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Chapter 1

Introduction

Rail traffic plays a key role in public transportation since it combines high transport capacity
and high efficiency. More specifically, a safe, fast, punctual, energy-efficient, and comfort-
able railway system is important for the economic, environmental, and social objectives of
a country or a city. The main focus of this dissertation is on saving energy in railway op-
erations and on enhancing the passenger satisfaction, which can be achieved via optimal
trajectory planning for trains and the train scheduling according to passenger demands.

In this chapter we first provide a brief introduction to railway operations and then present
the motivation for the research addressed in this thesis. Weconclude this introductory chap-
ter with a list of our contributions and the structure of thisthesis.

1.1 A brief introduction on railway operations

A railway system consists of three essential elements: infrastructure (like tracks, stations,
signaling equipment, etc.), rolling stock with locomotives and cars or electric multiple units
(EMUs), and the operation rules and procedures for a safe andefficient operation [98]. The
design and construction of the infrastructure and rolling stock are affected by the operation
rules; thus the performance of the railway system is also impacted by the operation rules.
Passenger railway systems could be classified into interurban railway systems (or standard
railway systems) and urban rail transit systems (such as metros and subways). Rail infras-
tructure is a limited resource in interurban rail transit systems, where lines overlap or cross
with each other and trains usually overtake or meet each other. On the other hand, in urban
rail transit systems, the lines are separated from each other and each direction of the line
has a dedicated infrastructure. Moreover, in principle trains do not overtake and meet each
other in urban rail transit systems.

The optimal trajectory planning (i.e., speed profile calculation) methods for the opera-
tion of trains proposed in this dissertation can be applied both for interurban railway systems
and urban rail transit systems. However, train scheduling approaches we present here are
focused on urban rail transit systems.

In railway systems, the operation of trains is in general controlled through a hierarchical
control framework with five levels, i.e., scheduling, real-time (re)scheduling, remote traffic
control, interlocking and signaling, and train and infrastructure control (see Figure 1.1) [89].

1
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Figure 1.1: Hierarchical structure of the railway operations (adopted from [89])

The scheduling process for railway systems involves a complex procedure that includes de-
mand analysis, line planning, train scheduling, rolling stock planning, and crew scheduling
(see Section 2.3 for more detailed information). When delays, interruptions, or failures,
etc. occur, dispatchers in the traffic management centers supervise the railway network and
they resolve the conflicts through rescheduling. The decisions of the dispatchers are then
forwarded to the remote traffic control level, where the local traffic centers set the routes
and issue the speed limits for trains through interlocking systems and signaling systems.
Moreover, there also exists an opposite information flow: the information of train opera-
tions is gathered automatically at the train control level and forwarded upwards to the traffic
management systems.

Safety is an important issue for railway systems, where signaling systems and interlock-
ing systems are employed to prevent collisions between trains and ensure safe train move-
ments. There are two principles for signaling systems, viz.fixed block signaling principle
and moving block signaling principle (for more informationsee Section 2.1.2). In practice,
advanced signaling systems for train control and safety have been developed, such as the Eu-
ropean train control system for interurban railway systems[98] and communication-based
train control systems for urban rail transit systems [67]. More specifically, the European
train control system has three levels, where level 1 and 2 arebased on the fixed block sig-
naling principle and level 3 is based on the moving block signaling principle. For modern
urban rail transit systems, the moving block signaling principle is often implemented in the
communication-based train control system and the fixed block signaling system is also im-
plemented as a back-up. The architecture of the communication-based train control system
may involve automatic train protection (ATP), automatic train operation (ATO), and auto-
matic train supervision (ATS). In particular, the ATP system is used to guarantee the safety
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of the operation of trains, where deviating driving behaviors (like over-speeding or passing
red signals) caused by drivers or ATO systems would trigger an emergency brake. Further-
more, the ATO system can control the traction and braking effort automatically to operate
trains between stations (see Section 2.1.1 for more detailed information). In addition, there
are also some driver assistance systems that have been developed in practice to assist drivers
to drive the train optimally, such as FreightMiser [63], Metromiser [63], and driving style
manager [39].

Train scheduling is crucial for railway operations since ithas a significant impact on
infrastructure usage and punctuality. For interurban railway systems, the timetables are usu-
ally published to provide trip information to passengers. The drawback of fixed timetables
is that adjustments (due to e.g., changes of demand) are difficult to implement. However, in
urban rail transit systems, trains are operated with high frequencies and rail transport oper-
ators often do not publish the train schedule to passengers but only provide some real-time
information, such as that a train will arrive within 2 minutes. Furthermore, the passenger
demands for urban rail transit systems may change rapidly with the time of the day or due
to some special events. Hence, rail transit operators couldschedule trains in real time based
on the passenger demands to increase passenger satisfaction with short and reliable travel
times.

1.2 Motivation and aim of the thesis

Due to the increasing energy prices and environmental concerns, energy efficiency in trans-
portation systems is becoming more and more important [57].For the Beijing urban rail
transit system, the power consumption in 2008 was 6.5 million kWh, which was 1% of the
total power consumption of the city [55]. It is predicted that the power consumption of
Beijing urban rail transits system will rise to 13.9 millionkWh in 2015, which would then
account for 1.2% of the total power consumption [55]. Furthermore, the energy consump-
tion for the operation of trains is about 40-50% of the total power consumption for urban rail
transit systems [138]. Therefore, the reduction of energy consumption for the operation of
trains is one of the key objectives in the operation of railway systems. Meanwhile, the inter-
est of railway operators in energy efficiency has been risingmore and more in recent years,
as even a small improvement in the energy consumption can make the railway operators
save a lot of money.

Furthermore, with the dramatical increase of passenger demand in large cities like Bei-
jing, Shanghai, Tokyo, New York, and Paris, urban rail transit system plays an increasing
role for the efficiency and sustainability for the overall transportation system. Nowadays the
operation of trains in urban rail transit systems is characterized by a high frequency, where
the minimum headway between two successive trains is usually 2 to 5 minutes, which could
even be reduced to 90 s with the development of advanced traincontrol systems [115].
When trains are operated with such a high frequency, the scheduling of trains based on the
passenger demand becomes more and more important for passenger satisfaction and for the
reduction of operation costs. The passenger satisfaction depends on the waiting times, in-
vehicle times, and the number of transfers, while the operation costs are determined by the
number of train services and the energy consumption of trainoperations.

The aim of the thesis is to determine and develop mathematical models and solution



4 1 Introduction

approaches to shorten the travel time of passengers and to reduce energy consumption in
railway systems. With respect to the five-level hierarchical control framework discussed
above (cf. Figure 1.1), scheduling, real-time (re)scheduling, and train control are closely
related to the energy consumption of trains and the travel time of passengers, while the
remote traffic control and the signaling and interlocking systems are responsible for the
safety of the operation of trains. In the train control level, trains are operated by drivers
or ATO systems under the supervision of ATP systems. In addition, trains are assumed to
run according to the schedule given by the train scheduling or real-time (re)scheduling, i.e.,
the fixed running times for trains between two consecutive stations and fixed dwell time
at stations. Generally, the scheduling of trains means to generate an off-line timetable for
the railway system. Based on the existing timetable data, real-time rescheduling is used to
handle route conflicts due to train delays or incidents. In this thesis, real-time scheduling
means that there is no existing timetable or constant headways, but the schedule of trains
is optimized in a rolling horizon way taking passenger demands and operation costs into
consideration. The travel time of passengers is consideredin the train scheduling, where the
running times and dwell times of trains are determined. Notethat the energy consumption
depends on the running times of trains, so the energy saving can also be dealt with in the
train scheduling layer. In this thesis, the following two topics are investigated:

• Trajectory planning. A nonlinear model for the operation oftrains is derived and
several approaches are presented to calculate the optimal trajectories in an energy-
efficient way for trains based on a given train schedule.

• Train scheduling. To shorten the travel time of passengers and to reduce the energy
consumption, we develop a train scheduling model for urban rail transit systems and
optimization approaches to find a balanced trade-off between total passenger travel
time and the operation cost of the rail transport operator.

1.3 Scope and contributions of the thesis

The main contributions of the work presented in this dissertation are as follows:

• We develop a new iterative convex programming (ICP) approach to solve the train
scheduling problem for an urban rail transit line. Constantorigin-destination-independent
(OD-independent) passenger demands within the schedulingperiod is taken into ac-
count in the train scheduling problem.

• We include constant origin-destination-dependent (OD-dependent) passenger demands
within the time period considered in the train scheduling model and we propose an
efficient bi-level approach to solve the problem more efficiently.

• We introduce an event-driven model, which can take time-varying OD-dependent pas-
senger demand, the splitting of passenger flows, and passenger transfer behavior at
transfer stations into account for the train scheduling of urban rail transit network.
This event-driven model consists of three types of events, viz. departure events, ar-
rival events, and passenger arrival rate change events at platforms.
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The contents and contributions can be found in Chapters 3-7 and can be summarized as
follows:

Chapter 3: The optimal trajectory planning problem for the operation of a single
train is considered. The varying line resistance, variablespeed restrictions, and vary-
ing maximum traction force are included in the problem definition. The objective
function is a trade-off between the energy consumption and the riding comfort. Two
approaches are proposed to solve this optimal control problem:

– A pseudospectral method, i.e. a state-of-the-art method for optimal control, is
applied for the first time in optimal train control, where theoptimal trajectory
planning problem is recast into a multiple-phase optimal control problem.

– The optimal trajectory planning problem is reformulated asa mixed-integer lin-
ear programming (MILP) problem by approximating the nonlinear terms in the
problem by piecewise affine functions. The resulting MILP problem can be
solved efficiently by existing solvers.

The main conclusion of the chapter is that if the available time for computing the
solution is large enough, the pseudospectral method is recommended since it has a
higher performance. Otherwise, the MILP approach can be applied to obtain the
optimal train trajectory.

The contents of Chapter 3 can be mainly found in [130] and havebeen partially pre-
sented in [127, 128, 130].

Chapter 4: We investigate the optimal trajectory planning problem formultiple trains
under fixed block signaling systems and moving block signaling systems. The con-
straints caused by the leading train in a fixed or moving blocksignaling system are
included into the model for the operation of trains. Two solution approaches are pro-
posed to solve the resulting optimal control problem for multiple trains:

– The greedy approach optimizes the trajectory of the leadingtrain first and then
based on the optimal trajectory of the leading train, the trajectory planning prob-
lem for the following train is solved. The MILP approach and the pseudospectral
method are employed to solve the optimal trajectory for the leading train and the
following train.

– The simultaneous approach optimizes the trajectory of all the trains in the prob-
lem formulation at the same time, where the MILP approach andthe pseu-
dospectral method are also applied.

In the simulation experiment, we show that simultaneous approach yields a better per-
formance but requires a higher computation time compared with the greedy approach.

The contents of Chapter 4 can be mainly found in [134] and havebeen partially pre-
sented in [129, 131].

Chapter 5: The real-time train scheduling problem for an urban rail transit line is
investigated with the aim of minimizing the total travel time of passengers and the
energy consumption of the operation of trains. Based on the OD-independent pas-
senger demand of the urban rail transit system, the optimal departure times, running
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times, and dwell times are obtained by solving the scheduling problem. Several ap-
proaches are proposed to solve this problem:

– A new iterative convex programming (ICP) approach is proposed to solve the
train scheduling problem.

– Nonlinear programming approaches (sequential quadratic programing (SQP)
and pattern search in particular), a mixed integer nonlinear programming ap-
proach, and an MILP approach are also applied to solve the problem.

We find that the ICP approach provides the best trade-off between performance and
computational complexity comparing with other alternative solution approaches.

The contents of Chapter 5 can be mainly found in [135] and havebeen partially pre-
sented in [132, 133].

Chapter 6: We consider the train scheduling taking constant OD-dependent passen-
ger demands into account for an urban rail transit line. A stop-skipping strategy is
adopted to reduce the passenger travel time and the energy consumption. The train
scheduling problem results in a mixed integer nonlinear programming problem, where
two solution approaches are proposed:

– A bi-level approach is considered to solve the train scheduling problem, where
the higher level optimizes the binary variables and the lower level solves a non-
linear nonconvex problem for each combination of binary variables.

– We also propose an efficient bi-level approach that first applies a threshold
method to obtain a good initial solution for the problem and then limits the
search space of the variables to speed up the optimization process.

Experiment indicates that the bi-level approach has bettercontrol performance, but
the efficient bi-level approach can provide an acceptable solution with much less com-
putation time.

The contents of Chapter 6 can be mainly found in [136] and havebeen partially pre-
sented in [137].

Chapter 7: An event-driven model is proposed for the train scheduling of an urban
rail transit network, where a time-varying OD-dependent passenger demand, splitting
of passenger flows, and passenger transfer behavior at transfer stations are included.
This event-driven model involves three types of events, i.e., departure events, arrival
events, and passenger arrival rate change events at platforms. The train scheduling
problem that is constructed based on the event-driven model, is a real-valued non-
linear nonconvex programming problem. Several solution approaches, such as SQP,
pattern search method, mixed integer linear programming, and genetic algorithms,
can be applied to this train scheduling problem.

The simulation results1 of the case study show that the SQP method provides a better
trade-off between control performance and computational complexity than the genetic
algorithm.

1The pattern search and the MILP approach are not considered in the case study.
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1.4 Thesis outline

A road map of the dissertation is presented in Figure 1.2, which clarifies the connections
between the chapters. According to the road map, readers interested in optimal trajectory
planning could read the dissertation in the following order: Chapter 1, Section 2.1, Section
2.1.2, and Section 2.4 of Chapter 2, Chapter 3, Chapter 4, andChapter 8. Those interested
in the train scheduling problem for urban rail transit system could read the dissertation in
the following order: Chapter 1, Section 2.3 and Section 2.4 of Chapter 2, Chapter 5, Chapter
6, Chapter 7, and Chapter 8.

Chapter 1 gives the motivation and a general introduction tothe topic of the thesis.
Chapter 2 presents the background of the operation of trainsand the train scheduling pro-
cess and summarizes the related research work in the literature. Chapter 3 and Chapter 4
investigate on optimal trajectory planning for a single train and for multiple trains, respec-
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tively. Chapter 5 and Chapter 6 focus on train scheduling foran urban rail transit line, where
the passenger characteristics are described in different ways. The train scheduling problem
for urban rail transit networks is formulated in Chapter 7, where the passenger transfers
are included. Chapter 8 concludes the thesis with the main contributions and directions for
future research.



Chapter 2

Background: Train Operations
and Scheduling

In this chapter, background material and literature reviewon the operation of trains and on
urban rail train scheduling will be presented. In Section 2.1, the operation of trains is intro-
duced, where the automatic train operation (ATO) system is explained in detail. In addition,
a brief introduction to fixed block signaling systems and moving block signaling systems
are also given. An overview of optimal control approaches for the trajectory planning of
a single train and multiple trains is provided in Section 2.2. In Section 2.3, the urban rail
transit scheduling problem is introduced. This chapter concludes with a short summary in
Section 2.4.

2.1 Operation of trains

Nowadays, several dedicated high-speed railway lines and urban rail transit systems with
short headways are operated with a high degree of automation[57]. This requires advanced
train control systems to fulfill safety and operational requirements, such as the European
train control system and communication-based train control systems, which include equip-
ment on board of trains as well as in control centers [93]. Advanced train control systems
enable the energy-efficient driving of trains, which becomes more and more important be-
cause of the rising energy prices and environmental concerns [87].

The ATO system of an advanced train control system drives thetrain according to a pre-
defined train trajectory (i.e., a speed profile) [100] to ensure punctuality and energy saving.
In addition, signaling systems in train control systems areimportant for running safety of
trains. In this section, we first give a brief introduction toATO systems and then provide a
short introduction to the principle of signaling systems.

2.1.1 Automatic train operation

With the development of modern railway systems, automatic train control systems have
become vital equipment that ensures the running safety, shortens the train headways, and

9
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Figure 2.1: The structure of an advanced automatic train control (ATC) system [33]

improves the quality of train operations [100]. An advancedautomatic train control system
could consist of an automatic train protection (ATP) system, an automatic train supervision
(ATS) system, and an ATO system as shown in Figure 2.1 [33]. The onboard ATP system
is responsible for supervising the train speed according tothe safety speed profile and for
applying an appropriate braking force if necessary. In addition, the onboard ATP system
also communicates with the wayside ATP system to exchange information (e.g., temporary
speed limits and the limits of movement authority (i.e., themaximum position that a train
is allowed to move to)) to guarantee the safety of the operations of trains. The ATS system
acts as an interface between the operator and the railway system, managing trains according
to the specific regulation criteria. The ATO system controlsthe traction and braking force to
keep the train speed under the speed limit established by theATP system. The ATO system
can be used to facilitate the driver or to operate the train ina fully automatic mode; it thus
plays a key role in ensuring accurate stopping, operation punctuality, energy saving, and
riding comfort [100].

An onboard ATO system consists of two levels of control actions, as conceptually il-
lustrated in Figure 2.2. The higher level optimizes the optimal speed-position reference
trajectory for the operation of the train, where the line resistance, speed limits, maximum
traction and braking forces, etc. are taken into account. The low-level control is used to
make the train track the pre-planned reference trajectory via certain control methods (such
as PID control, model predictive control, and robust control). The traction or braking con-
trol commands are implemented to the train and information on e.g. the speed and position
of the train is collected by the sensors and transferred to the ATO system in real time.

The driving performance including punctuality, energy consumption, etc. strongly de-
pends on the optimal reference trajectory both when the train is partly or fully controlled
by the ATO system. In addition, there exist several driver assistance systems to enhance
the driving performance of the drivers, such as the FrightMiser, Metromiser, and the driv-
ing style manager. The FrightMiser and Metromiser systems [63] were developed by the
scheduling and control group of the University of South Australia in order to calculate the
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Figure 2.2: The schematic diagram of the control actions in an ATO system

optimal reference trajectory and to give advices to the drivers of long-haul trains and subur-
ban trains respectively. That group mainly focused on minimizing the energy consumption
through Pontryagin’s principle. The driving style manager[39] developed by Bombardier
implements discrete dynamic programming to calculate energy-efficient train trajectories,
which are then displayed to the train driver. Whenever the train stops at a station, the driv-
ing style manager calculates the optimal trajectory to the subsequent station using real-time
information.

ATO systems and driver assistance systems are able to take advantage of a precomputed
train speed trajectory. However, if the operational conditions change, the ATO system will
calculate an updated optimal trajectory. Therefore, it is important to design efficient al-
gorithms to find the optimal speed-position reference trajectory. In the literature, various
algorithms have been developed to optimize the speed trajectory for trains and these algo-
rithms will be reviewed in Section 2.2.

2.1.2 Principles of signaling systems

Block signaling is used to maintain a safe distance between successive trains on the same
track. There are two main types of signaling systems, namelyfixed block signaling systems
and moving block signaling systems. The main principles of those two signaling systems
are presented next.

Fixed block signaling systems

Fixed block signaling (FBS) systems are commonly used in railway operation systems
nowadays [98]. In FBS systems, a track is divided into blocks, the length of which depends
on the maximum train speed, the worst-case braking rate, andthe number of signal aspects,
such as a green, yellow, or red. Each block is exclusively occupied by only one train and
the presence of a train within a block is usually detected by the track circuits [115]. Further-
more, blocks are protected by wayside signals (i.e., signals next to the track) or cab signals
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Figure 2.3: Three aspect fixed block signaling system

(i.e., visual signals on board of trains). Wayside signals are still typical in railways, how-
ever, cab signals are used more and more, in particular on high-speed lines where wayside
signals cannot be watched clearly by drivers because of the high speed. There are one-block
signaling and multiple-block signaling in FBS systems [98]. In one-block signaling, the
indication of the block signal depends only on the state of the block section after the signal
and every block signal must have a distant signal, which is supposed to provide the required
approach information. In multiple-block signaling systems, the indication of a block signal
depends on the state of two or more subsequent block sections.

A simple example is a two-block signaling system with three aspects, i.e. red, yellow,
and green, and which is also called a three-aspect signalingsystem. Such a three-aspect
signaling system on a line equipped with an ATP system is shown as Figure 2.3. Each block
carries an electronic speed code through its track circuit.The speed code data consists
of two parts: the authorized-speed code for this block and the target-speed code for the
next block. The speed code data is coded by the electronic equipment controlling the track
circuitry and is transmitted via tracks. This speed code data is then picked up by antennae
on board of the train. If a train tries to enter a zero speed block or an occupied block, or
if it enters a section at a speed higher than that authorized by the speed code, the onboard
electronics will trigger an emergency brake.

Moving block signaling systems

With the increasing operational density in railway systems, railway systems with an FBS
system are often suffering from a shortage in transportation capacity. Even though the line
capacity of an FBS system can be increased by using shorter block lengths, the installa-
tion and maintenance cost of the signaling and track equipment may not be justified by
the increased capacity. Consequently, moving block signaling (MBS) systems have been
proposed to achieve a higher performance.

In an MBS system, the blocks are defined as dynamic safe zones around each train.
Regular communication between trains and local traffic centers is needed for knowing the
exact locations and speeds of all trains in the area controlled by the local traffic center at
any given time. Therefore, compared to an FBS system, an MBS system allows trains to
run closer together, thus increasing the transport capacity. The local traffic center computes
the so-called limit of movement authority for every train inthe area it controls and makes
sure that each train will be running at a safe distance with respect to other trains (cf. Figure
2.4). More specifically, the limit of movement authority represents the maximum position
that a train is allowed to move to and it is determined by the tail of the preceding train with
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a safety margin included. In addition, the limit of movementauthority of the following
train moves forward continuously as the leading train travels. In the literature, four MBS
schemes [99] have been discussed: moving space block signaling, moving time block sig-
naling, pure MBS, and relative MBS. Takeuchi et al. [115] evaluated the first three schemes
and compared them with the FBS scheme based on two basic criteria, viz. steady-state per-
formance and perturbed performance. It is concluded that the pure MBS scheme gives the
best performance. In addition, Takeuchi et al. [115] statedthat the concept of the relative
MBS has never been accepted for regular rail traffic even though it is routinely accepted for
road traffic. Therefore, we will mainly consider the pure MBSscheme later on in this thesis.
However, the proposed approaches can be extended to other MBS schemes too. Moreover,
the pure MBS scheme is the basis of all systems currently implemented in practice [115].

In a pure MBS system, the minimum distance between two successive trains is basically
the sum of the instantaneous braking distance required by the following train and a safety
margin (which is introduced to avoid collisions even if the leading train comes to a sudden
halt) as shown in Figure 2.4. However, the minimum distance between trains in practice
should also take the train length and the running distance during the reaction time of the
drivers or automatic train control systems into account.

2.2 Optimal trajectory planning of trains

In this section, we first give a literature review on the optimal trajectory planning of a single
train and then the state-of-the-art on the trajectory planning of multiple trains with signaling
constraints is reviewed.

2.2.1 Optimal trajectory planning of a single train

The research on optimal trajectory planning for a single train started in the 1960s. A simpli-
fied train optimal control problem was studied by Ichikawa [66], who solved the problem by
using Pontryagin’s principle. Later on, many researchers explored this optimal control prob-
lem by applying various methods, since it has significant effects for energy saving, punc-
tuality, and riding comfort. These methods can be grouped into two main categories [39],
viz., analytical solution and numerical optimization. Theaim of this section is to give an
overview of the research on optimal trajectory planning. Thereby, the research reported in
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literature will be reviewed using these two categories.

• Analytical solution:
The train is usually modeled as a point mass in the optimal control problem. Ac-
cording to whether the traction and braking force is continuous or discrete, there are
two kinds of models, i.e. continuous-input models and discrete-input models. The re-
search on discrete-input models is mainly done by the SCG group of the University of
South Australia [62, 63]. A type of diesel-electric locomotive is considered, the throt-
tle of which can take only on a finite number of positions. Eachposition determines
a constant level of power supply to the wheels. Several results, which include con-
sideration of varying grades and speed restrictions, were presented. However, nowa-
days many locomotives or motor cars can provide a continuoustraction and braking
force making the use of continuous-input models necessary.For a continuous-input
model, Khmelnitsky [72] described the mathematical model of the train by using
the kinetic energy as the state variable. In that study, the optimal control problem
was solved under varying grade profile and speed restrictions of rail lines. Liu and
Golovicher [87] developed an analytical approach which combined the Pontryagin’s
principle and some algebraic equations to obtain the optimal solution, which con-
tains the sequence of optimal controls and the change points, for the continuous-input
model.

The optimal trajectory of an analytical solution typicallycontains four optimal control
regimes: maximum acceleration, cruising at constant speed, coasting, and maximum
deceleration. It is worth to note that the analytical methods often meet difficulties if
more realistic conditions are considered that introduce complex nonlinear terms into
the model equations and the constraints [74].

• Numerical optimization:
A number of advanced techniques such as fuzzy and genetic algorithms have been
proposed to calculate the optimal reference trajectory fortrains. Chang and Xu [22]
proposed a modified differential evolution algorithm to optimally tune the fuzzy mem-
bership functions that provide a trade-off between punctuality, riding comfort, and en-
ergy consumption. The implementation of a genetic algorithm to optimize the coast-
ing regions along a line is presented by Chang and Sim [21]. Han et al. [56] also used
a genetic algorithm to construct the optimal reference trajectory taking non-constant
grade profile, curve, and speed limits into account. They concluded that the perfor-
mance of their genetic algorithm is better than that of the analytic solution obtained
by Howlett and Pudney [63] in view of energy saving.

The train optimal control problem was solved by nonlinear programming and dy-
namic programming in [39]. The performance of a sequential quadratic program-
ming algorithm and discrete dynamic programming were evaluated. Ko et al. [74]
applied Bellman’s dynamic programming to optimize the optimal reference trajec-
tory. Multi-parametric quadratic programming1 was used to calculate optimal control

1The multi-parametric quadratic programming problem is defined as follows:

min
x

xT Hx+(C+qTE)x

s.t. Ax≤ b+Dq
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laws for trains in [123]. The nonlinear train model with quadratic resistance was ap-
proximated by a piecewise affine function. The resulting optimal control law was a
piecewise affine function, which relates the traction forceto the train position and
speed.

A disadvantage of numerical solution methods is that the optimal solution is not al-
ways guaranteed and the convergence speed is uncertain in general. In addition, the
computation often takes rather long.

2.2.2 Optimal trajectory planning of multiple trains

The solution approaches for the trajectory planning of a single train presented in Section
2.2.1 ignore the impact caused by signaling systems, e.g., an FBS system or an MBS system.
In the literature, Lu and Feng [88] considered the operationof two trains on a same line
and optimized the trajectory of the following train considering the constraints caused by
the leading train in an FBS system. More specifically, a parallel genetic algorithm was
used to optimize the trajectories for the leading train and the following train, resulting in
a lower energy consumption [88]. Gu et al. [54] also considered the trajectory planning
of two trains and they applied nonlinear programming to optimize the trajectory for the
following train, where two situations of the leading train,i.e. running and stopped, were
considered. In addition, Ding et al. [31] took the constraints caused by an MBS system
into account and developed an energy-efficient multi-traincontrol algorithm to calculate the
optimal trajectories. Three optimal control regimes, i.e.maximum traction, coasting, and
maximum braking, were adopted in the algorithm and the sequences of these three regimes
were determined by a predefined logic [31].

For optimal trajectory planning of trains, the analytical methods often meet difficul-
ties to find analytical solutions if more realistic conditions are considered that introduce
complex nonlinear terms into the model equations and the constraints. For the numerical
optimization approaches, the optimal solution is not always guaranteed. In addition, the
computation is often too slow. In Chapter 3 and Chapter 4 of this thesis, we will develop
efficient approaches to provide a balanced trade-off between accuracy and computational
efficiency for the trajectory planning of trains. Furthermore, since the operation of trains
is highly influenced by signaling systems and only a few researchers studied the impact
of signaling systems in trajectory planning problem, we will also investigate the trajectory
planning problem with signaling constraints in this thesis.

2.3 Urban rail transit scheduling process

A general scheduling both for interurban and urban rail transit systems is a highly complex
process, which is often divided into several steps [48]: demand analysis, line planning, train
scheduling, rolling stock planning, and crew scheduling asshown in Figure 2.5. First, the
passenger demand has to be assessed and analyzed. Consequently, the amount of travelers
wishing to go from certain origins to destinations is determined. Next, line planning is
performed, which decides the routes or lines to be operated and the nominal frequency of

with q a parameter.
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Figure 2.5: The hierarchical planning process of railway system [48]

the service. During the train scheduling step, all departure and arrival times at all stations
of the lines are planned, i.e., the timetable is determined.The rolling stock planning assigns
trains to all the lines. Similarly, the crews are distributed to different trains through the
crew scheduling. Note that in this thesis we focus on train trajectory planning and train
scheduling.

For urban rail transit systems, not all steps are equally important. There are specific
characteristics for urban rail transit systems. The degreeof freedom in the line planning
is limited because the routes for the operation of trains have been fixed when the urban
rail lines were constructed, i.e., trains do not move from one line to another during regular
operation. Therefore, only the frequencies of the service,the stop-skip schedule on a certain
line, and the size of train fleet can be regulated through coupling or decoupling of multiple
train units to adapt varying passenger demands in urban railtransit lines. In this section, the
passenger demand and the train scheduling for urban rail transit systems will be discussed
in detail.

2.3.1 Passenger demand

Passenger demand estimation is the basis for the whole planning process. Traditionally, de-
mand estimation relies heavily on costly and unreliable manual data collection, e.g., using
passenger surveys to estimate origin-destination (OD) travel patterns. The results obtained
by this kind of manual data collection maybe subject to bias and even error [146]. However,
nowadays most urban rail transit systems have been equippedwith automatic passenger
counting systems and automatic fare collection systems, which can provide accurate pas-
senger information to rail operators. Automatic passengercounting systems are used to
count the number of passengers getting on and getting off trains at stations. With automatic
fare collection systems, passengers need to use their fare cards when entering and exiting
urban rail transit systems, so the location and time of each passenger’s fare transactions can
be recorded.

The passenger demand can be described by the following two ways:
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• OD-independent passenger demands

When describing the passenger demand in an OD-independent way, the origin and
destination of each passenger are not considered. The passenger arrival rate at a
certain station is then e.g. defined as the number of passengers arriving at the station
during a predefined time period [36].

• OD-dependent passenger demands

The OD-dependent passenger demand is defined as an estimation of the number of
people wishing to travel from an origin to a destination overa certain period of time
during the day. The OD-dependent passenger demand can be conducted using the
available passenger information, see [82, 143, 146] for details.

2.3.2 Train scheduling

Train scheduling has been studied for decades via differenttechniques [23], such as linear
programming [101, 114], integer or nonlinear programming [48, 59, 75, 81], and graph
theory [28]. In these papers, the available resources, e.g., the single tracks and the crossings,
are shared by trains with different origins and destinations. Thus, the trains may overtake
and cross each other at some specific locations, such as sidings and crossings. However,
the lines in urban rail transit usually have double tracks, where each track is used for one
direction of train operation. Train overtaking and crossing is normally not allowed during
the operations of urban rail transit systems. Here, we concentrate on urban rail transit
systems.

Scheduling of trains for urban rail transit

In 1980, Cury et al. [26] presented a methodology to generateoptimal schedules for metro
lines based on a model of the train movements and of the passenger behavior. The per-
formance index included passenger delay, passenger comfort, and the efficiency of the op-
eration of trains. The resulting nonlinear scheduling problem was recast into several sub-
problems by Lagrangian relaxation and then solved in a hierarchical manner [26]. Since
the convergence rate of the hierarchical decomposition algorithm can be quite poor in some
cases, Assis and Milani [4] proposed a model predictive control algorithm based on linear
programming to optimize the train schedule. The algorithm proposed in [4] can effectively
generate train schedules for the whole day. Kwan and Chang [78] applied a heuristic-based
evolutionary algorithm to solve the train scheduling problem, where the operation costs
and the passenger dissatisfaction are included in the performance index. The train schedul-
ing problem is formulated as a periodic event-scheduling problem based on a graph model
in [83], which is then solved using integer programming methods. The approach proposed
by Liebchen has been applied in Berlin subway systems [84]. The passenger transfer be-
havior and transfer waiting times are considered in [142], which presents a mixed-integer
programming optimization model to synchronize the train schedules for different urban rail
transit lines. Furthermore, a demand-oriented timetable design is proposed in [1], where the
optimal train frequency and the capacity of trains are first determined and then the schedule
of trains are optimized. Vazquez et al. [124] proposed a stochastic approximation approach
to adjust the frequencies of different urban transit lines according to the observed variable
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passenger demand. However, the energy consumption of railway operation and dwell times
at stations are not included in the model of [124].

Real-time scheduling or rescheduling of trains

Since trains do not run exactly according to the predefined schedule in practice, real-time
scheduling approaches have been proposed. In the literature, there are several interpretations
for real-time scheduling. For interurban railway systems,real-time scheduling is based
on the existing timetable data and is used to handle route conflicts due to train delays or
incidents [17, 25, 28, 32, 70, 71, 76, 92, 121]. However, in urban rail transit systems, real-
time scheduling regulates the headways between trains based on a train schedule with a
constant headway.

Several rescheduling approaches have been proposed for urban rail transit systems [42]:
holding, zone scheduling, short turning, deadheadin, and/or stop-skipping [20, 36, 47, 111].
Holding is used to regulate the headways by holding an early-arriving train, or a train with
a relatively short leading headway [36]. In zone scheduling[47], the whole line is divided
into several zones, where the trains stop at all stations within a single zone and then run
to the terminal station without stopping. The required number of trains and drivers and
passenger travel times may be reduced by the zone scheduling, where the zones are defined
based on the passenger flows. There are short-turnning and full-length trips operating on the
line in the short-turning strategy [20, 111], where the short-turning trips serve only the zone
with high demands and the full-length trips run the whole line. The deadheading strategy
involves some trains running empty through a number of stations at the beginning of their
trips to reduce the headways at later stations [35, 42]. A dynamic stop-skipping strategy is
frequently used in lines with high demands, as it allows those trains that are late and behind
the schedule to skip certain low-demand stations and in thatway increase the running speed.

Wong and Ho [141] proposed dwell time and running time control for the real-time
rescheduling problem of urban rail transit systems. They applied a dynamic programming
approach to their rescheduling model to devise an optimal set of dwell times and running
times [141]. In addition, Goodman and Murata [52] formulated the train rescheduling prob-
lem from the perspective of passengers, where a gradient calculation method was developed
to solve the rescheduling problem in real time. Furthermore, Norio et al. [94] proposed to
use passenger dissatisfaction as a criterion for the rescheduling and applied a meta-heuristics
algorithm to solve the rescheduling problem.

As demonstrated in [41, 79], the stop-skipping strategy canreduce the passenger travel
time and the operation cost of rail transit operators. The stop-skipping operation was first
developed for the Chicago metro system in 1947 [41]. Now, theSEPTA line in Philadelphia,
Helsinki commuter rail, and the metro system in Santiago, Chile apply the stop-skipping
train schedule in practice. They apply a static stop-skipping strategy [79], i.e., the A/B skip-
stop strategy, where stations are divided into three types:A, B, and AB; A train services
stop at A stations and AB stations, while B train services stop at B stations and AB stations.
Major stations are usually labeled with the type AB; so all trains stop there. The transit
operators provide the stop-skipping information to passengers via panels at platforms and
announcements in the trains. The Santiago metro operator stated that passengers adapt to the
stop-skipping strategy quickly [41]. Elberlein [34] formulated the stop-skipping problem as
a mixed integer nonlinear programming problem, where trains can skip some station strings
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(i.e., a collection of consecutive stations). Fu et al. [42]represented the skipping of stations
by trains as binary variables and obtained a mixed integer nonlinear programming problem,
which was solved using an exhaustive approach. Lee [79] applied genetic algorithm to
obtain the optimal train schedule and to find the best combination of the stop-skipping trains
and the all-stop trains based on the A/B stop-skipping strategy.

The passenger demand for urban rail transit systems increases dramatically and varies
significantly along urban rail transit lines and the time of the day. To satisfy the passenger
demand, trains are operated with small headway, which is around 2-5 minutes. Therefore,
the scheduling of trains according to the passenger demand becomes more and more impor-
tant for reducing the operation costs and for guaranteeing passenger satisfaction2.

2.4 Summary

A brief introduction to the operation of trains and the principle of signaling systems has been
presented in this chapter. We have briefly discussed the literature of the optimal trajectory
planning for trains and of the train scheduling for urban rail transit systems. In addition, we
have motivated why the work of this thesis is needed.

2Passenger satisfaction can be characterized by waiting times, onboard times, the number of transfers, the
onboard crowdedness, etc.
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Chapter 3

Optimal Trajectory Planning for a
Single Train

In this chapter, the optimal trajectory planning problem for the operation of a single train
under various constraints and with a fixed arrival time is considered. The objective function
is a trade-off between the energy consumption and the ridingcomfort. Two approaches are
proposed to solve this optimal control problem, viz. a pseudospectral method and a mixed
integer linear programming (MILP) approach. In the pseudospectral method, the optimal
trajectory planning problem is recast into a multiple-phase optimal control problem, which
is then transformed into a nonlinear programming problem. For the MILP approach, the
optimal trajectory planning problem is reformulated as an MILP problem by approximating
the nonlinear terms by piecewise affine (PWA) functions. Theperformance of these two
approaches will be compared through a case study.

The research discussed in this chapter is based on [127, 128,130].

3.1 Introduction

As has been mentioned in the literature survey of Chapter 2, it is important to design efficient
algorithms to find the optimal speed-position reference trajectory. This chapter proposes two
approaches to determine the optimal trajectory, viz. a pseudospectral method and an MILP
approach.

Over the last decade, pseudospectral methods have risen to prominence in the numerical
optimal control area [37]. Pseudospectral methods were applied to solving optimal control
problems [50], such as orbit transfers, lunar guidance, magnetic control. However, to the
author’s best knowledge, pseudospectral methods have not been applied to trajectory plan-
ning of trains. Therefore, the pseudospectral method is used for the first time to solve the
train trajectory planning problem.

On the other hand, multi-parametric quadratic programmingis used in [123] to calculate
the optimal control law for train operations. The nonlineartrain model with quadratic resis-
tance is approximated by an PWA function. Inspired by [123],in this chapter we propose to
solve the optimal trajectory problem as an MILP problem.

21
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The remainder of this chapter is organized as follows. In Section 3.2 a nonlinear model
of train operations is presented. Section 3.3 formulates the optimal trajectory planning
problem. In Section 3.4, two solution approaches are proposed to solve the resulting op-
timal control problem: a pseudospectral method and a mixed integer linear programming
approach. Section 3.5 illustrates with a case study how to calculate the optimal reference
trajectory by the pseudospectral method and the MILP approach and it also compares these
two approaches with the discrete dynamic programming approach. We conclude with a
short discussion of some topics for future work in Section 3.6.

3.2 Model formulation

3.2.1 Train model

In the literature on train optimal control, the mass-point model of train is often used [40].
The motion of a train can then be described by the following simple continuous-time model
[87]:

mρ
dv
dt

= u(t)−Rb(v)−Rl(s,v), (3.1)

ds
dt

= v, (3.2)

wherem is the mass of the train,ρ is a factor that represents the rotating mass [57],v is
the velocity of the train,s is the position of the train,u is the control variable, i.e., the
traction or braking force, which is bounded by the maximum traction forceumax and the
maximum braking forceumin, umin ≤ u≤ umax, Rb(v) is the basic resistance including roll
resistance and air resistance, andRl(s,v) is the line resistance caused by track grade, curves,
and tunnels.

