tinnéréons that skip some stations
is smaller than that of the all-stop approach, e.g., traimides earlier at the terminal station
in Figure[6.4 (stop-skipping approach) than in Figureé 6IBstap approach). Trains 1, 2,
and 3 have already departed from the terminal station atttjrmed they are thus suppose to
stop at all stations. So the stopping variables for thesettiains are equal to 1. Figlirel6.5
illustrates an initial train schedule that is obtained by threshold method. The values of
the stopping variables are shown in Tablg 6.6, which arewifft from those obtained via
the bi-level approach. For example, train 4 only skips steti5 and 8 but does not skip sta-
tion 2 and 11. Figure 616 shows the train schedule obtaindidebgfficient bi-level approach
with xo = 1, which means that one binary variable can change its védumm Figurd 6.6
and Tablé 6J6, we can observe that train 7 skips station 5 whenl, which is different
from the initial schedule. Similarly, whexy = 2, the values of two binary variables are
changed compared to the initial solution. As we can obsenra fFigurd 6.V and Table 8.6,
train 4 skips station 11 and train 7 skips station 5, whilehimihitial train schedule shown
in Figure6.5, train 4 stops at station 11 and train 7 stopg&ba 5. Figur€ 618 presents the
train schedule obtained by the efficient bi-level approath wy = 3, where train 4 skips
station 11 and both train 7 and train 9 skips station 5 contpaith the initial schedule.
Table[6.7 lists the values of the objective function, the patation time (on a 64-bit
Linux operation system running on a 1.8 GHz Intel Core2 DudJ;Rhe total passenger
travel time, the energy consumption of the train schedwds,for each of the three ap-
proaches. Note that the comparison here is fair since alpipgoaches are implemented
in m-files in Matlab. The relative improvements of the bideapproach and the efficient
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Table 6.6: Stopping variables of the all-stop approach,likievel approach, and the efficient bi-level approach atish 2, 5, 8, and 11 (The
stopping variables for other stations are all equal to 1. &titat if the stopping variable equals 1, then the train staithe station;

otherwise, the train skips the station.)

| Solution approachef  Solution options |

Train

N

w

[N

Bi-level -

Station 2
Station 5
Station 8
Station 11

Solution (threshold

Station 2
Station 5
Station 8
Station 11

Solution o =1)

Station 2
Station 5
Station 8
Station 11

Efficient bi-level Solution o = 2)

Station 2
Station 5
Station 8
Station 11

Solution o = 3)

Station 2
Station 5
Station 8
Station 11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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Table 6.7: Performance comparison of the all-stop appro#ioh bi-level approach, and the efficient bi-level approach

oTT

Solution approach Efficient bi-level

All-stop Bi-level | Initial solution  Solution Solution Solution
(threshold) Xo=1 (Xo=2) (X0=3)
Objective value [-] 2917 2.617 2.708 2681 2661 2653
Computation time [s] 4.464-10% | 1.672-10° | 1.194-10° 1.705-10° 2.352-10° 4.567-1C°
Energy consumption [J] 5.888-10° | 4994.10° | 5.369-10° 5.301.10° 5.220-10° 5.111-10°

Number of passengers that 2.603-10° | 2451.10* | 2500-10*  2505.10° 2.482.10° 2.473.10°
finished their trips [passengers]

Number of passengers that did not travel [passenders]324-10* | 1.476-10% | 1.427-10*  1.422.10° 1.445.10* 1.455.10%

Travel time for passengers that finished their trips [§]1.944- 10" | 1.648-10’ 1.724.-10" 1.706-10" 1.680-10" 1.683-10’
Waiting time of passengers that did not tra\js] 1.031-10° | 1.270-10" | 1.192-10  1.188-10° 1.227-10° 1.240-10°

Buinpayos urel] uspuadag-ao 9
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3These remaining passengers, i.e., the passengers thaitdidwvel, will be picked up by the trains that arrive later dime waiting time of those passengers is also included
in the objective function. So here the number and the waifing of these passengers are also given for comparing tierpemce of these three approaches.



Table 6.8: Relative improvement with respect to the alpstpproach of the bi-level approach, and the efficient bel@pproach

Efficient bi-level

Solution approach Bi-level | Initial solution  Solution  Solution  Solution

(threshold) ¥0o=1) (Xo=2) (Xo=3)
Objective value [-] 12.01% 7.16% 808% 877% 905%
Computation time [s] —3646% —168% —282%  —427%  —923%
Energy consumption [J] 15.18% 8.81% 997% 1135% 1320%
Number of passengers that finished their trips [passenglers$.83% 3.94% 377% 464% 501%
Number of passengers that did not travel [passengers]|| —11.46% —7.75% —741% -9.12% —-9.85%
Travel time for passengers that finished their trips [s] 15.19% 11.32% 1224% 1355% 1341%
Waiting time of passengers that did not travel [s] —23.26% —15.64% —1529% —-19.04% —20.35%
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bi-level approach with respect to the all-stop approachgaren as in Tabl€ 618, and they

are calculated as
Xstop-skipping

Xall-stop

wherex is the value of the objective function, the computation tiete. in the table and the
stop-skipping involves the value obtained for the bi-lemgbroach or the efficient bi-level
approach. Note that in Table 6.7, a solution approach haster lperformance when the
number of passengers finished their trips is larger sincempassengers have finished their
trip during the scheduling period. For the other criterialable[6.7, the performance of
the approach is better if these criteria have a smaller valn€rable[6.8, if the value of
relative improvement of the number of passengers that figheir trip is smaller, then
the approach has a better performance. For the other aritefiabld 6.8, a bigger value
represents a better performance.

Xrelative-difference= 1 —

Discussion

For the given case study, the overall performance improm¢oféhe stop-skipping strategy
is about 8-12% better compared to the all-stop approachh thé stop-skipping strategy,
the total travel time is reduced with 12-15% and the totakgyneonsumption is reduced
with 10-15%. The number of passengers who did not travetaszs with 7-11%; however,
note that the trains coming later will pick up these passengeyway; so those passengers
will not be left at the platform. Since we solving the trairheduling problem in a rolling
horizon way (cf. Sectioh 714), the passengers who did neelria the current time pe-
riod will be taken into account in the next period. The efiitibi-level approach yields an
acceptable performance when compared with the bi-levaiogoh. However, the compu-
tation time of the bi-level approach is about 10 and 4 timegés than that of the efficient
bi-level approach wittxo = 1 andxo = 3, respectively. Note that the computation time of
the approaches proposed in this chapter can be reduced lynm@ipting the approaches in
object code and by using faster processors and/or paratleépsing.

6.6 Conclusions

We have considered the train scheduling problem with ODeddpnt passenger demands
for an urban rail transit line, where the operation of traah®oth the stations and the ter-
minal station are included in the model. Since the resultinin scheduling problem is a
mixed integer nonlinear programming (MINLP) problem, aficént bi-level approach has
been proposed, where a threshold method is applied to adbtgidiod initial solution for the
full problem and where the search space for the variablesesibe limited to enhance the
efficiency. For a case study, the efficient bi-level approaith a limited search space pro-
vides the best solution within the time that is typically iésfale for the computations (e.qg.,
half an hour). In particular, the overall performance imyga with about 8-12% compared
to the all-stop approach.

In the future, we will investigate other solution approasttesolve the resulting MINLP
problem efficiently, especially for cases with a large nundfdrains and stations, and we
will compare these approaches with the threshold approadhte efficient bi-level ap-
proach for large-scale real-life case studies. In additwa will investigate the effect of
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more detailed models (including short turns, the distidyubf on-board passengers and
waiting passengers at platforms, etc.) on the trade-offiden performance and computa-
tional complexity. In future work, we will also consider ttravel time uncertainty, dwell
time uncertainty, etc. in the train scheduling and invetggobust train scheduling ap-
proaches.
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Chapter 7

OD-Dependent Train Scheduling
for an Urban Rail Transit
Network

In the previous two chapters, we have discussed the tragdsding problem for an urban
rail transit line with OD-independent and OD-dependenspager demands. In the current
chapter, we consider the train scheduling problem for ammumail transitnetwork An
event-driven model is built for train scheduling, which ahves three types of events, i.e.,
departure events, arrival events, and passenger arrigalchange events. The routing of the
arriving passengers at transfer stations is formulatetertriain scheduling model. More-
over, the passenger transfer behavior (i.e., passengealising time and transfer duration
time) is also taken into account in the model formulatione Tésulting optimization prob-
lem is a real-valued nonlinear nonconvex problem. The #ifexcess of the event-driven
model is evaluated through a case study.

7.1 Introduction

In Chapter§b anid 6, we have studied the train schedulinggrofor an urban rail transit
line which takes the passenger demands into account. Aswerglkeurban rail transit lines
are separated from each other, passengers may need to niaka sgerchanges between
different lines to arrive at their destination. Therefasben scheduling trains for an urban
rail network, it is important to take the passenger trarssifeio account to shorten the total
travel time of passengers.

In order to model the time-varying passenger arrival ratespropose an event-driven
model for the train scheduling in this chapter. The eventesirmodel includes departure
events, arrival events, and passenger arrival rate chareggseat platforms. At transfer
stations, if there exist multiple route choices for passesdo arrive at their destinations,
the arriving passengers will distribute themselves andgtifferent platforms of different
lines. For the passengers arriving at transfer stationsalrys, some of them will get off the
train and transfer to other lines to arrive at their destimat Both the changes of splitting
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rates and the passenger transfers result in passenged aat® change events at transfer
stations. This behavior can be captured by the event-drivedel. The resulting train
scheduling problem is a real-valued nonlinear nonconvegga@mming problem.

The rest of the chapter is structured as follows. Segfigintr@duces the three types of
events and formulates the event-driven dynamics of trdiedaling. Sectioh 713 describes
the performance criteria and constraints of the train selieglproblem. In Section 714, we
discuss how to solve the scheduling problem in a rollingzwriway and how to define the
initial conditions for the scheduling problem. Severaluian approaches, e.g., the SQP
method and genetic algorithm, are introduced to solve theltiag nonlinear nonconvex
optimization problem in Sectidn4.5. In Sectlon]7.6, thef@enance of the proposed event-
driven model is evaluated via a case study. Finally, commhgsand recommendations are
provided in Sectioh 7]7.

