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1
Research Paper

1.1. Research Paper
This first chapter contains the research paper. It is a condensed version of the thesis. The thesis starts
from Chapter 2.
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Time-Series Forecasting with Hybrid Federated
Learning: A Personalized Approach to Collaboration

Abstract—Collaborative efforts in Predictive Maintenance and
Control can be beneficial for manufacturers and customers in
industrial environments. However, these efforts are challenged by
the need for multi-dimensional sharing of information about the
same type (horizontal) and piece (vertical) of equipment, privacy
restrictions and the presence of heterogeneous data distributions
across participants. Existing solutions have addressed some of
these challenges for forecasting or different purposes but there
lacks a comprehensive approach that handles all of them for
time series forecasting. To solve this problem, we introduce Time-
series-based Personalized Hybrid Federated Learning (TPHFL),
a hybrid federated learning (FL) strategy that combines Hor-
izontal FL and Vertical FL to enable multi-level knowledge
exchange while preserving data privacy. All participants use
a personalization mechanism to make predictions that better
suit their underlying data distribution. Our approach employs
a distributed model to handle vertical privacy constraints and
addresses data heterogeneity across equipment through a per-
sonalisation mechanism. Through extensive experiments on four
public and one industry-specific datasets, we show that TPHFL
outperforms independent learning scenarios by 27.2%, providing
a strong incentive for parties to collaborate. We demonstrate
the effectiveness of personalisation by showing an accuracy
improvement of up to 42.7% when comparing TPHFL with
personalisation to TPHFL without personalisation, and 32.7%
when comparing traditional HFL methods to HFL with person-
alisation. Additionally, we evaluate a different configuration for
personalisation and perform a detailed hyperparameter analysis
to better understand the behaviour of TPHFL in different
contexts.

I. INTRODUCTION

Time series forecasting is relevant in Predictive Mainte-
nance and Control (PMC), where temporal data and models
are utilized to monitor and estimate the current health state
of equipment, predict future behaviour for early problem
flagging, or schedule maintenance [1], [2] In industrial en-
vironments, information related to one piece of equipment
is scattered over different data sources and often siloed due
to privacy concerns, making it challenging to integrate and
leverage them for predictive models [3], [4]. Moreover, the
deployment of this equipment is geographically distributed
across multiple locations, gathering data in various operational
contexts with heterogeneous data distributions and following
similar privacy concerns [5]. Leveraging data from multiple
locations and data sources offers the potential to significantly
enhance the predictive performance of models, enabling more
accurate forecasting and more effective PMC.

The problem scenario in Figure 1 illustrates the complexities
of managing and integrating data from distributed equipment.
Three clusters hold three manufacturers and one customer
that collect unique performance measurements of distinct

Fig. 1: Problem scenario: three clusters with manufacturers
and customers collect performance measurements. Utilization
of all data requires knowledge exchange within, and between
clusters.

machines. Three contain sensory data owned by various man-
ufacturers, and one holds performance data owned by the
customer. Each customer wants to enhance the predictions
of its performance data by utilizing the data from different
manufacturers and customers. The utilization of data requires
a two-level knowledge exchange. On the first level, we need to
exchange knowledge related to the same piece of equipment
within the cluster and on the second level, we need to
exchange knowledge related to the same types of equipment
between clusters. However, privacy restrictions inhibit sharing
at both levels and even if we could address these concerns,
the heterogeneous data distributions of clusters with data
from machines in different operational contexts complicate
information exchange.

Existing solutions Federated Learning (FL), more specif-
ically Horizontal FL (HFL), addresses the privacy concerns



between clusters by training a global model while only sharing
local model updates [6], [7], as shown in Figure 2a. This
method allows for the exchange of information between clus-
ters of data belonging to the same machine whilst preserving
horizontal privacy constraints. Still, it does not account for the
heterogeneous task profiles and could lead to the generaliza-
tion of predictive models. Multi-Task FL (MTFL) and HFL-
based personalization methods address the data heterogeneity
by considering the modelling of machine-specific data to be
a unique task and balancing task-specific (i.e. cluster-specific)
and global knowledge, or by customizing a shared model to
adapt to machine-specific data, respectively [8], [9]. However,
these methods do not overcome the privacy restrictions within
the clusters.

Alternatively, Vertical FL (VFL) addresses these restrictions
within clusters by training separate models for each party
that differ in accustomed features [10], as shown in Figure
2b. Different models are trained separately for manufactur-
ers and customers and exchange knowledge to improve the
predictive capabilities. Since this method does not overcome
privacy restrictions between clusters, HFL combined with VFL
accommodates both but does not allow for heterogeneous task
profiles [11]. All existing solutions lack a comprehensive ap-
proach that effectively handles knowledge exchange between
and within clusters and accounts for heterogeneous profiles.

Challenges Existing solutions solve part of the problems for
time-series forecasting or provide a solution for non-temporal
data. However, a comprehensive approach that effectively
handles all problems for time-series forecasting does not
exist. Together with its importance in practical applications
such as PMC, this shows the need for further research into
collaborative time-series predictions.

The primary challenges in this domain include:

• Horizontal knowledge exchange: Between clusters
knowledge is siloed due to privacy constraints requiring
inter-task knowledge exchange between parties of differ-
ent tasks while preserving data privacy. Here, we consider
modelling data of different machines as a unique task,
similar to the definitions in MTFL [8], [12], [13].

• Heterogeneous task profiles: The distinctive character-
istics of each task must be accounted for when sharing
knowledge between them as they may exhibit diverse
profiles of time-series data due to different operational
contexts. Classic HFL methods struggle to maintain ac-
curacy when dealing with such non-IID data, which adds
complexity to FL implementations [14].

• Vertical knowledge exchange for sequential data:
Within tasks, knowledge is distributed between multiple
parties and siloed due to privacy constraints requiring
intra-task exchange between parties of the same task
whilst preserving data privacy. We are particularly in-
terested in time-series-based solutions which contain se-
quential data. Traditional models fail to capture temporal
dependencies and specialized sequential models over-
come these challenges [15].

Contributions In this paper, we present a novel approach
to time-series forecasting in predictive maintenance and con-
trol by introducing a Hybrid FL strategy: Time-series-based
Personalized Hybrid Federated Learning (TPHFL). Our con-
tributions are as follows:

1) Hybrid FL strategy: TPHFL integrates both horizontal
and vertical dimensions in FL, facilitating knowledge
exchange within tasks (intra-task) and between tasks
(inter-task) We use a hierarchical solution strategy that
approaches this problem at two different levels. First,
each task is assigned a task model horizontally ag-
gregated by a Federator [7]. Second, each task model
operates as a distributed model with distinct entry points
for each feature, enabling vertically distributed features
in each task. Our strategy provides privacy to a certain
extent by preserving the locality of data, laying a critical
groundwork for future privacy-preserving solutions.

2) Time-series-based memorization: In TPHFL, clients
train a global model that generalizes to all tasks. For
each task, the model is adapted to the task-specific
environment by a personalization mechanism which
utilizes the task-specific training data to refine the
predictions and better align with the underlying data
distribution [16].

3) Time-series-based hierarchical model: A deep learn-
ing model containing sequential model components has
private entry points for each party that produces in-
termediary representations. These are concatenated and
fed through an upper layer. This architecture contains
sequential modules to facilitate temporal data and can
be split into multiple components making it compatible
with the Hybrid FL strategy.

II. RELATED WORK

In this section, we discuss background knowledge on time
series forecasting, FL and MTFL.

A. Time series forecasting

Time-series forecasting involves predicting future values
based on previously observed values in a sequence over
time. The primary challenge in time-series forecasting lies
in capturing temporal dependencies and patterns, which can
be complicated by trends, seasonality, and irregularities [17].
Seasonal Autoregressive Integrated Moving Average with eX-
ogenous inputs (SARIMAX) has been used widely for time-
series forecasting, and generalizes other forecaster such as
ARIMAX, ARIMA and SARIMA [18]–[20]. These linear
models are suitable for small datasets and have a low time
complexity but often struggle with complex, non-linear rela-
tionships within the data [21].

In recent years, deep learning models have become increas-
ingly popular in recent years for time-series forecasting due to
their ability to capture complex temporal dependencies [22],
[23]. Recurrent Neural Networks (RNNs) were one of the
first neural architectures designed for sequential data, enabling
the network to maintain an evolving hidden state to capture



(a) Horizontal

(b) Vertical

Fig. 2: Two types of Federated Learning. Each client holds different features or Sample IDs (SID)
.

temporal patterns [24], [25]. However, traditional RNNs have
limited ability to model long-term dependencies effectively
because of the vanishing gradient problem [26]. Long Short-
Term Memory (LSTM) addresses this limitation by incor-
porating memory cells and gating mechanisms to selectively
retain relevant information over longer time sequences, making
them more robust for complex time-series tasks [23], [27].
Gated Recurrent Units (GRUs), a simplified variant of LSTMs,
offer similar performance while reducing computational com-
plexity by merging some of the gating mechanisms [23],
[28]. More recently, attention-based methods such as the
Transformer [29] enhance interpretability and performance
in time-series forecasting. These methods rely on attention
mechanisms to dynamically focus on different parts of the
input sequence, providing high accuracy and insights into
the underlying temporal relationships [30]. However, due to
the increased model complexity, these models risk overfitting,
especially with small datasets [31].

B. Horizontal Federated Learning

HFL allows N clients with different samples and the same
features to collaboratively train a machine-learning model
without sharing their input data [6] (Figure 2a). Instead, they
share locally computed model updates, such as gradients or
model parameters, with a central server. In FedAvg [7], clients
share model weights with a central server, the Federator, which
aggregates these, updates and redistributes the aggregated
model back to the clients [7], [32]:

θGlobal =
1

N

N∑
n=1

θn (1)

HFL is particularly advantageous for maintaining data pri-
vacy, as sensitive information remains localized at clients’
sites.

C. Heterogeneous data distributions in HFL

To tackle data heterogeneity in FL, various solutions have
been proposed, particularly MTFL and personalization [12],
[13]. MTFL is a federated adaptation of Multi-Task Learning
(MTL) [33], [34] where different related tasks can be learned
jointly, allowing knowledge to be shared between tasks. MTFL
extends MTL by treating clients as a unique task. Shared-
private attention mechanisms address data heterogeneity by
selectively focusing on relevant information across tasks using
attention-based models [35]–[37]. In these methods, clients
train one model with one private attention layer for each
client and one shared attention layer, balancing task-specific
and shared knowledge, and improving the performance of
individual tasks. However, the large model complexity leads
to overfitting and the models lean more towards generaliza-
tion [31].

Clustering techniques group clients with similar data dis-
tributions or tasks together [38]–[40]. Each cluster trains a
separate model, allowing for information exchange between
similar clients. Secondary information such as model weights
can be shared between the clusters in training a cluster model.
However, cluster models will always generalize to their clients,
which is a problem if the tasks do not align perfectly.

Personalization extends the HFL paradigm and customizes
global models individually for clients with unique data distri-
butions [12], [13]. Traditional personalization methods, such
as those employed in FedProx, FedPer, and FedRep, adapt



a global model to local data distributions [?], [41]. FedProx
extends the FedAvg method by introducing a proximal term
used during training to ensure the local models do not deviate
significantly from the global model, allowing the client to
balance personalization and generalization. However, FedProx
shows limited improvement over FedAvg. FedPer and FedRep
the model into global and local components. In these methods,
we train the global part collectively and local components
independently for each client. Although these approaches
allow for personalized adaptation, they can fail to capture
critical features within the global model that may benefit all
clients.

Memorization-based approaches such as KnnPer [16] pro-
vide a personalized solution by using local memorization of
training samples for predictions. Instead of focusing on global
model updates, KnnPer relies on a non-parametric method,
where each client makes predictions by leveraging its training
data directly through a k-nearest neighbors (KNN) approach.
This approach selects the k most similar samples and uses the
sample labels to make new predictions allowing the model to
adapt to each client’s unique data distribution without global
parameter updates.

D. Vertical Federated Learning

VFL addresses scenarios where different clients hold differ-
ent features of the same samples [10] (Figure 2b). In MMVFL,
a central server aligns the locally predicted labels of clients
through aggregation [42]. This allows for the effective transfer
of private labels but is limited to closed-form models and is not
suitable for non-linear models. Through Secure Multi-Party
Computation (SMPC) each client trains a local model with
the encrypted data from their peers [43]. However, both these
methods are not suitable for non-linear models.

In split learning, all clients train a segmented model
of which each client has access to only a portion of the
model [44], [45]. This allows participants to share only in-
termediate representations (instead of raw data), preserving
privacy while enabling model training across vertically parti-
tioned data. This method has been designed for classification
purposes but can be altered to work for sequential data.

While there are Hybrid FL solutions that combine VFL and
HFL approaches [11], they are often ill-suited for time-series
data due to its focus classification models and datasets.

III. FRAMEWORK

We introduce the problem definition in this section, followed
by a step-by-step overview of TPHFL.

1) Problem definition: The proposed architecture targets
time-series forecasting problems involving heterogeneous data
distributions across tasks. Specifically, we consider N tasks
with M parties that predict a univariate time series given
endogenous feature Xn,1 and exogenous features Xn,j ,∀j ∈
[2,M ]. Each party i ∈ [M ] for task n owns the samples for
feature Xn,i. All input features are uni-variate and have the
same time window W but can, for simplicity, be considered
one multi-variate input vector Xn ∈ RM×W belonging to task

Method H V DH TS NN
FedAvg [7] ✓ ✗ ✗ ✗ ✓
[32] ✓ ✗ ✗ ✓ ✓
SplitNN [44] ✗ ✓ ✗ ✗ ✓
MMVFL [42] ✗ ✓ ✗ ✗ ✓
STV [43] ✗ ✓ ✗ ✓ ✗
[11] ✓ ✓ ✗ ✗ ✓
FedProx [41] ✓ ✗ ✓ ✗ ✓
FedPer [46] ✓ ✗ ✓ ✗ ✓
FedRep [47] ✓ ✗ ✓ ✗ ✓
FATHOM [35] ✓ ✗ ✓ ✓ ✓
MTL-Trans [36] ✓ ✗ ✓ ✓ ✓
MSJF [37] ✓ ✗ ✓ ✓ ✓
MOCHA [38] ✓ ✗ ✓ ✗ ✓
[40] ✓ ✗ ✓ ✗ ✓
KnnPer [16] ✓ ✗ ✓ ✗ ✓
TPHFL ✓ ✓ ✓ ✓ ✓

TABLE I: Horizontal (H), Vertical (V), Data Heterogeneity
(DH), Time Series (TS), Neural Networks (NN)

Notation Meaning
N number of tasks
M number of parties and features in each task
W size of input time window
P size of output time window
H size of hidden dimension
Xn ∈ RM×W input vector for task n
Xn,m ∈ RW feature m of input vector for task n
Yn ∈ RP prediction vector for task n
θn model of task n
θn,m m-th component of model of task n
hm ∈ RW×H hidden vector produced by component m ∈ [M ]
h ∈ RM×W×H concatenation of vectors hm for m ∈ [M ]
h′ ∈ RW×H hidden state vector produced by component M + 1
ϕ(X) intermediary representation for input vector X

TABLE II: Notations

n. For each task n, the model predicts one or multiple future
time steps for the endogenous feature. Yn ∈ RP represents
the predictions, the so-called target, where P is the length of
the output time window and owned by party 1 for task n. We
assume that in each task common samples are identified and
aligned by privacy-preserving mechanisms [48]–[50].

The objective of this work is to improve time series predic-
tion through personalization while preserving data locality by
ensuring that features are kept private within or between tasks.
To achieve this, we first aim to develop a global model that
generalizes well across all tasks: To achieve this, we first
aim to develop a global model that generalizes well across all
tasks:

min
θGlobal

N∑
n=1

Ln(θGlobal) (2)

After a consensus on the model by all tasks, we use it in
a personalization algorithm that allows for predictions better
suited for the tasks underlying data distribution.

A trusted third party takes the role of the Federator, respon-
sible for securely collecting the model weights of each party,
aggregating them, and redistributing them to the correct par-
ties. Furthermore, it is responsible for initializing the weights
of θGlobal and sharing them with each party.



Fig. 3: TPHFL Framework in three incremental steps: training, optimization and personalization

2) TPHFL overview: An overview of TPHFL is given
in Figure 3. The method consists of three steps: training,
optimization and personalization. The first two are described
in Algorithm 1, the latter in Algorithm 2. We will discuss each
step individually.

Training. In the initial step, the parties with the features
and labels for task n collaboratively train a distributed model
for multiple epochs. The task model θn contains multiple
components:

θn = {θn,1, θn,2, ..., θn,M+1} (3)

θn,1 to θn,M comprise single LSTM units at the beginning
of the model, whereas θn,M+1 contains an LSTM and Fully
Connected (FC) layer. We chose an LSTM because of its
ability to capture long-term dependencies at a moderate level
of model complexity. Each party m ∈ [M ] for task n
has private ownership over θn,M and party 1 has additional
ownership over θn,M+1 meaning that only the designated party
can read and write the given model weights.

To collaboratively train θn, the Federator initiates the train-
ing process for all parties across tasks in lines 6 and 8 of
Algorithm 1. The Federator calls party 1 separately to handle
the flow of data through the final model component. Each party
processes their data through their private LSTM with an input
window of size 1 in line 18. This way, each piece of input data
Xn,m ∈ RW is transformed to hidden states hm ∈ RW×H .
Each party shares these states with party 1 in line 19, who
concatenates them in line 22, producing h ∈ RM×W×H . This
state serves as input for the LSTM in θn,M+1 with input
window M ×H that transforms h to h′ ∈ RW×H . The new

hidden state is fed through the FC layer to produce prediction
Ŷn. During back-propagation in line 23, party 1 calculates the
loss and gradient for θn,M+1 necessary for updating the model
parameters:

∇θn,M+1 =
∂Lθn

∂θn,M+1
=

∂Lθn

∂Ŷn

∂Ŷn

∂θn,M+1
(4)

Parties 1 to M calculate the gradients for θn,1 to θn,M
individually with:

∇θn,m =
∂Lθn

∂θn,m
=

∂Lθn

∂Ŷn

∂Ŷn

∂hm

∂hm

∂θn,m
(5)

Party 1 calculates the gradient for θn,M+1 and θn,1 and
the derivatives ∂Lθn

∂Ŷn
and ∂Ŷn

∂hm
for m ∈ [2,M ]. It sends the

derivatives to the correct parties in line 24 so they can complete
their gradient calculations in line 27.

Optimization. Each party shares its model component with
the Federator, which is responsible for aggregating these
components using the FedAvg algorithm (Equation 1). The
Federator identifies each model component it receives and
aggregates all θn,i separately. It saves the new model weights
in lines 6 and 8 based on task and party index. This approach
simulates the aggregation of the full task models θn by
aggregating components independently in line 12, creating
a global model that is the same for all tasks while only
exchanging components. Through this process, the Federator
facilitates collaboration and information exchange between
tasks.

We alternate training and optimization across multiple train-
ing epochs. After each local epoch, each task shares its



Algorithm 1: Training and optimization
Data: Xn,m on party (n,m) fed in batches Bn,m, and

Yn on party (n, 1)
Param: Global model parameters θGlobal, tasks N ,

distributed features M , rounds R, epochs E
Result: Trained distributed models θGlobal

1 Federator executes:
2 Initialize θGlobal;
3 for r = 1, ..., R do
4 for (n,m) ∈ [N ]× [M ] do
5 if m == 1 then
6 [θn,m, θn,M+1]←

Train(n,m, θGlobal,m, θGlobal,M+1);
7 else
8 θn,m ←

Train(n,m, θGlobal,m, None)[0];
9 end

10 end
11 for m ∈ [M + 1] do
12 θGlobal,m = 1

N

∑
N θn,m

13 end
14 end
15 Train(n,m, θm, θM+1)
16 for e = 1, ..., E do
17 for b ∈ Bn,m do
18 hm ← θm(b) ;
19 send(hm to party (n, 1));
20 if m == 1 then
21 await(hm for m ∈ [M ]);
22 Ŷ ← θM+1(

⊕
M hm);

23 θM+1 ← θM+1 −∇LθM+1
;

24 send( ∂θ
∂Ŷ

∂Ŷ
∂hm

to (n,m),∀m ∈ [M ])
25 end
26 await(∂Lθ

∂Ŷ
∂Ŷ
∂hm

from party 1);
27 θm ← θm −∇θm;
28 end
29 end
30 return [θm, θM+1]

model components with the Federator and receives updated
components. We continue this process until the task model
performances have converged or after a fixed amount of
training epochs, reaching a consensus on the global model.

Personalization. After achieving consensus on the final
global model, having completed training and optimization,
each task uses its task model θn for memorization-based
personalization. In this approach, we select the most similar
training samples during inference using KNN and use the
accompanied labels Y for memorization-based predictions. For
similarity measurements, we transform the observation X in
the training samples to intermediary representations ϕ(X) as
these contain significant information about the model’s input
interpretation. This representation can be any state inside the

Algorithm 2: Personalization
Data: Dataset Sn on task n
Param: Distributed features M
Result: Predictions Ŷ

1 Each task n executes:
2 Dn ← ∅ for m ∈ [M ] do
3 if m == 1 then
4 Dn ← TransformData(n,m, Sn);
5 else
6 TransformData(n,m, Sn);
7 end
8 end
9 At inference on X return Ŷ with transformed data

Dn and Equation 10 ;
10 TransformData(n,m, S)
11 D ← ∅ ;
12 for (X,Y ) ∈ S do
13 for m ∈ [M ] do
14 hm = θm(Xm);
15 send(hm to party (n,m));
16 if n == 1 then
17 await(hm for m ∈ [M ]);
18 ϕ(X)←

⊕
M hm;

19 D ← D ∪ (ϕ(X), Y );
20 end
21 end
22 end
23 return D

distributed model. In our case, we use h as an intermediary
representation.

Typically, we transform our data beforehand as this can
be computationally expensive. In lines 4 and 6, we call the
transformation algorithm for each party of task n, of which
party 1 saves this transformed data in a new dataset. All parties
collaboratively transform the data, as each party will send their
hidden states to party 1 in line 15. Party 1 saves ϕ together
with the labels in line 19.

During inference in line 9, we select the k most similar
samples from our transformed dataset:

Nk(X) = {(ϕ(X(1)), Y(1)), ..., (ϕ(X(k)), Y(k))} (6)

where the ordering is determined by intermediary distances:

d(ϕ(X(1)),X) ≤ ... ≤ d(ϕ(X(k)),X) (7)

(ϕ(X(1)), Y(1)) is the i-th nearest neighbour for task n
and sample X . The distance metric d, typically chosen as
Euclidean distance or another similarity measure, plays a key
role in determining the influence of each neighbour label on
the final prediction.

These neighbours are most similar to our input and can be
used to make memorization-based predictions:

d(i)(X) = d(ϕ(X(i)),X) (8)



ŶKNN =

∑k
i=1 K(d(i)(X))Y(i)∑k

i=1 K(d(i)(X))
(9)

where K is a kernel. We combine these predictions with
global model predictions ŶθGlobal

, the output of the global
model.

Ŷ = λŶKNN + (1− λ)ŶθGlobal
(10)

where λ ∈ [0, 1] is a weight parameter balancing the
contributions of both losses for task n.

IV. EXPERIMENTS

We evaluate the forecasting of TPHFL against scenarios
with different forms of data locality and collaborative capa-
bilities. Additionally, we conduct experiments with a different
hidden representation ϕ and perform hyper-parameter analysis.
We first discuss the experimental settings.

A. Experimental settings

We use four public datasets for the experiments: Air
quality [51], Solar power [52], Crypto [53] and Rossman
Sales [54]. Additionally, we used an industry-specific dataset
to predict a specific parameter from sensor values in semicon-
ductor manufacturing. Further details on the public datasets
are given in Appendix A. We briefly go over the baselines
used for evaluation and more specific settings.

Collaboration
Data locality Vertical Hybrid

None - Centralized
Horizontal Independent FedAvg, TPHFL-H

Vertical - Centralized+
Hybrid Independent+ TPHFL-NP, TPHFL

TABLE III: Baseline methods with different forms of data
locality and collaboration.

B. Baseline

We compare TPHFL to scenarios that differ in data locality
and collaborative capabilities shown in Table III. We show a
schematic overview for each baseline method in Appendix B.
All methods enable vertical collaboration by default because
we are training on multivariate time series data because the
goal is not to demonstrate that using more features improves
predictive performance. Instead, we focus on how different
collaboration configurations impact the model’s performance
under privacy constraints. We will discuss the methods in
order of privacy restrictions:

None: No privacy restrictions, allowing all data to be combined
freely.

• Centralized: In this case, horizontal collaboration is
introduced by centralizing and concatenating all training
data and using it to train a single LSTM.

Horizontal: Parties share data within tasks, not between tasks.

• Independent: We allow vertical collaboration by letting
each task train a separate LSTM on its multivariate time
series data, with no exchange of information between
tasks.

• FedAvg: We allow hybrid collaboration by letting each
task train a separate LSTM and sharing the model weights
with a Federator, responsible for aggregating the models
from each task.

• TPHFL-Horizontal: This method builds upon FedAvg
by adding the memorization-based personalization algo-
rithm, similar to TPHFL. Different from TPHFL, TPHFL-
H uses a single LSTM per task.

Vertical: Parties share data between tasks, not within tasks.
• Centralized+: This method is similar to its counterpart

without privacy restrictions (Centralized) but employs the
distributed model instead of a single LSTM to maintain
vertical data locality.

Hybrid: Both dimensions of data locality are in place.
• Independent+: This method is similar to its counterpart

with horizontal privacy restrictions (Independent) but
employs a distributed model instead of a single LSTM
to maintain vertical data locality.

• TPHFL-NoPersonalization: This variant of TPHFL
omits the personalization algorithm.

• TPHFL: Our proposed method enables hybrid collab-
oration while maintaining horizontal and vertical data
locality.