The maximum traction forceumax is often considered as constant in the literature [62].
However, in reality it is a function of the velocityv. Due to the maximum adhesion and
the characteristics of the power equipment [57], the diagram of the maximum traction force
umax as a function of the speedv normally looks like the one shown in Figure 3.1 [57]. This
diagram is described as a group of hyperbolic or parabolic formulas in [57], where each
formula approximates the actual traction force for a certain speed interval. For example,
if the train speedv belongs to interval[v j ,v j+1], then the maximum traction force can be
written as

umax(v) = c1, j + c2, jv+ c3, jv
2, v∈ [v j ,v j+1], (3.3)

or
umax(v) = ch, j/v, v∈ [v j ,v j+1], (3.4)

for j = 1,2, · · · ,M−1, wherev j , v j+1, c1, j , c2, j , c3, j , andch, j are determined by the char-
acteristics of the train.

According to the arguments for the maximum braking force given in [57], the full brak-
ing effort is reserved for an emergency stop. More specifically, under normal circumstances
the train driver or automatic train operation system brakesin a comfort mode, where the
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Figure 3.1: Maximum traction force as a function of train speed [57]

maximum force for the service breaking is 0.75 times that of the emergency braking, i.e.,
the full braking effort. On the other hand, the braking effort (including the maximum brak-
ing effort) is considered as constant by some common safety systems, such as the European
Train Control System and the German continuous train control system [57]. Therefore, the
maximum force for service braking is taken to be constant in this chapter.

In practice, according to the Strahl formula [103] the basicresistanceRb(v) can be
described as

Rb(v) = m(a1+a2v
2),

where the coefficientsa1 anda2 depend on the train characteristics and the wind speed.
These coefficients can be estimated from the known data aboutthe train.

The line resistanceRl(s,v) caused by track slope, curves, and tunnels can be described
as [90]

Rl(s,v) = mgsinα(s)+ fc(r(s))+ ft(lt(s),v), (3.5)

whereg is the gravitational acceleration,α(s), r(s), and lt(s) are the slope, the radius of
the curve, and the length of the tunnel along the track, respectively. The curve resistance
fc(·) and the tunnel resistanceft(·) are given by empirical formulas. An example of such
an empirical formula of the curve resistance is Roeckl’s formula [64]:

fc(r(s)) =

{

6.3
r(s)−55m for r(s)≥ 300 m,

4.91
r(s)−30m for r(s)< 300 m.

When running in tunnels, the train experiences a higher air resistance that depends on the
tunnel form, the smoothness of tunnel walls, the exterior surface of the train, and so on.
An example of an expression for the tunnel resistance is as follows [43, 64]. If there is a
limiting gradient1 in the tunnel, then an empirical formula for the tunnel resistance is

ft(lt(s),v) = 1.296·10−9lt(s)mgv2.

1A limiting gradient is defined as the maximum railway gradient that can be climbed without the help of a
second power unit.
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If there does not exist a limiting gradient, the tunnel resistance can be calculated by the
following empirical formula:

ft(lt(s),v) = 1.3 ·10−7lt(s)mg.

For the tracks outside the tunnels, the tunnel resistance isequal to zero.

Remark 3.1 Different types of rolling stock can be modeled by the mass-point model, the
parameters of which, such as mass, maximum traction force, and resistance coefficients,
may vary according to different types of rolling stock. The existing infrastructure of tracks
can be described accurately by using the line resistance (3.5), which includes track slope,
curves, tunnels. In addition, the signaling aspects and thedisturbances caused by other
trains are assumed to be taken care of by a lower control level. Furthermore, different train
categories (high speed trains, regional and intercity trains, freight trains) can be handled by
a higher control level during train scheduling, which specifies different running times and
dwell times for each train. The approaches proposed in this chapter can then be applied to
obtain the optimal trajectory for each trip between two stations to save energy and to ensure
passenger comfort based on the given timetable. ✷

3.2.2 An assumption about the line resistance

The line resistanceRl(s,v) caused by track slope, curves, and tunnels is a nonlinear function
of the train’s position and speed. In order to simplify the consideration of the line resistance,
we rewriteRl(s,v) in (3.5) as

Rl(s,v) = ξ1(s)+ ξ2(s)v
2, (3.6)

whereξ1(s) collects terms that do not depend on the train’s speed. In thesequel of this
chapter,ξ1(s) and ξ2(s) are assumed to be piecewise constant functions, which can be
written as

ξ1(s) = ξ(i)1 for s∈ [s(i)0 ,s(i)f ],

ξ2(s) = ξ(i)2 for s∈ [s(i)0 ,s(i)f ],
(3.7)

for i = 1,2, · · · ,NR, whereNR is the number of the piecewise constant subfunctions,s(1)0 =

sstart is the position at the beginning of the route,s(NR)
f = send is the position at the end of the

route, ands(i+1)
0 = s(i)f for i = 1,2, · · · ,NR−1. Therefore, the line resistance can be written

as
Rl(s,v) = ξ(i)1 + ξ(i)2 v2, for s∈ [s(i)0 ,s(i)f ]. (3.8)

3.3 Mathematical formulation of the single train trajec-
tory planning problem

As stated in [87], reference trajectory planning for trainscan be formulated as an optimal
control problem. The traction or braking forceu is then the control variable. The state
variables are the train positionsand speedv. The objective function to be minimized could
be the trip time, the energy consumption for a given trip time, or the total operation cost (a
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weighted sum of energy consumption and trip time). In this chapter, we consider the ob-
jective criterion to be the energy consumption in a fixed timespan[0,T] with T determined
by a fixed or a flexible timetable [29, 57], or being the result of a rescheduling operation of
railway traffic after disturbances [76]. In addition, the riding comfort is considered, which is
expressed as a function of the change of the control variableu, since reducing the number of
transitions and the rate of change ofu may improve passenger comfort [22]. The objective
function can thus be written as:

J =

∫ T

0

(

u(t) ·v(t)+λ ·
∣

∣

∣

du(t)
dt

∣

∣

∣

)

dt (3.9)

whereJ is the weighted integral of the energy consumption and riding comfort andλ > 0 is
the weight which can be decided by rail operators based on experience. This function will
be minimized subject to the train dynamics (3.1) and (3.2), the constraints

umin≤ u(t)≤ umax(v) (3.10)

0≤ v(t)≤Vmax(s) (3.11)

and the boundary conditions

s(0) = sstart, v(0) = vstart, (3.12)

s(T) = send, v(T) = vend, (3.13)

where the maximum allowable velocityVmax(s) depends on the train characteristics and the
line conditions, and as such it is usually a piecewise constant function of the coordinates
[72, 87];vstart andvend are the velocity at the beginning and the end of the route.

As proposed in some previous works [40, 62, 72, 87], it is better to choose the position
sas an independent variable rather than the timet. On the one hand, the choice of the posi-
tion sas the independent variable will simplify the consideration of track-related data, such
as line resistance and speed limits. On the other hand, the analytical and numerical study
of the optimal control problem will be significantly simplified then. Furthermore, Khmel-
nitsky [72] chose the total energy of the train and timet as states where the total energy
includes kinetic and potential energy. Similarly, Franke et al. [40] used kinetic energy per
mass unit and time as states. The choice of kinetic energy instead of speedv will facilitate
the study of the optimal control problem, because this choice eliminates some (but not all) of
the model nonlinearities. Therefore, we also choose kinetic energy per mass unit̃E = 0.5v2

and timet as states, and the positions as the independent variable. The continuous-time
model (3.1) and (3.2) can then be rewritten as the following continuous-space model2:

mρ
dẼ
ds

= u(s)−Rb(
√

2Ẽ)−Rl(s,v), (3.14)

dt
ds

=
1√
2Ẽ

. (3.15)

2The transformation fromdv
dt to dẼ

ds goes as follows:

dv
dt

=
dv
ds

ds
dt

= v
dv
ds

=
dẼ
ds

whereẼ = 0.5v2.
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The optimal control problem corresponding to (3.9)-(3.13)can be stated as: minimize the
objective function3

J =

∫ send

sstart

(

u(s)+λ ·
∣

∣

∣

du(s)
ds

∣

∣

∣

)

ds (3.16)

subject to the model (3.14) and (3.15), the constraints

umin≤ u(s)≤ umax(v), (3.17)

0≤ Ẽ(s)≤ Ẽmax(s), (3.18)

and the boundary conditions,

Ẽ(sstart) = Ẽstart, Ẽ(send) = Ẽend, (3.19)

t(sstart) = 0, t(send) = T, (3.20)

whereẼmax(s) = 0.5V2
max(s), Ẽstart= 0.5v2

start, andẼend= 0.5v2
end. For the above equations, it

is assumed that the unit kinetic energyẼ(s) satisfiesẼ(s)≥Emin > 0 with Emin a small pos-
itive number, which means the train’s speed is always strictly larger than zero, i.e., the train
travels nonstop. Khmelnitsky [72] states that this assumption is not restrictive in practice for
two reasons. First, the speed of the initial start and the terminal stop can be approximated
by small nonzero velocities. Second, stops at an intermediate point of the trip will in prin-
ciple not be planned deliberately in the optimal control design for a single train’s operation
since intermediate stops and the corresponding restarts would result in an increased energy
consumption.

Remark 3.2 There may also exist some other constraints that result fromthe timetable,
real-time operation restrictions, or the real-time rescheduling process. Albrecht et al. [2, 3]
classified these operational constraints into two groups: target points and target windows.
Target points correspond to fixed passing times, which couldbe arrival and departure times
at stations. In dense networks, target points could also be passing times at certain places
where overtaking and crossing of trains is planned. The scheduled arrival times at minor
stations without connections with other trains can be in general regarded as target windows.
If the train reaches a certain place exactly on time according to the defined target point
or in the target window, then conflicts can be avoided. It is assumed that the positions
corresponding to target points or target window constraints areskj with k j in {1,2, . . . ,N}.
The operational constraints can be included in the optimal control problem as follows:

• for target points:
t(skj ) = Ttarget, j , (3.21)

3The transformation fromuvdt to uds goes as follows:

u·v dt = u
ds
dt

dt = u ds.

In addition, the transformation from
∣

∣

∣

du
dt

∣

∣

∣
dt to

∣

∣

∣

du
ds

∣

∣

∣
ds goes as follows:

∣

∣

∣

du
dt

∣

∣

∣
dt =

∣

∣

∣

du
ds

∣

∣

∣

∣

∣

∣

ds
dt

∣

∣

∣
dt =

∣

∣

∣

du
ds

∣

∣

∣
ds, if

ds
dt

> 0.
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• for target windows:
Ttargetmin, j ≤ t(skj )≤ Ttargetmax, j , (3.22)

whereTtarget, j is the fixed passing time for train to pass positionskj , andTtargetmin, j and
Ttargetmax, j are the minimum and maximum passing time at positionskj respect to the target
window constraints. ✷

Remark 3.3 In order to deal with disturbance, we can apply a rolling horizon approach
when solving the trajectory planning problem. A detailed description on how to do this for
the case of train scheduling for an urban rail transit network is given in Section 7.4. Those
ideas can be adopted to the setting of the current chapter. ✷

3.4 Solution approaches

In this section, the train trajectory planning problem is solved by a pseudospectral method
and a mixed integer linear programming approach.

3.4.1 Pseudospectral method

A brief introduction

Pseudospectral methods were researched widely in the 1970sfor solving partial differential
equations (PDEs) in fluid dynamics [19]. Later on, they became an important methodology
for the numerical solution of PDEs. From the 1990s on, pseudospectral methods were
applied for solving optimal control problems [50], such as orbit transfers, lunar guidance,
and magnetic control. Recently, the scope of application has been broadened as a result of
significant progress in large-scale computation.

The pseudospectral method directly formulates the original optimal control problem into
a nonlinear programming problem, which can be solved numerically using a sparse nonlin-
ear programming solver to find approximate locally optimal solutions [37]. It is shown by
approximation theory and practice that the pseudospectralmethod is well-suited for approx-
imating smooth functions, integrations, and differentiations [19]. All those approximations
are relevant to optimal control problems, e.g., the differential equations of the optimal con-
trol problem can then be approximated by algebraic equations [105]. The main advantages
of the pseudospectral method are the exponential rate of convergence and that it is possible
to achieve a good accuracy with coarse grids [19, 51].

In the pseudospectral method, the continuous-time state and control functions are ap-
proximated using orthogonal polynomials based on interpolation at orthogonal collocation
points [38], such as the commonly used Legendre-Gauss-Lobatto points, which are the roots

of (1− x2)
dLN(x)

dx , whereLN is the Legendre polynomial of orderN [19]. The derivative of
the approximated state can be expressed in terms of the approximated state vector by using a
differentiation matrix at the collocation points [106]. When the optimal control problem in-
cludes discontinuities in states, control inputs, objective functional, or dynamic constraints,
the pseudospectral method is employed in the form of a multiple-phase approach, where the
problem is divided into a relatively small number of subintervals and global collocation is
performed in each subinterval [106].
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There exist several commercial and free packages that implement the pseudospectral
method: PROPT [107] and DIDO [104] are examples of commercial software that run under
Matlab. A Matlab-based open source tool that uses the Gauss pseudospectral method is
GPOPS [102]. PSOPT is an open source optimal control packagewritten in C++, including
Legendre and Chebyshev pseudospectral discretizations [9].

Formulation of the optimal trajectory planning problem

We can reformulate the train trajectory planning problem (3.14)-(3.20) into the following
general optimal control problem withNp phases [8, 106]. It is worth noting thatNp is not
equal toNR of (3.7)-(3.8), but it will in general be larger. The objective function (3.16) to
be minimized can be rewritten as

J =
Np

∑
i=1

[∫ s
(i)
f

s
(i)
0

[

u(i)(s)+λ
∣

∣

∣

du(i)(s)
ds

∣

∣

∣

]

ds

]

. (3.23)

Given that non-smoothness causes problems in gradient-based nonlinear optimization, a
smooth version of the absolute value function can be writtenas

∣

∣σ
∣

∣≈ ψ(σ) =
σ2

√
σ2+ c2

, (3.24)

wherec is a constant deciding the smoothness of the function. Thus,the smooth objective
function can be written as

J =
Np

∑
i=1

[∫ s
(i)
f

s
(i)
0

[

u(i)(s)+λψ
(du(i)(s)

ds

)]

ds

]

. (3.25)

The objective function (3.25) is subject to the differential constraints

ẋ(i)(s) = φ(i)
(

x(i)(s),u(i)(s),s
)

, s∈ [s(i)0 ,s(i)f ], (3.26)

wherex(i)(s) is the state of the system in theith phase, i.e.,x(i)(s) =
[

E(i)(s) t(i)(s)
]T

,

and the functionsφ(i)(·) are defined by model equations (3.14)-(3.15) and the piecewise
line resistance (3.8). The path constraints of the optimal control problem are defined by
(3.3), (3.4), and (3.17). Note that the path constraints caused by the maximum traction
force are non-smooth. They can be approximated by smooth constraints by introducing a
smooth version of the Heaviside functionH(σ), defined asH(σ) = 1 if σ > 0, andH(σ) = 0
otherwise [69]. The approximation is implemented as

H(σ)≈ 0.5(1+ tanh(σ/h)) (3.27)

whereh> 0 is a small real number. The path constraints can then be written as

p
(i)
L ≤ p(i)

(

x(i)(s),u(i)(s),s
)

≤ p
(i)
U , s∈ [s(i)0 ,s(i)f ]. (3.28)

For the train trajectory planning problem, the initial position of the(i +1)th phase is equal
to the final position of theith phase, so one of the phase boundary constraints can be written
as

s(i+1)
0 − s(i)f = 0. (3.29)
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In addition, the states and the control variables are continuous across the phase boundary,
which is

x(s(i+1)
0 )− x(s(i)f ) = 0, (3.30)

u(s(i+1)
0 )−u(s(i)f ) = 0. (3.31)

In general, phase boundary constraints [8, 12] that link allthe states and control inputs
across the boundaries can be included in

ΨL ≤Ψ(x(1)(s(1)0 ),u(1)(s(1)0 ),x(1)(s(1)f ),u(1)(s(1)f ),s(1)0 ,s(1)f ,

x(2)(s(2)0 ),u(2)(s(2)0 ),x(2)(s(2)f ),u(2)(s(2)f ),s(2)0 ,s(2)f ,

...

x(Np)(s
(Np)
0 ),u(Np)(s

(Np)
0 ),x(Np)(s

(Np)
f ),u(Np)(s

(Np)
f ),s

(Np)
0 ,s

(Np)
f )≤ΨU.

(3.32)

Note that (3.29)-(3.31) are special cases of (3.32) withΨL,i = ΨU,i .
The bound constraints can be written as

u(i)L ≤ u(i)(s)≤ u(i)U , s∈ [s(i)0 ,s(i)f ],

x(i)L ≤ x(i)(s)≤ x(i)U , s∈ [s(i)0 ,s(i)f ].
(3.33)

The resulting multiple-phase optimal control problem can be solved using the nonlinear
programing methods.

However, the computation of the pseudospectral method is ingeneral too slow for the
real-time application of ATO system. When the operational conditions (e.g., speed limits or
trip time) change while the train is driving (e.g., due to an accident or bad weather condi-
tions), the ATO system needs to recalculate the optimal trajectory. If the algorithm of the
ATO system takes a large computation time to calculate the optimal trajectory, then it is too
late for the train to react timely. Therefore, in the next subsection we propose an alternative
approach, i.e., an MILP approach, to calculate the optimal trajectory. It is worth to note that
the optimal solution of the pseudospectral method satisfiesthe necessary (but not always
sufficient) conditions of optimality [107]. So it is guaranteed that the returned solution can-
not be improved by an infinitesimal change in the trajectory,but there may exist completely
different trajectories that yield a better performance. Onthe contrary, an MILP problem can
be solved efficiently by existing solvers that guarantee theglobal optimum for the proposed
MILP problem.

3.4.2 Mixed integer linear programming

Vašak et al. [123] proposed a discrete-time model of the train operation to calculate the
optimal control law by multi-parametric quadratic programming. They split the time period
into K intervals and assumed the traction force or braking force tobe constant on each
interval[kTs,(k+1)Ts), whereTs is the sampling time. Franke et al. [40] similarly split the
position horizon[sstart,send] into N intervals to get a discrete-space model. They assumed
that the track and train parameters as well as traction or breaking force can be considered
as constant in each interval[sk,sk+1] with length∆sk = sk+1− sk, for k = 1,2, . . . ,N. Note
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that s1 = sstart and sN+1 = send. In this chapter, we obtain a discrete-space model in a
similar way as in [40], since the optimal control problem is stated by the choice ofs as the
independent variable. By redefining the discretization of the interval[sstart,send] if necessary,
we can assume without loss of generality thatξ1(s) andξ2(s) (cf. Section 3.2.2) are of the
following form:

ξ1(s) = ξ1,k for s∈ [sk,sk+1],

ξ2(s) = ξ2,k for s∈ [sk,sk+1].

for k= 1,2, . . . ,N.

Transformation properties

First, we introduce three properties according to [140]. Consider the statement̃f (x̃) ≤ 0,
where f̃ : Rn→R is affine,x̃∈ χ with χ⊂ R

n and let

M̃ = max
x̃∈χ

f̃ (x̃), m̃= min
x̃∈χ

f̃ (x̃). (3.34)

If we introduce the logical variableδ ∈ {0,1}, then the following equivalence holds:

[ f̃ (x̃)≤ 0]⇔ [δ = 1] is true iff

{

f̃ (x̃)≤ M̃(1− δ)
f̃ (x̃)≥ ε+(m̃− ε)δ (3.35)

whereε is a small positive number (typically the machine precision) that is introduced to
transform a strict equality into a non-strict inequality, which fits the mixed integer linear
programming (MILP) frameworks [10].

The product of two logical variablesδ1δ2 can be replaced by an auxiliary logical variable
δ3 = δ1δ2, i.e.,[δ3 = 1]↔ [δ1 = 1]∧ [δ2 = 1], which is equivalent to







−δ1+ δ3≤ 0,
−δ2+ δ3≤ 0,

δ1+ δ2− δ3≤ 1.
(3.36)

Moreover, the productδ f̃ (x̃) can be replaced by the auxiliary real variablez= δ f̃ (x̃),
which satisfies[δ = 0]⇒ [z= 0] and[δ = 1]⇒ [z= f̃ (x̃)]. Thenz= δ f̃ (x̃) is equivalent to















z≤ M̃δ,
z≥ m̃δ,

z≤ f̃ (x̃)− m̃(1− δ),
z≥ f̃ (x̃)− M̃(1− δ).

(3.37)

It is noted that (3.35), (3.36), and (3.37) yield linear inequalities sincef̃ is affine.

The mixed logical dynamic model

In the interval[sk,sk+1], the differential equation of the kinetic energy (3.14) cannow be
rewritten as

dẼ
ds

=
1

mρ
u(k)− 2(a2+ ξ2,k)

ρ
Ẽ(s)− 1

ρ
(a1+ ξ1,k),
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whereu(k) is a constant in the interval[sk,sk+1]. By definingζ = 1
mρ , ηk = − 2(a2+ξ2,k)

ρ ,

γk =− 1
ρ(a1+ ξ1,k), this equation can be rewritten as

dẼ
ds

= ζu(k)+ηkẼ(s)+ γk. (3.38)

We have to solve this differential equation with initial condition Ẽ(sk) = E(k). Then we
obtain the following formula forE(sk+1):

E(sk+1) = eηk∆skE(sk)+ (eηk∆sk−1)
ζ
ηk

u(k)+ (eηk∆sk−1)
γk

ηk
(3.39)

with E(s1) = Ẽstart andE(sN+1) = Ẽend.

Remark 3.4 For the sake of simplicity, we useE(k) as a short-hand notation forẼ(sk) from
now on. ✷

Defining ak = eηk∆sk, bk = (eηk∆sk −1) ζ
ηk

andck = (eηk∆sk −1) γk
ηk

, (3.39) can now be
simplified as follows:

E(k+1) = akE(k)+bku(k)+ ck. (3.40)

Note that this is an affine equation. As regards the differential equation (3.15), we approxi-
mate it by using a trapezoidal integration rule [6]:

t(k+1) = t(k)+
1
2

(

1
√

2E(k)
+

1
√

2E(k+1)

)

∆sk (3.41)

with t(1) = 0. In addition, the nonlinear part in this equation will be approximated by an
PWA function. There are various methods for approximating functions in an PWA way, see
e.g., the overview by Azuma et al. [7]. In this chapter, we first select the number of regions
of the PWA function and then optimize the interval lengths and parameters of the affine
functions using least-squares optimization, minimizing the squared difference between the
original function and the approximation. Recall thatEmin denotes the minimum kinetic
energy. Define the maximum kinetic energy

Emax= max
k=1,2,...,N

(Emax(k)) = max
k=1,2,...,N

(1
2

v2
max(k)

)

.

Then the nonlinear functionf (E) = 1
2
√

2E
can be approximated over the interval[Emin,Emax]

by an PWA function with 3 continuous affine subfunctions. However, the speed limit de-
pends on the space interval, i.e., different space intervals may have different speed limit,
which may be less than the overall maximum of the speed limit.Therefore, we adapt their
coefficients of the PWA approximations depending on the space interval indexk, i.e., we
can have different PWA subfunctions for different space intervals within valid speed inter-
vals. In this way the approximation error will be reduced. For example, if we consider an
approximation using 3 affine subfunctions (cf. Figure 3.2),the PWA approximation4 of the

4The approximation error can be reduced by taking more regions.
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Figure 3.2: The PWA approximation of the nonlinear functionf (·)

nonlinear functionf (E(k)) = 1
2
√

2E(k)
can be written as

fPWA(E(k)) =







α1,kE(k)+β1,k for E0,k≤ E(k)≤ E1,k,
α2,kE(k)+β2,k for E1,k≤ E(k)≤ E2,k,
α3,kE(k)+β3,k for E2,k≤ E(k)≤ E3,k,

(3.42)

with E0,k = Emin andE3,k = Emax(k) for the interval[sk,sk+1]. Furthermore, the values of
E1,k andE2,k are determined by least-squares optimization.

Now the time dynamics (3.41) can be approximated as

t(k+1) = t(k)+ (αl ,kE(k)+βl ,k+αm,k+1E(k+1)+βm,k+1)∆sk, (3.43)

with El−1,k≤ E(k)≤ El ,k, Em−1,k+1≤ E(k+1)≤ Em,k+1 for l ,m∈ {1,2,3}.
Furthermore, the maximum traction forceumax is a nonlinear function of the velocity as

given in (3.3) or (3.4) that can be reformulated as a nonlinear function of the kinetic energy.
In a similar way as the approximation of the nonlinear function f (·), we can obtain an PWA
approximation of the maximum traction force. If we consideran approximation using5 3
affine subfunctions (cf. (3.42)), then the approximation can be written as

umax,PWA(E(k)) =







λ1,kE(k)+µ1,k for E4,k≤ E(k)≤ E5,k,
λ2,kE(k)+µ2,k for E5,k≤ E(k)≤ E6,k,
λ3,kE(k)+µ3,k for E6,k≤ E(k)≤ E7,k,

(3.44)

5For M affine subfunctions withM > 3 a similar procedure can be used.
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with E4,k = Emin andE7,k = Emax(k) and where the values ofE5,k andE6,k are decided by
the approximation process.

The above PWA model with PWA constraints can be transformed into a mixed logical
dynamic model by introducing some auxiliary logical variables [10]. First consider (3.42).
In order to transform this equation, we introduce auxiliarylogical variablesδ1(k) andδ2(k),
defined as

[E(k)≤ E1,k]⇔ [δ1(k) = 1],

[E(k)≤ E2,k]⇔ [δ2(k) = 1].
(3.45)

Then we get

fPWA(E(k)) =δ1(k)δ2(k)[α1,kE(k)+β1,k]+ (1− δ1(k))δ2(k)[α2,kE(k)+β2,k]

+ (1− δ1(k))(1− δ2(k))[α3,kE(k)+β3,k]. (3.46)

Since the maximum and minimum values ofE(k) areEmax(k) andEmin, according to the
transformation property (3.35), the logical conditions (3.45) can be rewritten as linear in-
equalities. Furthermore, an auxiliary logical variableδ3(k) is introduced to replace the
productδ1(k)δ2(k). The conditionδ3(k) = δ1(k)δ2(k) can be rewritten as a system of linear
inequalities according to (3.36). By defining new auxiliaryvariablesz1(k) = δ1(k)E(k),
z2(k) = δ2(k)E(k), andz3(k) = δ3(k)E(k), which can be expressed as a system of linear
inequalities according to (3.37), the functionfPWA(·) can be rewritten as

fPWA(E(k)) =
[

−α3,k α2,k−α3,k α1,k−α2,k+α3,k
][

z1(k) z2(k) z3(k)
]T

+
[

−β3,k β2,k−β3,k β1,k−β2,k+β3,k
][

δ1(k) δ2(k) δ3(k)
]T

(3.47)

+α3,kE(k)+β3,k,

In order to deal with the PWA constraints of the maximum traction force (cf. (3.44)),
auxiliary logical variablesδ4(k) andδ5(k) are introduced that are defined by

[E(k)≤ E5,k]⇔ [δ4(k) = 1],

[E(k)≤ E6,k]⇔ [δ5(k) = 1].
(3.48)

Similar to (3.45), the logical conditions (3.48) can be recast as linear inequalities by ap-
plying transformation property (3.35). In addition, another binary variableδ6(k) is intro-
duced similarly asδ3(k), and it is defined asδ6(k) = δ4(k)δ5(k). Furthermore, auxiliary
variablesz4(k) = δ4(k)E(k), z5(k) = δ5(k)E(k), andz6(k) = δ6(k)E(k) are defined in or-
der to rewrite the constraints into a system of linear inequalities. The PWA constraints
u(k)≤ umax,PWA(E(k)) can then be written as

u(k)≤
[

−λ3,k λ2,k−λ3,k λ1,k−λ2,k+λ3,k
][

z4(k) z5(k) z6(k)
]T

+
[

−µ3,k µ2,k−µ3,k µ1,k−µ2,k+µ3,k
][

δ4(k) δ5(k) δ6(k)
]T

+λ3,kE(k)+µ3,k.
(3.49)

Now the dynamics of the system can be rewritten as the following mixed logical dy-
namic model

x(k+1) = Akx(k)+Bku(k)+C1,kδ(k)+C2,kδ(k+1)+D1,kz(k)+D2,kz(k+1)+ek, (3.50)



34 3 Optimal Trajectory Planning for a Single Train

where

x(k) =
[

E(k) t(k)
]T

,Ak =

[

ak 0
∆sk(α3,k+akα3,k+1) 1

]

,Bk =

[

bk

∆skα3,k+1bk

]

,

C1,k = ∆sk

[

0 0 0 0 0 0
−β3,k β2,k−β3,k β1,k−β2,k+β3,k 0 0 0

]

,

C2,k = ∆sk

[

0 0 0 0 0 0
−β3,k+1 β2,k+1−β3,k+1 β1,k+1−β2,k+1+β3,k+1 0 0 0

]

,

D1,k = ∆sk

[

0 0 0 0 0 0
−α3,k α2,k−α3,k α1,k−α2,k+α3,k 0 0 0

]

,

D2,k = ∆sk

[

0 0 0 0 0 0
−α3,k+1 α2,k+1−α3,k+1 α1,k+1−α2,k+1+α3,k+1 0 0 0

]

,

and ek =

[

ck

∆sk(α3,k+1ck+β3,k+β3,k+1)

]

.

The mixed logical dynamic model (3.50) is subject to the linear constraints of the form
(3.35), (3.36), and (3.37) resulting from the transformation as well as the upper bound and
lower bound constraints forE(k), t(k), andu(k). All these constraints can be written more
compactly as

R1,kδ(k)+R2,kδ(k+1)+R3,kz(k)+R4,kz(k+1)≤ R5,ku(k)+R6,kx(k)+R7,k, (3.51)

with appropriately defined coefficient matricesRi,k, for i = 1,2, . . . ,7.

The objective function (3.16) can be discretized as

J =
N

∑
k=1

u(k)∆sk+
N−1

∑
k=1

λ|∆u(k)|, (3.52)

where∆u(k) = u(k+1)−u(k). We introduce a new variableω(k) to deal with the absolute
value of∆u(k), and we add the linear inequalities:

ω(k)≥ u(k+1)−u(k),

ω(k)≥ u(k)−u(k+1).
(3.53)

Sinceλ > 0, minimizing (3.52) is equivalent to minimizing

J̃ =
N

∑
k=1

u(k)∆sk+
N−1

∑
k=1

λω(k). (3.54)

subject to (3.53). Indeed, it is easy to verify that when we minimize the objective function
(3.54) subject to (3.53), the optimal value ofω(k) will be equal to|∆u(k)|, so (3.52) will
also be minimized.
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The mixed integer linear programming problem

Now the optimal control problem can be recast as an MILP problem, where some of decision
variables are binary (i.e.,δ̃) and some are real variables (i.e., ˜u, ω̃, z̃) with

ũ=











u(1)
u(2)

...
u(N)











, δ̃ =











δ(1)
δ(2)

...
δ(N+1)











, z̃=











z(1)
z(2)

...
z(N+1)











, ω̃ =











ω(1)
ω(2)

...
ω(N−1)











,

Furthermore, if we definẽV =
[

ũT δ̃T z̃T ω̃T
]T

, the equivalent formulation of the
optimal control problem is obtained as follows:

min
Ṽ

CT
J Ṽ, (3.55)

subject to

F1Ṽ ≤ F2x(1)+ f3 (3.56)

F4Ṽ = F5x(1)+ f6 (3.57)

whereCJ =
[

∆s1 · · · ∆sN 0 · · · 0 λ · · · λ
]T

. This can be shown as follows.
The constraints for the MILP problem (3.51) are considered for k= 1,2, . . . ,N. We can sub-
stitutex(k) in the constraints by using the state equation (3.50) recursively. The substituted
form is obtained as the following expression:

x(k) =
[k−1

∏
j=1

A j

]

x(1)+
k−1

∑
i=1

[ k−1

∏
j=i+1

A j

]

Biu(i)+
[k−1

∏
j=2

A j

]

C1,1δ(1)

+
k−1

∑
i=2

[ k−1

∏
j=i+1

A j

]

(AiCi−1,2+Ci,1)δ(i)+Ck−1,2δ(k)

+
[k−1

∏
j=2

A j

]

D1,1z(1)+
k−1

∑
i=2

[ k−1

∏
j=i+1

A j

]

(AiDi−1,2+Di,1)z(i)

+Dk−1,2z(k)+
k−1

∑
i=1

[ k−1

∏
j=i+1

A j

]

ei .

In addition, the end point conditionx(N+1) = [Eend T]T needs to be considered in (3.57).
Because we know the value ofx(N+1), the values ofαm andβm in (3.43) are also known.
So the state equation at the end point can be written as

x(N+1) = ANx(N)+BNu(N)+C1,Nδ(N)+D1,Nz(N)+eN

whereAN =

[

aN 0
∆sN(α3,N +αm,N+1aN) 1

]

, BN =

[

bN

∆sNαm,N+1bN

]

, and

eN =

[

cN

∆sN(αm,N+1cN +βm,N+1+β3,N)

]

. By properly definingF1, F2, f3, F4, F5, and f6, we

can write all these constraints in the form (3.56) and (3.57). The MILP problem (3.55)-
(3.57) can be solved by several existing commercial and freesolvers, such as CPLEX,
Xpress-MP, GLPK (see e.g., [5, 86]).
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Figure 3.3: The speed limits along the track

Remark 3.5 The variablet(skj ) in (3.21) and (3.22) is one of the state variables of the
model (3.50) - (3.51). Note that (3.21) and (3.22) are linearconstraints. Hence, we still
have an MILP problem if the target point and target window constrains are included. ✷

3.5 Case study

In order to demonstrate the performance of the pseudospectral method and the MILP ap-
proach, we use a case study (inspired by Vašak et al. [123]) to compare these two approaches
to the discrete dynamic programming (DDP) approach proposed in [39]. The reason for se-
lecting the DDP approach for comparison is that [39] concludes that the performance of the
DDP approach is better than that of the sequential quadraticprogramming approach and the
coasting strategy obtained by the maximum principle. The optimal trajectories obtained by
those the pseudospectral, MILP approach, and DDP approaches are compared with each
other. In addition, both the computation time and the performance with respect to the opti-
mization objective and constraints violations of those approaches are analyzed.

3.5.1 Set-up

The case study in this chapter is inspired by that of [123], where the track length between
the departure station and arrival station is 10 km. In [123],there were no speed limit and
grade profile. We add them as shown in Figures 3.3 and 3.4. The rolling stock includes
an SBB Re 460 locomotive [39, 46, 108], the parameters of which are shown in Table 3.1.
The rotating mass factor is often chosen as 1.06 in the literature [57] and therefore we also
adopt this value. According to the assumption made in Section 3.3, the unit kinetic energy
should be larger than zero. In this test case, the minimum kinetic energy is chosen as 0.1 J.
The maximum traction force of the SBB Re 460 locomotive is a nonlinear function of the
train’s velocity and the maximum value of this function is 300 kN as shown in Figure 3.1.
The objective function of the optimal train control problemconsidered here is a weighted
sum of the energy consumption and passenger comfort, where the weightλ is taken as 500.
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Figure 3.4: The grade profile of the track

Table 3.1: Parameters of the train and the line path

Property Symbol Value

Train mass [kg] m 5.07·105

Basic resistance [N/kg] Rb 0.014+2.564·10−5v2

Mass factor [-] ρ 1.06
Line length [m] sT 104

Minimum kinetic energy [J] Emin 0.1
Maximum braking force (regular) [N] umin −4.475·105

The total running time for this trip is given by the timetableor the rescheduling process.
Here, the total running time is 450 s, which consists of the minimum running time plus 5%
running time supplements.

Two cases will be considered here:

• Case A: the maximum traction force is constant.

• Case B: the maximum traction force is a nonlinear function ofthe velocity.

In Case A, just like the case study in [123], we assume that themaximum traction
force Emax is constant:Emax = 300 kN. First, the optimal trajectory planning problem is
solved using PSOPT [8], which implements a pseudospectral method. In this case study, the
problem is solved using the Legendre pseudospectral discretizations, with local automatic
mesh refinement, starting with 40 nodes.

Second, the problem is solved using the MILP approach. Sincethe maximum traction
force is constant, in this case the linear constraints caused by the PWA constraints (3.44) of
the maximum traction force will not be considered here. In this chapter, the PWA approx-
imations of the nonlinear functionf (E) = 1

2
√

2E
may depend on the space interval indexk

as stated in Section 3.4.2, i.e.,we can have different PWA subfunctions for different space
intervals. In Figure 3.3 there are five speed limits, i.e.,15m/s, 20 m/s, 30 m/s, 40 m/s, and
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Table 3.2: The PWA approximations of the nonlinear functionf (·)

αm βm Em−Em+1Approx. no. Segmentm
[(s/m)3] [s/m] [(m/s)2]

Segment 1 −5.0943·10−4 0.0767 0.1−71.2
Approx. 1

Segment 2 −1.7393·10−4 0.0528 71.2−112.5

Segment 1 −3.1153·10−4 0.0665 0.1−115
Approx. 2

Segment 2 −6.7188·10−5 0.0384 115−200

Segment 1 −9.4977·10−5 0.0443 0.1−240
Approx. 3

Segment 2 −2.3470·10−5 0.0272 240−450

Segment 1 −4.4240·10−5 0.0346 0.1−415
Approx. 4

Segment 2 −9.6462·10−6 0.0202 415−800

Segment 1 −1.8122·10−5 0.0251 0.1−640
Approx. 5

Segment 2 −6.2127·10−6 0.0175 640−1250

Table 3.3: PWA approximations of the nonlinear function f(·) for the first and the last space
intervals

αm βm Em−Em+1Approx. no. Segmentm
[(s/m)3] [s/m] [(m/s)2]

Segment 1 −4.6463·10−4 0.0734 0.1−80.8
Approx. 6

Segment 2 −4.6463·10−4 0.0734 80.8−312.5

Segment 1 −1.4458·10−4 0.0534 0.1−229.9
Approx. 7

Segment 2 −1.4514·10−6 0.0235 229.9−450

50 m/s. Therefore, five different approximations with 2 subfunctions of f (·) are obtained,
the parameters of which are given in Table 3.2. For each spaceinterval, an appropriate
PWA approximation can be chosen based on the given speed limit. In addition, we intro-
duce two additional PWA approximations off (·) for the first space interval[sstart,s2] and the
last space interval[sN,send]. The train speed in these intervals will usually be low; hence, in
order to obtain a good fit we apply a weighted least-squares optimization to optimize the co-
efficients of the PWA approximations for these intervals, where the weight function should
have a high value in the low-speed range. The parameters of the PWA approximations for
the first and the last space intervals are given in Table 3.3.

The length∆sk for the interval[sk,sk+1] depends on the speed limits, gradient profile,
tunnels, and so on. In addition, if the number of space intervalsN is larger, then the compu-
tation time of the MILP approach will be longer, but the accuracy will be better. According
to the speed limits and grade profile given in Figure 3.3 and Figure 3.4, the length of each
interval is chosen to equal 500 m, i.e.∆sk = 500 m fork = 1,2, . . . ,20, which provides a
good balance between the computation time and the accuracy.As MILP solver, we use
CPLEX, implemented through the cplex interface function ofthe Matlab Tomlab toolbox.
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Table 3.4: The coefficients of the varying maximum traction force

c1, j c2, j c3, j v j − v j+1Segmentj [kg · m/s2] [kg/s] [kg/m] [m/s]

1 3.000·105 −1.125·103 0 0-22.22
2 7.263·105 −2.726·104 3.128·102 22.22-38.89
3 4.237·105 −1.120·104 1.000·102 38.89-50

Table 3.5: The coefficients of the PWA approximation of maximum traction force

Segmentm λm [kg/m] µm [kg·m/s2] Em−Em+1 [(m/s)2]

1 −2.9396·102 4.1992·105 0.1−500
2 −0.9637·102 3.2112·105 500−1250

For the DDP approach, the continuous nonlinear model of train (3.14)-(3.15) is discretized
in space. The number of the space intervals is 100 and the length of each space interval is
100 m. To compute the optimal trajectory with DDP, we use a matlab function for dynamic
programming that was introduced in [113].