7.2 Model formulation

Consider an urban rail transit network witHines and] stations. Le§, andSsi; be the sets
of lines and station indices, respectively. In practiceaian could have several platforms
and we denote the set of platforms&g. Note that a physical line with two directions is
defined as two separate lines in this chapter. We make trefiol) assumptions:

A.1 There is no shared platform for different lines in theantlrail transit network. If
passengers want to transfer from one line to the other, thed to walk from one
platform to the other.

A.2 A platform can only accommodate one train at a time andvaostaking can occur at
any point of the line.

Assumption A.1 holds for most urban transit systems, eng.stibway networks in Beijing,
Paris, and Rome. With Assumption A.1, a platform is unigudintified to a specific
line, i.e., a line can be defined by a subset of platforms. mggion A.2 generally holds
for most urban transit systems. Furthermore, in practice ttains of different lines are
operated separately, which means that trains cannot bedshatween different lines.

If platform p at stationj is on line/, we denote the predecessor of platfgpron line
¢ aspP?(p) and the successor of platformon line ¢ assP?(p). In order to distinguish the
different running cycles of the physical trains, train seeg are introduced, where each train
service in the network has a unique service number whichuahygdentifies a train and its
current cycle. After the arrival of a physical train at theméal station, its service number
will be augmented the total number of trains in the networlemthe train departs. Létbe
the total number of physical trains in transit lihgthen the total number of physical trains
in the network idnet= Y /e, I¢- In addition, the set of indices of all train services is defin
asSra. The predecessor and successor of tra@in line ¢ are denoted ag™(i) ands"(i),
respectively. The start time and end time of the schedulergpd are denoted dgandteng

7.2.1 Three types of events

We model the train scheduling problem with consideratiopa$senger demands using
three types of events:
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e Departure events: representing the departure of a traistatian,
e Arrival events: representing the arrival of a train at aistat
e A-change events: representing the change of passenge saties at a platform.

To describe the operation of trains, we now propose an alven model consisting of
a continuous part describing the movement of trains runfrioign one station to another
station through the network, and of the discrete eventsedistbove. Thek-th eventeg
occurring in the event-driven system is denoted as

&= (tkaYtypak,ikv Py, (7.2)

wherek is the event countel is the time instant at which eveatoccurs Yypek is the event
type, which can have three possible values, i.e., ‘d’, ‘a’ X corresponding to a departure
event, an arrival event, orXchange eveniy is the train number, angy is the platform
number.

In particular,A-change events can be caused by the change of passengaisatista-
tions, the change of splitting rates at transfer stationd the passenger transfers at transfer
stations. Note that the passenger arrival rate stays the batween two subsequent events.
The train scheduling model requires the real-time assegsofi@assenger arrival rates for
different origins and destinations during the scheduliagqd. In the case of full state in-
formation, the passenger arrival rates can be obtainedortimfately, this is not the case
in practice, where we need to e.g. use the information deiteby the advanced fare col-
lection systems and estimate the passenger arrival rasesl loa the historical data and the
current passenger flows [143]. A typical profile for passemgevals at stations on work-
days is given as the line in Figure 7.1, where the passengealarate during the peak
hours is much higher than that during the off-peak hours. cdmtinuous passenger arrival
rate can be approximated using a piecewise constant funatdndicated by the dashed
line in Figure[Z.1. Piecewise constant functidﬁfﬁ}‘o"(-) for eachj,m € S5 denote the
passenger arrival rates at statipiof passengers with statian as their final destination.
These piecewise functions are the inputs to the eventsrivedel and we describe these
piecewise constant functions via so-called base profiles.bBase profiles are left-hand side
continuous piecewise constant functions, which can beifspedy a list of corner points
as shown in Figure 7.2, where the corner points are markdtbigtdots. Hence, the base
profile shown in Figure712 can be described by these threecpoints:

{(tz. M), (t2,A2), (t3,23) }.

We introduce a\-profile query module for each platform (see also Fiduré [88].
If platform p is not at a transfer station, then the query module only d¢ositthe base
profile)\?fﬁ}io"(-). However, if platformp is at a transfer station, then the query module for a
platform stores the base profile and possibly additionaatggrofiles due to splitting rate
changes and passenger transfers:

1. Splitting rates change at stations: At a transfer stati@ssengers can choose to
go to the platforms of different lines since there could bdtiple routes available
to go to their destination. The splitting of passenger flowiansfer stations can
be influenced or controlled by the rail operator by providiogte information and
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suggestions to passengers through PDA devices or throfmimiation panels at the
entrance of stations. L(fist""“O -) denote the splitting rate of the passengers flows
that arrive at statiofj, have destinatiom, and go to platfornp (see Figuré7l4). The
function B%f?,ﬁio”(-) is also a a left-hand side continuous piecewise constaitiim

In order to provide a consistent service to the passendprsplitting rate should not
change too often, e.g., 15 minutes. The passenger arrtest@latformp of station

j can be calculated as follows:

Apm(t) = BanP t)ASE ), Vpe Py, Vme Sy (7.2)

wherety is one of the corner points of the base profile or of the spijttiate change
profiles andPj is the set of platforms at transfer statiprFurthermore, the sum of all
the splitting rates at transfer statigis always equalto 1, i.e.,

B M) =1, VME Sia Vi € S (7.3)
peP;

whereq/2"sfis the set of transfer stations in the network. The splittiags at the
transfer stations are the control variables for the trairedaling problem. The change

of the splitting rates of passenger flows resultadichange events at the platforms of

a transfer station. ThAA update profiles caused by splitting rate changes are also
piecewise constant functions, which can be described bst aflicorner points in a
similar way as for base profiles.

The average walking time for passengers from entrancesadisy to platformp at
time instant can be calculated by

e\{)valk-in(t) _ a%‘f%lk( Z statlon(t }\statlon(t ) \6V%|k, (7_4)

whereaj3k andbja¥ are the coefficients for the average walking time from the en-
trance of the statlon to platformp, which depend on the layout of the station, the
walking distance, etc., and which can e.g. be determineddbasn historical data.
The total walking time for passengers from entrances ofostgtto platformp dur-

ing the scheduling time peridth,teng can be calculated by

C
walk-in __ walk-in statlo statlo statlo statlo statio station statio
oo =" BTty ”)2[3 e (tpera —the' o, (7.5)
c=1

wheret$'2%nis the time instant at which PWA constant functigsgi°"-) and/or
Ajm(-) change. Note thaf'3"o"= to andt5a1°"= teng

. Passenger transfers triggered by arrival events: Ifia &aives at a transfer station,

there could be several possible routes for the onboard pgseeto arrive at their
destinations. They could choose to stay on the train or toffjéte train and transfer
to a train on another line. At transfer statiprthe splitting rate of the passengers that
are on board of trainand have destinatiomto platformp’ can be denoted zﬁrg}r‘m

for p’ € P;. For traini that stops at platforrp of transfer statiorj, the sum of all the
splitting rates has to be equal to 1, i.e.,

Z =1 Vi€ S, YMe Sya (7.6)
p EF’J'
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Note that the passengers with destinatjpie., the ones for whicm = j, will not
choose to transfer to other platforms but they will exit transit network at statiofy
so if traini arrives at platfornp, we se I"g"; 1 for and[.’s“"’“n =0forp € P\ {p}
wherepis the platform of station) at which traini arrives. The total walking time for
passengers from platforpito exit stationj during the scheduling time perid, tend

can be calculated as

walk-out __ walk allght walk
t = apo Nipj +0po (7.7)

1€Shiotend
Whereggtot .4 1S the subset of indices of trains that stop at platfqsrduring the

scheduling periofto, tend, N f"'r')gjht is the number of passengers who get off tiatmave

destinationj, and exit the urban rail network from platform The coefficients Wa”‘
andb3* can be determined in a similar way @ andba .

The Walkmg time for transfer passengers depends on tharvgaﬂ('stance between
two platforms and the number of transfer passengers. Irtipeathe walking time
could be distributed as shown by the line in Figurd 7.5. Ferghke of simplicity,
we approximate the relationship between the passengemgdikne and number of
transfer passengers by a rectangular signal as repressntieel dashed line in Figure
[ZH. Hence, we can calculate the average walking time oféimster passengers from
platformp to the other platformg’ € P;\ {p} as

BlYalk, = ayaynias+ bk, Vi € Spa, VD' € P\ {p}, (7.8)

Wherent’g”pSf is the number of transfer passengers from tiaim platformp’ of line
v, a‘”a"‘ and b‘”a"‘ are the coefficients for the average walking time, which depe
on tﬁe layout of transfer station, the walking distance,, etod which can e.g. be
determined based on historical data. The total transfeg l;l’igPSf for transferring
passengers getting off from traiims

titrgnsf _ ewall;y n}rgnsf (7_9)

pePi\{p}

Similar as the average walking time, the duration time ferttiansfer process can be
approximated using

eldtrj)rgpon_ a(gtjratior}.]}ranr)s/f+ bduration, Vi e S(ra, Vp’ c Pj \{p} (7_10)

Similar asa‘g%,k ande"jg,k, a%”éa“on andbd”rr),a“o”can be determined based on historical

data. The updates for theprofile due to passenger transfers can be described by a
list of corner points

{(21.0), (2 + 655 BN p ). (2 + Op + 6115 0)}, (7.11)
whereA; , v is calculated by
ntransf

DN ppy = 2P (7.12)

duration
o PP




128 7 OD-Dependent Train Scheduling for an Urban Rail Titdstwork

Number of
passenger

minimum mean maximum Walking
time

Figure 7.5: Typical walking time profile for the transfer pangers

Departure
Control times | Model
. Runnin i Performan
variables timesg e Triggered events errormance
— . criteria
e Global event list
Constraints — 3

Figure 7.6: Model structure of the event-driven system

7.2.2 Event-driven dynamics

In this event-driven system, there are two classes of evant®nomous events and con-
trolled events. Autonomous (or triggered) events are &tigd by other events or by the
environment, and their event times cannot be controllegctly. All the A-change events
are autonomous events. The departure and arrival evenédians are the controlled events
of the given system. The event times of the controlled evargslirectly influenced by the
inputs to the system. The control inputs of the system areldparture times, the running
times of trains, and the splitting rates of passenger flowisaasfer stations. The model
structure of the event-driven system is illustrated in FefIL8.