Independent and Centralized serve as expected upper-bound
and lower-bound, respectively. We want TPHFL to show a
decrease in Mean Absolute Error (MAE), meaning an increase
in performance, compared with Independent, showing that
there is an incentive for participants to share knowledge with
other tasks. Centralized is the lower bound because it is an
ideal scenario without data privacy constraints, allowing for
less computational complexity and better performance.

C. Metrics and Setup

We compare the performance of TPHFL and the different
scenarios using the Mean Absolute Error (MAE). For all
datasets, the missing values were interpolated and replaced
with 0 if there were no neighbouring values. We normalized
all data for consistent comparison.

The LSTMs used in the experiments have two layers, a
hidden size of 20 and a dropout of 0.2. We train the models
in 30 epochs, with a batch size of 32, a learning rate of 0.001
and a weight decay of 0.001.

We conduct the training process by splitting the data into
training data (80%) and test data (20%). We use a fixed input
window of 32 and a variable prediction window of 1, 2, 4, 8
and 16. We construct the samples using a sliding window of
1 timestep.

To compare our method with other scenarios, we calculate
the MAE for the different prediction windows and average
all outcomes. For our solution, we run different values for k
1, 3, 5, 7 and 10 and choose the best-performing. In every



Dataset Independent Centralised TPHFL Rel. Imp.

AirQuality 3.60 +/- 0.07 2.77 +/- 0.01 2.96 +/- 0.01 17.8%
Industry 4.28 +/- 0.63 2.48 +/- 0.14 3.23 +/- 0.38 24.4%
Sales 2.96 +/- 0.01 3.02 +/- 0.02 4.40 +/- 0.06 -48.7%
Crypto 2.64 +/- 0.14 1.69 +/- 0.04 2.40 +/- 0.04 8.9%
Solar 2.17 +/- 0.03 1.42 +/- 0.01 1.58 +/- 0.04 27.2%

TABLE IV: Average MAE and standard deviation for methods
with no privacy constraints and TPHFL. We show the relative
improvement of TPHFL over Independent (rel. imp.) in per-
centages.

experiment, we choose the most optimal λ per task for which
we can get the lowest MAE. In the following paragraphs, we
will discuss the results for 6 tasks (except if stated differently)
and the best-performing k. In Appendix C, we included more
extensive results for 2, 4 and 6 tasks with different prediction
window sizes.

D. Forecasting results

Table IV shows that TPHFL performs better than In-
dependent for four out of five datasets with an increase
in performance as high as 27.2%. A performance increase
was not feasible for the Sales dataset due to insufficient
training samples and data quality. The Crypto dataset has a
limited performance increase compared to its peers because
two exogenous features are too similar to the endogenous
feature and contain limited valuable information to improve
the predictions (see Figure 7).

The relative improvement reflects the average performance
enhancement across all prediction windows. However, our
experiments have shown that this improvement is not uniform;
some prediction windows exhibit significantly higher gains
than others. One explanation for this is the seasonality in the
temporal data, where repeating patterns over specific intervals
can have varying impacts for different windows. Windows that
coincide with seasonal trends may benefit from the model’s
ability to capture these patterns.

In Table V, we compare three methods without vertical
privacy constraints to their counterparts that enforce vertical
restrictions. Most experiments show declines in performance
that can be attributed to using a distributed model in place
of a single LSTM. We expect this outcome because increased
model complexity typically leads to a trade-off in predictive
performance. Centralized shows a smaller reduction or im-
provements in performance because it uses a larger dataset,
which is crucial when training more complex models to miti-
gate the negative impact on accuracy. TPHFL can improve its
performance by increasing the number of samples, something
we learned from the Centralized experiments. However, this
may not always be possible due to the limited availability
of temporal data. Sensory data may only be available for
a certain period, and receiving more samples requires the
machine to operate for a longer periodremove ASML context,
more general.

In Table VI, we compare two methods that incorporate hori-
zontal collaboration and personalization with their counterpart

Independent+ Centralised+ TPHFL-H
Dataset MAE Imp. MAE Imp. MAE Imp.

AirQuality 3.72 +/- 0.03 -3.3% 2.80 +/- 0.01 -0.9% 2.58 +/- 0.00 -14.8%
Industry 5.76 +/- 0.91 -34.7% 2.62 +/- 0.23 -6.0% 2.85 +/- 0.34 -13.5%
Sales 5.17 +/- 0.07 -74.8% 3.21 +/- 0.09 -6.3% 2.83 +/- 0.02 -55.3%
Crypto 3.91 +/- 0.41 -48.3% 1.61 +/- 0.03 4.5% 1.67 +/- 0.02 -43.7%
Solar 2.67 +/- 0.07 -23.1% 1.40 +/- 0.01 1.4% 1.38 +/- 0.02 -14.3%

TABLE V: Average MAE and standard deviation for differ-
ent methods with vertical restrictions (Independent+, Central-
ized+), and Horizontal restrictions (TPHFL-H). We compare
the performance increase for methods if we introduce vertical
privacy restrictions: Independent to Independent+, Centralized
to Centralized+ and TPHFL-H to TPHFL.

that do not use personalization. The results demonstrate the
effectiveness of the personalization algorithm, improving the
accuracy in the horizontal and hybrid data privacy domain.
This improvement is especially pronounced for TPHFL be-
cause TPHFL-NP struggles to fit the data due to the complex-
ity of the distributed model and the limited amount of data.
Personalization helps mitigate these challenges, leading to a
larger performance gap than FedAvg and TPHFL-V, methods
that are better suited to fit the model effectively without
personalization.

Dataset FedAvg Imp. TPHFL-NP Imp.

AirQuality 2.91 +/- 0.02 11.3% 3.49 +/- 0.03 15.0%
Industry 3.44 +/- 0.42 17.2% 4.29 +/- 0.55 24.6%
Sales 3.43 +/- 0.02 17.3% 7.68 +/- 0.09 42.7%
Crypto 1.94 +/- 0.04 14.0% 2.94 +/- 0.05 18.3%
Solar 2.05 +/- 0.03 32.7% 2.58 +/- 0.06 38.8%

TABLE VI: Average MAE and standard deviation for different
methods with horizontal and hybrid privacy constraints. We
show the improvement of introducing the personalization
mechanism: FedAvg to TPHFL-H and TPHFL-NP to TPHFL.

Lastly, we show in Figure 4 the MAE for at least one
method from each previous comparison. We show the results
for three datasets and a different number of tasks. When
comparing TPHFL with methods without privacy restrictions,
we observe that Independent consistently serves as an upper
bound, while Centralized almost always acts as a lower bound.
The anomalies are caused by Centralized combining all data,
sometimes at the expense of task-specific performance due to
overfitting or loss of task nuances.

TPHFL-H consistently shows an improvement over TPHFL,
as expected, since using a distributed model in TPHFL in-
troduces complexity that often leads to a loss in accuracy.
Finally, TPHFL-NP consistently underperforms compared to
TPHFL, which aligns with our expectations, as the absence of
personalization limits the model’s ability to fine-tune itself to
task-specific data distributions.

E. Different hidden representation

In the personalization step of TPHFL, the intermediary
representation ϕ(X) can be any output within the model. In



Dataset 2 tasks 4 tasks 6 tasks

TPHFL-I2 TPHFL TPHFL-I2 TPHFL TPHFL-I2 TPHFL

AirQuality 11.6% 9.7% 18.1% 17.4% 18.7% 17.76%
Industry 39.2% 39.5% 37.1% 37.8% 23.2% 24.5%

Sales -23.8% -19.8% -38.6% -18.4% -79.9% -48.7%
Crypto 11.7% 14.2% 2.1% 4.2% 7.4% 8.9%
Solar 5.6% 6.9% 33.1% 34.7% 25.6% 27.2%

TABLE VII: Relative improvement over Independent for TPHFL with different forms of intermediary representations. TPHFL
uses h as TPHFL-I2 uses h′ as intermediary representation.

(a) AirQuality

(b) Crypto

(c) Solar

Fig. 4: Average error for different prediction windows from
three datasets.

Table VII, we compare TPHFL with a variant that uses h′ as
an intermediary state, referred to as TPHFL-I2. The results
indicate that this variant performs better for the AirQuality
dataset, suggesting that, for this dataset, the hidden outputs
from the upper model contain more valuable information for
the samples than those generated by the private LSTM. A
possible explanation is that the endogenous features for each
task in the AirQuality dataset exhibit a higher correlation
than other datasets, leading to task models leaning more
toward global generalization rather than local specialization.
The hidden states produced by the upper model LSTM are
better suited for capturing these global patterns, making them
more suitable as intermediary representations for this dataset.

However, the key takeaway is that choosing intermedi-
ary representations can be highly dataset-dependent as many
unique combinations of outputs could be used for this purpose.
One must carefully evaluate the different possibilities to find
a representation that maximizes the predictive performance of
TPHFL.

F. Hyper-parameter analysis

As mentioned earlier, we can tune two hyperparameters:
the value of k and the hyperparameter λ. Our experiments
revealed that varying k has little impact on the performance
of TPHFL, as demonstrated in Figure 5. In this figure, we
plotted the MAE for all datasets (excluding Sales due to its
consistently low performance) across different values of k. The
results show that the error remains nearly constant, indicating
that the choice of k does not significantly affect the method’s
performance.

Different values of λ significantly affect the performance of
each task model. In Figure 6, we use the Solar dataset as an
example to illustrate this. We plot the MAE of three different
strategies for selecting λ: setting a single global value for
all tasks, choosing an optimal λ for each task individually,
and selecting the optimal λ on a sample-by-sample basis.
For reference, we included the centralized and independent
as upper-bound and lower-bound, respectively. MM is plotted
against different values for λ, while the other methods remain
static because they either are not dependent on λ or always
select an optimal value, leaving no room for tuning λ.

The optimal global λ is set at 0.4 for the Solar dataset,
meaning that we interpolate 40% KNN predictions and 60%
global predictions. We can reduce the MAE further by setting
the parameter on a task basis, demonstrating that the optimal



Fig. 5: Average MAE for different values of k in TPHFL.

Fig. 6: Average MAE for different values of λ in TPHFL and
Solar dataset.

task-based λ varies from task to task, allowing tasks to
balance private and global information independently, improv-
ing overall performance. The balance between private and
global information varies across tasks with heterogeneous data
distributions. Consequently, the optimal λ depends on the
specific characteristics of each task. Tasks with more private
information tend to select a higher λ, while tasks with less
private information lean toward a lower value.

The MAE of sample-based TPHFL falls significantly below
the expected lower bound of Centralized because, on a sample-
by-sample basis, the optimal λ often turns out to be an extreme
value—either 0.0 or 1.0. In other words, it is best to rely
entirely on KNN or global model predictions for most infer-
ences, or in terms of data distribution, the model either fully
prioritizes private information or global knowledge exchange,
depending on the specific sample. When choosing an optimal
λ at the task level, the model balances out these extreme cases,
finding a middle ground. Further investigation is required to
uncover a direct relationship between the characteristics of
individual samples and their corresponding optimal λ values,

providing more insight into the prioritization of private or
global information.

V. CONCLUSION

In this thesis, we proposed a novel FL framework TPHFL
designed to tackle the challenges of time-series forecasting in
distributed, privacy-sensitive industrial environments. By inte-
grating both HFL and VFL approaches, our model facilitates
multi-level knowledge sharing while preserving data locality
by not sharing private data between different parties, laying a
critical groundwork for future, more robust privacy-preserving
solutions. Experiments on several real-world datasets demon-
strate the effectiveness of our method, showing a significant
improvement in predictive performance over traditional inde-
pendent models and further enhancing results from horizontal
collaboration through a personalization algorithm.

For future research, there are multiple areas to investigate.
Our method does not have any formal guarantees necessary
for deploying a method like this. It is essential to strengthen
security guarantees without sacrificing too much model per-
formance. This could involve implementing formal privacy
guarantees or leveraging privacy-preserving techniques such
as homomorphic encryption [55] or differential privacy [56]
which have been proven to be useful in federated setttings [57],
[58]. We recommend exploring the possibilities of multivariate
forecasting. Our method only predicts one endogenous feature.
Predicting multiple interrelated variables could yield richer
insights and more accurate forecasts in practical scenarios by
capturing the interactions between variables. Methods such as
FATHOM have shown that multivariate predictions are a viable
option [35]. Future work could explore architectures that
enable soft predictions, allowing each participating party to
generate localized predictions. Soft predictions would enable
parties without direct access to labels to make approximated
predictions, typically aligned with predictions from party 1.
Techniques such as label sharing in MMVFL or SMPC could
facilitate secure, parallel training across parties, potentially
allowing each party to independently refine and validate pre-
dictions [42], [43]. Lastly, Future research could investigate
strategies for dynamically optimizing λ on a sample-specific
basis, potentially developing algorithms to adapt λ based on
real-time data characteristics. Another approach could involve
analyzing the sensitivity of λ to different data distributions,
enabling a better understanding of its role and refining it into
a more flexible parameter within the model.
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APPENDIX A
DATASETS

We use four public datasets in our evaluation: Air qual-
ity [51], Solar power [52], Crypto [53] and Rossman
Sales [54]. The average correlations between features in each
datasets can be found in Figure 7.

All datasets follow a similar preprocessing protocol. We
select samples in a given time frame, interpolate missing
values and set the remaining missing values to 0. All data
is normalized for consistent comparison.

A. Air Quality

The Air Quality dataset contains hourly data of different
sensory measurements by twelve weather stations in Bei-
jing. There are approximately 35000 samples of temporal
data with 11 attributes under which gasses, temperature or
wind direction. For our experiments, we specifically pick
four attributes PM2.5, PM10, NO2 and CO, of six weather
stations Aotizhongxin, Dingling, Gucheng, Huairou, Tiantan
and Wanshouxigong. The data of each weather station is
used for a separate task. During preprocessing, we select
approximately samples in a two-month period. PM2.5 is the
endogeneous feature, all other features are exogenous.

B. Rossman Sales

Rossman Sales contains historical sales date for 1115 Ross-
man stores. The data was measured on a daily basis on
contains around 920 samples per store. We specifically selecte
four attributes: Sales, Customers, Promo (indicating if there is
a promotion), and Holiday of stores 1 to 6. Sales serves as the
endogeneous feature. The last attribute is a combination of
SchoolHoliday and StateHoliday which we combined during
preprocessing. Specific configurations of batch size, input- and
training window resulted in the use of approximately 720
samples in the experiments.

C. Crypto

The Crypto dataset contains historical trading data for
different cryptocurrencies. The dataset contains a different
number of samples for each currency since the initiated at
different moments in history. All measurements were done per
minute. We selected Close as endogenous feature; and Open,
Close and Volume as exogenous features of six assets: Binance
Coin, Bitcoin, Bitcoin Cash, Cardano, Dogecoin and EOS.IO.
During pre-processing we select approximately 1600 samples
in a two-month period and resample the data into hourly data -
considering the correct aggregation function for each column.

D. Solar

Solar contains energy production measurements in MW
for different solar panels located at multiple solar fields.
The power consumption is measured every five minutes. We
construct tasks by selecting multiple solar panels in one solar
field and treating them as a task. We choose solar fields in
Alabama, Florida, Illinois, Kansas, Massachusetts and Maine.
We selected approximately 1800 in a 7 day period. We select

one panel as endogenous feature and use other panels as
exogenous features.

(a) Air Quality

(b) Sales

(c) Crypto

(d) Solar

Fig. 7: Correlation within tasks, each box contains the average
correlation value and variance.



(a) Centralized (b) Independent (c) FedAvg

(d) TPHFL-H (e) Centralized+ (f) Independent+

(g) TPHFL-NP (h) TPHFL

Fig. 8: Schematic figures of different baselines. Multiple arrows in the last four subfigures indicate distributed features.

APPENDIX B
BASELINE

In Figure 8, we show schematic overviews of all baseline
methods. In Section IV-B we discussed different forms of
data locality and collaboration. These forms translate to the
following configurative choices:
Data locality:

• None: each cluster can share its data with the central
entity, which trains one model with all data (Figures 8a).

• Horizontal: each cluster does not share any information
with others (Figures 8b) or shares its model weights with
the central entity, serving as the Federator, and receives
updated model weights (Figures 8c, 8d).

• Vertical: each cluster shares distributed features with
the central entity, which trains one model with all data
(Figures 8e).

• Hybrid: we combine the configurations of Horizontal and
Vertical data locality. Each cluster trains its model using
distributed features but does not share any information
with the central entity (Figure 8f) or trains with dis-

tributed features and shares only model weights (Figures
8g, 8h).

For collaboration, with exclusively Vertical collaboration we
do not exchange any information between the clusters (Figures
8b, 8f). In all other cases, there is exchange between clusters.

APPENDIX C
EXPERIMENTS

We compare TPHFL to all baseline methods, in three
separate tables. In Table VIII, which is an expanded version of
Table IV, we compare TPHFL to Independent and Centralized
and show the relative improvement of TPHFL compared to
Independent. In Table IX, which is an expansion of Table V,
we compare three methods without vertical privacy constraints
to their counterparts that enforce vertical restrictions. In Table
X, which is an expansion of Table V, we compare two methods
that incorporate horizontal collaboration and personalization
with their counterpart that do not use personalization. Lastly,
in Table XI, which is an expansion of Table VII, we show the
improvements of TPHFL-I2 and TPHFL over Independent.



We conducted these experiments additionally for 2 and 4
tasks. The corresponding results can be found in Tables XII
to XIX.

Dataset PW Independent Centralized TPHFL Imp.

AirQuality 1 2.38 +/- 0.02 1.55 +/- 0.00 1.91 +/- 0.00 19.6%
2 2.21 +/- 0.01 1.90 +/- 0.01 2.00 +/- 0.01 9.5%
4 4.42 +/- 0.02 3.60 +/- 0.01 3.84 +/- 0.01 13.2%
8 6.68 +/- 0.24 5.41 +/- 0.04 5.29 +/- 0.01 20.8%

16 3.60 +/- 0.07 2.77 +/- 0.01 2.96 +/- 0.01 17.8%

Avg. 4.17 +/- 0.46 1.30 +/- 0.02 2.71 +/- 0.11 34.9%

Industry 1 4.76 +/- 0.58 2.05 +/- 0.06 2.62 +/- 0.09 44.9%
2 4.44 +/- 1.26 3.54 +/- 0.43 4.42 +/- 1.14 0.4%
4 3.45 +/- 0.34 2.57 +/- 0.07 3.20 +/- 0.26 7.2%
8 4.56 +/- 0.51 2.92 +/- 0.11 3.19 +/- 0.29 29.9%

16 4.28 +/- 0.63 2.48 +/- 0.14 3.23 +/- 0.38 24.4%

Avg. 2.38 +/- 0.01 2.53 +/- 0.03 3.24 +/- 0.06 -36.3%

Sales 1 2.64 +/- 0.01 2.59 +/- 0.01 3.61 +/- 0.04 -36.6%
2 3.15 +/- 0.00 3.22 +/- 0.02 4.34 +/- 0.03 -37.7%
4 3.65 +/- 0.01 3.58 +/- 0.00 5.32 +/- 0.02 -45.8%
8 2.98 +/- 0.01 3.17 +/- 0.02 5.50 +/- 0.14 -84.7%

16 2.96 +/- 0.01 3.02 +/- 0.02 4.40 +/- 0.06 -48.7%

Avg. 2.24 +/- 0.14 1.19 +/- 0.02 2.09 +/- 0.03 6.9%

Crypto 1 1.97 +/- 0.09 1.17 +/- 0.02 1.95 +/- 0.03 1.0%
2 2.41 +/- 0.11 1.21 +/- 0.02 2.24 +/- 0.05 7.0%
4 2.89 +/- 0.16 2.06 +/- 0.07 2.63 +/- 0.05 9.0%
8 3.67 +/- 0.19 2.80 +/- 0.10 3.10 +/- 0.04 15.6%

16 2.64 +/- 0.14 1.69 +/- 0.04 2.40 +/- 0.04 8.9%

Avg. 1.40 +/- 0.01 0.71 +/- 0.00 0.99 +/- 0.02 29.5%

Solar 1 1.81 +/- 0.02 1.44 +/- 0.02 1.43 +/- 0.03 21.1%
2 1.67 +/- 0.02 1.13 +/- 0.00 1.34 +/- 0.02 19.4%
4 2.60 +/- 0.04 1.80 +/- 0.02 1.86 +/- 0.04 28.3%
8 3.36 +/- 0.07 2.04 +/- 0.02 2.27 +/- 0.08 32.5%

16 2.17 +/- 0.03 1.42 +/- 0.01 1.58 +/- 0.04 27.2%

TABLE VIII: Average MAE and standard deviation for meth-
ods with no privacy constraints and TPHFL. The relative
improvement of TPHFL over Independent (Rel. Imp.) is shown
in percentages.



Dataset PW Independent Independent+ Imp. Centralized Centralized+ Imp. TPHFL-H TPHFL Imp.

AirQuality 1 2.32 +/- 0.06 2.72 +/- 0.03 -16.8% 1.40 +/- 0.01 1.58 +/- 0.01 -12.6% 1.31 +/- 0.00 1.78 +/- 0.00 -35.9%
2 2.38 +/- 0.02 2.51 +/- 0.01 -5.6% 1.55 +/- 0.00 1.85 +/- 0.01 -19.6% 1.52 +/- 0.00 1.91 +/- 0.00 -25.3%
4 2.21 +/- 0.01 2.46 +/- 0.03 -11.2% 1.90 +/- 0.01 2.19 +/- 0.01 -15.1% 1.91 +/- 0.00 2.00 +/- 0.01 -4.9%
8 4.42 +/- 0.02 4.69 +/- 0.03 -6.2% 3.60 +/- 0.01 3.45 +/- 0.01 4.3% 3.43 +/- 0.01 3.84 +/- 0.01 -12.0%

16 6.68 +/- 0.24 6.23 +/- 0.06 6.7% 5.41 +/- 0.04 4.92 +/- 0.03 9.1% 4.74 +/- 0.02 5.29 +/- 0.01 -11.6%

Avg. 3.60 +/- 0.07 3.72 +/- 0.03 -3.3% 2.77 +/- 0.01 2.80 +/- 0.01 -0.9% 2.58 +/- 0.00 2.96 +/- 0.01 -14.8%

Industry 1 4.17 +/- 0.46 4.73 +/- 0.32 -13.4% 1.30 +/- 0.02 1.34 +/- 0.01 -2.8% 2.21 +/- 0.07 2.71 +/- 0.11 -22.5%
2 4.76 +/- 0.58 5.68 +/- 0.37 -19.4% 2.05 +/- 0.06 1.80 +/- 0.04 12.4% 2.61 +/- 0.15 2.62 +/- 0.09 -0.7%
4 4.44 +/- 1.26 6.66 +/- 2.08 -49.9% 3.54 +/- 0.43 3.34 +/- 0.58 5.5% 3.55 +/- 0.99 4.42 +/- 1.14 -24.6%
8 3.45 +/- 0.34 6.18 +/- 1.24 -79.3% 2.57 +/- 0.07 3.07 +/- 0.26 -19.4% 2.79 +/- 0.27 3.20 +/- 0.26 -14.8%

16 4.56 +/- 0.51 5.55 +/- 0.52 -21.6% 2.92 +/- 0.11 3.58 +/- 0.25 -22.6% 3.07 +/- 0.24 3.19 +/- 0.29 -4.1%

Avg. 4.28 +/- 0.63 5.76 +/- 0.91 -34.7% 2.48 +/- 0.14 2.62 +/- 0.23 -6.0% 2.85 +/- 0.34 3.23 +/- 0.38 -13.5%

Sales 1 2.38 +/- 0.01 4.33 +/- 0.09 -82.1% 2.53 +/- 0.03 2.39 +/- 0.02 5.6% 2.27 +/- 0.02 3.24 +/- 0.06 -42.8%
2 2.64 +/- 0.01 4.72 +/- 0.07 -78.4% 2.59 +/- 0.01 3.46 +/- 0.38 -33.7% 2.47 +/- 0.01 3.61 +/- 0.04 -46.1%
4 3.15 +/- 0.00 4.75 +/- 0.07 -50.8% 3.22 +/- 0.02 3.36 +/- 0.01 -4.5% 3.03 +/- 0.01 4.34 +/- 0.03 -43.0%
8 3.65 +/- 0.01 6.83 +/- 0.03 -87.1% 3.58 +/- 0.00 3.79 +/- 0.01 -5.9% 3.70 +/- 0.02 5.32 +/- 0.02 -43.6%

16 2.98 +/- 0.01 5.24 +/- 0.09 -76.1% 3.17 +/- 0.02 3.04 +/- 0.03 4.1% 2.69 +/- 0.03 5.50 +/- 0.14 -104.0%

Avg. 2.96 +/- 0.01 5.17 +/- 0.07 -74.8% 3.02 +/- 0.02 3.21 +/- 0.09 -6.3% 2.83 +/- 0.02 4.40 +/- 0.06 -55.3%

Crypto 1 2.24 +/- 0.14 3.50 +/- 0.43 -55.9% 1.19 +/- 0.02 1.48 +/- 0.03 -24.5% 1.32 +/- 0.01 2.09 +/- 0.03 -58.0%
2 1.97 +/- 0.09 3.32 +/- 0.39 -68.7% 1.17 +/- 0.02 1.21 +/- 0.02 -3.6% 1.40 +/- 0.02 1.95 +/- 0.03 -39.1%
4 2.41 +/- 0.11 2.98 +/- 0.14 -23.5% 1.21 +/- 0.02 1.28 +/- 0.02 -5.7% 1.57 +/- 0.03 2.24 +/- 0.05 -42.9%
8 2.89 +/- 0.16 4.37 +/- 0.52 -51.1% 2.06 +/- 0.07 1.65 +/- 0.02 20.0% 1.84 +/- 0.03 2.63 +/- 0.05 -43.0%

16 3.67 +/- 0.19 5.40 +/- 0.55 -47.0% 2.80 +/- 0.10 2.43 +/- 0.07 13.2% 2.22 +/- 0.01 3.10 +/- 0.04 -39.3%

Avg. 2.64 +/- 0.14 3.91 +/- 0.41 -48.3% 1.69 +/- 0.04 1.61 +/- 0.03 4.5% 1.67 +/- 0.02 2.40 +/- 0.04 -43.7%

Solar 1 1.40 +/- 0.01 1.70 +/- 0.02 -21.2% 0.71 +/- 0.00 0.77 +/- 0.01 -7.8% 0.83 +/- 0.01 0.99 +/- 0.02 -19.5%
2 1.81 +/- 0.02 2.51 +/- 0.08 -38.8% 1.44 +/- 0.02 1.19 +/- 0.02 17.5% 1.16 +/- 0.02 1.43 +/- 0.03 -23.4%
4 1.67 +/- 0.02 2.10 +/- 0.02 -25.5% 1.13 +/- 0.00 0.99 +/- 0.01 12.1% 1.03 +/- 0.01 1.34 +/- 0.02 -30.9%
8 2.60 +/- 0.04 3.08 +/- 0.06 -18.4% 1.80 +/- 0.02 1.82 +/- 0.01 -1.1% 1.69 +/- 0.03 1.86 +/- 0.04 -10.0%

16 3.36 +/- 0.07 3.97 +/- 0.18 -18.0% 2.04 +/- 0.02 2.25 +/- 0.02 -10.5% 2.20 +/- 0.05 2.27 +/- 0.08 -3.2%

Avg. 2.17 +/- 0.03 2.67 +/- 0.07 -23.1% 1.42 +/- 0.01 1.40 +/- 0.01 1.4% 1.38 +/- 0.02 1.58 +/- 0.04 -14.3%

TABLE IX: Average MAE and standard deviation for different methods with Vertical restrictions and Horizontal restrictions.
We compare the performance increase for methods if we introduce vertical privacy restrictions.