For Case B, we consider a varying maximum traction force as shown in Figure 3.1,
the coefficients of which according to (3.3) are based on [39,46, 108] and listed here in
Table 3.4. In PSOPT, non-smooth path constraints can be handled by introducing a smooth
version of the Heaviside function (see Section 3.4.1). In the MILP approach we need to
approximate the nonlinear maximum traction force by PWA functions in (3.44), where the
coefficients may also depend on the space interval indexk. Here, for simplicity, we just use
one PWA approximation with two affine subfunctions for allk. The parameters of the PWA
function are listed in Table 3.5.

3.5.2 Results and discussion

Results for Case A: the maximum traction force is constant

The optimal solution of the pseudospectral method using PSOPT, which is obtained after 7
mesh refinement iterations, has 179 nodes. The calculation time for PSOPT is 6 min and
10 s on a 1.8 GHz Intel Core2 Duo CPU running a 64-bit Linux operating system and the
computation time for DDP is 2 min and 8 s with 100 space intervals as shown in Table
3.6. However, the calculation time for the MILP approach is 0.32 s on the same CPU and
operation system as above, which is much shorter than the calculation time of PSOPT and
DDP.

Figure 3.5 shows the optimal control inputs with constant maximum traction force,
where the dotted line, the solid line, and the dashed line represent the results calculated
by PSOPT, MILP, and DDP, respectively. It can be seen from Figure 3.5 that the results ob-
tained by these three approaches show a similar trend, but there exist more discrete changes
but with a smaller magnitude in the control signals of PSOPT and DDP. This is mainly
caused by the larger number of space intervals: there are 178and 100 space intervals in
PSOPT and DDP, respectively, but in the MILP approach, thereare just 20 space intervals.
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Figure 3.5: The optimal control inputs with constant maximum traction force for the follow-
ing approaches: MILP, PSOPT, and DDP
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Figure 3.6: The trajectories generated by the nonlinear continuous-time train model(3.1)-
(3.2)using optimal control inputs with constant maximum traction force for the
following approaches: MILP, PSOPT, and DDP
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Table 3.6: Performance comparison of PSOPT, MILP, and DDP for Case A with constant
maximum traction force

PSOPT MILP DDP

Jmin [-] 2.424·108 2.696·108 2.482·108

CPU time [s] 370 0.32 128
End positionsend violation [m] 0 0 0
End kinetic energyEend violation [m/s2] 0.1 0.005 0.596
End timeTend violation [s] 0.496 9.560 6.049
Speed limit violation No No No

The optimal control inputs calculated by these three approaches are applied to the nonlinear
continuous-time train model (3.1)-(3.2). The differential equation of the nonlinear model
is solved numerically using a variable step Runge-Kutta method and the resulting speed-
position trajectories for the train are shown in Figure 3.6.The dashed line shows the speed
limit for the trip, which is determined by the characteristics of the train, line, etc. The dot-
ted line, the solid line, and the dash-dotted line show the optimal trajectories obtained using
control inputs generated by PSOPT, MILP, and DDP, respectively. It can be observed that
these optimal trajectories are below the speed limit, whichmeans that the speed constraints
are satisfied, i.e., there is no speed limit violation. In addition, we can see from Figure 3.6
that the optimal trajectories obtained using control inputs generated by PSOPT and DDP
are smoother than the one obtained with the MILP approach, which is mainly caused by the
number of space intervals as stated before.

In Table 3.6, the values of the objective function, the computation time, and the con-
straints violations (i.e. speed limit violation, end position violation, end kinetic energy vi-
olation, and end time violation) are compared for the control inputs generated by PSOPT,
MILP and DDP applied to the nonlinear continuous-time trainmodel (3.1)-(3.2). The val-
ues of the objective function obtained by the PSOPT, the MILP, and the DDP approach
are 2.424×108 and 2.696×108, and 2.482×108, respectively. The relative differences of
the MILP and DDP control performance are 11.2% and 2.4% of that of the pseudospectral
method. Therefore, the pseudospectral approach yields thesmallest objective value and the
constraints violations for the pseudospectral method are also small.

Results for Case B: the maximum traction force is a nonlinearfunction

Figure 3.7 shows the optimal control inputs for Case B. The dotted line, the solid line, and
the dashed line in Figure 3.7 represent the optimal control inputs obtained using PSOPT,
MILP, and DDP, respectively. When we compare Figure 3.7 to Figure 3.5, the maximum
traction force in Figure 3.7 is no longer equal to 300 kN for the MILP approach in the space
interval [3000,4000], but it becomes smaller and smaller when the speed grows. This is
caused by the varying maximum traction force, which is decreasing when the speed goes
up. Similar results can be observed for the optimal inputs calculated by PSOPT and DDP.
Figure 3.8 shows the speed-position trajectories for the train under varying maximum trac-
tion force constraints when applying these inputs to the nonlinear train model (3.1)-(3.2).
The dashed line, the dotted line, the solid line, and the dash-dotted line show the speed lim-
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Table 3.7: Performance comparison of PSOPT, MILP, and DDP for Case B with varying
maximum traction force

PSOPT MILP DDP

Jmin [-] 2.625·108 2.819·108 2.683·108

CPU time [s] 1147 0.54 134
End positionsend violation [m] 0 0 0
End kinetic energyEend violation [m/s2] 0.1 0.005 0.0328
End timeTend violation [s] 0 4.170 5.404
Speed limit violation No No No

its and the trajectories obtained using control inputs generated by PSOPT, MILP, and DDP,
respectively. These trajectories are still below the speedlimit, so there is no speed limit
violation. In addition, we can see from Figure 3.8 that the slopes of these three optimal
trajectories obtained in the space interval[3500,5000] are smaller than those of Figure 3.6,
because the maximum traction force is becoming smaller withthe increase of the train’s
speed.

The values of the objective function, the computation time,and the constraints violations
are compared for PSOPT, MILP, and DDP in Table 3.7. Similar asthe results in Case
A, the pseudospectral approach obtains the minimum objective function value 2.625·108,
which is higher than that in Table 3.6 (this is due to the inclusion of the constraint of the
varying maximum traction force). The relative differencesof the MILP and DDP approach
in control performance are 7.4% and 2.2% when compared to that of the pseudospectral
method. PSOPT includes a local automatic mesh refinement. Inthis case study, we take
40 nodes as initial value. The finial solution is obtained after 7 mesh refinement iterations
and has 199 nodes. The calculation time is 19 min and 7 s. Compared with the problem in
Case A, 20 nodes are added and the computation time is almost 13 min longer. For the DDP
approach, the computation time is 2 min and 14 s, which is 6 s longer than that of Case A.
In the MILP approach, for each space interval an extra binaryvariable and an auxiliary real
variable are introduced in the mixed logical dynamic model compared with Case A, since
the maximum traction force is considered as a nonlinear function that is approximated by
an PWA approximation with 2 subfunctions. Therefore, 40 variables are added to the MILP
problem since the number of the space intervals is 20. The computation time is now 0.54 s,
which is larger than the 0.32 s of Case A, but it still is much lower than the computation
time the pseudospectral method and the DDP approach. Similar to the results shown in
Table 3.6, there are no speed limit violations and the end kinetic energy violation is very
small. Furthermore, the end time violation for the pseudospectral method is also very small,
but for the MILP and DDP approach this violation is about 1% ofthe total running time.

Discussion

It is concluded that for the given case study the pseudospectral approach obtains the best
control performance, which considers the value of the objective function and the constraints
violations. However, when the computation time is also taken into consideration, the MILP
approach yields the best overall performance.
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Figure 3.7: The optimal control inputs with varying maximumtraction force for the follow-
ing approaches: MILP, PSOPT, and DDP
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It is worth to note that we apply a trapezoidal integration rule to approximate the time
differential equation (3.15) and then use PWA functions to approximate the nonlinear func-
tion (3.41) in the MILP approach. Therefore, the end time violation in Table 3.6 of the
MILP approach is probably caused by these approximations. Furthermore, we can make
the error even smaller by adjusting the PWA approximations according to Footnote 4 on
page 31, but then the CPU time goes up.

3.6 Conclusions

In this chapter, the optimal trajectory planning problem for a single train has been consid-
ered. We have proposed two approaches to solve this problem:the pseudospectral method
and the mixed integer linear programming (MILP) based approach. In the pseudospectral
method, the optimal trajectory planning problem is formulated as a multiple-phase opti-
mal control problem based on piecewise line resistance and speed limits. The constraints
caused by the varying maximum traction force are defined as nonlinear path constraints.
In the MILP approach, the nonlinear train operation model isformulated as a mixed logi-
cal dynamic model by using piecewise affine approximations.The variable line resistance
(including variable grade profile, tunnels, curves) and speed restrictions are included in the
constraints of the mixed logical dynamic model. Furthermore, the optimal control problem
is recast as an MILP problem. The case study shows that the pseudospectral method has
the best control performance and the MILP has the best overall performance if the com-
putation time is also taken into account. In addition, the computation time of the MILP
approach is much shorter compared with that of the pseudospectral method and the discrete
dynamic programming approach. For the given case study, therelative difference between
the performance of the MILP approach and that of the pseudospectral approach is about
10%.

When the timetable is known, the two approaches proposed in this chapter (i.e., the
MILP and the pseudospectral approach) can be applied to calculate the optimal trajectory
for trains between stations to save energy and to ensure passenger comfort. If there are some
disturbances in the network, then one could use a rescheduling approach to reorder trains
and determine new timetables [29, 57]. Next, the affected trains have to optimize their
trajectories according to the new timetable. In this case, the trajectory planning problem
needs to be solved quickly to satisfy the real-time requirements; so then the MILP approach
could be applied since it gives the best trade-off between computational speed and accuracy.

An extensive comparison and assessment of the pseudospectral method, the MILP ap-
proach, and other approaches in the literature for various case studies and a wide range of
scenarios will be a topic for future work. In addition, in this chapter we have focused on
the trajectory planning for a single train between two stations with the assumption that the
constraints and disturbances caused by signaling systems and other trains are handled by the
lower control level. However, in practice these constraints and disturbances are significant
for the capacity of the railway network, and therefore some interesting conflict detection and
resolution approaches have been proposed to manage these constraints and disturbances dur-
ing the rescheduling phases [24, 27, 28]. In future work, onecould combine these conflict
detection and resolution approaches with the trajectory planning approaches proposed here
to solve the trajectory planning for multiple trains. Thereone could also use the MILP ap-
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proach (including hierarchical and distributed optimization if the problem grows too large).
Furthermore, the pseudospectral and MILP solvers used in this chapter are general-purpose
solvers. By making use of the specific structure and properties of the optimal trajectory plan-
ning problem, significant speed-ups can be expected. Therefore, tailored pseudospectral and
MILP solvers for the optimal trajectory planning problem for trains could be developed.

3.A A general formulation of the pseudospectral method

The optimal train trajectory planning problem of Chapter 3 can be formulated as a multiple
phase optimal control problem and then can be solved by the pseudospectral method. Be-
low we describe a general optimal control problem with multiple phases and the solution
procedure of the general optimal control problem using the pseudospectral method. This
explanation is based on [9, 19, 37, 51, 106].

3.A.1 The multiple-phase optimal control problem

The general optimal control problem withNp phases is formulated as follows [106]. The
objective function is

J =
Np

∑
i=1

(

ϕ(i)(x(i)(t(i)f ), p(i), t(i)f

)

+
∫ t

(i)
f

t
(i)
0

L(i)(x(i)(t),u(i)(t), p(i), t
)

dt

)

, (3.58)

where[t(i)0 , t(i)f ] is the time interval for theith phase,u(i)(·) andx(i)(·) are the control trajec-
tories and state trajectories,p(i) are the static parameters, fori = 1,2, . . . ,Np. The objective
function (3.58) is subject to the differential constraints

ẋ(i)(t) = f (i)
(

x(i)(t),u(i)(t), p(i), t
)

, t ∈ [t(i)0 , t(i)f ], (3.59)

the path constraints

h(i)L ≤ h(i)
(

x(i)(t),u(i)(t), p(i), t
)

≤ h(i)U , t ∈ [t(i)0 , t(i)f ], (3.60)

the event constraints

e(i)L ≤ e(i)
(

x(i)(t(i)0 ),u(i)(t(i)0 ),x(i)(t(i)f ),u(i)(t(i)f ), p(i), t(i)0 , t(i)f

)

≤ e(i)U , t ∈ [t(i)0 , t(i)f ], (3.61)

the linkage constraints

ΨL ≤Ψ
(

x(1)(t(1)0 ),u(1)(t(1)0 ),x(1)(t(1)f ),u(1)(t(1)f ), p(1), t(1)0 , t(1)f ,

x(2)(t(2)0 ),u(2)(t(2)0 ),x(2)(t(2)f ),u(2)(t(2)f ), p(2), t(2)0 , t(2)f ,

· · ·

x(Np)(t
(Np)
0 ),u(Np)(t

(Np)
0 ),x(Np)(t

(Np)
f ),u(Np)(t

(Np)
f ), p(Np), t

(Np)
0 , t

(Np)
f

)

≤ΨU,

(3.62)

the bound constraints

u(i)L ≤ u(i)(t)≤ u(i)U , x(i)L ≤ x(i)(t)≤ x(i)U , t ∈ [t(i)0 , t(i)f ],

p(i)L ≤ p(i) ≤ p(i)U , t(i)0 ≤ t(i)0 ≤ t̄(i)0 , t(i)f ≤ t(i)f ≤ t̄(i)f ,
(3.63)
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and the time constraints

t(i)f − t(i)0 ≥ 0. (3.64)

3.A.2 The solution process of the optimal control problem

Let i ∈ {1,2, . . . ,Np} be a particular phase of the optimal control problem (3.58)-(3.64) and
let (·)(i) denote information for theith phase. Theith phase of the optimal control problem

can be transformed from the intervalt ∈ [t(i)0 , t(i)f ] to the intervalτ∈ [−1,1] for i = 1,2, . . . ,Np

by introducing the following transformation [106]:

τ =
2

t(i)f − t(i)0

t− t(i)f + t(i)0

t(i)f − t(i)0

. (3.65)

Now we approximate the state and control functions using Legendre pseudospectral ap-

proximation. The statex(i)k (τ), τ ∈ [−1,1] is approximated by theNi th order Lagrange poly-

nomialxNi ,(i)
k (τ) based on interpolation at the Legendre-Gauss-Lobatto (LGL) points [19]:

x(i)k (τ)≈ xNi ,(i)
k (τ) =

Ni

∑
n=0

x̄Ni ,(i)
k (τn)φ

(i)
n (τ), (3.66)

wherex̄Ni ,(i)
k (τn) is a discrete approximation of the LGL pointτn and the Lagrange basis

polynomialsφ(i)n (τ) for n= 0,1, · · · ,Ni are defined as

φ(i)n (τ) =
Ni

∏
m=0,m6=n

τ− τ(i)m

τ(i)n − τ(i)m

, (3.67)

andτ(i)n for n = 0,1, . . . ,Ni are the LGL points, which are defined asτ(i)0 = −1, τ(i)Ni
= 1,

andτn for n= 1,2, . . . ,Ni −1 being the subsequent roots of the derivative of the Legendre
polynomial

LNi (τ) =
1

2Ni Ni !
dNi

dτNi
(τ2−1)Ni ,

in the interval[−1,1]. The controlu(i)(τ) can be approximated in a similar way. The

derivative ofxNi ,(i)
k (τ) at the LGL pointsτn can be obtained by differentiating (3.66), which

can be expressed as a matrix multiplication as follows:

ẋ(i)k (τn)≈ ẋNi ,(i)
k (τn) =

Ni

∑
j=0

D̃(i)
n j x̄

Ni ,(i)
k (τ j ), (3.68)

whereD̃(i) is the(Ni +1)× (Ni +1) differential approximation matrix [50] given by

D̃(i)
n j =























φ(i)Ni
(τn)

φ(i)Ni
(τ j )

1
τn−τ j

, if n 6= j,

−Ni(Ni +1)/4, if n= j = 0,
Ni(Ni +1)/4, if n= j = Ni ,

0, otherwise.

(3.69)
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The differential constraints can be recast into algebraic constraints via the differential ap-
proximation matrix. In addition, the path constraints (3.60) can be discretized at the LGL
points. Note that the dynamic constraints and path constraints are only considered at the
LGL points, which means both the dynamic and path constraints might be violated in be-
tween the LGL points [107]. The objective function (3.58) can be approximated using the
LGL points as

J =
Np

∑
i=1

(

ϕ(i)
(

x̄Ni ,(i)(−1), x̄Ni ,(i)(1), p(i), t(i)0 , t(i)f

)

+
t(i)f − t(i)0

2

Ni

∑
n=0

L(i)
(

x̄Ni ,(i)(τn), ū
Ni ,(i)(τn), p

(i),τn

)

ωn

)

,

(3.70)

whereωn are weights given by

ωn =
2

N(N+1)
1

(LNi (τn))2 , for n= 0,1, . . . ,Ni . (3.71)

If we include all the decision variables in vectory, the optimal control problem can then
be expressed as a nonlinear programming problem:

min
y

J(y) (3.72)

subject to
GL ≤G(y)≤GU

yL ≤ y≤ yU.
(3.73)

By definingG(y), GL , GU, yL, andyU properly, we can write all constraints in the form
(3.73).

There exist several commercial and free packages that implement the pseudospectral
method: SOCS [13] and DIRCOL [112] are Fortran-based proprietary packages, while
PROPT [107] and DIDO [104] are commercial software packageswith Matlab interface. A
Matlab-based open source tool that uses the Gauss pseudospectral method is GPOPS [102].
PSOPT is an open source optimal control package written in C++, including Legendre and
Chebyshev pseudospectral discretizations [9]. These software packages start with a general
optimal problem formulated as (3.58)-(3.64), then transform this problem into a nonlinear
programing problem with objective function (3.72) and constraints (3.73), and finally solve
it possibly using an NLP solver, such as SNOPT [49].
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Chapter 4

Optimal Trajectory Planning for
Multiple Trains

In this chapter, the optimal trajectory planning problem for multiple trains under fixed block
signaling systems and moving block signaling systems is considered. Two solution ap-
proaches are proposed to solve this optimal control problemfor multiple trains: the greedy
approach and the simultaneous approach. The greedy approach optimizes the trajectories of
trains sequentially, where first the trajectory of the leading train is optimized and then the
trajectory of the following train is optimized based on the trajectory of the leading train. In
the simultaneous approach, the trajectories of all the trains in the problem formulation are
optimized at the same time. In each approach, the trajectoryplanning problem is similar
to the problem of Chapter 3, and therefore it can also be solved using the pseudospectral
method and the mixed integer linear programming (MILP) approach. The performance of
the proposed approaches is compared via a case study.

This chapter is based on [134] and is supported by the resultspresented in [129, 131].

4.1 Introduction

The approaches proposed in Chapter 3 ignore the impact caused by signaling systems, e.g.,
a fixed block signaling (FBS) systems or a moving block signaling (MBS) systems (see
Section 2.1.2 for more detailed information about signaling systems). In this chapter, the
constraints caused by the leading train in an FBS system and an MBS system are included
into the trajectory planning problem. For the MILP approach, the constraints caused by
signaling systems are discretized and then recast as linearconstraints by piecewise affine
(PWA) approximations. Hence, these constraints can easilybe included into the MILP
formulation.

The remainder of this chapter is structured as follows. In Section 4.2, the train model is
summarized based on Section 3.2.1. In addition, the constraints for the operation of trains
in an FBS system and an MBS system are also formulated in this section. Section 4.3 gives
the mathematical formulation of the trajectory planning problem for multiple trains. In
Section 4.4, we propose two solution schemes to solve the trajectory planning problem for

49



50 4 Optimal Trajectory Planning for Multiple Trains

multiple trains. For the MILP approach, Section 4.5 presents the transformation process of
the FBS constraints and the MBS constraints. In addition, the mode vector constraints are
proposed to reduce the computation time of the MILP approach. Section 4.6 illustrates the
performance of the proposed approaches via a case study. Conclusions are finally presented
in Section 4.7.

4.2 Model formulation

In this section, the formulation of operation of trains in the FBS system and in the MBS
system are presented.

4.2.1 Train dynamics

Although the model for the operation of trains has been described in the previous chapter,
we here repeat the main equations that will be referred to in the remainder of this chapter.
As shown in Chapter 3, the continuous-space model (3.14) and(3.15) of train operations can
be discretized in space: the position horizon between two consecutive stations[sstart,send]
is split intoN intervals and it is assumed that the track and train parameters as well as the
traction or the breaking force can be considered as constantin each interval[sk,sk+1] with
length∆sk = sk+1−sk, for k= 1,2, . . . ,N. The discrete-space model is then transcribed into
an PWA model by approximating the nonlinear terms through PWA functions. Furthermore,
by applying the transformation properties described in Section 3.4.2, the PWA model is
formulated as the following mixed logical dynamic model:

x(k+1) = Akx(k)+Bku(k)+C1,kδ(k)+C2,kδ(k+1)+D1,kz(k)+D2,kz(k+1)+ek,
(4.1)

R1,kδ(k)+R2,kδ(k+1)+R3,kz(k)+R4,kz(k+1)≤ R5,ku(k)+R6,kx(k)+R7,k, (4.2)

wherex(k) =
[

E(k) t(k)
]T

, δ(·) andz(·) are the binary variables and auxiliary variables
introduced by the transformation, and (4.2) also includes the upper bounds and lower bounds
constraints forE(k), t(k), andu(k). The coefficient matrices in the mixed logical dynamic
model are determined by the train model, the PWA approximations, upper bounds and lower
bounds constraints, etc.

4.2.2 Operation of trains in a fixed block signaling system

Figure 4.1 shows an example of a three-aspect signaling system with ATP speed codes.
Later on, we will discuss the constraints caused by fixed block signaling system using this
simple three-aspect signaling system. However, the methodology proposed in this chapter
can be extended to other types of FBS systems.

In the FBS system given in Figure 4.1, the speed code data consists of two parts [115],
the authorized-speed code for this block and the target-speed code for the next block as
illustrated in Figure 4.1. When a train in Block 4 approaching to Signal 3 will receive a
vmax/vyellow code, to indicate a permitted speed ofvmax in this block and a target speed of
vyellow for the next. When the train enters Block 2, the code changes to vyellow/vmin because
the next block (Block 1) is occupied by train 1, so the speed must bevmin (usually taking
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Block 4 Block 3 Block 2 Block 1

Direction of travel

Signal 3 Signal 2 Signal 1

Train 1Train 2

Figure 4.1: Three-aspect fixed block signaling system with ATP speed codes

the value 0 m/s) by the time train reaches the end of Block 2. Ifthe train attempts to pass
the indication point for service braking distance before signal 1, the onboard equipment will
cause an emergency brake application.

Minimum headway for an FBS system

In order to ensure that a train’s operation is not impeded by the signaling system, i.e., a
train’s operation is not then affected by the train in front,the minimum headway is intro-
duced. The minimum headway is the minimum time separation between successive trains
at stations. For undisturbed running in FBS system, the minimum headway can be defined
as [60]

Hmin,FBS=
La

vF
max

[

2+ INT

{

LF
r +(vF

max)
2/(2aF

b)

La

}]

+
vF

max

2aF
b

+ tL
d +

√

2(LL
t +Ls)

aL
acc

, (4.3)

where INT{·} is a celling function that maps a real number to the least integer greater or
equal to the argument,La is the block length,LF

r is the distance that the following train
will travel during the reaction timetF

r of the driver and/or train control equipment of the
following train, vF

max is the maximum speed of the following train,aF
b is the maximum

service braking rate,tL
d is the station dwell time of the leading train,LL

t is the length of the
leading train,Ls is the length of the secure section (a special section to protect the leading
train), andaL

acc is the acceleration of the leading train.

The constraints caused by an FBS system

We assume that the total number of fixed block sections between two consecutive stations,
i.e., in the interval[sstart,send] is M. The index of block sections is denoted asm and the
boundaries of the block sections are denoted assFB,m with m∈ {1,2, . . . ,M}. We assume
that there exists an indexlm∈ {1,2, . . . ,N+1} such that

sFB,m = slm, (4.4)

and we define a piecewise constant function such that

ℓ(k) = m, for lm < k≤ lm+1, for m∈ {1,2, . . . ,M} (4.5)
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Thensk is in the fixed block(slℓ(k) ,slℓ(k)+1
]. The constraints caused by the leading train in

a three-aspect fixed block signaling system shown in Figure 4.1 can be formulated as the
follows:

• If the following train and the leading train are in the same block section, i.e.,tF(s) ∈
(

tL(sFB,m), tL(sFB,m+1)
]

with s∈ [sFB,m,sFB,m+1], which is in fact not allowed by sig-
naling system, then the speed of the following train must equal to the minimum speed,
i.e.

vF(s) = vmin. (4.6)

• If the leading train is just one block section before the following train, i.e.,tF(s) ∈
(

tL(sFB,m+1), tL(sFB,m+2)] with s∈ [sFB,m,sFB,m+1], then the speed of the following
train at positionssFB,m andsFB,m+1 should be less than or equal tovYellow and equal
to vmin, respectively, i.e.

vF(sFB,m)≤ vYellow,

vF(sFB,m+1) = vmin.
(4.7)

The deceleration is assumed as a constant for the entire interval [sFB,m,sFB,m+1].
Based on the relationship among position, speed, and acceleration, we have

2aFB,m(sFB,m+1− sFB,m) = v2
min− v2

Yellow, (4.8)

2aFB,m(s− sFB,m) = v̄2
Yellow(s)− v2

Yellow, (4.9)

whereaFB,m is the deceleration and ¯vYellow(s) is the maximum speed for trains at
positions for s∈ [sFB,m,sFB,m+1]. By eliminatingaFB,m in (4.8) and (4.9), we obtain

v̄Yellow(s) =

√

v2
Yellow +(v2

min− v2
Yellow)

s− sFB,m

sFB,m+1− sFB,m
, (4.10)

wherev̄Yellow(·) is a function only depending ons. Therefore, in this case we have the
constraint

vF(s)≤ v̄Yellow(s). (4.11)

• If the leading train is two blocks before the following train, i.e. tF(s) ∈
(

tL(sFB,m+2),
tL(sFB,m+3)

]

with s∈ [sFB,m,sFB,m+1], then the speed of the following train at posi-
tionssFB,m andsFB,m+1 should be less than or equal tovmax andvYellow, respectively,
i.e.

vF(sFB,m)≤ vmax,

vF(sFB,m+1)≤ vYellow.
(4.12)

Similarly asv̄Yellow(·), we can obtain

v̄max(s) =

√

v2
max+(v2

Yellow− v2
max)

s− sFB,m

sFB,m+1− sFB,m
, (4.13)

wherev̄max(s) is the maximum speed for trains at positions. Note that ¯vmax(s) only
depends ons. Therefore, we in this case have the constraint

vF(s) ≤ v̄max(s). (4.14)
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Braking curve

for Train 1
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for Train 2

dbrake,1dbrake,2 SSM Lt

Figure 4.2: An moving block signaling system

4.2.3 Operation of trains in a moving block signaling system

In a pure MBS system1, the distance between two consecutive trains should be larger than
the minimum distance at any time as shown in Figure 4.2. The minimum distance between
two successive trains is basically the instantaneous braking distance required by the fol-
lowing train plus a safety margin. As mentioned in Section 2.1.2, in practice the minimum
distance in the MBS system is larger than that defined in theory because the driver or the
automatic train control system need time to react to situations. The distance between the
leading train and the following train in an MBS system shouldsatisfy [115]

sL(t)− sF(t)≥ LF
r +(vF(t))2/(2aF

b)+SSM+LL
t , (4.15)

wheresL(t) andsF(t) are the positions of the front of the leading train and the following
train at timet, vF(t) is the speed of the following train,aF

b is the maximal deceleration,SSM

is the safety margin distance,LF
r is the distance that the following train will travel during

the reaction timetF
r of the driver and/or train equipment of the following train,andLL

t is the
length of the leading train. The value of the reaction time could be obtained from historical
data.

Minimum headway for a MBS system

The minimum distance between two successive trains (4.15) can be recast as the minimum
time difference of two successive trains

tF(s)− tL(s)≥ tF
r + tF

b(s)+ tF
safe(s), (4.16)

wheretL(s) andtF(s) are the time instants at which the front of the leading train and the
following train pass positions, respectively. The braking time of the following traintF

b (s)
and the time margintF

safe(s) caused by the safe margin distance and the train length can be
computed as

tF
b (s) = vF(s)/aF

b, (4.17)

1As stated in Chapter 2, there exist four MBS schemes: moving space blocking signaling, moving time block
signaling, pure MBS, and relative MBS. In this thesis, we only consider the pure MBS system, so the MBS system
later on refers to the pure MBS system.
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tF
safe(s) = (SSM+LL

t )/vF(s), (4.18)

wherevF(s) is the speed of the following train at positions.
In order to ensure that near stations a train’s operation is not impeded by the signaling

system, i.e. a train’s operation is not then affected by the (in principle slowly moving or
stopped) train in front, the minimum headway is introduced.The minimum headway is
the minimum time separation between successive trains at train stations, and it is defined
as [115]

Hmin,MBS = tL
d + tin−out= tL

d + tF
r + tF

b,max+ tL
safe, (4.19)

with the run-in/run-out timetin−out = tF
r + tF

b,max+ tL
safe, wheretF

b,max is the time it takes the

following train to come to a full stop when it is running at itsmaximum speed, i.e.tF
b,max=

vF
max/aF

b, and the run-out timetL
safeis the time that the leading train needs to completely clear

the secure section (i.e. a special section to protect the leading train), if present, and including
a safety margin, i.e.,tL

safe=
√

2(SSM+LL
t +Ls)/aL

acc. The acceleration of the leading train
aL

acc is usually considered as a constant value for the minimum headway calculation [60].

The constraints caused by an MBS system

The constraints caused by the leading train in MBS system is different in open track and in
the station area. In open track area, the minimum time difference between the leading train
and the following train should satisfy (4.16). In the station area, the minimum time distance
should be larger than the minimum headway defined in (4.19), i.e.,

tF(s)− tL(s) ≥Hmin,MBS. (4.20)

4.3 Mathematical formulation of the multiple trains tra-
jectory planning problem

For simplicity, we consider the optimal trajectory planning problem for two trains. However,
the solution approaches can be extended to multiple trains.The trajectory planning problem
for two trains (i.e., the leading train and the following train) can be formulated as:

J =

∫ send

sstart

max
(

0,uL(s)
)

ds+
∫ send

sstart

max
(

0,uF(s)
)

ds (4.21)

subject to

umin≤ uL(s)≤ umax, umin≤ uF(s)≤ umax, ∀s∈ [sstart,send]

0< ẼL(s)≤ ẼL
max(s), 0< ẼF(s)≤ ẼF

max(s), ∀s∈ [sstart,send]

ẼL(sstart) = ẼL
start, ẼF(sstart) = ẼF

start,

ẼL(send) = ẼL
end, ẼF(send) = ẼF

end,

tL(sstart) = TL
start, tF(sstart) = TF

start,

tL(send) = TL
end, tF(send) = TF

end,

(4.22)

the train model constraints (4.1) and (4.2) for the leading train and the following train, and
the constraints caused by the signaling systems in Section 4.2.2 and Section 4.2.3 (i.e.,
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(4.6), (4.7), (4.11), (4.12), (4.14), (4.16), and (4.20)),where the objective functionJ is the
energy consumption for these two trains without regenerative braking;ẼL

max(·) is equal to
0.5 · (VL

max(·))2 with VL
max(·) the maximum allowable velocity, which depends on the train

characteristics and line conditions, and as such it is usually a piecewise constant function
of the coordinates [72, 87]; sstart, ẼL(sstart), andt(sstart) are the position, the kinetic en-
ergy per mass, and the departure time for the leading train atthe beginning of the route;
send, ẼL(send), andtL(send) are the position, the kinetic energy per mass, and the arrival
time for the leading train at the end of the route. The notation definitions for the following
train are similar. It is assumed that the unit kinetic energyẼL(s)> 0 andẼF(s)> 0 for the
leading train and the following train, which means the train’s speed is always strictly larger
than zero, i.e. the train travels nonstop [72]. This assumption is nonrestrictive in practice
because the initial start and terminal stop can be modeled bysmall nonzero velocities. Fur-
thermore, in principle the traffic management system does not plan stops intentionally at an
intermediate point of the trip.

In addition, the constraints caused by the FBS system or the MBS system proposed in
Section 4.2.2 and Section 4.2.3 should also be included in the trajectory planning problem.

Remark 4.1 The ideas on solving the train scheduling problem in a rolling horizon way
in Section 7.5 could be adopted to the train trajectory planning for multiple trains in this
chapter. ✷

4.4 Solution approaches

Now two solution approaches, i.e., the greedy approach and the simultaneous approach, are
proposed for solving the optimal control problem for multiple trains under an FBS and or
an MBS system.

4.4.1 Greedy approach

In the greedy approach, the leading train’s trajectory is first determined and then the trajec-
tory of the following train is optimized based on the resultsof the leading train. For the
trajectory planning problem of the leading train, the objective is only part of (4.21), i.e.

JL =

∫ send

sstart

max
(

0,uL(s)
)

ds, (4.23)

and the constraints are those related to the leading train. The constraints pertain to both the
leading train and the following train are discarded for the trajectory planning for the leading
train. The optimization problem of the leading train is the same as the problem solved in
Chapter 3, and it can be solved using the pseudospectral method or the MILP approach.

The optimal trajectory planning problem for the following train is similar with that of
the leading train. When optimizing the trajectory of the following train, the trajectory of the
leader train is already fixed and the value ofJL is also fixed. The objective for the planning
problem of the following train is

JF =

∫ send

sstart

max
(

0,uF(s)
)

ds. (4.24)
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The constraints do not only include those in (4.22) related to the following train, but also the
constraints caused by the FBS or the MBS system as presented in Sections 4.2.2 or 4.2.3.

In the pseudospectral method, the constraints caused by thesignaling system can be eas-
ily formulated as the path constraints (see Section 3.4.1 for more information). However, for
the MILP approach, we need to approximate the nonlinear constraints into linear constraints
by using the transformation properties in Section 3.4.2. The details for the transformation
process of the FBS constraints and MBS constraints will be given in Section 4.5.

4.4.2 Simultaneous approach

The simultaneous approach optimizes the trajectories of the leading train and the following
train simultaneously. When optimizing the trajectories ofmultiple trains at the same time,
the model for each train is a model of the form (3.1). The trajectories of the leading train
and the following train are obtained at the same time and the value of the objective function
(4.21) is minimized by solving an optimization problem involving multiple trains. This
problem is similar with the trajectory planning problem fora single train and therefore it can
also be solved by the pseudospectral method or the MILP approach. The constraints caused
by the FBS system and MBS system can be handled similarly as inthe greedy approach.

However, compared to the case of a single train, the number ofthe state variables and
constraints of the problem for multiple trains increases linearly with the number of trains.
Therefore, the size of the optimal trajectory planning problem for multiple trains is much
bigger than the problem for a single train and the computation time of the bigger problem
will be much longer. However, since we are now optimizing thetrain trajectories of two
trains at the same time instead of optimizing them one by one,the control performance will
in general be better than that of the greedy approach.

Remark 4.2 For the trajectory planning for large number of trains, the simultaneous ap-
proach will become slow. So distributed optimization approaches [18] can be applied, where
the trajectory of each train could be calculated separatelywith consideration of constraints
caused by other trains, then these trains negotiate with each other and finally converge to a
global equilibrium. ✷

4.5 Mixed logical dynamic formulation for signaling sys-
tem constraints

As shown in previous chapter, the optimal control problem can be recast as an MILP prob-
lem of the following form:

min
Ṽ

CT
J Ṽ, (4.25)

subject to
F1Ṽ ≤ F2x(1)+ f3,

F4Ṽ = F5x(1)+ f6.
(4.26)

In order to include the constraints caused by the FBS system and MBS system (shown in
Section 4.2.2 and Section 4.2.3) in the MILP problem, these constraints should be trans-
formed into linear constraints by using the transformationproperties in Section 3.4.2. The
transformation of these constraints is given as below next.
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4.5.1 Multiple trains under fixed block signaling system

The constraints caused by the leading train in the FBS systemare first discretized at each
grid point sk for k = 1,2, · · · ,N+ 1. These logical constraints are then transformed into
linear constraints, which can be easily included in the MILPapproach.

Discretizing the FBS system constraints

As described in Section 4.2.2, the fixed block sections are indexed by m withm∈{1,2, . . . ,M}
and the boundaries for the block sections are denotedsFB,m and grid pointsk is in the fixed
block(slℓ(k) ,slℓ(k)+1

]. The constraints caused by the leading train in a three-aspect fixed block
signaling system shown in Figure 4.1 can be transformed at each discrete pointsk as follows:

• If the following train and the leading train are in the same block section, i.e.tF(k) ∈
(

tL(lℓ(k)), t
L(lℓ(k)+1)

]

, then the speed of the following train must equal to the mini-
mum speed, i.e.

vF(k) = vmin. (4.27)

• If the leading train is one block section before the following train, i.e. tF(k) ∈
(

tL(lℓ(k)+1), t
L(lℓ(k)+2)

]

, then the speed of the following train at positionsslℓ(k) and
slℓ(k)+1

should be less than or equal toVYellow and equal toVmin, respectively, i.e.

vF
lℓ(k)
≤ vYellow,

vF
lℓ(k)+1

= vmin.
(4.28)

For the grid pointssk ∈ (slℓ(k) ,slℓ(k)+1
), we have

vF(k) ≤ v̄Yellow,k, (4.29)

where

v̄Yellow,k =

√

v2
Yellow +(v2

min− v2
Yellow)

sk− slℓ(k)

slℓ(k)+1
− slℓ(k)

. (4.30)

• If the leading train is two blocks before the following train, i.e. tF(k) ∈
(

tL(lℓ(k)+2),

tL(lℓ(k)+3)
]

, then the speed of the following train at positionsslℓ(k) andslℓ(k)+1
should

be less than or equal toVmax andVYellow, respectively, i.e.

vF
lℓ(k)
≤ vmax,

vF
lℓ(k)+1

≤ vYellow.
(4.31)

For the grid pointssk ∈ (slℓ(k) ,slℓ(k)+1
), we have

vF(k)≤ v̄max,k, (4.32)

where

v̄max,k =

√

v2
max+(v2

Yellow− v2
max)

sk− slℓ(k)

slℓ(k)+1
− slℓ(k)

. (4.33)
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Considering the FBS constraints into the MILP approach

In order to transform above logical constraints into linearconstraints, the following binary
variables are introduced:

[tF(k)≤ tL(lℓ(k)+1)]⇔ [δ1(k) = 1],

[tF(k)≤ tL(lℓ(k)+2)]⇔ [δ2(k) = 1],

[tF(k)≤ tL(lℓ(k)+3)]⇔ [δ3(k) = 1].