Furthermore, we introduce a global event list for the ewdnivten system (see also Fig-
ure[7.6). At any time, this list contains all the possible tnevents for all the trains and
stations in the urban rail network. The next event of theesyswill be the event in the
global event list with the smallest valuetgfi.e. the event that will occur first. As a starting
point, the global event list should be initialized basedminitial state of the system. We
denote the current time &girent(See also Figule7.7). Legrocessbe the processing time for
data preparation for the train scheduling. All the evengd tlappened in the past, i.e., for
which the event time is smaller th&durrent+ Tprocess are known to the event-driven system
and the set of these events is denote@@syn. The set of events that will happen in the
future is denoted aS,nknown

When an event happens, the state of the system should besdgofet some other events
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may be triggered. For all the events occurring in the givestesy, the number of passengers
waiting at platforms need to be updated. It is important tteribat the passenger arrival
rate stays the same between two subsequent events. Imetgthiefore eveng happens,
the number of passenges§er "t ) with destinatiorm that are waiting at platfornp

is updated as follows (see Figlirel7.8):
\N\gs%bemre(tk) = Wgs%aﬁer(tk/) +A pk,m(tk’ ) (tk —ty ), (7.13)

wherety is the event time of the previous evest= (tv, Yyper ik ; Pw) happening at plat-
form py of line 4 (i.e., pe = Pr), Where™ () is the number of passengers at the platform
immediately after evergy,, andA, m(tw)(tk —tw) is the number of passengers that arrive
at this platform betweetj andt,. The total number of waiting passengat&**™"(t, ) at

platform py of line ¢, immediately before the event can be calculated as

W\gfit,before(tk) _ ZS W\g:ljitrﬁbefore(tk)_ (7_14)
Me Ssta

The waiting time of passengers at a platform is updated wineevant occurs. We use

t‘F’J"ka't(tk) to denote the waiting time of the passengers at platfpgrwhen eveng, occurs,

which can be calculated by

. . ‘ 1
the'(tk) = the' (t) + ZS (Wgzlrtr’waﬁer(tk/ )(t—tie) + 5 Apem(tie) (b — tk’)z) ,  (7.15)
ME Ssta

wherety is the event time of the previous eveptthat occurred at platformy.

In general, the updates of other states and the triggerettsegaused by the current
event depend on the event type of the current eventAfatrange events, only the number
of waiting passengers at platforms and the waiting time ekéhpassengers need to be
updated. For departure events and arrival events, a ditddscription of the updates of
other states and the triggered events is given as follows.

Departure events

When a departure event occurs, denoteeagien we havétypek = ‘d’. Let ik be the train
involved in the event. The number of passengers boardiirgiirat platformpg on linefy is

o e it,before .
equal to the minimum of the number of waiting passengé" (tx) and the remaining
spacenZ7@"on the train after the alighting process of passengers, i.e.

board ; i it,bef
Mope = MIN(MR ™ W™ (k). (7.16)

The remaining spaca®M@non trainiy for passengers is
ks Pk

remain__ . alight
Mepe — Crmaxiy — My.pPa(p) — M,y - (7.17)

whereCmaxi, is the capacity of trairy, pP3(py) is the predecessor platfotnof platform

Pk, Na g is the number of passengers on traiwhen it departs from platforr, andni'ight

1Recall thapP'3(py) is the previous platform on the line to which platfo belongs.
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alight

i Will

is the number of passengers getting off traiat platformp. The calculation fon:

be given in[[7.3D).

The number of passeng left by trainiy at platformpy, i.e., the number
of passengers waiting at the platform immediately aftenegg is

alt after( )

W\gfit,after(tk) _ W\gfit,before(tk) _ n!:)k?a:d_ (7.18)

In addition, we assume that the number of passengers witimndtésnmthat are left by train
ix is proportional to the number of waiting passengers. Hetimenumber of passengers
with destinationm left by trainiy at platformpg can be calculated as

iaft i aft W\{)vaﬁq before(tk)
ait,al er walt,arter K
V\,\gk m () = W (t) wait,before,, (7.19)
Wpy (tk>
The number of passengers with destinatiothat board trainy at platformpy is
board it bef it aft
Mhopem = Waem o' S(t) — wipam™ (k). (7.20)

After the boarding process, the number of passengfgg§m with destinatiormthat are on
board of trainiy is updated as

after before board
ik, pem = Mipom + Miy pems (7.21)

and the total number of passengn?ﬁ; on board of train at platformpy after the boarding
process is

after before board
Mok = Micpe T M - (7.22)

wherenPelore and nfeo'® are the number of passengers with destinatioand the total
number of passengers on board triabefore the boarding process of passengers (see more
details in the description of arrival events).

The departure everg at platformpg will generate an arrival event at the next platform

of the line to which platfornpy belongs, which is described as follows:

(aik,spla(pk)’ a ) ikaspla( pk)) ;

Wherea1k75p|a(pk) is the arrival time of trainy at pIatformsp'a( px). The arrival timeaik75p|a(pk)
can be calculated by

8 spla(py) = i pc + T, pro (7.23)

whered;, j, is equal tdy andrj, p, is the running time on the track segment between platform
px and platformsP3(py). This arrival event should then be added to the global evemt |

Arrival events

If Yiypek = ‘@', i.€., evente is the arrival event of traif, at platformpy on ¢, the number

of passengers/ Wa'tbefore(tk) waiting at platformp, immediately before this arrival event
should be updated by (7113) and (7.14).
The number of passengers getting off traidepends on platformy:
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o If platform py is at the first station of linéy, then there are no passengers getting off

trainiy, i.e. '
nAlight_ o, (7.24)

i Pk
In addition, the number of passenga}i’k%‘;fﬁ] that have destinatiomand are on board
of trainiy immediately before the boarding process is also equal m zer
neefore =0,  Vme Sy (7.25)
If the stationji to which platformpy belongs, is not the first station and not a transfer
station, then the passengers with destinafiowill get off train ix. The number of
these passengers can be computed as follows:

alight _ _after
Mepe = MiepPa(po) i (7.26)
whereniﬁggla(pk) i is the number of onboard passengers with destingtiaiter the

boarding process at predecessor platf@®d(py). Furthermore, we calculate the
number of passengeng®l'e as follows:

npefore, = nafter Vm e Sia\ {jk}- (7.27)

o Pom = Uiy pPla(p),m?

Therefore, the total number of passengers on board ifgdiafore the boarding pro-
cessis

riclere— b, (7.28)

meSsta\{ ik}

If the station jx to which platformpy belongs is a transfer station, then not only
the passengers with destinatipnwill get off train iy, but the passengers with other
destinations may also get off traip. The splitting rates for the passengers with
destinationm staying on or getting off train are denoted ag'3" for p’ € Pj,.

pik.m
The number of passenget; g;fﬁq that have destinatiom and are on board of trai
immediately before the boarding process can be calculated b
before __ ptrain after
nik7pk7m == kaikymnik,ppla( pk)-,m, Vm S So‘ta, (729)

wheren;”‘kﬁsgla(pk) ., Is the number of onboard passengers with destinatiommedi-

ately after the boarding process at predecessor platiéfpy).

As mentioned in Section 7.2.1, the splitting rﬁﬁi{;’jk equals 1 for the passen-
ger flow with destinatiorjx. All these passengers will get off the train and exit the
network from stationjx. For the passengers with destinationwith m #£ ji, the
passengers staying on lidg also stays on traifx. Hence, the number of alighting
passengers can be calculated by

alight __ after before
ok~ i pPla(pe) - Mipem: (7.30)
meSstal { ik}
wheren2fter is in fact equal to the number of passengers on board of igain

i, PP13(py)

when it arrives at platformpk andy mes;a (i} nﬁejf‘k"r?] is the total number of passengers
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staying on trairiy after the alighting process. The number of transferringgagers

nfiag:fp n that have destinatiomand transfer from platforrpy to some other platform

p’ can be calculated by

i1 f trai ft
nifglip’,m = ilz?p,mnﬁ(,sg'a(pk),m’ vp' € Pi \ {px}- (7.31)

The total number of transfer passengers from traia then

transf __ transf
Moo = Moo gl m- (7.32)

p'eP \{ P} meSsta\{jk}

The passenger in-vehicle time for trains, denotet48""“"® should be updated when
an arrival event happens. When arrival evenhappens, the passenger in-vehicle time,
including the running time of traify and the dwell time at platformy, can be calculated
by

hicl ft ft allght _

t:;? o= ni E;'a(pk)rlk et (nﬁ(,sgla(pk) M pe ) (i pe — Bipi) (7.33)
whereri, p,, i p,. ,.p, are the running time, departure time, and arrival time dhtiigat
platform py.

In addition,A-change events will be triggered to increase and decreaspabsenger
arrival rates. These events can be written as

(Gipe + euk s N p), VP e P\ {pd, (7.34)

(B +BYAK BRI N — k), VP € P\ { Pk} (7.35)

where —'is a dummy place holder as there is no train included in tieesats. The above
A-change events should be added to the global event list.

7.3 Mathematical formulation for the scheduling problem

7.3.1 Performance criteria

In this chapter, we minimize the total travel time of all pasgers and the energy con-
sumption of the trains using a weighted sum strategy. Na@tevtle can accommodate other
performance criteria all well.

The total energy consumption for &ltrains running with) stations can then be formu-
lated as

Etotal = % (ERSC+EPSY), (7.36)
i€SrapcSia

whereE2S® and E'9Y can be calculated by (5.17) arid (5.18). The total travel tirhall
passengers mcludes the passenger waiting time, the pgsservehicle time, and the pas-
senger transfer time, which can then be formulated as

tiotal = twa|t+ % tln vehlcle+ % ttransf twalk-|n+ t\F/JvaIk-out-
PESla i€Sra peSia i1€Sa PESia P&

(7.37)
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Similar as the performance criteria in Sectionl 5.3, a weidtgum strategy can be ap-
plied to solve the multi-objective optimization of the trascheduling problem, i.e., we
consider

fopt _ Etotal A tiotal : (7.38)
Etotal,nom ttotal,nom

whereA is a non-negative weight, and the normalization facEggnom andtitainom are
the nominal values of the total energy consumption and tta tiavel time of passengers,
respectively. These nominal values can e.g. be determipedfbasible initial schedule.
Just as mentioned in Sectionl6.3, a penalty term of the vgditine of the passengers left by
the last train during the scheduling period can be introducespread trains over the entire
scheduling period.