Dataset PW FedAvg TPHFL-H Imp. TPHFL-NP TPHFL Imp.

AirQuality 1 1.77 +/- 0.01 1.31 +/- 0.00 26.2% 2.57 +/- 0.06 1.78 +/- 0.00 30.9%
2 2.06 +/- 0.04 1.52 +/- 0.00 26.1% 2.42 +/- 0.02 1.91 +/- 0.00 21.1%
4 2.00 +/- 0.00 1.91 +/- 0.00 4.3% 2.23 +/- 0.02 2.00 +/- 0.01 10.0%
8 3.63 +/- 0.01 3.43 +/- 0.01 5.7% 4.41 +/- 0.01 3.84 +/- 0.01 12.9%

16 5.09 +/- 0.02 4.74 +/- 0.02 6.9% 5.81 +/- 0.04 5.29 +/- 0.01 9.0%

Avg. 2.91 +/- 0.02 2.58 +/- 0.00 11.3% 3.49 +/- 0.03 2.96 +/- 0.01 15.0%

Industry 1 2.66 +/- 0.14 2.21 +/- 0.07 16.7% 3.50 +/- 0.14 2.71 +/- 0.11 22.4%
2 3.16 +/- 0.21 2.61 +/- 0.15 17.7% 3.53 +/- 0.14 2.62 +/- 0.09 25.6%
4 3.79 +/- 1.15 3.55 +/- 0.99 6.4% 5.27 +/- 1.46 4.42 +/- 1.14 16.1%
8 3.83 +/- 0.31 2.79 +/- 0.27 27.2% 4.70 +/- 0.58 3.20 +/- 0.26 31.9%

16 3.74 +/- 0.29 3.07 +/- 0.24 17.9% 4.43 +/- 0.44 3.19 +/- 0.29 28.0%

Avg. 3.44 +/- 0.42 2.85 +/- 0.34 17.2% 4.29 +/- 0.55 3.23 +/- 0.38 24.6%

Sales 1 2.67 +/- 0.01 2.27 +/- 0.02 14.8% 7.29 +/- 0.11 3.24 +/- 0.06 55.5%
2 2.92 +/- 0.01 2.47 +/- 0.01 15.4% 7.41 +/- 0.10 3.61 +/- 0.04 51.3%
4 3.64 +/- 0.01 3.03 +/- 0.01 16.6% 7.86 +/- 0.08 4.34 +/- 0.03 44.8%
8 4.53 +/- 0.03 3.70 +/- 0.02 18.3% 8.29 +/- 0.02 5.32 +/- 0.02 35.8%

16 3.39 +/- 0.03 2.69 +/- 0.03 20.5% 7.54 +/- 0.12 5.50 +/- 0.14 27.1%

Avg. 3.43 +/- 0.02 2.83 +/- 0.02 17.3% 7.68 +/- 0.09 4.40 +/- 0.06 42.7%

Crypto 1 1.71 +/- 0.05 1.32 +/- 0.01 22.7% 2.60 +/- 0.10 2.09 +/- 0.03 19.7%
2 1.79 +/- 0.08 1.40 +/- 0.02 21.7% 2.78 +/- 0.06 1.95 +/- 0.03 30.0%
4 1.74 +/- 0.04 1.57 +/- 0.03 9.9% 2.97 +/- 0.03 2.24 +/- 0.05 24.4%
8 2.10 +/- 0.03 1.84 +/- 0.03 12.2% 2.86 +/- 0.03 2.63 +/- 0.05 7.9%

16 2.38 +/- 0.00 2.22 +/- 0.01 6.6% 3.50 +/- 0.03 3.10 +/- 0.04 11.3%

Avg. 1.94 +/- 0.04 1.67 +/- 0.02 14.0% 2.94 +/- 0.05 2.40 +/- 0.04 18.3%

Solar 1 1.49 +/- 0.01 0.83 +/- 0.01 44.5% 1.63 +/- 0.02 0.99 +/- 0.02 39.3%
2 1.67 +/- 0.03 1.16 +/- 0.02 30.8% 2.24 +/- 0.04 1.43 +/- 0.03 36.3%
4 1.43 +/- 0.01 1.03 +/- 0.01 28.3% 2.20 +/- 0.04 1.34 +/- 0.02 38.8%
8 2.53 +/- 0.06 1.69 +/- 0.03 32.9% 2.96 +/- 0.05 1.86 +/- 0.04 37.0%

16 3.13 +/- 0.06 2.20 +/- 0.05 29.8% 3.86 +/- 0.15 2.27 +/- 0.08 41.2%

Avg. 2.05 +/- 0.03 1.38 +/- 0.02 32.7% 2.58 +/- 0.06 1.58 +/- 0.04 38.8%

TABLE X: Average MAE and standard deviation for different methods with Horizontal and Hybrid privacy constraints. We
show the improvement of introducing the personalization mechanism.



Dataset PW Independent TPHFL-I2 Imp. Independent TPHFL Imp.

AirQuality 1 2.38 +/- 0.02 1.90 +/- 0.00 20.0% 2.38 +/- 0.02 1.91 +/- 0.00 19.6%
2 2.21 +/- 0.01 2.02 +/- 0.01 8.8% 2.21 +/- 0.01 2.00 +/- 0.01 9.5%
4 4.42 +/- 0.02 3.76 +/- 0.01 15.0% 4.42 +/- 0.02 3.84 +/- 0.01 13.2%
8 6.68 +/- 0.24 5.19 +/- 0.01 22.3% 6.68 +/- 0.24 5.29 +/- 0.01 20.8%
16 3.60 +/- 0.07 2.93 +/- 0.00 18.7% 3.60 +/- 0.07 2.96 +/- 0.01 17.8%

Avg. 4.17 +/- 0.46 2.84 +/- 0.12 31.8% 4.17 +/- 0.46 2.71 +/- 0.11 34.9%

Industry 1 4.76 +/- 0.58 2.81 +/- 0.10 40.9% 4.76 +/- 0.58 2.62 +/- 0.09 44.9%
2 4.44 +/- 1.26 4.16 +/- 1.05 6.3% 4.44 +/- 1.26 4.42 +/- 1.14 0.4%
4 3.45 +/- 0.34 3.31 +/- 0.29 4.1% 3.45 +/- 0.34 3.20 +/- 0.26 7.2%
8 4.56 +/- 0.51 3.29 +/- 0.32 27.9% 4.56 +/- 0.51 3.19 +/- 0.29 29.9%
16 4.28 +/- 0.63 3.28 +/- 0.38 23.2% 4.28 +/- 0.63 3.23 +/- 0.38 24.4%

Avg. 2.38 +/- 0.01 3.70 +/- 0.09 -55.7% 2.38 +/- 0.01 3.24 +/- 0.06 -36.3%

Sales 1 2.64 +/- 0.01 3.76 +/- 0.05 -42.3% 2.64 +/- 0.01 3.61 +/- 0.04 -36.6%
2 3.15 +/- 0.00 4.83 +/- 0.03 -53.4% 3.15 +/- 0.00 4.34 +/- 0.03 -37.7%
4 3.65 +/- 0.01 7.60 +/- 0.01 -108.3% 3.65 +/- 0.01 5.32 +/- 0.02 -45.8%
8 2.98 +/- 0.01 6.72 +/- 0.15 -125.9% 2.98 +/- 0.01 5.50 +/- 0.14 -84.7%
16 2.96 +/- 0.01 5.32 +/- 0.07 -79.9% 2.96 +/- 0.01 4.40 +/- 0.06 -48.7%

Avg. 2.24 +/- 0.14 2.11 +/- 0.02 5.8% 2.24 +/- 0.14 2.09 +/- 0.03 6.9%

Crypto 1 1.97 +/- 0.09 1.99 +/- 0.03 -1.0% 1.97 +/- 0.09 1.95 +/- 0.03 1.0%
2 2.41 +/- 0.11 2.39 +/- 0.05 0.8% 2.41 +/- 0.11 2.24 +/- 0.05 7.0%
4 2.89 +/- 0.16 2.65 +/- 0.05 8.4% 2.89 +/- 0.16 2.63 +/- 0.05 9.0%
8 3.67 +/- 0.19 3.08 +/- 0.04 16.2% 3.67 +/- 0.19 3.10 +/- 0.04 15.6%
16 2.64 +/- 0.14 2.44 +/- 0.04 7.4% 2.64 +/- 0.14 2.40 +/- 0.04 8.9%

Avg. 1.40 +/- 0.01 1.01 +/- 0.01 28.2% 1.40 +/- 0.01 0.99 +/- 0.02 29.5%

Solar 1 1.81 +/- 0.02 1.45 +/- 0.02 20.0% 1.81 +/- 0.02 1.43 +/- 0.03 21.1%
2 1.67 +/- 0.02 1.35 +/- 0.03 19.2% 1.67 +/- 0.02 1.34 +/- 0.02 19.4%
4 2.60 +/- 0.04 1.90 +/- 0.04 27.0% 2.60 +/- 0.04 1.86 +/- 0.04 28.3%
8 3.36 +/- 0.07 2.37 +/- 0.07 29.5% 3.36 +/- 0.07 2.27 +/- 0.08 32.5%
16 2.17 +/- 0.03 1.61 +/- 0.04 25.6% 2.17 +/- 0.03 1.58 +/- 0.04 27.2%

TABLE XI: Average MAE and standard deviation for Independent, TPHFL-I2 and TPHFL. We show the improvement over
Independent.



Dataset PW Independent Centralized TPHFL Imp.

AirQuality 1 2.13 +/- 0.03 1.91 +/- 0.05 2.09 +/- 0.00 1.8%
2 2.17 +/- 0.00 1.80 +/- 0.01 2.11 +/- 0.00 2.9%
4 2.16 +/- 0.00 2.03 +/- 0.00 2.21 +/- 0.00 -2.5%
8 4.57 +/- 0.02 4.01 +/- 0.00 3.78 +/- 0.00 17.2%

16 6.21 +/- 0.01 5.91 +/- 0.01 5.37 +/- 0.00 13.6%

Avg. 3.45 +/- 0.01 3.13 +/- 0.02 3.11 +/- 0.00 9.7%

Industry 1 6.65 +/- 0.33 3.59 +/- 0.20 4.25 +/- 0.13 36.1%
2 8.17 +/- 0.46 3.91 +/- 0.13 2.36 +/- 0.02 71.2%
4 2.25 +/- 0.10 3.06 +/- 0.25 1.74 +/- 0.02 22.6%
8 3.52 +/- 0.38 2.04 +/- 0.06 3.54 +/- 0.36 -0.5%

16 7.19 +/- 0.28 4.12 +/- 0.37 4.91 +/- 0.06 31.7%

Avg. 5.56 +/- 0.31 3.34 +/- 0.20 3.36 +/- 0.12 39.5%

Sales 1 2.58 +/- 0.01 2.37 +/- 0.01 2.77 +/- 0.02 -7.6%
2 2.66 +/- 0.01 2.70 +/- 0.01 2.97 +/- 0.03 -11.4%
4 3.32 +/- 0.00 3.16 +/- 0.00 3.44 +/- 0.02 -3.8%
8 3.88 +/- 0.00 3.62 +/- 0.00 4.78 +/- 0.00 -23.0%

16 2.98 +/- 0.00 2.80 +/- 0.00 4.52 +/- 0.05 -51.6%

Avg. 3.09 +/- 0.00 2.93 +/- 0.00 3.70 +/- 0.02 -19.8%

Crypto 1 3.36 +/- 0.38 1.50 +/- 0.02 2.19 +/- 0.09 34.9%
2 1.96 +/- 0.12 1.74 +/- 0.05 2.03 +/- 0.06 -3.2%
4 2.24 +/- 0.07 1.14 +/- 0.01 1.63 +/- 0.02 27.3%
8 3.31 +/- 0.24 1.82 +/- 0.05 2.60 +/- 0.16 21.5%

16 4.90 +/- 0.26 2.29 +/- 0.02 5.10 +/- 0.29 -4.1%

Avg. 3.15 +/- 0.21 1.70 +/- 0.03 2.71 +/- 0.12 14.2%

Solar 1 1.33 +/- 0.01 1.05 +/- 0.01 1.20 +/- 0.01 9.3%
2 1.64 +/- 0.01 1.21 +/- 0.00 1.73 +/- 0.01 -5.5%
4 1.58 +/- 0.00 1.20 +/- 0.00 1.54 +/- 0.02 2.5%
8 2.19 +/- 0.03 2.03 +/- 0.05 2.14 +/- 0.03 2.4%

16 3.24 +/- 0.14 2.35 +/- 0.03 2.68 +/- 0.07 17.4%

Avg. 2.00 +/- 0.04 1.57 +/- 0.02 1.86 +/- 0.03 6.9%

TABLE XII: 2 tasks: Average MAE and standard deviation for
methods with no privacy constraints and TPHFL. The relative
improvement of TPHFL over Independent (Rel. Imp.) is shown
in percentages.

Dataset PW Independent Centralized TPHFL Imp.

AirQuality 1 2.36 +/- 0.05 1.51 +/- 0.02 2.09 +/- 0.00 11.7%
2 2.25 +/- 0.01 1.70 +/- 0.01 1.93 +/- 0.00 14.0%
4 2.18 +/- 0.00 1.82 +/- 0.00 1.97 +/- 0.00 9.9%
8 4.49 +/- 0.02 3.81 +/- 0.00 3.81 +/- 0.00 15.3%

16 6.36 +/- 0.10 5.28 +/- 0.02 4.78 +/- 0.01 24.7%

Avg. 3.53 +/- 0.04 2.82 +/- 0.01 2.91 +/- 0.00 17.4%

Industry 1 4.56 +/- 0.64 1.59 +/- 0.02 2.59 +/- 0.09 43.1%
2 5.91 +/- 0.77 2.23 +/- 0.03 2.76 +/- 0.04 53.2%
4 2.61 +/- 0.13 1.77 +/- 0.03 1.96 +/- 0.01 24.9%
8 3.04 +/- 0.28 2.72 +/- 0.13 2.69 +/- 0.16 11.5%

16 5.08 +/- 0.86 2.39 +/- 0.06 3.17 +/- 0.25 37.6%

Avg. 4.24 +/- 0.54 2.14 +/- 0.05 2.64 +/- 0.11 37.8%

Sales 1 2.61 +/- 0.01 2.66 +/- 0.01 2.44 +/- 0.01 6.7%
2 2.79 +/- 0.01 2.83 +/- 0.01 2.58 +/- 0.01 7.5%
4 3.42 +/- 0.00 3.40 +/- 0.01 3.64 +/- 0.01 -6.2%
8 3.93 +/- 0.01 3.55 +/- 0.02 5.71 +/- 0.00 -45.2%

16 3.13 +/- 0.01 2.88 +/- 0.01 4.46 +/- 0.02 -42.4%

Avg. 3.18 +/- 0.01 3.06 +/- 0.01 3.77 +/- 0.01 -18.4%

Crypto 1 2.48 +/- 0.27 1.07 +/- 0.01 2.20 +/- 0.04 11.1%
2 1.75 +/- 0.07 1.30 +/- 0.02 1.69 +/- 0.01 3.0%
4 1.96 +/- 0.05 1.20 +/- 0.01 1.95 +/- 0.03 0.6%
8 2.74 +/- 0.16 1.65 +/- 0.02 2.60 +/- 0.06 5.0%

16 3.82 +/- 0.25 2.42 +/- 0.02 3.77 +/- 0.09 1.4%

Avg. 2.55 +/- 0.16 1.53 +/- 0.02 2.44 +/- 0.05 4.2%

Solar 1 1.38 +/- 0.02 1.16 +/- 0.01 0.91 +/- 0.02 33.6%
2 1.88 +/- 0.06 1.48 +/- 0.01 1.25 +/- 0.03 33.2%
4 1.78 +/- 0.02 1.13 +/- 0.01 1.16 +/- 0.02 34.8%
8 2.39 +/- 0.07 1.75 +/- 0.02 1.60 +/- 0.04 32.8%

16 3.30 +/- 0.13 2.09 +/- 0.03 2.07 +/- 0.08 37.4%

Avg. 2.14 +/- 0.06 1.52 +/- 0.02 1.40 +/- 0.04 34.7%

TABLE XIII: 4 tasks: Average MAE and standard deviation for
methods with no privacy constraints and TPHFL. The relative
improvement of TPHFL over Independent (Rel. Imp.) is shown
in percentages.



Dataset PW Independent Independent+ Imp. Centralized Centralized+ Imp. TPHFL-H TPHFL Imp.

AirQuality 1 2.13 +/- 0.03 2.77 +/- 0.02 -30.1% 1.91 +/- 0.05 1.88 +/- 0.01 1.8% 1.81 +/- 0.00 2.09 +/- 0.00 -15.4%
2 2.17 +/- 0.00 2.39 +/- 0.01 -10.3% 1.80 +/- 0.01 1.97 +/- 0.01 -9.2% 1.84 +/- 0.00 2.11 +/- 0.00 -14.6%
4 2.16 +/- 0.00 2.30 +/- 0.01 -6.6% 2.03 +/- 0.00 2.00 +/- 0.00 1.8% 1.90 +/- 0.00 2.21 +/- 0.00 -16.2%
8 4.57 +/- 0.02 4.49 +/- 0.00 1.7% 4.01 +/- 0.00 4.06 +/- 0.00 -1.1% 3.60 +/- 0.01 3.78 +/- 0.00 -4.9%
16 6.21 +/- 0.01 5.76 +/- 0.01 7.3% 5.91 +/- 0.01 5.49 +/- 0.02 7.0% 5.42 +/- 0.00 5.37 +/- 0.00 0.9%

Avg. 3.45 +/- 0.01 3.54 +/- 0.01 -2.7% 3.13 +/- 0.02 3.08 +/- 0.01 1.8% 2.92 +/- 0.00 3.11 +/- 0.00 -6.7%

Industry 1 6.65 +/- 0.33 5.91 +/- 0.20 11.1% 3.59 +/- 0.20 6.36 +/- 1.43 -77.1% 4.34 +/- 0.20 4.25 +/- 0.13 2.2%
2 8.17 +/- 0.46 6.17 +/- 0.54 24.6% 3.91 +/- 0.13 7.11 +/- 1.67 -81.7% 4.15 +/- 0.20 2.36 +/- 0.02 43.2%
4 2.25 +/- 0.10 3.58 +/- 0.22 -59.1% 3.06 +/- 0.25 2.13 +/- 0.05 30.2% 1.38 +/- 0.02 1.74 +/- 0.02 -26.7%
8 3.52 +/- 0.38 4.82 +/- 0.83 -37.0% 2.04 +/- 0.06 4.72 +/- 0.14 -131.6% 2.79 +/- 0.35 3.54 +/- 0.36 -26.8%
16 7.19 +/- 0.28 6.05 +/- 0.21 15.9% 4.12 +/- 0.37 6.98 +/- 0.33 -69.3% 3.86 +/- 0.03 4.91 +/- 0.06 -27.3%

Avg. 5.56 +/- 0.31 5.31 +/- 0.40 4.5% 3.34 +/- 0.20 5.46 +/- 0.72 -63.3% 3.30 +/- 0.16 3.36 +/- 0.12 -1.7%

Sales 1 2.58 +/- 0.01 5.37 +/- 0.03 -108.3% 2.37 +/- 0.01 2.79 +/- 0.01 -17.9% 1.97 +/- 0.01 2.77 +/- 0.02 -40.6%
2 2.66 +/- 0.01 5.65 +/- 0.02 -112.1% 2.70 +/- 0.01 2.72 +/- 0.01 -0.6% 2.29 +/- 0.02 2.97 +/- 0.03 -29.7%
4 3.32 +/- 0.00 6.14 +/- 0.03 -85.2% 3.16 +/- 0.00 3.57 +/- 0.00 -12.9% 2.92 +/- 0.01 3.44 +/- 0.02 -18.0%
8 3.88 +/- 0.00 7.81 +/- 0.01 -101.1% 3.62 +/- 0.00 4.87 +/- 0.05 -34.6% 3.47 +/- 0.00 4.78 +/- 0.00 -37.6%
16 2.98 +/- 0.00 6.11 +/- 0.01 -104.8% 2.80 +/- 0.00 3.35 +/- 0.00 -19.5% 2.42 +/- 0.00 4.52 +/- 0.05 -86.6%

Avg. 3.09 +/- 0.00 6.22 +/- 0.02 -101.5% 2.93 +/- 0.00 3.46 +/- 0.02 -18.1% 2.62 +/- 0.01 3.70 +/- 0.02 -41.4%

Crypto 1 3.36 +/- 0.38 5.36 +/- 1.25 -59.4% 1.50 +/- 0.02 1.74 +/- 0.06 -16.1% 1.20 +/- 0.01 2.19 +/- 0.09 -82.6%
2 1.96 +/- 0.12 4.24 +/- 0.74 -116.2% 1.74 +/- 0.05 2.00 +/- 0.10 -14.8% 1.18 +/- 0.00 2.03 +/- 0.06 -72.2%
4 2.24 +/- 0.07 3.14 +/- 0.04 -40.4% 1.14 +/- 0.01 1.42 +/- 0.02 -24.2% 1.27 +/- 0.01 1.63 +/- 0.02 -27.6%
8 3.31 +/- 0.24 5.88 +/- 0.96 -77.9% 1.82 +/- 0.05 2.65 +/- 0.14 -46.0% 1.55 +/- 0.01 2.60 +/- 0.16 -67.2%
16 4.90 +/- 0.26 7.75 +/- 0.58 -58.2% 2.29 +/- 0.02 4.28 +/- 0.04 -86.7% 2.81 +/- 0.07 5.10 +/- 0.29 -81.2%

Avg. 3.15 +/- 0.21 5.27 +/- 0.71 -67.3% 1.70 +/- 0.03 2.42 +/- 0.07 -42.4% 1.60 +/- 0.02 2.71 +/- 0.12 -68.8%

Solar 1 1.33 +/- 0.01 1.40 +/- 0.01 -5.7% 1.05 +/- 0.01 1.05 +/- 0.01 0.4% 1.13 +/- 0.01 1.20 +/- 0.01 -6.2%
2 1.64 +/- 0.01 2.22 +/- 0.04 -35.4% 1.21 +/- 0.00 1.37 +/- 0.00 -13.1% 1.48 +/- 0.01 1.73 +/- 0.01 -16.8%
4 1.58 +/- 0.00 1.95 +/- 0.02 -23.2% 1.20 +/- 0.00 1.21 +/- 0.00 -0.8% 1.12 +/- 0.00 1.54 +/- 0.02 -37.9%
8 2.19 +/- 0.03 2.87 +/- 0.13 -30.9% 2.03 +/- 0.05 2.10 +/- 0.02 -3.4% 1.98 +/- 0.03 2.14 +/- 0.03 -7.8%
16 3.24 +/- 0.14 3.50 +/- 0.09 -7.9% 2.35 +/- 0.03 2.66 +/- 0.05 -13.3% 2.45 +/- 0.06 2.68 +/- 0.07 -9.3%

Avg. 2.00 +/- 0.04 2.39 +/- 0.06 -19.6% 1.57 +/- 0.02 1.68 +/- 0.02 -7.0% 1.63 +/- 0.02 1.86 +/- 0.03 -13.8%

TABLE XIV: 2 tasks: Average MAE and standard deviation for different methods with Vertical restrictions and Horizontal
restrictions. We compare the performance increase for methods if we introduce vertical privacy restrictions.



Dataset PW Independent Independent+ Imp. Centralized Centralized+ Imp. TPHFL-H TPHFL Imp.