(4.34)

Note that an extra constraint is needed, i.e.

tF(k)> tL(k), (4.35)

because the passing time of the following train at positionsk should be larger than that of
the leading train in order to avoid the collision of trains. In addition, based on the definition
of δ1(k), δ2(k), andδ3(k), the following logical conditions are satisfied

[δ1(k) = 1]⇔ [δ2(k) = δ3(k) = 1],

[δ2(k) = 1]⇔ [δ3(k) = 1].
(4.36)

The constraints caused by the leading train in the three-aspect FBS system can then be
reformulated as:

δ1(k)v
F(k)≤ vmin, (4.37)

(1− δ1(k))δ2(k)v
F(k)≤ v̄Yellow,k, (4.38)

(1− δ2(k))δ3(k)v
F(k)≤ v̄max,k, (4.39)

where ’≤’ is used in (4.37) instead of ’=’ in (4.27) becauseδ1(k)vF(k) is equal to 0 and is
not equal tovmin whenδ1(k) = 0.

By defining M̃i = TF
max− tL(lℓ(k)+i) that is larger than max(tF(k)− tL(lℓ(k)+i)), m̃i =

min(tF(k)− tL(lℓ(k)+i)) that is larger thanTF
min− tL(lℓ(k)+i), and by applying transformation

property (3.35) the logical constraints (4.34) can be shownto be equivalent to the following
inequalities:

tF(k)− tL(lℓ(k)+i)≤ M̃i(1− δi(k)),

tF(k)− tL(lℓ(k)+i)≥ ε+(m̃i− ε)δi(k),
(4.40)

for i = 1,2,3, whereTF
max is the arrival time of the following train at the final destination,

TF
min the departure time of the following train, andε is the machine precision. In addi-

tion, we define binary variablesδ4(k) = δ1(k)δ2(k) andδ5(k) = δ2(k)δ3(k) to deal with the
nonlinear termsδ1(k)δ2(k) andδ2(k)δ3(k) in (4.38)-(4.39) respectively. According to the
transformation properties in Section 3.4.2, the definitions of δ4(k) andδ5(k) are equivalent
to linear constraints of the form (3.36). In addition, auxiliary variableszF

i (k) are introduced
to deal with the nonlinear termsδi(k)vF(k), which is defined as

zF
i (k) = δi(k)v

F(k), for i = 1,2,3,4,5. (4.41)

This definition is equivalent to linear constraints of the form (3.37). The constraints caused
by the leading train in fixed block systems can thus be formulated into the MILP problem
setting.
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In the greedy approach, first the trajectory of the leading train is determined by solving
the MILP problem. Next, the optimal control problem of the following train is solved, which
is similar to the one of Chapter 3 but with the extra constraints caused by the leading train
in FBS system. The coefficient matrices in the mixed logical dynamic model (4.1)-(4.2)
are determined by the following train. Since the trajectoryof the leading train is known,
tL(lℓ(k)+i) is also known. Therefore,̃Mi andm̃i are constants and (4.40) is a system of linear
constraints.

When optimizing the trajectories of multiple trains simultaneously, the models for these
two trains are determined by a model of the form (4.1)-(4.2).The optimal control problem
of these two successive trains can also be rewritten in the form of the MILP problem (4.25)-
(4.26) but including the model and constraints of each trainand the constraints caused by
the FBS system. However,tL(lℓ(k)+i) is now also a variable in this case since the leading
train’s trajectory also has to be optimized. The constraints (4.40) can be rewritten as

(TF
max− tL(lℓ(k)+i))δi(k)≤−tF(k)+TF

max,

(TF
min− tL(lℓ(k)+i)− ε)δi(k)≤ tF(k)− ε− tL(lℓ(k)+i).

(4.42)

In order to deal with the nonlinear terms in (4.42), we define

zL
i (k) = tL(lℓ(k)+i)δi(k), for i = 1,2,3. (4.43)

Similar to zF
i (k), (4.43) is equivalent to linear constraints according to the transformation

properties in Section 3.4.2.

4.5.2 Multiple trains under moving block signaling system

Just as the constraints caused by the FBS system, the constraints caused by the MBS sys-
tem are first discretized at the grid pointssk, k = 1, . . . ,N+1. Next, these constraints are
approximated by linear constraints, which can easily be included in the MILP formulation
(4.25)-(4.26).

Discretizing the MBS constraints

We discretize the constraint (4.16) caused by the MBS systemat the grid pointssk as

tF(k)≥ tL(k)+ tF
r + tF

b(k)+ tF
safe(k), for k= 1,2, . . . ,N, (4.44)

tF(k) ≥ tL(k)+ tF
r + tF

b,max+ tL
d + tL

safe, for k= N+1. (4.45)

In addition, some intermediate constraints are introducedto ensure that the points between
the grid points also satisfy the constraints caused by the MBS system. According to (4.16),
we obtain the following constraint for eachs∈ [sk,sk+1] as:

tF(s)− tF
r − tF

b(s)− tF
safe(s)≥ tL(s). (4.46)

If we assume the left-hand side of (4.46) to be an affine function in the interval[sk,sk+1],
then we can add the following constraints:

(1−α)(tF(k)− tF
r − tF

b(k)− tF
safe(k))+α(tF(k+1)− tF

r − tF
b(k+1)− tF

safe(k+1))

≥ tL(s+α∆sk),
(4.47)
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for some valuesα in a finite subsetSα ∈ [0,1), e.g. Sα = {0.1,0.2, . . . ,0.9}, wheretL(s+
α∆sk) is known if the optimal trajectory of the leading train is fixed. Note that forα = 0
andα = 1, the constraint (4.44) is retrieved (except ifk= N−1). However, when we solve
the trajectory planning problem for multiple trains using the simultaneous approach, the
leading train’s trajectory is not known beforehand. So the term tL(s+α∆sk) is unknown.
If we assume the right-hand side of (4.46) is also an affine function, i.e.tL(s+α∆sk) =
(1−α)tL(k)+αtL(k+1), then it is sufficient to check (4.46) at the pointsk andk+1 (i.e.,
for α = 0 andα = 1), since due to linearity (4.46) will then also automatically be satisfied
for all intermediary points.

Considering the MBS constraints into the MILP approach

Note that the constraints (4.44), (4.45), and (4.47) are linear intL(k), tL(k+1), andtF(k).
However, they are nonlinear invF(k) andvF(k+1) since the time safety margin (4.18) is a
nonlinear function of the following train’s velocityvF(k). Furthermore, the kinetic energy
per massEF(k) is one of the states instead ofvF(k) with EF(k) = 0.5(vF(k))2 (cf. Section
4.2.1). Therefore, both the braking timetF

b (k) and the safe time margintF
safe(k) are nonlinear

functions ofEF(k), where

tF
b (k) =

1

aF
b

√

2EF(k) (4.48)

and

tF
safe(k) = (SSM+LL

t )
1

√

2EF(k)
. (4.49)

The nonlinear functionsf1(·) : EF→
√

2EF and f2(·) : EF→ 1√
2EF could be approximated

by PWA functions as follows (see Chapter 3 for more details about PWA approximation):

f1,PWA(E
F(k)) =

{

α1EF(k)+β1 for Emin≤ EF(k) < E1,
α2EF(k)+β2 for E1 ≤ EF(k)≤ Emax,

(4.50)

f2,PWA(E
F(k)) =

{

λ1EF(k)+µ1 for Emin≤ EF(k)< E1,
λ2EF(k)+µ2 for E1≤ EF(k)≤ Emax,

(4.51)

with optimized parametersα1, α2, β1, β2, λ1, λ2, µ1, µ2, andE1. For more details of this
transformation into PWA functions, see [127]. Now the constraint (4.44) can be approxi-
mated as the following linear constraint:

tF(k)≥ tL(k)+ tF
r +

1

aF
b

(α1EF(k)+β1)+(SSM+LL
t )(λ1EF(k)+µ1), if Emin≤ EF(k)< E1

(4.52)

tF(k)≥ tL(k)+ tF
r +

1

aF
b

(α2EF(k)+β2)+(SSM+LL
t )(λ2EF(k)+µ2), if E1≤ EF(k)≤ Emax

(4.53)
Similarly, the constraints (4.45) and (4.46) can also be written as linear constraints. These
approximated linear constraints caused by the MBS system can be easily included in the
MILP approach and we still get an MILP problem.

The greedy approach and the simultaneous approach presented in Section 4.4 can be
applied for trajectory planning of multiple trains in MBS systems. In the greedy approach
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tL(k) andtL(s+α∆sk) are known for the trajectory planning problem for the following train
since the trajectory of the leading train is known by the zonecontroller or the following train.
The trajectory planning problem for the following train is similar to the one of Chapter 3
but with the MBS constraints of Section 4.5.2. When optimizing the trajectories of multiple
trains at the same time, the model for each of these trains is determined by a model of
the form (4.1)-(4.2). The optimal control problem of these successive trains can also be
rewritten in the form of the MILP problem (4.25)-(4.26).

4.5.3 Extension: mode vector constraints

The computation time needed for solving an MILP problem for asingle train is usually
small if we take a small value forN. However, the computation time increases quickly with
the value ofN and the number of trains considered in the MILP problem for multiple trains.
In the worst case, the computation time grows exponentiallywith the number of integer
variables. In order to solve the MILP problem for multiple trains in a reasonable time, we
introduce the so-called mode vector constraints , which have already been applied to sewer
networks [68].

A mode of the MLD model for a single train refers to a specific value of the binary vec-

tor δi =
[

δi
1 δi

2 . . . δi
Mi

]T
, wherei represents theith train andMi denotes the dimension

of the binary vector of theith train (see the MILP formulation (4.25)-(4.26)). Furthermore,
a mode vector is defined as a tuple of binary vectors for each train considered in the MILP
problem, i.e.∆ = (δ1T ,δ2T , . . . ,δIT )T , whereI is the number of trains considered in the
problem. Let∆̄ = (δ̄1T , δ̄2T , . . . , δ̄IT )T be a reference mode vector of the MILP problem for
multiple trains. Note however that this comes at a cost of reduced optimality; the optimal-
ity can next be improved again by solving the fullI -trains MILP problem with the mode
constraints. The mode vector constraints can be defined as

Mi

∑
m=1

|δ̄i
m− δi

m| ≤ Di for i = 1,2, . . . , I , (4.54)

or as
I

∑
i=1

Mi

∑
m=1

|δ̄i
m− δi

m| ≤ D, (4.55)

whereDi and D are preselected bounds (a nonnegative integer value) on thenumber of
0-1switches (or vice versa) in the entires of the updated mode vector with respect to the
reference mode vector. Note that the mode vector constraints (4.54) and (4.55) can be recast
as linear constraints by introducing some auxiliary variables to deal with the absolute values
|δ̄i

m− δi
m| for i = 1,2, . . . , I andm= 1,2, . . . ,Mi . Furthermore, the mode vector constraints

can be seen as the Hamming distance between∆ and∆̄ if we would expand∆ and∆̄ into
binary strings [68].

An important practical problem is to find a reference mode vector ∆̄. It is stated in [95]
that physics or heuristic knowledge of the system can often be used to find̄∆ that fulfills
the physical constraints of the system. A good candidate forthe reference mode vector can
be obtained by solving the optimal control problem for multiple trains sequentially since
the computation time of the solvingI single-train MILP problems will be much less than
solving the fullI -trains MILP problem all at once.
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Table 4.1: Parameters of train and line path

Property Symbol Value

Train mass [kg] m 2.78·105

Basic resistance [N/kg] Rb 0.0142+1.0393·10−4v2

Mass factor [-] ρ 1.06
Maximum velocity [m/s] Vmax 22.2
Line length [m] send 1332
Minimum kinetic energy [J] Emin 0.1
Maximum traction force [N] umax 2.224·105

Maximum braking force (regular) [N] umin −2.224·105

Table 4.2: Parameters for the calculation of the minimum headway

Property Symbol Value

Train length [m] Lt 90
Safety margin [m] SSM 30
Length of the secure section [m] Ls 60
Initial acceleration [m/s2] aL

acc 1
Braking deceleration [m/s2] aF

b 0.9
Braking reaction time [s] tr 1
Station dwell time [s] td 25

By using the MILP approach with mode vector constraints, thecomputation time can be
reduced significantly. A case study illustrate this is presented in [131], see there for more
information.

4.6 Case study

In order to illustrate the performance of the proposed greedy and simultaneous approaches
for the optimal trajectory planning for multiple trains under an FBS system and an MBS
system, a part of the Beijing Yizhuang subway line is used as atest case study.

4.6.1 Set-up

The performance of the MILP approach is compared with the widely used pseudospectral
method and for both approaches we consider both the greedy and the simultaneous variant.
For the sake of simplicity, we only consider two2 stations in the Yizhuang subway line:
Songjiazhuang station and Xiaocun station. The track length between these two stations is
1332 m and the speed limits and grade profile are shown in Figure 4.3. The parameters of the
train and the line path are listed in Table 4.1. The rotating mass factor is often chosen as 1.06
in the literature [57] and therefore we also adopt this value. According to the assumptions

2Note however that the MILP approaches and the pseudospectral methods can also be applied if more than 2
stations are considered.
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Figure 4.3: The speed limits and the grade profile between Songjiazhuang station and Xi-
aocun station

made in Section 3.3, the unit kinetic energy should be largerthan some positive threshold
Emin. In this test case, the minimum kinetic energy is chosen as 0.1 J. The maximum trac-
tion force of the train is a nonlinear function of the train’svelocity and the maximum value
of this function is 315 kN. Moreover, the maximum acceleration and maximum decelera-
tion used for trajectory planning along the line are assumedto be 0.8 m/s2 and -0.8 m/s2

respectively in order to make sure that the planned trajectory can be followed by the train
controlled by the lower level controller. Since the train mass here is 2.78·105 kg, the maxi-
mum traction force and maximum braking force are 222.4 kN and-222.4 kN, respectively.
The objective function of the optimal train control problemconsidered in this chapter is the
energy consumption of the train operation without regenerative braking (cf. (4.21)).

In this case study, two trains are scheduled to run from Songjiazhuang station with a
headway of 75 s to Xiaocun station. We consider two cases: theFBS system and the MBS
system. Moreover, we assume that the leading train has a malfunction during the whole
simulation and as a consequence its maximum speed is reducedto 40 km/h, i.e. 11.1 m/s.
In addition, the leading train and the following train will arrive at different platforms in
Xiaoxun station and the following train will overtake the leading train at Xiaocun station.
The parameters for the calculation of the minimum headway are given in Table 4.2. The
length of the train is 90 m and the reaction time of the driver is 1 s. For the FBS system,
we assume that there exist four fixed block sections between Songjiazhuang station and
Xiaocun station and all fixed block sections are of equal length, i.e. 333 m. The minimum
headway of the FBS system can be calculated according to (4.3) and it is equal to 98.4 s.
Based on the parameters of Table 4.2, the run-in/run-out time tin−out in (4.19) is equal to
44.6 s and the minimum headway of the MBS system equals 69.6 s.Note that the headway
75 s is smaller than the minimum headway of the FBS system (i.e., 98.4 s) and is larger than
the minimum headway of the MBS system (i.e., 69.6 s).
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In the MILP approaches, the lengths∆sk of the intervals[sk,sk+1] depend on the speed
limits, gradient profile, fixed block length, and so on. If thenumber of the space intervalsN
is large, then the accuracy will be better but the computation time of the MILP approaches
will be larger. For this case study, the number of space intervals N is chosen as 20, 40,
and 60, respectively. Moreover, the space intervals are taken to have equal length being
66.6 m, 33.3 m, and 22.2 m respectively for the different three values ofN. In addition, the
nonlinear terms in the trajectory planning problem, such asthe nonlinear terms in the differ-
ential equations of the train model, are approximated by PWAfunctions (see Chapter 3 for
more details). If we take PWA approximations with more subfunctions, the approximation
accuracy will be better. Here, PWA functions with 2 subfunctions and 3 subfunctions are
compared. We use the CPLEX solver via the Tomlab3 interface to Matlab for solving the
MILP problems.

The pseudospectral method is a state-of-the-art method forsolving optimal control prob-
lems (cf. Chapter 3, Appendix 3.A, [37], and [51]). The approximation error of the pseu-
dospectral method can be reduced by taking more collocationpoints. The numbers of LGL
points are taken as 20, 40, 80, and 120, respectively. There are several packages that imple-
ment the pseudospectral method (see Appendix 3.A for detailed information). One of them
is PROPT, which supports the description of the differential algebraic equations and can call
many solvers, such as MINOS and SNOPT, to solve the resultingnonlinear programming
problem. We in our case study use PROPT solver through the Tomlab interface to Matlab
and SNOPT is used to solve the resulting nonlinear programming problem. Note that both
SNOPT and PROPT are implemented in object code.

4.6.2 Results for the fixed block signaling system

Table 4.3 shows the performance of the MILP approaches and the pseudospectral methods
for the trajectory planning of two trains in the FBS system. The performance mentioned
here, such as the energy consumption and the end time violation, is calculated by applying
the obtained optimal control inputs into the nonlinear train model (3.1). The total energy
consumption is the sum of the energy consumption of the leading train and the following
train. The end time violation is the sum of the absolute values of the differences between the
real running times and the planned running times of the leading train and the following train.
The energy consumption for each train is influenced by the sign of the difference between
the real running time and the planned running time. If the real running time is larger than the
planned running time, e.g. 105 s for the following train, then the energy consumption usually

3Tomlab website: http://tomopt.com.
4For the greedy and simultaneous MILP approaches, then in the notationn/m is the number of subfunctions

used in the PWA approximations of the nonlinear terms in the differential equations of the nonlinear train model
andm is the number of the space intervals. For the greedy and simultaneous pseudospectral methods, then indicates
the number of collocation points used.

5For all four approaches, the numbern1 in the notationn1/n2/n3 is the number of real-valued variables,n2 is
the number of integer-valued variables, andn3 is the number of constraints. Note that for the greedy and simulta-
neous MILP approach, all the constraints are linear. Furthermore, in the greedy MILP and greedy pseudospectral
methods, two subproblems are solved. One is for the trajectory planning problem of the leading train, the size of
which is shown as L:n1/n2/n3. The other is for the trajectory planning problem for the following train consider-
ing the constraints caused by the leading train, the size of which is shown as F:n1/n2/n3. For the simultaneous
MILP and simultaneous pseudospectral approaches, the trajectories of the leading train and the following train are
obtained by solving a combined optimization problem.
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Table 4.3: Performance comparison of the greedy and simultaneous approach using the
MILP and the pseudospectral method for the FBS system

Total energy Total end Total
Approach Method Variant4 Problem size5 consumption time vio- CPU

[MJ] lation [s] time [s]

Greedy

MILP

2/20
L: 99/40/462

114.48 3.17 1.34
F: 199/140/1116

2/40
L: 199/80/922

113.77 1.95 14.22
F: 399/280/2326

2/60
L: 299/120/1382

110.60 1.48 24.26
F: 599/420/3486

3/20
L: 179/120/962

114.79 2.82 6.87
F: 279/220/1686

3/40
L: 359/240/1542

112.58 2.21 96.56
F: 559/440/3366

3/60
L: 539/360/2702

110.03 1.41 229.72
F: 839/660/5046

20
L: 60/0/1107

112.59 2.52 231.83
F: 60/0/1307

Pseudo- 40
L: 120/0/1207

110.04 1.43 1381.71
F: 120/0/1607

spectral 80
L: 240/0/1407

109.48 0.76 1935.09
F: 240/0/2207

120
L: 360/0/1607

109.17 0.45 3588.10
F: 360/0/2807

MILP

2/20 358/180/1837 109.65 4.07 2.76
2/40 718/360/3697 108.06 2.91 78.40
2/60 1078/540/5557 106.32 1.65 204.38
3/20 518/340/2877 108.44 3.19 24.13

Simul- 3/40 1038/680/5777 106.58 1.73 184.76
taneous 3/60 1558/1020/8677 106.19 1.08 349.31

20 120/0/2414 109.53 3.58 445.52
Pseudo- 40 240/0/2814 106.44 1.68 1521.30
spectral 80 480/0/3614 105.92 0.78 3005.71

120 720/0/4414 105.68 0.54 4875.23
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becomes less since a train can run with a smaller average speed. For the greedy approach,
the CPU time is the sum of the time used to solve the optimal control problem for the leading
train and the optimal control problem for the following train on a 1.8 GHz Intel Core 2 Duo
CPU running a 64-bit Linux operating system. In the simultaneous approach, the total CPU
time is equal to the time spent by solving the optimal controlproblem since the optimal
control inputs for the leading train and the following trainare obtained simultaneously.

Furthermore, Figures 4.4 and 4.5 show the optimal control inputs and the speed-position
trajectories obtained by the MILP approaches and the pseudospectral methods for the FBS
system, where the number of space intervals for the MILP approaches and the number of
the collocation points for the pseudospectral methods are taken as 40 and the nonlinear
terms in the nonlinear train model are approximated using PWA functions with 3 affine
subfunctions for the MILP approach. The speed-position trajectories of the leading train
and the following train were produced by applying the optimal control inputs obtained by
solving the optimal control problems to the nonlinear trainmodel. It is observed from
Figures 4.4 and 4.5 that the operation of the following trainis affected by the leading train
in the FBS system, where the signal at position 666 m shows a yellow aspect to the following
train. Because the headway between the leading train and thefollowing train is taken as 75 s,
which is less than the minimum headway of the FBS system, i.e.98.4 s. Thus, the following
train must slow down to satisfy the speed limit caused by the yellow signal aspect, which is
40 km/h, i.e. 11.1 m/s.

In the case study for the FBS system, the corresponding energy consumption, the end
time violation, and the computation time of the greedy MILP approach are 112.58 MJ,
2.21 s, and 96.56 s, respectively. For the greedy pseudospectral method, the energy con-
sumption, the end time violation, and the calculation time of both trains are 110.04 MJ,
1.43 s, and 1381.71 s, respectively. It can be seen that the energy consumption and the end
time violation of the greedy MILP approach are a bit larger than those of the greed pseu-
dospectral method. However, the computation time of the greedy pseudospectral method is
more than one order of magnitude longer than than that of the greedy MILP approach.

The energy consumption, end time violation, and calculation time are 106.58 MJ, 1.73 s,
and 184.76 s, respectively, using the simultaneous MILP approach. For the simultaneous
pseudospectral method, they are 106.44 MJ, 1.68 s, and 1521.30 s, respectively. When com-
pared with the greedy MILP approach, the energy consumptionand the end time violation
of the simultaneous MILP approach become smaller since the leading train’s trajectory can
also be optimized with respect to the following train. However, the computation time of
the simultaneous MILP approach becomes longer than the greedy MILP approach because
in the simultaneous MILP approach, the size of the optimization problem is almost dou-
bled. In addition, the simultaneous pseudospectral methodyields better performance, i.e.,
lower energy consumption and lower end time violation when comparing with the greedy
pseudospectral method.

As can be observed in Table 4.3, the energy consumption and the end time violation
of the greedy MILP approach are generally larger than that ofthe greedy pseudospectral
method for the same number of discrete intervals and collocation points. However, the
computation time of the greedy pseudospectral method is oneto two orders of magnitude
higher than that of the greedy MILP approach. In addition, the energy consumption and
the end time violation become less if we take more space intervals for the greedy MILP
approach and more collocation points for the greedy pseudospectral method. The results
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Figure 4.4: Trajectory planning for two trains under the FBSsystem with headway 75 s
using the greedy MILP and the pseudospectral approach
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Figure 4.5: Trajectory planning for two trains under the FBSsystem with headway 75 s
using the simultaneous MILP and the pseudospectral approaches
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obtained for the greedy MILP approach and the greedy pseudospectral method also hold for
the simultaneous MILP approach and the simultaneous pseudospectral method. Moreover,
it can be observed that the energy consumption of the simultaneous MILP approach is less
than that of the greedy MILP approach, while the computationtimes of the simultaneous
MILP approach are higher than those of the greedy MILP approach. This also holds for the
greedy and simultaneous pseudospectral method.

4.6.3 Results for the moving block signaling system

The performance of the greedy and simultaneous approaches is shown in Table 4.4 for the
MBS system. In particular, Figures 4.6 and 4.7 show the speed-position trajectories and the
optimal control inputs for the MBS system with the same set-up as Section 4.6.2. Similarly,
the speed-position trajectories, the end time violation, etc. are obtained by applying the
optimal control inputs to the nonlinear train model (3.1). As we can see from Figures 4.6
and 4.7, the operation of the following train is not affectedby the leading train since the
scheduled headway (75 s) is larger than the minimum headway of the MBS system (69.6 s).

In the case study for the MBS system, the energy consumption,the end time violation,
and the computation time for the greedy MILP approach are 67.89 MJ, 1.68 s, and 75.98 s.
In addition, the energy consumption, the end time violation, and the computation time for
the greedy pseudospectral method are 67.42 MJ, 1.66 s, and 729.24 s. The energy consump-
tion and the end time violation of the greedy MILP approach are slightly larger than those
of the greedy pseudospectral method. However, the computation time of the greedy pseu-
dospectral method is almost one order of magnitude larger than that of the greedy MILP
approach. This also holds for the results obtained by the simultaneous MILP and pseu-
dospectral approach. In general, the total energy consumption and the total end time viola-
tion decrease with the increase of the number of the space intervals in MILP approach and
the number of collocation points in pseudospectral method.Nevertheless, the total CPU
time increases quickly with respect to the number of the space intervals and collocation
points. For the greedy and/or simultaneous MILP approach, if we take PWA approxima-
tions with more subfunctions, the end time violation also decreases. Furthermore, when
compared with the greedy MILP (or pseudospectral) approach, the simultaneous MILP (or
pseudospectral) approach in principle has a better controlperformance in principle but it
is characterized by a much higher computational burden since the size of the optimization
problem is almost doubled.

4.6.4 Discussion

The simulation results show that when compared with the greedy pseudospectral method,
the energy consumption and the end time violation of the greedy MILP approach are in-
considerably larger, but the computation time is one to two orders of magnitude shorter.
Similarly, the energy consumption and the end time violation of the simultaneous MILP
approach are lightly larger than those of the simultaneous pseudospectral method. How-
ever, the computation time of the simultaneous MILP approach is much smaller than that of
the simultaneous pseudospectral method. Moreover, the energy consumption of the greedy
MILP approach is larger than that of the simultaneous MILP approach, but the computa-
tion time of the simultaneous MILP approach is longer in general. Furthermore, the energy
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Table 4.4: Performance comparison of the greedy and simultaneous approach using the
MILP and the pseudospectral method for the MBS system

Total energy Total end Total
Approach Method Variant Problem size consumption time vio- CPU

[MJ] lation [s] time [s]

Greedy

MILP

2/20
L: 99/40/462

69.16 3.45 1.41
F: 99/40/632

2/40
L: 199/80/922

68.34 2.47 12.03
F: 199/80/1292

2/60
L: 299/120/1382

67.56 1.08 24.19
F: 299/120/1952

3/20
L: 179/120/962

68.76 2.79 9.87
F: 179/120/1152

3/40
L: 359/240/1542

67.89 1.68 75.98
F: 359/240/2332

3/60
L: 539/360/2702

67.12 1.34 254.80
F: 539/360/3662

20
L: 60/0/1107

68.88 3.94 89.71
F: 60/0/1157

Pseudo- 40
L: 120/0/1207

67.42 1.66 729.24
F: 120/0/1257

spectral 80
L: 240/0/1407

67.03 0.75 1483.42
F: 240/0/1457

120
L: 360/0/1607

66.85 0.29 4542.20
F: 360/0/1657

MILP

2/20 198/80/1094 68.14 2.58 2.45
2/40 398/160/2214 67.52 1.53 56.17
2/60 598/240/3334 66.62 1.26 150.67
3/20 358/240/2134 67.73 1.71 13.49

Simul- 3/40 718/480/4294 67.03 1.04 121.29
taneous 3/60 1078/720/6454 66.87 0.85 420.37

20 120/0/2264 68.62 3.61 161.15
Pseudo- 40 240/0/2464 67.50 1.37 1051.06
spectral 80 480/0/2864 67.07 0.66 2984.23

120 720/0/3264 66.26 0.31 6954.37
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Figure 4.6: Trajectory planning for two trains under the MBSsystem with headway 75 s
using the greedy MILP and the pseudospectral approaches
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Figure 4.7: Trajectory planning for two trains under MBS system with headway 75 s using
the simultaneous MILP and the pseudospectral approaches
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consumption of the simultaneous pseudospectral method is lower than that of the greedy
pseudospectral method, but it requires a much higher computation time.

4.7 Conclusions

In this chapter, we have proposed two approaches, namely thegreedy approach and the
simultaneous approach, to solve the optimal trajectory planning problem for multiple trains.
In the greedy approach, the optimal trajectory planning problem of the leading train is solved
first and then based on the optimal control inputs of the leading train, the trajectory planning
problem for the following train is solved. For the simultaneous approach, the trajectories
of the leading train and the following train are optimized atthe same time. The constraints
caused by the leading train in a fixed block signaling system and a moving block signaling
system are included in the optimal trajectory planning problem for multiple trains. In the
MILP approach, the nonlinear terms in the train model and constraints are approximated by
piecewise affine functions. In this way, the optimal trajectory planning problem for multiple
trains can then be recast as a mixed integer linear programming (MILP) problem. The
performance of the greedy and the simultaneous MILP approach has been compared with
the greedy and the simultaneous pseudospectral method in a case study. The simulation
results have shown that the MILP approaches yield a similar control performance as the
pseudospectral methods but they require a much less computation time.

A topic for future work will be an extensive comparison and assessment between the
MILP approach, the pseudospectral method (also using othernonlinear programming sub-
solvers, e.g., MINOS and KNITRO), a dynamic programming algorithm [58], and other
approaches and frameworks (such as AMPL, APMonitor, and ASCEND) described in the
literature for various case studies and a wide range of scenarios.
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Chapter 5

OD-Independent Train
Scheduling for an Urban Rail
Transit Line

In the previous two chapters, we have discussed trajectory planning for trains in a rail-
way network based on given train schedules. In this chapter,the scheduling problem based
on origin-destination-independent (OD-independent) passenger demands for an urban rail
transit line is considered with the aim of minimizing the total travel time of passengers and
the energy consumption of trains. We propose a new iterativeconvex programming (ICP)
approach to solve this train scheduling problem. The performance of the ICP approach is
compared via a case study with other alternative approaches, such as nonlinear program-
ming approaches, a mixed integer nonlinear programming (MINLP) approach, and a mixed
integer linear programming (MILP) approach.

The research discussed in this chapter has been published in[132, 133, 135].

5.1 Introduction

As has been pointed out in Chapter 2, the train scheduling of urban rail transit systems
becomes more and more important for reducing the operation costs of railway operators
and for guaranteeing passenger satisfaction. In the urban rail transit systems considered
here, the lines are assumed to be separated from each other and each direction of the line
has a separate rail track. Therefore, trains do not overtakeeach other. In addition, for urban
rail transit systems with high frequencies, it is not a majorissue to the passengers anymore
whether or not the train schedule is cyclic since new trains arrive at a station every 2 to 5
minutes. In practice, rail transport operators therefore do not announce the train schedule
to passengers but only provide some information, such as that a train will arrive within 2
minutes. Hence, rail transport operators can schedule trains in real time based on the current
situation, such as the number of waiting passengers at stations, the passenger arrival rates,
and the number and position of running trains.

73
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In this chapter, we propose a real-time scheduling approachto schedule trains in a reced-
ing horizon way based on the OD-independent passenger demands for an urban rail transit
line, where a predefined timetable or service headway is not needed. The train scheduling
problem is essentially a multi-objective optimization problem because it should consider
both the benefits of the rail operators and the passengers [44, 59, 78, 124]. This chapter
considers multi-objective optimization for the train scheduling problem, where the energy
consumption of the trains and the total travel time of passengers are minimized. Since the
train scheduling problem here is a non-smooth non-convex problem, we propose a new it-
erative convex programming (ICP) approach to solve the problem. The performance of the
ICP approach is compared with a pattern search method, a mixed integer nonlinear pro-
gramming (MINLP) approach, a mixed integer linear programming (MILP) approach, and
a sequential quadratic programming (SQP) method.

The rest of this chapter is structured as follows. Section 5.2 formulates the evolution
equations for the arrivals and departures of trains, the passenger demand characteristics, and
the passenger/vehicle interaction. Section 5.3 describesthe multi-objective cost function
and the constraints of the real-time train scheduling problem. Section 5.4 proposes several
solution approaches for the train scheduling problem, in particular, the new iterative convex
programming approach. In addition, we show that the problemwith stop-skipping can be
solved using an MINLP approach or an MILP approach. Section 5.5 further extends the train
scheduling model to a model with stop-skipping at small stations. Section 5.6 compares the
performance of the proposed solution approaches in Section5.4 with a case study. Finally,
conclusions and recommendations are provided in Section 5.7.

5.2 Model formulation

This chapter considers one direction of an urban transit line consisting ofJ stations as shown
in Figure 5.1. Station 1 is the origin station and stationJ is the final station of each trip.

We make the following assumptions when formulating the real-time scheduling model:

A.1 Station j for j ∈ {2,3, . . . ,J−1} can only accommodate one train at a time and no
passing can occur at any point in the line.

A.2 Passengers arrive at a constant rate1 λ j at stationj.

A.3 The number of passengers alighting from trains at station j for j ∈ {1,2, . . . ,J} is a
fixed proportionρ j of the number of passengers on board of trains when they arrive
at stationj.

A.4 The number of passengers waiting at a station and the number of passengers on board
immediately after a train’s departure are approximated by real numbers.

A.5 The operation of trains only consists of three phases: the acceleration phase, the
speed holding phase, and the deceleration phase. Moreover,the acceleration and the
deceleration are taken to be fixed constants.

1Here we use a deterministic model to describe the passenger arrival process.
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j j+1

Direction of travel

1 2 ... J...

Station
Train i

Figure 5.1: Illustration of a subway line

Assumption A.1 generally holds for most urban transit systems, which are usually operated
in first-in first-out order from station 1 toJ. Assumption A.2 is consistent with observed ran-
dom passengers arrivals for short headway (less than 10 minutes) services [96]. An estimate
of these passenger arrival rateλ j at stations can be obtained by analyzing historical data of
the passenger flow. Assumption A.3 is made according to [110]. Similar as the passenger
arrival rate, the passenger alighting proportionρ j can be estimated by analyzing historical
data. For Assumption A.4, if the number of passengers is high, then the error made by this
assumption is small. Furthermore, this assumption simplifies the optimization problem later
on. In order to simplify the operation model for the trains, the detailed dynamics are not
included in the model formulation, but only the three phasesmentioned in Assumption A.5
are considered. However, once the running times between consecutive stations are fixed,
a more accurate speed profile for the operation of trains can be calculated as a lower level
control problem (see Chapter 3 for more information).

5.2.1 Arrivals and departures

In the literature on train scheduling [28, 36, 57, 59, 81], the operation of trains is usually
described by the departure times, arrival times, running times, and dwell times. As has been
discussed in Chapter 2, the operation of trains is controlled through a multi-layer control
framework. This chapter focus on the train scheduling. In the scheduling layer, we use
an online model-based approach; this means the model needs to be simulated repeatedly.
In order to obtain a balanced trade-off between the accuracyand the computation speed, a
macroscopic model is used. The detailed train dynamics, theposition of block signals, the
detection of trains, etc. can then be taken into account by the lower level control layer.

The departure timedi, j as shown in Figure 5.2 of traini at stationj is

di, j = ai, j + τi, j , (5.1)

whereai, j and τi, j are the arrival time and the dwell time of traini at station j. In the
literature, the dwell time is usually considered as a constant. However, in practice, it is
influenced by the number of passengers boarding and alighting from a train. Therefore, we
consider a variable dwell time, as will be explained in Section 5.2.3.

The track section between stationj and stationj +1 is denoted as segmentj as illus-
trated in Figure 5.2. So the arrival timeai, j+1 of train i at stationj +1 equals the sum of the
departure timedi, j at stationj and the running timer i, j on segmentj for train i:

ai, j+1 = di, j + r i, j . (5.2)
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j j+1
Segment j

ri,j

ni,j

wi,j

di,j di,j+1
ti,j ti,j+1

ni,j+1

wi,j+1

Station

Train i

Figure 5.2: The variables for the operation of trains and passenger characteristics

Remark 5.1 Max-plus algebra has been adopted for the train rescheduling and timetable
analysis [53, 70, 120]. However, it is not suitable for the problem proposed here because
the max operation will not be used since there is no fixed timetable yet. Moreover, it would
result in a bilinear varying max-plus model since both running times and dwell times are
variables. ✷

According to Assumption A.5, we denote the acceleration andthe deceleration asaacc
i, j

andadec
i, j , respectively. If we define the speed in the speed holding phase asvi, j , then the

running distance of these three phases can be calculated as

sacc
i, j =

v2
i, j

2aacc
i, j

, sdec
i, j =−

v2
i, j

2adec
i, j

, shold
i, j = sj − sacc

i, j − sdec
i, j ,

wheresj is the length of segmentj. Therefore, the running time of traini for segmentj can
be written asr i, j = tacc

i, j + thold
i, j + tdec

i, j , which can then be recast as

r i, j =
sj

vi, j
+

vi, j

2aacc
i, j
− vi, j

2adec
i, j

. (5.3)

Note that the speedvi, j of the holding phase should satisfy

vi, j ∈ [vi, j ,min,vi, j ,max], (5.4)

wherevi, j ,min andvi, j ,max are the minimal and maximal running speed for the speed holding
phase of traini at segmentj, respectively. The maximum running speed is limited by the
train characteristics and the condition of the line. The minimum running speed is introduced
to ensure passenger satisfaction since if trains run too slow, the passengers may complain.

Remark 5.2 The coasting phase of the operation of trains can be includedas follows (at
the cost of an increased number of variables and an increasedcomputational complexity).
In the coasting phase, both the traction force and braking force are equal to zero, where the
train speed slows down because of the resistance. With the model given above, the entering
speed (i.e., the holding speed) of the coasting phase isvi, j . We denote the speed at the end of
the coasting phase asv′i, j . The resistance varies with the train speed. Here, we approximate
the resistance using the mean speedvm,i, j = (vi, j + v′i, j)/2 of the coasting phase:

Ri = m(k1i + k2ivm,i, j)+ k3iv
2
m,i, j ,

wherem is the mass of the train itself and of the passengers on board of the train andk1i , k2i,
andk3i are the resistance coefficients of traini. In this way, the running distance and running
time of the coasting phase can be calculated. The coasting phase can then be included in the
model formulation for the optimization of train schedule. ✷
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The minimum headway is the minimum time interval between twosuccessive trains so
that they can enter and depart from a station safely [98]. A train cannot enter a station until
a minimum headwayh0 after the preceding train’s departure, which can be formulated as

ai, j −di−1, j ≥ h0. (5.5)

In addition, we select the order in which the trains run such that vehiclei−1 always precedes
train i for i ∈ {1,2,3, . . . , I} with I the total number of trains.

5.2.2 Passenger demand characteristics

The number of passengers still remaining at the station after the departure of traini − 1
immediately after its departure at stationj is defined aswi−1, j . The number of passengers
who want to get on traini at stationj can then be formulated as

wwait
i, j = wi−1, j +λ j(di, j −di−1, j), (5.6)

whereλ j(di, j −di−1, j) is the number of the passengers that arrived during the departure of
train i−1 and the departure of traini.

By defining the number of passengers on traini immediately after its departure at station
j−1 asni, j−1, the remaining capacity of traini at stationj immediately after the alighting
process of the passengers is

nremain
i, j =Ci,max−ni, j−1(1−ρ j), (5.7)

whereCi,max is the effective maximal capacity of traini, andni, j−1(1−ρ j) is the number of
passengers remaining on traini immediately after all the passengers that wanted to leave the
train have gotten off. Note that the effective maximal capacity can be estimated based on the
data from the daily operations, where the distribution of onboard passengers and the effect
of the distribution of waiting passengers on the platforms,etc. can be taken into account.