7.3.2 Constraints

The event times of all the events in the future evenBsgtownShould satisfy

tx > teurrentt Tprocess V€ € Sunknown (7.39)

In addition, the event times of the departure events andrtivabevents should satisfy the
operational constraints as follows. The event tigfer arrival evengy, i.e., the arrival time
aj, p, of trainiy at platformpy, should satisfy the headway constraints:

8y p — dytra ) pe = Npmin, (7.40)

whered,ra ), o, iS the departure time of the previous train at platfguipandhp, min is the
minimum headway at platformy to ensure the safe operation of trains. Furthermore, the
event time of the departure event, i.e., the departure thpyg of train iy at platformp,
should satisfy

iy, p = @y, py + Tiy, py,mins (7.41)
dikvpk < @iy, py + Tig, p.maxs (7.42)

Wheret;, p, min @ndT;, p, max are the minimal and maximal dwell time for trajnat platform
px- The minimal dwell time is affected by the number of passesgetting off and getting
on the train, which can be calculated as

light wha' (1) 3
. o mi alig board Pk board
Tiy,p,min = MIN (Tm,n,aldJrag dMi.p, T 93.dMi, py +a4,d< - door ) M. o ), (7.43)

wheretmi, is the minimum dwell time predefined by railway operatorg, 024, 034, and
04,4 are coefficients that can e.g. be estimated based on higtdeta,n®" is the number

of doors of the train, anu\/""'ﬁ“t /nd°°r is the number of passengers waiting at each door.
Moreover, the departure tmdg( p Should satisfy the headway constraint as follows:

dikapk - dptra( pk),pk S hpk’max, (744)

wherehp, max is the maximum departure-departure headway between &apiatformpy
to ensure the passenger satisfaction.
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Note that the running timg , should satisfy

Fig,psmin < Tig,pc < Tig, pmaxs (7.45)

wherer;, p, min andri, p, max are the minimal and maximal running time of tragrbetween
platform py and successor platfore®’2(py), respectively. The minimum running time is
limited by the train characteristics and the condition eflihe. The maximum running time
is introduced to ensure the passenger satisfaction sitr@aris run too slow, the passengers
may complain.

7.4 Rolling horizon approach and initial conditions

A rolling horizon approach can be adopted to solve the treireduling problem. In this
section, we will discuss the rolling horizon approach inaileand we define the initial
conditions for the scheduling problem.

Since passenger demands vary with the time in a daily operatie train scheduling
problem can be solved in a rolling horizon way, by solving siceeduling problem, e.g.,
every half an hour, so as to adapt the train schedule to pgessdamands in real time. This
works as follows. First, the train scheduling problem isssdIfor some periofto, tend and
the trains will be operated according to the resulting optisthedule. After some period
of time t,, e.g., half an hour, we will run the optimization processiaglaut now for the
period[tg +tp, tend+tp] USing the known, measured, or estimated states of the Sy titme
to+1tp. Once the new optimal schedule is computed, it is executdg fione units, and next
the whole process is repeated again for the peitip@ 2tp, teng+ 2tp] and so on, until the
end of the daily operation of the urban rail transit system.

When solving the train scheduling problem in a rolling horizvay, some of the vari-
ableg will no longer be free variables but will have fixed, knownwes. Assuming thap
is the start time instant of the scheduling period, we nowuss the fixed variables for a
line in an urban rail network:

e Iftrainiis in the terminal station at tintg, i.e., the arrival timey_,,,o Of traini — Iet
at the terminal station will be a known value wih |, 0 < to. S08j_|,,0 iS N0 longer
an unknown variable.

e If train i is at a platform of a station at tintg, we usep, to denote that platform.
The arrival timea; p  Of traini at platformpi, is known. In addition, the departure
times, the arrival times, and the running times before ptatfp; ¢, are also known.

e Iftrainiis running on a segmenttat we usep; , to denote the segment at which train
i is running on aty. The departure timdiypi‘to of traini at platformpig, is a known
time value witht < to. In addition, all the departure times, arrival times, and
running times before segmept, are known. Furthermore, the running timg)i‘to
on segmenp;y, is also fixed since we assume that the schedule of a train dgn on
be changed at platforms. Therefore, the arrival time ohtrai platformpP'3( Pit) IS
also known.

2When the stop-skipping strategy is included in the trairedeting, the stopping variables should be fixed
for trains that are already on their way in order to make slr@ passengers on these trains can arrive at their
destinations.
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—— Line 1 @ Transfer station
— Line 2 @ Terminal station

Figure 7.9: Layout of a small urban rail transit network

The number of passengers on the train and the number of peessemaiting at the platform
are also known at timg.

7.5 Solution approaches

The train scheduling problem for an urban rail transit nekne a nonlinear non-convex
programming problem with objective functioh (7138) and stoaints [7.3P)E(7.45). The
train scheduling problem in Chapiér 5 is also a nonlinearcnovex programming prob-
lem, where several approaches are proposed, such as thengriagised SQP approach,
the gradient-free pattern search method, mixed integen){inear programming approach,
and the iterative convex programming approach. These appes can also be applied to
the train scheduling problem for an urban rail transit nekno this chapter. In addition,
the evolutionary algorithms, such as genetic algorithrag, &lso be applied to this train
scheduling problem [14, 31, 144].

7.6 Case study

7.6.1 Set-up

In order to illustrate the event-driven model for urban tahsit networks proposed in this
chapter, a small network with two cyclic lines as shown inueeZ.9 is considered as a test
case study. Line 1, i.e., the blue line, has 1 terminal (stat) and 5 normal stations and
line 2, i.e, the red line, has 1 terminal (station 7) and 7 radrstations. The line data of
these two lines are given in Taljle17.1, where the calculati¢he minimum running time is
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Table 7.1: Information of the two cyclic lines

| Station number (Line1) || 1 2 3 4 5 6 |

Distance to next station [m]| 700 1500 1700 2200 1900 80D
Minimal running time [s] || 59.3 95.3 104.3 126.8 113.3 63|8

| Station number (Line2) || 7 8 3 9 10 11 5 12|

Distance to next station [m]] 860 1400 1500 1300 1600 1200 1100 730
Minimal runningtime [s] || 66.5 90.8 953 86.3 99.8 81.8 77.3 68.

Table 7.2: Parameters of the trains and the passengers

| Property | Symbol Value |
Train mass [kg] Mej 199-10°
Mass of one passenger [kg] my 60
Capacity of trains [passengers] Ci max 1500
Minimum dwell time [s] Tmin 30
Maximum dwell time [s] Tmax 150
[s] O1g 4.002
Coefficients of the [s/passengers] O24 0.047
minimal dwell time [s/passengers] O34 0.051
[s/passengerd] Osgd 1.010°6
[m/s] ki 0.012
Coefficients of resistance [s™1] Koi 5.04910 4
[m—1] ki  2.05310°5

the same as that presented in Sedtich 6.5. For each cyéicliere are 5 physical trains and
the number of train services considered in the train sclimglproblem is taken as 7. The

parameters of trains and passengers are chosen as ir_TAblEné.passenger arrival rates
at stations are given in Taldle ¥.3, where the passengenhbraites are piecewise constant
functions that can change with time in a scheduling periatitha passenger arrival rates at
terminals, i.e., station 1 and station 7, are equal to 0. ditiah, since we only consider one

direction of the cyclic lines, no passenger is arriving & ldst stations of these two lines,

i.e., station 6 and station 12.

At time tg (chosen as 2500 s), the initial states of trains for line lagrollows: train 1
and train 2 are running from station 4 and 2 to station 5 arttbst8, respectively, and their
arrival times are fixed, at 2530 s and 2550 s respectivelynlingber of passengers on train
1 and 2 at timey is given in Tabl€_7Z}4 and the number of passengers waitiriegilatforms
of line 1 is shown in Tablg"7]5. For line 2, the initial statésime ty are as follows: train
21, 22, and 23 are running from station 11, 9, and 8 to statjdtD5and 3, respectively
and their arrival times are 2520s, 2540 s, and 2560 s. The auaflpassengers on these
trains attg is given in Tablé_7Z} and the number of passengers waitingafopms of line
2 is shown in Tabl€7]5. In addition, there are 3 and 2 traiophg at terminal stations
1 and 7, respectively. We choose the scheduling period a8 £50here the schedule of 7
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train services is optimized for each line. To ensure thegragsr satisfaction, the maximum
departure-departure headway at stations is chosen as 486 sominal values for the total

travel time, the energy consumption, and the waiting tinrettie passengers who did not
travel in the scheduling period is calculated based on aorarfdasible schedule, which are
1.454-10" s, 3436-10°J, and 7434- 10° s respectively.

The model formulation in Sectidn 7.2 distinguishes thettipj ratesB3aio"of the pas-
sengers just entering the rail network and the spIittings'[ﬁ}t:gfrr}1 of the passenger arriving
the transfer stations by trains. For this case study, weldintpe train scheduling model
by making Bfrg'ﬂ] equal toB3a1°\a; ;) with a; j the arrival time of trairi at stationj. After
this simplification, the number of decision variables of greblem can be reduced sig-
nificantly, especially for cases with a large number of aim addition, the walk-in and
walk-out time for passengers in (7]137) are also taken as foerthe sake of simplicity.
and Two solution approaches are proposed to solve the hidsling problem, i.e., the
multistart SQP approach and the genetic algorithm. The S&Rad implemented by the
fmincon function of Matlab optimization toolbox is empla/and five feasible initial points
are used to solve the optimization problem. For the genkgarithm, the ga function of the
global optimization toolbox of Matlab is used.

7.6.2 Results and discussion

The train schedules obtained by the SQP method for line lina@lare shown in Figures

[.10 andZ.I1. The number of passengers on board of traihevensin Figure$ 7.12 and

[713. Since there are no passenger arrivals at termin@rsiafstation 1 and station 7 for
line 1 and line 2), the number of passengers on board of telinald be equal to 0 when

trains depart or arrive at terminal stations, which is tiated in Figure6 7.12 afid 7]13. In
Figure[Z.12, it is shown that when train 3 departs from stafipthe number of onboard

passengers has already reached the maximum capacityi 509, passengers. Similarly,
train 2 and train 4 reach their maximum capacity at stationdisdation 3, respectively. So
the trains are operated with high passenger load and thatipecosts of these trains are
smaller when compared with the operation of trains with lopgssenger load.

