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Machine Learning for Software Refactoring: a Large-Scale

Empirical Study

Abstract

Refactorings tackle the challenge of architectural degradation of object-
oriented software projects by improving its internal structure without
changing the behavior. Refactorings improve software quality and main-
tainability if applied correctly. However, identifying refactoring opportu-
nities is a challenging problem for developers and researchers alike. In a
recent work, machine learning algorithms have shown great potential to
solve this problem.

This thesis used RefactoringMiner to detect refactorings in open-source
Java projects and computed code metrics by static analysis. We defined the
refactoring opportunity detection problem as a binary classification prob-
lem and deployed machine learning algorithms to solve it. The models clas-
sify between a specific refactoring type and a stable class using the metrics
as features. Multiple machine learning experiments were designed based
on the results of an empirical study of the refactorings.

For this work, we created the largest data set of refactorings in Java
source code to date, including 92800 open-source projects from GitHub
with a total of 33.67 million refactoring samples. The data analysis revealed
that Class- and Package-Level refactorings occur most frequently in early
development stages of a class, Method- and Variable-Level refactorings are
applied uniformly during the development of a class. The machine learning
models achieve high performance ranging from 80% to 89% total average
accuracy for different configurations of the refactoring opportunity predic-
tion problem on unseen projects. Selecting a high Stable Commit Threshold
(K) improves the recall of the models significantly, but also strongly reduces
the generalizability of the models.

The Random Forest classifier (RF) classifier shows great potential for
the refactoring opportunity detection, it can adapt to various configura-
tions of the problem, identifies a large variety of relevant metrics in the
data and is able to distinguish different refactoring types. This work shows
that for solving the refactoring opportunity detection problem a large va-
riety of metrics is required, as a small set of metrics cannot represent the
complexity of the problem.
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Chapter 1

Introduction

Refactorings are a cornerstone of modern day software development. Software
projects evolve over time: As they grow in size and complexity, the internal
design degrades, thus the overall quality of the software declines. Software
refactorings tackle this problem, by enhancing the software quality without af-
fecting its behavior [19]. Refactorings have been proven to improve software
quality metrics [67, 13, 19, 36, 37] and are widely applied in practice [62]. Var-
ious tools support refactoring activities, by detecting refactoring opportunities
and offering refactoring templates. Nonetheless, developers face various chal-
lenges in practice. They are concerned about the safety of a refactoring [37, 59],
in adequate recommendations of refactorings [59] or the associated costs of a
refactoring [36, 37, 59]. Developers struggle to identify refactoring opportuni-
ties and lack the support of superiors to perform refactorings [59]. Developers
need adequate assistance in the identification of refactoring opportunities and
simple strategies to convince their superiors of the necessity to perform a refac-
toring. Currently, developers rely on their intuition or tooling they describe as
inadequate to do so.

1.1 Recommending Refactorings

Recommending refactorings is not a new field of research, various different ap-
proaches have been applied in the past. One approach using code smell heuris-
tics was presented by Marinescu [44] in 2004. The author’s approach consisted
of a set of rules that can be applied to source code fragments in order to iden-
tify refactoring opportunities. Another approach presented in 2003 by Tourwe
and Mens [68] was to detect code smells with logic meta programming and to
combine these results with a static framework to suggest refactorings. Search-
based algorithms have been used for the detection of refactoring opportunities
as well as for ordering the refactorings to maximize the output. The detection is
stated as an optimization problem, which is solved by identifying the best solu-
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1. Introduction

tions that increase a fitness function comprised of various heuristics, e.g. code
smells [43]. Machine learning has not only been applied to various challenges
in software engineering, such as code smell detection [6] or [15], but also for
the prediction of software refactorings. More recent studies analysed the per-
formance of machine learning algorithms for software refactoring detection or
prediction. In 2017, Kumar and Sureka [39] created a machine learning pipeline
with Least-Squares Support Vector Machine (LS-SVM) and Synthetic Minority
Over-sampling Technique (SMOTE) to detect refactorings at class level from
source code. A statistical model using cohesion measures for predicting the
need of move method refactorings in a class was suggested by Al Dallal [1].

Lately, research by Aniche et al. [4] with the aim to "evaluate the feasibility of
using supervised machine learning approaches to identify refactoring opportu-
nities" was conducted. Their research showed the great potential of supervised
machine learning algorithms for the prediction of software refactorings in Java
source code. Their approach was to detect refactorings in open-source projects
and extract source code metrics together with them. These metrics were then
utilized for the training of six different supervised machine learning algorithms.
The authors collected instances of classes that were not refactored but changed
during the last 50 commits as negative training samples. The research showed
that (i) the models generalize well to other contexts, in this case different de-
veloper communities and unseen projects, and often reach an accuracy above
90%. Furthermore, (ii) the research identified the great importance of process-
and ownership metrics for the prediction quality, and (iii) the random forest
classifier outperformed all other classifiers. The approach by Aniche et al. [4]
differed from the other approaches due to the large data set considered in their
research and the variability of different refactorings.

Nonetheless, the work by Aniche et al. [4] leads to various open questions
and issues which include (i) data quality and scale, (ii) lack of understanding of
the importance of process- and ownership metrics, (iii) superficial understand-
ing of the source code metrics and refactorings, and (iv) further exploration of
the utilized algorithms and their potential. Based on these findings this the-
sis pursues three main objectives which are explained in the following section.
This work solely focuses on production code, as it is inherently different from
test code.

1.2 Challenges and Approach

To accomplish the objectives of this research, various challenges were identified
and the approach to overcome them is presented in this section. The three
objectives of this thesis are:

1. Create a large scale data set of refactorings
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1.2. Challenges and Approach

2. Analyze the feature distribution

3. Further explore supervised machine learning algorithms for refac-
toring prediction

1.2.1 Data Collection

Extending up on the work of Aniche et al. [4], the first objective of this thesis
is the creation of a large-scale refactoring data set. The data set will allow the
in-depth analysis of the importance of process- and ownership metrics for the
models and bolster the exploration of the algorithms potential. Researchers
can further utilize this data to reproduce this thesis or build up on this work.
Additionally, various questions regarding refactorings in open source projects
can be tackled with this data set. In the initial approach, data collection suffered
from various issues:

• Incorrect process- and ownership metrics: Class renames or moves
were not tracked for process- and ownership metrics, thus a class was
assigned new process- and ownership metrics after every rename or move
refactoring. This raises questions regarding the importance and actual
distribution of these metrics.

• Unhandled exceptions: A variety of unhandled exceptions occurred dur-
ing data collection such as the code metrics extractor would fail on invalid
classes or the over use of memory by RefactoringMiner.

• Performance: The extraction of a refactoring instance took roughly 1,61
seconds and about 3,34 seconds for a stable instance. This data mining
speed does not allow the creation of a much larger data set with compara-
ble resources.

• Data sparsity: For various refactorings only a few thousand instances
were available, e.g. only 4.744 instances of Extract Variable refactoring
or 7,273 instances of Extract And Move Method refactoring were detected
in the largest subset. This might explain the lower performance of the
classifiers for these refactorings.

Improving the existing data collection tool1 by solving the before mentioned and
additional issues, will allow the creation of a large-scale, high quality refactoring
data set.

1https://github.com/refactoring-ai/predicting-refactoring-ml
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1. Introduction

1.2.2 Feature and Refactoring Type Distribution are largely
unknown

None of the prior research on refactorings analysed the distribution of features
(metrics and attributes) among different refactoring types or levels. An analy-
sis of the feature distribution in the created data will be used to optimize the
outcomes of the classifier training, asses the validity of the models and further
analyze their outcomes. Furthermore, the research by Aniche et al. [4] collected
stable commit instances with a thresholds of 25, 50 and 100 commits. The se-
lection of the stable commit threshold is of great importance for the classifier,
as it defines the negative samples for the training. Thus, an analysis of the fea-
ture distributions per commit stability threshold will help to identify risk and
opportunities for the model training. The distribution of Stable-Instances within
the data and the distribution of features is unknown for the different commit
thresholds.

1.2.3 Major Factors for the Quality of the Model

As the prior research focused on evaluating the overall potential of machine
learning algorithms for refactoring prediction, many questions regarding the
quality and relevant factors arise. This thesis faces the following challenges:

• Reproduction: The prior experiment by Aniche et al. [4] will be repeated
on the new/ larger data set. This will serve as a baseline for the eval-
uation of various changes made to data collection and machine learning
pipeline. Also, analysing feature importances for field- and variable level
refactorings might yield interesting insights.

• Benefits of process- and ownership metrics: The prior research iden-
tified the importance of process- and ownership metrics, but did not eval-
uate the benefits these metrics provide for the models. Furthermore, the
question arises if a high-quality model for the prediction refactorings can
be created without using process- and ownership metrics.

• Selecting a stable commit threshold: The selection of the commit
threshold for negative samples might have severe consequences for the
validity and quality of the models. Based on the results of the analysis
of the feature distribution, different thresholds for commit stability are
selected and their performance for creating models for refactoring predic-
tion are evaluated.

• Data set balance: Imbalanced data sets are considered problematic for
various machine learning algorithms [78], as they often perform best for
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1.3. Research Questions

equally balanced classes. On the other hand, research on code smell de-
tection questions the performance and quality of balancing approaches
[54]. Thus, evaluating the effects of data-balancing on the classification
performance might yield interesting new insights.

1.3 Research Questions

From the previously explained goals and challenges, the following research
questions were developed and are addressed in this thesis:

Data Collection and Analysis

• RQ 1: How are features distributed among refactoring types and
levels?

• RQ 2: How are features distributed among Stable-Instances?

• RQ 3: What are implications of the distribution of process- and
ownership metrics?

Machine Learning

• RQ 4: How does the prior approach perform with the new data set?

• RQ 5: How does the selection of the stability threshold effect clas-
sifier performance?

• RQ 6: How is the performance of the classifier for Field-Level refac-
torings?

• RQ 7: What are the effects of imbalanced training on the prediction
quality?

1.4 Contributions

This section outlines the major results and contributions of this thesis. The
three main contributions to the field of Software Engineering of thesis are the
following:

• A mature tool for large-scale refactoring mining for analysis and machine
learning purposes was developed. This tool builds up on earlier work by
Aniche et al. [4] which was extended and improved. The main extensions
made to the tool are (i) the integration of RefactoringMiner (RM) v.2.x, (ii)

5



1. Introduction

significant performance improvements by reworking the commit process-
ing, (iii) significant improvements of the stability and reliability of the tool
and (iv) extensive testing to ensure the validity of the results. Additionally,
a great number of bugs was fixed, focusing on the metrics. CK.2

• A large scale data set of refactorings coupled with descriptive code met-
rics in open-source projects, containing 92800 projects for both test and
production code was generated. A total of 28.93 million refactoring in-
stances for production code and 4.75 million instances for test code were
collected. Furthermore, the data set contains more than 65.96 million in-
stances of stable classes.

• An in-depth analysis of the data set focusing on class metrics and attributes
for Refactoring- and Stable-Instances and the distribution of process- and
ownership metrics was conducted. The data analysis revealed that Stable-
Instances are a unique subset of classes, which are highly maintained and
have good class metrics.

• An in-depth analysis of RF and LR for the purpose of identifying refactoring
opportunities and recommending refactorings was carried out using three
experiments. We reproduced a prior experiment in the field, explored the
selection of Stable Commit Thresholds (K) and imbalanced training data.
The experiments show that the selection of the K has a great impact on the
precision and recall of the prediction, that RF can indeed achieve great
results in modeling the refactoring recommendation problem and that im-
balanced training does not affect the model performance significantly.

1.5 Structure of this thesis

This thesis contains three main chapters regarding the results (i) Large-Scale
Refactoring Data Collection (Chapter 3), (ii) Exploratory Data Analysis (Chap-
ter 4) and (iii) Recommending Refactorings via Machine Learning (Chapter 5).
Furthermore, the next chapters deals with related work (Chapter 2), whereas
the last two chapters of this thesis focus on threads to validity Chapter 6, and
conclusions and future work Chapter 7. The data collection chapter details
the methodology used to create the large-scale refactoring data set and gives
an overview of the data collection process. Furthermore, the chapter gives an
overview of the data set and a brief explanation on how to use it. In the data
analysis chapter we explore the refactoring operations, Stable-Instances and
process- and ownership metrics. We analyze key metrics, identify clusters in
the data and depict highly relevant data characteristics. Finally, we answer the

2https://github.com/mauricioaniche/ck
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1.5. Structure of this thesis

Research Questions 1 to 3 in the chapter. In the machine learning, we explore
the use of machine learning for refactoring recommendation. We lay out the
details of the classifier training for refactoring recommendation, describe three
experiments, discuss their results and answer Research Questions 4 to 7.

7





Chapter 2

Related Work

2.1 Refactorings

Software refactorings were formally introduced in the early 1990s by Griswold
[24] and Opdyke [52]. Later, Fowler introduced a collection of 72 refactorings to
improve the design of existing code [19]. Fowler defined software refactorings
as "the process of changing a software system in such a way that it does not
alter the external behavior of the code yet improves its internal structure." [19,
p. 9]. This definition is used for refactoring in this work.

Software refactorings have two main purposes: First, to improve maintain-
ability by improving the internal structure, e.g. architecture and design patterns
[67, 13, 19], and to improve extensibility by adding flexibility and simplifications
[58]. Software developers, on the other hand, have a large range of motivations
to perform refactorings:

• readability [37]

• maintainability [37, 53]

• extensibility [37, 53, 62]

• bug removal [37, 53, 62]

• removal of code smells [37]

2.2 Refactoring Detection

The history of refactoring detection from multiple revisions of source code dates
back to 2000 when the first heuristic-based approach was published by Demeyer
et al. [14]. Other early approaches include the detection of clones to identify
Rename and Move refactorings by Van Rysselberghe and Demeyer [75] and ori-
gin analysis for Merge and Split refactorings by Godfrey and Zou [22]. All of
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the early approaches suffered from generalization issues and mediocre perfor-
mance, thus later approaches for refactoring detection mostly focused on struc-
tural changes in the source code. This approach was first proposed by Xing and
Stroulia [77] in 2006 and was based on their UMLDiff algorithm [76]. UMLD-
iff detects structural changes between two revisions of source code, such as
renames, moves or removals. Another structural approach is deployed by Ref-
Finder which detects a large variety of refactorings (63) from the syntax-tree of
two source code revisions by using logic invariants defined for each refactoring
[35]. RM was proposed by Tsantalis et al. [71] and Silva et al. [62]. It uses
UMLDiff to detect changes in the syntax tree and it uses rules to detect refac-
torings instead of heuristics. The RefDiff algorithm presented Silva and Valente
[61] uses heuristics on code metrics computed by static analysis to detect 13
refactorings.

Comparison of Refactoring Detection Tools In 2019 Tan and Bockisch
[66] evaluated four refactoring detection tools: (i) RefactoringCrawler, (ii) Ref-
Finder, (iii) RM v.1 and (iv) RefDiff. Their evaluation shows that RM v.1 is by
far the best tool with issues on Move Class and Rename Package refactorings.
The results of Tan and Bockisch [66] show very high precision for both Refac-
toringCrawler (95.9%) and RM (93.2%) clearly declassing RefDiff (40.3%) and
Ref-Finder (61.1%). RM shows also the highest recall of the four evaluated tools
with 72.9%. A more in-depth analysis of the individual refactorings detected
by RM the authors revealed that RM has very low recall for the Move Class
(33.8%) and Rename Package (11.4%) refactorings, which the authors explain
by the confusion of these two refactorings. Move Class refactorings were often
classified as Rename Package and the other way around.

RefactoringMiner v.2.x In 2020, Tsantalis et al. [73] released version 2.0 of
RM, this version exceeds the performance of the earlier version with an average
precision of 99.4% and a recall of 93%. Furthermore, the new version solves the
issues reported by Tan and Bockisch [66] for Move Class and Rename Package
refactorings and supports 55 refactoring types. Additionally, RM v.2.0 is the
fastest refactoring detection tool with a median of 44 milliseconds and mean
of 253 milliseconds to process a commit, in comparison to version 1.0 of RM,
which takes on median 101 milliseconds or RefDiff 2.0 with a median commit
processing time of 113 milliseconds [73].

RefactoringMiner detects refactorings for two revisions of Java source code,
e.g. a commit and its parent commit from a git history, and returns a list of de-
tected refactorings [72]. RM detects refactorings by matching statements in the
source code and applying a multitude of rules for the detected changes between
the matched statements. In the first phase of the matching, code fragments with
a similar signature are matched in a top-down approach, starting at the class

10



2.3. Refactoring Recommendation

level proceeding to the method and field level. In the second phase, the remain-
ing elements are matched bottom-up. On these remaining elements, a multitude
of rules is applied to detect refactorings and classify them correctly. In order to
achieve an optimal outcome, the refactoring types are ordered by their spatial
locality. Refactorings not moving code are processed first, e.g. Rename Class
or Change Return Type, followed by refactorings moving code within the same
entity, e.g. Extract Variable and lastly between entities, e.g. Extract Superclass.

2.3 Refactoring Recommendation

Refactoring Recommendation solves two subproblems of the field of automatic
software refactoring: (i) the identification of refactoring opportunities and (ii)
the selection of the correct refactoring [46]. Various approaches to recommend
refactorings have been proposed by researchers, three major classes of these
approaches are (i) heuristics or rules, (ii) search-based recommendation and (iii)
machine learning. Many tools detect code smells and see these as a refactoring
opportunity for specific refactorings [44, 28, 63, 42, 18].

Metrics-Based and Rule-Based Approaches Metrics-based smell detection
uses manually defined thresholds for code metrics that were collected via static
analysis from the source code to identify specific code smells [44, 60]. In 2009,
Moha et al. [48] proposed DECOR, a framework to define specifications for code
smells, and DETEX, a detection technique based on DECOR. A popular tool us-
ing a combination of rules and metrics to detect code smells and recommend
refactoring is JDeodorant developed by Fokaefs et al. [16] in 2007, which was
further extended in the following years. In its latest state, JDeodorant can be
added as a plugin to the Eclipse IDE and detects feature envy [16], long meth-
ods [69], god classes [70], duplicated code [38], and handles state and type
checking issues [70].

Search-Based Approaches Search-based refactoring recommendation ap-
plies the concepts of search-based software engineering (SBSE), which were
defined by Harman and Jones [28] in 2001. In the SBSE, many problems are
defined as optimization problems, which are solved with meta-heuristic search
algorithms such as genetic, hill climbing or tabu search algorithms [27]. Popular
implementations of SBSE in practice are refactoring, and software maintenance
[30]. A variety of search-based refactoring recommendations have been devel-
oped in recent years [29, 47, 51]. An early application of SBSE for refactorings
was suggested by Harman and Tratt [29] with an algorithm applying the con-
cept of pareto optimality. A refactoring would only be selected if at least one
relevant metric would improve and no metric decrease. A dynamic refactoring
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recommendation tool was developed by [47]. The tool from Mkaouer et al. [47]
makes suggestions to developers based on recent code changes and uses their
feedback on those suggestions to improve it. Research has shown that the defi-
nition of the fitness function for the search-based problems is often a key issue,
as the function might be ill-defined and results in unwanted and/ or biased out-
comes [3, 42, 63]. Simons et al. [63] found that using only metrics for a fitness
function for refactoring automization does not yield sufficient results and they
strongly recommend including the engineer in the process.