AirQuality 1 2.36 +/- 0.05 2.82 +/- 0.03 -19.2% 1.51 +/- 0.02 1.65 +/- 0.00 -9.0% 1.84 +/- 0.00 2.09 +/- 0.00 -13.2%
2 2.25 +/- 0.01 2.56 +/- 0.01 -13.9% 1.70 +/- 0.01 1.74 +/- 0.00 -2.7% 1.73 +/- 0.00 1.93 +/- 0.00 -11.4%
4 2.18 +/- 0.00 2.32 +/- 0.01 -6.2% 1.82 +/- 0.00 1.78 +/- 0.00 2.1% 1.92 +/- 0.00 1.97 +/- 0.00 -2.3%
8 4.49 +/- 0.02 4.84 +/- 0.02 -7.8% 3.81 +/- 0.00 3.68 +/- 0.01 3.4% 3.61 +/- 0.00 3.81 +/- 0.00 -5.5%
16 6.36 +/- 0.10 6.08 +/- 0.03 4.3% 5.28 +/- 0.02 5.14 +/- 0.03 2.7% 5.22 +/- 0.01 4.78 +/- 0.01 8.4%

Avg. 3.53 +/- 0.04 3.72 +/- 0.02 -5.5% 2.82 +/- 0.01 2.80 +/- 0.01 0.9% 2.87 +/- 0.00 2.91 +/- 0.00 -1.7%

Industry 1 4.56 +/- 0.64 4.47 +/- 0.45 1.9% 1.59 +/- 0.02 3.09 +/- 0.16 -94.3% 1.78 +/- 0.00 2.59 +/- 0.09 -45.2%
2 5.91 +/- 0.77 5.40 +/- 0.45 8.7% 2.23 +/- 0.03 3.09 +/- 0.13 -38.6% 1.93 +/- 0.03 2.76 +/- 0.04 -43.1%
4 2.61 +/- 0.13 3.55 +/- 0.17 -36.0% 1.77 +/- 0.03 2.61 +/- 0.12 -48.0% 1.50 +/- 0.01 1.96 +/- 0.01 -31.0%
8 3.04 +/- 0.28 4.32 +/- 0.61 -42.0% 2.72 +/- 0.13 3.84 +/- 0.40 -41.3% 1.99 +/- 0.08 2.69 +/- 0.16 -35.4%
16 5.08 +/- 0.86 5.24 +/- 0.46 -3.1% 2.39 +/- 0.06 4.81 +/- 0.38 -101.4% 2.14 +/- 0.05 3.17 +/- 0.25 -48.1%

Avg. 4.24 +/- 0.54 4.60 +/- 0.43 -8.4% 2.14 +/- 0.05 3.49 +/- 0.24 -63.1% 1.87 +/- 0.04 2.64 +/- 0.11 -41.1%

Sales 1 2.61 +/- 0.01 5.42 +/- 0.04 -107.5% 2.66 +/- 0.01 2.63 +/- 0.01 1.3% 2.10 +/- 0.01 2.44 +/- 0.01 -15.8%
2 2.79 +/- 0.01 5.57 +/- 0.03 -99.3% 2.83 +/- 0.01 3.17 +/- 0.02 -11.7% 2.35 +/- 0.01 2.58 +/- 0.01 -9.8%
4 3.42 +/- 0.00 6.21 +/- 0.02 -81.5% 3.40 +/- 0.01 3.66 +/- 0.01 -7.4% 2.92 +/- 0.01 3.64 +/- 0.01 -24.7%
8 3.93 +/- 0.01 7.81 +/- 0.03 -98.6% 3.55 +/- 0.02 3.95 +/- 0.02 -11.3% 3.51 +/- 0.00 5.71 +/- 0.00 -62.8%
16 3.13 +/- 0.01 6.40 +/- 0.03 -104.3% 2.88 +/- 0.01 3.05 +/- 0.01 -5.9% 2.47 +/- 0.01 4.46 +/- 0.02 -81.0%

Avg. 3.18 +/- 0.01 6.28 +/- 0.03 -97.6% 3.06 +/- 0.01 3.29 +/- 0.02 -7.3% 2.67 +/- 0.01 3.77 +/- 0.01 -41.1%

Crypto 1 2.48 +/- 0.27 4.03 +/- 0.89 -62.7% 1.07 +/- 0.01 1.62 +/- 0.03 -52.4% 1.26 +/- 0.01 2.20 +/- 0.04 -74.5%
2 1.75 +/- 0.07 3.19 +/- 0.50 -82.5% 1.30 +/- 0.02 1.44 +/- 0.01 -10.5% 1.30 +/- 0.01 1.69 +/- 0.01 -30.2%
4 1.96 +/- 0.05 2.52 +/- 0.06 -28.8% 1.20 +/- 0.01 1.54 +/- 0.02 -28.6% 1.34 +/- 0.01 1.95 +/- 0.03 -45.0%
8 2.74 +/- 0.16 4.47 +/- 0.73 -63.0% 1.65 +/- 0.02 2.21 +/- 0.04 -34.2% 1.65 +/- 0.01 2.60 +/- 0.06 -58.1%
16 3.82 +/- 0.25 6.00 +/- 0.69 -57.0% 2.42 +/- 0.02 3.08 +/- 0.07 -27.2% 2.32 +/- 0.02 3.77 +/- 0.09 -62.5%

Avg. 2.55 +/- 0.16 4.04 +/- 0.58 -58.6% 1.53 +/- 0.02 1.98 +/- 0.04 -29.6% 1.57 +/- 0.01 2.44 +/- 0.05 -55.2%

Solar 1 1.38 +/- 0.02 1.68 +/- 0.02 -22.0% 1.16 +/- 0.01 0.88 +/- 0.01 23.7% 0.78 +/- 0.01 0.91 +/- 0.02 -17.7%
2 1.88 +/- 0.06 2.44 +/- 0.08 -30.2% 1.48 +/- 0.01 1.52 +/- 0.01 -2.8% 1.06 +/- 0.02 1.25 +/- 0.03 -18.6%
4 1.78 +/- 0.02 1.97 +/- 0.02 -10.3% 1.13 +/- 0.01 1.38 +/- 0.01 -21.8% 0.93 +/- 0.01 1.16 +/- 0.02 -25.7%
8 2.39 +/- 0.07 2.95 +/- 0.08 -23.5% 1.75 +/- 0.02 1.53 +/- 0.02 12.3% 1.57 +/- 0.05 1.60 +/- 0.04 -2.4%
16 3.30 +/- 0.13 4.07 +/- 0.26 -23.3% 2.09 +/- 0.03 2.15 +/- 0.02 -2.8% 2.01 +/- 0.06 2.07 +/- 0.08 -2.9%

Avg. 2.14 +/- 0.06 2.62 +/- 0.09 -22.2% 1.52 +/- 0.02 1.49 +/- 0.02 1.9% 1.27 +/- 0.03 1.40 +/- 0.04 -10.5%

TABLE XV: 4 tasks: Average MAE and standard deviation for different methods with Vertical restrictions and Horizontal
restrictions. We compare the performance increase for methods if we introduce vertical privacy restrictions.



Dataset PW FedAvg TPHFL-H Imp. TPHFL-NP TPHFL Imp.

AirQuality 1 2.23 +/- 0.01 1.84 +/- 0.00 17.6% 2.35 +/- 0.01 2.11 +/- 0.00 10.4%
2 2.10 +/- 0.00 1.90 +/- 0.00 9.5% 2.30 +/- 0.01 2.21 +/- 0.00 3.8%
4 4.19 +/- 0.00 3.60 +/- 0.01 14.0% 4.46 +/- 0.01 3.78 +/- 0.00 15.3%
8 5.73 +/- 0.01 5.42 +/- 0.00 5.4% 5.56 +/- 0.01 5.37 +/- 0.00 3.4%

16 3.26 +/- 0.01 2.92 +/- 0.00 10.6% 3.51 +/- 0.02 3.11 +/- 0.00 11.5%

Avg. 5.74 +/- 0.24 4.34 +/- 0.20 24.4% 4.77 +/- 0.36 4.25 +/- 0.13 11.1%

Industry 1 5.94 +/- 0.06 4.15 +/- 0.20 30.2% 3.74 +/- 0.39 2.36 +/- 0.02 37.1%
2 2.30 +/- 0.08 1.38 +/- 0.02 40.3% 3.86 +/- 0.06 1.74 +/- 0.02 54.8%
4 3.95 +/- 0.76 2.79 +/- 0.35 29.3% 6.78 +/- 0.45 3.54 +/- 0.36 47.8%
8 5.88 +/- 0.12 3.86 +/- 0.03 34.4% 4.87 +/- 0.11 4.91 +/- 0.06 -0.8%

16 4.76 +/- 0.25 3.30 +/- 0.16 30.7% 4.81 +/- 0.27 3.36 +/- 0.12 30.1%

Avg. 2.50 +/- 0.01 1.97 +/- 0.01 21.0% 6.25 +/- 0.03 2.77 +/- 0.02 55.6%

Sales 1 2.73 +/- 0.01 2.29 +/- 0.02 16.3% 6.40 +/- 0.03 2.97 +/- 0.03 53.6%
2 3.31 +/- 0.01 2.92 +/- 0.01 11.9% 7.27 +/- 0.02 3.44 +/- 0.02 52.6%
4 4.14 +/- 0.00 3.47 +/- 0.00 16.1% 8.16 +/- 0.01 4.78 +/- 0.00 41.4%
8 2.95 +/- 0.00 2.42 +/- 0.00 17.8% 6.76 +/- 0.04 4.52 +/- 0.05 33.0%

16 3.13 +/- 0.01 2.62 +/- 0.01 16.3% 6.97 +/- 0.02 3.70 +/- 0.02 46.9%

Avg. 1.41 +/- 0.02 1.20 +/- 0.01 15.1% 3.72 +/- 0.14 2.19 +/- 0.09 41.1%

Crypto 1 1.23 +/- 0.01 1.18 +/- 0.00 4.6% 3.63 +/- 0.09 2.03 +/- 0.06 44.3%
2 1.70 +/- 0.01 1.27 +/- 0.01 25.2% 3.12 +/- 0.07 1.63 +/- 0.02 47.9%
4 1.99 +/- 0.09 1.55 +/- 0.01 21.8% 4.18 +/- 0.37 2.60 +/- 0.16 37.9%
8 3.20 +/- 0.06 2.81 +/- 0.07 12.2% 6.30 +/- 0.10 5.10 +/- 0.29 19.1%

16 1.91 +/- 0.04 1.60 +/- 0.02 16.0% 4.19 +/- 0.16 2.71 +/- 0.12 35.4%

Avg. 1.33 +/- 0.01 1.13 +/- 0.01 14.5% 1.65 +/- 0.01 1.20 +/- 0.01 26.9%

Solar 1 1.67 +/- 0.02 1.48 +/- 0.01 11.3% 2.23 +/- 0.04 1.73 +/- 0.01 22.4%
2 1.47 +/- 0.01 1.12 +/- 0.00 24.1% 1.86 +/- 0.01 1.54 +/- 0.02 17.0%
4 2.39 +/- 0.04 1.98 +/- 0.03 17.1% 2.43 +/- 0.04 2.14 +/- 0.03 12.0%
8 2.91 +/- 0.11 2.45 +/- 0.06 15.9% 3.35 +/- 0.13 2.68 +/- 0.07 20.1%

16 1.95 +/- 0.04 1.63 +/- 0.02 16.4% 2.30 +/- 0.05 1.86 +/- 0.03 19.3%

TABLE XVI: 2 tasks: Average MAE and standard deviation for different methods with Horizontal and Hybrid privacy
constraints. We show the improvement of introducing the personalization mechanism.



Dataset PW FedAvg TPHFL-H Imp. TPHFL-NP TPHFL Imp.

AirQuality 1 2.24 +/- 0.06 1.84 +/- 0.00 17.7% 2.76 +/- 0.12 2.09 +/- 0.00 24.4%
2 1.95 +/- 0.01 1.73 +/- 0.00 11.3% 2.32 +/- 0.01 1.93 +/- 0.00 16.9%
4 2.00 +/- 0.00 1.92 +/- 0.00 3.9% 2.15 +/- 0.01 1.97 +/- 0.00 8.7%
8 3.96 +/- 0.01 3.61 +/- 0.00 8.9% 4.26 +/- 0.01 3.81 +/- 0.00 10.6%

16 5.59 +/- 0.01 5.22 +/- 0.01 6.6% 5.62 +/- 0.04 4.78 +/- 0.01 15.0%

Avg. 3.15 +/- 0.02 2.87 +/- 0.00 9.0% 3.42 +/- 0.04 2.91 +/- 0.00 14.9%

Industry 1 2.30 +/- 0.05 1.78 +/- 0.00 22.6% 3.72 +/- 0.22 2.59 +/- 0.09 30.4%
2 2.75 +/- 0.04 1.93 +/- 0.03 29.7% 3.68 +/- 0.22 2.76 +/- 0.04 24.9%
4 1.95 +/- 0.04 1.50 +/- 0.01 23.3% 2.88 +/- 0.06 1.96 +/- 0.01 31.8%
8 3.16 +/- 0.37 1.99 +/- 0.08 37.1% 4.77 +/- 0.64 2.69 +/- 0.16 43.5%

16 2.88 +/- 0.09 2.14 +/- 0.05 25.8% 4.52 +/- 0.70 3.17 +/- 0.25 29.8%

Avg. 2.61 +/- 0.12 1.87 +/- 0.04 28.4% 3.91 +/- 0.37 2.64 +/- 0.11 32.6%

Sales 1 2.52 +/- 0.01 2.10 +/- 0.01 16.4% 6.18 +/- 0.04 2.44 +/- 0.01 60.5%
2 2.87 +/- 0.01 2.35 +/- 0.01 18.0% 6.54 +/- 0.05 2.58 +/- 0.01 60.5%
4 3.48 +/- 0.00 2.92 +/- 0.01 16.1% 7.30 +/- 0.03 3.64 +/- 0.01 50.2%
8 4.19 +/- 0.01 3.51 +/- 0.00 16.4% 8.03 +/- 0.02 5.71 +/- 0.00 28.8%

16 3.03 +/- 0.00 2.47 +/- 0.01 18.5% 6.78 +/- 0.05 4.46 +/- 0.02 34.2%

Avg. 3.22 +/- 0.01 2.67 +/- 0.01 17.0% 6.96 +/- 0.04 3.77 +/- 0.01 45.9%

Crypto 1 1.48 +/- 0.01 1.26 +/- 0.01 14.7% 2.80 +/- 0.14 2.20 +/- 0.04 21.4%
2 1.44 +/- 0.00 1.30 +/- 0.01 9.9% 2.56 +/- 0.06 1.69 +/- 0.01 33.9%
4 1.44 +/- 0.01 1.34 +/- 0.01 6.8% 3.08 +/- 0.06 1.95 +/- 0.03 36.7%
8 1.97 +/- 0.01 1.65 +/- 0.01 16.4% 2.92 +/- 0.07 2.60 +/- 0.06 10.9%

16 2.56 +/- 0.01 2.32 +/- 0.02 9.3% 4.54 +/- 0.12 3.77 +/- 0.09 17.0%

Avg. 1.78 +/- 0.01 1.57 +/- 0.01 11.5% 3.18 +/- 0.09 2.44 +/- 0.05 23.2%

Solar 1 1.23 +/- 0.01 0.78 +/- 0.01 36.8% 1.74 +/- 0.04 0.91 +/- 0.02 47.5%
2 1.78 +/- 0.05 1.06 +/- 0.02 40.6% 2.13 +/- 0.06 1.25 +/- 0.03 41.2%
4 1.30 +/- 0.01 0.93 +/- 0.01 28.9% 1.99 +/- 0.01 1.16 +/- 0.02 41.5%
8 2.64 +/- 0.13 1.57 +/- 0.05 40.6% 3.06 +/- 0.13 1.60 +/- 0.04 47.6%

16 3.26 +/- 0.12 2.01 +/- 0.06 38.4% 3.84 +/- 0.16 2.07 +/- 0.08 46.2%

Avg. 2.04 +/- 0.06 1.27 +/- 0.03 37.9% 2.55 +/- 0.08 1.40 +/- 0.04 45.1%

TABLE XVII: 4 tasks: Average MAE and standard deviation for different methods with Horizontal and Hybrid privacy
constraints. We show the improvement of introducing the personalization mechanism.



Dataset PW Independent TPHFL-I2 Imp. Independent TPHFL Imp.

AirQuality 1 2.13 +/- 0.03 1.99 +/- 0.00 6.5% 2.13 +/- 0.03 2.09 +/- 0.00 1.8%
2 2.17 +/- 0.00 2.02 +/- 0.00 7.0% 2.17 +/- 0.00 2.11 +/- 0.00 2.9%
4 2.16 +/- 0.00 2.19 +/- 0.00 -1.8% 2.16 +/- 0.00 2.21 +/- 0.00 -2.5%
8 4.57 +/- 0.02 3.77 +/- 0.01 17.4% 4.57 +/- 0.02 3.78 +/- 0.00 17.2%

16 6.21 +/- 0.01 5.26 +/- 0.00 15.3% 6.21 +/- 0.01 5.37 +/- 0.00 13.6%

Avg. 3.45 +/- 0.01 3.05 +/- 0.00 11.6% 3.45 +/- 0.01 3.11 +/- 0.00 9.7%

Industry 1 6.65 +/- 0.33 4.21 +/- 0.15 36.7% 6.65 +/- 0.33 4.25 +/- 0.13 36.1%
2 8.17 +/- 0.46 2.92 +/- 0.10 64.3% 8.17 +/- 0.46 2.36 +/- 0.02 71.2%
4 2.25 +/- 0.10 1.74 +/- 0.02 22.6% 2.25 +/- 0.10 1.74 +/- 0.02 22.6%
8 3.52 +/- 0.38 3.37 +/- 0.29 4.2% 3.52 +/- 0.38 3.54 +/- 0.36 -0.5%

16 7.19 +/- 0.28 4.64 +/- 0.03 35.4% 7.19 +/- 0.28 4.91 +/- 0.06 31.7%

Avg. 5.56 +/- 0.31 3.38 +/- 0.12 39.2% 5.56 +/- 0.31 3.36 +/- 0.12 39.5%

Sales 1 2.58 +/- 0.01 2.76 +/- 0.01 -7.0% 2.58 +/- 0.01 2.77 +/- 0.02 -7.6%
2 2.66 +/- 0.01 2.89 +/- 0.03 -8.6% 2.66 +/- 0.01 2.97 +/- 0.03 -11.4%
4 3.32 +/- 0.00 3.37 +/- 0.02 -1.5% 3.32 +/- 0.00 3.44 +/- 0.02 -3.8%
8 3.88 +/- 0.00 5.09 +/- 0.00 -31.0% 3.88 +/- 0.00 4.78 +/- 0.00 -23.0%

16 2.98 +/- 0.00 4.99 +/- 0.05 -67.3% 2.98 +/- 0.00 4.52 +/- 0.05 -51.6%

Avg. 3.09 +/- 0.00 3.82 +/- 0.02 -23.8% 3.09 +/- 0.00 3.70 +/- 0.02 -19.8%

Crypto 1 3.36 +/- 0.38 2.28 +/- 0.08 32.1% 3.36 +/- 0.38 2.19 +/- 0.09 34.9%
2 1.96 +/- 0.12 2.07 +/- 0.06 -5.6% 1.96 +/- 0.12 2.03 +/- 0.06 -3.2%
4 2.24 +/- 0.07 1.71 +/- 0.01 23.4% 2.24 +/- 0.07 1.63 +/- 0.02 27.3%
8 3.31 +/- 0.24 2.64 +/- 0.15 20.2% 3.31 +/- 0.24 2.60 +/- 0.16 21.5%

16 4.90 +/- 0.26 5.21 +/- 0.25 -6.3% 4.90 +/- 0.26 5.10 +/- 0.29 -4.1%

Avg. 3.15 +/- 0.21 2.78 +/- 0.11 11.7% 3.15 +/- 0.21 2.71 +/- 0.12 14.2%

Solar 1 1.33 +/- 0.01 1.22 +/- 0.01 8.1% 1.33 +/- 0.01 1.20 +/- 0.01 9.3%
2 1.64 +/- 0.01 1.74 +/- 0.01 -6.4% 1.64 +/- 0.01 1.73 +/- 0.01 -5.5%
4 1.58 +/- 0.00 1.57 +/- 0.02 0.9% 1.58 +/- 0.00 1.54 +/- 0.02 2.5%
8 2.19 +/- 0.03 2.20 +/- 0.03 -0.2% 2.19 +/- 0.03 2.14 +/- 0.03 2.4%

16 3.24 +/- 0.14 2.70 +/- 0.07 16.7% 3.24 +/- 0.14 2.68 +/- 0.07 17.4%

Avg. 2.00 +/- 0.04 1.89 +/- 0.03 5.6% 2.00 +/- 0.04 1.86 +/- 0.03 6.9%

TABLE XVIII: 2 tasks: Average MAE and standard deviation for Independent, TPHFL-I2 and TPHFL. We show the
improvement over Independent.



Dataset PW Independent TPHFL-I2 Imp. Independent TPHFL Imp.

AirQuality 1 2.36 +/- 0.05 2.04 +/- 0.00 13.5% 2.36 +/- 0.05 2.09 +/- 0.00 11.7%
2 2.25 +/- 0.01 1.93 +/- 0.00 14.3% 2.25 +/- 0.01 1.93 +/- 0.00 14.0%
4 2.18 +/- 0.00 1.97 +/- 0.00 9.8% 2.18 +/- 0.00 1.97 +/- 0.00 9.9%
8 4.49 +/- 0.02 3.72 +/- 0.01 17.2% 4.49 +/- 0.02 3.81 +/- 0.00 15.3%

16 6.36 +/- 0.10 4.79 +/- 0.00 24.6% 6.36 +/- 0.10 4.78 +/- 0.01 24.7%

Avg. 3.53 +/- 0.04 2.89 +/- 0.00 18.1% 3.53 +/- 0.04 2.91 +/- 0.00 17.4%

Industry 1 4.56 +/- 0.64 2.76 +/- 0.12 39.3% 4.56 +/- 0.64 2.59 +/- 0.09 43.1%
2 5.91 +/- 0.77 2.91 +/- 0.05 50.7% 5.91 +/- 0.77 2.76 +/- 0.04 53.2%
4 2.61 +/- 0.13 1.90 +/- 0.01 27.3% 2.61 +/- 0.13 1.96 +/- 0.01 24.9%
8 3.04 +/- 0.28 2.60 +/- 0.17 14.5% 3.04 +/- 0.28 2.69 +/- 0.16 11.5%

16 5.08 +/- 0.86 3.16 +/- 0.21 37.7% 5.08 +/- 0.86 3.17 +/- 0.25 37.6%

Avg. 4.24 +/- 0.54 2.67 +/- 0.11 37.1% 4.24 +/- 0.54 2.64 +/- 0.11 37.8%

Sales 1 2.61 +/- 0.01 2.64 +/- 0.01 -0.9% 2.61 +/- 0.01 2.44 +/- 0.01 6.7%
2 2.79 +/- 0.01 2.73 +/- 0.02 2.4% 2.79 +/- 0.01 2.58 +/- 0.01 7.5%
4 3.42 +/- 0.00 3.89 +/- 0.02 -13.6% 3.42 +/- 0.00 3.64 +/- 0.01 -6.2%
8 3.93 +/- 0.01 6.57 +/- 0.01 -67.1% 3.93 +/- 0.01 5.71 +/- 0.00 -45.2%

16 3.13 +/- 0.01 6.21 +/- 0.01 -98.1% 3.13 +/- 0.01 4.46 +/- 0.02 -42.4%

Avg. 3.18 +/- 0.01 4.41 +/- 0.01 -38.6% 3.18 +/- 0.01 3.77 +/- 0.01 -18.4%

Crypto 1 2.48 +/- 0.27 2.23 +/- 0.04 10.1% 2.48 +/- 0.27 2.20 +/- 0.04 11.1%
2 1.75 +/- 0.07 1.73 +/- 0.01 1.1% 1.75 +/- 0.07 1.69 +/- 0.01 3.0%
4 1.96 +/- 0.05 2.14 +/- 0.04 -9.1% 1.96 +/- 0.05 1.95 +/- 0.03 0.6%
8 2.74 +/- 0.16 2.63 +/- 0.06 4.1% 2.74 +/- 0.16 2.60 +/- 0.06 5.0%

16 3.82 +/- 0.25 3.76 +/- 0.10 1.8% 3.82 +/- 0.25 3.77 +/- 0.09 1.4%

Avg. 2.55 +/- 0.16 2.50 +/- 0.05 2.1% 2.55 +/- 0.16 2.44 +/- 0.05 4.2%

Solar 1 1.38 +/- 0.02 0.96 +/- 0.02 30.3% 1.38 +/- 0.02 0.91 +/- 0.02 33.6%
2 1.88 +/- 0.06 1.28 +/- 0.03 31.5% 1.88 +/- 0.06 1.25 +/- 0.03 33.2%
4 1.78 +/- 0.02 1.19 +/- 0.02 33.4% 1.78 +/- 0.02 1.16 +/- 0.02 34.8%
8 2.39 +/- 0.07 1.62 +/- 0.04 32.3% 2.39 +/- 0.07 1.60 +/- 0.04 32.8%

16 3.30 +/- 0.13 2.13 +/- 0.07 35.5% 3.30 +/- 0.13 2.07 +/- 0.08 37.4%

Avg. 2.14 +/- 0.06 1.44 +/- 0.04 33.1% 2.14 +/- 0.06 1.40 +/- 0.04 34.7%

TABLE XIX: 4 tasks: Average MAE and standard deviation for Independent, TPHFL-I2 and TPHFL. We show the improvement
over Independent.
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Introduction

2.1. Problem Scenario
Time series forecasting is relevant in Predictive Maintenance and Control (PMC), where temporal data
and models are utilized to monitor and estimate the current health state of equipment, predict future
behaviour for early problem flagging, or schedule maintenance [31, 36] In industrial environments, in-
formation related to one piece of equipment is scattered over different data sources and often siloed
due to privacy concerns, making it challenging to integrate and leverage them for predictive models [6,
55]. Moreover, the deployment of this equipment is geographically distributed across multiple locations,
gathering data in various operational contexts with heterogeneous data distributions and following sim-
ilar privacy concerns [2]. Leveraging data from multiple locations and data sources offers the potential
to significantly enhance the predictive performance of models, enabling more accurate forecasting and
more effective PMC.

Figure 2.1: Problem scenario: three clusters with manufacturers and customers collect performance measurements. Utilization
of all data requires knowledge exchange within, and between clusters.

The problem scenario in Figure 2.1 illustrates the complexities of managing and integrating data
from distributed equipment. Three clusters hold three manufacturers and one customer that collect
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unique performance measurements of distinct machines. Three contain sensory data owned by vari-
ous manufacturers, and one holds performance data owned by the customer. Each customer wants to
enhance the predictions of its performance data by utilizing the data from different manufacturers and
customers. The utilization of data requires a two-level knowledge exchange. On the first level, we need
to exchange knowledge related to the same piece of equipment within the cluster and on the second
level, we need to exchange knowledge related to the same types of equipment between clusters. How-
ever, privacy restrictions inhibit sharing at both levels and even if we could address these concerns, the
heterogeneous data distributions of clusters with data from machines in different operational contexts
complicate information exchange.