As mentioned before, station 3 and station 5 are transféostan the small rail network
shown in Figuré_7]9. Some passengers need to transfer ve atrtheir destinations, e.g.,
passengers that enter the network at station 2 but havendsti 9, 10, or 11 need to
transfer at station 3. When trains of line 1 arriving at thatfolrm of transfer station 3, the
number of onboard passengers with different destinatiostiown in Figur€ 7,14, where
the number of onboard passengers with destination 1, 2,s7e8ual to 0. The passengers
with destination 3 (dark purple bars) will get off the trairtlas station and the passengers
with destination 9, 10, and 11 (pink bars) will also get of tinain and transfer to line 2.
The other passengers will stay on board. It is noted that #ssengers with destination
12 choose to stay on the train instead of transferring toZia¢ station 3. This is because
these passengers can also transfer at station 5 as showguie[7i.I5 and this will lead to
a shorter travel time. Furthermore, the number of passerajestation 3 for train 1 is zero
in Figure[7.14, since train 1 has already passed stationighatg. Similarly, the number

3Recall that the splitting rateﬁfgf’,}q for trains are numbers and that the splitting raﬁ%ﬁ?"” are piecewise
constant functions that have the time as their argument.
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Figure 7.10: Train schedules for line 1 obtained by the SQFhoe:
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Figure 7.11: Train schedules for line 2 obtained by the SQFfhoet
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Figure 7.12: Total number of onboard passengers obtaineih&ysQP method for line 1
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Figure 7.14: Number of onboard passengers with differestidations at transfer station 3
obtained by the SQP method for line 1
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Figure 7.15: Number of onboard passengers with differestidations at transfer station 5
obtained by the SQP method for line 1
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Figure 7.16: Number of onboard passengers with differestidations at transfer station 3
obtained by the SQP method for line 2
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Figure 7.17: Number of onboard passengers with differestidations at transfer station 5
obtained by the SQP method for line 2



Table 7.3: Passenger arrival rates (passengers/s) in thelsimban rail network

| Station || Time period[s]]| 1 2 3 4 5 6 7 8 9 10 11 12

1 2500-5000 |0 O 0 0 0 0 0 O 0 0 0 0
2500-3000 | O O 048 064 032 032 0 0O 0.64 048 0.32 0J32

2 3000-3600 | O O 032 048 032 016 0O O 0.48 0.40 0.35 016
3600-5000 |O O 032 032 032 032 0 O 048 0.38 056 016
2500-3100 |0 O 0 0.32 032 016 0O O 032 034 0.29 0RB2

3 3100-3700 |0 O 0 048 032 032 0 0 032 0.22 0.42 032
3700-5000 |0 O 0 0.16 064 016 0 O 048 0.38 0.26 0.16

4 2500-3250 |0 O 0 0 045 030 0 O 0 0 0 0.30
3250-5000 [0 O 0 0 053 038 0 O 0 0 0 0.38
2500-2850 |0 O 0 0 0 060 0 O 0 0 0 0.30

5 2850-3390 |0 O 0 0 0 075 0 O 0 0 0 0.30
3390-3830 |0 O 0 0 0 060 0 O 0 0 0 0.30
3830-5000 |0 O 0 0 0 075 0 O 0 0 0 0.30

6 2500-5000 |0 O 0 0 0 0 0 O 0 0 0 0

7 2500-5000 |0 O 0 0 0 0 0 O 0 0 0 0
2500-3100 |0 O 0.12 024 036 012 0 0O 0.24 0.29 0.22 0J24

8 3100-3700 |O O 012 024 060 012 0 O 0.24 0.34 0.19 0/24
3700-5000 |0 O 0.12 024 036 012 0 0O 0.24 0.29 0.29 0J24

9 2500-3100 |0 O 0 0 0.12 024 0 O 0 0.14 0.19 0.24
3100-5000 |0 O 0 0 0.12 036 0 O 0 0.29 0.31 0.36

10 2500-2900 |0 O 0 0 0.15 015 0 O 0 0 0.21 0.15
2900-5000 |0 O 0 0 0.15 015 0 O 0 0 0.24 0.21

11 2500-2900 |0 O 0 0 0.24 020 0 O 0 0 0 0.24
2900-5000 |0 O 0 0 036 032 0 O 0 0 0 0.28

12 2500-5000 |0 O 0 0 0 0 0 O 0 0 0 0

Apnis ase) 97/
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Table 7.4: Number of passengers on board of trains at tijnertthe two cyclic lines

Destinationstatioff 1 2 3 4 5 6 7 8 9 10 11 12| Total number of passengefs
Train 1 (Line 1) 0O 0 O 0O 130 150 O O 0 0 0 80 360
Train 2 (Line 1) 0O 0 80 70 90 50 0 O 60 140 130 80 700
Train 6 (Line 2) 0O 0 0 O 230 280 O 0 O 0 0 170 680
Train 7 (Line 2) 0O 0 O 0O 160 180 O O 0 120 134 162 756
Train 8 (Line 2) 0O 0 79 98 100 130 O O 120 80 120 80 787

Table 7.5: Number of waiting passengers at platforms ofwedyclic lines

| Destination][ 1 2 3 4 5 6 7 8 9 10 11 12| Total number of passengefs
Stationl ||0 0 O 0 0 0 0O 0 O 0 0 0 0
Staton2 || 0 0 120 240 140 10 O O 80 200 250 140 1180
Station 3 0 O 0 150 200 130 0 O O 0 0 9( 570
Station4 ||0 0 O 0 200 230 0 O O 0 0 120 550
Station5 || 0 0 O 0 0 2200 0 0 O 0 0 0 210
Station 6 0 O 0 0 0 0 0O 0 O 0 0 0 0
| Destination]] 1 2 3 4 5 6 7 8 9 10 11 12 Total number of passengets
Station7 || 0 O 0 0 0 0 0 0 0 0 0 0 0
Station 8 0O O 150 120 80 100 O O 180 100 140 140 1010
Station 3 0O O 0 0 100 130 0O O 190 110 130 100 760
Station9 || 0 O 0 0 110 150 0 O 0 100 160 120 640
Station10 (| 0 O 0 0 130 170 0 O 0 0 130 150 580
Station11 || 0 O 0 0 100 190 0 O 0 0 0 170 460
Station5 || 0 O 0 0 0 0 0 0 0 0 0 210 210
Station12 (| 0 O 0 0 0 0 0 0 0 0 0 0 0

144’
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Table 7.6: Performance comparison of the SQP method andghetig algorithm

Solution approaches

| SQP method Genetic algorithm]

Obijective value [-] 3.522 3.858
Computation time [s] 4.232-1C° 5.941.10°
Energy consumption [J] 2.677-10° 3.220-10°
Number of passengers that finished their trips [passengef§] 2.993- 10* 2.550-10%
Number of passengers that did not finish their trips [passesig 9.215-10° 1.364-10*
Travel time for passengers that finished their trips [s] 1.761. 10’ 1.484.107
Waiting time for passengers that did not travel [s] 3.218-10° 7.265.10°

Apnis ase) 97/
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of onboard passengers with different destinations atostaé@iand 5 of line 2 is shown in
Figured 7.16 and 7.17.

A comparison of the performance of the two approachestihe.SQP method and the
genetic algorithm, is illustrated in Talle ¥.6, where thiiga of the objective function, the
computation time, the energy consumption of trains, thelmemand the travel time of the
passengers that finished their trips, and the number anddhimgvtime of the passengers
that did not travel are listed. It is observed that the SQFhotthas a better performance
than the genetic algorithm for this case study. In particulee objective value of the SQP
method is about 10% smaller than that obtained by the gesigticithm. The train schedule
obtained by the SQP method has a lower energy consumptiomarel passengers arrive
at their destination. However, the travel time for passenget finished their trip obtained
by the genetic algorithm is smaller than that obtained byS@® method. The reason for
this is that the number of passengers that finished thes tnfghe schedule obtained by
genetic algorithm is smaller than that of the SQP method.dufiteon, the higher energy
consumption of the schedule obtained by genetic means lessng time, so the travel
time is also less.

For the given case study, the performance of the SQP methadabist 10% better that
of the genetic algorithm. In addition, the SQP method alsoehsmaller computation time.
In particular, for the small network with 2 lines given in Big{7.9, the computation time of
the SQP method is about one hour using Matlab on a 64-bit lipexation system running
on 1.8 GHz Intel Core2 Duo CPU. Multiple experiments withfeliént scenarios are need
to access the performance of the solution approaches.

7.7 Conclusions

In this chapter, the train scheduling problem for an urbdnremsit network is investigated.
We have built an event-driven model with three types of ev@rd., departure events, arrival
events, and passenger arrival rate change events at piatforhe splitting of passenger
flows and passenger transfers at transfer stations aredextlin the event-driven model.
For the given case study, the SQP method provides a betti-orfh between control per-
formance and computational complexity than the genetiorétgm.

An extensive comparison and assessment of the SQP metledettetic algorithm,
and other solution approaches for different scenariosheith topic for future work. For the
cases with multiple lines and a large number of stations @id, distributed optimization
approaches are expected to be applied to solve the trainsitg problem. In addition,
we will also investigate the simplification of the proposealdal so that the train scheduling
problem can be solved in real time.



Chapter 8

Conclusions and Future Research

In this dissertation we have discussed the optimal trajggtianning problem for trains and
the real-time train scheduling problem for urban rail tieggstems. This final chapter first
presents the main contributions of the previous chaptéssusgses some remaining open
problems, and gives some recommendations for future refsear

8.1 Conclusions

The main contributions of the work presented in this diggem can be summarized as
follows:

e We have proposed a new iterative convex programming (ICpjcaeh to solve the
train scheduling problem with constant origin-destinatindependent (OD-indepen-
dent) passenger demands for an urban railway transit limethe case study we have
considered, the ICP approach outperforms other solutiprogghes, e.g., a sequen-
tial quadratic programming (SQP) method, pattern seardhade a mixed integer
linear programming (MILP) approach, and a mixed integerlinear programming
(MINLP) approach.

e We have developed a train scheduling model consideringstaotorigin-destination-
dependent (OD-dependent) passenger demand for urbararslttsystems and we
have proposed an efficient bi-level approach to shorten dngpatation time with
respect to the standard bi-level approach.

e We have proposed an event-driven model including the sgitif passenger flows
and passenger transfer behavior at transfer stationsdiordcheduling in urban rail
transit networks. This model involves three types of evevits departure events,
arrival events, and passenger arrival rate change evepiastitrms.

We have also considered the trajectory planning for m@timdins, which included the
constraints caused by the fixed and moving block signalistesy.