Machine Learning Approaches Fontana et al. [17] suggested machine learn-
ing algorithms for code smell detection, the authors argue that machine learning
algorithms more objectively evaluate the relevance of a code smell. In a later
work Fontana et al. [18] evaluated various machine learning algorithms on their
performance on code smell detection (data class, large class, feature envy and
long method). The authors found that already a few hundred samples are suf-
ficient to achieve an accuracy of 95% on the selected code smells and that RF
perform best in this task. An approach to utilize modern deep learning tech-
niques to detect feature envy and recommend Move Method refactorings was
proposed by Liu et al. [42]. They used a neural network to map code features
with code smells. The features included textual and structural features that
were converted with Word2Vec. Aniche et al. [4] identified the great potential of
machine learning algorithms for refactoring recommendations by creating mod-
els able to predict 20 different refactoring types. For their work they trained six
binary classifiers with code metrics gathered from refactorings and separated
Refactoring-Instances from stable classes. They created data sets of refactor-
ings combined with code metrics describing the source code at the moment of
the refactoring for 11149 open-source projects. They defined the concept of a
stable class as a class that was changed in 50 commits but not refactored. The
results of Aniche et al. [4] show an accuracy of 90% for the best performing
classifier, RF, in separating between Refactoring-Instances and stable classes.
Furthermore, this approach incorporates the software engineer’s motivations
for refactorings into the refactoring recommendation.
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Chapter 3

A Large-Scale Refactoring Data
Collection

This chapter describes the data collection process and gives an overview of the
generated large scale refactoring data set. First, the tool developed for the
data collection is explained in detail and afterwards the actual data collection.
Second, the validation of the data set is described. Third, an overview of the
refactoring data set is given, by showing descriptive statistics for Refactoring-
and Stable-Instances. Last, a brief explanation for the data usage is done.

3.1 Methodology

The first objective of this research was the creation of a large refactoring data-
set, see Section 1.2. The details of the selected approach are presented in this
section. The data set of refactorings was generated in four steps: (i) Project Se-
lection, (ii) Refactoring Detection, (iii) Metric Extraction and (iv) Data Merging
and Storage. An overview of the research methodology for the classifier training
is given in Fig. 3.1.

3.1.1 Selection of Projects

As of June 2019, GitHub has more than 22 million public projects containing
Java source code [23].1 These are too many projects to mine all of them, thus
we selected 100.000 public projects with the highest watcher count. For this
study, we only considered open-source projects, because their data and history
can be accessed freely. GitHub users can watch a repository, which means they
receive updates on discussions, releases and events. In contrast to starring
a project on GitHub, the user receives detailed information on issues and the
development process. Thus, we assume the user is more likely interested in

1Computed with GHTorrent 2019
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Figure 3.1: Overview of the Classifier Pipeline used in this research, excluding
Data Analysis

the development and progress of the project. Based on this, we assumed that
the project is relevant to many active software developers. For this reason, we
chose to select projects based on the watcher count. Furthermore, we used the
latest release, at the time, of GHTorrent [23] (June 2019) to collect the projects,
which only provided the watcher count for projects.

We only selected GitHub projects for this data set, as GitHub is by far
the largest hoster of open-source software projects in the world, which are
hosted for free. 2 Furthermore, Aniche et al. [4] already generated refactoring
databases for projects on F-Droid3 and the Apache Software Foundation (ASF).
Many of those projects are also hosted on GitHub.

2https://github.com
3https://f-droid.org/
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3.1.2 Refactoring Detection

Detecting refactorings is a key component for the data set generation. We used
version 2.0 of RM (RM) to fulfil this task [73]. RefactoringMiner detects refac-
torings for two revisions of Java source code, e.g. a commit and its parent
commit from a git history, and returns a list of detected refactorings [72]. RM
detects refactorings by matching statements in the source code and applying a
multitude of rules for the detected changes between the matched statements.
RefactoringMiner is currently the best refactoring detection tool for Java code,
with version 1.0 having an average precision of 94% for its 15 supported refac-
torings [66]. This is exceeded by Version 2.0 with an average precision of 99.4%
and a recall of 93%[73]. Additionally, version 2.0 of RefactoringMiner supports
more than 40 refactoring types and fixed various issues that occurred on ver-
sion 1.0, e.g. the confusion of "Rename package" and "Move Class" refactor-
ings. Also, RefactoringMiner 2.0 is the fastest refactoring detection tool with a
median of 44 milliseconds and mean of 253 milliseconds to process a commit,
in comparison to version 1.0 of RM, which takes on median 101 milliseconds
or RefDiff 2.0 with a median commit processing time of 113 milliseconds [73].
RefactoringMiner is the fastest and by far the most accurate refactoring detec-
tion tool, which combined with its wide variety of detectable refactorings (55)
are the main reasons why we choose it. For more details on refactoring detec-
tion tools and RefactoringMiner see Section 2.2. For the data collection we used
version 2.0.1 of RefactoringMiner.

3.1.3 Metric Computation

The key features to the classifier training are these metrics: (i) source code
metrics, (ii) process metrics and (iii) ownership metrics. These types of metrics
have been used in previous research for prediction tasks in software engineer-
ing [33, 2, 40, 15, 57, 4].

Source Code Metrics. Source code metrics comprise a multitude of metrics
with the goal to describe and measure the software in question. The fields of
interest include among other fault prediction, code quality, code complexity and
maintainability. More than 300 source code metrics are known [50], e.g. simple
ones such as Number of Public Fields, Number of Methods or more complex
ones such as LCOM or RFC.

We used CK4 to extract the source code metrics. CK is a static code analysis
tool which extracts a large variety of source code metrics and attributes from
Java source code on four different levels (class, method, variable and field) [5].
Furthermore, we implemented two additional cohesion metrics LCC and Tight

4https://github.com/mauricioaniche/ck
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Class Cohesion (TCC) for classes to CK. All in all, we extracted 70 metrics and
attributes from Java source code on four different levels for the training.

Level Count Features
Class 47 Metrics and Attributes (40): AnonymousesQty, Assign-

mentsQty, Cbo, ComparisonsQty, LambdasQty, LCOM,
LOC, LCC, LoopQty, MathOperationsQty, MaxNest-
edBlocks, Nosi, NumberOfAbstractMethods, Num-
berOfDefaultFields, NumberOfDefaultMethods, Num-
berOfFields, NumberOfFinalFields, NumberOfFinal-
Methods, NumberOfMethods, NumberOfPrivateFields,
NumberOfPrivateMethods, NumberOfProtectedFields,
NumberOfProtectedMethods, NumberOfPublicFields,
NumberOfPublicMethods, NumberOfStaticFields, Num-
berOfStaticMethods, NumberOfSynchronizedFields,
NumberOfSynchronizedMethods, NumbersQty, Paren-
thesizedExpsQty, ReturnQty, RFC, StringLiteralsQty,
SubClassesQty, TryCatchQty, UniqueWordsQty, Variab-
lesQty, WMC, TCC, isInnerClass
Process Metrics(3): qtyOfCommits, bugFixCount,
refactoringsInvolved
Ownership Metrics(4): qtyOfAuthors, qtyMajo-
rAuthors, qtyMinorAuthors, authorOwnership

Method 68 (21 + 47)
method +
class

AnonymousClassesQty, AssignmentsQty, Cbo, Compar-
isonsQty, LambdasQty, Loc, LoopQty, MathOpera-
tionsQty, MaxNestedBlocks, NumbersQty, Parameter-
sQty, ParenthesizedExpsQty, ReturnQty, Rfc, StringLit-
eralsQty, SubClassesQty, TryCatchQty, UniqueWordsQty,
VariablesQty, Wmc, startLine

Variable 69 (1 + 21 +
47)
variable +
method +
class

Appearances

Field 48 (1 + 47)
field + class

Appearances

Table 3.1: Features collected for the classifier training with their total count per
level

Process- and Ownership Metrics. Instead of code quality metrics, pro-
cess metrics (PM) were found to perform very well for defect prediction
[15, 57, 56, 49]. Process metrics, also referred to as change metrics, incor-
porate information about the history of changes instead of information about
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the changes themselves. They include the following metrics:

• Quantity of Commits - number of commits affecting a class file

• Refactorings Involved - number of detected refactorings for this class
file, each refactoring is counted individually without considering the refac-
toring type, thus multiple refactorings can be accounted for on the same
commit

• Bugfix Count - number of assumed bug fixes. A simple pattern matching
algorithm attempts to detect bug fixes in the commit message, by checking
for these keywords: bug, error, mistake, fault, wrong, fail, fix

• Lines Added - the total number of lines added in the latest commit for the
class file.

• Lines Deleted - the total number of lines deleted in the latest commit for
the class file.

Both lines added and deleted were not collected, because the metrics were often
found to be incorrect during testing.

Process metrics are often coupled with ownership metrics, ownership met-
rics give further information about the state of ownership of a class file. We
used the definition of ownership metrics by Bird et al. [9]:

• Quantity of Authors - total number of authors with commits affecting the
class

• Quantity of Major Authors - number of authors with more than than 5%
of all commits changing the class

• Quantity of Minor Authors - number of authors with more less than 5%
of all commits changing the class

• Author Ownership - percentage of commits of the main contributor to
this class

All process- and ownership metrics were extracted for a specific class file. Con-
trary to the previous research of Aniche [5], the process- and ownership metrics
were still tracked in case the class file was moved to another directory or re-
named.
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3.1.4 Data Collection Tool

In short, our data collection tool processes all repositories by merging the data
from RefactoringMiner, CK and the other metrics into refactoring or Stable-
Instances, and stores them in a database. The data collection process is similar
for each repository, every repository is handled individually. Thus, the data
collection can be easily parallelised in order to mine many repositories at the
same time. Please note, the data collection tool can log many details of the data
extraction, but for the sake of simplification logging will not be covered in this
section. The main components and processing steps of the data collection tool
will be explained in the following.

Entire Repository

A simplified overview of the major processing steps for a single repository is
shown in Fig. 3.2. A repository is processed in multiple phases, from which the
first one is the initialization of the current project.

The repository is cloned to the local machine with its entire history, relevant
meta-data is extracted (project name, GitHub URL, first and last commit id, size
in bytes, commit count) and the history is reversed. Therefore, the oldest com-
mit comes first and the latest commit last. In case an exception occurs during
this phase, e.g. cloning fails because the repository is no longer (publicly) avail-
able, the repository will not be processed further and all relevant details are
logged.

In the second phase each commit of the history is processed individually, by
iterating over the entire history. For each commit, all Refactoring- and Stable-
Instances are extracted and merged with relevant meta data and metrics. To
store this data, a new database transaction object is created, which contains
all extracted instances of the current commit, and if the commit was processed
successfully the transaction is committed to the database. If an unhandled ex-
ception occurs during the commit processing, e.g. RefactoringMiner times out
after 120 seconds, the transaction is rolled back and the next commit is pro-
cessed. Most exceptions are handled during processing of a single commit and
are not escalated up to this level. The processing of a single commit is explained
in more detail later in this section.

In the last phase, once all commits were processed, the project data in the
database is updated with a finishing date, the repository is removed from disk
and relevant information is logged.

Single Commit

The processing of each commit consists of four main steps: (i) refactoring detec-
tion, (ii) refactoring metric extraction (iii) process- and ownership metrics up-
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Figure 3.2: Simplified flow diagram of the data collection main loop describing
the processing of an entire repository

date, and (iv) stable instance detection. A simplified overview for this is given
in Fig. 3.3. During this phase of the data collection, refactoring- and Stable-
Instances are extracted. An instance contains all metrics and relevant meta
data describing the state of the source code and change history at a certain
revision.

In the first step, RefactoringMiner detects the refactorings made by the cur-
rent commit, compared to the previous one. Therefore, the tool passes the Java
source code of the current commit and the previous one to RefactoringMiner,
and a list of refactorings is returned. The first commit is skipped in this step,
because RefactoringMiner could not detect any refactorings on this. In very
rare occasions, RefactoringMiner would take very long, more than 600 seconds
to handle a single commit. Thus, we set the time out for RefactoringMiner to
120 seconds, which proved to be a very reliable upper boundary during various
test runs.

A second step happens if RefactoringMiner found some refactorings in com-
mit. A new refactoring instance is created and persisted for each detected refac-
toring with the following data:

• Source code metrics: CK extracts all source code of the previous revi-
sions code.

• Process- and ownership metrics: these are tracked by the ProcessMet-
ricsTracker class.

• Meta data: the commit meta data is added to the instance.

After the refactorings are processed, the process- and ownership metrics are
updated. Furthermore, if a class was renamed or moved, the commit tracker is
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Figure 3.3: Simplified flow diagram of the processing of a single commit

updated, because the process- and ownership metrics are tracked via the fully
classified file path of a class. If a class is renamed it is therefore very important,
to also update the tracker.

In the final step of the commit handling, Stable-Instances are detected. A
commit is considered stable if it was not refactored during the last k commits
changing it. We selected a large variety of K’s (15, 20, 25, 30, 35, 40, 45, 50, 60,
70, 80, 90, 100) that could be considered stable, in order to later investigate
when a class can be considered stable. If a class was considered stable for
multiple k’s they all refer to the same commit. This is either the first commit
introducing the file or the last commit with a refactoring on it. Therefore, the
metrics for a stable instance for class "A" are equal for K=15 and K=20 .

The data collection tool utilizes Hibernate to maintain its data model. Hiber-
nate is connected to an external SQL database via the jdbc connector.
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3.2 Data Collection Process

In this section, the execution of the data mining is described in detail. Descrip-
tive statistics, the mining environment and encountered issues are presented.
During the data collection, 100000 projects were mined in two batches of
50.000 projects each. All in all, more than 60,2 million commits were pro-
cessed. In total, for all machines combined, the data collection took about 69
weeks (11594,3 hours). The average processing time of a commit was 692
milliseconds.

3.2.1 Mining setup

We used 20 Ubuntu 18.04 LTS VMs with each 1 GB Ram, 1 CPU Core and 20GB
disk space for the data collection. The data was stored on another VM with 1
CPU Core and 500GB disk space, which was extended during the data collection
process from 150GB to 500GB to handle the huge amount of data. The individual
data collection processes were encapsulated in Docker container.

3.2.2 Errors and Exceptions

The data collection process was thoroughly logged with log4j5 and these logs
were analyzed in order to ensure the success of the data collection and to eval-
uate the robustness of the created tool. The generated logs were automatically
analyzed with a custom tool6 focusing on the progress of the data collection and
important errors and exceptions during the data collection. Despite the efforts,
a small fraction of the logs was lost, about 9-12% of the logs were either over-
written or otherwise corrupted. About 7.200 projects were not processed, be-
cause either the URL for the projects was incorrect or in most cases the project
was no longer (publicly) available. The reasons for why a project was no longer
available were not explored. For 1.261 projects of the 92.800 projects (1,36%),
the data collection was not successfully finished. Thus, after the failing commit
no new data was added to the database. This was partly caused by 30 Out-
OfMemoryErrors (OOME), which caused the entire tool to crash. The crashed
projects differ in commit- and file count, and also many other characteristics. We
noticed docker container rarely failed due to unknown reasons, and we would
have to restart them.

Exceptions occurred at three major levels (i) Docker container, (ii) main loop
and (iii) commit processing, for details on the levels see Section 3.1. In case the
tool crashed, the application was restarted by a bash script and a new project
was processed. Combined, 16992 exceptions occurred in the main loop or es-
calated up to there. This number was extracted from the database and is not

5log4j
6LogAnalyzer
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affected by the lost logs. The most prevalent issue on this level were time out
exceptions caused by RefactoringMiner (15282 exceptions), because Refactor-
ingMiner would not finish processing a single commit after 600 seconds. From
the logs, 211 other exceptions were identified that were escalated up to the App
level. The most prevalent exceptions and their handling are described in the
following:

• RefactoringMiner and CK miss-match (93903): The class names or
method identified in a refactored class by RefactoringMiner could not be
found by CK in the java source code. In this case, the refactoring was
skipped, but the process metrics tracker was still updated.

• Class name extraction (4799): The tool failed to extract the canonical
name of a class and could therefore not fetch the source code for the anal-
ysis by CK. The affected refactorings were skipped.

Level Refactoring Total Count Unique Count % Unique

Class Total Unique 4260567 4250266 99.76%

Method Total Unique 9756226 9494440 97.32%
Method Change Parameter Type 3264206 3030073 92.83%

Variable Total Unique 7810164 7640260 97.82%
Variable Parameterize Variable 96467 92881 96.28%

Field Total Unique 3580129 3571855 99.77%

Other Total Unique 4802696 4802449 99.99%

Table 3.2: Unique entities refactored per refactoring level and with single entity
refactorings below 97% unique entities

Overall, the validation of the collected refactorings yields three main results:
(i) the confidence in the collected refactorings is high due to the very low fre-
quency of detected incorrect instances, (ii) the "Change Parameter Type" refac-
toring is the only refactoring for which we detected inconsistent data and (iii)
the Stable-Instances show no signs of errors or flawed data points.

3.3 Data Cleaning and Validation

The validity of the data was ensured in a multi-step process: (i) rigorous testing
of the data collection tool, (ii) data-cleaning, (iii) manual validation, and (iv)
inconsistency validation.
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3.3.1 Data Cleaning

Due to a mistake in the project selection, forks of projects were included in the
data collection. These forks were later identified by using GHTorrents database
to check if a project is a fork and these forks were cross-validated and compli-
mented with the mined history of the projects. Duplicate entries in the project
history were detected by checking for two or more projects sharing at least one
commit, meaning commit id and date are equal. In total 7269 out of the to-
tal 92800 projects were marked as forks in the data set. All refactoring- and
Stable-Instances were moved into distinct tables and thereby, separated from
the main data set. In later occasions always the main, non-forked data is refer-
enced. The removal of forks affected 15.39 million refactoring instances and
46.24 million stable instances.

Furthermore, we detected Refactoring-Instances with a very high frequency
of refactoring on the same class file. This either represents anomalies or an
error by RefactoringMiner. An instance classified for this criteria, if a single
class suffered from more than 50 refactorings on the same commit. All of the
identified 19.44 million (5.77%) instances were then marked as invalid and
are in later references to the data set not included. An analysis shows a small
fraction of refactorings is affected heavily by this measure, especially "Inline
Method" (47.85%), "Rename Attribute" (35,10%), "Move And Inline Method"
(35.26%) and "Push Down Method" (25.90%). The selection of 50 refactorings
is somewhat arbitrary, it was selected based on the distribution of refactorings
per class on a single commit.

As mentioned in Section 3.2.2, for a small fraction of projects the data col-
lection do not finish. The collected samples from these projects, 12.68% of the
non-forked refactorings and 27.12% of the Stable-Instances, were not removed.
The collected refactorings are still valid and so are the stable-instances. Addi-
tionally, we could not detect a bias towards specific refactorings or refactoring
levels in the set of unfinished projects. For the Stable-Instances, the fraction
of instances from unfinished projects for the method, variable and field is very
similar ranging from 27.14% to 28.4%, but for class level instances it is 21.85%.