The number of passengers boarding traini at stationj is equal to the minimum of the
remaining capacity and the number of waiting passengers, i.e.

nboard
i, j = min

(

nremain
i, j ,wwait

i, j

)

. (5.8)

The number of passengers at stationj immediately after the departure of traini, i.e. the
passengers who cannot get on traini, is then given by

wi, j =wwait
i, j −nboard

i, j . (5.9)

The number of passengers on traini when it departs from stationj is equal to the sum of
the passengers arriving but not getting off at stationj and the passengers boarding on train
i at stationj, which can be formulated as

ni, j =ni, j−1(1−ρ j)+nboard
i, j . (5.10)
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5.2.3 Passenger/vehicle interaction

The dwell time is influenced by the number of alighting and boarding passengers, the num-
ber on waiting passengers at platform, and the distributionof passengers on board of a train
and of passengers waiting at platform etc. Based on [85], theminimum dwell time can be
described by a linear model

τi, j ,min =α1,d+α2,dni, j−1ρ j +α3,dnboard
i, j (5.11)

or a nonlinear model

τi, j ,min = α1,d+α2,dnalight
i, j +α3,dnboard

i, j +α4,d

(

wwait
i, j

ndoor

)3

nboard
i, j , (5.12)

whereα1,d, α2,d, α3,d, andα4,d are coefficients that can be estimated based on historical
data,ndoor is the number of doors of the train, andwwait

i, j /ndoor is the average number of
passengers waiting at each door. The dwell timeτi, j should satisfy

max
(

τ̃min,τi, j ,min
)

≤ τi, j ≤ τi, j ,max, (5.13)

whereτ̃min is the minimum dwell time predefined by railway operator. Thedwell timeτi, j

should be larger than the predefined minimum dwell timeτ̃min and it should also be larger
than the minimal dwell timeτi, j ,min such that the passengers can get on and get off the train.
In addition,τi, j should be less than a maximum dwell timeτi, j ,max to ensure the passenger
satisfaction.

5.3 Mathematical formulation of the train scheduling prob-
lem

Based on the model formulation in Section 5.2, we now formulate the real-time train schedul-
ing problem. The total travel time of all passengers and the energy consumption caused by
the operation of trains are minimized using a weighted-sum strategy for the real-time train
scheduling problem. The total travel time is the sum of the passenger waiting time and the
passenger in-vehicle time. The passenger waiting timetwait

i, j at stationj for train i includes
the waiting time of both passengers left by the previous train i− 1 and the newly arrived
passengers, and it can be calculated by

twait
i, j = wi−1, j(di, j −di−1, j)+

1
2

λ j(di, j −di−1, j)
2, (5.14)

where the first term represents the waiting time of the passengers left by traini−1 at station
j, and the second term represents the waiting time of randomlyarriving passengers between
the departures of traini−1 and traini. The passenger in-vehicle time for traini running from
station j to j +1 includes the running time for all passengers on traini after its departure
form station j and the waiting time of the passengers who do not get off the train at station
j +1, which can be formulated as

t in-vehicle
i, j = ni, j r i, j +ni, j(1−ρ j+1)τi, j+1. (5.15)
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The total travel time of passengers can be described as a weighted sum of the passenger
waiting time and the passenger in-vehicle time, i.e.,

ttotal =
I

∑
i=1

J−1

∑
j=1

(γwaitt
wait
i, j + t in-vehicle

i, j ). (5.16)

Remark 5.3 Since the passengers usually feel that time goes slowly whenthey are waiting
at the platform [122], a weight larger than one can be added tothe passenger waiting time
in the problem formulation. ✷

In [48], the energy consumption is proportional to the resistance, which includes the
rolling resistance, air resistance, and grade resistance.However, the computation of the
energy consumption is more precise in this chapter because the operation model of a train
considered here includes the acceleration phase, the speedholding phase, and the deceler-
ation phase. The deceleration phase usually does not consume energy. In addition, if the
electric motor on board of a train can be used as an electric generator (so-called regenerative
braking), then the regenerative energy can be fed back into the power supply system. The
energy consumptions for each phase are then calculated as follows:

• The energy consumption for the acceleration phase of traini on segmentj is

Eacc
i, j =

∫ tacc
i, j

0

(

(me,i +ni, jmp)
(

aacc
i, j + k1i + k2iv(t)+gsin(θ j)

)

+ k3iv
2(t)

)

v(t)dt,

(5.17)
whereme,i is the mass of traini itself, mp is the mass of one passenger,(me,i +ni, jmp)
is the mass of traini and the passengers on board of traini at stationj, k1i ,k2i , and
k3i are the resistance coefficients of traini, v(t) is equal toaacc

i, j t, andθ j is the grade
profile of segmentj.

• The energy consumption for the speed holding phase of traini on segmentj is

Ehold
i, j =

∫ tacc
i, j +thold

i, j

tacc
i, j

(

(me,i +ni, jmp)(k1i + k2ivi, j +gsin(θ j ))+ k3iv
2
i, j

)

vi, jdt. (5.18)

• The energy generated by the regenerative braking in the deceleration phase can be
calculated as

Edec
i, j = βdec

i

∫ r i, j

tacc
i, j +thold

i, j

(

(me,i +ni, jmp)
(

∣

∣adec
i, j

∣

∣− k1i− k2iv(t)−gsin(θ j )
)

− k3iv
2(t)

)

v(t)dt,

(5.19)

whereβdec
i is the ratio for regenerative energy fed back to the power supply system

since there is power loss in electric generator of traini.

The total energy consumption for allI trains running withJ stations can then be formulated
as

Etotal =
I

∑
i=1

J

∑
j=1

(Eacc
i, j +Ehold

i, j −Edec
i, j ). (5.20)
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We apply a weighted-sum strategy to solve the multi-objective optimization of the train
scheduling problem, i.e., we consider the following objective function

fopt =
Etotal

Etotal,nom
+ γ

ttotal

ttotal,nom
, (5.21)

whereγ is a non-negative weight, and the normalization factorsEtotal,nom andttotal,nom are
the nominal values of the total energy consumption and the total travel time of passengers,
respectively. These nominal values can e.g. be determined by running trains using a feasible
initial schedule.

The constraints of the real-time scheduling problem consist of the running time con-
straints, dwell time constraints, headway constraints, and capacity of trains, given as (5.1)-
(5.13) in Section 5.2.

Remark 5.4 The train scheduling problem presented here can be solved ina rolling horizon
way. A detailed description on how to do this for train scheduling is given in Section 7.5.
See there for more details. ✷

5.4 Solution approaches

The resulting train scheduling problem with objective function (5.21) and constraints (5.1)-
(5.13) is a non-smooth non-convex problem, where the non-smoothness is caused by the
min function in (5.8), and the non-convexity is due to the nonlinear non-convex objective
function and the non-convex set defined by constraints. We solve the train scheduling prob-
lem using several alternative approaches in this section. One is a gradient-free non-smooth
optimization approach, e.g., pattern search. Another one is a gradient-based nonlinear pro-
gramming approach, e.g., sequential quadratic programming. Furthermore, a general pur-
pose nonlinear integer programming approach, e.g., branch-and-bound algorithm, is also
used. By approximating the nonlinear objective function using PWA functions, the train
scheduling problem can be recast into an MILP problem. Furthermore, we propose a new
iterative convex programming (ICP) approach to solve the train scheduling problem.

5.4.1 Gradient-free nonlinear programming

Nonlinear programming approaches can be grouped in gradient-free approaches and gradient-
based approaches. The gradient-free approaches do not explicitly require gradient and Hes-
sian information but only require that the values of the objective function can be ranked.
Moreover, gradient-free methods are suitable for non-smooth problems. Since the real-time
train scheduling problem is non-smooth due to the min function, our first choice is to use
a gradient-free method. Here, in particular we propose to use the pattern search method,
since it can handle optimization problems with nonlinear, linear, and bound constraints, and
does not require objective functions to be differentiable or continuous. The pattern search
method was first proposed by Hooke and Jeeves [61], and it has been proved successful in
practice even for objective functions with many local minima, in particular when used in
combination with a multi-start method [91], in order to improve the probability of obtaining
a solution that is close to a globally optimal solution.
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When solving the scheduling problem using the pattern search method, the variables are
the departure timesdi, j , the running timesr i, j , and the dwell timesτi, j . The other variables,
such as the number of passengerswi, j waiting at stations, the number of passengersni, j on
board of the trains, the passenger waiting timestwait,i, j , and the passenger onboard times
tin-vehicle,i, j , can be eliminated. The pattern search method has been implemented in the
global optimization toolbox of Matlab [118].

5.4.2 Gradient-based nonlinear programming

Gradient-based nonlinear programming methods rely on gradient or Hessian information.
If this information is not available, it can be approximatednumerically. We consider the
gradient-based sequential quadratic programming (SQP) algorithm here since it is widely
used to solve nonlinear programming problems. A requirement for the SQP algorithm is that
the objective function and the constraints of the nonlinearprogramming problem should be
continuously differentiable [15]. In the SQP method, the nonlinear programming problem
is recast as a sequence of quadratic programming problems, which can be solved easily and
efficiently. The train scheduling problem considered in this chapter is non-differentiable
because of the min function. Even though the SQP algorithm isa gradient-based method,
we also apply it to our problem setting2 (since it yields good solutions in the case study in
practice in Section 5.6).

When solving the real-time scheduling problem using the SQPalgorithm, the variables
are the same as those in the pattern search method. The SQP algorithm has been imple-
mented in many packages, such as SNOPT and the optimization toolbox of MATLAB [117].

5.4.3 Mixed integer nonlinear programming

In the MINLP approach, we introduce auxiliary binary variables and auxiliary real variables
to deal with the non-smooth min function in (5.8). By introducing a binary variableδi, j ∈
{0,1} and defining

f̃i, j = wi−1, j +λ j(di, j −di−1, j)− [Ci,max−ni, j−1(1−ρ j)], (5.22)

the following equivalence holds [140]:

[ f̃i, j ≤ 0]⇔ [δ = 1] (5.23)

which is true iff
{

f̃i, j ≤ M̃i, j(1− δi, j)
f̃i, j ≥ ε+(m̃− ε)δi, j

, (5.24)

whereε is a small positive number that is introduced to transform a strict equality into a
non-strict inequality, and̃Mi, j andm̃i, j are the maximum value and the minimum value of
f̃i, j , respectively. Equation (5.8) can now be rewritten as

nboard
i, j = δi, j [wi−1, j +λ j(di, j −di−1, j)]+ (1− δi, j)[Ci,max−ni, j−1(1−ρ j)]. (5.25)

2When the SQP algorithm is applied to a nonlinear programmingproblem with a non-differentiable objective
function, it might get stuck in a local solution. In the nonlinear programming problem proposed in this chapter,
the minimum value of the objective function is usually not obtained at the points where the objective function is
non-differentiable, so the SQP algorithm will jump over these points. Therefore, the SQP approach with multiple
initial points works well in this case.
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Note that in (5.25) there are four nonlinear terms (i.e.,δi, jwi−1, j , δi, jdi, j , δi, jdi−1, j , δi, jni, j−1),
which are the products of the binary variableδi, j and real variables. Four auxiliary real vari-
ables can then be introduced to transform these four nonlinear terms into linear terms with
linear constraints. The detailed information about this transformation is given in Section
3.4.2.

The variables of the resulting MINLP problem involve the departure timesdi, j , the run-
ning timesr i, j , and the dwell timesτi, j , the passengers waiting at stationswi, j , the pas-
sengers on board of the trainsni, j , the binary variablesδi, j , and the auxiliary variables.
The other variables like the passenger waiting timestwait,i, j and the passenger onboard
times tin-vehicle,i, j can be eliminated. The MINLP problem can be solved using branch-
and-bound method, such as the MINLP BB solver3 and SCIP (Solving Constraint Integer
Programs) [11]. Because the computation time of the MINLP BBsolver are too long, so
we now propose a bi-level optimization method to solve the MINLP problem. This method
consists of two levels of optimization. The high-level optimization optimizes the binary
variables, where a brute force approach can be used to find allthe combinations for the
binary variables when the size of the problem is small. Alternatively, integer programming
approaches, such as genetic algorithms, can be applied in the high-level optimization. For
each combination of binary variables, the nonlinear optimization problem in the lower level
is now a smooth non-convex optimization problem with real-valued variables only, which
can be solved using gradient-based approaches, such as an interior point algorithm.

5.4.4 Mixed integer linear programming

In Chapter 3, we have shown that the mixed integer linear programming (MILP) approach
can be very efficient for train trajectory planning problems. Therefore, we also apply the
MILP approach to the real-time train scheduling problem. Inthis approach, we approximate
the nonlinear terms in the objective function by piecewise affine (PWA) approximations and
then transform the non-smooth non-convex problem into an MILP problem. The MILP ap-
proach deals with the min function of (5.8) in the same way as the MINLP approach. In
the MINLP problem in Section 5.4.3, the constraints are linear, but the objective function is
nonlinear and non-convex. Therefore, in order to solve the real-time rescheduling problem
as an MILP problem, we need to approximate the nonlinear terms, such aswi−1, jdi, j , ni, j r i, j ,
andni, jτi, j , as PWA functions. These nonlinear terms are products of tworeal-valued vari-
ables. Here, we use the general formxy to denote such a nonlinear term, which can be
rewritten as [77, 139]

xy=
1
4
(x+ y)2− 1

4
(x− y)2. (5.26)

Defineφ = x+y andξ = x−y. Then we havexy= 1
4φ2+ 1

4ξ2, where the quadratic termsφ2

andξ2, or z2 in general notation, can be approximated by a PWA function ofthe following
form:

fPWA(z) =

{

α1z+β1 for z≤ Z1,
α2z+β2 for z> Z1.

(5.27)

For each nonlinear term in the objective function, the values of α, β, andZ1 are optimized
based on least-squares optimization (see Section 3.4.2 formore details). By introducing the

3For more details about MINLP BB solver, see http://tomopt.com.
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binary variables and auxiliary variables, the productxy can be recast as a linear expression
with linear constraints (see Section 3.4.2 for more information).

The variables of the resulting MILP problem include the variables in the MINLP prob-
lem and the binary variables and the auxiliary variables introduced by the approximations
of nonlinear terms in the objective function. The MILP problem can be solved by branch-
and-bound algorithms implemented in several existing commercial and free solvers, such as
CPLEX, Xpress-MP, or GLPK [5, 86].

5.4.5 A new approach: iterative convex programming

The non-differentiability of the train scheduling problemis introduced by the min function
in (5.8). In addition, the non-convexity of the problem is caused by the variableswi, j and
ni, j . Therefore, we propose the iterative convex programming (ICP) approach, where we use
estimated values ˆwi, j andn̂i, j for wi, j andni, j , respectively. This eliminates the min function
and the nonlinear termswi, j di, j , wi, jdi−1, j , ni, j r i, j andni, jτi, j+1 in the objective function.
Hence, the resulting optimization problem is a smooth and convex problem, which can be
solved for the global optimum using e.g. interior point algorithms [16] and ellipsoid algo-
rithm [109], which are implemented in the Matlab software CVX for convex programming4.
Based on the optimum of the convex problem, the new estimatedvalues forwi, j andni, j can
be calculated. By solving the convex problems iteratively,an approximation of the global
optimum of the original non-smooth non-convex problem can be obtained. The procedure
of the ICP method is given in Algorithm 1.

Algorithm 1 ICP method
1: Input : a feasible initial solution of departure times, running times, and dwell times, i.e.,

di, j(0), r i, j(0), andτi, j (0) for i = 1, . . . , I and j = 1, . . . ,J, pmax, convergence tolerance
ς, maximum number of iterationspmax;

2: iteration indexp← 0;
3: calculate initial estimates ˆwi, j (p) and n̂i, j(p) using (5.9) and (5.10) based ondi, j(p),

r i, j(p), andτi, j (p);
4: calculate the initial objectivefopt(p) using (5.21) ;
5: Repeat
6: p= p+1;
7: substitute the estimates ˆwi, j(p−1) andn̂i, j(p−1) into the original problem to get

a convex problem;
8: obtain optimal departure timed∗i, j(p), running timer∗i, j(p), and dwell timeτ∗i, j (p)

by solving the convex problem;
9: compute ˆwi, j (p) andn̂i, j(p) using (5.9) and (5.10) based ond∗i, j(p), r∗i, j (p), and

τ∗i, j(p);
10: calculate the objectivefopt(p) using (5.21);
11: Until p= pmax or | fopt(p)− fopt(p−1)| ≤ ς
12: p∗ = argminp fopt(p);
13: Output : d∗i, j(p

∗), r∗i, j (p
∗), τ∗i, j (p∗), fopt(p∗).

4More information about Matlab software CVX, see http://cvxr.com/cvx.
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For the ICP approach, the variables of the real-time scheduling problem are the departure
timesdi, j , the running timesr i, j , and the dwell timesτi, j . The number of passengerswi, j

waiting at stations and the number of passengersni, j on board of the trains are estimated by
ŵi, j andn̂i, j , respectively. The other variables, such as the passenger waiting timetwait,i, j and
the passenger onboard timestin−vehicle,i, j , are functions of the decision variables and hence
are not explicitly represented in the solution process. Thesolution obtained by the ICP
approach is not necessarily the global minimum of the formulated scheduling problem since
the ICP approach solves a sequence of convex approximationsof the formulated nonlinear
non-convex problem. For the ICP approach, we should in general use multiple starting
points. However, for the case study in Section 5.6, we found that one random feasible initial
point yields comparable results with respect to other alternative approaches.

5.5 Extension: stop-skipping at small stations

In order to reduce the passenger travel time and energy consumption further, a stop-skipping
scheme can be adopted, which has already been applied in practice, such as the SEPTA line
in Philadelphia and the urban rail transit system in Santiago, Chile (see Chapter 2 for more
detailed information). The stop-skipping strategy is beneficial for both the rail operator (e.g.,
less energy consumption and higher operation speed) and thepassengers (e.g., shorter travel
time and lower train occupation). With the help of the information provided via personal
digital assistant (PDA) devices and the real-time displaysand announcements at stations, we
assume that passengers can obtain enough information and board the right train. However,
the passengers at the skipped stations experience longer waiting time and thus a longer total
travel time. Therefore, the skipping of trains at stations should be carefully coordinated.
For example, additional constraints can be considered whenscheduling the trains, such as:
two successive trains should not skip the same station. In this way, the waiting time of
passengers can be limited to an acceptable value.

In practice, if the passenger alighting proportion and the passenger arrival rate are high
at a station, a train will not skip that station. Therefore, we assume here that trains may
only skip small stations with low passenger alighting proportion ρ j and that the effect of
stop-skipping on passengers is then negligible for these small stations. Hence we define a
skipping setSskip = {(i, j)|train i may potentially skip stationj}.

We introduce a binary variableyi, j to indicate whether traini stops at stationj or not:

yi, j =

{

1 if train i will stop at stationj,
0 if train i will skip station j.

(5.28)

For the sake of simplicity of the expression, we consider here the variablesyi, j to be defined
for pairs(i, j) ∈ {1,2, . . . , I}×{1,2, . . . ,J}. However, actuallyyi, j is only a free variable if
(i, j) ∈ Sskip and otherwiseyi, j = 1 by definition. Hence, instead of (5.1) we get

di, j = ai, j + yi, jτi, j . (5.29)

Since traini may skip stationj or station j +1, the running distance of the speed holding
phase is then rewritten as

shold
i, j = sj − yi, j

v2
i, j

2aacc
i, j

+ yi, j+1
v2

i, j

2adec
i, j

, (5.30)
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which means that if traini skips stationj, then traini will run with the holding speedvi, j in
the running distance of the acceleration phase. Similarly,if train i skips stationj +1, train
i will run with the holding speedvi, j in the distance of the deceleration phase. Note that we
have

(1− yi, j+1)(vi, j+1− vi, j) = 0, (5.31)

since when traini skips stationj + 1, i.e., yi, j+1 = 0, the operation of the train between
station j and stationj +2 only contains three phases.

The running time of traini for segmentj can be written as

r i, j =
sj

vi, j
+ yi, j

vi, j

2aacc
i, j
− yi, j+1

vi, j

2adec
i, j

. (5.32)

The remaining capacity of traini at station j immediately after the passengers alight is
reformulated as

nremain
i, j =Ci,max−ni, j−1(1− yi, jρ j)

instead of (5.7). Instead of (5.8), the number of passengersboarding traini at stationj can
be calculated using

nboard
i, j = min

(

nremain
i, j ,yi, jw

wait
i, j

)

, (5.33)

whereyi, jwwait
i, j is the number of passengers who want to get on traini at stationj. Further-

more, the number of passengers at stationj immediately after the departure of traini can be
computed by (5.9). Instead of (5.10), the number of passengers on traini when it departs
from stationj is now reformulated as

ni, j = ni, j−1(1− yi, jρ j)+nboard
i, j . (5.34)

For the train scheduling problem with stop-skipping, the total energy consumption should
be calculated as

Etotal =
I

∑
i=1

J

∑
j=1

(yi, jE
acc
i, j +Ehold

i, j − yi, j+1Edec
i, j ) (5.35)

instead of (5.20). In addition, the passenger in-vehicle time for traini running from station
j to j +1 is reformulated as

tin-vehicle,i, j = ni, j r i, j + yi, j+1ni, j(1−ρ j+1)τi, j+1 (5.36)

instead of (5.15). The total travel time for the stop-skipping problem can then be calculated
by (5.16).

The train scheduling problem with stop-skipping has objective function (5.21) and con-
straints (5.2), (5.4)-(5.9), and (5.29)-(5.14). This optimization problem is an MINLP prob-
lem, where the stoping variablesyi, j are the binary variables and the objective function are
nonlinear and nonconvex. The MINLP approach and the MILP approach in Section 5.4.3
and Section 5.4.4 can be directly applied to solve the train scheduling problem with stop-
skipping since they can easily deal with binary variables.
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Figure 5.3: The layout of the Yizhuang subway line

5.6 Case Study

5.6.1 Set-up

In order to demonstrate the approaches proposed in Section 5.4 for the real-time train
scheduling problem (with stop-skipping) and to compare their performance, the train char-
acteristics and the line data of the Yizhuang subway line in Beijing are used as a test case
study. The Yizhuang line has 14 stations as shown in Figure 5.3, and the speed limit for the
line is 80 km/h (i.e., 22.2 m/s). The detailed information about these 14 stations is listed in
Table 5.1. The minimum running time in Table 5.1 is calculated by taking a fixed acceler-
ation of 0.8 m/s2 and a fixed deceleration of−0.8 m/s2. Furthermore, the speedvi, j of the
holding phase in (5.3) is taken to be equal to the maximum speed 22.2 m/s for computing
the minimum running time. We assume the maximum running timeis r i, j ,max = ζr i, j ,min,
whereζ is larger than 1. We have chosenζ = 1.2 in order to ensure that the passengers do
not complain that the train is too slow. Based on the maximum running time, the minimal
holding speed can be calculated.

The mass of the train itself and the standard mass of one passenger are given in Table 5.2.
In addition, we choose the linear model (5.11) for the minimum dwell time, the coefficients
of which given in Table 5.2 are chosen according to [145]. Themaximal dwell time is
chosen as 150 s. The effective capacity of each train is 1468 passengers. A communication-
based train control system (i.e., a moving block signaling scheme) is implemented in the
Beijing Yizhuang subway line and the minimum headwayh0 between two successive trains
is 90 s.

The initial state of the network at the start of the simulation is defined as follows: the
train scheduling at the beginning of a day is considered. Theschedule of train 0, i.e., the
first train entering the urban rail transit line, is fixed. There are no passengers left by train 0
because not too many passengers wait for the first train in themorning. The schedule for the
following trains should be optimized in this case study. Furthermore, in order to compare
the performance of the schedules obtained by different approaches proposed in this chapter,
a reference schedule with a fixed departure headway defined, which is a state-of-the-art
method used in practice, where the departure headway could change several times a day
based on the peak hours and off-peak hours. For the scheduling period considered in this
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Table 5.1: Information of the Yizhuang subway line

Station Distance Passenger Passenger Minimum
number to next arrival rate alighting running

station [m] [passenger/s] proportion[-] time [s]

1 1332 3 0 87.721
2 1286 0.5 0.05 85.651
3 2086 3 0.3 121.654
4 2265 4 0.38 129.710
5 2331 0.4 0.04 132.680
6 1354 4 0.32 88.711
7 1280 4 0.38 85.380
8 1544 3 0.7 97.260
9 992 3 0.6 72.420
10 1975 3 0.7 116.659
11 2369 3 0.7 134.391
12 1349 2 0.5 88.486
13 2610 2 0.5 145.237
14 - 0 1 -

Table 5.2: parameters of the trains and the passengers

Property Symbol Value

Train mass [kg] me,i 199·103

Mass of one passenger [kg] mp 60
Capacity of trains [passengers] Ci,max 1468

Minimum dwell time [s] τ̃min 30
Maximum dwell time [s] τmax 150

Coefficients [s] α1,d 4.002
of the minimal [s/passengers] α2,d 0.047
dwell time [s/passengers] α3,d 0.051

Coefficients of resistance
[m/s2] k1i 0.012
[s−1] k2i 5.049·10−4

[m−1] k3i 2.053·10−5

case study, the schedule of trains is taken the same as train 0and the constant departure
headway is taken as 210 s (i.e., the sum of the minimum headwayand the maximum dwell
time).

Two cases will be considered here:

• Case A: the train scheduling problem without stop-skipping.

• Case B: the train scheduling problem with stop-skipping.

For Case A, we have applied the approaches proposed in Section 5.4 to solve the train
scheduling problem. For the pattern search method, we used the patternsearch function in
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Table 5.3: The nominal values of the energy consumption and the passenger travel time

Scenario I & J Nominal passenger Nominal energy
index travel time [s] consumption [J]

1 I = 2,J = 3 6.402·105 1.216·108

2 I = 3,J = 4 1.954·106 3.285·108

3 I = 4,J = 5 6.457·106 4.780·108

4 I = 5,J = 6 7.211·106 1.402·109

5 I = 6,J = 7 1.582·107 1.992·109

6 I = 7,J = 8 2.537·107 1.943·109

7 I = 7,J = 10 2.943·107 2.859·109

8 I = 7,J = 12 3.523·107 2.557·109

9 I = 7,J = 14 3.298·107 4.926·109

the global optimization toolbox of Matlab. The SNOPT solverimplemented in the Matlab
Tomlab toolbox is adopted for the SQP algorithm to solve the nonlinear non-convex train
scheduling problem. In the ICP approach, the resulting smooth and convex problem is also
solved by the SNOPT. The MINLP BB solver is used for the MINLP approach. In addition,
for the bi-level approach for MINLP problem, the low-level optimization problem is also
solved using SNOPT and the ga function in the global optimization toolbox of Matlab is
applied for the high-level optimization. Furthermore, we use CPLEX, implemented through
the cplex interface function of the Matlab Tomlab toolbox asMILP solver.

Remark 5.5 SNOPT, MINLP BB and CPLEX are implemented in object code while the
patternsearch and ga functions are implemented in pure m files, i.e., they need to be inter-
preted and thus usually seem slower than the functions implemented in object code. So, in
principle, the current computation time comparison is not fair. However, since we limited
ourselves to the methods and functions available to us, we did our best to compare the results
of these approaches in the fairest possible way. Note however that as explained above the
computation time for the patternsearch and ga functions would be improved if they would
also be implemented in object code. ✷

In order to illustrate the performance of the solution approaches proposed for different-sized
problems, we considered 9 scenarios with different problemsizes as shown in Table 5.3,
where the values ofI andJ are the number of trains and stations involved. For the scenarios
with J less than 14, the passenger arrival rateλJ and the passenger alighting rateρJ at station
J is set to 0 and 1, respectively, because we assume that station J is the last station of the
trip. The weightγ in the multi-objective function (5.21) is chosen as 1. In addition, the
nominal values of the passenger travel time and the energy consumption shown in Table 5.3
are obtained using feasible train schedules, where the running times of trains are uniformly
distributed random values in[rmin,1.2 · rmin] and the dwell times are constants.

In Case B, we have applied the MINLP approach and the MILP approach to solve the
train scheduling problem with stop-skipping based on Section 5.4. The resulting MINLP
problem is solved using a direct MINLP approach, the brute force bi-level method, and
the bi-level method with a genetic algorithm for the high-level binary optimization. The
corresponding solvers and settings of these methods are chosen the same as those mentioned
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Figure 5.4: The train schedule of scenario 5 with 6 trains and7 stations for Case A obtained
by the sequential quadratic programming approach

for Case A. According to the information given in Table 5.1, station 2 and station 5 are small
stations since the passenger arrival rate and the passengeralighting proportion are smaller
compared with other stations. In this case study, we allow trains to skip station 2 or/and
station 5.

5.6.2 Results and discussion

Results of Case A: the train scheduling problem

The schedule of trains for scenario 5 obtained by solving thetrain scheduling problem for 6
trains (i.e., traini ∈ {1,2, . . . ,6}) and 7 stations (i.e., stationj ∈ {1,2, . . . ,7}) using the SQP
approach is shown in Figure 5.4. The running times, dwell times, and critical headways
corresponding to Figure 5.4 are shown in Table 5.4. The modelformulation in this chapter
allows the presence of waiting passengers at platforms at the beginning of the scheduling
period and allows trains to be running somewhere on the transit line. As we can observe
from Figure 5.4, the departure headways between train 1, train 2, and train 3 at station 1 are
larger than those between the later trains. This is because of the schedule of train 0, which
stops at each station with a dwell time of 120 s. Therefore, inorder to satisfy the headway
constraints at all stations, the departure headway at the station 1 must be much larger than
the minimum headway 90 s.

We applied a multi-start pattern search and a multi-start SQP here and we started the
calculation with 10 feasible random initial points. As regards the ICP algorithm, we should
also solve it using multiple initial points. However, we sawthat the random feasible initial
points yielded a comparable result with respect to each other. In addition, this result is
also quite close to the solutions obtained by the other approaches. Therefore, we use one
feasible random initial point for the ICP approach in this case study. When we solve the
MINLP problem using the bi-level optimization approach, the fmincon function in the lower
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Table 5.4: The total running times, dwell times, and critical minimum headways of each
train for the train schedule of scenario 5 with 6 trains and 7 stations for Case A
obtained by the sequential quadratic programming approach

Train 0 1 2 3 4 5 6

Total running time [s] 646.1 775.4 775.4 775.4 775.4 775.4 775.4
Total dwell time [s] 720 538.1 438.3 343.4 256.3 246.0 272.1

Minimum headway [s] - 90 90 90 90 90 90

optimization is executed for 10 feasible random initial points. For the MILP approach, only
one feasible random initial point is needed to obtain the global minimum of the MILP
problem.

The control performancefopt and the computation time of these methods for the 9 sce-
narios are shown in Figures 5.5 and 5.6. The value of the objective function is influenced by
the nominal values and weights in (5.21). A smaller value of the objective function means
a better performance since we solve a minimization problem.Note that the control perfor-
mance of the MILP approach is calculated using the original nonlinear objective function
based on the obtained optimal results. We set the upper boundof the computation time as 5
hours on a 1.8 GHz Intel Core2 Duo CPU running a 64-bit Linux operating system. If the
computation cannot finish within 5 hours, no results are reported, so we cannot determine
the control performance index. In order to visualize the scenarios of which the computation
cannot finish within 5 hours, we have set the total performance index of these scenarios
larger than 3.5 as shown in Figure 5.5 and set the computationtime larger than 4×104 s as
shown in Figure 5.6. It is noted that only the performance indices of the SQP algorithm and
the ICP algorithm are reported for scenario 9 in Figure 5.5, and the calculation of other algo-
rithms for scenario 9 cannot finish within 5 hours. It is observed that the reference schedule
has the worst control performance but also the lowest computation time. In addition, the
performance of the MILP approach is worse compared with the other solution approaches
that yield similar control performance. The computation time of the ICP approach and the
SQP approach is less than 15 s and 120 s for scenario 9, respectively. In addition, we can
observe that the function values of the ICP approach are mostly quite close to those of the
solutions of the SQP approach, where for 7 scenarios the relative performance difference is
less than 5% and for the other two scenarios the relative difference is around 10%.

Results for Case B: the scheduling problem with stop-skipping at small stations

The schedule of trains with stop-skipping for scenario 5 with 6 trains and 7 stations obtained
by the bi-level method with a genetic algorithm for the high-level optimization is shown in
Figure 5.7. The corresponding running times, dwell times, and critical headways are shown
in Table 5.5. Note that the normalize rate in (5.21) is the same for both Case A and Case B.
It can be observed that train 3 and train 5 skip station 2 and train 2 and train 5 skip station
5 since trains are allowed to skip the small stations 2 and 5. Furthermore, the headways
between trains at stations are influenced by the skipping of trains at station 2 and station 5
in order to satisfy the headway constraints at all stations.

The comparison of the performance index for Case A and Case B,obtained by the bi-
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Figure 5.5: Performance comparison of the solution approaches for the real-time train
scheduling problem for Case A. In order to visualize the scenarios of which the
computation cannot finish within 5 hours, the performance index fopt calculated
using(5.21)of these scenarios is set larger than 3.5.
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Figure 5.6: The computation time of the solution approachesfor the real-time train schedul-
ing problem for Case A. In order to visualize the scenarios ofwhich the compu-
tation cannot finish within 5 hours, the computation time of these scenarios is
set larger than4×104 s.
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Figure 5.7: The train schedule of scenario 5 with 6 trains and7 stations for Case B obtained
by the bi-level optimization method with a genetic algorithm for the high-level
optimization

Table 5.5: The total running times, dwell times, and critical minimum headways of each
train for the train schedule of scenario 5 with 6 trains and 7 stations for Case
B obtained by the bi-level optimization method with a genetic algorithm for the
high-level optimization

Train 0 1 2 3 4 5 6

Total running time [s] 646.1 775.4 749.2 750.5 767.9 724.3 775.4
Total dwell time [s] 720 538.1 465.5 420.0 306.1 347.9 221.8

Minimum headway [s] - 90 90 90 90 90 90
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level optimization approach with a genetic algorithm for the high-level integer optimization,
is given in Table 5.6. It is observed that the performance indices of Case B, i.e. the train
scheduling problem with stop-skipping, are better (i.e., alower performance index means
a better performance) than those of Case A, i.e. the train scheduling problem without stop-
skipping, in general. The energy consumption is reduced since some trains do not need to
decelerate and accelerate again at those small stations. Skipping some small stations may
reduce the travel time of most passengers due to the zero dwell time at small stations and
lower running times, however, it will increase the travel time of these passengers influenced
by the skipping of trains. Therefore, the skipping of trainsshould be carefully coordinated.

The performance index and the computation time of the MINLP approach and the MILP
approach for the 9 scenarios with stop-skipping are shown inFigures 5.8 and 5.9. The ref-
erence schedule is same as Case A and it has the lowest computation time and the worst
performance. The performance index of the MILP approach is calculated using the orig-
inal nonlinear objective function based on the obtained optimal results. Due to the errors
introduced by the PWA approximations of nonlinear terms in the objective function, the
performance index of the MILP approach is much higher than other solution methods. The
performance of the direct MINLP approach, the brute force bi-level optimization, and the
bi-level optimization with a genetic algorithm for the real-time train scheduling problem
with stop-skipping is similar to each other. However, we only report the results of scenario
1 and 2 for the brute force bi-level approach and the results of scenarios 1-3 for the direct
MINLP approach since the computation for other scenarios did not finish within 5 hours.
In addition, the bi-level optimization approach with a genetic algorithm for the high-level
optimization did not finish the calculations within 5 hours for scenarios 8 and 9. Therefore,
the performance indices of the MINLP approach and the MILP approach are set higher than
3.5 in Figure 5.8. It is observed that the MILP approach needsless computation effort but
at the cost of much less optimal performance. The bi-level optimization methods with a
genetic algorithm require a longer computation time, but they yield a better performance.

Discussion

For the train scheduling problem in Case A, the performance of the results obtained by
the ICP approach is close to the best results obtained by other alternative approaches. In
addition, the computation time of the ICP approach is smaller than that of other alternative
approaches except the reference schedule that has a bad performance. Therefore, for the
given cases studies the ICP approach produces the best trade-off between performance and
computational complexity.

Based on the simulation results for Case B, the bi-level optimization with a genetic
algorithm is recommended for solving the train scheduling problem with stop-skipping.
Using parallel processing, the computation of this approach would still be tractable for
small-sized problems (up to, say 20 stations and 10 trains).However, this approach is too
slow for large-scale real-time applications. So in the future, new approaches need to be
investigated to solve the train scheduling problem with stop-skipping efficiently.

Remark 5.6 Stop-skipping strategy could result in shorter circulation time of trains; so the
turn-around operation at terminal stations may become critical for the operation of trains.
However, the turn-around time can be reduced further with the increasing automation of the
operation of trains, e.g., automatic turn-around of trains. ✷
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Figure 5.8: Performance comparison of the solution approaches for the real-time train
scheduling problem with stop-skipping for Case B. In order to visualize the sce-
narios of which the computation cannot finish within 5 hours,the performance
index fopt calculated using(5.21)of these scenarios is set larger than 3.5.
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Figure 5.9: The computation time of the solution approachesfor the real-time train schedul-
ing problem with stop-skipping for Case B. In order to visualize the scenarios
of which the computation cannot finish within 5 hours, the computation time of
these scenarios is set larger than4×104 s.
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Table 5.6: Comparison of the total performance index for train scheduling with and without stop-skipping using the bi-level optimization with
a genetic algorithm for the high-level integer optimization

Scenario 1 2 3 4 5 6 7 8 9

Performance Case A 1.500 1.473 1.713 1.360 1.246 1.532 1.407 – –
index [-] Case B 1.086 1.402 1.689 1.175 1.159 1.413 1.404 – –

Total energy Case A 1.328·108 3.379·108 6.589·108 1.102·109 1.602·109 2.165·109 2.673·109 – –
consumption [J] Case B 8.421·107 2.933·108 6.231·108 8.665·108 1.396·109 1.902·109 2.455·109 – –

Total travel Case A 2.610·105 8.683·105 2.161·106 4.137·106 6.993·106 1.060·107 1.388·107 – –
time [s] Case B 2.515·105 9.951·105 2.487·106 4.017·106 7.247·106 1.104·107 1.605·107 – –
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5.7 Conclusions

In this chapter, the train scheduling problem with OD-independent passenger demands for
an urban rail transit line has been investigated. We have proposed a new iterative con-
vex programming (ICP) approach to solve this train scheduling problem. In addition, we
have also considered other solution approaches, i.e., a gradient-free nonlinear programming
approach (in particular pattern search method), a gradient-based nonlinear programming ap-
proach (in particular sequential quadratic programming (SQP)), a mixed integer nonlinear
programming (MINLP) approach (which includes 3 submethods, i.e., an MINLP approach,
brute force bi-level optimization, and a bi-level optimization approach with a genetic algo-
rithm), and a mixed integer linear programming (MILP) approach. Furthermore, the train
scheduling model with stop-skipping has been formulated byintroducing binary variables
to indicate whether a trains stops at a station or not. The MINLP approach and the MILP
approach are applied to solve this scheduling problem sincethey can handle integer vari-
ables.

The simulation results for train scheduling without stop-skipping have shown that the
optimal solutions obtained by the ICP approach, the patternsearch method, the SQP ap-
proach, and the MINLP approach are close to each other. However, the ICP approach
can provide a better trade-off between performance and computational complexity. Fur-
thermore, for the train scheduling problem with stop-skipping, the experiment results have
shown that the control performance of the MILP approach is worse than that of the MINLP
approach. Among the 3 submethods of the MINLP approach, the bi-level approach with
a genetic algorithm offers the best trade-off between performance and computational effi-
ciency.