147
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The contents and conclusions of the conducted researclsith#sis are now discussed
in more detail for each topic.

Optimal trajectory planning for a single train

The optimal trajectory planning problem for a single traimdar various constraints (e.g.
fixed arrival time, varying line resistance, variable speestrictions, and varying maxi-
mum traction force) has been considered, where the obgeftiivction is a trade-off be-
tween the energy consumption and the riding comfort. Rivethave proposed two solution
approaches to solve this nonlinear non-convex problenthieepseudospectral method and
an MILP approach.

Simulation results comparing the pseudospectral methedMILP approach, and a
discrete dynamic programming approach show that the pspedtral method results in
the best control performance, but that if the required cdatmn time is also taken into
consideration, the MILP approach yields the best overafopmance.

Optimal trajectory planning for multiple trains

We have investigated the optimal trajectory planning foitiple trains, where the con-
straints caused by the leading train in a fixed or moving bkigkaling system have been
included in the formulation. We have developed four solutipproaches to solve this op-
timal control problem for multiple trains, viz. the greedyl\? approach, the simultaneous
MILP approach, the greedy pseudospectral method, and ringdtaheous pseudospectral
method.

Simulation results comparing the greedy MILP approach withsimultaneous MILP
approach show that the simultaneous MILP approach yieldsttarhcontrol performance
but requires a higher computation time. Moreover, the perémce of the greedy and the
simultaneous MILP approach has also been compared witlofithe greedy and the si-
multaneous pseudospectral method. The results show thatrntergy consumption and
the end time violations of the greedy MILP approach are flijgharger than those of the
greedy pseudospectral method, but the computation timeddmtwo orders of magnitude
smaller. Similarly, the simultaneous pseudospectral otetias less energy consumption
and less end time violations compared with the simultan&bil® approach but requires
more computation time. For the given case studies, the amebus MILP approach yields
the best overall performance.

Train scheduling for a single line based on OD-independentgssenger demands

The train scheduling model with OD-independent passengraatid for an urban rail transit
line has been proposed with the aim of minimizing the totl¢t time of passengers and
the energy consumption of the operation of trains. The tiagutrain scheduling problem

is nonlinear and nonconvex. We have developed a new iteradirvex programming (ICP)

approach to solve this train scheduling problem and havepeoed it with a gradient-free

nonlinear programming approach (in particular patterrrcdeaethod), a gradient-based
nonlinear programming approach (in particular, an SQP agugdr), an MINLP approach,

and an MILP approach.
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It has been shown by simulation results that the performahtte optimal train sched-
ules obtained by the ICP approach, the pattern search metr&QP approach, and the
MNILP approach are close to each other, but the MILP apprbasha worse performance
probably because of the piecewise affine approximatiom.efiee computation time of the
ICP approach is smaller than that of other alternative agogves. Hence, the ICP approach
provides the best trade-off between performance and catipnél complexity.

Train scheduling for a single line based on OD-dependent pasnger demands

In order to adapt the train schedule to the OD-dependenépges demand in an urban rail
transit line, a stop-skipping strategy is adopted to redbegassenger travel time and the
energy consumption. We have proposed an efficient bi-lpmiaach to solve this problem,
in which a threshold method is applied to obtain a good irsiéution for the full problem
and subsequently the search space for the variables igdiidtenhance the efficiency.

It is shown by the obtained simulation results that the bel@pproach yields a better
performance than the efficient bi-level approach but at tis¢ af a higher computation time.
In addition, the overall performance of the train schedubtrategy with stop-skipping is
better than that of an all-stop strategy.

Train scheduling for networks with time-varying OD-independent passenger demands

For the train scheduling of urban rail transit networks, aeepresented an event-driven
model, which characterizes the time varying OD-dependasggnger demand, the splitting
of passenger flows, and the passenger transfer behavianafdr stations. There are three
types of events in the model, i.e., departure events, aswents, and passenger arrival rate
change events at platforms. The resulting train schedyioglem is a real-valued non-
linear nonconvex problem, which can be solved by a gradrestnonlinear programming
approach (in particular pattern search method), a gradbased nonlinear programming
approach (in particular, an SQP approach), and an MILP agpro

For the given simulation experiment, we have found that {@® $nethod provides a
better trade-off between control performance and comjmuatcomplexity with respect to
genetic algorithm.

8.2 Recommendations for future research

In this section, we briefly present some of the open probldérasdtill have to be tackled
based on the contents of this dissertation. Furthermoregiveesome additional directions
for future research.

8.2.1 Optimal trajectory planning and train scheduling

The optimal trajectory planning problem for a single trama dor multiple trains with con-

straints caused by signaling system has been investigatethermore, the train scheduling
based on passenger demand for urban rail transit systenbgbagonsidered in this thesis.
There are still many issues to be tackled. However, the abbiitween modeling accuracy
and computation efficiency is one of the most important aspbat should be taken into
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accountduring the research. If the accuracy is increalsed the computational complexity
will also increase, and vise versa. Hence, it is importaartteve a balanced trade-off be-
tween accuracy and computational efficiency. Furthernwitb,the increasing complexity
of the problem formulation, the computational complexitiyl @iso increase and it is diffi-
cult to solve the problem in real time using the current apphes. Below, we give some
topics to improve the accuracy and some methods to increasmtnputational efficiency.

Modeling accuracy
e Hybrid control methods for the train trajectory planning.

In the literature of the train trajectory planning, there &our optimal operation
regimes for the operation of trains, viz. maximum accelematcruising, coasting,
and maximum braking. Hybrid control methods, e.g. switchedlinear systems,
can be adopted to obtain optimal train trajectories wheaktrain characteristics and
line conditions could be taken into account.

e Microscopic modeling.

The model used in this thesis for train scheduling is a maogis model, where the
details of the infrastructure (e.g., block sections andaig) are not considered. In
addition, the layout of the terminals is not taken into actan the train scheduling

model. The terminus is usually a bottleneck of an urbanrailgit system, where the
turnaround times of trains affect the minimum headway ard2imay exist route con-
flicts. Therefore, for conflict detection and feasibilityectking of the train schedules,
it is necessary to use a microscopic model. Efficient trajggplanning algorithms

can then first be used to determine time-position profilesrfans and next blocking

time! theory [57) 98] can then be applied to identify conflicts.

e Short-turning of trains.

In some urban rail transit lines, there may exist a zone witichrhigher passenger
demands (e.g., the part in the city center) compared withrgtharts of the line. In
order to transport passengers efficiently and to avoid tooynpassengers waiting
at platforms (this may cause safety problems), it is impurnta develop methods to
integrate short-turning strategies into train schedylagpecially for the zone with
higher passenger demands and for the peak hours. In suctegsirthere are short-
turning trips only serving the stations in the zone with leghassenger demands and
full-length trips serving all stations of the line [20, 111]

e Train scheduling with incidents.

When an incident has happened in an urban rail transit n&tweay., a part of a line
cannot be used due to technical problems, an updated traguske needs to pro-
posed as soon as possible to provide alternative routeehtiigpassengers to enable
them to arrive at their destinations. Based on the informmasibout the incidents,
several possible measures can be considered, e.g., dfff¢imods can be developed

1The blocking time is the total elapsed time that a sectiorraxkt is exclusively allocated to a train and
therefore blocked for other trains.
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to determine the short-turning strategy for the other pafrtise line without technical
problems.

e Robust train trajectory planning and train scheduling.

Since there are stochastic disturbances during the operattitrains and the knowl-
edge we obtain are incomplete and uncertain, the parantdtieesns characteristics,
the running times, dwell times, etc. may vary within a certainge. It is better that
the trajectory planning and train scheduling can adapteoréiriation of parameters,
running times, and dwell times. A sensitivity analysis o fharameters, running
times, and dwell times could be carried out to obtain the ialuanes. New trajec-
tory planning and scheduling methods should be developedkéovariations in these
crucial factors into account.

e Extensive experiments including disturbances and ranéssn

An extensive comparison and assessment of the approadabgssed in this thesis
should be performed via different scenarios for train ane kkharacteristics, OD-
(in)dependent passenger demands, etc. In addition, eliffeet-ups for various case
studies should also be investigated for different numbgtraims, different urban rail
network layouts, different layouts of stations, etc. Farthore, a micro-simulation
model could be used as simulation models instead of usingathee model for both
prediction and simulation as was done in this thesis. Maeeaandomness caused
by disturbances, model errors, etc. in experiments shoalthken into account in
case studies to make the conclusions more general.

Computational efficiency

e Hierarchical optimization techniques.

When more and more trains are involved in the optimal trajggblanning problem,

the proposed greedy approach and simultaneous approddbeaiime slow, espe-
cially for the simultaneous approach. Similarly, with thereasing size of urban rail
networks, the size of the train scheduling problem will grdkamatically and the
computation time will also increase. Therefore, a hiereadroptimization structure
where a big network could be decomposed into smaller nesyadn be developed
to address trajectory planning and train scheduling aeuwfit levels|[30, 116]. The
train trajectory planning could be defined based on diffeagigregation levels, i.e.,
rough trajectories can be optimized at the high level andena@curate trajectories
can be obtained at the lower level based on more detailed Imdgienilarly, a rough

timetable could also be obtained for the train schedulirdpi@m in the higher level

based on a simple model for the whole network. In the loweellew more detailed

model can be employed for the train scheduling.

¢ Distributed optimization techniques.

A distributed optimization structure could also be presdrfor the trajectory plan-
ning for multiple trains and the train scheduling problem#&oge urban rail networks,
where a large railway network can be divided into multiple#ier subnetworks to de-
crease the size of the problem and to reduce the computatien The subnetworks
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can then exchange information with each other, make their @ecisions by taking
the information provided by others into account, negotiéth each other, and finally
converge to a global equilibrium. Game theary [97] and disted model predictive
control methods [18] can be applied to design the communitand coordination
schemes for the subnetworks.

Fast optimization approaches.

When solving the trajectory planning problem for multiplgins and the train schedul-
ing for large urban rail networks, the optimization apptoeeproposed in this thesis
are too slow for real-time applications. Fast optimizatagproaches, e.g., explor-
ing the explicit structure of MILP problems and fast modeddictive control|[126],
can be developed to reduce the computation time. In additiderbased control and
case-based control approaches could be adopted, whemadredff between com-
putation time and performance should be assessed.

8.2.2 Additional directions for future research

Some more general research directions for the operatiombainurail transit systems are
presented as follows:

e Full integration and interfacing between scheduling anerafon control for urban

rail transit networks.