3.3.2 Data Validation

The data set was manually verified by checking 40 randomly selected refactor-
ing and Stable-Instances each. During the manual inspection, the individual
instances and all its metrics were inspected in detail. First, the actual instances
were verified, e.g. the refactoring was detected and stored correctly, then the
metrics and attributes were inspected for anomalies, and finally a random selec-
tion of metrics and attributes was recalculated manually in order to verify their
correctness. The manual inspection of the refactoring- and Stable-Instances did
not yield any incorrect samples or metrics, except for the Lines Added and Lines
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Deleted process- metrics which were subsequently removed from the data and
also from the data collection tool. For these two metrics, there was a strong
miss-match between reported and detected line deletions or additions. 7

In addition to the manual validation and removal of forks, the data set was
further validated by evaluating the fraction of unique entities affected by a
refactoring type. Most of the refactorings mined only affect one entity8, e.g.
"Change Parameter Type" only affects a single method, thus we validated if the
same entity suffered multiple times the same refactoring on a commit in the
same project. The analysis shows 9 that for class, field and the "other" level, the
fraction of unique entities for single entity refactorings is above 99,76%, see
Table 3.2. For method level refactorings it is slightly lower with 97.32%, due to
many incorrect samples for the "Change Parameter Type" refactoring. Also for
the variable level refactorings, the fraction of unique entities refactored reaches
97.82%. This analysis shows further that the number of duplicate entries is very
low, as the Refactoring-Instances rarely affect the same entity multiple times.

3.4 Refactorings

This section describes the mined refactorings in the data set. In the further data
description we are only considering valid refactorings and exclude data points
from forked projects.

Figure 3.4: Count of all valid refactorings per level and in total

In Fig. 3.4 the total count of valid refactorings per level is given for the en-
tire code base, and production and test code separately. Overall, 33.68 million
refactorings were extracted from the data, by far the largest fraction of these
refactorings was identified in production code with 85.9% of all refactorings.

7GitHub issue on the data collection repository
8Overview of Refactored Entities
9Detailed Analysis of Refactored Entities
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The fraction of the test code differs quite strongly for the five refactoring lev-
els: 17.1% for Class-Level, 10.6% for Method-Level, 17.5% for Variable-Level,
10.0% for Field-Level and 18.3% for Other-Level. Refactorings on the Method-
and Variable-Level are the most likely refactorings in test code with 27.0% and
28.7%. This differs from the overall ratio of refactorings. Method-Level refactor-
ings are the most prevalent refactorings with 35.9% of all refactorings, followed
by Variable-Level refactorings with 23.2%. The other three levels have a similar
fraction of refactorings with an average of 13.6%. Compared to the research
by Aniche et al. [4], the total number of identified refactorings is 16.14 times
higher.

The overall count of identified refactorings is given in the Appendix in Ta-
ble A.1. The instance count of different refactorings per level differs widely,
e.g. only 24851 instances of Extract Subclass are in the data, but more than
three million instances of Move Class, which comprises 67.4% of all Class-
Level Refactoring-Instances. A similar pattern can be observed for the other
Refactoring-Levels as well, the Method-Level refactorings are dominated by
Change Parameter Type (27%), Change Return Type (21.5%), Extract Method
(11.2%) and Rename Method (18.4%) refactorings, which constitute 78.0% of
the Method-Level refactorings. The three refactorings Change Parameter Type
(41.2%), Change Variable Type (23.7%) and Rename Parameter (19.9%) make
up 84.8% of the Variable-Level refactorings, and the Field-Level refactorings are
dominated by Change Attribute Type (44.2%) and Rename Attribute (26.5%).
This was hidden by the previous analysis of the different Refactoring-Levels.
Furthermore, the analysis of the different refactorings per level shows that Split
Variable (2988), Replace Attribute (4409), Move And Rename Attribute (6175)
and Split Parameter (7538) were very rarely detected in the GitHub reposito-
ries.

A direct comparison between the data set extracted by Aniche et al. [4]
and the new data set reveals that the new data set contains 32.7 times more
Class-Level refactorings, 4.92 times more Method-Level refactorings and 6.12
more Variable-Level refactorings. A comparison of each refactoring is given in
Fig. 3.5, noteworthy are the Move And Rename Class, Rename Class and Move
Class refactorings, as they increase by factors of 379.2, 161.95 and 61.67. Also,
the number of Extract And Move Method refactorings in the database is with a
total of 435262 samples increased by a factor of 44.77. Overall, the comparison
of the refactorings extracted between the original data set created by by Aniche
et al. [4] and the new data set shows a substantial increase in the available data
especially for Move and Rename refactoring types.

25



3. A Large-Scale Refactoring Data Collection

Figure 3.5: Comparison of the total count of refactorings of the original and this
work, log-scale on the Y-axis.

3.5 Stable-Instances

In addition to refactorings, the data set also contains samples of non-refactored
(stable) classes. Whenever a class was not refactored, but changed during the
last K commits, it is considered a Stable-Instance and added to the data set,
for more details see Section 3.1. All in all, 65.96 million Stable-Instances
were mined for all levels and commit thresholds, of these instances 81.1% were
detected in production code and 18.9% in test code, see Table 3.3. Similar to
the distribution of refactorings per level, the distribution of Stable-Instances
differs widely for the different levels. Most Stable-Instances were extracted
on the Variable-Level with a total of 38.48 million instances (58.34%) and the
second most instances were collected for the Method-Level with 18.32 million
instances (27.77%). The rarest Stable-Instances are Class-Level instances with
a total count of 2.95 million (4.47%).

In Fig. 3.6, the distribution of Stable-Instances per K (commit threshold) is
displayed for the four levels. K is the number of commits in which a class file
was changed but not refactored, for more details see Section 3.1. The decline
of the Stable-Instances detected with an increasing K is very steep, see Fig. 3.7.
Only 6.88% of the total Stable-Instances that were collected for K=15 are still
stable for K=50 . Already the decline of Stable-Instances from K=15 to K=20 is
immense, as only 46.42% of the instances prevail. Furthermore, Fig. 3.7a shows
that Class-Level Stable-Instances decline slower than all other levels, e.g. for
K=70 still 7.39% of Class-Level instances are considered stable in contrast to
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All Production Code Test Code
Level Count Count % All % Production Count % All % Test

Class 2,948,846 2,045,472 69.37% 3.82% 903,374 30.63% 7.24%
Method 18,321,289 14,406,772 78.63% 26.93% 3,914,517 21.37% 31.39%
Variable 38,481,843 31,510,082 81.88% 58.91% 6,971,761 18.12% 55.90%
Field 6,212,929 5,530,418 89.01% 10.34% 682,511 10.99% 5.47%

Total 65,964,907 53,492,744 81.09% 100.00% 12,472,163 18.91% 100.00%

Table 3.3: Total count of Stable-Instances for each level, the fraction per level
of the total Stable-Instances and the fraction per level of it’s own code class

4.22% for the total instances. A detailed analysis of the distributions of the
Stable-Instances focusing on test- and production code reveals that the decline
for production code is more pronounced and that for production code all four
levels show a very similar distribution, see Fig. 3.7b. Further, the analysis shows
for test code the decline is not so pronounced and especially class level instances
are more stable, see Fig. 3.7c. For example, for K=50 only 7.3% of the Stable-
Instances of the Class-Level remain for production code in contrast to 28.52%
for test code.

Figure 3.6: Total count of Stable-Instances per level and K

3.6 Open Data

We hope other researchers will utilize the created data set for their research
and explore it in more detail, e.g. it might yield precious insights on the refac-
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(a) All Code

(b) Production Code

(c) Test Code

Figure 3.7: Fraction of the K=15 instances for each K for each level and the
total of Stable-Instances

toring habits in open source projects. For this reason, in this section a brief
introduction to the database structure, the most important columns and tables,
and important remarks is given. A simplified overview of the main tables and
their relations is given in Fig. 3.8. The database contains 129.2GB of uncom-
pressed data spread over 11 tables. These tables can be separated into three
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categories: (i) project data, (ii) instance data and (iii) metrics and attributes.
The entire data set can be found in the online appendix [21].

In the first category is the project table, this table contains all projects with
relevant meta data. The most important columns in this table are:

• commit count thresholds: The K for this Stable-Instance, it can range
from 15 to 100.

• data set name: The data set was divided into three subsets: training, test
and validation. These names are only relevant for the classifier training,
as all projects were gathered on GitHub and other important attributes,
e.g. if a project is a fork, are stored in other columns.

• exceptions count: Number of exceptions handled in the main loop during
data-collection, see Section 3.2.2.

• finished date: Date when the data mining was successfully completed for
this project, can be empty in case the data collection failed.

• is fork: Indicates whether or not this project is a fork. If the project
was marked as a fork, all related Refactoring- and Stable-Instances were
transferred into separate tables.

The second category comprises of four tables, two for Stable- and
Refactoring-Instances each. There is one table for Refactoring-Instances from
not forked projects called RefactoringCommit (30.2GB) and one for forked

ones called RefactoringCommit_Forked (13.5GB). Both tables have the same
structure. These tables contain all instances of collected refactorings with ref-
erences to metrics and attributes. The most relevant columns are:

• file path: File path for the class affected by the refactoring starting in the
project’s root folder. In contrast to the class name, this field can be used
to distinguish between classes.

• refactoring: The refactoring of this instance as a string, e.g. "Move
Class".

• refactoring summary: Summary of the refactoring, as generated by
Refactoring Miner. This column contains detailed information about the
refactoring.

• isValid: Shows if an instance was marked as invalid during data cleaning,
see Section 3.3.1.

• isTest: Indicates whether the instance was detected in test code.
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The structure of the tables for Stable-Instances is similar to the one for
Refactoring-Instances. The table of instances from non-forked instances
StableCommit has a size of 23.6GB and the one for forked instances
StableCommit_forks of 24.7GB. The main difference from the table structure
to refactoring is the addition of commit threshold column, indicating the K for
the current instance, also the columns "refactoring" and "refactoring summary"
are missing.

The last category of tables contains metrics, attributes and meta data for
the individual instances. The CommitMetaData table (2.5GB) contains relevant
meta data for each commit, e.g. commit data or commit id. Every commit in
this table has a unique id for every project, thus the commit meta data id can
be used to filter for unique commits. The same relation does not hold for the
ids of the other metric tables, e.g. the id of a class metric cannot be used to
group by class queries, as the metrics are added individually for each refactor-
ing and stable instance extracted, see Fig. 3.8. The other tables in this category
are ClassMetric (10.6GB), FieldMetric (0.84GB), MethodMetric (10.7GB),
ProcessMetrics (9.5GB) and VariableMetric (3.0GB).
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Figure 3.8: Simplified representation of the database schema, displays the rela-
tions between tables and selected columns
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Chapter 4

An Exploratory Analysis of
Refactoring Operations

In this chapter the large-scale refactoring data we gathered in the previous
chapter is analysed in detail. The overall goal is to understand the data set and
its components in order to later explore, validate and analyse the results of the
machine learning chapter. Furthermore, the results of this analysis guide the
decisions for the various experiments in the machine learning chapter. The re-
search questions cover Stable- and Refactoring-Instances, and the distribution
of process- and ownership metrics in particular, see Section 1.3. This chapter
contains the methodology for the data analysis, the results of the analysis, and
a discussion of the results with answers to the research questions 1, 2 and 3. It
is important to mention that this analysis has an exploratory character, as the
analysed data was unexplored and many relations were still unknown. There-
fore, the main focus of this analysis is on the identification of trends, potential
patterns and to get an overview of the data. All charts and statistics made for
the data analysis can be found in the online appendix [20].

4.1 Methodology

First, the sub division of the research questions into smaller questions and top-
ics is motivated. Afterwards, the selection of features for the analysis is ex-
plained. Lastly, the utilized statistical techniques for analysis are briefly de-
scribed and explained. For the visual analysis, a variety of visualization algo-
rithms is deployed including scatter plots, box plots, violin plots, heatmaps and
line plots. The following three Research Questions are relevant for this chapter:

• RQ 1: How are features distributed among refactoring types and
levels?

• RQ 2: How are features distributed among Stable-Instances?
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• RQ 3: What are implications of the distribution of process- and
ownership metrics?

4.1.1 Focus of the Analysis

The three research questions are difficult to answer, because the data set is
large and its dimensionality is enormous with a great variety of refactoring
types, metrics and attributes, Stable-Instances and commit thresholds. The
Refactoring- and Stable-Instances are the two main entities among which the
data is divided. Furthermore, together with the process- and ownership metrics
they are crucial for the success of the refactoring prediction models.
For all research questions we pursue the following topics in the analysis:

• Statistical distribution of the features

• The overall spread of features

• Identification of subsets

As the analyzed entities have different characteristics and are utilized differ-
ently in the classifier training, we explore individual issues for the three of them.
For the Refactoring-Instances, we explore how they evolve over time. For the
Stable-Instances, we attempt to answer the following additional sub-questions:

• Are the Stable-Instances inherently different from the Refactoring-
Instances?

• How does the increasing commit threshold affect the features?

For the process- and ownership metrics we pursue the following sub-questions:

• How do the distributions of process- and ownership metrics differ from the
other analyzed metrics?

• What might explain the importance of the process- and ownership metrics
for the success of the classifier training?

4.1.2 Feature Selection

The total number of different metrics (features) is 69, analyzing all these fea-
tures in-depth is not possible. Thus, we analyze process- and ownership metrics,
because they are highly relevant for the success of the classifier. We further an-
alyze the six metrics attempt to capture abstract quality measures of classes.
Additionally, we analyze the six other metrics that were considered relevant by
the classifiers in the research by Aniche et al. [4], see Table 4.1. We later refer
to them as class attributes, in order to more easily distinguish them from the
abstract class metrics.
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Class Metrics Class Attributes

Coupling between Object (CbO) Number of Methods
LCC Number of Public Fields
RFC Quantity of String Literals
LCOM Number of Unique Words
TCC Number of Variables
Weight Method Class (WMC) SLoC

Table 4.1: Class metrics and attributes considered in the data analysis

4.1.3 Statistical Distribution

The statistical distribution of the features is analysed in multiple steps. First, a
Kolmogorov–Smirnov test (K-S test) is performed to evaluate if a feature is nor-
mally distributed. To test the normality of the distribution, the null hypothesis is
set to a standard normal distribution and the samples are also normalized[41].
The Shapiro-Wilk test is used to test the features for normal-distribution [64].
Positive results are verified by a visual inspection of the histograms of the met-
rics. Furthermore, the skew of a metric is measured 1 and can be used to fur-
ther evaluate the overall distribution of the features. Skewness describes the
asymmetry of a distribution from its average [25]. Moreover, in order to find
functions best describing a metric, they are visually analysed. The aggregate
functions of SQL in combination with specific characteristics of the data are uti-
lized to calculate various relations in the data, e.g. the fraction of unique class
metrics of Stable-Instances is computed by summing up unique class metric ids
and grouping them by commit thresholds and levels.

4.1.4 Identification of Sub-Sets

For the identification of sub-sets, we apply two approaches (i) visual inspection
of features and (ii) clustering algorithms. We utilize KMeans and DBScan to
detect clusters in the data. KMeans is a distance based clustering algorithm
where samples are assigned to the nearest cluster based on the distance to its
center. In contrast, DBScan is a density based technique, which creates clusters
in high density areas separated by low density zones. Both techniques are very
different and can yield different results, thus we expect to identify a variety of
potential clusters. Also, both median and mean are used to describe the features
to the clustering algorithms. We use the clustering algorithms implemented in
the latest version of scikit-learn 2,3.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
2https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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4.2 Refactoring-Instances

In this section, we explore the distribution of features among Refactoring-
Instances in the collected data in order to answer RQ 1: How are features
distributed among refactoring types and levels?. We analyse the statis-
tical distribution of the class metrics (see Fig. 4.1), we identify clusters (Ta-
ble A.2, Fig. 4.3) and outliers and explore the evolution of refactorings over
time (Fig. 4.5).

Observation 1: The features are non-normally distributed and right
skewed. The Class-Level metrics and attributes are non-normally distributed
among Refactoring-Levels and individual refactoring types. All but two of the
features are right skewed, indicating that the overall distribution is right fat
tailed. The skew ranges from 4.72 for the Class-Level CbO metric to 253.85 for
the LCOM metric of the Other-Level, with most of the metrics having a high
skew exceeding 15. The distribution of the skew is coherent for the various
Refactoring-Levels and features. Other-Level refactorings are Only the class
metrics TCC and LCC are exceptions, as they are either distributed slightly
left (-0.09) or right (0.66) to their mean across the various Refactoring-Levels.
Additionally, the distribution of TCC and LCC metrics is highly similar for all
Refactoring-Levels and the differences between refactoring types are very lim-
ited. Only the Field-Level Refactoring-Instances differ to some degree, their
TCC and LCC 25% quartile are around 50 instead of 0 for all other Refactoring-
Levels, see Fig. 4.1. The feature distribution indicates that the mean does not
describe the features well. The statistical analysis showed, that the mean for
most metrics and attributes is around the 75% quartile or even exceeds it.

Observation 2: Similar refactorings have very similar metrics. Highly
similar refactorings often possess very similar class metrics and attributes, es-
pecially refactorings addressing the same issues, e.g. Merge Parameter and
Split Parameter or Extract Method and Inline Method. An example for this is
displayed in Fig. 4.2.

Observation 3: Features cover a wide range Many Refactoring-Levels have
outliers in their feature distribution. For the Field-Level refactorings, the fea-
tures are distributed highly cohesive, except for the Move Attribute and Rename
Attribute refactoring. The average number of fields is considerably higher for
these refactorings with averages of 5.51 and 8.07 compared to averages of 1.7 to
2.7 for the other Field-Level refactorings. This example is particularly interest-
ing, as the disparity to the very similar Move and Rename Attribute refactoring
is strong (mean 1.7).
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Figure 4.1: Class metrics without LCOM for all Refactoring-Levels (log-scale)

Observation 4: Refactorings of Class- and Other-Level are applied to
simple classes. Class- and Other-Level refactorings have significantly lower
metrics compared to the other Refactoring-Levels e.g. CbO, RFC and WMC, see
Fig. 4.1. Furthermore, class attributes are also significantly lower compared to
the other Refactoring-Levels, e.g. the median SLoC of a class for Method-Level
refactorings is about twice as high (148,5) as for Class-Level refactorings (50),
similar is the relation for the Number of Unique Words in a class. Thus, these
refactorings predominantly are applied to simpler, less evolved classes. A likely
explanation is that these refactorings are applied mostly in early development
stages of a class. Extract class is the only refactoring of the Class-Level, that
shows a similar feature distribution as Method- and Variable-Level refactorings.

Observation 5: Refactoring-Levels can form different clusters. The
Refactoring-Levels Class- and Other-Level form a cluster, with a very similar dis-
tribution of features, so do Method- and Variable-Level refactorings, and finally
Field-Level refactorings comprise a third cluster, see Fig. 4.3. Analyzing the
Refactoring-Levels in more detail, reveals that often smaller subsets of refactor-
ings strongly influence the overall characteristics of a Refactoring-Level mostly
due to the imbalance in instance counts, e.g. for the Class-Level these are Move
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Figure 4.2: Class metrics without LCOM for the Method-Level (log-scale)

Class and Rename Class refactorings, see Fig. 4.4 and Table A.1.