2.2. Existing solutions
Federated Learning (FL), more specifically Horizontal FL (HFL), addresses the privacy concerns be-
tween clusters by training a global model while only sharing local model updates [65, 42], as shown
in Figure 2.2a. This method allows for the exchange of information between clusters of data belong-
ing to the same machine whilst preserving horizontal privacy constraints. Still, it does not account for
the heterogeneous task profiles and could lead to the generalization of predictive models. Multi-Task
FL (MTFL) and HFL-based personalization methods address the data heterogeneity by considering
the modelling of machine-specific data to be a unique task and balancing task-specific (i.e. cluster-
specific) and global knowledge, or by customizing a shared model to adapt to machine-specific data,
respectively [60, 56]. However, these methods do not overcome the privacy restrictions within the
clusters.

Alternatively, Vertical FL (VFL) addresses these restrictions within clusters by training separatemod-
els for each party that differ in accustomed features [37], as shown in Figure 2.2b. Different models
are trained separately for manufacturers and customers and exchange knowledge to improve the pre-
dictive capabilities. Since this method does not overcome privacy restrictions between clusters, HFL
combined with VFL accommodates both but does not allow for heterogeneous task profiles [69]. All ex-
isting solutions lack a comprehensive approach that effectively handles knowledge exchange between
and within clusters and accounts for heterogeneous profiles.

(a) Horizontal

(b) Vertical

Figure 2.2: Two types of Federated Learning. Each client holds different features or Sample IDs (SID)
.

2.3. Challenges
Existing solutions solve part of the problems for time-series forecasting or provide a solution for non-
temporal data. However, a comprehensive approach that effectively handles all problems for time-
series forecasting does not exist. Together with its importance in practical applications such as PMC,
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this shows the need for further research into collaborative time-series predictions.
The primary challenges in this domain include:

• Horizontal knowledge exchange: Between clusters knowledge is siloed due to privacy con-
straints requiring inter-task knowledge exchange between parties of different tasks while pre-
serving data privacy. Here, we consider modelling data of different machines as a unique task,
similar to the definitions in MTFL [57, 22, 60].

• Heterogeneous task profiles: The distinctive characteristics of each task must be accounted for
when sharing knowledge between them as they may exhibit diverse profiles of time-series data
due to different operational contexts. Classic HFL methods struggle to maintain accuracy when
dealing with such non-IID data, which adds complexity to FL implementations [71].

• Vertical knowledge exchange for sequential data: Within tasks, knowledge is distributed be-
tweenmultiple parties and siloed due to privacy constraints requiring intra-task exchange between
parties of the same task whilst preserving data privacy. We are particularly interested in time-
series-based solutions which contain sequential data. Traditional models fail to capture temporal
dependencies and specialized sequential models overcome these challenges [48].

2.4. Research questions
This thesis presents a novel approach to time-series forecasting in PMC by introducing a Hybrid FL
strategy: Time-series-based Personalized Hybrid Federated Learning (TPHFL). Our contributions ad-
dress the following research questions:

1. How can we enable effective horizontal knowledge exchange between tasks in FL while preserv-
ing data privacy across clusters? This question addresses the need for inter-task collaboration in
FL, specifically in contexts where tasks represent different machines or systems. Each task must
maintain data privacy while benefiting from shared insights across clusters.

2. How can FL models be adapted to handle heterogeneous task profiles in time-series data, where
each task’s data may have distinct non-IID characteristics? This question tackles the complexity
of handling diverse time-series profiles within federated learning. The challenge lies in maintain-
ing model performance and robustness despite variability in task characteristics and operational
contexts, which classic HFL methods struggle to address.

3. How can we enable vertical knowledge exchange for time-series data across parties with different
feature sets while preserving privacy and capturing sequential dependencies? This question
focuses on intra-task collaboration in FL, where multiple parties hold different features of the
same time-series data. The goal is to ensure effective knowledge sharing that respects privacy
constraints and leverages sequential dependencies in the data.
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Background

In this section, we discuss background knowledge on time series forecasting, FL and MTFL.

3.1. Time Series forecasting
3.1.1. Definitions
Time series can have different numbers of variables observed and measured over time and come in two
forms: univariate and multivariate series. Univariate time series consists of measurements of only one
variable and can be used in modelling to predict future values [10]. However, it can not measure the
potential relationships between the variable and other influencing factors. Mathematically, we define
univariate time series as a sequence of observations and predictions over time:

𝑋 = {𝑥𝑡}𝑇1𝑡=1 = {𝑥1, 𝑥2, ..., 𝑥𝑇1} (3.1)

�̂� = {�̂�𝑇1+𝑡}
𝑇2
𝑡=1 = {�̂�𝑇1+1, �̂�𝑇1+2, ..., �̂�𝑇1+𝑇2} (3.2)

Here, 𝑥𝑡 is a scalar value representing the observation at time 𝑡 and �̂�𝑡 a value representing pre-
dictions of the observations at time 𝑡. 𝑋 and �̂� have two different sizes 𝑇1 and 𝑇2 for their time series,
allowing the observations to have a different size than the predictions. The observations in 𝑋 end at
time step 𝑇1, and we predict the adjacent timesteps in �̂� starting at time step 𝑇1 + 1

In contrast to univariate time series, multivariate time series contains measurements of two or more
variables and allows for the analysis of relationships between them. When modelling the series, we
typically distinguish between endogenous and exogenous variables [21, 44] . Endogenous variables
are the variables in question, the ones we would like to predict, whereas exogenous variables enrich
the endogenous ones. Mathematically, we define multivariate time series as:

𝑋 = {𝑋𝑛}𝑁𝑛=1 (3.3)
�̂� = {�̂�𝑚}𝑀𝑚=1 (3.4)

𝑋𝑛 = {𝑥𝑛,𝑡}𝑇1𝑡=1 (3.5)

�̂�𝑚 = {�̂�𝑚,𝑇1+𝑡}
𝑇2
𝑡=1 (3.6)

In this context, 𝑋𝑛 represents the observed values of variable 𝑛 over time, while �̂�𝑚 represents the
𝑚-th variable of the predictions. The number of observed time series 𝑁 and predicted time series 𝑀
may differ, as we forecast only part of the observed series or different variables.

In the literature, we found three configurations of multivariate series used for modelling, as shown
in Figure 3.1. In these configurations, the observations serve as input and the predictions as output.

1. N-to-N configuration: The number of input series 𝑁 equals the number of predicted time series
𝑁 [40, 18, 15].

2. KN-to-M configuration: A larger set of input series 𝐾 × 𝑁 is used to predict a single set of 𝑀
time series [25].

29
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(a) N-to-N (b) KN-to-M

(c) KN-to-KM

Figure 3.1: Different configurations for modelling multivariate time series

3. KN-to-KM configuration: 𝐾 multivariate time series are used to predict 𝐾 series, each with a
varying number of variables [62, 14].

3.1.2. Linear Models
Time-series forecasting involves predicting future values based on previously observed values in a
sequence over time. The primary challenge in time-series forecasting lies in capturing temporal de-
pendencies and patterns, which can be complicated by trends, seasonality, and irregularities [67]. Au-
toregressive Integrated Moving Average (ARIMA) has been used widely for time-series forecasting [50].
The prediction process in this model involves fitting time-series data to autoregressive (AR) and moving
average (MA) components. The AR component predicts future values based on past values, while the
MA component models the error as a linear combination of past errors.

ARIMA with eXogenous inputs (ARIMAX) extends on ARIMA by incorporating exogenous variables
that might influence the time series [26]. ARIMAX predicts the output �̂�𝑡 at time 𝑡 using a polynomial
that combines 𝑝 past values 𝑦𝑡−𝑖 for 𝑖 ∈ [𝑝], 𝑞 past errors 𝜖𝑡−𝑗 for 𝑗 ∈ [𝑞], current error 𝜖𝑡 and some
constant 𝜇:

�̂�𝑡 = 𝜇 +
𝑝

∑
𝑖=1
𝜙𝑖𝑦𝑡−𝑖 +

𝑞

∑
𝑗=1
𝜃𝑗𝜖𝑡−𝑗 +

𝑚

∑
𝑘=1

𝛽𝑘𝑥𝑡−𝑘 + 𝜖𝑡 (3.7)

Estimating the coefficients 𝜇, 𝜙𝑖 and 𝜃𝑗 is done by methods such as MLE [30, 54] or LS [27].
Seasonal ARIMA (SARIMA) and Seasonal ARIMAX (SARIMAX) are an extension on ARIMA and

ARIMAX, respectively, by introducing the ability to include seasonality in the estimation, allowing the
model to account for recurring patterns [34]. Linear models, in general, are suitable for small datasets
and have a low time complexity but often struggle with complex, non-linear relationships within the
data.

3.1.3. Deep Learning Models
Deep learning models have become increasingly popular in recent years for time-series forecasting
due to their ability to capture complex temporal dependencies [7, 49]. Different from linear models,
deep learning models excel in learning non-linear relationships. In deep learning, we typically build a
neural network by combining multiple building blocks that transform the input data. At the core, there
are two crucial operations for these blocks:

• Linear transformation: a neural network processes data through transformations where input
data 𝑥 is multiplied by weight matrix𝑊 and added to bias 𝑏. The outcome 𝑧 can defined as:

𝑧 = 𝑊𝑥 + 𝑏 (3.8)

• Activation functions: after applying the linear transformation, the activation function introduces
non-linearity, allowing themodel to capture more complex relationships. Common activation func-
tions include:
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– Sigmoid: Squeezes the values between 0 and 1

𝜎(𝑧) = 1
1 + 𝑒−𝑧 (3.9)

– Tanh (hyperbolic tangent): Squeezes the values between -1 and 1

tanh(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧 (3.10)

The neural network is optimised by adjusting the weights and biases through an algorithm such as
stochastic gradient descent [5] . The network can make predictions by feeding data through each block
and using the final output as a prediction. Certain combinations of model components with specific
transformations are good for capturing temporal dependencies. We will discuss four of them.

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) (Figure 3.2a) were one of the first neural architectures designed
for sequential data, enabling the network to maintain an evolving hidden state to capture temporal
patterns [43, 64]. RNNs work by sustaining a hidden state that is updated at each time step based on
the current input and previous hidden state, allowing the model to retain information from preceding
time steps to capture temporal dependencies in sequential data. The equation for RNN is defined by:

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏ℎ) (3.11)

𝑦𝑡 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦 (3.12)

Here, ℎ𝑡, 𝑥𝑡 and 𝑦𝑡 are the hidden state, input and predicted output at time 𝑡, respectively, and
𝑊ℎ,𝑊𝑥,𝑊𝑦, 𝑏ℎ and 𝑏𝑦 learnable weights and biases. However, traditional RNNs have limited ability to
model long-term dependencies effectively because of the vanishing gradient problem [29]. Gradients
that capture long-term dependencies become increasingly small during backpropagation.

Long Short-Term Memory
Long Short-Term Memory (LSTM) (Figure 3.2b) addresses this limitation by incorporating memory cells
and gating mechanisms to selectively retain relevant information over longer time sequences, making
them more robust for complex time-series tasks [49, 47]. LSTMs introduce memory cells and gates
(input gate, forget gate and output gate) that store knowledge and trigger parts in the network. These
triggers selectively retrain or discard previous information. We construct each gate with the same
equation:

𝑔𝑡 = 𝜎(𝑊𝑔 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔) (3.13)

Here, the gate 𝑔𝑡 activates the linear transformation of the previous hidden state ℎ𝑡−1 and current
input 𝑥𝑡. The forget gates, input gates and output gates 𝑓𝑡, 𝑖𝑡 and 𝑥𝑡, are used to (de)activate cells:

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3.14)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 (3.15)

ℎ𝑡 = 𝑥𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡) (3.16)

In these equations, 𝐶𝑡 is the cell state and �̃�𝑡 the candidate cell state at time 𝑡. �̃�𝑡 follows a similar
equation as the gates but with a different activation function. The current cell state 𝐶𝑡 is a combination
of the previous state and candidate state 𝐶𝑡−1 and �̃�𝑡 that are (partially) included depending on the
forget gate and input gate. This cell captures the long-term dependencies. The hidden state is the
product of the candidate state and the output gate and captures the short-term dependencies.
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Gated Recurrent Units
Gated Recurrent Units (GRUs) (Figure 3.2c), a simplified variant of LSTMs, offer similar performance
while reducing computational complexity by merging some of the gating mechanisms [49, 16]. They
eliminate the memory cells in LSTMs and combine the input and forget gate into a single update gate
𝑧𝑡, and replacing the output gate by reset gate 𝑟𝑡 (both gates follow Equation 3.13). We mathematically
define the GRU as:

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ [𝑟𝑡 ⋅ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (3.17)

ℎ𝑡 = (1 − 𝑧𝑡) ⋅ ℎ𝑡−1 + 𝑧𝑡 ⋅ ℎ̃𝑡 (3.18)

Here, the candidate hidden state ℎ̃𝑡 follows a transformation and activation, including the reset gate
𝑟𝑡. The hidden state ℎ𝑡 is a combination of the previous states and candidate states that depend on a
single update gate 𝑧𝑡.

(a) RNN (b) LSTM (c) GRU

Figure 3.2: Different types of sequential deep learning models [3]

Attention-based
Attention-based methods enhance interpretability and performance in time-series forecasting. These
methods rely on attention mechanisms to dynamically focus on different parts of the input sequence,
providing high accuracy and insights into the underlying temporal relationships [45].

An example is the transformer [59], of which the core component is the multi-head self-attention
mechanism, described as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√𝑑𝑘
)𝑉 (3.19)

Here, 𝑄, 𝐾 and 𝑉 are query, key and value matrices that represent the input sequence, 𝑑𝑘 is the
dimensionality of the keys, and softmax is an activation function that squeezes values between 0 and
1 for cases where more than 1 class is involved. These methods can have high-performance gains
compared to LSTMs or GRUs. However, due to the increased model complexity, these models risk
overfitting, especially with small datasets [9].

3.2. Federated learning
In this section, we will first discuss HFL and VFL. We will not go into detail on VFL because we will
discuss the principles of VFL and common methodologies in Chapter 4.2. To overcome heterogeneous
data distributions in FL, we will research two methods: MTFL and personalization.

3.2.1. Horizontal Federated Learning
HFL allows 𝑁 clients with different samples and the same features to collaboratively train a machine-
learning model without sharing their input data [65]. Instead, they share locally computed model up-
dates, such as gradients or model parameters, with a central server. In FedAvg [42], clients share
model weights with a central server, the Federator, which aggregates these, updates and redistributes
the aggregated model back to the clients:
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𝜃Global =
1
𝑁

𝑁

∑
𝑛=1

𝜃𝑛 (3.20)

By aggregating local models, we try to find a model 𝜃 that minimizes the loss over the samples of
all clients:

min
𝜃
ℒ𝜃(𝑆) =

𝑁

∑
𝑛=1

1
|𝑃𝑛|

∑
𝑖∈𝑃𝑛

𝑓(𝜃; 𝑥𝑖 , 𝑦𝑖) (3.21)

In this equation, dataset 𝑆 = {(𝑥𝑖 , 𝑦𝑖)}𝐷𝑖=1 contains 𝐷 samples that is partitioned, with 𝑃𝑛 the set of
indices belonging to party 𝑛, and 𝑓 the loss of prediction on sample (𝑥𝑖 , 𝑦𝑖) given some model 𝜃.

HFL is particularly advantageous for maintaining data privacy, as sensitive information remains
localized at each clients’ site. Liu et al. used FedAvg for anomaly detection in time series by using a
combination of an attention mechanism and LSTM as a model [38].

3.2.2. Vertical Federated Learning
VFL addresses scenarios where different clients hold different features of the same samples. In this
approach, multiple clients train a partitioned model on a set of distributed features across [37]. This
configuration is commonly encountered in industries like healthcare, finance, and marketing, where
organizations might collaborate to build a comprehensive predictive model but cannot share raw data
due to privacy concerns, legal regulations (e.g., GDPR [23]), or competitive interests. In VFL, collab-
orators train a joint model in which we want to minimize the loss while preserving the privacy of data
among the different parties:

min
𝜃
ℒ𝜃(𝑆) =

1
𝐷

𝐷

∑
𝑖=1
ℒ(𝜓𝑁(𝜃1(𝑥𝑖,1), … , 𝜃𝑁(𝑥𝑖,𝑁)); 𝑦𝑖) (3.22)

In this equation, the joint model 𝜃 can be decomposed into local models 𝜃𝑛 for 𝑛 ∈ [𝑁] and global
module 𝜓𝑁. Feature vector 𝑥𝑖 is distributed across 𝑁 parties, each having their private share 𝑥𝑖,𝑛 and
local model 𝐺𝑖 for 𝑛 ∈ [𝑁]. Party 𝑁 has the label information 𝑦𝑖 and access to the global module 𝜓𝑁.

3.2.3. Multi-task Federated Learning
To tackle data heterogeneity in FL, various solutions have been proposed, particularly MTFL and per-
sonalization [57, 22]. In the literature, there is no clear distinction between the two techniques. We will
discuss the techniques preceding MTFL and personalization to decouple these terms.

MTFL is a federated adaptation of Multi-Task Learning (MTL) [70, 11]. MTL learns different related
tasks jointly, allowing knowledge to be shared between tasks. For example, imagine we want to clas-
sify dogs and cats. Classifying different animals can be considered distinct tasks, but since they are
both animals, they are related and can share knowledge to improve the classification accuracy. MTFL
extends MTL by treating clients as a unique task, creating the potential to capture client relationships.

MTL is often associated with incremental learning [57, 60]. Though these terms are often ex-
changed, incremental learning refers to a single model adapting to changing data distributions - the
data distribution evolves - making it useful in cases where data may change over time due to vari-
ous factors, such as drift in data or the introduction of new data sources [60]. In our context, we use
MTL for scenarios where we learn existing tasks with unique data distributions, making it different from
incremental learning.

Van de Ven et al. [60] distinguish three incremental learning scenarios for learning different map-
pings. We can also use these mappings in MTL because they tell us how we transform our task-specific
input into labels. In the mappings, 𝒳 denotes the input space, 𝒴 the within-context label space and 𝒞
the context space:

1. Task-incremental learning: 𝑓 ∶ 𝒳 × 𝒞 → 𝒴 Task-incremental learning allows a model to receive
the input data and a task label. It outputs a within-context label from a shared label space. The
label can mean the same or be different for the different tasks. An example is the classification of
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the genders of various animals. The model receives the task label of the animal to help classify
the gender.

2. Domain-incremental learning: 𝑓 ∶ 𝒳 → 𝒴 In domain-incremental learning, there are no task
labels. The model receives the input data and labels them independent of the task. The model
does not receive the task label and determines the gender.

3. Class-incremental learning: 𝑓 ∶ 𝒳 → 𝒞 × 𝒴 Lastly, in class-incremental learning, the model
must infer the task label based on the input, allowing the output space to grow to every possible
combination of within-context and task labels. The model receives a data sample and determines
to which task it belongs. The model then labels each sample with the type of animal and gender.

Our emphasis is on domain-incremental scenarios where multiple tasks are trained concurrently.
To demonstrate how objective functions can differ from traditional HFL, we take the shared-private
attention mechanism as an example. In this mechanism each client has a shared component and local
component. The shared information allows for generalization while using task-specific parameters to
balance global and private information [14, 15, 40]. Mathematically, we can extend Equation 3.21 to an
optimization function that takes into account the shared representations and task-specific parameters:

min
Θ,ℎ

ℒΘ,ℎ(𝐷) =
𝑁

∑
𝑛=1

1
|𝑃𝑛|

∑
𝑖∈𝑃𝑛

𝑓(𝜃𝑛; ℎ; 𝑥𝑖 , 𝑦𝑖) (3.23)

In this equation, we try to minimize the loss of all tasks by finding the optimal shared representation ℎ
and model parameters 𝜃𝑘 for each task. The model parameters serve as task-specific parameters. For
each task 𝑘, the loss has a prediction function 𝑓𝑘 that depends on task-specific input 𝑥𝑘, representation
ℎ and parameters 𝜃𝑘, and the target prediction 𝑦𝑘. We will discuss the mechanism in more detail in
Chapter 4.1.1.

3.2.4. Personalization
Personalization extends the HFL paradigm and customizes global models individually for clients with
unique data distributions [57, 22]. The personalized model better suits the underlying client distribu-
tions. Unlike earlier MTFL methods, its objective is not to learn distinct tasks but to adapt a global
model, such as the model in Equation 3.20, to local data distributions, i.e. generalization is followed by
personalization.

FedProx extends the FedAvg method, addressing data heterogeneity by allowing clients to train
their local models independently [35]. In Figure 3.3, we see how a client trains its model for multiple
training epochs locally, sending its model weights to a Federator afterwards. It receives the aggregated
model weights and trains this new model for numerous training epochs locally. The method introduces
a proximal term used during training to ensure the local models do not deviate significantly from the
global model, allowing the client to balance personalization and generalization. The objective function
for each client can be formulated as:

min
Θ
ℒΘ(𝐷, 𝜃Global) =

𝑁

∑
𝑛=1

1
|𝑃𝑛|

∑
𝑖∈𝑃𝑛

(𝑓(𝜃𝑛; 𝑥𝑖 , 𝑦𝑖) +
𝜇
2||𝜃𝑛 − 𝜃Global||

2) (3.24)

In this equation, ℒ𝑘 is the loss function for client 𝑘, 𝑤 is the local model’s parameters, 𝑤𝑔 is the global
model’s parameters, and 𝜇 is a regularization term. While FedProx mitigates client drift and improves
convergence under heterogeneous distributions, the performance increase over FedAvg is limited.

FedPer and FedRep approach personalization differently by splitting the model into global and local
components [8, 17]. Both methods train the global part collectively and local components independently
for each client. Figure 3.4 shows a schematic overview of FedRep that clearly shows this distinction be-
tween global and local components. The objective of this model looks similar to the objective for MTFL
with shared-private attention mechanisms in Equation 3.23. However, the difference between the two
methods lies in how we create shared/global parts and local parts. In personalization approaches, we
split the weights of one model (global/local), whereas in MTFL, we partition models and representation
(shared/local).
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Figure 3.3: Schematic overview of FedProx: clients train their local model, share it with a Federator and retrain the global model
for personalization

Both methods choose the model’s head, or representation layer, as a local component. The differ-
ence between both methods is that FedPer updates the global and local components simultaneously,
resulting in the same number of updates for both components, whereas FedRep separates the local
updates from the global updates. The method performs local updates for multiple rounds and global up-
dates only once during each epoch. However, critical personalized features may not be encapsulated
adequately by this component.

Figure 3.4: Scematic overview of FedRep: client models are split into global and local components. We only share the global
components with a central server [17]

.



4
Methodology

In this chapter, we discuss our methodology approach developed to tackle the primary challenges
of collaborative learning for time-series forecasting: horizontal knowledge exchange, heterogeneous
data distributions and vertical knowledge exchange. Our goal is to design an architecture that enables
learning across clients while preserving data locality and ensuring adaptability to each unique client
data characteristic.

We structure the methodology in three parts. First, we explore methods to handle horizontal knowl-
edge exchange for heterogeneous data distributions. We examine shared-private attention mecha-
nisms [14, 15, 40], clustering techniques [52, 32, 68], and memorization-based personalization [41].
Second, we investigate approaches for vertical knowledge exchange such as MMVFL [51], Secure
Multi-Party Computation (SMPC) [46] and Split Learning [12, 15] to enable collaboration of clients with
different feature sets. Finally, we present our integrated solution, which combines several methods into
a unified framework.

4.1. Solving horizontal knowledge exchange for heterogeneous data
To address the challenge of horizontal knowledge exchange among clients with heterogeneous data
distributions, we evaluatedmultiplemethods that allow knowledge sharing while accommodating unique
client data patterns. This section investigates two MTFL approaches: shared-private attention mecha-
nisms and clustering techniques. Our investigation highlights the limitations of these initial approaches,
including issues with model complexity, overfitting, and insufficient task-specific learning. Recognizing
these challenges, we explore an alternative solution: memorization-based personalization, achieving
more effective knowledge exchange for time-series data.

4.1.1. Initial approach: MTFL
We focus on two MTFL strategies, shared-private attention mechanisms and clustering techniques,
treating their clients as unique tasks and allowing selective knowledge sharing across clients. Shared-
private attention leverages shared components for generalization while retaining private components
for local adaptation, and clustering organizes clients into groups with similar data profiles, creating
cluster-specific models. In both methods, we use unique models or model components for different
tasks.

Shared-private attention
In the literature, we found three methods that utilize shared-private attention: FATHOM, MTL-Trans
and MSJF [14, 15, 40]. These mechanisms are a powerful approach in FL designed to address the
challenge of task heterogeneity, where different clients or tasks may have distinct data distributions but
also share some common underlying structures. By leveraging a combination of shared and private
attention layers, these models can balance learning global representations (shared across clients) and
local task-specific representations (unique to each client), improving the performance and adaptability
of the model. As an example of a shared-private attention mechanism, we show the architecture of
FATHOM in Figure 4.1. A shared-private attention architecture contains two parts:

36



4.1. Solving horizontal knowledge exchange for heterogeneous data 37

1. Shared attention: Known as global attention; this component captures the common global rep-
resentations across all tasks. The shared attention is one component shared by all tasks and
trained by all tasks collectively.

2. Private attention: Known as task-specific attention; this component captures the client-specific
local representations. The private attention layer computes its weights based only on local client
data, allowing for a personalized representation that does not rely on shared data.

The architecture combines shared and private attention by concatenating the latent representations
of both attentions or by applying one attention mask to the representation of the other. The integrated
representation is fed through a final layer to make predictions. All clients collectively train the architec-
ture model as a whole, meaning that the model behaves as a single, unified entity across all clients,
limiting the ability to perform additional local iterations. While shared-private attention models hetero-
geneous data, it has the risk of overfitting due to increased architectural complexity [9]. Furthermore,
it is impossible to perform additional local training cycles for each client because the client depends on
the input of other clients to complete the cycle.