A hierarchical approach can be adopted for the full intégradf scheduling and op-
eration control for urban rail transit networks. The highdefocuses on the whole
railway network, where e.g. a max-plus algebra approacé][dthy be used to opti-
mize train schedules based on a single model for the wholeonkt At the middle
level, the whole network may be divided into several subpéteand a more detailed
model (may include turnaround times, blocking times, pagsetransfers, etc.) could
be used for determining more detailed train schedules basélde rough schedules
given by the high level. The high level should coordinatélé@nt subnetworks of the
middle level to make train schedules feasible. Single urbdrnransit lines could be
considered at the low level, where the train schedules cdartieer refined and the
rolling stock and crews could also be scheduled. An addititower level may be
introduced for the trajectory planning and the operatiotraihs, where the detailed
characteristics of trains are taken into account.

The interfaces between these levels should be developed #iey are important
for the effectiveness of the full integration. Furthermasemonitoring system for

the whole urban rail system should be built to obtain reaktinformation (e.g.,

departure and arrival times of trains, running speeds asitipo of trains, number of

passengers entering the network) for the scheduling aimddomtrol. Furthermore,

approaches for the estimation of OD-dependent passengents and the prediction
of traffic states, etc. should also be investigated sincgdaheimportant issues in the
full integration.

Passenger behavior and route choices.
Urban rail transit networks are becoming more and more cexypkpecially in large
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cities like Beijing, Shanghai, Tokyo, and Paris. Passengan arrive at their desti-
nations through multiple available routes. There are manotofs that influence the
route choice of passengers, such as travel time, transfer, iumber of transfers,
crowdedness of the route. However, nowadays rail operatoronly give general
route advices and passengers have the freedom to chooss thatselves. The
passenger behavior, e.g. how passengers adapt to personalute advices and to
updated train schedules, can be investigated. In additemrain scheduling models
could be developed, which can integrate or anticipate onahi choice behavior of
passengers.

e Multi-operator networks.

In urban rail transit systems, there may exist multiple ogiérators that operate dif-
ferent lines in one network. These rail operators may be etimg with each other
and each of them would want to attract more passengers teasetits market share
and profits. As a consequence, the information about e.ding®and passenger de-
mands could then result in being only partly shared with otiperators. Cooperative
scheduling based on partial information sharing could treenonsidered [65].

The optimization models and algorithms proposed in thisithean also be applied to
control and to optimize other transportation systems sach a

e Bus transit systems.

Bus transit systems with buses running on conventionalrt@mdarry numerous pas-
sengers on short journeys, share many similarities witlamunail transit systems,
such as variety in origin-destination passenger demamd®rtainty in dwell times

and running times, and fixed routes. However, bus transiesysare operated with
lower capacities, lower passenger demands, and more degfdeedoms on the
operations (e.g., overtaking, crossing, and turnarount® model and solution ap-
proaches for train scheduling and trajectory planning jol@y in this thesis can be
extended to bus transit systems, where the effect of otlaet traffic e.g. cars and of
traffic signals should be taken into account.

e Multi-car elevator systems.

Elevator systems are usually controlled by a centralizgubtyevel controller, which

determines where a car should stop to load or to unload pgssenSimilar as the
train scheduling considering passenger demands, eledisjoatching is also char-
acterized by time-varying passenger arrival patterns.rédfbee, the scheduling and
trajectory planning methods presented in this thesis cappked to reduce the wait-
ing time of passengers and the energy consumption.

e Automated guided vehicles (AGVSs).

AGVs are automated vehicles that can load, unload, andpeahgoods in port con-
tainer terminals or manufacturing systems. In generatethee two types of AGVs:
one type follows prescribed routes (indicated by markensioes in the floor) or it

has to select its route from a prescribed route set, whileother type uses vision
or lasers for navigation and it can go to anywhere in the §ipeicarea. In addition,
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energy consumption is very crucial for AGVs with battery pelf since they could
run out of energy. The models and solution algorithms preskim this thesis can
also be extended for AGVs with prescribed routes, in pddictihe limited-energy
aspect should be included in the scheduling problem.
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Symbols and Abbreviations

List of symbols

Below follows a list of the most frequently used symbols iis tesis.

Chapter 3

m mass [kg] of a train
g gravitational acceleration [k
p rotating mass factor [-]

% speed [m/s] of a train

Vmax(S) speed limit [m/s] along the track

S position [m] of a train

u traction or braking force [N] working on a train

Umax, Umin maximum traction and braking force [N]

Ro(V) roll resistance and air resistance [N] of a train

Ri(s,v) line resistance [N] caused by track grade, curves, and tsinne

a(s) slope along the track [rad]

r(s) radius [m] of the curve along the track

li(s) length [m] of tunnels along the track

fe(r(s)) curve resistance [N]

fi tunnel resistance [N]

T given running time [s] for a train

S boundary [m] of discrete space interval

As¢ length [m] of discrete space interval

E(K) kinetic energy [J] of a train at positics

Emin minimum kinetic energy [J]

t(k) passing time [s] of a train at positica

Chapter 4

Vimax speed code [m/s] for a green signal aspect in a three-asB&csystem
Vyellow speed code [m/s] for a yellow signal aspect in a three-agfg8tsystem
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Vimin speed code [m/s] for a red signal aspect in a three-aspecsyF@&m

Hmin FBS minimum headway [s] between trains in a FBS system

HminmBs minimum headway [s] between trains in a MBS system

SFBm boundary [m] of fixed block sectiom

La length [m] of a block in a FBS system

Lt length [m] of the leading train

Ls length [m] of the secure section

S safety margin [m] for braking of the following train

VEax maximum speed [m/s] of the following train

tF reaction time [s] of the driver and equipment of the follog/tnain

LF distance [m] that the following train may travel during tleaction time

ag deceleration [mA of the following train

ts station dwell time [s] of the leading train

V(L) speed [m/s] of the following train at time instant

alee acceleration [mA of the leading train

tgafe safety time margin [s] caused by safety distance marginaiad length

Chapter 5

i train number

j station number

Sj track section length [m] between statipand stationj + 1

di j departure time [s] of trainat station;

a arrival time [s] of traini at stationj

Tilj dwell time [s] of traini at stationj

i running time [s] of train at station;

Vij train speed [m/s] of the holding phase for traimn segmeng

afse acceleration [mA for train i on segmenj

afiec deceleration [mA for train i on segment

ho minimum headway between two successive trains

ki, koi, Kai resistance coefficients for train

Aj passenger arrival rate [passenger/s] at stgtion

Pj passenger alighting proportion when a train arrives aiostgt

Ci max maximum capacity [passengers] of train

W}”"ja” number of passengers waiting for traiat station;

Wi j number of passengers left immediately after the deparfuraio i at
stationj

n{?jma‘“ remaining capacity [passengers] of tramt stationj after the passenger
alighting process

nitfl‘j’ard number of passengers boarding trait stationj

nﬁj'ght number of passengers alighting from tragt station;

Ni.j number of passengers on traiwhen it departs from station

Ti,j,max Ti,j,min
O1d, ..., Uad

maximum and minimum dwell time [s]
coefficients of the minimum dwell time
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Ndoor number of doors of the train

twaiti,j passenger waiting time [s] at statigror traini

tin-vehiclei, j passenger in-vehicle time [s] at statipfor traini

S energy consumption [J] of the acceleration phase at stationtraini

Efold energy consumption [J] of the holding phase at stajior traini

Eiﬁ‘jec energy consumption [J] of the deceleration phase at stationtraini

ttofa|7nom nominal value [s] of the travel time of passengers

Etotalnom nominal value [J] of the total energy consumption

Chapter 6

Sskip skipping set

ho,dep minimum departure headway [s] at terminal station

ho.arr minimum arrival headway [s] at terminal station

To,min minimum dwell time [s] at terminal station

Cge' capacity [passengers] of the terminal station

Yij binary variable to indicate whether traistops at station or not

Aim passenger arrival rate [passengers/s] at stgtfon passenger with
destinatiorm

\l\l}"’f“fn number of passengers with destinatiomvaiting for traini at station;

Wi j.m number of passengers with destinatinmemaining at station

immediately after the departure of trdin
wjvant-to-board number of passengers who want to board tra@instation;

nﬁé%d number of passengers with destinatiooarding traini at stationj

Chapter 7

Sn set of urban rail transit lines

Sita set of stations

Soal set of platforms

p platform index

pP3(p) predecessor of platform

sPR(p) successor of platformp

pra(i) predecessor of train

s4(i) successor of train

& eventk

tk time instant [s] at which everg occurs

Yiypek event type (departure, arrival;change) of everk

ik index of the train corresponding to evexnt

Pk index of the platform corresponding to eveqnt

7\?}3}“’” passenger arrival rates [passengers/s] at statigith destinatiorm
,%fﬁﬁio“ splitting rate of passenger flows that arrive at stajiovith destinatiorm
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Symbols and Abbreviations

walk Rwalk
a5p» Po'p
ewalk-in
twalk-in

train

I,p,m

twalk-out

duration pduration
qpp bp,

duration
ei,p, P

it,bef
Wwalt,be ore

pka't after
wait,
Wiy

and that go to platfornp

coefficients for average walking time from the entrance &afprmp
average walking time [s] for passengers from entrancesatifqoin p
total walking time [s] for passengers from entrances tafptat p
splitting rate to platfornp for passengers that are on board of tigémd
have destinatiom

total walking time [s] for passengers from platfopito exit station
coefficients for average walking time from platfomrio platformp’
average walking time [s] for transfer passengers alighftiog traini
from platformp to platformp’

coefficients for the duration time of the transfer procesafplatformp
to platformp’

duration time [s] for the transfer process from platfgorto platformp’
for traini

number of passengers waiting at platfoppbefore eveng, occurs
number of passengers waiting at platfoppimmediately after eversy

List of abbreviations

The following abbreviations are used in this thesis:

ATP
ATO
ATS
DDP
FBS
ICP
MBS
MILP
MINLP
PWA
SQP
OD-dependent

automatic train protection

automatic train operation

automatic train supervision

discrete dynamic programming

fixed blocking signaling

iterative convex programming

moving blocking signaling

mixed integer linear programming

mixed integer nonlinear programming

piecewise-afine

sequential quadratic programming
origin-destination-dependent

OD-independent origin-destination-independent
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Samenvatting

Optimale Trajectplanning en Treinroostering voor Spoor-
wegsystemen

Veilige, snelle, punctuele, energie-efficiente en cotafoele spoorwegsystemen zijn be-
langrijk voor spooroperatoren, passagiers en het milieaor@le toenemende energieprij-
zen en vanwege milieuoverwegingen is het reduceren vagiemerbruik één van de voor-
naamste doelstellingen voor spoorwegsystemen gewordagelijkertijd is het belangrijk
om passagiers veilig en efficiént te vervoeren, mede gafgairastische toename van het
aantal passagiers in stedelijke spoornetwerken. Het modkidat in dit proefschrift wordt
gepresenteerd, is in de hoofdzaak gericht op het bepalemtark&elen van wiskundige
modellen en oplossingsmethoden om de reistijd van passdgieerkorten en om het ener-
gieverbruik in spoorwegsystemen te reduceren. In het hieo wordt gekeken naar de
reistijd van passagiers bij de treinroostering, terwijltegelijkertijd ook rekening wordt
gehouden met de hoeveelheid passagiers in stedelijke regta@rken. Met de energie-
efficientie wordt tijdens de treinroostering én tijderet besturen van de treinen rekening
gehouden.