Observation 6: Individual refactorings can be separated into three to
five clusters. The cluster analysis of the individual refactoring types revealed
three strong clusters including at least 20 out of the 39 refactoring types col-
lected. Additionally, two more potential clusters were detected, see Table A.2
and Fig. 4.4. The first and most obvious cluster is comprised of three Class-
Level refactorings and the two Other-Level refactorings. These refactorings
have highly similar distributions of class metrics and attributes. Their class
metrics are considerably lower compared to all other refactorings, see Fig. 4.4.
The second cluster is comprised of eight of the nine Variable-Level refactorings
and the Extract and Move Method refactoring of the Method-Level, Rename Pa-
rameter is the missing Variable-Level refactoring. The class metrics are highly
similar for these refactoring types with a median CbO of 12.4. A third cluster
is comprised of six Field-Level refactorings Move Attribute, Move and Rename
Attribute, Pull Up Attribute, Push Down Attribute, Replace Attribute, Change
Attribute Type.
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Observation 7: Rename Parameter refactorings have a unique feature
distribution. Furthermore, the analysis showed that some refactoring types
are not aligned with their level, especially Rename Parameter has a unique
distributions of features. For the Rename Parameter refactoring, the four class
attributes SLoC, Quantity of String Literals, Number of Unique Words, Number
of Variables and three class metrics RFC, WMC and CbO are significantly lower
than for all other refactoring types.

Figure 4.3: Heatmap of the likelihood of co-occurrence in a cluster for all refac-
torings clustered with KMeans with the mean and median of the class metrics
and attributes

Observation 8: Class- and Other-Level refactorings are applied predom-
inantly in early development stages. Fig. 4.5 displays the cumulative fre-
quency of Refactoring-Instances occurring after a certain number of commits on
a class file for the Variable- and Class-Level refactoring types. The refactorings
in cluster 1 (Class- and Other-Level) occur early in the development process of
a class, more than 85% of all of these refactorings were detected withing the
first 10 commits of class. Moreover, 79% of cluster 1 refactorings are one of the
first 5 refactorings of a class. For comparison, for all refactorings not in cluster
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Figure 4.4: Class metrics for the class level refactorings (log-scale)

1 more than 50% of their Instances have a commit count higher than 5. Thus,
it can be concluded that cluster 1 refactorings are applied early in the devel-
opment of a class, and are increasingly unlikely for more developed and main-
tained classes. The other Class-Level refactorings, except Extract Class, are
also occurring slightly earlier, than the refactorings of the Variable-, Method-
and Field-Level. This combined with the over-representation of the Move Class
refactoring explains the lower complexity metrics collected for the combined
Class-Level refactorings. The refactoring Extract Class has a fairly similar dis-
tribution to the refactorings in cluster 3. All three other Refactoring-Levels have
relatively homogeneous behaviour in regard to the commit count.

4.3 Stable-Instances

In this section we present the results to answer RQ 2: How are features dis-
tributed among Stable-Instances?. We analyze the overall distribution fea-
tures of Stable-Instances, the distribution of metrics and attributes across var-
ious K and the four different Stable-Levels (Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9,
Fig. 4.10, Fig. 4.11). Additionally, we analyze how many unique classes are
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(a) Class-Level

(b) Variable-Level

Figure 4.5: CDF per commit count of a class for refactorings of the of Class- and
Variable-Level, x axis in log-scale, capped at 100 commits
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covered by Stable- and Refactoring-Instances (Fig. 4.6).

Observation 1: The features for Stable-Instances are non-normally dis-
tributed and right skewed. Similar to the Refactoring-Instances, the class
metrics and attributes are also non-normally distributed and all but two fea-
tures are are right skewed with a right fat tail.

Observation 2: Stable-Instances cover only 7.33% of all collected classes.
In total 8.35 million unique classes were collected. Only 0.62 million unique
classes were considered stable with K=15 , this is 7.33% of all recorded classes
in the database, in contrast to the 7.92 million unique classes being refactored
(94.82%). Of the total 8.35 million unique classes, only 187000 classes were
refactored at least once and considered stable, these are 30.27% of the unique
classes of the Stable-Instances. In Fig. 4.6 the unique classes are analysed
in more detail. Overall, the fraction of unique classes declines rapidly with
increasing K, for K=50 only 0.46% of all recorded classes are considered stable
on the Variable-Level. Additionally, the fraction of unique classes is much lower
for Field-Level Stable-Instances.

Figure 4.6: Fraction of unique classes of the total recorded unique classes for
the Stable-Instances per K for production code

Observation 3: Classes with high method and variable counts are over-
represented. Fig. 4.7 displays the total count of the Stable-Instances per level
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and K. Comparing it with Fig. 4.6 reveals that for the Method- and Variable-
Level, classes with many methods and variables are highly over-represented in
the data set of Stable-Instances. For every method in a stable class and subse-
quently every variable in each method a new Method- and Variable-Level Stable-
Instance is created, e.g. for a class with 10 methods with 3 variables each, a
total of 10 Method-Level and 30 Variable-Level Stable-Instances were created,
all sharing the same class metrics, the Field-Level instances suffer from a simi-
lar but smaller issue. To cope with this imbalance in the data, we only consider
a single Stable-Instance for each level, reducing the number of Stable-Instances
considered for the Method- and Variable-Level significantly, see Fig. 4.8.

Figure 4.7: Total count of Stable-Instances per level and K

Observation 4: Stable-Instances form only two clusters. The Stable-
Instances can be grouped into two clusters: one consisting of Class-, Method-
and Variable-Level instances and the other of Field-Level instances, see Fig. 4.9
and Fig. 4.10. The elements of the first cluster have a similar set of class met-
rics, this comes at no surprise as they are subsequently built up on the same
set of classes. The metrics improve mildly for the Variable- and Method-Level,
but are within the same order of magnitude. The Field-Level Stable-Instances
which have at least a single public field: tend to be larger, have more meth-
ods and variables as the other Stable-Instances. The Number of Methods for
Field-Level instances has a median of 7 in strong contrast to a maximum of 2
for the other levels. Additionally, the class metrics of Field-Level instances are
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Figure 4.8: Total count of unique class metrics per Stable-Level and K

worse in regard to software quality, which can be explained by the strong focus
of metrics on methods and fields.

Observation 5: Stable classes have low class metrics. A comparison of
the class metrics reveals that the metrics differ strongly between Stable- and
Refactoring-Instances. Stable-Instances have significantly lower class metrics
(better in regard to software quality), except for the Field-Level instances. For
example, the median CbO of Class-Level Stable-Instances is 2 and the 75% quar-
tile at 6, for Refactoring-Instances of the Class-Level the median is at 6 and the
75% quartile at 11. Also, the WMC differs significantly from the Refactoring-
Instances. Field-Level instances are the exception as they are very similar
to their counter-part the Refactoring-Instances. A similar relation can be ob-
served also for the class attributes. Stable-Instances of the Class-, Method- and
Variable-Level have considerably smaller classes. For example, the 75% quartile
for the number of methods is at 5 for Class-Level and 6 and 7 for Method- and
Variable-Level Stable-Instances, in contrast to Refactoring-Instances, where it
ranges from 11 up to 22. Field-Level Stable-Instances have a very similar distri-
bution of class attributes as the Field-Level Refactoring-Instances.

Observation 6: Only few metrics are affected by increasing K Analyzing
the distribution K shows three results. First, four of the six class attributes
are stable across all K’s. The class attribute Number of Public Fields increases
significantly for cluster 1 of Stable-Instances, e.g. for the Class-Level Instances
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Figure 4.9: Distribution of the class attributes without SLoC for the Stable-
Levels with K=15 , y-axis with log-scale

the mean Number of Public Fields doubles from K=15 to K=30 . The Quantity
of String Literals also increases from K=15 to K=30 and stabilizes afterwards.
Second, the class metrics improve with increasing K across all Stable-Levels,
see Fig. 4.11. The CbO starts at a mean of 6 - 7.3 (except Field-Level) and
improves to mean of 4.5 to 5 (except Field-Level) at K=60 . The changes are
very subtle though and for K>60 the changes are minor. These two pairs of
metrics have almost identical distributions: TCC and LCC, RFC and WMC.

4.4 Process- and Ownership Metrics

In this section, we analyze the process- and ownership metrics in detail in order
to answer RQ 3: What are implications of the distribution of process-
and ownership metrics?. We analyze in-depth the distribution of process- and
ownership metrics for the various Refactoring- and Stable-Levels (Fig. 4.12),
individual refactoring types within each level (Fig. 4.14, Fig. 4.15) and feature
distribution for the various K’s (Fig. 4.16).

Observation 1: Process- and Ownership metrics are non-normally dis-
tributed and are right skewed. The statistical analysis of the overall distri-
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Figure 4.10: Distribution of the class metrics without LCOM for the Stable-
Levels with K=15 , y-axis with log-scale

bution of the process- and ownership metrics shows, they are all non-normally
distributed and are right skewed for both Refactoring- and Stable-Instances, ex-
cept for the Author Ownership metric. The mean for the six metrics (except Au-
thor Ownership) is at the 75% quartile or even above it. The Author Ownership
metric is slightly left skewed (-0.78 to -1.41), and not fat or long tailed. Thus,
the mean describes the distribution of the Author Ownership fairly accurate.

Observation 2: Only minor differences between Stable-Levels. As both
the Stable-Instances and the process- and ownership metrics were collected
for class files, the distribution of the metrics is highly similar among the four
Stable-Levels. Thus, an analysis of the process- and ownership metrics for the
differences between the individual Stable-Levels did not yield any results.

Observation 3: Class- and Other-Level refactorings are predominantly
applied to young classes with few authors. For the Refactoring-Instances,
the process metrics differ strongly for the five Refactoring-Levels, see Fig. 4.12.
Especially, the Class- and Other-Level refactorings have significantly lower
process- and ownership metrics. The only exception is the Author Ownership
metric, it is very comparable among the Refactoring-Levels with an average
value around 0.79 to 0.84, the median of the Refactoring-Levels ranges from
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Figure 4.11: Class Metrics for all Stable-Levels and all K’s, without LCC and
RFC, y-axis log-scale

0.92 to 1. The Quantity of Minor Authors is almost zero for Other-Level refac-
torings (mean 0.08) and very small for the Class-Level refactorings (mean 0.23).
Field-Level refactorings, for example, have an average of 0.60. Smaller vari-
ations of the distribution can be observed for the other ownership metrics.
For the Class- and Other-Level refactorings, the Quantity of Major Authors and
Quantity of Authors are only marginally lower. Based on these observations, we
conclude that Class- and especially Other-Level refactorings are predominantly
applied to classes that are maintained by a single developer.

Observation 4: Process- and ownership metrics are very different for
Stable- and Refactoring-Instances. Comparing the Refactoring-Instances
with the Stable-Instances with K=15 , shows that for all process metrics the
Refactoring-Instances are considerably different from the Stable-Instances. For
example, the Bugfix Count the Variable-Level Refactoring-Instances (highest
distribution) has a median of 2 and a mean of 6 compared to a mean greater
21 and a median of 6 and for the Stable-Instances with K=15 . The analysis of
the ownership metrics showed that both Author Ownership and Quantity of Au-
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Figure 4.12: Distribution of process- and ownership metrics for all Refactoring-
Levels vs Stable-Instances with K=15

thors differ strongly between Refactoring- and Stable-Instances. The Quantity
of Authors ranges on average from 1.5 to 3 for Refactoring-Instances and is for
the Stable-Instances above 5. Both process- and ownership metrics display a
clear separation between the Refactoring- and Stable-Instances, see Fig. 4.12.

Observation 5: Process- and ownership metrics form similar clusters as
class metrics and attributes. The results of the clustering of refactoring
types with process- and ownership metrics is shown in Fig. 4.13. The cluster
analysis for the process and ownership metrics gave fairly similar results as
for the class metric and attributes, see Section 4.2 and Section 4.3. The most
outstanding difference is that the Replace Variable with Attribute refactoring is
not part of cluster 2 but 3, see Fig. 4.13. The cluster stability across different
metrics indicates that the refactorings are indeed used in very similar circum-
stances. Furthermore, this indicates that the class metrics and process- and
ownership metrics are correlated.
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Figure 4.13: Heatmap of the likelihood of co-occurrence in a cluster for all
refactorings clustered with KMeans with the mean and median of the process
and ownership metrics

Observation 6: Process- and ownership metrics are similar within the
Refactoring-Levels. In Fig. 4.14 and Fig. 4.15 the distribution of the process-
and ownership metrics for the Class- and Method-Level refactorings is given.
An in-depth analysis of the different refactoring types of each Refactoring-
Level shows that the ownership metrics are highly similar for most refactoring
types within their respective level, except for Quantity of Authors which differs
slightly for the refactorings within each level, see Fig. 4.14 and Fig. 4.15. For
the individual refactorings within each Refactoring-Level, the process metrics
differ widely, except for Other-Level. This is especially pronounced for the Class-
and Method-Level. For the Variable- and Field-Level, these differences are con-
siderably lower. The Move Class, Rename Class and Move and Rename Class
refactoring have a very low Bugfix Count and Quantity of Commits compared to
all other refactoring types. These refactorings strongly affect the overall distri-
bution of process- and ownership metrics of the Class-Level as they are by far
the most common refactorings for the Class-Level, see Table A.1. Furthermore,
the number of Refactorings Involved is in most cases (75% quantile) signifi-
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cantly lower compared to the other Refactoring-Levels. Method-Level refactor-
ings vary strongly for the Bugfix Count and the Quantity of Commits. Especially
Change Parameter Type, Change Return Type, Pull Up Method and Push Down
Method refactorings have significantly lower Bugfix Counts with a 75% quantile
of 3 compared to 7 for the Extract Method refactoring.

Figure 4.14: Distribution of Process- and Ownership metrics for all refactorings
of Class-Level

Observation 7: Rename refactorings are mostly applied to classes con-
trolled by a single author and few commits. Across all Refactoring-Levels
Rename refactorings have often the lowest process- and ownership metrics
within their respective level, except for Author Ownership for which the metrics
are highest. This is particularly pronounced for the Class- and Method-Level.
In contrast to the Rename refactorings, Extract refactorings consistently have
the highest ownership metrics within each Refactoring-Level. These refactor-
ings are not the most dominant refactorings within their levels, see Table A.1.
Thus, they do not effect the overall level considerably. The visual analysis did
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Figure 4.15: Distribution of Process- and Ownership Metrics for all refactorings
of Method-Level

not identify another "category" of refactoring types which showed a cohesive
distribution across the five Refactoring-Levels.

Observation 8: Author Ownership and Refactorings Involved decline sig-
nificantly with increasing K. Fig. 4.16 displays the mean of the 6 process-
and ownership metrics for all the K’s. The analysis of the different K’s reveals
that only the two metrics Author Ownership and Refactorings Involved decline
significantly with increasing K, see Fig. 4.16. The Author Ownership metric
strongly declines from a mean of 0.6 at K=15 to 0.2 at K=60 (mean at 0.85 for
Refactoring-Instances), for higher K’s it stabilizes. The Quantity of Authors in
contrast is very stable with a mean of 5 to 6 across all K’s. Also, the quantity
of major authors is only slowly declining with increasing K’s from a mean of 2.3
at K=15 to 1.5 at K=60 . Stable-Instances with a low K have a very high count
Refactorings Involved, with a mean above 40, but it declines quickly for K’s
larger than 25. Stable-Instances with K=30 have a similar count of Refactor-
ings Involved as Field-, Method- and Variable-Level Refactoring-Instances and
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at K=50 it is similar to Class-Level Refactoring-Instances. The Quantity of Com-
mits (mean 91) is very coherent among different K’s, see Fig. 4.16. And finally
the mean Bugfix Count per instance slowly declines from 24 at K=20 to 20 at
K=50 to 15 at K=100 .

Figure 4.16: Distribution of process- and ownership Metrics for all K’s

Observation 9: Stable-Instances are highly maintained classes. As only
two of the metrics are strongly affected by the K of Stable-Instances, it is likely
that the Stable-Instances are a subset of classes with very specific characteris-
tics. Stable-Instances with a lower K are highly maintained and utilized classes,
as indicated by the high Quantity of Commits, the high counts of Refactorings
Involved and low Author Ownership. With increasing K’s these classes were
considered structurally sufficient early but still extended by their developers.

4.5 Conclusion

The refactoring data set presented in this thesis allows an in-depth analysis
of the refactorings and stable classes in open source projects. The collected
metrics can be used to analyze individual refactorings in detail. For both
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Refactoring- and Stable-Instances the analyzed features are non-normally dis-
tributed and right skewed, except for the Author Ownership metrics which is
not skewed.

RQ 1: How are features distributed among refactoring types and levels?
The analyzed features are similarly distributed within the Refactoring-Levels
and Class- and Other-Level refactorings show very similar feature distributions.
The refactorings cover 94.85% of all collected classes. In general, refactorings
are mostly applied to classes that are controlled by a single author. Class- and
Other-Level refactorings occur most frequently in classes with few commits and
few other refactorings. These classes are comparably simple and not very com-
plex. Method-, Variable- and Field-Level refactorings occur in all development
stages.

RQ 2: How are features distributed among Stable-Instances? Stable-
Instances are a strong minority class with unique characteristics that can be
clearly separated from the Refactoring-Instances by class level features, except
for the Field-Level Stable-Instances. The class metrics are in general better
and the classes are less complex compared to refactored classes. Additionally,
the Stable-Instances cover only a maximum of 7.33% of the collected classes
and with increasing K this fraction declines strongly. Furthermore, the analysis
showed that selection of K only affects two class metrics and two class attributes
significantly, with K=25 and K=60 being the most relevant thresholds in regard
to the feature distribution.

RQ 3: What are implications of the distribution of process- and owner-
ship metrics? The process- and ownership metrics can be used to distinguish
between Refactoring-Instances and Stable-Instances. The effect of an increased
K on the ownership metrics is minor, but are significant for the process metrics
Refactorings Involved and Author Ownership. With increasing K the Stable-
Instances have a significantly lower Author Ownership and number of Refactor-
ings Involved.
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Chapter 5

Recommending Refactorings
via Machine Learning

In this chapter, we explore the use of machine learning for recommending soft-
ware refactorings. We conducted three experiments to answer the Research
Questions 4 to 7. The machine learning pipeline, classifier selection and model
evaluation are explained in detail. The experimental set up and the results are
layed out in this chapter. We finish this chapter with a conclusion answering the
Research Questions.

5.1 Classifier Training

One of the main objectives of this thesis is the further exploration of machine
learning algorithms for refactoring prediction, see Section 1.2 for more details.
In order to achieve this objective, various binary classifiers have to be trained
and the models evaluated. The training and data-preprocessing procedure is
explained in detail in the upcoming section, see Fig. 3.1 for the entire procedure.
The final phase, classifier evaluation, is described in Section 5.2. The created
models are supposed to predict refactorings at all four considered levels: class,
method, variable and field. The entire classifier training and data-preprocessing
pipeline was implemented with Python 3.6+ and the source code can be found
on GitHub.

5.1.1 Data Preprocessing

Our data preprocessing pipeline consists of eight steps, a simplified overview is
shown in Fig. 3.1. The individual steps are explained here in more detail:

• (i) Data Selection: Selection of k (the commit threshold) for Stable-
Instances and the refactoring type.
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• (ii) Data Split: The data is split into training, validation and test (optional)
data sets. The data is either split randomly by using 80% of the entire data
set d for training and 20% for validation v or by using predefined splits,
see Section 5.2.