In the future, one could investigate the effect of more detailed models (modeling the
operation of trains in terminals, short turns, the stochastic variability in passenger flow,
the distribution of onboard passengers and waiting passengers at platforms, the passengers
appearing at platforms after the last train has passed, the passenger flows as described by
origin-destination matrices) on the trade-off between performance and computational com-
plexity. In addition, decomposition approaches can be developed to solve large-size instance
of the train scheduling problem. Moreover, an extensive comparison and assessment of the
approaches proposed in this chapter for a wide range of set-ups and scenarios could also be
a topic for future work.



Chapter 6

OD-Dependent Train Scheduling
for an Urban Rail Transit Line

In this chapter, in order to capture more detailed information about passengers we consider
train scheduling with origin-destination-dependent (OD-dependent) passenger demands for
an urban rail transit line. A stop-skipping strategy is adopted to reduce the total passenger
travel time and the energy consumption. The resulting trainscheduling problem is a mixed
integer nonlinear programming problem. A bi-level approach and an efficient bi-level ap-
proach are proposed to solve this problem. These two approaches are compared through a
case study inspired by real data from the Beijing Yizhuang line.

The results discussed in this chapter have been presented in[136, 137].

6.1 Introduction

In Section 5.5, the train scheduling model has been extendedsuch that trains can skip small
stations with low passenger alighting proportions while assuming that the effect of skipping
is negligible. Because OD-independentpassenger demands are used in Chapter 5, the effect
on the passengers who have the skipped stations as their destination is not taken into account
in Section 5.5. Therefore, in this chapter, a train scheduling model based on OD-dependent
passenger demands is presented. Since OD-dependent passenger demands vary significantly
along the urban rail transit line and the time of the day, e.g., some stations (e.g., those in
the central business district) may have a relatively large number of passengers boarding
and alighting and others may have few passengers, fixed all-stop train schedules cannot
efficiently satisfy such OD-dependent demand patterns. Hence, a dynamic stop-skipping
strategy (i.e., the stop-skipping stations for each train are not fixed before the optimization
process) based on OD-dependent passenger demands is important for both passengers and
rail operators.

This chapter is structured as follows. Section 6.2 formulates the operation of trains at
the terminal station, at stations, and in between stations,and the passenger demand char-
acteristics. Section 6.3 describes the multi-objective cost function of the train scheduling
problem with stop-skipping. Section 6.4 proposes a bi-level optimization approach and an

97
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Figure 6.1: Illustration of the urban rail transit line

efficient bi-level approach for the train scheduling problem with stop-skipping. Section 6.5
illustrates the performance of the proposed solution approaches with a case study. Finally,
Section 6.6 concludes the chapter.

6.2 Model formulation

This chapter considers an urban rail transit line as shown inFigure 6.1, where the terminal
station and stations in the line are numbered increasingly.Let J denote the total number of
stations (terminal station not included). The index of the terminal station is set equal to 0.
The track section between stationj and stationj+1 is denoted as segmentj. The scheduling
time period for the train scheduling problem is denoted as[t0, tend]. In order to distinguish
the different running cycles of the physical trains, so called train services are introduced,
where the train service number in a unique way identifies a train and its current cycle. After
the arrival of a physical train at the terminal station, its service number will be augmented
when the train departs. More specifically, the transit line hasI physical trains in total, which
are numbered as train 1,2, . . . , I . However, the service number of trains increases with the
cycle of the operation of trains. During the scheduling period, the service number of trains is
1,2, . . . , I , I +1, I +2, . . . ,2I , . . . ,NcycI , whereNcyc is number of the cycles of the operation
of trains for the given time period[t0, tend]. The service number of a train is increased with
I when the train departs from the terminal station. Therefore, train servicei corresponds to
physical train[(i−1) modI ]+1. For the sake of simplicity, we use “traini” as a short-hand
for “train servicei” from now on.

We make the following assumptions1 for the terminal station and the stations:

A.1 Multiple trains can be present at terminal station 0, which has a maximum capacity
Cter

0 . In addition, the trains in terminal station 0 will depart from the terminal station
in a first-in-first-out manner.

A.2 Station j for j ∈ {1,2, . . .J} can only accommodate one train at a time and no over-
taking can occur at any point of the line.

A.3 Trains can skip some stations in the urban transit line, where we define the skipping
setSskip = {(i, j)| train i may potentially2 skip stationj}.

1Assumption A.2, A.5, and A.7 are also considered in Chapter 5.
2A binary variable will be introduced to indicate whether train i stops at stationj or skips stationj (see Section
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A.4 In view of pre-announcement for passengers about the stop-skipping schedule, there
is detailed stop-skipping information displayed in the station and/or the urban rail
transit operator provides this information to passengers through mobile devices.

A.5 The operation of trains only consists of three phases: the acceleration phase, the
speed holding phase, and the deceleration phase. Moreover,the acceleration and the
deceleration are taken to be fixed constants.

A.6 Each passenger only takes one train to arrive at his/her destination, i.e., the transfer
between different trains along the line is not allowed.

A.7 The number of passengers waiting at a station and the number of passengers on board
immediately after a train’s departure are approximated by real numbers.

Assumption A.1 can be motivated as follows: multiple trainscan be present at the termi-
nal station since we assume that there are multiple track sections in the terminal station.
Furthermore, a first-in-first-out operation for trains in the terminal station is not difficult to
realize in practice since it depends on the dispatching of trains in the terminal station and it
is a matter of renumbering of trains. Assumption A.2 generally holds for most urban transit
systems, which are usually operated in this way [36, 125]. Even though the stop-skipping
strategy is not yet widely used in urban rail transit networks throughout the world, there
are several lines which apply it as mentioned before, e.g., the SEPTA line in Philadelphia.
Therefore, Assumption A.3 is possible in practice. With therecent development in informa-
tion and communication technologies, it is possible to provide personalized transportation
information to passengers via their mobile devices (like smart phone, PDAs, etc.). In addi-
tion, many stations in urban rail transit systems have screens to display travel information
to passengers at platforms. Hence, Assumption A.4 is reasonable. In order to simplify the
operation model for the trains, the detailed dynamics are not included in the model formula-
tion, but only the three phases mentioned in Assumption A.5 are considered. However, once
the running times between consecutive stations are fixed, a more accurate speed profile for
the operation of trains can be calculated as a lower level control problem (see Chapter 3 for
more information). Since we only consider a single line and since in Assumption A.2 we
assume that no overtaking can happen at any point of the line,the transfer between different
trains for passengers is useless. Therefore, it is reasonable to assume that passengers will
wait at their origin for the right train to get to their destination as is stated in Assumption
A.6. For Assumption A.7, the number of passengers is usuallylarge, so the error made by
this assumption is small. Furthermore, this assumption simplifies the optimization problem
later on.

Remark 6.1 When realizing the stop-skipping strategy in practice, rail transit operators
should be aware that some passengers may not like it since they want to keep their journey
as simple as possible, e.g. when a train arrives at the platform they want to broad the train.
In addition, passenger could get on wrong trains which will not stop at their destinations,
then they would feel frustrated. Furthermore, the passenger satisfaction to urban rail transit
systems would go down because passengers waiting at the skipping stations will watch a

6.2.1 for more details). The values of these binary variables will be optimized to minimize the objective function
of the train scheduling problem.
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train passing away without stop. Therefore, a sophisticated passenger information system
is essential for the stop-skipping strategy. ✷

6.2.1 Arrivals and departures with stop-skipping

As has been indicated in Section 5.2.1, in order to obtain a balanced trade-off between the
accuracy and the computation speed, a macroscopic model is used for the train scheduling.
Section 5.2.1 has derived the arrival and departure equations for the operation of trains at
stations. Here, the operation of trains in the terminal station is also included. We will first
formulate the operation of trains at the terminal station and then at the stations.

Operation of trains in the terminal station

A train can depart from the terminal station only after it hasarrived. Moreover, the train
number is increased withI when it departs from the terminal station. So we have

di,0≥ ai−I ,0+ τ0,min, (6.1)

wheredi,0 is the departure time of traini at the terminal station,ai−I is the arrival time
of train i − I , andτ0,min is the minimum dwell time for the trains at the terminal station.
The minimum dwell time could be equal to the minimum turn-around time or the minimum
running time at a terminal station. In addition, there is no upper bound for the dwell time
of trains at the terminal station. Since we assume that thereare multiple tracks in terminal
station to accommodate trains, the running distance for trains between stations and the ter-
minal station varies and depends on the route setting in the terminal station. However, the
layout of the terminal station and the scheduling of trains in the terminal station are out of
the scope of this chapter. Here, we assume an average distances0 for trains running between
the terminal station and station 1 and an average distancesJ for the trains running between
stationJ and the terminal station. The arrival time of traini at the terminal station can then
be written as

ai,0 = di,J+ r i,J, (6.2)

wherer i,J is the running time on segmentJ.
The headway constraints in the terminal station can be formulated as

di,0≥ di−1,0+h0,dep, (6.3)

whereh0,dep is the minimum departure headway at the terminal station. Inaddition, the
minimum arrival headway at the terminal station should alsobe taken into account, which
can be formulated as

ai,0≥ ai−1,0+h0,arr, (6.4)

whereh0,arr is the minimum arrival headway at the terminal station.
As mentioned in assumption A.2, the capacity of the terminalstation isCter

0 . Therefore,
at any timet the number of trains in the terminal station should be less than the capacity,
which can be formulated as

∑
i∈Strains

I(ai,0≤ t)− ∑
i∈Strains

I(t ≥ di,0)≤Cter
0 , for all t
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whereStrains is the set of trains considered in the scheduling problem andthe indicator
functionI(·) is defined as

I(x) =

{

1 if x is true,
0 if x is false.

The number of trains in the terminal station only increases when a train arrives at the termi-
nal station. Therefore, we should only check the capacity constraint when a train arrives at
a terminal station; so the constraints can be reformulated as

∑
i∈Strains

I(ai,0≤ aℓ,0)− ∑
i∈Strains

I(aℓ,0≥ di,0)≤Cter
0 , (6.5)

for eachℓ ∈ Strains.

Operation of trains at stations

By assumption A.3, trains can skip any station in the skipping setSskip. If a train skips a
station, then the train passes that station without stopping and the dwell time is then equal
to zero. A binary variable has been introduced in Section 5.5to indicate whether a train will
stop at a station or not (see (5.28)):

yi, j =

{

1 if train i will stop at stationj,
0 if train i will skip station j .

In Section 5.2.1, the departure timedi, j of train i at stationj is equal to the sum of the arrival
timeai, j and the dwell timeτi, j of train i at stationj as shown in (5.1). Here, we reformulate
(5.1) as the following two inequalities, i.e., the departure timedi, j should satisfy

di, j ≥ ai, j + yi, jτi, j ,min (6.6)

and
di, j ≤ ai, j + yi, jτi, j ,max, (6.7)

whereai, j is the arrival time of traini at station j, the minimum dwell timeτi, j ,min is in-
fluenced by the number of passengers boarding and alighting from the train (see Section
5.2.3 for more details), and the maximum dwell timeτi, j ,max is introduced to ensure pas-
senger satisfaction. The arrival timeai, j+1 of train i at station j +1 can be calculated by
(5.2) in Section 5.2.1. The running timer i, j should be calculated by (5.32) instead of (5.3).
Furthermore, the minimum headway is the same as (5.5). Moreover, if train i skips station
j +1, i.e.,yi, j+1 = 0, then the operation of the train between stationj and stationj +2 only
contains three phases and the holding speed should satisfy (5.31) in Section 5.5.

6.2.2 OD-dependent passenger demand characteristics

Section 5.2.2 has described OD-independent passenger demand characteristics. Passenger
demands with origin and destination are more complex than that in Section 5.2.2. The
relationship between the variables used for describing theOD-dependent passenger charac-
teristics is illustrated in Figure 6.2. The number of waiting passengerswwait

i, j for train i at
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station j is equal to the sum of the number of waiting passengerswwait
i, j with destinationm

for all m∈ { j +1, j +2, . . . ,m, . . . ,J}, i.e.,

wwait
i, j =

J

∑
m= j+1

wwait
i, j ,m. (6.8)

The number of waiting passengerswwait
i, j with destinationm can be calculated by

wwait
i, j ,m = wi−1, j ,m+λ j ,m(di, j −di−1, j), (6.9)

wherewi−1, j ,m is the number of passengers with destination stationm remaining at station
j immediately after the departure of traini−1, λ j ,m(di, j −di−1, j) is the number of newly
arrived passengers in between the departures of traini and traini−1, andλ j ,m is the pas-
senger arrival rate at stationj for passengers with destinationm. Note that the passenger
arrival rate at the final stationJ, is assumed to be zero since we only consider one direction
of the line.

The number of passengers alighting from traini at stationj is denoted asnalight
i, j and it

can be computed using

nalight
i, j =

j−1

∑
ℓ=1

nboard
i,ℓ, j , (6.10)

wherenboard
i,ℓ, j is the number of passengers that have stationj as their destination and have

boarded traini at stationℓ, i.e.,

nboard
i,ℓ, j = wwait

i,ℓ, j −wi,ℓ, j . (6.11)

No passenger will get off the train if traini skips stationj because the passengers at upstream
stations were informed that traini would not stop at stationj; so in that case those passengers
with station j as destination would not get on traini. The number of passengers who want
to board traini at stationj and have stationmas their destination is denoted aswwant-to-board

i, j ,m .

The number of passengerswwant-to-board
i, j ,m depends on whether traini stops at stationj and

whether traini stops at stationm for m∈ { j +1, j +2, . . . ,J}, i.e.,

wwant-to-board
i, j ,m = yi, jyi,mwwait

i, j ,m. (6.12)

So if train i skips stationj, i.e., yi, j = 0, then no passengers want to board traini, i.e.,
wwant-to-board

i, j = 0. If train i stops at stationj, i.e., yi, j = 1, then the number of passengers

who want to board is decided by whether traini stops at their destinationm, i.e.,yi,mwwait
i, j ,m.

Note that all the trains stop at the terminal station, soyi,0 is equal to 1 fori ∈ {1,2, . . . , I}.
The number of passengerswwant-to-board

i, j who want to board traini at stationj is

wwant-to-board
i, j =

J

∑
m= j+1

wwant-to-board
i, j ,m . (6.13)

The number of passengers on traini immediately after its departure at stationj is defined
asni, j , which can be computed as

ni, j = ni, j−1−nalight
i, j +nboard

i, j , (6.14)
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Figure 6.2: The variables for the passenger characteristics

where the number of boarding passengersnboard
i, j equals the minimum of the number of

passengers that want to board traini and the remaining capacity of the train:

nboard
i, j = min(nremain

i, j ,wwant-to-board
i, j ). (6.15)

In addition, the number of passengersnboard
i, j boarding traini at stationj is also equal to

nboard
i, j =

J

∑
m= j+1

nboard
i, j ,m .

Moreover, the remaining capacity of traini at stationj immediately after the alighting pro-
cess is

nremain
i, j =Cmax−ni, j−1+nalight

i, j . (6.16)

The number of passengerswleft
i, j left by train i depends on whether traini will stop at

station j or not. We have the following two cases:
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• Train i skips stationj, i.e.,yi, j = 0

If train i will skip station j, then the number of boarding passengersnboard
i, j is equal to

zero. All the passengers waiting at stationj will then be left by traini.

• Train i will stop at stationj, i.e.,yi, j = 1

If wwant-to-board
i, j ≤ nremain

i, j , then all the passengers that want to board can get on traini.

However, there will be passengers left by traini if wwant-to-board
i, j > nremain

i, j . The number
of passengers who want to board but cannot get on traini at stationj immediately after
the departure of traini is

wleft
i, j = wwant-to-board

i, j −min(nremain
i, j ,wwant-to-board

i, j ) if yi, j = 1.

In this case, if traini stops stationm for m∈ { j +1, j +2, . . . ,J−1}, i.e.,yi,m= 1, we
assume that the number of passengers that have stationm as destination and are left
by traini is proportional to the number of passengers who want to board. The number
of passengers who have destinationm and are left by traini can be formulated as

wi, j ,m = wleft
i, j

wwant-to-board
i, j ,m

wwant-to-board
i, j

if yi, j = 1 andyi,m = 1.

However, if traini skips stationm for m∈ { j +1, j +2, . . . ,J−1}, i.e.,yi,m = 0, then
the number of passengers that have stationm as destination will not board. So we
have

wi, j ,m = wwait
i, j ,m, if yi, j = 1 andyi,m = 0.

Hence, the number of passengers who are left by traini and with destinationm can be
calculated as

wi, j ,m = yi, j

(

yi,mwleft
i, j

wwant-to-board
i, j ,m

wwant-to-board
i, j

+(1− yi,m)w
wait
i, j ,m

)

+(1− yi, j)w
wait
i, j ,m. (6.17)

Furthermore, the total number of waiting passengers at station j immediately after the de-
parture of traini is

wi, j =
J

∑
m= j+1

wi, j ,m. (6.18)

Remark 6.2 The minimum dwell time for the passengers to get on and get offtrains can be
calculated using the linear model (5.11) and the nonlinear model (5.12) presented in Section
5.2.3. See there for more information. ✷

6.3 Mathematical formulation of the scheduling problem

The train scheduling problem with stop-skipping is a multi-objective optimization problem.
In this chapter, the objective is similar as (5.21) defined inSection 5.3, where the energy
consumption of trains and the travel time of passengers are considered.
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For the train scheduling problem with stop-skipping, the energy consumption of trains
can be calculated by (5.17), (5.18), and (5.35) in Section 5.3. The total travel time can be
calculated by (5.16), which is repeated as follows:

ttotal =
I

∑
i=1

J−1

∑
j=1

(γwaittwait,i, j + tin-vehicle,i, j).

However, since we consider OD-dependent passenger demandsin this chapter, instead of
(5.14) and (5.15), the computation for the passenger waiting time and passenger in-vehicle
time will be calculated as follows:

twait,i, j = wi−1, j(di, j −di−1, j)+
1
2

J

∑
m= j+1

λ j ,m(di, j −di−1, j)
2, (6.19)

and
tin-vehicle,i, j = ni, j r i, j +(ni, j −nalight

i, j )τi, j+1. (6.20)

In order to spread trains over the entire scheduling time period, we add a penalty term for
the waiting time of the passengers left by the last trainNcycI during the scheduling period:

fpenalty,1 =
J

∑
j=1

(

wNcycI , j(tend−dNcycI , j)+
1
2

ζ
J

∑
m= j+1

λ j ,m(tend−dNcycI , j )
2

)

, (6.21)

If ζ = 1, the waiting time for the newly arrived passengers betweenthe departure time
dNcycI , j and the end timetend is also considered. However, ifζ = 0, the waiting time of the
newly arrived passengers after the last train is not considered (e.g., the trains coming later
will pick up these passengers). But in the latter case, we need to add a penalty term for
the arrival time of the last trainNcycI at the terminal station to avoid all the trains operating
close to each other at the start of the period[t0, tend]:

fpenalty,2 = |aNcycI ,0− tend|. (6.22)

The objective function of the train scheduling problem can be written as

fopt = γ1
Etotal

Etotal,nom
+ γ2

ttotal

ttotal,nom
+µpenalty,1

fpenalty,1

fpenalty,1,nom
+µpenalty,2

fpenalty,2

fpenalty,2,nom
, (6.23)

whereγ1, γ2, µpenalty,1, andµpenalty,2 are non-negative weights, and the normalization factors
Etotal,nom, ttotal,nom, fpenalty,1,nom, and fpenalty,2,nom are “nominal” values of the total energy
consumption and the total travel time of passengers, respectively. These nominal values can
e.g. be determined by running trains using a feasible initial schedule.

Remark 6.3 A rolling horizon approach can be adopted to solve the train scheduling prob-
lem. See Section 7.4 for more details on this. ✷

6.4 Solution approaches

The resulting train scheduling problem is a mixed integer nonlinear programming (MINLP)
problem with objective function (6.23) and constraints (6.1)-(6.18). The objective func-
tion (6.23) is nonlinear and nonconvex. In addition, we havethe non-smooth min function
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in constraints (6.14), (6.15), and (6.17). This MINLP problem can be solved using e.g.
the branch-and-bound method, but the computation time is quite long even for small-sized
problems in practice. We could also approximate the nonlinear terms in the MINLP problem
using piecewise affine (PWA) functions and transform the MINLP problem into a mixed in-
teger linear programming problem. However, we need to approximate many nonlinear terms
of the scheduling problem; so the performance of the MILP approach is not optimal due to
the big approximation error.

In this section, we propose a bi-level optimization approach to solve the optimization
problem under consideration. However, the computation time of this bi-level optimization
method is too long in practice. Therefore, we also propose anefficient bi-level solution
approach for the MINLP problem, where the search space of theproblem is limited and a
threshold method is presented to obtain a good initial solution for the MINLP problem.

6.4.1 Bi-level optimization approach

The free variables in the real-time scheduling problem are the departure timesdi, j , the hold-
ing speedsvi, j , and the binary variablesyi, j for all trains and stations. The other variables
like the number of passengers waiting at stationswi, j and the number of passengers on-
board the trainsni, j can be eliminated using the model equations (6.8)-(6.18). The proposed
bi-level optimization method consists of two levels of optimization:

• The high-level optimization optimizes the binary variables yi, j (only if (i, j) ∈ Sskip

yi, j could be equal to 0), where a brute force approach can be used to explore all
the combinations for the binary variables in case the size ofthe problem is small.
Alternatively, integer programming approaches, such as genetic algorithms, can be
applied in the high-level optimization.

• For each combination of binary variables, the low-level optimization solves a non-
linear nonconvex problem using e.g., multi-start sequential quadratic programming
(SQP) algorithm [15] or a pattern search method [61].

The procedure of the bi-level optimization method is given in Algorithm 2, where - for
illustration purpose - the high level optimization problemis solved using a genetic algorithm
and a multi-start optimization algorithm is used in the lower level. The feasibility of the
low-level optimization problem depends on the value of the binary variables. If the low-
level optimization problem is infeasible, we introduce a large penalty valueF for the fitness
function as shown in Algorithm 2. Furthermore, in order to steer infeasible binary variables
towards feasible ones, we also add the norm ofδ− δf in the fitness function whereδf is a
feasible value ofδ and can be decided using the known information about the urban rail
transit line, e.g., passenger flows and line conditions.

6.4.2 Efficient bi-level optimization approach

In the efficient bi-level optimization problem, we propose athreshold method to obtain
good initial solutions for the MINLP problem. In addition, we limit the search space of
train scheduling problem in the neighborhood of these initial solutions.
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Algorithm 2 Bi-level optimization approach for the train scheduling problem with stop-
skipping

1: Input : maximum number of generationsG, population sizesp, initial populationP0 of
the binary variables, number of initial pointskmax used in the low-level optimization, a
large valueF for the fitness function to indicate infeasibility, feasible binary solution
δf , positive weightλf ;

2: for g= 0,1, . . . ,G−1 do
3: for ℓ= 1,2, . . . ,sp do
4: binary variablesδ← ℓ-th parentPg(ℓ) from theg-th generation;
5: for k= 1,2, . . . ,kmax do
6: generate an initial random feasible solutiondi, j(ℓ,0), r i, j (ℓ,0), τi, j (ℓ,0),

wi, j(ℓ,0), andni, j(ℓ,0) for i = 1, . . . , I and j = 1, . . . ,J;
7: if low-level optimization problem turns out to be feasible based on current val-

ues ofδ and initial solutionsthen
8: di, j(ℓ,k), r i, j(ℓ,k), τi, j(ℓ,k), wi, j(ℓ,k), ni, j(ℓ,k), and fopt(ℓ,k) ← solution of

the low-level optimization problem;
9: else

10: fopt(ℓ,k)← F +λf‖δ− δf‖2;
11: end if
12: end for
13: value of fitness functionf ∗opt(ℓ) for theℓ-th parent←mink=1,...,kmax fopt(ℓ,k);
14: end for
15: select new parents from the current population based on the fitness functionfopt;
16: generate a new generation population of binary variables through crossover and mu-

tation;
17: end for
18: Output : choose the best offspring solution at generationG and calculatedi, j , r i, j , τi, j ,

wi, j , andni, j .

Threshold method for obtaining good initial solutions

In order to obtain a good initial solution for the train scheduling problem, we first introduce
a threshold function to determine the value of the stopping variable as follows:

yi, j = I
(

(

wwant-to-board
i, j ≥ θth,in

i, j

)

∧
(

nalight
i, j ≥ θth,out

i, j

)

)

, (6.24)

whereI(·) is the indicator function (see Section 6.2.1 for more information),θth,in
i, j andθth,out

i, j
are the thresholds, which are free variables and determinedby the optimization procedure.
In this case, the value of the stopping variables depends on the passenger flows in the ur-
ban rail transit line. By introducing the threshold function, we can reformulate the MINLP
problem as a real-valued nonlinear programming problem, which can be solved by e.g. a
sequential quadratic programming method. The resulting solution then yields an initial so-
lution of the stopping variables, the departure times, and the holding speeds for the original,
full MINLP problem.
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Limiting the search space

After a initial solution is obtained using the threshold method, we can limit the search space
of the train scheduling problem within a neighborhood of theinitial solution to reduce the
computation time. For the high-level optimization, the search space of the integer variables

y=
[

y1,1y1,2, . . . ,y2,1, . . . ,yNcycI ,J
]T

can be limited by the 1-norm constraint:

‖y− yinit‖1≤ χ0, (6.25)

which means that only a limited number, i.e.,χ0, of binary variables can change their val-
ues in the bi-level optimization approach. Ifχ0 is small, the search space can be reduced
dramatically. A brute force method could be applied for the high-level optimization ifχ0 is
chosen as 1 or 2 if the number of trains and stations is not too large. Otherwise, a genetic
algorithm could be applied.

In addition, we can also limit the search space of the departure times and holding speeds
as follows [45, 73]:

‖d−dinit‖2≤ χ2+χ3β, (6.26)

and
‖v− vinit‖2≤ χ3+χ4β, (6.27)

and the objective function (6.23) is revised as

f ′opt = fopt+ γ4β, (6.28)

whereβ is a slack variable which introduces an element of slacknessinto the problem to
make sure the resulting optimization problem is always feasible. The relative degree of
under- or over-achievement of the goals is controlled by theweightsχ3, χ4 andγ.

6.5 Case study

6.5.1 Set-up

In order to demonstrate the effectiveness of the proposed model formulation and the per-
formance of the proposed efficient bi-level optimization approach, we consider a cyclic line
with 1 terminal station and 12 stations following the structure shown in Figure 6.1. There
are 6 physical trains in the cyclic line and the number of train services considered in the train
scheduling problem is 10. The train characteristics and theline data are inspired by the data
of Beijing Yizhuang subway line, and are given in Tables 6.1 and 6.2. In Table 6.2, station
0 represents the terminal station. The minimum running timein Table 6.2 is calculated by
taking a fixed acceleration of 0.8 m/s2 and a fixed deceleration of−0.8 m/s2; furthermore,
when calculating the minimum running time the trains are assumed to run at the maximum
speed of 22.2 m/s during the holding phase. The maximum running time is assumed to be
r i, j ,max= ζr i, j ,min, whereζ is larger than 1. We have chosenζ as 1.2 to ensure that the pas-
sengers do not complain that the train is too slow. The mass ofthe train, the mass of one
passenger, and the coefficients for the minimum dwell time in(5.12) are given in Table 6.1.
Here, we use the nonlinear model (5.12) for the calculation of the minimum dwell time. In
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Table 6.1: parameters of the trains and the passengers

Property Symbol Value

Train mass [kg] me,i 199·103

Mass of one passenger [kg] mp 60
Capacity of trains [passengers] Ci,max 1468

Minimum dwell time [s] τ̃min 30
Maximum dwell time [s] τmax 150

[s] α1,d 4.002
Coefficients of the [s/passengers] α2,d 0.047
minimal dwell time [s/passengers] α3,d 0.051

[s/passengers−4] α4,d 1.0·10−6

Coefficients of resistance
[m/s2] k1i 0.012
[s−1] k2i 5.049·10−4

[m−1] k3i 2.053·10−5

addition, the minimum dwell timẽτmin predefined by the rail operator in (5.13) is chosen as
30 s. The OD-dependent passenger arrival rates at stations are shown in Table 6.3.

The initial states at timet0 (chosen as 1300 s for this case study) of the trains are as
follows: train 1 and 2 are running to station 8 and 5, respectively. Since we assume that
the schedule of a train can only be changed at stations, the arrival times of these two trains
at station 3 and station 2 are fixed and they are 1400 s and 1340 s, respectively. Train 3
is stopped at station 3 and its arrival time is 1270 s. The numbers of passengers on train
1, 2, and 3 at timet0 and their destination are given in Table 6.4. In addition, there are 3
trains at the terminal station, so the corresponding previous train services finished before
t0. A communication-based train control system (a moving block signaling system) is im-
plemented in Beijing Yizhuang subway line, where the minimum headway between two
successive trains is 90 s. In addition, a maximum departure-departure headway is included
to ensure the passenger satisfaction, which is chosen as 400s. Furthermore, the numbers of
passengers waiting at the various stations att0 and the destination of these passengers are
shown in Table 6.5. The nominal values for the total travel time, the energy consumption,
and the waiting time for the passengers who did not travel in the scheduling period are cal-
culated based on a schedule with constant headway; they are 2.278·107 s, 7.013·109 J, and
1.387·107 s, respectively.

6.5.2 Results and discussion

The train scheduling problem is solved using the following three approaches:

• All-stop approach: Trains in the scheduling period stop at every station, i.e., there is
no stop-skipping at all. In this case, the train scheduling problem is a nonlinear pro-
gramming problem, which is solved here using the sequentialquadratic programming
(SQP) method implemented by the fmincon function of Matlab optimization toolbox.

• Bi-level approach with stop-skipping: The train scheduling problem with stop-skipping
is a mixed integer nonlinear programming problem, which is solved using the bi-level
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Table 6.2: Information of the cyclic line of the case study ofSection 6.5

Station number 0 1 2 3 4 5 6 7 8 9 10 11 12

Distance to next station [m] 1050 1832 1786 2086 2265 1030 1354 1280 1544 992 1975 2369 1349
Minimal running time [s] 75.0 110.2 108.2 121.7 129.7 74.1 88.7 85.4 97.3 72.4 116.7 134.4 88.5

Table 6.3: Origin-destination-dependent passenger arrival rates at stations [passengers/s]

Station 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0.06 0.30 0.35 0.03 0.18 0.36 0.06 0.34 0.27 0.03 0.12
2 0 0 0.05 0.06 0.02 0.01 0.04 0.02 0.02 0.01 0.02 0.03
3 0 0 0 0.2 0.03 0.27 0.18 0.02 0.25 0.17 0.03 0.36
4 0 0 0 0 0.02 0.25 0.25 0.04 0.22 0.32 0.02 0.34
5 0 0 0 0 0 0.05 0.02 0.01 0.01 0.04 0.01 0.03
6 0 0 0 0 0 0 0.21 0.08 0.24 0.27 0.05 0.39
7 0 0 0 0 0 0 0 0.02 0.35 0.23 0.03 0.34
8 0 0 0 0 0 0 0 0 0.03 0.04 0.02 0.05
9 0 0 0 0 0 0 0 0 0 0.27 0.03 0.39
10 0 0 0 0 0 0 0 0 0 0 0.03 0.35
11 0 0 0 0 0 0 0 0 0 0 0 0.06
12 0 0 0 0 0 0 0 0 0 0 0 0
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Table 6.4: Number of passengers on train 1, 2, and 3 at time t0 and their destination

Destination station 1 2 3 4 5 6 7 8 9 10 11 12 Total number of passengers

Train 1 0 0 0 0 0 0 0 0 131 395 263 132 921
Train 2 0 0 0 0 0 89 33 111 44 333 166 22 798
Train 3 0 0 0 106 100 20 144 216 31 103 144 21 885

Table 6.5: Number of passengers waiting at stations at t0 and their destination

Destination 1 2 3 4 5 6 7 8 9 10 11 12 Total number of passengers

Station 1 0 8 75 54 65 15 26 32 15 68 33 21 421
Station 2 0 0 19 19 19 14 16 13 15 13 11 14 153
Station 3 0 0 0 29 91 15 45 32 12 41 33 14 312
Station 4 0 0 0 0 57 22 52 43 22 11 24 35 266
Station 5 0 0 0 0 0 13 22 29 26 14 26 24 154
Station 6 0 0 0 0 0 0 25 23 26 5 30 14 123
Station 7 0 0 0 0 0 0 0 23 25 13 27 29 117
Station 8 0 0 0 0 0 0 0 0 25 9 19 18 71
Station 9 0 0 0 0 0 0 0 0 0 24 20 23 67
Station 10 0 0 0 0 0 0 0 0 0 0 21 25 46
Station 11 0 0 0 0 0 0 0 0 0 0 0 27 27
Station 12 0 0 0 0 0 0 0 0 0 0 0 0 0
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approach. A genetic algorithm is applied for the integer optimization of the high level,
where the ga function of the global optimization toolbox of Matlab is employed. The
nonlinear optimization problem in the lower level is solvedusing the SQP algorithm
of the fmincon function of the Matlab optimization toolbox.

• Efficient bi-level approach with stop-skipping: First, a good initial solution for the
mixed integer nonlinear problem is obtained by solving the train scheduling problem
with threshold function (6.24), which is a nonlinear programming problem and which
is solved using the SQP algorithm of the fmincon function of the Matlab optimization
toolbox. Based on an initial train schedule, we assign the value of χ0 in (6.25) as 1,
2, and 3 to vary the search space. Forχ0 = 1, we apply a brute force approach for the
high-level optimization since the search space of the binary variables is small then.
For χ0 = 2 or 3, the genetic algorithm function ga of the global optimization toolbox
of Matlab is used to optimize the binary variables.

Results

The train schedules obtained by the all-stop approach, the bi-level approach, and the effi-
cient bi-level approach are shown in Figures 6.3-6.8. Thesetrain schedules look similar to
each other; however, there are some differences between them. In particular, for the all-stop
approach (Figure 6.3) all trains stop at all stations, whileseveral trains skip some stations in
the train schedules obtained by the bi-level approach and the efficient bi-level approach (see
Figures 6.4-6.8). In the train schedule obtained by the bi-level approach shown in Figure
6.4, trains 4, 6, 7, 8, 9, and 10 skip some stations. More specifically, train 4 skips stations 2,
5, 8, and 11; so the stopping variables of train 4 for these stations are equal to 0 as shown in
Table 6.6. In addition, we can observe that the travel time for trains that skip some stations
is smaller than that of the all-stop approach, e.g., train 4 arrives earlier at the terminal station
in Figure 6.4 (stop-skipping approach) than in Figure 6.3 (all-stop approach). Trains 1, 2,
and 3 have already departed from the terminal station at timet0 and they are thus suppose to
stop at all stations. So the stopping variables for these three trains are equal to 1. Figure 6.5
illustrates an initial train schedule that is obtained by the threshold method. The values of
the stopping variables are shown in Table 6.6, which are different from those obtained via
the bi-level approach. For example, train 4 only skips stations 5 and 8 but does not skip sta-
tion 2 and 11. Figure 6.6 shows the train schedule obtained bythe efficient bi-level approach
with χ0 = 1, which means that one binary variable can change its value.From Figure 6.6
and Table 6.6, we can observe that train 7 skips station 5 whenχ0 = 1, which is different
from the initial schedule. Similarly, whenχ0 = 2, the values of two binary variables are
changed compared to the initial solution. As we can observe from Figure 6.7 and Table 6.6,
train 4 skips station 11 and train 7 skips station 5, while in the initial train schedule shown
in Figure 6.5, train 4 stops at station 11 and train 7 stops at station 5. Figure 6.8 presents the
train schedule obtained by the efficient bi-level approach with χ0 = 3, where train 4 skips
station 11 and both train 7 and train 9 skips station 5 compared with the initial schedule.

Table 6.7 lists the values of the objective function, the computation time (on a 64-bit
Linux operation system running on a 1.8 GHz Intel Core2 Duo CPU), the total passenger
travel time, the energy consumption of the train schedules,etc. for each of the three ap-
proaches. Note that the comparison here is fair since all theapproaches are implemented
in m-files in Matlab. The relative improvements of the bi-level approach and the efficient
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Figure 6.3: Train schedule obtained by the all-stop approach
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Figure 6.4: Train schedule obtained by the bi-level approach
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Figure 6.5: Train schedule obtained by the threshold method
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Figure 6.6: Train schedule obtained by the efficient bi-level approach withχ0 = 1
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Figure 6.7: Train schedule obtained by the efficient bi-level approach withχ0 = 2
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Figure 6.8: Train schedule obtained by the efficient bi-level approach withχ0 = 3
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Table 6.6: Stopping variables of the all-stop approach, thebi-level approach, and the efficient bi-level approach at station 2, 5, 8, and 11 (The
stopping variables for other stations are all equal to 1. Note that if the stopping variable equals 1, then the train stopsat the station;
otherwise, the train skips the station.)

Solution approaches Solution options Train 1 2 3 4 5 6 7 8 9 10

Bi-level –

Station 2 1 1 1 0 1 1 0 0 1 1
Station 5 1 1 1 0 1 0 0 0 0 0
Station 8 1 1 1 0 1 0 0 0 1 0
Station 11 1 1 1 0 1 0 0 0 0 1

Efficient bi-level

Solution (threshold)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 1 0 1 0
Station 8 1 1 1 0 1 0 1 1 1 1
Station 11 1 1 1 1 1 0 1 0 1 0

Solution (χ0 = 1)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 0 0 1 0
Station 8 1 1 1 0 1 0 1 1 1 1
Station 11 1 1 1 1 1 0 1 0 1 0

Solution (χ0 = 2)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 0 0 1 0
Station 8 1 1 1 0 1 0 1 1 1 1
Station 11 1 1 1 0 1 0 1 0 1 0

Solution (χ0 = 3)

Station 2 1 1 1 1 0 0 1 0 0 1
Station 5 1 1 1 0 0 1 0 0 0 0
Station 8 1 1 1 0 1 0 1 1 1 1
Station 11 1 1 1 0 1 0 1 0 1 0



1
1

6
6

O
D

-D
ep

en
d

en
tT

rain
S

ch
ed

u
lin

g
fo

r
an

U
rb

an
R

ailT
ran

si
tL

in
e

Table 6.7: Performance comparison of the all-stop approach, the bi-level approach, and the efficient bi-level approach

Solution approach
All-stop Bi-level

Efficient bi-level
Initial solution Solution Solution Solution

(threshold) (χ0 = 1) (χ0 = 2) (χ0 = 3)

Objective value [-] 2.917 2.617 2.708 2.681 2.661 2.653
Computation time [s] 4.464·102 1.672·104 1.194·103 1.705·103 2.352·103 4.567·103

Energy consumption [J] 5.888·109 4.994·109 5.369·109 5.301·109 5.220·109 5.111·109

Number of passengers that
2.603·104 2.451·104 2.500·104 2.505·104 2.482·104 2.473·104

finished their trips [passengers]
Number of passengers that did not travel [passengers]1.324·104 1.476·104 1.427·104 1.422·104 1.445·104 1.455·104

Travel time for passengers that finished their trips [s]1.944·107 1.648·107 1.724·107 1.706·107 1.680·107 1.683·107

Waiting time of passengers that did not travel3 [s] 1.031·107 1.270·107 1.192·107 1.188·106 1.227·106 1.240·106

3These remaining passengers, i.e., the passengers that did not travel, will be picked up by the trains that arrive later on. The waiting time of those passengers is also included
in the objective function. So here the number and the waitingtime of these passengers are also given for comparing the performance of these three approaches.
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Table 6.8: Relative improvement with respect to the all-stop approach of the bi-level approach, and the efficient bi-level approach

Solution approach Bi-level
Efficient bi-level

Initial solution Solution Solution Solution
(threshold) (χ0 = 1) (χ0 = 2) (χ0 = 3)

Objective value [-] 12.01% 7.16% 8.08% 8.77% 9.05%
Computation time [s] −3646% −168% −282% −427% −923%
Energy consumption [J] 15.18% 8.81% 9.97% 11.35% 13.20%

Number of passengers that finished their trips [passengers]5.83% 3.94% 3.77% 4.64% 5.01%
Number of passengers that did not travel [passengers] −11.46% −7.75% −7.41% −9.12% −9.85%

Travel time for passengers that finished their trips [s] 15.19% 11.32% 12.24% 13.55% 13.41%
Waiting time of passengers that did not travel [s] −23.26% −15.64% −15.29% −19.04% −20.35%
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bi-level approach with respect to the all-stop approach aregiven as in Table 6.8, and they
are calculated as

xrelative-difference= 1− xstop-skipping

xall-stop
,

wherex is the value of the objective function, the computation time, etc. in the table and the
stop-skipping involves the value obtained for the bi-levelapproach or the efficient bi-level
approach. Note that in Table 6.7, a solution approach has a better performance when the
number of passengers finished their trips is larger since more passengers have finished their
trip during the scheduling period. For the other criteria inTable 6.7, the performance of
the approach is better if these criteria have a smaller value. In Table 6.8, if the value of
relative improvement of the number of passengers that finished their trip is smaller, then
the approach has a better performance. For the other criteria in Table 6.8, a bigger value
represents a better performance.