De hoofdonderwerpen die in dit proefschrift worden behé&hdainnen als volgt wor-
den samengevat:

e Optimale trajectplanning voor een enkele trein. We hebben het optimale traject-
planningsprobleem bestudeerd voor een enkele trein ordschillende operationele
omstandigheden, waaronder wisselende lijnweerstanidpede snelheidslimieten en
een wisselende maximale aandrijvingskracht. De doelfein@n het optimalisa-
tieprobleem is een afweging tussen energieconsumptiejamfiort. We hebben
twee methoden voorgesteld om dit optimale regelprobleertedpssen, namelijk
een gemengd-integer-lineaire-programmering (MILP) a&rgn een pseudospectrale
aanpak. Simulatieresultaten vergelijken de MILP-aangalpseudospectrale aanpak
en een discrete dynamische-programmeringsmethode enZee dat de pseudo-
spectrale methode resulteert in de beste regelprestati, dat de MILP-aanpak de
beste algehele prestatie biedt als de benodigde rekeiatijdnobeschouwing wordt
genomen.

e Optimale trajectplanning voor verscheidene treinen. We hebben het optimale
trajectplanningsprobleem voor verscheidene treinen metvast-blok seinsysteem
en met een bewegend-blok seinsysteem onderzocht. We helaveplossingsme-
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thoden voorgesteld: de gulzige (in het Engajseedy MILP-aanpak, de simultane
MILP-aanpak, de gulzige pseudospectrale aanpak en detamsupseudospectrale
aanpak. Simulatieresultaten laten zien dat in vergelijkiret de gulzige aanpak, de
simultane aanpak een betere regelprestatie biedt, madamgere rekentijd vergt.
Daarnaast zijn de afwijkingen van de gewenste eindtijd &iMILP-aanpak enigs-
zins groter dan die van de pseudospectrale aanpak, teenigieentijd van de MILP-
aanpak één tot twee ordes van grootte kleiner is dan diel@gseudospectrale me-
thode.

e Treinroostering voor een enkele trein gebaseerd op een ODaafhankelijk pas-
sagiersaantallen. Het treinroosteringsprobleem voor een stedelijke spoonerd
beschouwd met als doel het minimaliseren van de totaldjdeigtn passagiers en
van het energieverbruik van de trein. De vertrektijdetijagn en verblijftijden van
de treinen zijn geoptimaliseerd gebaseerd op oorsprostpimening-onafhankelijke
(OD-onafhankelijke) passagiersaantallen. We hebben ieenve iteratieve convexe
programmering- (ICP) aanpak ontwikkeld om dit treinrodsigsprobleem op te los-
sen. De prestatie van de ICP-aanpak is vergeleken metaiwra methoden, zoals
niet-lineaire programmeringsmethoden, een gemengdenigiet-lineaire-program-
mering (MINLP) aanpak en een MILP-aanpak. In een casus lleelCP-aanpak
voor het treinroosteringsprobleem de beste afweging webi¢ussen regelprestatie
en rekencomplexiteit.

e Treinroostering voor een enkele lijn gebaseerd op OD-afhakelijke passagiers-
aantallen. Voor een enkele stedelijke spoorlijn hebben we een haléestaan-stra-
tegie gebruikt om de reistijden van de passagiers en hegienerbruik verder te re-
duceren, gebaseerd op OD-afhankelijke passagiersaanthliét treinroosteringspro-
bleem met de halte-overslaan-strategie resulteert in ddiRtprobleem; we heb-
ben een efficiente twee-laagsoptimalisatiemethode wesbetd om dit probleem op te
lossen. De halte-overslaan-strategie is presteert bateded altijd-stoppen-strategie.
Simulatieresultaten laten zien dat de twee-laagsaanpelietere regelprestatie biedt
dan de efficiénte twee-laagsaanpak, maar dit gaat ten kasteen langere rekentijd.

e Treinroostering voor netwerken met tijdsafhankelijke en OD-afhankelijke pas-
sagiersaantallenMoor treinroostering van stedelijke spoornetwerken hahie een
gebeurtenis-gestuurd model ontwikkeld, waarin de tijdaakelijke en OD-afhanke-
lijke passagiersaantallen, het splitsen van de passagymreen en het gedrag van pas-
sagiers bij overstappen op stations zijn meegenomen. élataosteringprobleem is
een niet-lineair, niet-convex probleem met reéle vatiabelat kan worden opgelost
met gradiéntvrije niet-lineaire programmeringsmetto(malspattern searchme-
thodes), gradiént-gebaseerde niet-lineaire programg@nethodes (zoals sequenti-
eel kwadratisch programmeren (SQP)), genetische algesimheen MILP-aanpak.
Wij hebben een SQP-methode en een genetisch algoritmep@asige een casus van
het treinroosteringprobleem. De resultaten laten zienld@QP-methode zorgt voor
een beter compromis tussen regelprestatie en rekencoitefilelan het genetische
algoritme.

Yihui Wang



Summary

Optimal Trajectory Planning and Train Scheduling for Rail-
way Systems

Safe, fast, punctual, energy-efficient, and comfortalilenaffic systems are important for
rail operators, passengers, and the environment. Due tm¢heasing energy prices and
environmental concerns, the reduction of energy consumtas become one of the key
objectives for railway systems. On the other hand, with tivedase of passenger demands
in urban rail transit systems of large cities, it is impottémtransport passengers safely
and efficiently. The main focus of the research presentethi;thesis is to determine
and develop mathematical models and solution approachglsaiten the travel time of
passengers and to reduce energy consumption in railwagrsgstMore specifically, the
travel time of passengers has been considered in train sithgdvhere passenger demands
of urban rail transit systems are included. The energy effiy has been taken into account
both in the train scheduling and in the operation of trains.

The main topics investigated in the thesis can be summaaized

e Optimal trajectory planning for a single train. We have considered the optimal
trajectory planning problem for a single train under vasiaperational constraints,
which include the varying line resistance, variable spestrictions, and the vary-
ing maximum traction force. The objective function of thdiopzation problem is a
trade-off between the energy consumption and the ridingedm/\e have proposed
two approaches to solve this optimal control problem, ngraeghixed-integer linear
programming (MILP) approach and the pseudospectral metBadulation results
comparing the MILP approach, the pseudospectral methataatiscrete dynamic
programming approach have shown that the pseudospectitzbciesults in the best
control performance, but that if the required computatioretis also take into con-
sideration, the MILP approach yields the best overall pentnce.

e Optimal trajectory planning for multiple trains. The optimal trajectory planning
problem for multiple trains under fixed block signaling st and moving block
signaling systems has been investigated. Four solutioroappes have been pro-
posed: the greedy MILP approach, the simultaneous MILP cagatr, the greedy
pseudospectral approach, the simultaneous pseudodpretieod. Simulation re-
sults have shown that compared to the greedy approach,thétaneous approach
yields a better control performance but requires a higherpedation time. In addi-
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tion, the end time violations of the MILP approach are sligkdrger than those of
the pseudospectral method, but the computation time of tthéMpproach is one to
two orders of magnitude smaller than that of the pseudosgdéenethod.

e Train scheduling for a single line based on OD-independentgssenger demands.
The train scheduling problem for an urban rail transit lie bbeen considered with
the aim of minimizing the total travel time of passengers #relenergy consump-
tion of the operation of trains. The departure times, rugrnimes, and dwell times
of the trains have been optimized based on origin-destinatidependent (OD-inde-
pendent) passenger demands. We have proposed a new @&e@tixex programming
(ICP) approach to solve this train scheduling problem. Téwgsmance of the ICP
approach has been compared with other alternative appeagich as nonlinear pro-
gramming approaches, a mixed integer nonlinear prograg(NLP) approach,
and an MILP approach. The ICP approach has been shown, vieeastaly, to pro-
vide the best trade-off between performance and compuattmmplexity for the
train scheduling problem.

e Train scheduling for a single line based on OD-dependent pasnger demands.
We have adopted a stop-skipping strategy to reduce thempeseavel time and the
energy consumption further based on origin-destinatigreddent (OD-dependent)
passenger demands in an urban rail transit line. The tréiedading problem with
stop-skipping results in a mixed integer nonlinear prograng problem and we have
proposed a bi-level optimization approach and an efficiétdvel optimization ap-
proach to solve this problem. Simulation results show thattop-skipping strategy
outperforms the all-stop strategy. Moreover, the bi-lemgproach yields a better
control performance than the efficient bi-level approadreiba cost of a higher com-
putation time.

e Train scheduling for networks with time-varying OD-dependent passenger de-
mands. For the train scheduling for urban rail transit networks, vewe developed
an event-driven model, where the time varying OD-depengassenger demands,
the splitting of passenger flows, and the passenger trabsfevior at transfer sta-
tions is included. The resulting train scheduling problena ireal-valued nonlinear
nonconvex problem, which can be solved by gradient-fredimesr programming
approaches (e.g., pattern search), gradient-based sanfimogramming approaches
(e.g., sequential quadratic programming (SQP)), gengarithms, or an MILP ap-
proach. We have applied an SQP method and a genetic algantisnive the train
scheduling problem for a case study, the results of whicle ls&aown that the SQP
method provides a better trade-off between control perdmee and computational
complexity with respect to the genetic algorithm.

Yihui Wang
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