• (iii) Labeled Data: All labeled positive- (refactorings) r and negative
(stable) s instances are retrieved from the database and stored. To speed-
up data retrieval the data is pre-cached on the local machine. Afterwards,
the data is merged into X and the labels are moved to Y .

• (iv) Balancing (optional): Both r and s are balanced equally, this is
optional and might be utilized differently in various training setups.

• (v) Shuffle: d is shuffled randomly with the pandas sample() function
1.

• (vi) Feature Scaling: All features are scaled with a Min-Max2 scaler pro-
vided by the scikit-learn framework which scales all (numerical) features
in the range [0, 1] . Scaling the features before training can improve
the training speed of ML-algorithms [32, 31].

• (vii) Feature Reduction: Features are reduced with the selected classi-
fier to maximize the results and speed of the classifier training.

5.1.2 Training

In this research we only considered supervised machine learning algorithms for
binary classification. The input for each model is a feature vector X represent-
ing the entity, e.g. a class or method, at the current time and the model will
predict if this entity should be refactored by a specific refactoring. Each model
will only predict a single refactoring, thus to cover a variety of refactorings
multiple models have to be combined. As scoring strategies, which are func-
tions evaluating the overall quality of a model during hyperparameter tuning
and training, accuracy and f1-score are used.

Classifier We utilize the following two binary classifiers in this work:

1. Logistic Regression (LR): In their research, Aniche et al. [4] found that
Logistic regression yields competitive results for predicting refactorings.
Furthermore, it is very efficient and fast to train [45].

2. Random Forest (RF)[10]: This was found to be the best performing clas-
sifier to refactoring prediction with similar data [4].

1https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html.sample.html
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The implemented training pipeline uses the classifier from version 0.23.2 of the
scikit-learn framework [55]. All of the selected classifiers also support paral-
lelization, which drastically increases the training further, as we can utilize the
full potential of the training clusters.

Feature Reduction Most classifiers’ performance benefits from feature re-
duction [11, 12, 45]. Feature reduction, also referred to as dimensionality re-
duction or feature selection, reduces the number of features before training,
e.g. instead of using all 47 features for a Class-Level refactorings only 25 rele-
vant features are selected for training. This reduces the impact of the Curse of
Dimensionality and thereby, can drastically reduce the necessary training time.
Additionally, reducing the number of features also improves feature understand-
ing and generalization of the model [12]. We chose recursive feature reduction
(RFE) with cross validation (CV) to reduce the dimensionality. The algorithm
recursively attempts to reduce the feature space by recursively removing the
least important features from the feature set [26]. It was found to be one of the
feature reduction algorithms for supervised machine learning with the highest
accuracy [11].

Parameter Selection The two classifiers have a variety of relevant parame-
ters that need to the configured to optimize results of the training. The param-
eters are hyper-tuned for the estimators with random search and cross valida-
tion. We utilize the function RandomizedSearchCV 3 from scikit-learn for this
purpose. The algorithm tries 100 randomly sampled parameter sets and selects
the best performing set in regard to the specified scoring strategy. The advan-
tage over grid search is that a larger search space can be explored (to some
extend) without increasing the exploration time by Randomized search. This is
relevant for random forest as a variety of different parameters and values per
parameter create a huge search space, see Table 5.1.

The parameter distribution considered in this research is shown in Table 5.1.
The utilized parameters are explained hereafter:

1. Logistic Regression: Max-iter is the maximum number of iterations for
the solver to converge. Solver is the algorithm of choice solving the opti-
mization problem. We selected the SAGA solver, because it performs well
on very large data sets and can handle non-convergence. C is the inverse
of regularization strength.

2. Random Forest: Max-depth is the maximum depth of the generated de-
cision trees. Max-features defines the number of considered features for
the best split. Min-samples-split is the minimum number of samples to

3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
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Classifier Parameter Search Space
Logistic max-iter: [100, 500, 1000, 2000, 5000, 10000] 60
Regression C: [uniform(0.01, 100) for i in range(0, 10)]
Random max_depth: [3, 6, 12, 24, 48, 96, None] 2940
Forest max_features: [auto, log2, None]

min_samples_split: [2, 3, 4, 5, 10]
bootstrap: [True, False]
criterion: [gini, entropy]
n_estimators: [10, 50, 100, 150, 200, 250, 300]

Table 5.1: Parameter distribution for the hyperparameter search for each clas-
sifier with the size of the search space

split a node. Bootstrap defines if all samples are used to build the trees.
Criterion measures the quality of a split and number of estimators is the
number of trees in the forest.

5.2 Classifier Evaluation

Evaluating the performance and quality of the different models comprises the
third and last main objective of this thesis. This section lays out the details of the
evaluation of the various classifiers and the specifications of the experiments,
designed to answer Research Questions 4 - 7, see Section 1.3. In detail the
following components are described: (i) the creation of the test data set, (ii) the
computation and selection of metrics and (iii) the experiments.

5.2.1 Test Set

Each trained model is evaluated with a test set consisting of unseen projects.
The test set contains 500 randomly selected projects which meet the following
criteria in order to ensure that these projects are properly represented in the
test set and to exclude potentially faulty samples:

• Commit count >100

• Number Of production files >25

• Production LoC >2500

• Test LoC >500

• Data extraction finished

The test and training sets are already separated in the database, thus we ensure
all projects are unseen by the classifier and the evaluation is always comparable,
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because the test samples remain the same. This has the advantage that we can
later investigate the results in more detail and we can draw conclusions on how
the model might perform in practice. For all predictions the instance id and
prediction results are stored.

5.2.2 Evaluation Scores

For the evaluation, a multitude of metrics is computed. These metrics allow
an in-depth analysis of the quality and behavior of a model to answer the Re-
search Questions 4 to 7. The computed metrics are listed and explained in the
following:

• Accuracy [0,1]: a frequently used metric, which shows the fraction of
correct predictions. The accuracy score performs well in balanced data
sets, as all samples have an equal weight.

• F1-Score [0,1]: the weighted average of precision and recall, its calcula-
tion is given in Eq. (5.1). This function attempts to balance both precision
and recall and thus, also performs well in unbalanced data sets.

• Precision [0,1]: describes the ability of a classifier to predict positive
samples correct.

• Recall [0,1]: describes the ability of a classifier to predict negative sam-
ples correct.

• Confusion Matrix: Consisting of true negative(TN), false negatives (FN),
true positives (TP) and false positives (FP) the confusion matrix can be
used to compute the previous metrics and allows better understanding of
the behavior of the evaluated model, e.g. if a classifier always predicts
true.

• Classifier Feature Importance [0,1]: The random forest classifier has
an internal representation for the importance of each feature
( feature_importance ), the sum of which is 1. This can be used to anal-
yse the results of the model and understand certain characteristics of the
data set. The LR does not have a representation of features similar to
the random forest classifier, but coef_ stores all features in the decision
function with their coefficients.

• Permutation Importance [0,1]: Estimates the importance of each fea-
ture by permutating a feature vector and then evaluating the quality of
predictions with the permutated feature compared to a baseline metric.
The permutation importance is the difference between the baseline metric
and the permutated one.
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F1 = 2∗ precision∗ recall
precision+ recall

(5.1)

5.2.3 Setup of the Experiments

This section describes the experiments conducted to answer the Research Ques-
tions 5 to 7. It is important to make some remarks before explaining the details
of each experiment. The amount of experiments and different setups would
result in a too large number of models to be trained. Thus, we reduced the
number of considered refactoring types from 40 to 11. The selection consists of
11 structural refactorings, from all 4 levels, with sufficient samples in the data
and different feature distributions, see Table 5.2. The training was done on two
machines with these specifications:

• Ubuntu 18.04.2 LTS VM with 40 CPU cores and 396GB of RAM

• Ubuntu 18.04.2 LTS VM with 14 CPUs and 50 GB of RAM

The parameter sets were also analyzed for the different experiments.

Level Class Method Variable Field
Refactorings Extract Class Inline Method Move Attribute

Move Class Pull-Up Method Parameterize Variable Pull Up Attribute
/ Push-Down Method Replace Variable With Attribute Replace Attribute
/ Merge Parameter / /

Count 2 4 3 3

Table 5.2: Selected refactorings for the classifier training per level with total
count

5.3 Reproduction Experiment

In this section we tackle RQ 4: How does the prior approach perform with
the new data set?. We use the original design of the machine learning pipeline,
as presented by Aniche et al. [4] on the newly created data set.

5.3.1 Experimental Setup

The original design of the machine learning pipeline was applied to the new data
set. The main differences to the machine learning pipeline previously presented
(see Section 5.1) are as follows:

• K=50

• 80%/20% train/test split used for training and initial evaluation
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• No feature reduction: the features are not reduced before the classifier
training.

• Refactoring types: for this experiment all 20 refactoring types of the prior
experiment are considered.

We made some additions to the initial approach to analyze the results of the
experiment in more detail:

• Improved hyperparameter set : The parameter set was significantly ex-
tended and adjusted to this task, especially for the RF.

• Permutation feature importance: We store the permutation importance of
every feature.

• Predictions are traceable: We store all results including the sample iden-
tifier for every prediction to explore the prediction results in detail.

Similar to the authors of the original paper, we reported how often a feature ap-
pears in the Top-1, Top-5 and Top-10 of the most important features as reported
by each model and the permutation importance.

5.3.2 Results

We display the performance of the new models in and and compare it to the
results reported by Aniche et al. [4] in Table 5.3. Furthermore, we identify the
most important features for the performance of the models. We analyze the
feature distributions of mis-classified samples in order to identify thresholds
and patterns in the models.

Table 5.3 displays the accuracy, F1-score, recall and precision for the RF
and LR models from the original paper and the reproduction experiment with
a random train/ test split of 80%. More detailed statistics of the reproduction
experiment can be found in the online appendix [20].

Observation 1: All classifiers perform better. Across both classifier types
(LR and RF) and all Refactoring-Levels and types, the newly trained models per-
form significantly better in regard to all metrics compared to the prior results
reported by Aniche et al. [4]. The new RF models have a mean accuracy of
99% exceeding the mean accuracy of the original ones by 6%. For the LR, the
mean accuracy improves by 13% to 92%. Only for the Move Class refactoring
RF performance slightly decreases with an accuracy of 97% instead of 98%. For
the RF, both precision and recall were improved by an average of 6% and 7%.
This is very different for the LR, because on one hand precision only improves
for the Method- (2%) and Variable-Level (3%) but on the other hand drops for
the Class-Level by 5%.
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Random Forest
Random Forest
Original

Logistic Regression
Logistic Regression
Original

Acc F1 Pr Re Acc Pr Re Acc F1 Pr Re Acc Pr Re

Class-Level
Extract Class 0.97 0.97 0.96 0.98 0.85 0.93 0.89 0.92 0.92 0.89 0.96 0.78 0.91 0.82
Extract Interface 0.97 0.97 0.96 0.99 0.93 0.92 0.92 0.91 0.91 0.87 0.96 0.83 0.93 0.87
Extract Subclass 0.97 0.97 0.96 0.99 0.92 0.94 0.93 0.92 0.92 0.89 0.95 0.85 0.94 0.89
Extract Superclass 0.97 0.97 0.95 0.98 0.91 0.93 0.92 0.91 0.92 0.88 0.96 0.84 0.94 0.88
Move And Rename Class 0.96 0.96 0.95 0.97 0.95 0.95 0.95 0.91 0.92 0.88 0.95 0.89 0.93 0.91
Move Class 0.97 0.97 0.95 0.98 0.98 0.97 0.98 0.92 0.92 0.89 0.95 0.92 0.96 0.94
Rename Class 0.96 0.96 0.96 0.97 0.95 0.94 0.94 0.91 0.91 0.87 0.95 0.87 0.94 0.90

Method-Level
Extract And Move Method 0.99 0.99 0.98 1.00 0.90 0.81 0.86 0.92 0.92 0.90 0.95 0.72 0.86 0.77
Extract Method 0.99 0.99 0.99 1.00 0.80 0.92 0.84 0.93 0.93 0.91 0.95 0.80 0.87 0.82
Inline Method 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.92 0.92 0.89 0.96 0.72 0.88 0.77
Move Method 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.92 0.92 0.89 0.96 0.72 0.87 0.76
Pull Up Method 1.00 1.00 1.00 1.00 0.99 0.94 0.96 0.94 0.94 0.91 0.97 0.78 0.90 0.82
Push Down Method 1.00 1.00 1.00 1.00 0.97 0.83 0.90 0.94 0.94 0.92 0.97 0.75 0.89 0.80
Rename Method 1.00 1.00 1.00 1.00 0.79 0.85 0.81 0.92 0.92 0.89 0.96 0.77 0.89 0.80

Variable-Level
Extract Variable 1.00 1.00 1.00 1.00 0.90 0.83 0.87 0.95 0.95 0.93 0.97 0.80 0.83 0.82
Inline Variable 1.00 1.00 0.99 1.00 0.94 0.96 0.95 0.91 0.91 0.88 0.95 0.76 0.86 0.79
Parameterize Variable 0.99 0.99 0.99 1.00 0.93 0.92 0.92 0.92 0.92 0.88 0.96 0.75 0.85 0.79
Rename Parameter 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.92 0.93 0.90 0.96 0.79 0.88 0.83
Rename Variable 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.91 0.92 0.88 0.95 0.77 0.85 0.80
Replace Variable With Attribute 0.99 0.99 0.99 1.00 0.94 0.92 0.93 0.92 0.92 0.89 0.96 0.79 0.88 0.82

Averages
Class-Level 0.97 0.97 0.96 0.98 0.93 0.94 0.93 0.91 0.92 0.88 0.95 0.85 0.94 0.89
Method-Level 1.00 1.00 1.00 1.00 0.92 0.90 0.90 0.93 0.93 0.90 0.96 0.75 0.88 0.79
Variable-Level 1.00 1.00 1.00 1.00 0.95 0.94 0.94 0.92 0.93 0.89 0.96 0.78 0.86 0.81

Total 0.99 0.99 0.98 0.99 0.93 0.92 0.93 0.92 0.92 0.89 0.96 0.80 0.89 0.83

Table 5.3: Comparison of the quality metrics for the RF and LR classifier from
both the reproduction and original experiment, evaluated with the randomly
split data set

Overall, the most significant improvements for the random forest classifier
were made on three refactorings. The first is Extract Class of the Class-Level
with an accuracy increase of 12%, and the two Method-Level refactorings Ex-
tract Method and Rename Method with an accuracy improvement of 19% and
21%.

Observation 2: RF generalizes better than LR. The RF generalizes better
to unseen projects than LR. The RF models achieve an average accuracy of 89%
and an average F1-score of 90% for all refactoring types compared to a mean
accuracy of 84% and a mean F1-score of 85% for the LR. The reduced perfor-
mance compared to the evaluation on the random split set can be explained
by the strongly reduced precision of the models. Precision is drastically lower
for the evaluation of the models on unseen projects, on average 15% lower for
RF and 12% for LR. Recall, on the other hand, did not change at all. It is also
observed that the precision for the Class-Level refactorings is 6% higher than
for the Method- and Variable-Level refactorings. Due to the very high recall on
all three levels the difference in the accuracy and F1-score is only 3%. These
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findings are in line with the results reported by Aniche et al. [4].

Observation 3: Move and Rename refactorings perform significantly
worse in generalized contexts. The performance of the newly trained clas-
sifiers on unseen projects is displayed in Table 5.3. A more detailed analysis of

Random Forest
Test-Set

Logistic Regression
Test-Set

Acc F1 Pr Re Acc F1 Pr Re

Class-Level
Extract Class 0.95 0.95 0.92 0.98 0.82 0.84 0.76 0.94
Extract Interface 0.95 0.95 0.92 0.98 0.84 0.86 0.77 0.96
Extract Subclass 0.95 0.96 0.93 0.99 0.85 0.86 0.78 0.96
Extract Superclass 0.91 0.92 0.87 0.97 0.79 0.82 0.72 0.95
Move And Rename Class 0.9 0.9 0.85 0.97 0.78 0.81 0.71 0.95
Move Class 0.9 0.91 0.85 0.98 0.83 0.84 0.76 0.94
Rename Class 0.84 0.86 0.77 0.97 0.88 0.89 0.82 0.97

Method-Level
Extract And Move Method 0.89 0.9 0.82 1 0.87 0.88 0.81 0.95
Extract Method 0.9 0.91 0.83 0.99 0.87 0.88 0.82 0.96
Inline Method 0.9 0.91 0.83 1 0.84 0.86 0.78 0.96
Move Method 0.87 0.88 0.79 1 0.84 0.86 0.77 0.96
Pull Up Method 0.89 0.9 0.82 1 0.85 0.87 0.78 0.97
Push Down Method 0.9 0.91 0.83 1 0.86 0.88 0.79 0.98
Rename Method 0.85 0.87 0.77 1 0.85 0.86 0.78 0.97

Variable-Level
Extract Variable 0.93 0.94 0.88 1 0.9 0.9 0.85 0.97
Inline Variable 0.89 0.9 0.82 1 0.78 0.81 0.71 0.96
Parameterize Variable 0.89 0.9 0.83 0.99 0.81 0.84 0.74 0.97
Rename Parameter 0.82 0.84 0.73 1 0.82 0.84 0.74 0.97
Rename Variable 0.86 0.87 0.78 1 0.78 0.81 0.71 0.95
Replace Variable With Attribute 0.86 0.88 0.79 0.99 0.8 0.83 0.73 0.96

Averages
Class-Level 0.91 0.92 0.87 0.98 0.83 0.85 0.76 0.95
Method-Level 0.89 0.90 0.81 1.00 0.83 0.85 0.76 0.96
Variable-Level 0.88 0.89 0.81 1.00 0.83 0.85 0.77 0.95
Total 0.89 0.90 0.83 0.99 0.84 0.85 0.77 0.95

Table 5.4: Comparison of the quality metrics for the Random Forest and Logistic
Regression classifier evaluated with the test set

the precision scores shows that the change in precision varies strongly for the
different refactoring types. For three of the Class-Level refactorings, Extract
Class, Extract Interface and Extract Subclass, the precision was only reduced
by 4% for the RF instead of 8% for the Move Class refactoring or 19% for Re-
name Class refactoring. A similar pattern can be observed for LR. Overall, for
Rename and Move refactoring types, the precision was reduced significantly by
an average of 18.86% for RF and by 14.57% for LR. This result is in contrast to
the findings by Aniche et al. [4].