Figure 4.1: The architecture of FATHOM [14]

Clustering
Clustering offers a solution for heterogeneous data distributions by grouping clients with similar data
distributions or tasks into clusters [72]. Typically, the similarity depends on statistical distribution, model
weights or predictions. Each cluster learns a cluster-specific model that better aligns with the underlying
data distributions of the clients in each group. We demonstrate this with four clients in Figure 4.2, each
with a distinct data distribution. All four are members of one of two clusters with a cluster-specific
model. Clients do not exchange any knowledge with clients of other clusters. However, the exchange
of model-specific information between clusters is permitted, e.g. model weights.

In the literature, we found three variants of clustering in FL: static clustering, dynamic clustering, and
hierarchical clustering. Static clustering groups clients based on initial data similarities and maintains
these clusters throughout the training process, as seen in early methods like MOCHA [52]. However,
this variant does not adapt to changing data distributions, which is specifically relevant for temporal
data. Dynamic clustering adapts over time by adjusting cluster membership based on evolving data
distributions, overcoming the limitations of static clustering in non-stationary environments [32]. Finally,
hierarchical clustering organizes clients into multi-level clusters, allowing for more granular control and
scalable aggregation, enhancing model performance across diverse clients [68].

Experiments and conclusions
Shared-private attention and clustering have trouble balancing task-specific and global information, as
shown in an evaluation of experiments for both methods in Appendix A and B, respectively. Our im-
plementation of various configurations of shared-private attention could not capture valuable shared
patterns with the global attention unit due to overfitting or the model leaning more towards generaliza-
tion. Additionally, these complex architectures had trouble fitting the data due to the limited number of
data samples available. With clustering, we could not find a configuration of clustered clients in which
all clients benefited. These clusters are over-generalized due to a wrong choice of similarity metric or
clusters not being able to preserve task-specific information for dissimilar tasks. Cluster models will
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Figure 4.2: Clustering in FL: we cluster clients with similar data distributions and train one model per cluster. Clusters are allowed
to exchange model-specific information.

always generalize to their clients, which is not a problem if the tasks align perfectly. Otherwise, these
models will lose task-specific knowledge in the training process .

We must explore different methods for sharing horizontal knowledge with heterogeneous data to
overcome these challenges. Shared-private attention could be optimized by increasing the amount
of training data, but the availability of samples in predictive maintenance can be scarce for cases
where sensor measurements are expensive to produce. We could choose a different similarity metric
for clustering, but that does not overcome the generalization of cluster models. Therefore, we will
look into more lightweight models that do not require large datasets and do not suffer from potential
generalization by cluster models, global models or global components.

4.1.2. Solution: memorization-based personalization
Personalization is an approach that customizes global models for individual clients to better suit their
underlying data distributions. Different from earlier MTFL methods, its objective is not to learn distinct
tasks but to adapt a global model, e.g. in FedProx and FedPer [35, 8]. Memorization-based approaches
provide a specific way of personalization by allowing clients to leverage their local data more directly
for predictions [41]. The global model is not adapted to local data or split into private-shared partitions.
Memorization techniques leave the global model as is and focus on using non-parametric methods that
store and utilize client-specific data samples for inference. This approach is particularly well-suited for
cases with high data heterogeneity, where adapting a global model may not sufficiently capture the
unique patterns present in clients’ data.

KnnPer [41] is a memorization-based method that uses 𝑘-nearest neighbour (KNN) to make per-
sonalized predictions. KnnPer memorizes the clients’ training samples and compares new inputs with
memorized samples to make predictions. This way, KnnPer, or memorization in general, bypasses the
need for global model parameter updates by using stored data points to make new predictions.

The so-called KNN-prediction of a new input 𝑥 is made by finding the 𝑘 nearest neighbours in the
clients’ training data and averaging their labels (a simplified version of the original formula):

�̂�𝐾𝑁𝑁 =
∑{𝜙(𝑥′),𝑦}∈𝑁𝑘 𝐾(𝑑(𝜙(𝑥), 𝜙(𝑥

′))) ⋅ 𝑦
∑𝜙(𝑥′)∈𝑁𝑘 𝐾(𝑑(𝜙(𝑥), 𝜙(𝑥′)))

(4.1)

Here, �̂�𝐾𝑁𝑁 is the KNN-prediction, 𝑁𝑘(𝑥) are the 𝑘 nearest neighbours for 𝑥 based on representation
𝜙. 𝑁𝑘(𝑥) contains the representations and labels 𝑦 of the neighbours. 𝑑 is a distance metric for two
representations 𝜙. The authors use the hidden state of an LSTM as 𝜙.

This formulation allows KnnPer to make predictions by comparing the input to previously encoun-
tered examples, bypassing the need for complex global model training. The distance metric 𝑑, typically
chosen as Euclidean distance or another similarity measure, plays a key role in determining the influ-
ence of neighbours’ labels on the final prediction.

This method has several advantages. By using client-specific data directly for predictions, memo-
rization methods like KnnPer offer a high degree of personalization, making them well-suited for hetero-
geneous data. Additionally, memorization focuses on stored local data and naturally adapts to changing
data distributions. As new data arrives, it can be directly stored and used for future predictions without
requiring model re-training, which is particularly useful in environments where data evolves.
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Experiments and conclusions
In the experiments in Appendix C, we evaluate traditional personalization mechanisms FedProx and
FedPer, and an implementation of memorization-based mechanism KnnPer suitable for sequential
data. From the traditional methods, only FedProx showed improvements for univariate datasets. We
did not measure these improvements for multi-variate datasets due to the limited number of training
epochs. KnnPer, on the other hand, showed significant improvements over the traditional personaliza-
tion methods for multi-variate datasets. By leveraging local memorization of training samples, KnnPer
provides personalized predictions better aligned with client-specific data distributions, making it partic-
ularly effective for heterogeneous time-series data.

Memorization is highly effective for horizontal knowledge exchange with privacy constraints. Clients
do not share their private data and can have heterogeneous data distributions. Having found a solution
for horizontal knowledge exchange with heterogeneous data, we need to find a method that provides
vertical knowledge exchange and merge it into our current solution.

4.2. Solving vertical knowledge exchange
VFL addresses scenarios where different clients hold different features of the same samples. In this
approach, we train a global model on a set of distributed features across multiple clients [37]. We
encounter this configuration commonly in industries like healthcare, finance, and marketing, where
organizations might collaborate to build a comprehensive predictive model but cannot share raw data
due to privacy concerns, legal regulations (e.g., GDPR), or competitive interests. The training protocol
for VFL generally follows two steps [61, 37]:

1. Entity alignment: In VFL, clients possess different feature sets for the same entities (e.g. users,
customers or patients). Since each client holds only a subset of features for these entities, it is
important to align them before training any model. First, clients identify matching entities because
they are usually not publicly available due to privacy constraints. Techniques such as Private Set
Intersection [39] or SMPC [24] perform alignment between clients without disclosing any private
information.

2. Distributed training: After identifying common samples and aligning them, clients can collabo-
ratively train the model in a distributed fashion. We will discuss different approaches for doing
this.

4.2.1. Modelling approaches
MMVFL is a method that securely transfers labels between clients without sharing raw data, particularly
in scenarios where clients hold different features of the same data samples (Figure 4.3). In MMVFL,
each client trains a local model using their respective features, and the central server aggregates the
predicted labels from all clients. This approach allows label sharing across clients while maintaining
privacy [51]. However, MMVFL is limited to closed-form models and is unsuitable for more complex
models like neural networks, making it unsuitable for our solution.

Figure 4.3: Schematic of MMVFL [51]

SMPC is a cryptographic technique that enables multiple parties to collaboratively compute a func-
tion over their inputs while keeping those inputs private. In the context of VFL, SMPC allows the training
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process to proceed securely by encrypting the data from each client and only sharing encrypted fea-
tures for sequential linear models [46]. In Figure 4.4, we show that each client trains its local model
using (secretly shared) encrypted features, ensuring that no client can access the raw data of others
during model training. While this method is promising in privacy-preserving VFL, it is unsuitable for
non-linear models. The exchange of secretly shared features requires the local models to behave
deterministically, a property non-linear models do not have.

Figure 4.4: Schematic overview of SMPC-based method STV [46]

Split Learning is another approach that has gained traction in VFL [12, 15]. In split learning, the
model consists of multiple segments, with each client responsible for training only a portion of the
model. Figure 4.5 shows entry points for different features. An independent model processes each
feature and shares the intermediary feature with a central entity. The entity processes this intermediate
output and calculates the loss to finish the forward propagation. The entity allows for the completion of
the training process by sending the gradients concerning the loss of each independent feature model.
This method enables clients to collaborate on training complex models (i.e. neural networks) while
preserving data privacy.

Figure 4.5: Schematic overview of split learning[12]

4.2.2. Solution: Hierarchical time-series based modelling
Through our exploration of VFL approaches, split learning emerges as the most promising solution
for enabling vertical knowledge exchange in time-series models while preserving privacy. It offers the
flexibility to handle non-linear time-series models like RNNs, GRUs, or LSTMs, which are necessary
for capturing the temporal dependencies and complex patterns in time-series data.

To fully adapt split learning to time-series models, we must investigate how to optimize split learning
for sequential dependencies inherent in time-series data. The model complexity of a suitable architec-
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ture must work for small datasets. We found an architecture in the literature that stacks private and
shared sequential models suitable for split learning [63].

In Figure 4.6, we see our interpretation of this architecture using LSTM as sequential models since
these are suitable for capturing both long-term and short-term dependencies. This architecture assigns
a private LSTM to each client. They produce hidden states that serve as intermediary features. These
features are concatenated and used as input for the shared model. Likewise, to the example in Fig-
ure 4.5, this architecture also limits the clients from sharing intermediary features and receiving their
gradients needed for back-propagation.

Figure 4.6: Distributed model

We will merge the distributed model into our memorization-based solution to solve all challenges
for horizontal knowledge exchange with heterogeneous data.

4.3. Combining the solutions for all challenges
We introduce the problem definition in this section, followed by a step-by-step overview of TPHFL.

Problem definition
The proposed architecture targets time-series forecasting problems involving heterogeneous data dis-
tributions across tasks. Specifically, we consider 𝑁 tasks with 𝑀 parties that predict a univariate time
series given endogenous feature 𝑋𝑛,1 and exogenous features 𝑋𝑛,𝑗 , ∀𝑗 ∈ [2,𝑀]. Each party 𝑖 ∈ [𝑀]
for task 𝑛 owns the samples for feature 𝑋𝑛,𝑖. All input features are uni-variate and have the same time
window 𝑊 but can, for simplicity, be considered one multi-variate input vector 𝑋𝑛 ∈ ℝ𝑀×𝑊 belonging
to task 𝑛. For each task 𝑛, the model predicts one or multiple future time steps for the endogenous
feature. 𝑌𝑛 ∈ ℝ𝑃 represents the predictions, the so-called target, where 𝑃 is the length of the output
time window and owned by party 1 for task 𝑛. We assume that in each task common samples are
identified and aligned by privacy-preserving mechanisms [39, 24, 28].

Notation Meaning
N number of tasks
M number of parties and features in each task
W size of input time window
P size of output time window
H size of hidden dimension
𝑋𝑛 ∈ ℝ𝑀×𝑊 input vector for task 𝑛
𝑋𝑛,𝑚 ∈ ℝ𝑊 feature𝑚 of input vector for task 𝑛
𝑌𝑛 ∈ ℝ𝑃 prediction vector for task 𝑛
𝜃𝑛 model of task 𝑛
𝜃𝑛,𝑚 𝑚-th component of model of task 𝑛
ℎ𝑚 ∈ ℝ𝑊×𝐻 hidden vector produced by component 𝑚 ∈ [𝑀]
ℎ ∈ ℝ𝑀×𝑊×𝐻 concatenation of vectors ℎ𝑚 for𝑚 ∈ [𝑀]
ℎ′ ∈ ℝ𝑊×𝐻 hidden state vector produced by component 𝑀 + 1
𝜙(𝑋) intermediary representation for input vector 𝑋

Table 4.1: Notations

The objective of this work is to improve time series prediction through personalization while pre-
serving data locality by ensuring that features are kept private within or between tasks. To achieve this,
we first aim to develop a global model that generalizes well across all tasks:
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Figure 4.7: TPHFL Framework in three incremental steps: training, optimization and personalization

min
𝜃Global

𝑁

∑
𝑛=1

ℒ𝑛(𝜃Global) (4.2)

After a consensus on the model by all tasks, we use it in a personalization algorithm that allows for
predictions better suited for the tasks underlying data distribution.

A trusted third party takes the role of the Federator, responsible for securely collecting the model
weights of each party, aggregating them, and redistributing them to the correct parties. Furthermore, it
is responsible for initializing the weights of 𝜃Global and sharing them with each party.

TPHFL overview
An overview of TPHFL is given in Figure 4.7. The method consists of three steps: training, optimization
and personalization. The first two are described in Algorithm 1, the latter in Algorithm 2. We will discuss
each step individually.

Training. In the initial step, the parties with the features and labels for task 𝑛 collaboratively train a
distributed model for multiple epochs. The task model 𝜃𝑛 contains multiple components:

𝜃𝑛 = {𝜃𝑛,1, 𝜃𝑛,2, ..., 𝜃𝑛,𝑀+1} (4.3)

𝜃𝑛,1 to 𝜃𝑛,𝑀 comprise single LSTM units at the beginning of the model, whereas 𝜃𝑛,𝑀+1 contains
an LSTM and Fully Connected (FC) layer. We chose an LSTM because of its ability to capture long-
term dependencies at a moderate level of model complexity. Each party 𝑚 ∈ [𝑀] for task 𝑛 has private
ownership over 𝜃𝑛,𝑀 and party 1 has additional ownership over 𝜃𝑛,𝑀+1 meaning that only the designated
party can read and write the given model weights.

To collaboratively train 𝜃𝑛, the Federator initiates the training process for all parties across tasks in
lines 6 and 8 of Algorithm 1. The Federator calls party 1 separately to handle the flow of data through
the final model component. Each party processes their data through their private LSTM with an input
window of size 1 in line 18. This way, each piece of input data 𝑋𝑛,𝑚 ∈ ℝ𝑊 is transformed to hidden
states ℎ𝑚 ∈ ℝ𝑊×𝐻. Each party shares these states with party 1 in line 19, who concatenates them in
line 22, producing ℎ ∈ ℝ𝑀×𝑊×𝐻. This state serves as input for the LSTM in 𝜃𝑛,𝑀+1 with input window
𝑀 × 𝐻 that transforms ℎ to ℎ′ ∈ ℝ𝑊×𝐻. The new hidden state is fed through the FC layer to produce
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prediction �̂�𝑛. During back-propagation in line 23, party 1 calculates the loss and gradient for 𝜃𝑛,𝑀+1
necessary for updating the model parameters:

∇𝜃𝑛,𝑀+1 =
𝜕ℒ𝜃𝑛
𝜕𝜃𝑛,𝑀+1

=
𝜕ℒ𝜃𝑛
𝜕�̂�𝑛

𝜕�̂�𝑛
𝜕𝜃𝑛,𝑀+1

(4.4)

Parties 1 to 𝑀 calculate the gradients for 𝜃𝑛,1 to 𝜃𝑛,𝑀 individually with:

∇𝜃𝑛,𝑚 =
𝜕ℒ𝜃𝑛
𝜕𝜃𝑛,𝑚

=
𝜕ℒ𝜃𝑛
𝜕�̂�𝑛

𝜕�̂�𝑛
𝜕ℎ𝑚

𝜕ℎ𝑚
𝜕𝜃𝑛,𝑚

(4.5)

Party 1 calculates the gradient for 𝜃𝑛,𝑀+1 and 𝜃𝑛,1 and the derivatives 𝜕ℒ𝜃𝑛
𝜕�̂�𝑛

and 𝜕�̂�𝑛
𝜕ℎ𝑚

for 𝑚 ∈ [2,𝑀].
It sends the derivatives to the correct parties in line 24 so they can complete their gradient calculations
in line 27.

Optimization. Each party shares its model component with the Federator, which is responsible for
aggregating these components using the FedAvg algorithm (Equation 3.20). The Federator identifies
each model component it receives and aggregates all 𝜃𝑛,𝑖 separately. It saves the new model weights
in lines 6 and 8 based on task and party index. This approach simulates the aggregation of the full task
models 𝜃𝑛 by aggregating components independently in line 12, creating a global model that is the
same for all tasks while only exchanging components. Through this process, the Federator facilitates
collaboration and information exchange between tasks.

We alternate training and optimization across multiple training epochs. After each local epoch, each
task shares its model components with the Federator and receives updated components. We continue
this process until the task model performances have converged or after a fixed amount of training
epochs, reaching a consensus on the global model.

Personalization. After achieving consensus on the final global model, having completed training
and optimization, each task uses its task model 𝜃𝑛 for memorization-based personalization. In this
approach, we select the most similar training samples during inference using KNN and use the accom-
panied labels 𝑌 for memorization-based predictions. For similarity measurements, we transform the
observation 𝑋 in the training samples to intermediary representations 𝜙(𝑋) as these contain signifi-
cant information about the model’s input interpretation. This representation can be any state inside the
distributed model. In our case, we use ℎ as an intermediary representation.

Typically, we transform our data beforehand as this can be computationally expensive. In lines 4 and
6, we call the transformation algorithm for each party of task 𝑛, of which party 1 saves this transformed
data in a new dataset. All parties collaboratively transform the data, as each party will send their hidden
states to party 1 in line 15. Party 1 saves 𝜙 together with the labels in line 19.

During inference in line 9, we select the 𝑘 most similar samples from our transformed dataset:

𝑁𝑘(X) = {(𝜙(𝑋(1)), 𝑌(1)), 𝜙(𝑋(2)), 𝑌(2)), ..., (𝜙(𝑋(𝑘)), 𝑌(𝑘))} (4.6)

where the ordering is determined by intermediary distances:

𝑑(𝜙(𝑋(1)),X) ≤ 𝑑(𝜙(𝑋(2)),X) ≤ ... ≤ 𝑑(𝜙(𝑋(𝑘)),X) (4.7)

(𝜙(𝑋(1)), 𝑌(1)) is the 𝑖-th nearest neighbour for task 𝑛 and sample 𝑋. The distance metric 𝑑, typi-
cally chosen as Euclidean distance or another similarity measure, plays a key role in determining the
influence of each neighbour label on the final prediction.

These neighbours are most similar to our input and can be used to make memorization-based
predictions:

𝑑(𝑖)(X) = 𝑑(𝜙(𝑋(𝑖)),X) (4.8)

�̂�𝐾𝑁𝑁 =
∑𝑘𝑖=1 𝐾(𝑑(𝑖)(X))𝑌(𝑖)
∑𝑘𝑖=1 𝐾(𝑑(𝑖)(X))

(4.9)

where 𝐾 is a kernel. We combine these predictions with global model predictions �̂�𝜃𝐺𝑙𝑜𝑏𝑎𝑙 , the output
of the global model.
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�̂� = 𝜆�̂�𝐾𝑁𝑁 + (1 − 𝜆)�̂�𝜃𝐺𝑙𝑜𝑏𝑎𝑙 (4.10)

where 𝜆 ∈ [0, 1] is a weight parameter balancing the contributions of both losses for task 𝑛.

Algorithm 1: Training and optimization
Data: 𝑋𝑛,𝑚 on party (𝑛,𝑚) fed in batches 𝐵𝑛,𝑚, and 𝑌𝑛 on party (𝑛, 1)
Param: Global model parameters 𝜃𝐺𝑙𝑜𝑏𝑎𝑙, tasks 𝑁, distributed features 𝑀, rounds 𝑅, epochs 𝐸
Result: Trained distributed models 𝜃𝐺𝑙𝑜𝑏𝑎𝑙

1 Federator executes:
2 Initialize 𝜃𝐺𝑙𝑜𝑏𝑎𝑙;
3 for 𝑟 = 1, ..., 𝑅 do
4 for (𝑛,𝑚) ∈ [𝑁] × [𝑀] do
5 if 𝑚 == 1 then
6 [𝜃𝑛,𝑚 , 𝜃𝑛,𝑀+1] ← Train(𝑛,𝑚, 𝜃𝐺𝑙𝑜𝑏𝑎𝑙,𝑚, 𝜃𝐺𝑙𝑜𝑏𝑎𝑙,𝑀+1);
7 else
8 𝜃𝑛,𝑚 ← Train(𝑛,𝑚, 𝜃𝐺𝑙𝑜𝑏𝑎𝑙,𝑚, 𝑁𝑜𝑛𝑒)[0];
9 end

10 end
11 for 𝑚 ∈ [𝑀 + 1] do
12 𝜃𝐺𝑙𝑜𝑏𝑎𝑙,𝑚 =

1
𝑁 ∑𝑁 𝜃𝑛,𝑚

13 end
14 end
15 Train(𝑛,𝑚, 𝜃𝑚 , 𝜃𝑀+1)
16 for 𝑒 = 1, ..., 𝐸 do
17 for 𝑏 ∈ 𝐵𝑛,𝑚 do
18 ℎ𝑚 ← 𝜃𝑚(𝑏) ;
19 send(ℎ𝑚 to party (𝑛, 1));
20 if 𝑚 == 1 then
21 await(ℎ𝑚 for 𝑚 ∈ [𝑀]);
22 �̂� ← 𝜃𝑀+1(⨁𝑀 ℎ𝑚);
23 𝜃𝑀+1 ← 𝜃𝑀+1 − ∇ℒ𝜃𝑀+1 ;
24 send(𝜕𝜃𝜕�̂�

𝜕�̂�
𝜕ℎ𝑚

to (𝑛,𝑚), ∀𝑚 ∈ [𝑀])
25 end
26 await(𝜕ℒ𝜃𝜕�̂�

𝜕�̂�
𝜕ℎ𝑚

from party 1);
27 𝜃𝑚 ← 𝜃𝑚 − ∇𝜃𝑚;
28 end
29 end
30 return [𝜃𝑚 , 𝜃𝑀+1]
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Algorithm 2: Personalization
Data: Dataset 𝑆𝑛 on task 𝑛
Param: Distributed features 𝑀
Result: Predictions �̂�

1 Each task 𝑛 executes:
2 𝐷𝑛 ← ∅ for 𝑚 ∈ [𝑀] do
3 if 𝑚 == 1 then
4 𝐷𝑛 ← TransformData(𝑛,𝑚, 𝑆𝑛);
5 else
6 TransformData(𝑛,𝑚, 𝑆𝑛);
7 end
8 end
9 At inference on X return �̂� with transformed data 𝐷𝑛 and Equation 4.10 ;

10 TransformData(𝑛,𝑚, 𝑆)
11 𝐷 ← ∅ ;
12 for (𝑋, 𝑌) ∈ 𝑆 do
13 for 𝑚 ∈ [𝑀] do
14 ℎ𝑚 = 𝜃𝑚(𝑋𝑚);
15 send(ℎ𝑚 to party (𝑛,𝑚));
16 if 𝑛 == 1 then
17 await(ℎ𝑚 for 𝑚 ∈ [𝑀]);
18 𝜙(𝑋) ← ⨁𝑀 ℎ𝑚;
19 𝐷 ← 𝐷 ∪ (𝜙(𝑋), 𝑌);
20 end
21 end
22 end
23 return 𝐷



5
Experiments

The content of this chapter overlaps with the content of the research paper. We evaluate the forecasting
of TPHFL against scenarios with different forms of data locality and collaborative capabilities. Addi-
tionally, we conduct experiments with a different hidden representation 𝜙 and perform hyper-parameter
analysis. We first discuss the experimental settings.

5.1. Experimental settings
We use four public datasets for the experiments: Air quality [13], Solar power [53], Crypto [4] and
Rossman Sales [33]. Additionally, we used an industry-specific dataset to predict a specific parameter
from sensor values in semiconductor manufacturing. Further details on the public datasets are given
in Appendix D. We briefly go over the baselines used for evaluation and more specific settings.

Collaboration
Data locality Vertical Hybrid

None - Centralized
Horizontal Independent FedAvg, TPHFL-H
Vertical - Centralized+
Hybrid Independent+ TPHFL-NP, TPHFL

Table 5.1: Baseline methods with different forms of data locality and collaboration.

5.1.1. Baseline
We compare TPHFL to scenarios that differ in data locality and collaborative capabilities shown in Table
5.1. We show a schematic overview for each baseline method in Appendix E. All methods enable ver-
tical collaboration by default because we are training on multivariate time series data because the goal
is not to demonstrate that using more features improves predictive performance. Instead, we focus on
how different collaboration configurations impact the model’s performance under privacy constraints.
We will discuss the methods in order of privacy restrictions:

None: No privacy restrictions, allowing all data to be combined freely.

• Centralized: In this case, horizontal collaboration is introduced by centralizing and concatenating
all training data and using it to train a single LSTM.

Horizontal: Parties share data within tasks, not between tasks.

• Independent: We allow vertical collaboration by letting each task train a separate LSTM on its
multivariate time series data, with no exchange of information between tasks.

• FedAvg: We allow hybrid collaboration by letting each task train a separate LSTM and sharing
the model weights with a Federator, responsible for aggregating the models from each task.
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• TPHFL-Horizontal: This method builds upon FedAvg by adding the memorization-based per-
sonalization algorithm, similar to TPHFL. Different from TPHFL, TPHFL-H uses a single LSTM
per task.

Vertical: Parties share data between tasks, not within tasks.

• Centralized+: This method is similar to its counterpart without privacy restrictions (Centralized)
but employs the distributed model instead of a single LSTM to maintain vertical data locality.

Hybrid: Both dimensions of data locality are in place.

• Independent+: This method is similar to its counterpart with horizontal privacy restrictions (In-
dependent) but employs a distributed model instead of a single LSTM to maintain vertical data
locality.

• TPHFL-NoPersonalization: This variant of TPHFL omits the personalization algorithm.