Discussion

For the given case study, the overall performance improvement of the stop-skipping strategy
is about 8-12% better compared to the all-stop approach. With the stop-skipping strategy,
the total travel time is reduced with 12-15% and the total energy consumption is reduced
with 10-15%. The number of passengers who did not travel increases with 7-11%; however,
note that the trains coming later will pick up these passengers anyway; so those passengers
will not be left at the platform. Since we solving the train scheduling problem in a rolling
horizon way (cf. Section 7.4), the passengers who did not travel in the current time pe-
riod will be taken into account in the next period. The efficient bi-level approach yields an
acceptable performance when compared with the bi-level approach. However, the compu-
tation time of the bi-level approach is about 10 and 4 times longer than that of the efficient
bi-level approach withχ0 = 1 andχ0 = 3, respectively. Note that the computation time of
the approaches proposed in this chapter can be reduced by implementing the approaches in
object code and by using faster processors and/or parallel processing.

6.6 Conclusions

We have considered the train scheduling problem with OD-dependent passenger demands
for an urban rail transit line, where the operation of trainsat both the stations and the ter-
minal station are included in the model. Since the resultingtrain scheduling problem is a
mixed integer nonlinear programming (MINLP) problem, an efficient bi-level approach has
been proposed, where a threshold method is applied to obtaina good initial solution for the
full problem and where the search space for the variables cannext be limited to enhance the
efficiency. For a case study, the efficient bi-level approachwith a limited search space pro-
vides the best solution within the time that is typically available for the computations (e.g.,
half an hour). In particular, the overall performance improved with about 8-12% compared
to the all-stop approach.

In the future, we will investigate other solution approaches to solve the resulting MINLP
problem efficiently, especially for cases with a large number of trains and stations, and we
will compare these approaches with the threshold approach and the efficient bi-level ap-
proach for large-scale real-life case studies. In addition, we will investigate the effect of
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more detailed models (including short turns, the distribution of on-board passengers and
waiting passengers at platforms, etc.) on the trade-off between performance and computa-
tional complexity. In future work, we will also consider thetravel time uncertainty, dwell
time uncertainty, etc. in the train scheduling and investigate robust train scheduling ap-
proaches.
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Chapter 7

OD-Dependent Train Scheduling
for an Urban Rail Transit
Network

In the previous two chapters, we have discussed the train scheduling problem for an urban
rail transit line with OD-independent and OD-dependent passenger demands. In the current
chapter, we consider the train scheduling problem for an urban rail transitnetwork. An
event-driven model is built for train scheduling, which involves three types of events, i.e.,
departure events, arrival events, and passenger arrival rates change events. The routing of the
arriving passengers at transfer stations is formulated in the train scheduling model. More-
over, the passenger transfer behavior (i.e., passengers’ walking time and transfer duration
time) is also taken into account in the model formulation. The resulting optimization prob-
lem is a real-valued nonlinear nonconvex problem. The effectiveness of the event-driven
model is evaluated through a case study.

7.1 Introduction

In Chapters 5 and 6, we have studied the train scheduling problem for an urban rail transit
line which takes the passenger demands into account. As in general urban rail transit lines
are separated from each other, passengers may need to make several interchanges between
different lines to arrive at their destination. Therefore,when scheduling trains for an urban
rail network, it is important to take the passenger transfers into account to shorten the total
travel time of passengers.

In order to model the time-varying passenger arrival rates,we propose an event-driven
model for the train scheduling in this chapter. The event-driven model includes departure
events, arrival events, and passenger arrival rate change events at platforms. At transfer
stations, if there exist multiple route choices for passengers to arrive at their destinations,
the arriving passengers will distribute themselves and go to different platforms of different
lines. For the passengers arriving at transfer stations by trains, some of them will get off the
train and transfer to other lines to arrive at their destination. Both the changes of splitting

121
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rates and the passenger transfers result in passenger arrival rate change events at transfer
stations. This behavior can be captured by the event-drivenmodel. The resulting train
scheduling problem is a real-valued nonlinear nonconvex programming problem.

The rest of the chapter is structured as follows. Section 7.2introduces the three types of
events and formulates the event-driven dynamics of train scheduling. Section 7.3 describes
the performance criteria and constraints of the train scheduling problem. In Section 7.4, we
discuss how to solve the scheduling problem in a rolling horizon way and how to define the
initial conditions for the scheduling problem. Several solution approaches, e.g., the SQP
method and genetic algorithm, are introduced to solve the resulting nonlinear nonconvex
optimization problem in Section 7.5. In Section 7.6, the performance of the proposed event-
driven model is evaluated via a case study. Finally, conclusions and recommendations are
provided in Section 7.7.

7.2 Model formulation

Consider an urban rail transit network withL lines andJ stations. LetSln andSstabe the sets
of lines and station indices, respectively. In practice, a station could have several platforms
and we denote the set of platforms asSpla. Note that a physical line with two directions is
defined as two separate lines in this chapter. We make the following assumptions:

A.1 There is no shared platform for different lines in the urban rail transit network. If
passengers want to transfer from one line to the other, they need to walk from one
platform to the other.

A.2 A platform can only accommodate one train at a time and no overtaking can occur at
any point of the line.

Assumption A.1 holds for most urban transit systems, e.g., the subway networks in Beijing,
Paris, and Rome. With Assumption A.1, a platform is uniquelyidentified to a specific
line, i.e., a line can be defined by a subset of platforms. Assumption A.2 generally holds
for most urban transit systems. Furthermore, in practice, the trains of different lines are
operated separately, which means that trains cannot be shared between different lines.

If platform p at stationj is on lineℓ, we denote the predecessor of platformp on line
ℓ asppla(p) and the successor of platformp on lineℓ asspla(p). In order to distinguish the
different running cycles of the physical trains, train services are introduced, where each train
service in the network has a unique service number which uniquely identifies a train and its
current cycle. After the arrival of a physical train at the terminal station, its service number
will be augmented the total number of trains in the network when the train departs. LetIℓ be
the total number of physical trains in transit lineℓ, then the total number of physical trains
in the network isInet= ∑ℓ∈Sln

Iℓ. In addition, the set of indices of all train services is defined
asStra. The predecessor and successor of traini on lineℓ are denoted asptra(i) andstra(i),
respectively. The start time and end time of the scheduling period are denoted ast0 andtend.

7.2.1 Three types of events

We model the train scheduling problem with consideration ofpassenger demands using
three types of events:
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• Departure events: representing the departure of a train at astation,

• Arrival events: representing the arrival of a train at a station,

• λ-change events: representing the change of passenger arrival rates at a platform.

To describe the operation of trains, we now propose an event-driven model consisting of
a continuous part describing the movement of trains runningfrom one station to another
station through the network, and of the discrete events listed above. Thek-th eventek

occurring in the event-driven system is denoted as

ek = (tk,Ytype,k, ik, pk), (7.1)

wherek is the event counter,tk is the time instant at which eventek occurs,Ytype,k is the event
type, which can have three possible values, i.e., ‘d’, ‘a’, or ‘λ’ corresponding to a departure
event, an arrival event, or aλ-change event,ik is the train number, andpk is the platform
number.

In particular,λ-change events can be caused by the change of passenger arrivals at sta-
tions, the change of splitting rates at transfer stations, and the passenger transfers at transfer
stations. Note that the passenger arrival rate stays the same between two subsequent events.
The train scheduling model requires the real-time assessment of passenger arrival rates for
different origins and destinations during the scheduling period. In the case of full state in-
formation, the passenger arrival rates can be obtained. Unfortunately, this is not the case
in practice, where we need to e.g. use the information collected by the advanced fare col-
lection systems and estimate the passenger arrival rates based on the historical data and the
current passenger flows [143]. A typical profile for passenger arrivals at stations on work-
days is given as the line in Figure 7.1, where the passenger arrival rate during the peak
hours is much higher than that during the off-peak hours. Thecontinuous passenger arrival
rate can be approximated using a piecewise constant function as indicated by the dashed
line in Figure 7.1. Piecewise constant functionsλstation

j ,m (·) for each j,m∈ Ssta denote the
passenger arrival rates at stationj of passengers with stationm as their final destination.
These piecewise functions are the inputs to the event-driven model and we describe these
piecewise constant functions via so-called base profiles. The base profiles are left-hand side
continuous piecewise constant functions, which can be specified by a list of corner points
as shown in Figure 7.2, where the corner points are marked with big dots. Hence, the base
profile shown in Figure 7.2 can be described by these three corner points:

{

(t1,λ1),(t2,λ2),(t3,λ3)
}

.

We introduce aλ-profile query module for each platform (see also Figure 7.3)[80].
If platform p is not at a transfer station, then the query module only contains the base
profileλstation

j ,m (·). However, if platformp is at a transfer station, then the query module for a
platform stores the base profile and possibly additional update profiles due to splitting rate
changes and passenger transfers:

1. Splitting rates change at stations: At a transfer station, passengers can choose to
go to the platforms of different lines since there could be multiple routes available
to go to their destination. The splitting of passenger flows at transfer stations can
be influenced or controlled by the rail operator by providingroute information and
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suggestions to passengers through PDA devices or through information panels at the
entrance of stations. Letβstation

p,m (·) denote the splitting rate of the passengers flows
that arrive at stationj, have destinationm, and go to platformp (see Figure 7.4). The
functionβstation

p,m (·) is also a a left-hand side continuous piecewise constant function.
In order to provide a consistent service to the passengers, the splitting rate should not
change too often, e.g., 15 minutes. The passenger arrival rate at platformp of station
j can be calculated as follows:

λp,m(tk) = βstation
p,m (tk)λstation

j ,m (tk), ∀p∈ Pj , ∀m∈ Ssta, (7.2)

wheretk is one of the corner points of the base profile or of the splitting rate change
profiles andPj is the set of platforms at transfer stationj. Furthermore, the sum of all
the splitting rates at transfer stationj is always equal to 1, i.e.,

∑
p∈Pj

βstation
p,m (tk) = 1, ∀m∈ Ssta, ∀ j ∈ Stransf

sta , (7.3)

whereStransf
sta is the set of transfer stations in the network. The splittingrates at the

transfer stations are the control variables for the train scheduling problem. The change
of the splitting rates of passenger flows results inλ-change events at the platforms of
a transfer station. The∆λ update profiles caused by splitting rate changes are also
piecewise constant functions, which can be described by a list of corner points in a
similar way as for base profiles.

The average walking time for passengers from entrances of station j to platformp at
time instantt can be calculated by

θwalk-in
p (t) = awalk

0,p

(

∑
m

βstation
p,m (t)λstation

j ,m (t)
)

+bwalk
0,p , (7.4)

whereawalk
0,p andbwalk

0,p are the coefficients for the average walking time from the en-
trance of the station to platformp, which depend on the layout of the station, the
walking distance, etc., and which can e.g. be determined based on historical data.
The total walking time for passengers from entrances of station j to platformp dur-
ing the scheduling time period[t0, tend] can be calculated by

twalk-in
p =

C

∑
c=1

θwalk-in
p (tstation

p,c )∑
m

βstation
p,m (tstation

p,c )λstation
j ,m (tstation

p,c )(tstation
p,c+1 − tstation

p,c ), (7.5)

wheretstation
p,c is the time instant at which PWA constant functionsβstation

p,m (·) and/or
λ j ,m(·) change. Note thattstation

p,1 = t0 andtstation
p,C = tend.

2. Passenger transfers triggered by arrival events: If a train arrives at a transfer station,
there could be several possible routes for the onboard passengers to arrive at their
destinations. They could choose to stay on the train or to getoff the train and transfer
to a train on another line. At transfer stationj, the splitting rate of the passengers that
are on board of traini and have destinationm to platformp′ can be denoted asβtrain

i,p′,m
for p′ ∈ Pj . For traini that stops at platformp of transfer stationj, the sum of all the
splitting rates has to be equal to 1, i.e.,

∑
p′∈Pj

βtrain
i,p′,m = 1, ∀i ∈ Stra, ∀m∈ Ssta. (7.6)



7.2 Model formulation 127

Note that the passengers with destinationj, i.e., the ones for whichm= j, will not
choose to transfer to other platforms but they will exit the transit network at stationj;
so if train i arrives at platformp, we setβtrain

i,p, j = 1 for andβtrain
i,p′, j = 0 for p′ ∈ Pj \ {p}

wherep is the platform of stationj at which traini arrives. The total walking time for
passengers from platformp to exit stationj during the scheduling time period[t0, tend]
can be calculated as

twalk-out
p = ∑

i∈Stra
p,t0,tend

awalk
p,0 nalight

i,p, j +bwalk
p,0 , (7.7)

whereStra
p,t0,tend

is the subset of indices of trains that stop at platformp during the

scheduling period[t0, tend], nalight
i,p, j is the number of passengers who get off traini, have

destinationj, and exit the urban rail network from platformp. The coefficientsawalk
p,0

andbwalk
p,0 can be determined in a similar way asawalk

0,p andbwalk
0,p .

The walking time for transfer passengers depends on the walking distance between
two platforms and the number of transfer passengers. In practice, the walking time
could be distributed as shown by the line in Figure 7.5. For the sake of simplicity,
we approximate the relationship between the passenger walking time and number of
transfer passengers by a rectangular signal as representedby the dashed line in Figure
7.5. Hence, we can calculate the average walking time of the transfer passengers from
platformp to the other platformsp′ ∈ Pj \ {p} as

θwalk
i,p,p′ = awalk

p,p′ n
transf
i,p,p′+bwalk

p,p′ , ∀i ∈ Stra, ∀p′ ∈ Pj \ {p}, (7.8)

wherentransf
i,p,p′ is the number of transfer passengers from traini to platformp′ of line

ℓ′, awalk
p,p′ andbwalk

p,p′ are the coefficients for the average walking time, which depend
on the layout of transfer station, the walking distance, etc., and which can e.g. be
determined based on historical data. The total transfer time t transf

i,p for transferring
passengers getting off from traini is

t transf
i,p = ∑

p′∈Pj\{p}
θwalk

i,p,p′n
transf
i,p,p′. (7.9)

Similar as the average walking time, the duration time for the transfer process can be
approximated using

θduration
i,p,p′ = aduration

p,p′ ntransf
i,p,p′+bduration

p,p′ , ∀i ∈ Stra, ∀p′ ∈ Pj \ {p}. (7.10)

Similar asawalk
p,p′ andbwalk

p,p′ , aduration
p,p′ andbduration

p,p′ can be determined based on historical
data. The updates for theλ-profile due to passenger transfers can be described by a
list of corner points

{

(ai, j ,0),(ai, j +θwalk
i,p,p′,∆λi,p,p′),(ai, j +θwalk

i,p,p′+θduration
i,p,p′ ,0)

}

, (7.11)

where∆λi,p,p′ is calculated by

∆λi,p,p′ =
ntransf

i,p,p′

θduration
i,p,p′

. (7.12)
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Figure 7.5: Typical walking time profile for the transfer passengers
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Figure 7.6: Model structure of the event-driven system

7.2.2 Event-driven dynamics

In this event-driven system, there are two classes of events: autonomous events and con-
trolled events. Autonomous (or triggered) events are triggered by other events or by the
environment, and their event times cannot be controlled directly. All the λ-change events
are autonomous events. The departure and arrival events at stations are the controlled events
of the given system. The event times of the controlled eventsare directly influenced by the
inputs to the system. The control inputs of the system are thedeparture times, the running
times of trains, and the splitting rates of passenger flows attransfer stations. The model
structure of the event-driven system is illustrated in Figure 7.6.

Furthermore, we introduce a global event list for the event-driven system (see also Fig-
ure 7.6). At any time, this list contains all the possible next events for all the trains and
stations in the urban rail network. The next event of the system will be the event in the
global event list with the smallest value oftk, i.e. the event that will occur first. As a starting
point, the global event list should be initialized based on the initial state of the system. We
denote the current time astcurrent(see also Figure 7.7). Letτprocessbe the processing time for
data preparation for the train scheduling. All the events that happened in the past, i.e., for
which the event time is smaller thantcurrent+ τprocess, are known to the event-driven system
and the set of these events is denoted asSknown. The set of events that will happen in the
future is denoted asSunknown.

When an event happens, the state of the system should be updated and some other events
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Figure 7.7: Definition of known events and unknown events
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may be triggered. For all the events occurring in the given system, the number of passengers
waiting at platforms need to be updated. It is important to note that the passenger arrival
rate stays the same between two subsequent events. Immediately before eventek happens,
the number of passengerswwait,before

pk,m (tk) with destinationm that are waiting at platformpk

is updated as follows (see Figure 7.8):

wwait,before
pk,m

(tk) = wwait,after
pk,m

(tk′)+λpk,m(tk′)(tk− tk′), (7.13)

wheretk′ is the event time of the previous eventek′ = (tk′ ,Ytype,k′ , ik′ , pk′) happening at plat-

form pk of line ℓk (i.e., pk′ = pk), wwait,after
pk,m (tk′) is the number of passengers at the platform

immediately after eventek′ , andλpk,m(tk′)(tk− tk′) is the number of passengers that arrive

at this platform betweent ′k andtk. The total number of waiting passengerswwait,before
pk (tk) at

platformpk of line ℓk immediately before the eventek can be calculated as

wwait,before
pk

(tk) = ∑
m∈Ssta

wwait,before
pk,m (tk). (7.14)

The waiting time of passengers at a platform is updated when an event occurs. We use
twait
pk

(tk) to denote the waiting time of the passengers at platformpk when eventek occurs,
which can be calculated by

twait
pk

(tk) = twait
pk

(t ′k)+ ∑
m∈Ssta

(

wwait,after
pk,m (tk′)(tk− tk′)+

1
2

λpk,m(tk′)(tk− tk′)
2
)

, (7.15)

wheretk′ is the event time of the previous eventek′ that occurred at platformpk.

In general, the updates of other states and the triggered events caused by the current
event depend on the event type of the current event. Forλ-change events, only the number
of waiting passengers at platforms and the waiting time of these passengers need to be
updated. For departure events and arrival events, a detailed description of the updates of
other states and the triggered events is given as follows.

Departure events

When a departure event occurs, denoted asek, then we haveYtype,k = ‘d’. Let ik be the train
involved in the event. The number of passengers boarding train ik at platformpk on lineℓk is
equal to the minimum of the number of waiting passengerswwait,before

pk (tk) and the remaining
spacenremain

ik,pk
on the train after the alighting process of passengers, i.e.

nboard
ik,pk

= min(nremain
ik,pk

,wwait,before
pk

(tk)). (7.16)

The remaining spacenremain
ik,pk

on trainik for passengers is

nremain
ik,pk

=Cmax,ik−nik,ppla(pk)
−nalight

ik,pk
, (7.17)

whereCmax,ik is the capacity of trainik, ppla(pk) is the predecessor platform1 of platform

pk, nα,β is the number of passengers on trainα when it departs from platformβ, andnalight
α,β

1Recall thatppla(pk) is the previous platform on the line to which platformpk belongs.
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is the number of passengers getting off trainα at platformβ. The calculation fornalight
ik,pk

will
be given in (7.30).

The number of passengerswwait,after
pk (tk) left by train ik at platformpk, i.e., the number

of passengers waiting at the platform immediately after event ek, is

wwait,after
pk

(tk) = wwait,before
pk

(tk)−nboard
ik,pk

. (7.18)

In addition, we assume that the number of passengers with destinationm that are left by train
ik is proportional to the number of waiting passengers. Hence,the number of passengers
with destinationm left by train ik at platformpk can be calculated as

wwait,after
pk,m

(tk) = wwait,after
pk

(tk)
wwait,before

pk,m (tk)

wwait,before
pk (tk)

. (7.19)

The number of passengers with destinationm that board trainik at platformpk is

nboard
ik,pk,m

= wwait,before
pk,m

(tk)−wwait,after
pk,m

(tk). (7.20)

After the boarding process, the number of passengersnafter
ik,pk,m

with destinationm that are on
board of trainik is updated as

nafter
ik,pk,m

= nbefore
ik,pk,m

+nboard
ik,pk,m

, (7.21)

and the total number of passengersnafter
ik,pk

on board of trainik at platformpk after the boarding
process is

nafter
ik,pk

= nbefore
ik,pk

+nboard
ik,pk

, (7.22)

wherenbefore
ik,pk,m

and nbefore
ik,pk

are the number of passengers with destinationm and the total
number of passengers on board traini before the boarding process of passengers (see more
details in the description of arrival events).

The departure eventek at platformpk will generate an arrival event at the next platform
of the line to which platformpk belongs, which is described as follows:

(

aik,spla(pk)
, ‘a’ , ik,s

pla(pk)
)

,

whereaik,spla(pk)
is the arrival time of trainik at platformspla(pk). The arrival timeaik,spla(pk)

can be calculated by
aik,spla(pk)

= dik,pk + r ik,pk, (7.23)

wheredik, jk is equal totk andr ik,pk is the running time on the track segment between platform
pk and platformspla(pk). This arrival event should then be added to the global event list.

Arrival events

If Ytype,k = ‘a’, i.e., eventek is the arrival event of trainik at platformpk on ℓk, the number

of passengerswwait,before
pk (tk) waiting at platformpk immediately before this arrival event

should be updated by (7.13) and (7.14).
The number of passengers getting off trainik depends on platformpk:
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• If platform pk is at the first station of lineℓk, then there are no passengers getting off
train ik, i.e.

nalight
ik,pk

= 0. (7.24)

In addition, the number of passengersnbefore
ik,pk,m

that have destinationmand are on board
of train ik immediately before the boarding process is also equal to zero, i.e.

nbefore
ik,pk,m = 0, ∀m∈ Ssta. (7.25)

• If the stationjk to which platformpk belongs, is not the first station and not a transfer
station, then the passengers with destinationjk will get off train ik. The number of
these passengers can be computed as follows:

nalight
ik,pk

= nafter
ik,ppla(pk), jk

, (7.26)

wherenafter
ik,ppla(pk), jk

is the number of onboard passengers with destinationjk after the

boarding process at predecessor platformppla(pk). Furthermore, we calculate the
number of passengersnbefore

ik,pk,m
as follows:

nbefore
ik,pk,m

= nafter
ik,ppla(pk),m

, ∀m∈ Ssta\ { jk}. (7.27)

Therefore, the total number of passengers on board trainik before the boarding pro-
cess is

nbefore
ik,pk

= ∑
m∈Ssta\{ jk}

nbefore
ik,pk,m

. (7.28)

• If the station jk to which platformpk belongs is a transfer station, then not only
the passengers with destinationjk will get off train ik, but the passengers with other
destinations may also get off trainik. The splitting rates for the passengers with
destinationm staying on or getting off trainik are denoted asβtrain

p′,ik,m
for p′ ∈ Pjk.

The number of passengersnbefore
ik,pk,m

that have destinationmand are on board of trainik
immediately before the boarding process can be calculated by

nbefore
ik,pk,m

= βtrain
pk,ik,m

nafter
ik,ppla(pk),m

, ∀m∈ Ssta, (7.29)

wherenafter
ik,ppla(pk),m

is the number of onboard passengers with destinationm immedi-

ately after the boarding process at predecessor platformppla(pk).

As mentioned in Section 7.2.1, the splitting rateβtrain
pk,ik, jk

equals 1 for the passen-
ger flow with destinationjk. All these passengers will get off the train and exit the
network from stationjk. For the passengers with destinationm with m 6= jk, the
passengers staying on lineℓk also stays on trainik. Hence, the number of alighting
passengers can be calculated by

nalight
ik,pk

= nafter
ik,ppla(pk)

− ∑
m∈Ssta\{ jk}

nbefore
ik,pk,m

. (7.30)

wherenafter
ik,ppla(pk)

is in fact equal to the number of passengers on board of trainik

when it arrives at platformpk and∑m∈Ssta\{ jk}n
before
ik, jk,m

is the total number of passengers
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staying on trainik after the alighting process. The number of transferring passengers
ntransf

ik,pk,p′,m
that have destinationmand transfer from platformpk to some other platform

p′ can be calculated by

ntransf
ik,pk,p′,m

= βtrain
ik,p′,m

nafter
ik,ppla(pk),m

, ∀p′ ∈ Pjk \ {pk}. (7.31)

The total number of transfer passengers from trainik is then

ntransf
ik,pk

= ∑
p′∈Pjk

\{pk}
∑

m∈Ssta\{ jk}
ntransf

ik,pk,p′,m
. (7.32)

The passenger in-vehicle time for trains, denoted ast in-vehicle
ik,pk

should be updated when
an arrival event happens. When arrival eventek happens, the passenger in-vehicle time,
including the running time of trainik and the dwell time at platformpk, can be calculated
by

t in-vehicle
ik,pk

= nafter
ik,ppla(pk)

r ik,pk +(nafter
ik,ppla(pk)

−nalight
ik,pk

)(dik,pk−aik,pk), (7.33)

wherer ik,pk, dik,pk, aik,pk are the running time, departure time, and arrival time of train ik at
platformpk.

In addition,λ-change events will be triggered to increase and decrease the passenger
arrival rates. These events can be written as

(

aik,pk +θwalk
ik,pk,p′

, ‘λ’ ,−, pk
)

, ∀p′ ∈ Pjk \ {pk}, (7.34)

(

aik,pk +θwalk
ik,pk,p′

+θduration
ik,pk,p′

, ‘λ’ ,−, pk
)

, ∀p′ ∈ Pjk \ {pk}, (7.35)

where ‘−’ is a dummy place holder as there is no train included in theseevents. The above
λ-change events should be added to the global event list.

7.3 Mathematical formulation for the scheduling problem

7.3.1 Performance criteria

In this chapter, we minimize the total travel time of all passengers and the energy con-
sumption of the trains using a weighted sum strategy. Note that we can accommodate other
performance criteria all well.

The total energy consumption for allI trains running withJ stations can then be formu-
lated as

Etotal = ∑
i∈Stra

∑
p∈Spla

(Eacc
i,p +Ehold

i,p ), (7.36)

whereEacc
i,p andEhold

i,p can be calculated by (5.17) and (5.18). The total travel timeof all
passengers includes the passenger waiting time, the passenger in-vehicle time, and the pas-
senger transfer time, which can then be formulated as

ttotal = ∑
p∈Spla

twait
p + ∑

i∈Stra

∑
p∈Spla

t in-vehicle
i,p + ∑

i∈Stra

∑
p∈Spla

t transf
i,p + ∑

p∈Spla

twalk-in
p + ∑

p∈Spla

twalk-out
p .

(7.37)
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Similar as the performance criteria in Section 5.3, a weighted sum strategy can be ap-
plied to solve the multi-objective optimization of the train scheduling problem, i.e., we
consider

fopt =
Etotal

Etotal,nom
+λ

ttotal

ttotal,nom
, (7.38)

whereλ is a non-negative weight, and the normalization factorsEtotal,nom andttotal,nom are
the nominal values of the total energy consumption and the total travel time of passengers,
respectively. These nominal values can e.g. be determined by a feasible initial schedule.
Just as mentioned in Section 6.3, a penalty term of the waiting time of the passengers left by
the last train during the scheduling period can be introduced to spread trains over the entire
scheduling period.

7.3.2 Constraints

The event times of all the events in the future event setSunknownshould satisfy

tk ≥ tcurrent+ τprocess, ∀ek ∈ Sunknown. (7.39)

In addition, the event times of the departure events and the arrival events should satisfy the
operational constraints as follows. The event timetk for arrival eventek, i.e., the arrival time
aik,pk of train ik at platformpk, should satisfy the headway constraints:

aik,pk−dptra(pk),pk
≥ hpk,min, (7.40)

wheredptra(pk),pk
is the departure time of the previous train at platformpk andhpk,min is the

minimum headway at platformpk to ensure the safe operation of trains. Furthermore, the
event time of the departure event, i.e., the departure timedik,pk of train ik at platformpk,
should satisfy

dik,pk ≥ aik,pk + τik,pk,min, (7.41)

dik,pk ≤ aik,pk + τik,pk,max, (7.42)

whereτik,pk,min andτik,pk,max are the minimal and maximal dwell time for trainik at platform
pk. The minimal dwell time is affected by the number of passengers getting off and getting
on the train, which can be calculated as

τik,pk,min = min

(

τ̃min,α1,d+α2,dnalight
ik,pk

+α3,dnboard
ik,pk

+α4,d

(

wwait
pk

(tk)

ndoor

)3

nboard
ik,pk

)

, (7.43)

whereτ̃min is the minimum dwell time predefined by railway operator,α1,d, α2,d, α3,d, and
α4,d are coefficients that can e.g. be estimated based on historical data,ndoor is the number
of doors of the train, andwwait

ik,pk
/ndoor is the number of passengers waiting at each door.

Moreover, the departure timedik,pk should satisfy the headway constraint as follows:

dik,pk−dptra(pk),pk
≤ hpk,max, (7.44)

wherehpk,max is the maximum departure-departure headway between trainsat platformpk

to ensure the passenger satisfaction.
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Note that the running timer i,p should satisfy

r ik,pk,min≤ r ik,pk ≤ r ik,pk,max, (7.45)

wherer ik,pk,min andr ik,pk,max are the minimal and maximal running time of trainik between
platform pk and successor platformspla(pk), respectively. The minimum running time is
limited by the train characteristics and the condition of the line. The maximum running time
is introduced to ensure the passenger satisfaction since iftrains run too slow, the passengers
may complain.

7.4 Rolling horizon approach and initial conditions

A rolling horizon approach can be adopted to solve the train scheduling problem. In this
section, we will discuss the rolling horizon approach in detail and we define the initial
conditions for the scheduling problem.

Since passenger demands vary with the time in a daily operation, the train scheduling
problem can be solved in a rolling horizon way, by solving thescheduling problem, e.g.,
every half an hour, so as to adapt the train schedule to passenger demands in real time. This
works as follows. First, the train scheduling problem is solved for some period[t0, tend] and
the trains will be operated according to the resulting optimal schedule. After some period
of time tp, e.g., half an hour, we will run the optimization process again, but now for the
period[t0+ tp, tend+ tp] using the known, measured, or estimated states of the systemat time
t0+ tp. Once the new optimal schedule is computed, it is executed for tp time units, and next
the whole process is repeated again for the period[t0 + 2tp, tend+ 2tp] and so on, until the
end of the daily operation of the urban rail transit system.

When solving the train scheduling problem in a rolling horizon way, some of the vari-
ables2 will no longer be free variables but will have fixed, known values. Assuming thatt0
is the start time instant of the scheduling period, we now discuss the fixed variables for a
line in an urban rail network:

• If train i is in the terminal station at timet0, i.e., the arrival timeai−Inet,0 of train i− Inet

at the terminal station will be a known value withai−Inet,0 < t0. Soai−Inet,0 is no longer
an unknown variable.

• If train i is at a platform of a station at timet0, we usepi,t0 to denote that platform.
The arrival timeai,pi,t0

of train i at platformpi,t0 is known. In addition, the departure
times, the arrival times, and the running times before platform pi,t0 are also known.

• If train i is running on a segment att0, we usepi,t0 to denote the segment at which train
i is running on att0. The departure timedi,pi,t0

of train i at platformpi,t0 is a known
time value withdi,pi,t0

< t0. In addition, all the departure times, arrival times, and
running times before segmentpi,t0 are known. Furthermore, the running timer i,pi,t0
on segmentpi,t0 is also fixed since we assume that the schedule of a train can only
be changed at platforms. Therefore, the arrival time of train i at platformppla(pi,t0) is
also known.

2When the stop-skipping strategy is included in the train scheduling, the stopping variables should be fixed
for trains that are already on their way in order to make sure all the passengers on these trains can arrive at their
destinations.
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Figure 7.9: Layout of a small urban rail transit network

The number of passengers on the train and the number of passengers waiting at the platform
are also known at timet0.

7.5 Solution approaches

The train scheduling problem for an urban rail transit network is a nonlinear non-convex
programming problem with objective function (7.38) and constraints (7.39)-(7.45). The
train scheduling problem in Chapter 5 is also a nonlinear nonconvex programming prob-
lem, where several approaches are proposed, such as the gradient-based SQP approach,
the gradient-free pattern search method, mixed integer (non)linear programming approach,
and the iterative convex programming approach. These approaches can also be applied to
the train scheduling problem for an urban rail transit network in this chapter. In addition,
the evolutionary algorithms, such as genetic algorithms, can also be applied to this train
scheduling problem [14, 31, 144].

7.6 Case study

7.6.1 Set-up

In order to illustrate the event-driven model for urban railtransit networks proposed in this
chapter, a small network with two cyclic lines as shown in Figure 7.9 is considered as a test
case study. Line 1, i.e., the blue line, has 1 terminal (station 1) and 5 normal stations and
line 2, i.e, the red line, has 1 terminal (station 7) and 7 normal stations. The line data of
these two lines are given in Table 7.1, where the calculationof the minimum running time is
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Table 7.1: Information of the two cyclic lines

Station number (Line 1) 1 2 3 4 5 6

Distance to next station [m] 700 1500 1700 2200 1900 800
Minimal running time [s] 59.3 95.3 104.3 126.8 113.3 63.8

Station number (Line 2) 7 8 3 9 10 11 5 12

Distance to next station [m] 860 1400 1500 1300 1600 1200 1100 730
Minimal running time [s] 66.5 90.8 95.3 86.3 99.8 81.8 77.3 66.5

Table 7.2: Parameters of the trains and the passengers

Property Symbol Value

Train mass [kg] me,i 199·103

Mass of one passenger [kg] mp 60
Capacity of trains [passengers] Ci,max 1500

Minimum dwell time [s] τ̃min 30
Maximum dwell time [s] τmax 150

[s] α1,d 4.002
Coefficients of the [s/passengers] α2,d 0.047
minimal dwell time [s/passengers] α3,d 0.051

[s/passengers−4] α4,d 1.0·10−6

Coefficients of resistance
[m/s2] k1i 0.012
[s−1] k2i 5.049·10−4

[m−1] k3i 2.053·10−5

the same as that presented in Section 6.5. For each cyclic line, there are 5 physical trains and
the number of train services considered in the train scheduling problem is taken as 7. The
parameters of trains and passengers are chosen as in Table 7.2. The passenger arrival rates
at stations are given in Table 7.3, where the passenger arrival rates are piecewise constant
functions that can change with time in a scheduling period and the passenger arrival rates at
terminals, i.e., station 1 and station 7, are equal to 0. In addition, since we only consider one
direction of the cyclic lines, no passenger is arriving at the last stations of these two lines,
i.e., station 6 and station 12.

At time t0 (chosen as 2500 s), the initial states of trains for line 1 areas follows: train 1
and train 2 are running from station 4 and 2 to station 5 and station 3, respectively, and their
arrival times are fixed, at 2530 s and 2550 s respectively. Thenumber of passengers on train
1 and 2 at timet0 is given in Table 7.4 and the number of passengers waiting at the platforms
of line 1 is shown in Table 7.5. For line 2, the initial states at time t0 are as follows: train
21, 22, and 23 are running from station 11, 9, and 8 to station 5, 10, and 3, respectively
and their arrival times are 2520 s, 2540 s, and 2560 s. The number of passengers on these
trains att0 is given in Table 7.4 and the number of passengers waiting at platforms of line
2 is shown in Table 7.5. In addition, there are 3 and 2 trains stopping at terminal stations
1 and 7, respectively. We choose the scheduling period as 2500 s, where the schedule of 7
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train services is optimized for each line. To ensure the passenger satisfaction, the maximum
departure-departure headway at stations is chosen as 400 s.The nominal values for the total
travel time, the energy consumption, and the waiting time for the passengers who did not
travel in the scheduling period is calculated based on a random feasible schedule, which are
1.454·107 s, 3.436·109 J, and 7.434·106 s respectively.

The model formulation in Section 7.2 distinguishes the splitting ratesβstation
p,m of the pas-

sengers just entering the rail network and the splitting ratesβtrain
i,p,m of the passenger arriving

the transfer stations by trains. For this case study, we simplify the train scheduling model
by making3 βtrain

i,p,m equal toβstation
p,m (ai, j) with ai, j the arrival time of traini at stationj. After

this simplification, the number of decision variables of theproblem can be reduced sig-
nificantly, especially for cases with a large number of trains. In addition, the walk-in and
walk-out time for passengers in (7.37) are also taken as zerofor the sake of simplicity.
and Two solution approaches are proposed to solve the train scheduling problem, i.e., the
multistart SQP approach and the genetic algorithm. The SQP method implemented by the
fmincon function of Matlab optimization toolbox is employed and five feasible initial points
are used to solve the optimization problem. For the genetic algorithm, the ga function of the
global optimization toolbox of Matlab is used.

7.6.2 Results and discussion

The train schedules obtained by the SQP method for line 1 and line 2 are shown in Figures
7.10 and 7.11. The number of passengers on board of trains is shown in Figures 7.12 and
7.13. Since there are no passenger arrivals at terminal stations (station 1 and station 7 for
line 1 and line 2), the number of passengers on board of trainsshould be equal to 0 when
trains depart or arrive at terminal stations, which is illustrated in Figures 7.12 and 7.13. In
Figure 7.12, it is shown that when train 3 departs from station 2, the number of onboard
passengers has already reached the maximum capacity, i.e.,1500 passengers. Similarly,
train 2 and train 4 reach their maximum capacity at station 4 and station 3, respectively. So
the trains are operated with high passenger load and the operation costs of these trains are
smaller when compared with the operation of trains with lower passenger load.