Observation 4: The models struggle to separate Stable-Instances from
Refactoring-Instances. False positives (FP) are the main reason for the re-

63



5. Recommending Refactorings via Machine Learning

Table 5.5: Confusion-matrix for evaluation of the newly trained classifier for the
reproduction experiment, fraction of total, red indicates poor performance and
green good

duced precision in the classification task in the unseen projects. In Table 5.5 we
show the confusion matrices for all refactoring types and both classifiers. We
can observe clearly that false positives are the main contributor for the reduced
precision, the average FP rate using RF for the Class-Level is 14.75%, for the
Method-Level 23.04% and 24.67% for the Variable-Level. Interestingly, for the
Class-Level refactorings the LR has a significantly higher average of FP rate
of 29.95% compared to the Method-Level refactorings with 25.90%, this is in
contrast to the results for the RF.
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Figure 5.1: Top-2 feature importances for RF as reported by the model and
computed with permutation importance

Observation 5: Permutation importance and model feature importance
differ strongly. The importances of the features are displayed in Fig. 5.1 for
RF and in Fig. 5.2 for LR. Furthermore, Table 5.7 and Table 5.6 show the Top-
N features for both classifiers for all three Refactoring-Levels. The features
identified as important by the two importance measures disagree on a variety
of features. The RF models value Quantity of Commits and Author Ownership
highly, in contrast to the permutation importance applied to RF, which only iden-
tified Quantity of Commits as a Top-2 feature for four of the refactoring types
and the Author Ownership for three Class-Level refactorings. For the LR mod-
els, Author Ownership was identified as the feature with highest performance
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Figure 5.2: Top-2 feature importances for LR as reported by the model and
computed with permutation importance

impact by the permutation importance measure, compared to Quantity of Com-
mits and Refactorings Involved by the coefficients extracted from the models.
The weights assigned by the LR models for Author Ownership and Refactorings
Involved are not even in the Top-10 for a single refactoring type.
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Observation 6: LR models highly rely on few process- and ownership
metrics. The Top-5 of the most important features for LR models are strongly
dominated by process- and ownership metrics. The metrics Author Ownership
is for all models the dominant metric, followed by Quantity of Commits and
Refactorings Involved. The metrics Quantity of Major Authors is only relevant
for five models, Bugfix Count for two and Quantity of Minor Authors for none.
Other highly relevant metrics are LCC for the Class-Level and Number of De-
fault Methods for Method-Level refactoring models based on LR classifier.

Observation 7: RF models rely on a variety of metrics. Permutation im-
portance identified a large variety of features relevant for the classification per-
formance for the different RF models. In the Top-2 of the most important fea-
tures are 12 and in the Top-5 are 21 different feature, compared to the model
importance, which identified only 5 different features in the Top-2 and 12 differ-
ent features for the model importance extracted from the RF. Additionally, for
the Extract Variable refactoring, Variable Appearances is the most important
feature. For the RF models, ownership metrics are only relevant for Class-Level
refactorings, only three models for the Class-Level refactorings Extract Class,
Extract Subclass and Rename Class highly rely on the Author Ownership metric.

Observation 8: The most relevant features are of Class-Level. In addition
to the class file based process- and ownership metrics, the models for all three
Refactoring-Levels predominantly use Class-Level features such as Number of
Methods or Number of Fields. In the Top-5 of feature importances extracted
from the models, Method- and Variable-Level features occur only 4 times and in
the Top-5 of the permutation importances they occur 7 times out of a total of 65
each. No Method- and Variable-Level feature is in the Top-3 or higher. The re-
ported Method- and Variable-Level features are almost all unique: Method RFC,
Method CbO, Number of Unique Words in a Method, Method RFC, Method SLoC
and Maximum Number of Nested Blocks in a Method. In their work, Aniche
et al. [4] reported as well that Class-Level features are also very important for
Method- and Variable-Level refactorings.

Observation 9: Clear classification thresholds for the relevant process-
and ownership metrics are observable. An analysis of the feature distri-
bution of the classified samples shows clear thresholds for the most relevant
process- and ownership metrics for the classification, namely Author Ownership
and Quantity of Major Authors. These thresholds are soft boundaries covering
almost all of the samples, but some outliers still exist. The RF models clas-
sify samples with an authorship below 0.5 as Stable-Instances and above 0.6 as
refactorings. This can be clearly observed for the FP, as their Author Ownership
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metrics are predominantly above this threshold. For Quantity of Major Authors
the threshold for a positive classification is 1. For the LR models, the thresh-
old for Author Ownership is around 0.5, but for Quantity of Major Authors no
distinct threshold could be identified.

For the metric Refactorings Involved, most of the samples can be separated
by a threshold of 11, with samples with more than 11 refactorings predomi-
nantly being classified as positive by the RF models. For the Quantity of Com-
mits, it can be clearly separated among . For the other process- and ownership
metrics, feature distributions in the classification results vary stronger and pat-
terns were not observed. This is particularly interesting for the metric Refac-
torings Involved, as it is for all Method- and Variable-Level refactorings in the
Top-2 of the most important features. The results for the (few) False Negative
classifications are not clear, feature distribution varies strongly for all refac-
toring types across all levels and covers the entire range of features for both
Stable- and Refactoring-Instances.

Random Forest Logistic Regression
Class-Level
Top-1: authorOwnership (3), qtyOfCommits (3), refactoringsInvolved (1) authorOwnership (7)
Top-5: qtyOfCommits (7), refactoringsInvolved (6), authorOwnership (7), classLCC (7), qtyOfCommits (7),

classNumberOfMethods (6), classCbo (4), authorOwnership (3) refactoringsInvolved (6), qtyMajorAuthors (3)
Top-10 qtyOfCommits (7), classNumberOfMethods (7), authorOwnership (7), classLCC (7), qtyOfCommits (7),

classCbo (7), refactoringsInvolved (6), classNumberOfFields (5) refactoringsInvolved (6), classNumberOfPrivateFields (6)
Method-Level
Top-1: refactoringsInvolved (7) authorOwnership (7)
Top-5: refactoringsInvolved (7), methodLoc (5), classCbo (4), authorOwnership (7), classNumberOfDefaultMethods (7),

classNumberOfMethods (4), qtyOfCommits (3) qtyOfCommits (7), refactoringsInvolved (5), classNumberOfMethods (4)
Top-10 refactoringsInvolved (7), classCbo (6), authorOwnership (7), classNumberOfDefaultMethods (7),

classNumberOfMethods (6), methodLoc (5), qtyOfCommits (5) qtyOfCommits (7), refactoringsInvolved (6), qtyMajorAuthors (5)
Variable-Level
Top-1: refactoringsInvolved (4), variableAppearances (1), authorOwnership (5), variableAppearances (1)

methodVariablesQty (1)
Top-5: refactoringsInvolved (6), classNumberOfFields (4), authorOwnership (6), qtyOfCommits (6), refactoringsInvolved (5),

methodVariablesQty (4), startLine (3), qtyOfCommits (3) classVariablesQty (3), qtyMajorAuthors (2)
Top-10 refactoringsInvolved (6), classNumberOfFields (6), authorOwnership (6), qtyOfCommits (6), bugFixCount (5),

startLine (5), classNumberOfPrivateFields (5), classUniqueWordsQty (5) refactoringsInvolved (5), classVariablesQty (4)

Table 5.6: Most relevant features as measured by permutation importance for
all three Refactoring-Levels. Only the top 5 features for the Top-N are displayed
here.

5.3.3 Discussion

The reproduction experiment can reproduce the main findings of the initial work
by Aniche et al. [4], namely (i) the great performance of the models, (ii) the high
importance of process- and ownership metrics for the refactoring prediction and
(iii) the good performance of the models on unseen projects. Furthermore, we
can verify that RF models perform better than LR models, which nonetheless
perform well with an average accuracy of 92%. Moreover, features collected at
class level such as Number of Methods outweigh all other levels.

In the following subsections, the results of the experiment are discussed in
more detail. As RF models perform significantly better than LR models and the
LR models only served as a baseline, only RF is discussed in more detail.
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Random Forest Logistic Regression
Class-Level
Top-1: qtyOfCommits (5), classNumberOfMethods (1), qtyOfCommits (7)

authorOwnership (1)
Top-5: authorOwnership (7), qtyOfCommits (7), qtyOfAuthors (4), qtyOfCommits (7), classStringLiteralsQty (7),

qtyMajorAuthors (4), bugFixCount (4) refactoringsInvolved (6), classLoc (5), bugFixCount (3)
Top-10 classNumberOfMethods (7), authorOwnership (7), qtyOfCommits (7), refactoringsInvolved (7),

qtyOfCommits (7), refactoringsInvolved (7), classCbo (7) classStringLiteralsQty (7), classWmc (6),
classNumberOfPrivateFields (6)

Method-Level
Top-1: authorOwnership (4), qtyOfCommits (3) refactoringsInvolved (7)
Top-5: qtyOfCommits (7), authorOwnership (7), qtyOfAuthors (7), refactoringsInvolved (7), qtyOfCommits (7), classLcom (5),

qtyMajorAuthors (7), refactoringsInvolved (6) startLine (3), classNumberOfFinalFields (3)
Top-10 qtyOfCommits (7), authorOwnership (7), qtyOfAuthors (7), refactoringsInvolved (7), qtyOfCommits (7), classStringLiteralsQty (6),

qtyMajorAuthors (7), refactoringsInvolved (7) classNumberOfFinalFields (6), classLcom (5)
Variable-Level
Top-1: qtyOfCommits (4), variableAppearances (1), refactoringsInvolved (3), qtyOfCommits (2),

authorOwnership (1) variableAppearances (1)
Top-5: qtyOfCommits (6), authorOwnership (6), refactoringsInvolved (6), qtyOfCommits (6),

qtyMajorAuthors (6), qtyOfAuthors (6), refactoringsInvolved (4) classStringLiteralsQty (4), classNumberOfStaticMethods (3),
classLcom (2)

Top-10 qtyOfCommits (6), authorOwnership (6), refactoringsInvolved (6), qtyOfCommits (6), classStringLiteralsQty (5),
qtyMajorAuthors (6), qtyOfAuthors (6), refactoringsInvolved (6) classNumberOfFinalFields (5), classNumberOfStaticMethods (5)

Table 5.7: Most relevant features as extracted from the models for all three
Refactoring-Levels. Only the 5 most frequent features for the Top-N are dis-
played here.

Accuracy

The results of the first experiment show a very high mean accuracy of 99% for
all models, which is 6% higher compared to the original results. A likely ex-
planation for the great performance is that the very unique characteristics of
the Stable-Instances are more pronounced. The analysis in Chapter 4 showed
that the Stable-Instances are a unique subset of classes. Due to the addition
of 19 refactoring types in the data collection, the unique characteristics of the
Stable-Instances are likely to be more pronounced than in the first work. A class
is less likely to be considered stable if more refactoring types are collected, be-
cause more refactorings might be detected. Furthermore, the models are likely
to have seen some of the Refactoring- and Stable-Instances during the train-
ing as they data set was split randomly. This makes the classification problem
considerably easier for the models, as they already know a part of the data.
Thus, the significant performance improvements of the newly trained models
can be explained. The increased number of samples is not a likely explanation
for the improved performance, as all refactoring types with very few samples
in the initial approach (e.g. Extract Subclass (6436) or Extract Variable (6709))
did not under-perform. Additionally, the drastic performance improvements for
the three Refactoring-Types Extract Class, Extract Method and Rename Method
were possible due to the poor performance of the prior models on these specific
refactorings.

In unseen projects, the models show still a very high recall (99%), but the
mean precision (83%) is 4% lower than in the original work. Furthermore,
it can be observed that Class-Level refactorings generalize better than other
Refactoring-Levels with a mean precision of 87% compared to 81% for Method-
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and Variable-Level refactorings. The higher performance of the Class-Level
models is caused by the great performance of the models for Extract Class,
Extract Interface and Extract Subclass refactorings. An analysis of their distri-
bution of process- and ownership metrics reveals that the metric Refactorings
Involved is significantly higher (median 8) compared to the other refactoring
types of the Class-Level (median 3). These major improvements were possible,
because the initial models were performing particularly bad on these refactor-
ing types, with low recall and precision scores.

Important Features

For both classifier types and the two importance measures, four of the six
process- and ownership metrics (Quantity of Major Authors, Author Ownership,
Refactorings Involved and Quantity of Commits) were identified as highly rel-
evant. The high relevance of the two process metrics Author Ownership and
Quantity of Major Authors matches with the findings of the data analysis (see
Chapter 4). Classes that are maintained by a high number of different authors
are very likely to be considered stable and classes with a high Author Ownership
(>0.6) are likely to be refactored, especially Class-Level refactorings. Further-
more, almost all of the FP’s for all models have a high Author Ownership and
more than one major author. A more likely refactoring of classes maintained by
a single author can be attributed to the lower integration and coordination ef-
forts. Unfortunately, we are missing a metric measuring the number of external
references to a class, in order to further explore this topic.

The analysis of the process metrics Refactorings Involved and Quantity of
Commits revealed no clear conclusion. Classes with a higher number of com-
mits (>10) and more than 10 refactorings involved make up the majority of the
false positives. Nonetheless, these samples have metrics that are well within
the range of the samples (75% quartile) the models correctly classified as neg-
ative. The two process metrics Quantity of Commits and Refactorings Involved
were classified as highly relevant by both important measures. The mismatch
of the two importance measures for the ownership metrics Author Ownership
and Quantity of Major Authors is likely due to their strong correlation. Permu-
tation importance suffers from misleading values and suggestions on features
with strong correlation. In case two features are strongly correlated, the model
still has access to the permuted feature through the correlated feature(s) [65].
The metric Quantity of Minor Authors was not identified as relevant and, as it
is not strongly correlated to any other metric, it can be concluded that Quantity
of Minor Authors is not relevant for the prediction.

Multiple factors likely contribute to the high importance of Class-Level fea-
tures for the prediction performance of all models. First, 47 out of total 69
features are Class-Level features. Second, due to the design of the classifi-
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cation experiment, for Method- and Variable-Level refactorings, the model is
shown many Stable-Instances sharing the same class-level features. Therefore,
it is most likely the "best" option for the classifier to improve the classification
of these features as a mistake is more costly. Third, the Class-Level features
already capture a large variety of characteristics.

5.4 Influence of Different Commit Thresholds

In this section, we answer RQ 5: How does the selection of the K effect clas-
sifier performance? and RQ 6: How is the performance of the classifier
on Field-Level refactorings?. First, we describe the setup of the experiment
and display the results. Afterwards we discuss the results and answer the two
aforementioned RQs.

5.4.1 Experimental Setup

For this experiment, we use the ML pipeline as described in Section 5.1. Also, all
results were stored and analyzed as in the previous experiment, see Section 5.3.
For the evaluation of the models only the unseen test set (see Section 5.2.1) was
used.

To evaluate the different K’s, we selected the following K’s based on the
results of the data analysis (see Chapter 4):

• K=15: It is the lowest K in the data set with the most Stable-Instances col-
lected (total 26.99 million). Stable-Instances with this K have the highest
similarity to the Refactoring-Instances (see Section 4.3).

• K=25: The data analysis showed that K=25 is an interesting K. Further-
more, with total of 6.98 million Stable-Instances this threshold still con-
tains many training samples.

• K=50: This is the baseline for comparison with the results of the repro-
duction experiment and the earlier experiment conducted by Aniche et al.
[4]. Furthermore, the data analysis showed that for Stable-Instances with
K>50 the metrics are very stable, see Chapter 4.

5.4.2 Results

Table 5.8 displays the performance of the models using the three K’s for all
11 refactoring types. All results for this experiment can be found in the online
appendix [20]. Please note, if not specified otherwise the results in the following
section always refer to the RF models and do not include the LR models, as the
RF models perform significantly better and are therefore of greater interest.
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K=15 K=25 K=50
Refactoring Acc Pr Re Acc Pr Re Acc Pr Re

Class-Level
Extract Class 0.88 0.83 0.96 0.92 0.88 0.97 0.95 0.92 0.98
Move Class 0.87 0.85 0.91 0.91 0.88 0.94 0.9 0.85 0.98

Method-Level
Inline Method 0.81 0.81 0.79 0.8 0.72 0.98 0.9 0.83 1
Pull Up Method 0.83 0.85 0.8 0.86 0.81 0.96 0.89 0.82 1
Push Down Method 0.84 0.89 0.78 0.9 0.88 0.92 0.9 0.83 1
Merge Parameter 0.95 0.94 0.96 0.97 0.96 0.97 0.97 0.95 1

Variable-Level
Parameterize Variable 0.82 0.81 0.82 0.85 0.8 0.92 0.89 0.83 0.99
Replace Variable With Attribute 0.82 0.83 0.81 0.83 0.79 0.9 0.86 0.79 0.99

Field-Level
Move Attribute 0.77 0.71 0.91 0.66 0.6 0.99 0.71 0.63 1
Pull Up Attribute 0.84 0.86 0.8 0.84 0.77 0.96 0.73 0.65 1
Replace Attribute 0.79 0.79 0.79 0.83 0.85 0.8 0.82 0.77 0.9

Averages
Class-Level 0.88 0.84 0.94 0.92 0.88 0.96 0.93 0.89 0.98
Method-Level 0.86 0.87 0.83 0.88 0.84 0.96 0.92 0.86 1.00
Variable-Level 0.82 0.82 0.82 0.84 0.80 0.91 0.88 0.81 0.99
Field-Level 0.80 0.79 0.83 0.78 0.74 0.92 0.75 0.68 0.97
Total 0.84 0.83 0.85 0.85 0.81 0.94 0.87 0.81 0.99

Table 5.8: Comparison of the performance of the RF models for all K’s.

Observation 1: The RF models perform good for all different thresholds.
The overall accuracy for the RF models is high and fairly similar with 84% for
K=15 , 85% for K=25 and 87% for K=50 . All models show the highest per-
formance for Class-Level refactorings with a mean accuracy of 88% for K=15 ,
92% for K=25 and 93% for K=50 , and the lowest for Field-Level refactorings
with a mean accuracy of 80% for K=15 , 78% for K=25 and 75% for K=50 , see
Table 5.8. The LR models perform significantly worse with an average accuracy
of 75% for K=15 and 83% for K=15 .

Observation 2: LR models cannot adapt Variable-Level refactorings to
K=15 The Table 5.9 shows the performance of the LR models for K=15 and
K=25 . The LR models show a significantly worse performance for K=15 com-
pared to K=25 (-8% average accuracy) and the RF models (-9% average accu-
racy). This significant loss of performance can be attributed to the very low
recall on Variable-Level refactorings (25%), which drastically reduces the over-
all recall and accuracy of the LR models. In regard to precision, the LR models
achieve comparable results to the RF models.
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K=15 K=25
Refactoring Acc Pr Re Acc Pr Re

Class-Level
Extract Class 0.83 0.81 0.86 0.87 0.84 0.9
Move Class 0.82 0.76 0.92 0.86 0.81 0.94

Method-Level
Inline Method 0.72 0.77 0.63 0.79 0.76 0.85
Pull Up Method 0.8 0.77 0.84 0.84 0.79 0.92
Push Down Method 0.81 0.82 0.78 0.86 0.83 0.92
Merge Parameter 0.83 0.98 0.69 0.94 0.96 0.92

Variable-Level
Parameterize Variable 0.58 0.9 0.18 0.8 0.83 0.77
Replace Variable With Attribute 0.64 0.89 0.32 0.8 0.82 0.76

Field-Level
Move Attribute 0.73 0.7 0.81 0.76 0.71 0.88
Pull Up Attribute 0.77 0.74 0.84 0.8 0.75 0.93

Averages
Class-Level 0.83 0.79 0.89 0.87 0.83 0.92
Method-Level 0.79 0.84 0.74 0.86 0.84 0.90
Variable-Level 0.61 0.90 0.25 0.80 0.83 0.77
Field-Level 0.75 0.72 0.83 0.78 0.73 0.91
Total 0.75 0.81 0.69 0.83 0.81 0.88

Table 5.9: Comparison of the performance of the LR models for K=15 and
K=25 .