• TPHFL: Our proposed method enables hybrid collaboration while maintaining horizontal and ver-
tical data locality.

Independent and Centralized serve as expected upper-bound and lower-bound, respectively. We
want TPHFL to show a decrease in Mean Absolute Error (MAE), meaning an increase in performance,
compared with Independent, showing that there is an incentive for participants to share knowledge
with other tasks. Centralized is the lower bound because it is an ideal scenario without data privacy
constraints, allowing for less computational complexity and better performance.

5.1.2. Metrics and Setup
We compare the performance of TPHFL and the different scenarios using the Mean Absolute Error
(MAE). For all datasets, the missing values were interpolated and replaced with 0 if there were no
neighbouring values. We normalized all data for consistent comparison.

The LSTMs used in the experiments have two layers, a hidden size of 20 and a dropout of 0.2. We
train the models in 30 epochs, with a batch size of 32, a learning rate of 0.001 and a weight decay of
0.001.

We conduct the training process by splitting the data into training data (80%) and test data (20%).
We use a fixed input window of 32 and a variable prediction window of 1, 2, 4, 8 and 16. We construct
the samples using a sliding window of 1 timestep.

To compare our method with other scenarios, we calculate the MAE for the different prediction
windows and average all outcomes. For our solution, we run different values for 𝑘 1, 3, 5, 7 and 10 and
choose the best-performing. In every experiment, we choose the most optimal 𝜆 per task for which we
can get the lowest MAE. In the following paragraphs, we will discuss the results for 6 tasks (except if
stated differently) and the best-performing 𝑘. In Appendix F, we included more extensive results for 2,
4 and 6 tasks with different prediction window sizes.

5.2. Forecasting results
Table 5.2 shows that TPHFL performs better than Independent for four out of five datasets with an in-
crease in performance as high as 27.2%. A performance increase was not feasible for the Sales dataset
due to insufficient training samples and data quality. The Crypto dataset has a limited performance
increase compared to its peers because two exogenous features are too similar to the endogenous
feature and contain limited valuable information to improve the predictions (see Figure D.1).

The relative improvement reflects the average performance enhancement across all prediction win-
dows. However, our experiments have shown that this improvement is not uniform; some prediction
windows exhibit significantly higher gains than others. One explanation for this is the seasonality in the
temporal data, where repeating patterns over specific intervals can have varying impacts for different
windows. Windows that coincide with seasonal trends may benefit from the model’s ability to capture
these patterns.

In Table 5.3, we compare threemethods without vertical privacy constraints to their counterparts that
enforce vertical restrictions. Most experiments show declines in performance that can be attributed to
using a distributed model in place of a single LSTM. We expect this outcome because increased model
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Dataset Independent Centralised TPHFL Rel. Imp.

AirQuality 3.60 +/- 0.07 2.77 +/- 0.01 2.96 +/- 0.01 17.8%
Industry 4.28 +/- 0.63 2.48 +/- 0.14 3.23 +/- 0.38 24.4%
Sales 2.96 +/- 0.01 3.02 +/- 0.02 4.40 +/- 0.06 -48.7%
Crypto 2.64 +/- 0.14 1.69 +/- 0.04 2.40 +/- 0.04 8.9%
Solar 2.17 +/- 0.03 1.42 +/- 0.01 1.58 +/- 0.04 27.2%

Table 5.2: Average MAE and standard deviation for methods with no privacy constraints and TPHFL. We show the relative
improvement of TPHFL over Independent (rel. imp.) in percentages.

complexity typically leads to a trade-off in predictive performance. Centralized shows a smaller reduc-
tion or improvements in performance because it uses a larger dataset, which is crucial when training
more complex models to mitigate the negative impact on accuracy. TPHFL can improve its perfor-
mance by increasing the number of samples, something we learned from the Centralized experiments.
However, this may not always be possible due to the limited availability of temporal data. Sensory data
may only be available for a certain period, and receiving more samples requires the machine to operate
for a longer period.

Independent+ Centralised+ TPHFL-H
Dataset MAE Imp. MAE Imp. MAE Imp.

AirQuality 3.72 +/- 0.03 -3.3% 2.80 +/- 0.01 -0.9% 2.58 +/- 0.00 -14.8%
Industry 5.76 +/- 0.91 -34.7% 2.62 +/- 0.23 -6.0% 2.85 +/- 0.34 -13.5%
Sales 5.17 +/- 0.07 -74.8% 3.21 +/- 0.09 -6.3% 2.83 +/- 0.02 -55.3%
Crypto 3.91 +/- 0.41 -48.3% 1.61 +/- 0.03 4.5% 1.67 +/- 0.02 -43.7%
Solar 2.67 +/- 0.07 -23.1% 1.40 +/- 0.01 1.4% 1.38 +/- 0.02 -14.3%

Table 5.3: Average MAE and standard deviation for different methods with vertical restrictions (Independent+, Centralized+), and
Horizontal restrictions (TPHFL-H). We compare the performance increase for methods if we introduce vertical privacy restrictions:
Independent to Independent+, Centralized to Centralized+ and TPHFL-H to TPHFL.

In Table 5.4, we compare two methods that incorporate horizontal collaboration and personalization
with their counterpart that do not use personalization. The results demonstrate the effectiveness of the
personalization algorithm, improving the accuracy in the horizontal and hybrid data privacy domain.
This improvement is especially pronounced for TPHFL because TPHFL-NP struggles to fit the data
due to the complexity of the distributed model and the limited amount of data. Personalization helps
mitigate these challenges, leading to a larger performance gap than FedAvg and TPHFL-V, methods
that are better suited to fit the model effectively without personalization.

Dataset FedAvg Imp. TPHFL-NP Imp.

AirQuality 2.91 +/- 0.02 11.3% 3.49 +/- 0.03 15.0%
Industry 3.44 +/- 0.42 17.2% 4.29 +/- 0.55 24.6%
Sales 3.43 +/- 0.02 17.3% 7.68 +/- 0.09 42.7%
Crypto 1.94 +/- 0.04 14.0% 2.94 +/- 0.05 18.3%
Solar 2.05 +/- 0.03 32.7% 2.58 +/- 0.06 38.8%

Table 5.4: Average MAE and standard deviation for different methods with horizontal and hybrid privacy constraints. We show
the improvement of introducing the personalization mechanism: FedAvg to TPHFL-H and TPHFL-NP to TPHFL.

Lastly, we show in Figure 5.1 the MAE for at least one method from each previous comparison.
We show the results for three datasets and a different number of tasks. When comparing TPHFL with
methods without privacy restrictions, we observe that Independent consistently serves as an upper
bound, while Centralized almost always acts as a lower bound. The anomalies are caused by Central-
ized combining all data, sometimes at the expense of task-specific performance due to overfitting or
loss of task nuances.

TPHFL-H consistently shows an improvement over TPHFL, as expected, since using a distributed
model in TPHFL introduces complexity that often leads to a loss in accuracy. Finally, TPHFL-NP con-
sistently underperforms compared to TPHFL, which aligns with our expectations, as the absence of
personalization limits the model’s ability to fine-tune itself to task-specific data distributions.
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(a) AirQuality (b) Crypto

(c) Solar

Figure 5.1: Average error for different prediction windows from three datasets.

Dataset 2 tasks 4 tasks 6 tasks

TPHFL-I2 TPHFL TPHFL-I2 TPHFL TPHFL-I2 TPHFL

AirQuality 11.58% 9.72% 18.11% 17.40% 18.70% 17.76%
Sales -23.79% -19.84% -38.59% -18.44% -79.90% -48.72%
Crypto 11.74% 14.16% 2.13% 4.17% 7.36% 8.93%
Solar 5.56% 6.90% 33.07% 34.71% 25.55% 27.19%

Industry 39.23% 39.54% 37.10% 37.84% 23.23% 24.45%

Table 5.5: Relative improvement over Independent for TPHFL with different forms of intermediary representations. TPHFL uses
ℎ as TPHFL-I2 uses ℎ′ as intermediary representation.
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5.3. Different hidden representation
In the personalization step of TPHFL, the intermediary representation 𝜙(𝑋) can be any output within the
model. In Table 5.5, we compare TPHFL with a variant that uses ℎ′ as an intermediary state, referred to
as TPHFL-I2. The results indicate that this variant performs better for the AirQuality dataset, suggesting
that, for this dataset, the hidden outputs from the upper model contain more valuable information for
the samples than those generated by the private LSTM. A possible explanation is that the endogenous
features for each task in the AirQuality dataset exhibit a higher correlation than other datasets, leading
to task models leaning more toward global generalization rather than local specialization. The hidden
states produced by the upper model LSTM are better suited for capturing these global patterns, making
them more suitable as intermediary representations for this dataset.

However, the key takeaway is that choosing intermediary representations can be highly dataset-
dependent as many unique combinations of outputs could be used for this purpose. One must carefully
evaluate the different possibilities to find a representation that maximizes the predictive performance
of TPHFL.

5.4. Hyper-parameter analysis
As mentioned earlier, we can tune two hyperparameters: the value of 𝑘 and the hyperparameter 𝜆. Our
experiments revealed that varying 𝑘 has little impact on the performance of TPHFL, as demonstrated
in Figure 5.2. In this figure, we plotted the MAE for all datasets (excluding Sales due to its consistently
low performance) across different values of 𝑘. The results show that the error remains nearly constant,
indicating that the choice of 𝑘 does not significantly affect the method’s performance.

Figure 5.2: Average MAE for different values of 𝑘 in TPHFL.

Different values of 𝜆 significantly affect the performance of each task model. In Figure 5.3, we use
the Solar dataset as an example to illustrate this. We plot the MAE of three different strategies for
selecting 𝜆: setting a single global value for all tasks, choosing an optimal 𝜆 for each task individually,
and selecting the optimal 𝜆 on a sample-by-sample basis. For reference, we included the centralized
and independent as upper-bound and lower-bound, respectively. MM is plotted against different values
for 𝜆, while the other methods remain static because they either are not dependent on 𝜆 or always select
an optimal value, leaving no room for tuning 𝜆.

The optimal global 𝜆 is set at 0.4 for the Solar dataset, meaning that we interpolate 40% KNN pre-
dictions and 60% global predictions. We can reduce the MAE further by setting the parameter on a task
basis, demonstrating that the optimal task-based 𝜆 varies from task to task, allowing tasks to balance
private and global information independently, improving overall performance. The balance between pri-
vate and global information varies across tasks with heterogeneous data distributions. Consequently,
the optimal 𝜆 depends on the specific characteristics of each task. Tasks with more private information
tend to select a higher 𝜆, while tasks with less private information lean toward a lower value.

The MAE of sample-based TPHFL falls significantly below the expected lower bound of Centralized
because, on a sample-by-sample basis, the optimal 𝜆 often turns out to be an extreme value—either 0.0
or 1.0. In other words, it is best to rely entirely on KNN or global model predictions for most inferences,
or in terms of data distribution, the model either fully prioritizes private information or global knowledge



5.4. Hyper-parameter analysis 51

Figure 5.3: Average MAE for different values of 𝜆 in TPHFL and Solar dataset.

exchange, depending on the specific sample. When choosing an optimal 𝜆 at the task level, the model
balances out these extreme cases, finding a middle ground. Further investigation is required to uncover
a direct relationship between the characteristics of individual samples and their corresponding optimal
𝜆 values, providing more insight into the prioritization of private or global information.



6
Conclusions

In this thesis, we proposed a novel FL framework TPHFL, designed to tackle the challenges of time-
series forecasting in distributed, privacy-sensitive industrial environments. By integrating both HFL and
VFL approaches, our model facilitates multi-level knowledge sharing while preserving data locality by
not sharing private data between different parties, laying a critical groundwork for future, more robust
privacy-preserving solutions. Our contributions are as follows:

1. Hybrid FL strategy: TPHFL integrates both horizontal and vertical dimensions in FL, facilitating
knowledge exchange within tasks (intra-task) and between tasks (inter-task). We use a hierar-
chical solution strategy that approaches this problem at two levels. First, each task is assigned
a task model horizontally aggregated by a Federator [42]. Second, each task model operates
as a distributed model with distinct entry points for each feature, enabling vertically distributed
features in each task. Our strategy provides privacy to a certain extent by preserving the locality
of data, laying a critical groundwork for future privacy-preserving solutions.

2. Time-series-based memorization: In TPHFL, clients train a global model that generalizes to all
tasks. For each task, the model is adapted to the task-specific environment by a personalization
mechanism which utilizes the task-specific training data to refine the predictions and better align
with the underlying data distribution [41].

3. Time-series-based hierarchical model: A deep learning model containing sequential model
components has private entry points for each party that produces intermediary representations.
These are concatenated and fed through an upper layer. This architecture contains sequential
modules to facilitate temporal data and is split into multiple components, making it compatible
with the Hybrid FL strategy.

Experiments on several real-world datasets demonstrate the effectiveness of our method, showing
a significant improvement in predictive performance over traditional independent models and further
enhancing results from horizontal collaboration through a personalization algorithm.

For future research, several promising avenues remain unexplored or could benefit from deeper inves-
tigation to further enhance the robustness, applicability, and precision of the proposed methodology.
These areas include:

1. Formal Confidentiality Guarantees: While our method effectively limits data sharing, it lacks
formal privacy guarantees—a critical requirement for secure deployment, especially in sensitive
domains like healthcare, finance, or industrial IoT. Future work should prioritize the integration
of formal confidentiality frameworks that provide quantifiable privacy assurances without compro-
mising model accuracy. Approaches such as differential privacy [19], which adds controlled noise
to protect individual data points, or homomorphic encryption [1], which enables computation on
encrypted data, can help achieve robust privacy. These methods have been proven useful in
federated settings [20, 66]. Research into how these techniques impact time-series forecasting
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performance and computational load would be beneficial, as balancing security with scalability is
key for practical deployment.

2. Multivariate Forecasting: Currently, our method is limited to predicting a single endogenous
variable, which restricts its use in multivariate time-series forecasting applications in PMC. Pre-
dicting multiple interrelated variables could yield richer insights and more accurate forecasts in
practical scenarios by capturing the interactions between variables. Methods such as FATHOM
have shown that multivariate predictions are a viable option [14]. Future studies could investi-
gate extending the framework to support multivariate predictions, examining the challenges this
presents, such as increased model complexity and computational requirements.

3. Soft Predictions for Distributed Models: The current implementation restricts prediction capa-
bilities to a single designated party (party 1), limiting the flexibility of predictions within a distributed
framework. Future work could explore architectures that enable soft predictions, allowing each
participating party to generate localized predictions. Soft predictions would enable parties without
direct access to labels to make approximated predictions, typically aligned with predictions from
party 1. One approach could involve the development of a shared upper layer accessible to all
participants, enabling distributed predictions while safeguarding label confidentiality. Techniques
such as label sharing in MMVFL or SMPC could facilitate secure, parallel training across parties,
potentially allowing each party to independently refine and validate predictions [51, 46].

4. Optimizing Sample-based 𝜆 for Improved Prediction: In our final results, the hyperparame-
ter 𝜆 demonstrated a significant performance impact when tuned appropriately for the dataset.
However, 𝜆 was set globally rather than dynamically, which may limit the method’s adaptability to
diverse or shifting data. Future research could investigate strategies for dynamically optimizing 𝜆
on a sample-specific basis, potentially developing algorithms to adapt 𝜆 based on real-time data
characteristics. Exploring methods for automated tuning or even learning-based approaches,
where 𝜆 adapts based on historical forecasting performance, could lead to considerable gains in
accuracy and robustness. Another approach could involve analyzing the sensitivity of 𝜆 to differ-
ent data distributions, enabling a better understanding of its role and refining it into a more flexible
parameter within the model.

In summary, these recommendations for future research highlight areas where further advance-
ments can enhance the scalability, privacy, and predictive accuracy of federated learning for time-series
forecasting. Integrating privacy guarantees, extending model capabilities to multivariate time series,
enabling distributed predictions, and dynamically optimizing hyperparameters will be essential steps
towards refining the applicability of this approach in complex real-world environments.
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FL Federated Learning
ARIMA Autoregressive Intergated Moving Average
ARIMAX Autoregressive Intergated Moving Average with eXogeneous inputs
FC Fully Connected
GRU Gated Recurrent Units
HFL Horizontal Federated Learning
IID Independent and Identically Distributed
LSTM Long-Short Term Memory
MAE Mean Absolute Error
MTFL Multi-Task Federated Learning
MTL Multi-Task Federated Learning
PMC Predictive Maintenance and Control
GDPR General Data Protection Regularization
TPFL Time-series-based Personalized Federated Learning
RNN Recurrent Neural Networks
SARIMA Seasonal Autoregressive Intergated Moving Average
SARIMAX Seasonal Autoregressive Intergated Moving Average with eXogeneous inputs
SID Sampled ID
SMPC Secure Multi-Party Computation
VFL Vertical Federated Learning

58



A
Shared-Private Attention Experiments

We evaluated an implementation of FATHOM that we developed using the public dataset Air Quality.
For this dataset, we only model a selected univariate time series to exclude any possible interference
of the model performance by the use of a (more complex) multivariate time series. Further details on
the public datasets and selection of univariate series are given in Appendix D.

We conducted different types of experiments on this implementation, including testing multiple pre-
diction windows and hyperparameters and evaluating diverse architectures to mitigate possible limi-
tations of the architecture. However, during late experiments, we discovered that the one key reason
for the limited predictive performance of our implementation was the use of attention units. This made
most of our experiments irrelevant, and we will not discuss these in this thesis. We have selected a
few experiments that did give us valuable insights for the continuation of the research and will discuss
them in the following paragraphs.

To measure the contribution of global- and task-specific attention, we compare our implementa-
tion of FATHOM to different variants shown in Figure A.1, including a variant that does not apply task
attention (FATHOM-ta, i.e. without task attention) and a variant that does not apply global attention
(FATHOM-ga). In Figure A.2, we show that the performance of FATHOM-ta was similar to that of
FATHOMwhereas FATHOM-ga shows an improvement over FATHOM.We expect FATHOM to perform
best, as this method balances task-specific and global knowledge. However, the global attention unit
was unable to capture valuable shared patterns and even interfered with the performance of FATHOM.

A possible explanation is that the different tasks did not contain any valuable information concerning
different clients. However, if we invert the task-attention (FATHOM-ga inv.), that is, we use the data
from a different task to create a mask for the current task, we see that there is an improvement over
FATHOM. This improvement demonstrates that each task contains information that can be of value
to the other task. The global attention unit is unable to capture these due to overfitting or the model
leaning more towards generalization at the cost of preserving task-specific knowledge.

Further experiments showed that the attention units in FATHOM did not work as we expected. We
evaluated a modification of the architecture called FATHOM+ in which we replaced the task- and global

(a) FATHOM (b) FATHOM-ta

(c) FATHOM-ga (d) FATHOM-ga inv.

Figure A.1: Different modifications of FATHOM
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60 Shared-Private Attention Experiments

Figure A.2: Comparison of different modifications of FATHOM

attention with a task-specific attention mechanism that calculates the mask based on the intermediary
representations of all tasks, as shown in Figure A.3. We compared FATHOM+ to a version of itself
that excluded the attention units from updating the model weights during back-propagation, leaving the
units static during the whole training process. The results in Figure A.4 show that the inclusion of the
attention unit results in a degradation of the model performance due to the limited amount of training
data available or the units overfitting on the training data. This unexpected behaviour also appeared in
previous variants of FATHOM, showing that the attention units did not work for the datasets.

Figure A.3: Implementation of FATHOM+

Figure A.4: Comparison of different modifications of FATHOM



B
Clustering Attention Experiments

We evaluated static clustering on the public Electricity dataset containing multiple tasks with univariate
time series. Further details on the public dataset are given in Appendix D. We based the similarity
of different clients on the correlation parameter and manually selected which client belongs to which
cluster. For simplicity, we create two distinctive cases of static clustering:

1. Hard clustering: we cluster clients and train one model per cluster. We exchange no knowledge
between the clusters.

𝜃𝑘 =
1
|𝐶𝑘|

∑
𝑛∈𝐶𝑘

𝜃𝑛 (B.1)

2. Soft clustering: we train one model per cluster and allow for knowledge exchange with model
weights. The new model weights are a weighted average of each cluster model based on the
similarity with the current cluster.

𝜃𝑘 =
1

∑𝑘′∈𝐾 𝑠(𝑘, 𝑘′)
∑
𝑘′∈𝐾

𝑠(𝑘, 𝑘′) ⋅ 𝜃𝑘′ (B.2)

In Figure B.1, we show the correlation values between clients of the dataset. We can see in the
heatmap that clients 2, 4 and 5 are highly correlated. We make one cluster with these three clients
and independent clusters for all other clients. During the experiments, we allow each cluster to train
its model independently for 10 training epochs, after which we share knowledge between the cluster
model using Equation B.2. We repeat this cycle four times, resulting in 40 training epochs with four
moments of cluster knowledge exchange.

In Figure B.1, we show the results per client for four different scenarios: Independent, Centralized,
Hard- and Soft clustering. In Independent, we train one model per client and do not exchange any
information between the clients; in Centralized, we train one model for all clients.

We first compare the Independent with the Centralized scenario. On average, Centralized performs
worse than Independent; per client, we see performance gains for clients 1 and 3 and performance
degradation for all other clients. The sharedmodel trained in the Centralized scenario should generalize
to all, but due to the heterogeneous data distributions, this model serves only two clients, whilst all other
clients are better off using a client-specific model.

Hard clustering could potentially overcome the performance degradations of most clients by group-
ing those with similar data distributions. With our configuration of clusters, we overcome the perfor-
mance degradation for all applicable clients. For client 6, this falls in line with the expectation as we
expect a similar MAE as for the Independent scenario. However, Hard Clustering does not give us
any performance gains in cluster 1 (as we would expect), and we have lost the performance gains for
clients 1 and 3.

Soft clustering could solve this problem by keeping clusters partially isolated while sharing knowl-
edge between clusters. Clients 1 and 3 benefited from a generalized model in which knowledge is fully
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62 Clustering Attention Experiments

Figure B.1: Correlation Electricity

shared, and cluster 1 could potentially improve its performance. Looking at the results (when compar-
ing to Independent), we see that this was unsolved. There is a performance gain for client 1, whereas
all other clients have degraded in performance.
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Cluster Client PW Independent Centralised Hard Clustering Soft Clustering

- Average 1 2.77 +/- 0.11 2.84 +/- 0.14 2.82 +/- 0.13 2.86 +/- 0.13
2 3.16 +/- 0.13 3.13 +/- 0.13 3.14 +/- 0.13 3.26 +/- 0.15
4 3.85 +/- 0.19 3.76 +/- 0.14 3.86 +/- 0.20 3.90 +/- 0.19
8 4.19 +/- 0.13 4.55 +/- 0.10 4.31 +/- 0.15 4.34 +/- 0.13
16 5.44 +/- 0.45 6.06 +/- 0.26 5.60 +/- 0.46 5.62 +/- 0.37

Avg. 3.88 +/- 0.20 4.07 +/- 0.15 3.95 +/- 0.22 3.99 +/- 0.19

Cluster 1 Client2 1 1.61 +/- 0.00 1.69 +/- 0.00 1.67 +/- 0.00 2.94 +/- 0.00
2 1.94 +/- 0.00 1.99 +/- 0.00 2.06 +/- 0.00 3.28 +/- 0.00
4 2.46 +/- 0.00 2.50 +/- 0.00 2.64 +/- 0.00 4.23 +/- 0.00
8 2.89 +/- 0.00 3.49 +/- 0.00 3.36 +/- 0.00 4.80 +/- 0.00
16 3.92 +/- 0.00 5.04 +/- 0.00 4.14 +/- 0.00 5.37 +/- 0.00

Avg. 2.57 +/- 0.00 2.94 +/- 0.00 2.77 +/- 0.00 4.13 +/- 0.00

Client4 1 2.92 +/- 0.00 4.16 +/- 0.00 2.75 +/- 0.00 4.72 +/- 0.00
2 3.37 +/- 0.00 4.67 +/- 0.00 3.14 +/- 0.00 4.84 +/- 0.02
4 4.02 +/- 0.00 5.56 +/- 0.00 3.90 +/- 0.00 5.12 +/- 0.00
8 4.52 +/- 0.00 5.58 +/- 0.00 4.84 +/- 0.00 6.27 +/- 0.00
16 5.30 +/- 0.00 9.01 +/- 0.00 5.49 +/- 0.00 7.30 +/- 0.00

Avg. 4.02 +/- 0.00 5.80 +/- 0.00 4.02 +/- 0.00 5.65 +/- 0.00

Client5 1 1.91 +/- 0.00 2.84 +/- 0.00 1.87 +/- 0.00 1.88 +/- 0.00
2 2.22 +/- 0.00 3.18 +/- 0.00 2.15 +/- 0.00 2.22 +/- 0.00
4 2.71 +/- 0.00 3.95 +/- 0.00 2.74 +/- 0.00 2.71 +/- 0.00
8 3.37 +/- 0.00 5.02 +/- 0.00 3.34 +/- 0.00 3.57 +/- 0.00
16 3.73 +/- 0.00 5.84 +/- 0.00 3.81 +/- 0.00 4.42 +/- 0.00

Avg. 2.79 +/- 0.00 4.17 +/- 0.00 2.78 +/- 0.00 2.96 +/- 0.00

Cluster 2 Client1 1 4.66 +/- 0.01 4.62 +/- 0.00 4.86 +/- 0.02 1.73 +/- 0.00
2 4.95 +/- 0.00 4.61 +/- 0.00 4.66 +/- 0.00 2.09 +/- 0.00
4 5.67 +/- 0.02 5.03 +/- 0.00 5.54 +/- 0.04 2.44 +/- 0.00
8 6.13 +/- 0.02 5.86 +/- 0.00 6.26 +/- 0.01 3.07 +/- 0.00
16 7.35 +/- 0.00 6.90 +/- 0.01 7.48 +/- 0.01 4.02 +/- 0.00

Avg. 5.75 +/- 0.01 5.40 +/- 0.00 5.76 +/- 0.02 2.67 +/- 0.00

Cluster 3 Client3 1 3.50 +/- 0.00 1.93 +/- 0.00 3.50 +/- 0.00 3.93 +/- 0.00
2 4.28 +/- 0.00 2.21 +/- 0.00 4.27 +/- 0.00 4.88 +/- 0.00
4 5.58 +/- 0.02 2.88 +/- 0.00 5.19 +/- 0.01 6.15 +/- 0.01
8 4.98 +/- 0.00 4.10 +/- 0.00 4.99 +/- 0.00 5.03 +/- 0.00
16 9.11 +/- 0.00 5.70 +/- 0.00 9.09 +/- 0.00 8.96 +/- 0.00

Avg. 5.49 +/- 0.01 3.36 +/- 0.00 5.41 +/- 0.00 5.79 +/- 0.00

Cluster 4 Client6 1 2.01 +/- 0.00 1.80 +/- 0.00 1.90 +/- 0.00 1.93 +/- 0.00
2 2.21 +/- 0.00 2.11 +/- 0.00 2.17 +/- 0.00 2.22 +/- 0.00
4 2.64 +/- 0.00 2.65 +/- 0.00 2.63 +/- 0.00 2.75 +/- 0.00
8 3.25 +/- 0.00 3.27 +/- 0.00 3.29 +/- 0.00 3.33 +/- 0.00
16 3.24 +/- 0.00 3.84 +/- 0.00 3.23 +/- 0.00 3.64 +/- 0.00

Avg. 2.67 +/- 0.00 2.73 +/- 0.00 2.64 +/- 0.00 2.77 +/- 0.00

Table B.1: Clustering



C
Personalization Experiments

We evaluated FedProx and FedPer using multiple datasets with univariate time series. Additionally, we
evaluated FedProx and KnnPer using datasets with multivariate time series. Further details on these
datasets are given in Appendix D. We compare all methods to Independent, Centralized and FedAvg.
We ran experiments for FedProx with three different values for 𝜇: 0.01, 0.001 and 0.0. We ran all
univariate experiments for 40 epochs, and multivariate experiments for 30 epochs. In the FedProx ex-
periments, we only aggregate after 10 epochs. We discuss the univariate and multivariate experiments
in different subsections.