As mentioned before, station 3 and station 5 are transfer stations in the small rail network
shown in Figure 7.9. Some passengers need to transfer to arrive at their destinations, e.g.,
passengers that enter the network at station 2 but have destination 9, 10, or 11 need to
transfer at station 3. When trains of line 1 arriving at the platform of transfer station 3, the
number of onboard passengers with different destinations is shown in Figure 7.14, where
the number of onboard passengers with destination 1, 2, 7, 8 is equal to 0. The passengers
with destination 3 (dark purple bars) will get off the train at this station and the passengers
with destination 9, 10, and 11 (pink bars) will also get off the train and transfer to line 2.
The other passengers will stay on board. It is noted that the passengers with destination
12 choose to stay on the train instead of transferring to line2 at station 3. This is because
these passengers can also transfer at station 5 as shown in Figure 7.15 and this will lead to
a shorter travel time. Furthermore, the number of passengers at station 3 for train 1 is zero
in Figure 7.14, since train 1 has already passed station 3 at time t0. Similarly, the number

3Recall that the splitting ratesβtrain
i,p,m for trains are numbers and that the splitting ratesβstation

p,m are piecewise
constant functions that have the time as their argument.
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Figure 7.10: Train schedules for line 1 obtained by the SQP method
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Figure 7.11: Train schedules for line 2 obtained by the SQP method
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Figure 7.12: Total number of onboard passengers obtained bythe SQP method for line 1
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Figure 7.13: Total number of onboard passengers obtained bythe SQP method for line 2
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Figure 7.14: Number of onboard passengers with different destinations at transfer station 3
obtained by the SQP method for line 1
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Figure 7.15: Number of onboard passengers with different destinations at transfer station 5
obtained by the SQP method for line 1
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Figure 7.16: Number of onboard passengers with different destinations at transfer station 3
obtained by the SQP method for line 2
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Figure 7.17: Number of onboard passengers with different destinations at transfer station 5
obtained by the SQP method for line 2



7
.6

C
ase

stu
d

y
1

4
3

Table 7.3: Passenger arrival rates (passengers/s) in the small urban rail network

Station Time period [s] 1 2 3 4 5 6 7 8 9 10 11 12

1 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0
2500 - 3000 0 0 0.48 0.64 0.32 0.32 0 0 0.64 0.48 0.32 0.32

2 3000 - 3600 0 0 0.32 0.48 0.32 0.16 0 0 0.48 0.40 0.35 0.16
3600 - 5000 0 0 0.32 0.32 0.32 0.32 0 0 0.48 0.38 0.56 0.16
2500 - 3100 0 0 0 0.32 0.32 0.16 0 0 0.32 0.34 0.29 0.32

3 3100 - 3700 0 0 0 0.48 0.32 0.32 0 0 0.32 0.22 0.42 0.32
3700 - 5000 0 0 0 0.16 0.64 0.16 0 0 0.48 0.38 0.26 0.16

4
2500 - 3250 0 0 0 0 0.45 0.30 0 0 0 0 0 0.30
3250 - 5000 0 0 0 0 0.53 0.38 0 0 0 0 0 0.38

5

2500 - 2850 0 0 0 0 0 0.60 0 0 0 0 0 0.30
2850 - 3390 0 0 0 0 0 0.75 0 0 0 0 0 0.30
3390 - 3830 0 0 0 0 0 0.60 0 0 0 0 0 0.30
3830 - 5000 0 0 0 0 0 0.75 0 0 0 0 0 0.30

6 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0
7 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0

2500 - 3100 0 0 0.12 0.24 0.36 0.12 0 0 0.24 0.29 0.22 0.24
8 3100 - 3700 0 0 0.12 0.24 0.60 0.12 0 0 0.24 0.34 0.19 0.24

3700 - 5000 0 0 0.12 0.24 0.36 0.12 0 0 0.24 0.29 0.29 0.24

9
2500 - 3100 0 0 0 0 0.12 0.24 0 0 0 0.14 0.19 0.24
3100 - 5000 0 0 0 0 0.12 0.36 0 0 0 0.29 0.31 0.36

10
2500 - 2900 0 0 0 0 0.15 0.15 0 0 0 0 0.21 0.15
2900 - 5000 0 0 0 0 0.15 0.15 0 0 0 0 0.24 0.21

11
2500 - 2900 0 0 0 0 0.24 0.20 0 0 0 0 0 0.24
2900 - 5000 0 0 0 0 0.36 0.32 0 0 0 0 0 0.28

12 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0
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Table 7.4: Number of passengers on board of trains at time t0 for the two cyclic lines

Destination station 1 2 3 4 5 6 7 8 9 10 11 12 Total number of passengers

Train 1 (Line 1) 0 0 0 0 130 150 0 0 0 0 0 80 360
Train 2 (Line 1) 0 0 80 70 90 50 0 0 60 140 130 80 700
Train 6 (Line 2) 0 0 0 0 230 280 0 0 0 0 0 170 680
Train 7 (Line 2) 0 0 0 0 160 180 0 0 0 120 134 162 756
Train 8 (Line 2) 0 0 79 98 100 130 0 0 120 80 120 80 787

Table 7.5: Number of waiting passengers at platforms of the two cyclic lines

Destination 1 2 3 4 5 6 7 8 9 10 11 12 Total number of passengers

Station 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Station 2 0 0 120 240 140 10 0 0 80 200 250 140 1180
Station 3 0 0 0 150 200 130 0 0 0 0 0 90 570
Station 4 0 0 0 0 200 230 0 0 0 0 0 120 550
Station 5 0 0 0 0 0 210 0 0 0 0 0 0 210
Station 6 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination 1 2 3 4 5 6 7 8 9 10 11 12 Total number of passengers

Station 7 0 0 0 0 0 0 0 0 0 0 0 0 0
Station 8 0 0 150 120 80 100 0 0 180 100 140 140 1010
Station 3 0 0 0 0 100 130 0 0 190 110 130 100 760
Station 9 0 0 0 0 110 150 0 0 0 100 160 120 640
Station 10 0 0 0 0 130 170 0 0 0 0 130 150 580
Station 11 0 0 0 0 100 190 0 0 0 0 0 170 460
Station 5 0 0 0 0 0 0 0 0 0 0 0 210 210
Station 12 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 7.6: Performance comparison of the SQP method and the genetic algorithm

Solution approaches SQP method Genetic algorithm

Objective value [-] 3.522 3.858
Computation time [s] 4.232·103 5.941·103

Energy consumption [J] 2.677·109 3.220·109

Number of passengers that finished their trips [passengers] 2.993·104 2.550·104

Number of passengers that did not finish their trips [passengers] 9.215·103 1.364·104

Travel time for passengers that finished their trips [s] 1.761·107 1.484·107

Waiting time for passengers that did not travel [s] 3.218·106 7.265·106
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of onboard passengers with different destinations at station 3 and 5 of line 2 is shown in
Figures 7.16 and 7.17.

A comparison of the performance of the two approaches, i.e.,the SQP method and the
genetic algorithm, is illustrated in Table 7.6, where the values of the objective function, the
computation time, the energy consumption of trains, the number and the travel time of the
passengers that finished their trips, and the number and the waiting time of the passengers
that did not travel are listed. It is observed that the SQP method has a better performance
than the genetic algorithm for this case study. In particular, the objective value of the SQP
method is about 10% smaller than that obtained by the geneticalgorithm. The train schedule
obtained by the SQP method has a lower energy consumption andmore passengers arrive
at their destination. However, the travel time for passengers that finished their trip obtained
by the genetic algorithm is smaller than that obtained by theSQP method. The reason for
this is that the number of passengers that finished their trips in the schedule obtained by
genetic algorithm is smaller than that of the SQP method. In addition, the higher energy
consumption of the schedule obtained by genetic means less running time, so the travel
time is also less.

For the given case study, the performance of the SQP method isabout 10% better that
of the genetic algorithm. In addition, the SQP method also has a smaller computation time.
In particular, for the small network with 2 lines given in Figure 7.9, the computation time of
the SQP method is about one hour using Matlab on a 64-bit linuxoperation system running
on 1.8 GHz Intel Core2 Duo CPU. Multiple experiments with different scenarios are need
to access the performance of the solution approaches.

7.7 Conclusions

In this chapter, the train scheduling problem for an urban rail transit network is investigated.
We have built an event-driven model with three types of events, i.e., departure events, arrival
events, and passenger arrival rate change events at platforms. The splitting of passenger
flows and passenger transfers at transfer stations are included in the event-driven model.
For the given case study, the SQP method provides a better trade-off between control per-
formance and computational complexity than the genetic algorithm.

An extensive comparison and assessment of the SQP method, the genetic algorithm,
and other solution approaches for different scenarios willbe a topic for future work. For the
cases with multiple lines and a large number of stations and trains, distributed optimization
approaches are expected to be applied to solve the train scheduling problem. In addition,
we will also investigate the simplification of the proposed model so that the train scheduling
problem can be solved in real time.



Chapter 8

Conclusions and Future Research

In this dissertation we have discussed the optimal trajectory planning problem for trains and
the real-time train scheduling problem for urban rail transit systems. This final chapter first
presents the main contributions of the previous chapters, discusses some remaining open
problems, and gives some recommendations for future research.

8.1 Conclusions

The main contributions of the work presented in this dissertation can be summarized as
follows:

• We have proposed a new iterative convex programming (ICP) approach to solve the
train scheduling problem with constant origin-destination-independent (OD-indepen-
dent) passenger demands for an urban railway transit line. For the case study we have
considered, the ICP approach outperforms other solution approaches, e.g., a sequen-
tial quadratic programming (SQP) method, pattern search method, a mixed integer
linear programming (MILP) approach, and a mixed integer nonlinear programming
(MINLP) approach.

• We have developed a train scheduling model considering a constant origin-destination-
dependent (OD-dependent) passenger demand for urban rail transit systems and we
have proposed an efficient bi-level approach to shorten the computation time with
respect to the standard bi-level approach.

• We have proposed an event-driven model including the splitting of passenger flows
and passenger transfer behavior at transfer stations for train scheduling in urban rail
transit networks. This model involves three types of events, viz. departure events,
arrival events, and passenger arrival rate change events atplatforms.

We have also considered the trajectory planning for multiple trains, which included the
constraints caused by the fixed and moving block signaling system.

147
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The contents and conclusions of the conducted research in this thesis are now discussed
in more detail for each topic.

Optimal trajectory planning for a single train

The optimal trajectory planning problem for a single train under various constraints (e.g.
fixed arrival time, varying line resistance, variable speedrestrictions, and varying maxi-
mum traction force) has been considered, where the objective function is a trade-off be-
tween the energy consumption and the riding comfort. First,we have proposed two solution
approaches to solve this nonlinear non-convex problem, i.e. the pseudospectral method and
an MILP approach.

Simulation results comparing the pseudospectral method, the MILP approach, and a
discrete dynamic programming approach show that the pseudospectral method results in
the best control performance, but that if the required computation time is also taken into
consideration, the MILP approach yields the best overall performance.

Optimal trajectory planning for multiple trains

We have investigated the optimal trajectory planning for multiple trains, where the con-
straints caused by the leading train in a fixed or moving blocksignaling system have been
included in the formulation. We have developed four solution approaches to solve this op-
timal control problem for multiple trains, viz. the greedy MILP approach, the simultaneous
MILP approach, the greedy pseudospectral method, and the simultaneous pseudospectral
method.

Simulation results comparing the greedy MILP approach withthe simultaneous MILP
approach show that the simultaneous MILP approach yields a better control performance
but requires a higher computation time. Moreover, the performance of the greedy and the
simultaneous MILP approach has also been compared with thatof the greedy and the si-
multaneous pseudospectral method. The results show that the energy consumption and
the end time violations of the greedy MILP approach are slightly larger than those of the
greedy pseudospectral method, but the computation time is one to two orders of magnitude
smaller. Similarly, the simultaneous pseudospectral method has less energy consumption
and less end time violations compared with the simultaneousMILP approach but requires
more computation time. For the given case studies, the simultaneous MILP approach yields
the best overall performance.

Train scheduling for a single line based on OD-independent passenger demands

The train scheduling model with OD-independent passenger demand for an urban rail transit
line has been proposed with the aim of minimizing the total travel time of passengers and
the energy consumption of the operation of trains. The resulting train scheduling problem
is nonlinear and nonconvex. We have developed a new iterative convex programming (ICP)
approach to solve this train scheduling problem and have compared it with a gradient-free
nonlinear programming approach (in particular pattern search method), a gradient-based
nonlinear programming approach (in particular, an SQP approach), an MINLP approach,
and an MILP approach.
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It has been shown by simulation results that the performanceof the optimal train sched-
ules obtained by the ICP approach, the pattern search method, the SQP approach, and the
MNILP approach are close to each other, but the MILP approachhas a worse performance
probably because of the piecewise affine approximation error. The computation time of the
ICP approach is smaller than that of other alternative approaches. Hence, the ICP approach
provides the best trade-off between performance and computational complexity.

Train scheduling for a single line based on OD-dependent passenger demands

In order to adapt the train schedule to the OD-dependent passenger demand in an urban rail
transit line, a stop-skipping strategy is adopted to reducethe passenger travel time and the
energy consumption. We have proposed an efficient bi-level approach to solve this problem,
in which a threshold method is applied to obtain a good initial solution for the full problem
and subsequently the search space for the variables is limited to enhance the efficiency.

It is shown by the obtained simulation results that the bi-level approach yields a better
performance than the efficient bi-level approach but at the cost of a higher computation time.
In addition, the overall performance of the train scheduling strategy with stop-skipping is
better than that of an all-stop strategy.

Train scheduling for networks with time-varying OD-independent passenger demands

For the train scheduling of urban rail transit networks, we have presented an event-driven
model, which characterizes the time varying OD-dependent passenger demand, the splitting
of passenger flows, and the passenger transfer behavior at transfer stations. There are three
types of events in the model, i.e., departure events, arrival events, and passenger arrival rate
change events at platforms. The resulting train schedulingproblem is a real-valued non-
linear nonconvex problem, which can be solved by a gradient-free nonlinear programming
approach (in particular pattern search method), a gradient-based nonlinear programming
approach (in particular, an SQP approach), and an MILP approach.

For the given simulation experiment, we have found that the SQP method provides a
better trade-off between control performance and computational complexity with respect to
genetic algorithm.

8.2 Recommendations for future research

In this section, we briefly present some of the open problems that still have to be tackled
based on the contents of this dissertation. Furthermore, wegive some additional directions
for future research.

8.2.1 Optimal trajectory planning and train scheduling

The optimal trajectory planning problem for a single train and for multiple trains with con-
straints caused by signaling system has been investigated.Furthermore, the train scheduling
based on passenger demand for urban rail transit systems hasbeen considered in this thesis.
There are still many issues to be tackled. However, the conflict between modeling accuracy
and computation efficiency is one of the most important aspects that should be taken into
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account during the research. If the accuracy is increased, then the computational complexity
will also increase, and vise versa. Hence, it is important toachieve a balanced trade-off be-
tween accuracy and computational efficiency. Furthermore,with the increasing complexity
of the problem formulation, the computational complexity will also increase and it is diffi-
cult to solve the problem in real time using the current approaches. Below, we give some
topics to improve the accuracy and some methods to increase the computational efficiency.

Modeling accuracy

• Hybrid control methods for the train trajectory planning.

In the literature of the train trajectory planning, there are four optimal operation
regimes for the operation of trains, viz. maximum acceleration, cruising, coasting,
and maximum braking. Hybrid control methods, e.g. switchednonlinear systems,
can be adopted to obtain optimal train trajectories where real train characteristics and
line conditions could be taken into account.

• Microscopic modeling.

The model used in this thesis for train scheduling is a macroscopic model, where the
details of the infrastructure (e.g., block sections and signals) are not considered. In
addition, the layout of the terminals is not taken into account in the train scheduling
model. The terminus is usually a bottleneck of an urban rail transit system, where the
turnaround times of trains affect the minimum headway and there may exist route con-
flicts. Therefore, for conflict detection and feasibility checking of the train schedules,
it is necessary to use a microscopic model. Efficient trajectory planning algorithms
can then first be used to determine time-position profiles fortrains and next blocking
time1 theory [57, 98] can then be applied to identify conflicts.

• Short-turning of trains.

In some urban rail transit lines, there may exist a zone with much higher passenger
demands (e.g., the part in the city center) compared with other parts of the line. In
order to transport passengers efficiently and to avoid too many passengers waiting
at platforms (this may cause safety problems), it is important to develop methods to
integrate short-turning strategies into train scheduling, especially for the zone with
higher passenger demands and for the peak hours. In such a strategy, there are short-
turning trips only serving the stations in the zone with higher passenger demands and
full-length trips serving all stations of the line [20, 111].

• Train scheduling with incidents.

When an incident has happened in an urban rail transit network, e.g., a part of a line
cannot be used due to technical problems, an updated train schedule needs to pro-
posed as soon as possible to provide alternative route choices to passengers to enable
them to arrive at their destinations. Based on the information about the incidents,
several possible measures can be considered, e.g., efficient methods can be developed

1The blocking time is the total elapsed time that a section of track is exclusively allocated to a train and
therefore blocked for other trains.
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to determine the short-turning strategy for the other partsof the line without technical
problems.

• Robust train trajectory planning and train scheduling.

Since there are stochastic disturbances during the operation of trains and the knowl-
edge we obtain are incomplete and uncertain, the parametersof trains characteristics,
the running times, dwell times, etc. may vary within a certain range. It is better that
the trajectory planning and train scheduling can adapt to the variation of parameters,
running times, and dwell times. A sensitivity analysis of the parameters, running
times, and dwell times could be carried out to obtain the crucial ones. New trajec-
tory planning and scheduling methods should be developed totake variations in these
crucial factors into account.

• Extensive experiments including disturbances and randomness

An extensive comparison and assessment of the approaches proposed in this thesis
should be performed via different scenarios for train and line characteristics, OD-
(in)dependent passenger demands, etc. In addition, different set-ups for various case
studies should also be investigated for different numbers of trains, different urban rail
network layouts, different layouts of stations, etc. Furthermore, a micro-simulation
model could be used as simulation models instead of using thesame model for both
prediction and simulation as was done in this thesis. Moreover, randomness caused
by disturbances, model errors, etc. in experiments should be taken into account in
case studies to make the conclusions more general.

Computational efficiency

• Hierarchical optimization techniques.

When more and more trains are involved in the optimal trajectory planning problem,
the proposed greedy approach and simultaneous approach will become slow, espe-
cially for the simultaneous approach. Similarly, with the increasing size of urban rail
networks, the size of the train scheduling problem will growdramatically and the
computation time will also increase. Therefore, a hierarchical optimization structure
where a big network could be decomposed into smaller networks, can be developed
to address trajectory planning and train scheduling at different levels [30, 116]. The
train trajectory planning could be defined based on different aggregation levels, i.e.,
rough trajectories can be optimized at the high level and more accurate trajectories
can be obtained at the lower level based on more detailed models. Similarly, a rough
timetable could also be obtained for the train scheduling problem in the higher level
based on a simple model for the whole network. In the lower level, a more detailed
model can be employed for the train scheduling.

• Distributed optimization techniques.

A distributed optimization structure could also be presented for the trajectory plan-
ning for multiple trains and the train scheduling problem for large urban rail networks,
where a large railway network can be divided into multiple smaller subnetworks to de-
crease the size of the problem and to reduce the computation time. The subnetworks
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can then exchange information with each other, make their own decisions by taking
the information provided by others into account, negotiatewith each other, and finally
converge to a global equilibrium. Game theory [97] and distributed model predictive
control methods [18] can be applied to design the communication and coordination
schemes for the subnetworks.

• Fast optimization approaches.

When solving the trajectory planning problem for multiple trains and the train schedul-
ing for large urban rail networks, the optimization approaches proposed in this thesis
are too slow for real-time applications. Fast optimizationapproaches, e.g., explor-
ing the explicit structure of MILP problems and fast model predictive control [126],
can be developed to reduce the computation time. In addition, rule-based control and
case-based control approaches could be adopted, where the trade-off between com-
putation time and performance should be assessed.

8.2.2 Additional directions for future research

Some more general research directions for the operation of urban rail transit systems are
presented as follows:

• Full integration and interfacing between scheduling and operation control for urban
rail transit networks.

A hierarchical approach can be adopted for the full integration of scheduling and op-
eration control for urban rail transit networks. The high level focuses on the whole
railway network, where e.g. a max-plus algebra approach [119] may be used to opti-
mize train schedules based on a single model for the whole network. At the middle
level, the whole network may be divided into several subnetworks and a more detailed
model (may include turnaround times, blocking times, passenger transfers, etc.) could
be used for determining more detailed train schedules basedon the rough schedules
given by the high level. The high level should coordinate different subnetworks of the
middle level to make train schedules feasible. Single urbanrail transit lines could be
considered at the low level, where the train schedules can befurther refined and the
rolling stock and crews could also be scheduled. An additional lower level may be
introduced for the trajectory planning and the operation oftrains, where the detailed
characteristics of trains are taken into account.

The interfaces between these levels should be developed since they are important
for the effectiveness of the full integration. Furthermore, a monitoring system for
the whole urban rail system should be built to obtain real-time information (e.g.,
departure and arrival times of trains, running speeds and position of trains, number of
passengers entering the network) for the scheduling and train control. Furthermore,
approaches for the estimation of OD-dependent passenger demands and the prediction
of traffic states, etc. should also be investigated since they are important issues in the
full integration.

• Passenger behavior and route choices.

Urban rail transit networks are becoming more and more complex, especially in large
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cities like Beijing, Shanghai, Tokyo, and Paris. Passengers can arrive at their desti-
nations through multiple available routes. There are many factors that influence the
route choice of passengers, such as travel time, transfer time, number of transfers,
crowdedness of the route. However, nowadays rail operatorscan only give general
route advices and passengers have the freedom to choose routes themselves. The
passenger behavior, e.g. how passengers adapt to personalized route advices and to
updated train schedules, can be investigated. In addition,new train scheduling models
could be developed, which can integrate or anticipate on theroute choice behavior of
passengers.

• Multi-operator networks.

In urban rail transit systems, there may exist multiple railoperators that operate dif-
ferent lines in one network. These rail operators may be competing with each other
and each of them would want to attract more passengers to increase its market share
and profits. As a consequence, the information about e.g. thelines and passenger de-
mands could then result in being only partly shared with other operators. Cooperative
scheduling based on partial information sharing could thenbe considered [65].

The optimization models and algorithms proposed in this thesis can also be applied to
control and to optimize other transportation systems such as:

• Bus transit systems.

Bus transit systems with buses running on conventional roads to carry numerous pas-
sengers on short journeys, share many similarities with urban rail transit systems,
such as variety in origin-destination passenger demands, uncertainty in dwell times
and running times, and fixed routes. However, bus transit systems are operated with
lower capacities, lower passenger demands, and more degrees of freedoms on the
operations (e.g., overtaking, crossing, and turnaround).The model and solution ap-
proaches for train scheduling and trajectory planning provided in this thesis can be
extended to bus transit systems, where the effect of other road traffic e.g. cars and of
traffic signals should be taken into account.

• Multi-car elevator systems.

Elevator systems are usually controlled by a centralized upper-level controller, which
determines where a car should stop to load or to unload passengers. Similar as the
train scheduling considering passenger demands, elevatordispatching is also char-
acterized by time-varying passenger arrival patterns. Therefore, the scheduling and
trajectory planning methods presented in this thesis can beapplied to reduce the wait-
ing time of passengers and the energy consumption.

• Automated guided vehicles (AGVs).

AGVs are automated vehicles that can load, unload, and transport goods in port con-
tainer terminals or manufacturing systems. In general, there are two types of AGVs:
one type follows prescribed routes (indicated by markers orwires in the floor) or it
has to select its route from a prescribed route set, while theother type uses vision
or lasers for navigation and it can go to anywhere in the specified area. In addition,
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energy consumption is very crucial for AGVs with battery or fuels since they could
run out of energy. The models and solution algorithms presented in this thesis can
also be extended for AGVs with prescribed routes, in particular the limited-energy
aspect should be included in the scheduling problem.
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Symbols and Abbreviations

List of symbols

Below follows a list of the most frequently used symbols in this thesis.

Chapter 3

m mass [kg] of a train
g gravitational acceleration [m/s2]
ρ rotating mass factor [-]
v speed [m/s] of a train
Vmax(s) speed limit [m/s] along the track
s position [m] of a train
u traction or braking force [N] working on a train
umax, umin maximum traction and braking force [N]
Rb(v) roll resistance and air resistance [N] of a train
Rl(s,v) line resistance [N] caused by track grade, curves, and tunnels
α(s) slope along the track [rad]
r(s) radius [m] of the curve along the track
lt(s) length [m] of tunnels along the track
fc(r(s)) curve resistance [N]
ft tunnel resistance [N]
T given running time [s] for a train
sk boundary [m] of discrete space intervalk
∆sk length [m] of discrete space intervalk
E(k) kinetic energy [J] of a train at positionsk

Emin minimum kinetic energy [J]
t(k) passing time [s] of a train at positionsk

Chapter 4

vmax speed code [m/s] for a green signal aspect in a three-aspect FBS system
vyellow speed code [m/s] for a yellow signal aspect in a three-aspectFBS system
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vmin speed code [m/s] for a red signal aspect in a three-aspect FBSsystem
Hmin,FBS minimum headway [s] between trains in a FBS system
Hmin,MBS minimum headway [s] between trains in a MBS system
sFB,m boundary [m] of fixed block sectionm
La length [m] of a block in a FBS system
LL

t length [m] of the leading train
Ls length [m] of the secure section
SSM safety margin [m] for braking of the following train
vF

max maximum speed [m/s] of the following train
tF
r reaction time [s] of the driver and equipment of the following train
LF

r distance [m] that the following train may travel during the reaction time
aF

b deceleration [m/s2] of the following train
tL
d station dwell time [s] of the leading train
vF(t) speed [m/s] of the following train at time instantt
aL

acc acceleration [m/s2] of the leading train
tF
safe safety time margin [s] caused by safety distance margin and train length

Chapter 5

i train number
j station number
sj track section length [m] between stationj and stationj +1
di, j departure time [s] of traini at stationj
ai, j arrival time [s] of traini at stationj
τi, j dwell time [s] of traini at stationj
r i, j running time [s] of traini at stationj
vi, j train speed [m/s] of the holding phase for traini on segmentj
aacc

i, j acceleration [m/s2] for train i on segmentj
adec

i, j deceleration [m/s2] for train i on segmentj
h0 minimum headway between two successive trains
k1i, k2i , k3i resistance coefficients for traini
λ j passenger arrival rate [passenger/s] at stationj
ρ j passenger alighting proportion when a train arrives at station j
Ci,max maximum capacity [passengers] of traini
wwait

i, j number of passengers waiting for traini at stationj
wi, j number of passengers left immediately after the departure of train i at

station j
nremain

i, j remaining capacity [passengers] of traini at stationj after the passenger
alighting process

nboard
i, j number of passengers boarding traini at stationj

nalight
i, j number of passengers alighting from traini at stationj

ni, j number of passengers on traini when it departs from stationj
τi, j ,max, τi, j ,min maximum and minimum dwell time [s]
α1,d, . . . , α4,d coefficients of the minimum dwell time
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ndoor number of doors of the train
twait,i, j passenger waiting time [s] at stationj for train i
tin-vehicle,i, j passenger in-vehicle time [s] at stationj for train i
Eacc

i, j energy consumption [J] of the acceleration phase at stationj for train i
Ehold

i, j energy consumption [J] of the holding phase at stationj for train i
Edec

i, j energy consumption [J] of the deceleration phase at stationj for train i
ttotal,nom nominal value [s] of the travel time of passengers
Etotal,nom nominal value [J] of the total energy consumption

Chapter 6

Sskip skipping set
h0,dep minimum departure headway [s] at terminal station
h0,arr minimum arrival headway [s] at terminal station
τ0,min minimum dwell time [s] at terminal station
Cher

0 capacity [passengers] of the terminal station
yi, j binary variable to indicate whether traini stops at stationj or not
λ j ,m passenger arrival rate [passengers/s] at stationj for passenger with

destinationm
wwait

i, j ,m number of passengers with destinationm waiting for traini at stationj
wi, j ,m number of passengers with destinationm remaining at stationj

immediately after the departure of traini
wwant-to-board

i, j number of passengers who want to board traini at stationj
nboard

i, j ,m number of passengers with destinationm boarding traini at stationj

Chapter 7

Sln set of urban rail transit lines
Ssta set of stations
Spal set of platforms
p platform index
ppla(p) predecessor of platformp
spla(p) successor of platformp
ptra(i) predecessor of traini
stra(i) successor of traini
ek eventk
tk time instant [s] at which eventek occurs
Ytype,k event type (departure, arrival,λ-change) of eventk
ik index of the train corresponding to eventek

pk index of the platform corresponding to eventek

λstation
j ,m passenger arrival rates [passengers/s] at stationj with destinationm

βstation
p,m splitting rate of passenger flows that arrive at stationj with destinationm
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and that go to platformp
awalk

0,p , bwalk
0,p coefficients for average walking time from the entrance to platformp

θwalk-in
p average walking time [s] for passengers from entrances to platformp

twalk-in
p total walking time [s] for passengers from entrances to platform p

βtrain
i,p,m splitting rate to platformp for passengers that are on board of traini and

have destinationm
twalk-out
p total walking time [s] for passengers from platformp to exit station

awalk
p,p′ , bwalk

p,p′ coefficients for average walking time from platformp to platformp′

θwalk
i,p,p′ average walking time [s] for transfer passengers alightingfrom traini

from platformp to platformp′

aduration
p,p′ , bduration

p,p′ coefficients for the duration time of the transfer process from platformp
to platformp′

θduration
i,p,p′ duration time [s] for the transfer process from platformp to platformp′

for train i
wwait,before

pk number of passengers waiting at platformpk before eventek occurs
wwait,after

pk number of passengers waiting at platformpk immediately after eventek

List of abbreviations

The following abbreviations are used in this thesis:

ATP automatic train protection
ATO automatic train operation
ATS automatic train supervision
DDP discrete dynamic programming
FBS fixed blocking signaling
ICP iterative convex programming
MBS moving blocking signaling
MILP mixed integer linear programming
MINLP mixed integer nonlinear programming
PWA piecewise-afine
SQP sequential quadratic programming
OD-dependent origin-destination-dependent
OD-independent origin-destination-independent
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Samenvatting

Optimale Trajectplanning en Treinroostering voor Spoor-
wegsystemen

Veilige, snelle, punctuele, energie-efficiënte en comfortabele spoorwegsystemen zijn be-
langrijk voor spooroperatoren, passagiers en het milieu. Door de toenemende energieprij-
zen en vanwege milieuoverwegingen is het reduceren van energieverbruik één van de voor-
naamste doelstellingen voor spoorwegsystemen geworden. Tegelijkertijd is het belangrijk
om passagiers veilig en efficiënt te vervoeren, mede geziende drastische toename van het
aantal passagiers in stedelijke spoornetwerken. Het onderzoek dat in dit proefschrift wordt
gepresenteerd, is in de hoofdzaak gericht op het bepalen en ontwikkelen van wiskundige
modellen en oplossingsmethoden om de reistijd van passagiers te verkorten en om het ener-
gieverbruik in spoorwegsystemen te reduceren. In het bijzonder wordt gekeken naar de
reistijd van passagiers bij de treinroostering, terwijl ertegelijkertijd ook rekening wordt
gehouden met de hoeveelheid passagiers in stedelijke spoornetwerken. Met de energie-
efficiëntie wordt tijdens de treinroostering én tijdens het besturen van de treinen rekening
gehouden.

De hoofdonderwerpen die in dit proefschrift worden behandeld, kunnen als volgt wor-
den samengevat:

• Optimale trajectplanning voor een enkele trein. We hebben het optimale traject-
planningsprobleem bestudeerd voor een enkele trein onder verschillende operationele
omstandigheden, waaronder wisselende lijnweerstand, variabele snelheidslimieten en
een wisselende maximale aandrijvingskracht. De doelfunctie van het optimalisa-
tieprobleem is een afweging tussen energieconsumptie en rijcomfort. We hebben
twee methoden voorgesteld om dit optimale regelprobleem opte lossen, namelijk
een gemengd-integer-lineaire-programmering (MILP) aanpak en een pseudospectrale
aanpak. Simulatieresultaten vergelijken de MILP-aanpak,de pseudospectrale aanpak
en een discrete dynamische-programmeringsmethode en laten zien dat de pseudo-
spectrale methode resulteert in de beste regelprestatie, maar dat de MILP-aanpak de
beste algehele prestatie biedt als de benodigde rekentijd ook in beschouwing wordt
genomen.

• Optimale trajectplanning voor verscheidene treinen. We hebben het optimale
trajectplanningsprobleem voor verscheidene treinen met een vast-blok seinsysteem
en met een bewegend-blok seinsysteem onderzocht. We hebbenvier oplossingsme-
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thoden voorgesteld: de gulzige (in het Engels:greedy) MILP-aanpak, de simultane
MILP-aanpak, de gulzige pseudospectrale aanpak en de simultane pseudospectrale
aanpak. Simulatieresultaten laten zien dat in vergelijking met de gulzige aanpak, de
simultane aanpak een betere regelprestatie biedt, maar eenlangere rekentijd vergt.
Daarnaast zijn de afwijkingen van de gewenste eindtijd bij de MILP-aanpak enigs-
zins groter dan die van de pseudospectrale aanpak, terwijl de rekentijd van de MILP-
aanpak één tot twee ordes van grootte kleiner is dan die vande pseudospectrale me-
thode.

• Treinroostering voor een enkele trein gebaseerd op een OD-onafhankelijk pas-
sagiersaantallen. Het treinroosteringsprobleem voor een stedelijke spoorlijn werd
beschouwd met als doel het minimaliseren van de totale reistijd van passagiers en
van het energieverbruik van de trein. De vertrektijden, rijtijden en verblijftijden van
de treinen zijn geoptimaliseerd gebaseerd op oorsprong-bestemming-onafhankelijke
(OD-onafhankelijke) passagiersaantallen. We hebben een nieuwe iteratieve convexe
programmering- (ICP) aanpak ontwikkeld om dit treinroosteringsprobleem op te los-
sen. De prestatie van de ICP-aanpak is vergeleken met alternatieve methoden, zoals
niet-lineaire programmeringsmethoden, een gemengd-integer-niet-lineaire-program-
mering (MINLP) aanpak en een MILP-aanpak. In een casus bleekde ICP-aanpak
voor het treinroosteringsprobleem de beste afweging te bieden tussen regelprestatie
en rekencomplexiteit.

• Treinroostering voor een enkele lijn gebaseerd op OD-afhankelijke passagiers-
aantallen. Voor een enkele stedelijke spoorlijn hebben we een halte-overslaan-stra-
tegie gebruikt om de reistijden van de passagiers en het energieverbruik verder te re-
duceren, gebaseerd op OD-afhankelijke passagiersaantallen. Het treinroosteringspro-
bleem met de halte-overslaan-strategie resulteert in een MINLP-probleem; we heb-
ben een efficiënte twee-laagsoptimalisatiemethode voorgesteld om dit probleem op te
lossen. De halte-overslaan-strategie is presteert beter dan de altijd-stoppen-strategie.
Simulatieresultaten laten zien dat de twee-laagsaanpak een betere regelprestatie biedt
dan de efficiënte twee-laagsaanpak, maar dit gaat ten kostevan een langere rekentijd.

• Treinroostering voor netwerken met tijdsafhankelijke en OD-afhankelijke pas-
sagiersaantallen.Voor treinroostering van stedelijke spoornetwerken hebben we een
gebeurtenis-gestuurd model ontwikkeld, waarin de tijdsafhankelijke en OD-afhanke-
lijke passagiersaantallen, het splitsen van de passagiersstromen en het gedrag van pas-
sagiers bij overstappen op stations zijn meegenomen. Het treinroosteringprobleem is
een niet-lineair, niet-convex probleem met reële variabelen, dat kan worden opgelost
met gradiëntvrije niet-lineaire programmeringsmethodes (zoalspattern searchme-
thodes), gradiënt-gebaseerde niet-lineaire programmeringsmethodes (zoals sequenti-
eel kwadratisch programmeren (SQP)), genetische algoritmes of een MILP-aanpak.
Wij hebben een SQP-methode en een genetisch algoritme toegepast op een casus van
het treinroosteringprobleem. De resultaten laten zien datde SQP-methode zorgt voor
een beter compromis tussen regelprestatie en rekencomplexiteit dan het genetische
algoritme.

Yihui Wang



Summary

Optimal Trajectory Planning and Train Scheduling for Rail-
way Systems

Safe, fast, punctual, energy-efficient, and comfortable rail traffic systems are important for
rail operators, passengers, and the environment. Due to theincreasing energy prices and
environmental concerns, the reduction of energy consumption has become one of the key
objectives for railway systems. On the other hand, with the increase of passenger demands
in urban rail transit systems of large cities, it is important to transport passengers safely
and efficiently. The main focus of the research presented in this thesis is to determine
and develop mathematical models and solution approaches toshorten the travel time of
passengers and to reduce energy consumption in railway systems. More specifically, the
travel time of passengers has been considered in train scheduling, where passenger demands
of urban rail transit systems are included. The energy efficiency has been taken into account
both in the train scheduling and in the operation of trains.

The main topics investigated in the thesis can be summarizedas:

• Optimal trajectory planning for a single train. We have considered the optimal
trajectory planning problem for a single train under various operational constraints,
which include the varying line resistance, variable speed restrictions, and the vary-
ing maximum traction force. The objective function of the optimization problem is a
trade-off between the energy consumption and the riding comfort. We have proposed
two approaches to solve this optimal control problem, namely a mixed-integer linear
programming (MILP) approach and the pseudospectral method. Simulation results
comparing the MILP approach, the pseudospectral method, and a discrete dynamic
programming approach have shown that the pseudospectral method results in the best
control performance, but that if the required computation time is also take into con-
sideration, the MILP approach yields the best overall performance.

• Optimal trajectory planning for multiple trains. The optimal trajectory planning
problem for multiple trains under fixed block signaling systems and moving block
signaling systems has been investigated. Four solution approaches have been pro-
posed: the greedy MILP approach, the simultaneous MILP approach, the greedy
pseudospectral approach, the simultaneous pseudospectral method. Simulation re-
sults have shown that compared to the greedy approach, the simultaneous approach
yields a better control performance but requires a higher computation time. In addi-
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tion, the end time violations of the MILP approach are slightly larger than those of
the pseudospectral method, but the computation time of the MILP approach is one to
two orders of magnitude smaller than that of the pseudospectral method.

• Train scheduling for a single line based on OD-independent passenger demands.
The train scheduling problem for an urban rail transit line has been considered with
the aim of minimizing the total travel time of passengers andthe energy consump-
tion of the operation of trains. The departure times, running times, and dwell times
of the trains have been optimized based on origin-destination-independent (OD-inde-
pendent) passenger demands. We have proposed a new iterative convex programming
(ICP) approach to solve this train scheduling problem. The performance of the ICP
approach has been compared with other alternative approaches, such as nonlinear pro-
gramming approaches, a mixed integer nonlinear programming (MINLP) approach,
and an MILP approach. The ICP approach has been shown, via a case study, to pro-
vide the best trade-off between performance and computational complexity for the
train scheduling problem.

• Train scheduling for a single line based on OD-dependent passenger demands.
We have adopted a stop-skipping strategy to reduce the passenger travel time and the
energy consumption further based on origin-destination dependent (OD-dependent)
passenger demands in an urban rail transit line. The train scheduling problem with
stop-skipping results in a mixed integer nonlinear programming problem and we have
proposed a bi-level optimization approach and an efficient bi-level optimization ap-
proach to solve this problem. Simulation results show that the stop-skipping strategy
outperforms the all-stop strategy. Moreover, the bi-levelapproach yields a better
control performance than the efficient bi-level approach but at a cost of a higher com-
putation time.

• Train scheduling for networks with time-varying OD-dependent passenger de-
mands. For the train scheduling for urban rail transit networks, wehave developed
an event-driven model, where the time varying OD-dependentpassenger demands,
the splitting of passenger flows, and the passenger transferbehavior at transfer sta-
tions is included. The resulting train scheduling problem is a real-valued nonlinear
nonconvex problem, which can be solved by gradient-free nonlinear programming
approaches (e.g., pattern search), gradient-based nonlinear programming approaches
(e.g., sequential quadratic programming (SQP)), genetic algorithms, or an MILP ap-
proach. We have applied an SQP method and a genetic algorithmto solve the train
scheduling problem for a case study, the results of which have shown that the SQP
method provides a better trade-off between control performance and computational
complexity with respect to the genetic algorithm.

Yihui Wang
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