Observation 3: Increasing K improves only recall K=15 has the highest
total precision with 87% compared to 84% for K=25 and 83% for K=50 , but
K=15 has also the lowest recall with 85% compared to 94% for K=25 and 99%
for K=50 . A similar picture can be observed for the LR models with an aver-
age recall of 69% for K=15 and 88% K=25 , see Table 5.8. The precision is
significantly higher for K=15 for all levels (86% to 88%), except the Class-Level
(84%). Especially for the Field-Level refactorings, the average precision is 7%
higher compared to K=25 and 12% compared to K=50 . On the other hand, the
overall recall is significantly lower for K=15 , the average of the total recall is
8% lower compared to K=25 and 12% compared to K=50 , see Table 5.8.

Observation 4: Field-Level refactorings have the lowest prediction per-
formance Overall, all models show the lowest accuracy for Field-Level refac-
torings, 4% below the total average accuracy for K=15 , 7% lower for K=25
and 12% lower for K=50 . Models with K=15 show the highest performance
for the Field-Level refactorings with an average accuracy of 80% compared to
78% for K=25 and 75% for K=50 . For the RF models trained with K=25 and
K=50 this loss of accuracy can be attributed to the low precision. For K=15
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both precision and recall are balanced. The analysis of the confusion metrics
(see online appendix) reveals that Move Attribute refactorings have only a TN
rate of 33.17%, Pull Up Attribute refactorings of 71.66% and Replace Attribute
of 75.8% for K=25 . For K=15 the TN rates for the Move Attribute refactoring
are also low with 63.23%, for the Pull Up Attribute refactorings of 87.16% and
for the Replace Attribute refactoring of 78.38%.

Figure 5.3: Top-2 features measured by permutation importance for K=15 and
K=25 for the RF models.

Observation 6: Ownership metrics are not highly relevant for lower K’s
In Fig. 5.3 and Fig. 5.4 the Top 2 features as measured by permutation impor-

74



5.4. Influence of Different Commit Thresholds

tance for all 11 refactoring types for K=15 , K=25 and K=50 are displayed. The
other Top-N features for RF and LR can be found in the online appendix. The
metric Author Ownership occurs only once and Quantity of Major Authors never
occurs in the Top-10 of highest permutation importance for the RF models. Also,
Quantity of Major Authors occurs only twice in the Top-5 of the most important
model features. Author Ownership is frequently within the Top-5, 8 times for
K=15 and 12 times for K=25 , but never in the Top-3. For comparison, Quantity
of Major Authors appears in the Top-2 of the model importance measure for all
RF models for K=50 and Quantity of Major Authors is in the Top-5 for all mod-
els, see online appendix for more details. Both metrics Quantity of Authors and
Quantity of Minor Authors do not appear in the Top-10 for K=15 and K=25 .

Figure 5.4: Top-2 features measured by permutation importance for K=50 for
the RF models.

Observation 7: Process Metrics are highly relevant for all K’s Similar to
the results of the reproduction experiment (see Section 5.3.2) the two process
metrics Quantity of Commits and Refactorings Involved are the two most impor-
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Feature Importance Permutation Importance
K=15
Top-1: qtyOfCommits (8), classNumberOfMethods (1), startLine (5), qtyOfCommits (3), refactoringsInvolved (2),

methodParametersQty (1), classLoc (1) methodParametersQty (1)
Top-5: qtyOfCommits (11), authorOwnership (8), classLoc (7), qtyOfCommits (10), refactoringsInvolved (9), startLine (6),

refactoringsInvolved (6), startLine (6) classLoc (5), classNumberOfFields (3)
Top-10: qtyOfCommits (11), authorOwnership (11), classLoc (10), qtyOfCommits (10), refactoringsInvolved (9), classNumberOfMethods (7),

refactoringsInvolved (10), classUniqueWordsQty (8) startLine (6), classLoc (6)
K=25
Top-1: qtyOfCommits (9), classNumberOfMethods (1), qtyOfCommits (7), refactoringsInvolved (2), startLine (1),

methodParametersQty (1) methodParametersQty (1)
Top-5: qtyOfCommits (11), authorOwnership (11), refactoringsInvolved (7), qtyOfCommits (11), refactoringsInvolved (9), startLine (6),

startLine (6), classLoc (5) classLoc (4), classNumberOfMethods (3)
Top-10: qtyOfCommits (11), authorOwnership (11), qtyOfAuthors (11), qtyOfCommits (11), refactoringsInvolved (9), classStringLiteralsQty (9),

qtyMajorAuthors (10), classLoc (9) startLine (6), classLoc (6)
K=50
Top-1: qtyOfCommits (7), authorOwnership (2), classNumberOfMethods (1), refactoringsInvolved (6), authorOwnership (1), qtyOfCommits (1),

methodParametersQty (1) methodParametersQty (1), methodVariablesQty (1)
Top-5: authorOwnership (11), qtyOfCommits (11), qtyOfAuthors (10), refactoringsInvolved (10), qtyOfCommits (7), classNumberOfMethods (5),

qtyMajorAuthors (10), refactoringsInvolved (9) startLine (4), classNumberOfFields (3)
Top-10: authorOwnership (11), qtyOfCommits (11), refactoringsInvolved (11), refactoringsInvolved (10), classNumberOfFields (8), qtyOfCommits (8),

qtyOfAuthors (11), qtyMajorAuthors (10) classCbo (8), classNumberOfMethods (5)

Table 5.10: Most relevant features as measured by permutation and model im-
portance for all refactorings. Only the 5 most frequent features of the Top-N are
displayed here.

tant metrics for the model performance. Quantity of Commits has the highest
model importance for 9 out of the 11 models for K=15 and K=25 , each with an
importance value ranging from 0.06 to 0.16. For the permutation importance it
is not scoring as high but it is 9 times in the Top-2 for K=15 and 10 times in
the Top-2 for K=25 , see Fig. 5.3. Despite, the top importance of the two pro-
cess metrics Quantity of Commits and Refactorings Involved their importance
is reduced for lower K. The total average permutation importance for K=15 of
Quantity of Commits is 4.0 and of Refactorings Involved is 3.18, for K=25 it is
4.54 and 2.64, and for K=50 it is 1.90 and 6.36.

Observation 8: K=15 and K=25 models for Method- and Variable-Level
refactorings rely on Start Line The models for the Method- and Variable-
Level refactorings trained with K=15 strongly make use of the Start Line met-
ric. Start Line is the most important feature for six of the seven Method- and
Variable-Level refactorings measured by permutation importance for K=15 , see
Fig. 5.3. Also, Start Line is in in the Top-3 model feature importance for all of the
seven refactorings, see Table 5.10. Models for Method- and Variable-Level refac-
torings trained with K=50 do not consider this metric important and strongly
rely on the process- and ownership metrics instead.

Observation 9: RF models for low K’s make frequent use of SLoC for
Field-Level refactorings For the RF models with K=15 SLoC is in the Top-
3 of permutation and model importance for the Field-Level refactorings. In
contrast, the LR models for K=15 do not utilize the SLoC metric at all, they
rather use Author Ownership. For models trained with K=25 SLoC is a Top-5
feature for the Field-Level refactorings, except for Move Attribute. K=50 on the
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other hand uses the metric CbO. In general, the Field-Level models for K=15
and K=25 both share many features of high relevance.

5.4.3 Discussion

The main results of the experiment with multiple K’s and Field-Level refactor-
ings are the following: (i) a higher K strongly increases the recall, (ii) RF models
adapt well to different K’s, but the LR models struggle, (iii) for lower K, own-
ership metrics are not of high relevance, (iv) a large variety of features is used
by the different models and (v) Field-Level refactorings are more difficult to
predict.

In the following subsections, the results of this experiment are discussed in
more detail. Similar to the discussion for reproduction experiment, only RF is
discussed in detail because the RF models perform significantly better than LR
models.

Accuracy The selection of the K strongly affects the recall of the models, with
increasing K the recall also increases to more than 98% for K=50 . The precision
of the models is only insignificantly altered, with K=15 having a slightly higher
(2%) precision when compared to the other thresholds. Already a low K of
K=25 is sufficient to achieve high recalls, as the average total recall is 94%.
Previous experiments by Aniche et al. [4] showed comparable results regarding
the recall, but not for precision: both precision (-5.0%) and recall (-9.3%) were
significantly lower on average for K=25 , but for four models the precision was
higher. Furthermore, they found that with increasing K, the recall and overall
accuracy of the models was improved, but precision was reduced.

The data analysis showed that the selection of K affects the feature distribu-
tion of the Stable-Instances for all Stable-Levels and that the Stable-Instances
show overall very different characteristics compared to Refactoring-Instances
except for the Field-Level Instances, see Chapter 4. The data analysis showed
that Stable-Instances only cover a fraction of the collected classes (max. 7.33%
for K=15 ) and this fraction rapidly decreases for higher K’s (max. 0.56% for
K=50 ). Additionally, with increasing K, Stable-Instances improve on multiple
quality metrics and tend to be smaller and generally less complex. The results
of the data analysis can explain the the very high accuracy reported by Aniche
et al. [4] and in this experiment. The separation of the Refactoring- and Stable-
Instances becomes increasingly easier with higher K, as only few Instances of
the two classes have similar features and thus the number of False Negatives
decreases.

The RF model and to some extend the LR are able to adapt their good per-
formance to different K’s, but show significantly lower recall. During training
the model is optimized with the accuracy function, therefore the models are
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likely to consider a sample as negative as it is the cheaper mistake it can make.
This can also explain the slight increase in precision for K=15 , as the models
have to focus more on the characteristics of the refactorings instead of identi-
fying Stable-Instances by their process- and ownership metrics. This can also
be observed in the feature analysis. The ownership metrics Author Ownership
and Quantity of Major Authors are of low importance for K=15 and K=25 , as
they are less distinct for these K’s, see Chapter 4. Furthermore, the models
for the lower thresholds use a wide variety of the important features for the
different refactoring types with the two process metrics Quantity of Commits
and Refactorings Involved being of very high relevance. The models for K=50
are centered around on the same features across the different refactoring types,
they strongly depend on four process- and ownership metrics and a small variety
of class metrics.

Field-Level refactorings The prediction of Field-Level refactorings was in-
troduced in this experiment and they are thus especially interesting. The per-
formance of the models for the Field-Level refactorings was considerably worse
compared to all other Refactoring-Levels, the highest accuracy was achieved by
the K=15 models with 80%. Especially K=25 and K=50 models are suffering
from low precision (average 74% and 68%) on predicting Field-Level refactor-
ings. For K=15 the models also achieve a considerably lower precision (-4%)
with 79%. The lower precision across all K’s can be explained by the higher sim-
ilarity of Stable- and Refactoring-Instances for the Field-Level, see Chapter 4.
The separation between these two classes is more difficult for the classifier and
the number of False Positives increases. Interestingly, the models for K=15 and
K=25 make both strong use of the SLoC metric. Nonetheless, also the Field-
Level metrics rely strongly on the two process metrics Quantity of Commits and
Refactorings Involved for which the Field-Level Stable-Instances show a differ-
ent distribution when compared to the Refactoring-Instances.

5.5 Imbalanced Training

In this section, we answer RQ 7: What are the effects of imbalanced train-
ing on the prediction quality?. We explain the setup of the experiment and
make some important notes. Afterwards, we display and discuss the results,
before we answer RQ 7.

5.5.1 Experimental Setup

This experiment explores the effects of imbalanced training data on the perfor-
mance of the RF classifier. The training set contains 80% negative samples
(Stable-Instances) and 20% positive samples (Refactoring-Instances) for each
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refactoring type. We down-sampled the one of the two classes with random un-
dersampling to fulfill the distribution criteria. The updated machine learning
pipeline was utilized in this approach similar to the experiment with multiple
K’s, see Section 5.4. In contrast to the training, the evaluation was done with
the equally balanced test set, see Section 5.2.1. To speed up the experiment,
we disabled feature reduction and only run it with the RF, because it gives bet-
ter results as LR. 4

5.5.2 Results

Table 5.11 displays the performance of the seven models for which the RF was
trained with the imbalanced training set. The confusion matrix for this experi-
ment is shown in Fig. 5.5. In Fig. 5.6 the Top-3 features measured by permuta-
tion and model importance for the seven models created for this experiment are
displayed. More detailed results can be found in the online appendix [20].

Random Forest
Refactoring Acc F1 Pr Re

Class-Level
Extract Class 0.80 0.77 0.90 0.67
Move Class 0.84 0.82 0.91 0.75

Method-Level
Inline Method 0.73 0.66 0.91 0.51
Pull Up Method 0.80 0.77 0.90 0.67
Push Down Method 0.75 0.68 0.94 0.54
Merge Parameter 0.92 0.92 0.98 0.87

Variable-Level
Parameterize Variable 0.73 0.66 0.91 0.52

Averages
Class-Level 0.82 0.80 0.91 0.71
Method-Level 0.80 0.76 0.93 0.65
Variable-Level 0.73 0.66 0.91 0.52
Total 0.80 0.75 0.92 0.65

Table 5.11: The performance of the RF models for the imbalanced training set.

Observation 1: High precision, but low recall. The models in this experi-
ment all achieve very high precision with a total average precision of 92% (see
Table 5.11), which is 9% higher compared to the models trained with balanced
data (see Section 5.4). The precision of the individual models ranges from 90%
for the Extract Class refactoring to 98% for the Merge Parameter refactoring.
On the other hand, the models have low recall with a total average of 65%,
which is 18% lower compared to the ones generated with the balanced training

4Despite the efforts to speed up the experiment, the experiment did not finish in time. There-
fore, models were created only for seven out of the eleven refactoring type.
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data. Furthermore, the Class-Level refactorings have the highest average recall
with 71%, but the difference is highest (-24%) when compared to the balanced
models.

Observation 2: The Merge Parameter refactoring is exceptionally good.
The Merge Parameter refactoring achieves the highest accuracy of all seven
models with 92%, exceeding the total average accuracy by 12%. This can be ex-
plained by exceptionally high precision (98%) and recall (87%), see Table 5.11.
The RF model trained on the balanced data set achieved a higher accuracy
of 95% (+3%), but a lower precision of 94% (-4%) and a higher recall of 96%
(+9%), see Section 5.4. The Merge Parameter refactoring is the only refactoring
exceeding an accuracy of 90% in both experiments for K=15 .

Observation 3: False Negatives classifications are very common. All
models, except Merge Parameter, generated in this experiment suffer from high
FN rates: the total average FN rate is 35.38%. The Class-Level refactorings
have an average FN rate of 28.94%, the Method-Level refactorings of 35.39%
and the only Variable-Level refactoring Parameterize Variable of 48.24%, see
Fig. 5.5. The False Positive (FP) rates are low for all models, ranging from
4.42% for the Method-Level to 7.33% for the Class-Level refactorings. In the
balanced training for K=15 , the models had higher FP rates, ranging from an
average of 11.89% for the Method-Level to 18.51% for the Class-Level. The FN
rates on the other hand were significantly lower in the balanced training with an
average of 6.38% for the Class-Level, 16.59% for the Method-Level refactorings
and 4.36% for the Merge Parameter refactoring, see Section 5.4.

Observation 4: Ownership metrics are of low relevance for the models.
None of the ownership metrics appears in the Top-5 features measured by per-
mutation importance of all models and only Author Ownership appears three
times in the Top-5 features measured with the model importance. In the Top-10
features measured with model importance Quantity of Authors appears twice,
Quantity of Major Authors once and Author Ownership for all of them.

Observation 5: SLoC and Start Line are of great importance for the
Method- and Variable-Level models. Fig. 5.6 shows that apart from the pro-
cess metrics Quantity of Commits and Refactorings Involved, the class metric
Start Line is highly relevant for Method- and Variable-Level models. Start Line is
in the Top-3 features measured by permutation importance for all Method- and
Variable-Level refactoring models and SLoC is in the Top-3 of three of the four,
see Fig. 5.6. Start Line is also the most important metric for four of the seven
models. For the Top-3 features by model importance, Start Line is also present
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Figure 5.5: Confusion matrix for the seven RF models trained with the imbal-
anced training set.

Figure 5.6: Top-3 features of the RF model measured with model and permuta-
tion importance.

for all the Method- and Variable-Level models, SLoC is not in the Top-3, but in
the Top-5 for Pull-Up Method and Push-Down Method, see [20]. An analysis
of the FN and TP samples shows that Method- and Variable-Level Refactoring-
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Instances with high SLoC are likely to be misclassified as Stable-Instances, see
Fig. 5.7.

(a) False Negatives (FN) (b) True Positives (TP)

Figure 5.7: SLoC of False Negatives and True Positives of the Method-Level RF
models for the imbalanced training experiment

Observation 6: Process metrics are the most important metrics. The
two process metrics Quantity of Commits and Refactorings Involved are metrics
with very high importance for the models. Quantity of Commits is a Top-3 per-
mutation importance feature for all models and Refactorings Involved for the
two Class-Level refactorings Move Class and Extract Class, see Fig. 5.6. For
the model importance, Quantity of Commits is in the Top-3 for 6 models and
Refactorings Involved is the Top-3 for 5 models. The other process metric Bug-
fix Count appears in the Top-10 permutation importance features for 6 models
and in the Top-10 model importance features 4 times, see [20].

5.5.3 Discussion

The main findings for the imbalanced training experiment are: (i) the models
have high precision but very low recall, (ii) Merge Parameter performs well in
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all configurations and (iii) process- and ownership metrics are becoming less
important.

The overall performance of the RF models trained with a training set pre-
dominantly consisting of Stable-Instances (80%) does not reach the perfor-
mance of the models trained in an equally balanced data set with the same
K K=15 . The total average accuracy is with 80%, is 6% lower than for the same
refactorings of the balanced models. On the other hand, these models achieve
a significantly higher (+7%) precision, but the recall is 21% lower. The main
reasons for the low recall is the high FN rate of the models with a total average
of 35.38%. A likely explanation for this behavior is the imbalance in the data
set, only 20% of the samples in the training set were positive. Thus the model
is incentivized to classify samples as negative, as it is more likely to be correct
during training. The adaptability of the RF for imbalanced data is no surprise
as it has been proven to perform well on imbalanced data [34].

Similar to the results of multiple K’s experiment for the RF models for K=15
(see Section 5.4), the ownership metrics are not important for the model per-
formance. For the process metrics the results differ to some degree, the pro-
cess metrics Quantity of Commits and Refactorings Involved are still highly im-
portant metrics, but are outweighed by Start Line for four of the five Method-
and Variable-Level refactoring models. Also, the metric SLoC got more impor-
tance in the imbalanced training, than in any other model configuration. The
Method- and Variable-Level models classified samples with high SLoC predomi-
nantly as Stable-Instances and thereby, made many FN classifications. For the
Class-Level refactorings the models still consider Refactorings Involved highly
relevant and achieved comparable results. For the identification of Class-Level
Stable-instances, SLoC is not an appropriate feature, as it drastically lower for
these Stable-Instances and more similar to the Refactoring-Instances. Within
the Method- and Variable-Level Stable-Instances with classes containing many
methods are over-represented (see Chapter 4), these classes are therefore also
considerably longer and can thus easily be identified.

5.6 Conclusion

The evaluation of three conducted experiments combined with the results of the
data analysis (see Chapter 4) give us insight into the created models. We can
give profound answers to the Research Questions 4 to 7.

RQ 4: How does the initial approach perform with the new data set?
The initial machine learning approach performs very well on the new data set
and the changes it introduced. All performance measures were improved and
the models still generalize well. Furthermore, all other main findings of the
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original work could be reproduced. Furthermore, the performance improve-
ments are likely explained by more pronounced unique characteristics of the
Stable-Instances.

RQ 5: How does the selection of the K effect classifier performance? In-
creasing the K does increase the recall of the models for any refactoring types,
but slightly decreases the precision. For K=15 , the models have the highest
total average precision with 83%. Furthermore, the models do not value own-
ership metrics highly for K=15 and K=25 . The most likely explanation for
these findings is the increased difference for higher K’s between Stable- and
Refactoring-Instances, which is particularly pronounced for process- and own-
ership metrics.

RQ 6: How is the performance of the classifier for Field-Level refactor-
ings? Both LR and RF achieve a decent performance in predicting Field-Level
refactorings, LR has the highest accuracy for K=15 with 80% and LR for K=25
with 78%. The comparably lower accuracy for the Field-Level refactorings can
be explained by the higher similarity of Refactoring- and Stable-Instances of the
Field-Level compared to the other levels.

RQ 7: What are the effects of imbalanced training on the prediction
quality? The RF models reach a total average accuracy of 80%. Having
Stable-Instances as the majority class (80%) in the training data significantly
improves the precision, but drastically reduces the recall of the refactoring
prediction models. The models are more likely to classify a sample as Stable-
Instance based on their ownership metrics. For the Method- and Variable-Level
refactorings also the SLoC metric is of high relevance for the classification.
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Chapter 6

Threads to Validity

In this chapter, we outline and discuss the limitations to the construct, internal
and external validity of this thesis.

Construct Validity.

• Stable-Instances: The Stable-Instances in this work suffer from three
main issues: (i) unique characteristics (see Chapter 4), (ii) selection of K
and (iii) they are refactoring unspecific. The selected K has a significant
impact on the performance of the models. For a class to be considered sta-
ble, all refactorings were considered. Thus, the question arises if the mod-
els identify refactorings or Stable-Instances. The variance in performance
within the Refactoring-Levels suggests that the models can indeed detect
different refactoring types and the great performance cannot be explained
with the characteristics of the Stable-Instances alone. Nonetheless, re-
peating the experiments with a one-class classifier or a different heuris-
tic for the generation of the Stable-Instances might answer this questions
conclusively.

• Bugs in metrics: Aside from errors and exceptions during the data col-
lection, other errors occurred. The two metrics Lines Added and Lines
Deleted were faulty and thus removed. These metrics were identified as
relevant for model performance in the prior work by Aniche et al. [4]. Miss-
ing these metrics might negatively affect the performance of the models.
Furthermore, the implementation of the LCOM metric in CK is in its cur-
rent state faulty and might yield incorrect results. Due to the large variety
of collected metrics these issues should not be a larger thread to the va-
lidity of the results.

• Balance: The distribution of Refactoring-Instances and Stable-Instances
across all classes was not considered in the data balancing for the clas-
sifier training. The two classes were balanced equally for both training
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and evaluation. Therefore, when deploying these models in the wild, the
perceived performance could vary strongly.

• Few classifiers: The evaluation of the models was focused on two classi-
fiers (RF and LR), leaving out many other binary classifiers. Furthermore,
this work did not evaluate the potential of one-class classifiers. Also, the
potential of deep learning and natural language processing (NLP) were not
considered. Therefore, this work cannot make any claims for the viability
of these algorithms.

• Data Analysis: Only 18 of the 69 metrics were analyzed in full scope (see
Chapter 4). These metrics were selected based on the results by Aniche
et al. [4]. Therefore, the data analysis is biased towards machine learning
purposes and other relevant findings were potentially missed. The data
most likely contains plenty of other interesting insights into the motivation,
the implementation and the general usage of refactorings in open-source
projects, and high quality software examples.

• RM: The data collection process relies on RM to detect refactorings which
it does very well (see Chapter 2). Nonetheless, RM misses various refac-
torings (mean recall 93%) and thus might introduce some minor bias into
the data.

• Merge Parameter: The models for Merge Parameter refactoring have
shown exceptionally great performance in all experiments with an accu-
racy ranging from 92% in the imbalanced experiment (see Section 5.5)
to 98% on the balanced training data with K=50 , see Section 5.4.1. In
all experiments the Method Parameters Quantity metric has been by far
the most relevant metric for the models with a permutation and model
importance > 0.21 in all configurations, see [20]. These results suggest
that the Method Parameters Quantity metric can be used to easily distin-
guish between Stable-Instances of the Method-Level and Merge Parameter
Refactoring-Instances and the models might not be suitable in predicting
the refactoring.

Internal Validity.

• High-Level Refactoring: We considered the refactorings as atomical
operations independent from other changes or operations on the source
code. The data has shown that refactorings often do not occur in solitude
and are a component of larger, more complex operations.

• Motivation: We did not consider the motivations of the developers to per-
form a specific refactoring. Furthermore, this research did not assess the
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relevance of the performed refactorings, each refactoring was weighted
equally without considering its impact on the software quality. As the train-
ing set for the models only consisted of refactorings developers considered
worth implementing we expect to include the developers motivation in an
abstract way. Thus, the aforementioned limitations do not pose a (major)
threat to the validity of the results.

• Data collection errors: A small number of errors and exceptions oc-
curred during the data collection, see Section 3.2.2, causing data collec-
tion not to finish for 1,36% of all projects. This small fraction of early
fails should not affect the representation of the data significantly. It might
slightly reduce the count of high K’s Stable-Instances and the number
of refactorings that are applied later in the development process, e.g.
Variable-Level refactorings such as Replace Variable.

• Code Smells: Many approaches on refactoring recommendation use code
smells to detect refactoring opportunities. The concept of code smells
refers to a problematic fragment of the source code showing some clear
characteristics, e.g. feature envy describes a case in which a class uses the
methods of another class extensively. The data analysis on this work did
not include code smells and thus, we cannot draw any conclusions about
the relations of Refactoring- and Stable-Instances with code smells. Fur-
thermore, we did not evaluate the results of the models with code smells,
therefore, we do not know if the models identify code smells or are able
to grasp their concept. Many approaches on detecting code smells rely on
code metrics [60], thus with the computed data set it should be possible
in future work to identify a variety of code smells in the data set and fur-
ther investigate Refactoring- and Stable-Instances. Also, as our approach
to solving the refactoring recommendation problem heavily relies on code
metrics, it is quite likely that the models are able to identify code smells.

External Validity.

• Open-source: All considered projects were open-source projects, re-
search has shown that industry code varies to some extent from open-
source code. Nonetheless, many of the considered projects are widely
used within the industry and or supported and maintained by leading play-
ers such as Facebook or Google.

• Production-code: This thesis only considered production code, thus gen-
eralizing the findings to test code is not possible. It is worth mentioning
that the refactoring data set, a result of this work, allows to repeat the
experiments and validate the findings for test-code.
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• Java: Java was the only programming language considered in this re-
search. Therefore, we cannot generalize the results to other object ori-
ented programming (OOP) languages without reasonable doubt.
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Chapter 7

Conclusions and Future Work

This chapter we draw a conclusion for the main findings of this thesis. After-
wards we draw the discuss ideas for future work.

7.1 Conclusions

This thesis presents, to our knowledge, the largest refactoring data set of open-
source Java projects to date. In the data set, all refactorings are enriched with
a multitude of code-, process- and ownership metrics describing the refactor-
ing on multiple levels. Furthermore, this work collected non-refactored classes
(Stable-Instances) that were introduced by Aniche et al. [4] as negative training
samples for the refactoring prediction problem. The data set can be used by
researchers to further explore the field of software refactoring and source code
maintenance.

In an exploratory data analysis, we identified the Stable-Instances as classes
with unique characteristics covering only a small fraction of all collected classes
(7.33%). In general, Stable-Instances are frequently changed classes with var-
ious developers being involved and are less complex than refactored classes.
Furthermore, the analysis showed that refactorings are predominantly applied
to classes that are developed by a single author. Class- and Other-Level refac-
torings, like Move Class or Move Package, occur most frequently in early de-
velopment stages of a class in contrast to Method- and Variable-Level refactor-
ings, which occur uniformly over the lifetime of a class. Furthermore, Stable-
Instances and Refactoring-Instances can be clearly separated by process- and
ownership metrics.

Machine learning algorithms are effective in identifying Stable-Instances
from metrics and show great potential in predicting refactoring opportunities.
The best results were achieved with the Random Forest classifier, it proved to
be adaptive for different configurations of the classification problem (varying
Stable Commit Thresholds and imbalanced training data) and showed overall
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outstanding results when evaluated on unseen projects, ranging from a total
average accuracy of 80% up to 89%. The two process metrics Quantity of Com-
mits and Refactorings Involved are consistently of very high importance for the
model performance, also of high relevance are ownership metrics, and Class-
Level metrics. Nonetheless, a large variety of metrics is considered by the mod-
els to classify the samples, these vary for the different refactoring types, K’s and
the data balance. The results of experiments show that using a multitude of met-
rics substantially improve the prediction quality and that using a small subset
of metrics is insufficient to reliably predict refactorings from source code.

The answers to the Research Questions 1 to 3 can be found at the end of
Chapter 4 and the answers for Research Questions 4 to 7 at the end of chapter
Chapter 5. All results of this thesis can be found in the online appendix [21]
and [20]. The online appendix includes (i) the complete refactoring data set,
(ii) the lists of all mined projects, (iii) the charts and statistics generated for the
data-analysis, (iv) the trained models for all three machine learning experiments
and (iv) the evaluation results of the machine learning experiments. The source
code for the data collection tool can be found online and can be used by other
researchers. 1 Also, the source code for the machine learning experiment is
publicly available.2

7.2 Future work

In this section, we discuss multiple promising avenues for future work based on
the findings and observations from this thesis.

Specific Stable-Instances For a class to be stable, all refactorings were con-
sidered. This created most likely a broad anti class for refactorings which is not
specific for a single refactoring. Selecting a single refactoring or small set of
refactorings to define the stability of a class could resolve various of the issues
of the current Stable-Instances. These specific Stable-Instances should be ef-
fective negative samples for model training and thereby, could be a crucial step
towards a production ready model.

Analysis of test code Various research has suggested different refactoring
practices for test code [74] and also shown that the refactoring practices for
test code are different from production code [7, 8]. Test code was completely
ignored during the visual analysis of the refactoring data and the evaluation
of various machine learning algorithms. This is a missed opportunity as we

1https://github.com/refactoring-ai/Data-Collection
2https://github.com/refactoring-ai/Machine-Learning
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collected more than 4 million Refactoring-Instances for test code which might
yield interesting insights into refactoring practices for test code.

Data Analysis The created refactoring data set was only analysed with certain
goals, a multitude of future investigations is possible including:

• Refactoring Documentation: How do developers document refactoring
activities in commit messages?

• Code Smells: Comparing refactoring activities with the existence of code
smells. Code smells can be detected with code metrics, therefore it should
be possible to detect code smells in the Refactoring-Instances.

One-class classifier A one-class classifier tries to identify samples of a sin-
gle class from all samples not separating the sample space into two or more
distinct classes. The crucial difference in training is the use of samples from
only a single class and thus, one-class classifiers could be deployed to iden-
tify refactorings in source code based on metrics without considering Stable-
Instances. Code metrics were already used to identify code smells in previous
studies [44, 60], therefore the collected data in combination with a one-class
classifier could be utilized to create models detecting refactorings.
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Glossary

Author Ownership The proportion of commits achieved by the most active de-
veloper of a class file, e.g. developer A has 4 commits and developer B has
2 so the Author Ownership of the class is: 4 / (4 + 2) = 2/3. 17, 46, 47,
50–53, 65–68, 70, 75, 76, 78, 80

Bugfix Count Number of commits with bug fixes for a class file. 17, 47, 49, 50,
52, 67, 82

CbO Coupling between Object: A metric measuring the coupling of a class.
Based on the number of dependencies of a class, it computes the relations
between objects and thereby the metric. 35–39, 44, 45, 67, 77, 94

K Stable Commit Threshold: the minimum number of commits changing a class
without refactoring it until it is considered stable. We collected these
threshold [15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100]. i, vii–ix,
6, 20, 26, 27, 29, 40, 42–45, 47, 51–53, 60, 71–79, 83–85, 87, 90

LCC Loose Class Cohesion: Similar to Tight Class Cohesion but it further in-
cludes the number of indirect connections between visible classes for the
cohesion calculation. Thus, the constraint LCC greater than TCC holds
always. The metric ranges from 0 to 1024.. viii, 15, 35, 36, 45, 47, 67

LCOM Lack of Cohesion of Methods: Measures the correlation of local vari-
ables and methods in a class. vii, viii, 15, 35–38, 46, 85

Level The Level of a Refactoring-Instance or Stable-Instance describes its en-
tity, e.g. Extract Class is a Class-Level refactoring as it is applied to an
entire class in contrast to the Replace Variable refactoring which only af-
fects a specific variable and therefore, is a Variable-Level refactoring. For
a Stable-Instance it defines the level on which the metrics were collected.
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Also, it defines for which refactoring types the Stable-Instance can be used
as a negative sample in classifier training, e.g. a Method-Level Instance
can be used for the training of Extract Method refactoring models. As an
example, for the Method-Level Stable-Instances, class metrics, process-
and ownership metrics and method metrics are collected. Thus, if a class
has five methods, five Method-Level Stable-Instances are generated all
sharing the same class, and process- and ownership metrics. 93, 95

Lines Added The number of lines added in a commit.. 23, 85

Lines Deleted The number of lines deleted in a commit.. 23, 85

LR Logistic Regression classifier. viii, ix, 6, 59, 61–68, 71–73, 75–77, 79, 84, 86

Maximum Number of Nested Blocks in a Method The maximum number
of nested blocks (statements) for this method.. 67

Method CbO Similar to CbO but for methods. 67

Method SLoC This metric counts the number of lines of source code for a
method skipping comments and empty lines. 67

Method RFC Total number of unique method invocations for a single method
within a class. 67

Method Parameters Quantity The number of parameters for a method.. 86

Number of Default Methods Number of default methods in a class. 67

Number of Fields The total count of fields (also referred to as attributes) in a
java class. 67

Number of Methods The total count of methods in a class including all access
modifiers. 15, 35, 43, 67, 68

Number of Public Fields The count of public fields in a class. 15, 35, 44, 45

Number of Unique Words Total number of unique words in the source code
of a class. 35, 37, 39

Number of Unique Words in a Method The total number of unique words,
e.g. "John Doe is married to Mary Doe" has a unique word count of 6. 67

Number of Variables The total count of variables for all methods in a java
class. 35, 39

94



Glossary

Quantity of Authors Total count of unique authors making revisions to a class
file. 17, 47–49, 51, 75, 80

Quantity of Commits Number of commits changing a class file. 17, 49, 50,
52, 65–68, 70, 75, 76, 78, 80, 82, 83, 90

Quantity of Major Authors Number of authors contributing more than 5% of
the commits changing a class file. 17, 47, 67, 68, 70, 75, 78, 80

Quantity of Minor Authors Number of authors contributing less than 5% of
the commits changing a class file. 17, 47, 67, 70, 75

Quantity of String Literals The number of string literals, e.g. for "John Doe"
it is 2, in a class. 35, 39, 45

Refactoring-Instance A single sample of a refactoring in the database. It con-
tains a reference to a project, a Level, class file and file path, commit meta
data, the refactoring type and a summary of the refactoring, and all met-
rics for its Level. 93

Refactorings Involved Number of refactorings affecting a class file. 17, 49,
51–53, 66–68, 70, 75, 76, 78, 80, 82, 83, 90

RF Random Forest classifier. i, viii, ix, 6, 12, 61–65, 67, 68, 71–84, 86

RFC Response for a Class: Total number of unique method invocations within
a class. viii, 15, 35, 37, 39, 45, 47, 67, 94

RM RefactoringMiner: A refactoring detection tool that can detect more than
55 individual refactoring types from source code [73]. 5, 10, 15, 86

SLoC (Source) Lines of Code: This metric counts the number of lines of source
code in a class file skipping comments and empty lines. vii, viii, 35, 37, 39,
45, 67, 76, 78, 80–84, 94

Stable-Instance A single stable sample in the database. It contains a reference
to a project, a Level, class file and file path, commit meta data, and all
metrics for its Level. 6, 93, 94

Start Line The start line of a method in a class.. 76, 80, 83

TCC Tight Class Cohesion: Measures the cohesion of a class with a value range
from 0 to 1. TCC measures the cohesion of a class via direct connections
between visible methods. The metric ranges from 0 to 1024.. 15, 35, 36,
45
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Variable Appearances Total count for a specific variable appearing in the local
method. 67

WMC Weight Method Class: Also referred to as McCabe’s complexity, the met-
ric comprises the number of branch instructions in a class and thereby
measures the complexity of all methods. 35, 37, 39, 44, 45
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A. Appendix

Refactoring All
Production-Code

Test-Code
All Training-Set Test-Set

Class-Level
Extract Class 181821 160501 154786 4832 21320
Extract Interface 90520 86400 82798 3106 4120
Extract Subclass 24851 23471 22519 766 1380
Extract Superclass 293950 239044 230452 7626 54906
Move And Rename Class 247993 208684 200708 7249 39309
Move Class 3072283 2551857 2467925 76803 520426
Rename Class 646341 509885 490167 17702 136456

Method-Level
Change Parameter Type 3264206 3081053 2964120 102386 183153
Change Return Type 2595738 2422332 2332327 79530 173406
Extract And Move Method 435262 360766 348505 10686 74496
Extract Method 1354614 1186251 1140640 38653 168363
Inline Method 237480 216787 208620 6722 20693
Merge Parameter 32278 31197 30102 963 1081
Move And Inline Method 103732 97324 94052 2805 6408
Move And Rename Method 171946 143908 138888 4260 28038
Move Method 910979 782996 754434 24992 127983
Pull Up Method 552954 488880 468945 17466 64074
Push Down Method 195903 185540 177561 6431 10363
Rename Method 2220587 1794512 1728182 58146 426075
Split Parameter 7538 7305 7007 265 233

Variable-Level
Change Variable Type 3216005 2353287 2267038 76220 862718
Extract Variable 763190 674940 649238 22181 88250
Inline Variable 178533 159118 153498 4778 19415
Merge Variable 15660 14119 13588 452 1541
Parameterize Variable 96467 86164 82877 2780 10303
Rename Parameter 1850048 1762542 1697677 55793 87506
Rename Variable 1557697 1286164 1237836 41651 271533
Replace Variable With Attribute 129576 107116 103592 3132 22460
Split Variable 2988 2354 2270 75 634

Field-Level
Change Attribute Type 1955035 1740420 1677111 54985 214615
Extract Attribute 143353 124440 120436 3477 18913
Move And Rename Attribute 6175 5291 5127 154 884
Move Attribute 756245 697333 672853 20800 58912
Pull Up Attribute 298290 255414 246335 7890 42876
Push Down Attribute 89295 85420 81803 2857 3875
Rename Attribute 1172867 1069841 1034477 30555 103026
Replace Attribute 4409 3612 3491 111 797

Other
Change Package 1402976 1156192 1123266 30745 246784
Move Source Folder 3399720 2766923 2663027 93874 632797

Table A.1: Total count of refactoring instances in the database for production
and test code, and the training and test sets
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