In Table C.1, our experiments show that FedProx consistently outperforms FedPer and FedAvg,
highlighting the potential of personalization, particularly because its design allows clients to train their
local models to align better alignment with local data distributions. However, these improvements
over FedAvg are limited for all datasets, showing that this method can only adapt the model to the
local distribution to a limited extent. The global model’s shared parameters still dominate, leading to
suboptimal personalization for client data.

Furthermore, FedProx can not improve over Independent and Centralized for highly heterogeneous
dataset Electricity. In this dataset, we see that Independent performs better than Centralized on av-
erage because the distributions are too dissimilar for training one model. We expected that FedProx
would perform better because it accounts for these heterogeneous distributions. However, this did not
work because FedProx still has too much global information.

FedPer did not consistently outperform FedAvg and, in two cases, showed worse performance.
The reason for this is likely the simultaneous update of the global and local components in FedPer,
which can lead to overfitting in the local layers while the global layers’ remain not under-optimized.
This simultaneous update mechanism may prevent the global model from capturing useful general
patterns, while the local components may not have enough flexibility to fully adapt to the diverse local
data distributions.

The results for the experiments with multivariate datasets are shown in Table C.2. Different from
the univariate experiments, we see that FedProx does not improve on FedAvg in three of five cases
(on average). One reason for this is that FedProx aggregates the model only four times throughout the
entire training process, which is likely insufficient for more complex models dealing with multivariate
data. Multivariate time series tend to have richer and more complex relationships across different
variables, makingmore frequent aggregation necessary to capture the temporal dependencies between
these variables effectively.

KnnPer consistently performs better than the other methods in most datasets. KnnPer outperforms
the Independent baseline in all cases, demonstrating significant performance improvements even when
clients are highly heterogeneous. This suggests that KnnPer’s non-parametric approach provides a
more personalized and accurate model for clients’ data distribution. Furthermore, in four out of five
cases, KnnPer outperforms the Centralized model, highlighting that its local memorization technique
is particularly effective in preserving the unique characteristics of clients’ data while still benefiting
from collaborative training. This allows KnnPer to make predictions that align more closely with the
underlying data distributions at the local level, avoiding the pitfalls of generalization seen in Centralized
approaches.
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Dataset PW Independent Centralised FedAvg FedProx FedProx FedProx FedPer
(𝜇 = 0.01) (𝜇 = 0.001) (𝜇 = 0.0)

AirQuality 1 1.82 +/- 0.02 1.28 +/- 0.00 1.32 +/- 0.00 1.62 +/- 0.00 1.21 +/- 0.00 1.23 +/- 0.00 2.08 +/- 0.03
2 1.71 +/- 0.01 1.41 +/- 0.00 1.63 +/- 0.00 1.82 +/- 0.00 1.44 +/- 0.00 1.45 +/- 0.00 1.96 +/- 0.01
4 1.76 +/- 0.00 1.50 +/- 0.00 1.72 +/- 0.00 1.84 +/- 0.00 1.60 +/- 0.00 1.60 +/- 0.00 1.92 +/- 0.00
8 3.76 +/- 0.01 3.28 +/- 0.00 3.29 +/- 0.01 4.03 +/- 0.01 3.51 +/- 0.01 3.49 +/- 0.01 3.76 +/- 0.01
16 5.39 +/- 0.02 4.43 +/- 0.01 5.19 +/- 0.02 5.25 +/- 0.01 5.01 +/- 0.02 5.06 +/- 0.02 5.51 +/- 0.01

Avg. 2.89 +/- 0.01 2.38 +/- 0.00 2.63 +/- 0.01 2.91 +/- 0.01 2.55 +/- 0.01 2.57 +/- 0.01 3.05 +/- 0.01

Electricity 1 2.81 +/- 0.13 2.84 +/- 0.14 2.84 +/- 0.12 2.97 +/- 0.14 2.86 +/- 0.13 2.82 +/- 0.13 2.83 +/- 0.12
2 3.17 +/- 0.14 3.13 +/- 0.13 3.19 +/- 0.12 3.42 +/- 0.15 3.19 +/- 0.12 3.19 +/- 0.14 3.19 +/- 0.13
4 3.80 +/- 0.18 3.76 +/- 0.14 3.93 +/- 0.18 4.04 +/- 0.19 3.79 +/- 0.14 3.78 +/- 0.15 3.88 +/- 0.20
8 4.23 +/- 0.14 4.55 +/- 0.10 4.37 +/- 0.12 4.46 +/- 0.12 4.23 +/- 0.11 4.23 +/- 0.13 4.28 +/- 0.14
16 5.48 +/- 0.45 6.06 +/- 0.26 5.70 +/- 0.29 5.92 +/- 0.36 5.66 +/- 0.41 5.56 +/- 0.41 5.51 +/- 0.48

Avg. 3.90 +/- 0.21 4.07 +/- 0.15 4.01 +/- 0.17 4.16 +/- 0.19 3.94 +/- 0.18 3.92 +/- 0.19 3.94 +/- 0.21

Solar 1 1.00 +/- 0.01 0.63 +/- 0.00 1.29 +/- 0.00 1.11 +/- 0.01 1.09 +/- 0.01 1.11 +/- 0.01 1.04 +/- 0.02
2 1.43 +/- 0.01 0.78 +/- 0.00 1.54 +/- 0.01 1.53 +/- 0.01 1.43 +/- 0.01 1.50 +/- 0.01 1.48 +/- 0.01
4 1.31 +/- 0.00 0.89 +/- 0.00 1.12 +/- 0.00 1.33 +/- 0.00 1.15 +/- 0.00 1.20 +/- 0.00 1.38 +/- 0.01
8 2.07 +/- 0.01 1.74 +/- 0.01 2.19 +/- 0.01 2.03 +/- 0.01 1.99 +/- 0.01 1.95 +/- 0.01 2.11 +/- 0.01
16 2.57 +/- 0.02 2.48 +/- 0.01 2.59 +/- 0.02 2.38 +/- 0.02 2.39 +/- 0.02 2.38 +/- 0.02 2.41 +/- 0.02

Avg. 1.68 +/- 0.01 1.30 +/- 0.01 1.74 +/- 0.01 1.68 +/- 0.01 1.61 +/- 0.01 1.63 +/- 0.01 1.69 +/- 0.01

Industry 1 2.70 +/- 0.47 0.88 +/- 0.03 2.53 +/- 0.63 2.74 +/- 0.73 2.61 +/- 0.66 2.52 +/- 0.64 2.89 +/- 0.56
2 1.55 +/- 0.14 0.76 +/- 0.02 1.32 +/- 0.14 1.32 +/- 0.10 1.29 +/- 0.11 1.33 +/- 0.11 1.58 +/- 0.16
4 1.96 +/- 0.06 1.57 +/- 0.04 2.01 +/- 0.02 1.92 +/- 0.03 1.80 +/- 0.02 1.80 +/- 0.03 2.44 +/- 0.11
8 1.90 +/- 0.18 1.52 +/- 0.07 3.21 +/- 0.80 2.59 +/- 0.79 2.65 +/- 0.75 2.68 +/- 0.74 2.98 +/- 0.82
16 2.30 +/- 0.33 2.20 +/- 0.38 2.79 +/- 0.64 2.40 +/- 0.63 2.43 +/- 0.72 2.43 +/- 0.71 2.45 +/- 0.35

Avg. 2.08 +/- 0.23 1.39 +/- 0.11 2.37 +/- 0.45 2.19 +/- 0.46 2.16 +/- 0.45 2.15 +/- 0.45 2.47 +/- 0.40

Table C.1: Results Personalization univariate

Overall, the results indicate that for multivariate time series, the complexity of the relationships be-
tween variables requires more sophisticated methods for capturing both global and local information.
FedProx’s global model aggregation struggles to adapt to these complexities due to its limited aggrega-
tion frequency, whereas KnnPer excels by focusing on client-specific patterns through memorization,
making it more robust in such scenarios.
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Dataset PW Independent Centralised FedAvg FedProx FedProx FedProx KnnPer
(𝜇 = 0.01) (𝜇 = 0.001) (𝜇 = 0.0)

AirQuality 1 2.32 +/- 0.06 1.40 +/- 0.01 1.77 +/- 0.01 2.43 +/- 0.08 2.05 +/- 0.06 1.95 +/- 0.02 1.31 +/- 0.00
2 2.38 +/- 0.02 1.55 +/- 0.00 2.06 +/- 0.04 2.51 +/- 0.03 2.19 +/- 0.02 2.10 +/- 0.01 1.52 +/- 0.00
4 2.21 +/- 0.01 1.90 +/- 0.01 2.00 +/- 0.00 2.33 +/- 0.01 2.16 +/- 0.01 2.16 +/- 0.01 1.91 +/- 0.00
8 4.42 +/- 0.02 3.60 +/- 0.01 3.63 +/- 0.01 4.21 +/- 0.02 3.98 +/- 0.01 3.95 +/- 0.01 3.43 +/- 0.01
16 6.68 +/- 0.24 5.41 +/- 0.04 5.09 +/- 0.02 5.70 +/- 0.01 5.89 +/- 0.07 5.91 +/- 0.05 4.74 +/- 0.02

Avg. 3.60 +/- 0.07 2.77 +/- 0.01 2.91 +/- 0.02 3.44 +/- 0.03 3.25 +/- 0.03 3.21 +/- 0.02 2.58 +/- 0.00

Industry 1 4.17 +/- 0.46 1.30 +/- 0.02 2.66 +/- 0.14 3.62 +/- 0.25 3.43 +/- 0.23 3.30 +/- 0.23 2.21 +/- 0.07
2 4.76 +/- 0.58 2.05 +/- 0.06 3.16 +/- 0.21 4.31 +/- 0.25 4.02 +/- 0.19 4.02 +/- 0.20 2.61 +/- 0.15
4 4.44 +/- 1.26 3.54 +/- 0.43 3.79 +/- 1.15 4.37 +/- 1.70 4.59 +/- 1.66 4.49 +/- 1.60 3.55 +/- 0.99
8 3.45 +/- 0.34 2.57 +/- 0.07 3.83 +/- 0.31 4.06 +/- 0.55 4.13 +/- 0.55 4.15 +/- 0.50 2.79 +/- 0.27
16 4.56 +/- 0.51 2.92 +/- 0.11 3.74 +/- 0.29 4.39 +/- 0.41 4.29 +/- 0.37 4.30 +/- 0.38 3.07 +/- 0.24

Avg. 4.28 +/- 0.63 2.48 +/- 0.14 3.44 +/- 0.42 4.15 +/- 0.63 4.09 +/- 0.60 4.05 +/- 0.58 2.85 +/- 0.34

Sales 1 2.38 +/- 0.01 2.53 +/- 0.03 2.67 +/- 0.01 2.60 +/- 0.00 2.49 +/- 0.00 2.47 +/- 0.01 2.27 +/- 0.02
2 2.64 +/- 0.01 2.59 +/- 0.01 2.92 +/- 0.01 2.83 +/- 0.01 2.77 +/- 0.01 2.77 +/- 0.01 2.47 +/- 0.01
4 3.15 +/- 0.00 3.22 +/- 0.02 3.64 +/- 0.01 3.81 +/- 0.02 3.54 +/- 0.01 3.50 +/- 0.00 3.03 +/- 0.01
8 3.65 +/- 0.01 3.58 +/- 0.00 4.53 +/- 0.03 7.38 +/- 0.06 4.43 +/- 0.02 4.42 +/- 0.03 3.70 +/- 0.02
16 2.98 +/- 0.01 3.17 +/- 0.02 3.39 +/- 0.03 7.03 +/- 0.18 3.28 +/- 0.02 3.28 +/- 0.02 2.69 +/- 0.03

Avg. 2.96 +/- 0.01 3.02 +/- 0.02 3.43 +/- 0.02 4.73 +/- 0.05 3.30 +/- 0.01 3.29 +/- 0.01 2.83 +/- 0.02

Crypto 1 2.24 +/- 0.14 1.19 +/- 0.02 1.71 +/- 0.05 1.87 +/- 0.05 1.97 +/- 0.09 1.94 +/- 0.07 1.32 +/- 0.01
2 1.97 +/- 0.09 1.17 +/- 0.02 1.79 +/- 0.08 1.96 +/- 0.05 1.79 +/- 0.05 1.82 +/- 0.06 1.40 +/- 0.02
4 2.41 +/- 0.11 1.21 +/- 0.02 1.74 +/- 0.04 2.06 +/- 0.03 2.00 +/- 0.06 1.93 +/- 0.05 1.57 +/- 0.03
8 2.89 +/- 0.16 2.06 +/- 0.07 2.10 +/- 0.03 2.03 +/- 0.03 2.32 +/- 0.05 2.28 +/- 0.05 1.84 +/- 0.03
16 3.67 +/- 0.19 2.80 +/- 0.10 2.38 +/- 0.00 2.66 +/- 0.02 2.58 +/- 0.03 2.44 +/- 0.01 2.22 +/- 0.01

Avg. 2.64 +/- 0.14 1.69 +/- 0.04 1.94 +/- 0.04 2.11 +/- 0.04 2.13 +/- 0.05 2.08 +/- 0.05 1.67 +/- 0.02

Solar 1 1.40 +/- 0.01 0.71 +/- 0.00 1.49 +/- 0.01 1.67 +/- 0.02 1.32 +/- 0.03 1.51 +/- 0.02 0.83 +/- 0.01
2 1.81 +/- 0.02 1.44 +/- 0.02 1.67 +/- 0.03 1.71 +/- 0.02 1.83 +/- 0.02 1.86 +/- 0.03 1.16 +/- 0.02
4 1.67 +/- 0.02 1.13 +/- 0.00 1.43 +/- 0.01 1.59 +/- 0.02 1.48 +/- 0.02 1.61 +/- 0.02 1.03 +/- 0.01
8 2.60 +/- 0.04 1.80 +/- 0.02 2.53 +/- 0.06 2.57 +/- 0.03 2.38 +/- 0.04 2.27 +/- 0.04 1.69 +/- 0.03
16 3.36 +/- 0.07 2.04 +/- 0.02 3.13 +/- 0.06 3.47 +/- 0.07 3.17 +/- 0.06 3.34 +/- 0.11 2.20 +/- 0.05

Avg. 2.17 +/- 0.03 1.42 +/- 0.01 2.05 +/- 0.03 2.20 +/- 0.03 2.04 +/- 0.03 2.12 +/- 0.05 1.38 +/- 0.02

Table C.2: Results Personalization multivariate
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Datasets

We use four public datasets in our evaluation: Electricity [58], Air Quality [13], Solar Power [53],
Crypto [4] and Rossman Sales [33]. Electricity, Air Quality and Solar were used for uni-variate experi-
ments. Air Quality, Solar Power, Crypto and Rossman Sales were used for multivariate experiments.
The average correlations between features in each multi-variate dataset can be found in Figure D.1.

All datasets follow a similar preprocessing protocol. We select samples in a given time frame, inter-
polate missing values and set the remaining missing values to 0. All data is normalized for consistent
comparison. For the uni-variate experiments, the endogenous feature serves as the uni-variate time
series.

D.1. Electricity
The Electricity dataset contains measurements per 15 min of electricity consumption at different loca-
tions in kWh. There are approximately 140,000 samples with one attribute. We select samples in a
1.5-month period for experiments.

D.2. Air Quality
The Air Quality dataset contains hourly data of different sensory measurements by twelve weather sta-
tions in Beijing. There are approximately 35000 samples of temporal data with 11 attributes under which
gasses, temperature or wind direction. For our experiments, we specifically pick four attributes PM2.5,
PM10, NO2 and CO, of six weather stations Aotizhongxin, Dingling, Gucheng, Huairou, Tiantan and
Wanshouxigong. The data of each weather station is used for a separate task. During preprocessing,
we select approximately samples in a two-month period. PM2.5 is the endogeneous feature, all other
features are exogenous.

D.3. Rossman Sales
Rossman Sales contains historical sales data for 1115 Rossman stores. The data was measured on a
daily basis on contains around 920 samples per store. We specifically selected four attributes: Sales,
Customers, Promo (indicating if there is a promotion), and Holiday of stores 1 to 6. Sales serves as
the endogenous feature. The last attribute is a combination of SchoolHoliday and StateHoliday which
we combined during preprocessing. Specific configurations of batch size, input- and training window
resulted in the use of approximately 720 samples in the experiments.

D.4. Crypto
The Crypto dataset contains historical trading data for different cryptocurrencies. The dataset contains
a different number of samples for each currency since the initiated at different moments in history.
All measurements were done per minute. We selected Close as endogenous feature; and Open,
Close and Volume as exogenous features of six assets: Binance Coin, Bitcoin, Bitcoin Cash, Cardano,
Dogecoin and EOS.IO. During pre-processing we select approximately 1600 samples in a two-month
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period and resample the data into hourly data - considering the correct aggregation function for each
column.

D.5. Solar
Solar contains energy production measurements in MW for different solar panels located at multiple
solar fields. The power consumption is measured every five minutes. We construct tasks by selecting
multiple solar panels in one solar field and treating them as a task. We choose solar fields in Alabama,
Florida, Illinois, Kansas, Massachusetts and Maine. We selected approximately 1800 in a 7 day period.
We select one panel as an endogenous feature and use other panels as exogenous features.

(a) Air Quality (b) Sales (c) Crypto

(d) Solar

Figure D.1: Correlation within tasks, each box contains the average correlation value and variance.



E
Baselines

(a) Centralized (b) Independent (c) FedAvg

(d) TPHFL-H (e) Centralized+ (f) Independent+

(g) TPHFL-NP (h) TPHFL

Figure E.1: Schematic figures of different baselines. Multiple arrows in the last four subfigures indicate distributed features.

In Figure E.1, we show schematic overviews of all baseline methods. In Section 5.1.1 we discussed
different forms of data locality and collaboration. These forms translate to the following configurative
choices:
Data locality:

• None: each cluster can share its data with the central entity, which trains one model with all data
(Figures E.1a).

• Horizontal: each cluster does not share any information with others (Figures E.1b) or shares
its model weights with the central entity, serving as the Federator, and receives updated model
weights (Figures E.1c, E.1d).
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• Vertical: each cluster shares distributed features with the central entity, which trains one model
with all data (Figures E.1e).

• Hybrid: we combine the configurations of Horizontal and Vertical data locality. Each cluster
trains its model using distributed features but does not share any information with the central
entity (Figure E.1f) or trains with distributed features and shares only model weights (Figures
E.1g, E.1h).

For collaboration, with exclusively Vertical collaboration, we do not exchange any information between
the clusters (Figures E.1b, E.1f). In all other cases, there is an exchange between clusters.



F
Additional experiments

We compare TPHFL to all baseline methods, in three separate tables. In Table F.1, which is an ex-
panded version of Table 5.2, we compare TPHFL to Independent and Centralized and show the relative
improvement of TPHFL compared to Independent. In Table F.2, which is an expansion of Table 5.3, we
compare three methods without vertical privacy constraints to their counterparts that enforce vertical
restrictions. In Table F.3, which is an expansion of Table 5.3, we compare two methods that incorpo-
rate horizontal collaboration and personalization with their counterpart that do not use personalization.
Lastly, in Table F.4, which is an expansion of Table 5.5, we show the improvements of TPHFL-I2 and
TPHFL over Independent.

We conducted these experiments additionally for 2 and 4 tasks. The corresponding results can be
found in Tables F.5 to F.12.

Dataset PW Independent Centralized TPHFL Imp.

AirQuality 1 2.38 +/- 0.02 1.55 +/- 0.00 1.91 +/- 0.00 19.6%
2 2.21 +/- 0.01 1.90 +/- 0.01 2.00 +/- 0.01 9.5%
4 4.42 +/- 0.02 3.60 +/- 0.01 3.84 +/- 0.01 13.2%
8 6.68 +/- 0.24 5.41 +/- 0.04 5.29 +/- 0.01 20.8%
16 3.60 +/- 0.07 2.77 +/- 0.01 2.96 +/- 0.01 17.8%

Avg. 4.17 +/- 0.46 1.30 +/- 0.02 2.71 +/- 0.11 34.9%

Industry 1 4.76 +/- 0.58 2.05 +/- 0.06 2.62 +/- 0.09 44.9%
2 4.44 +/- 1.26 3.54 +/- 0.43 4.42 +/- 1.14 0.4%
4 3.45 +/- 0.34 2.57 +/- 0.07 3.20 +/- 0.26 7.2%
8 4.56 +/- 0.51 2.92 +/- 0.11 3.19 +/- 0.29 29.9%
16 4.28 +/- 0.63 2.48 +/- 0.14 3.23 +/- 0.38 24.4%

Avg. 2.38 +/- 0.01 2.53 +/- 0.03 3.24 +/- 0.06 -36.3%

Sales 1 2.64 +/- 0.01 2.59 +/- 0.01 3.61 +/- 0.04 -36.6%
2 3.15 +/- 0.00 3.22 +/- 0.02 4.34 +/- 0.03 -37.7%
4 3.65 +/- 0.01 3.58 +/- 0.00 5.32 +/- 0.02 -45.8%
8 2.98 +/- 0.01 3.17 +/- 0.02 5.50 +/- 0.14 -84.7%
16 2.96 +/- 0.01 3.02 +/- 0.02 4.40 +/- 0.06 -48.7%

Avg. 2.24 +/- 0.14 1.19 +/- 0.02 2.09 +/- 0.03 6.9%

Crypto 1 1.97 +/- 0.09 1.17 +/- 0.02 1.95 +/- 0.03 1.0%
2 2.41 +/- 0.11 1.21 +/- 0.02 2.24 +/- 0.05 7.0%
4 2.89 +/- 0.16 2.06 +/- 0.07 2.63 +/- 0.05 9.0%
8 3.67 +/- 0.19 2.80 +/- 0.10 3.10 +/- 0.04 15.6%
16 2.64 +/- 0.14 1.69 +/- 0.04 2.40 +/- 0.04 8.9%

Avg. 1.40 +/- 0.01 0.71 +/- 0.00 0.99 +/- 0.02 29.5%

Solar 1 1.81 +/- 0.02 1.44 +/- 0.02 1.43 +/- 0.03 21.1%
2 1.67 +/- 0.02 1.13 +/- 0.00 1.34 +/- 0.02 19.4%
4 2.60 +/- 0.04 1.80 +/- 0.02 1.86 +/- 0.04 28.3%
8 3.36 +/- 0.07 2.04 +/- 0.02 2.27 +/- 0.08 32.5%
16 2.17 +/- 0.03 1.42 +/- 0.01 1.58 +/- 0.04 27.2%

Table F.1: Average MAE and standard deviation for methods with no privacy constraints and TPHFL. The relative improvement
of TPHFL over Independent (Rel. Imp.) is shown in percentages.
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Dataset PW Independent Independent+ Imp. Centralized Centralized+ Imp. TPHFL-H TPHFL Imp.

AirQuality 1 2.32 +/- 0.06 2.72 +/- 0.03 -16.8% 1.40 +/- 0.01 1.58 +/- 0.01 -12.6% 1.31 +/- 0.00 1.78 +/- 0.00 -35.9%
2 2.38 +/- 0.02 2.51 +/- 0.01 -5.6% 1.55 +/- 0.00 1.85 +/- 0.01 -19.6% 1.52 +/- 0.00 1.91 +/- 0.00 -25.3%
4 2.21 +/- 0.01 2.46 +/- 0.03 -11.2% 1.90 +/- 0.01 2.19 +/- 0.01 -15.1% 1.91 +/- 0.00 2.00 +/- 0.01 -4.9%
8 4.42 +/- 0.02 4.69 +/- 0.03 -6.2% 3.60 +/- 0.01 3.45 +/- 0.01 4.3% 3.43 +/- 0.01 3.84 +/- 0.01 -12.0%
16 6.68 +/- 0.24 6.23 +/- 0.06 6.7% 5.41 +/- 0.04 4.92 +/- 0.03 9.1% 4.74 +/- 0.02 5.29 +/- 0.01 -11.6%

Avg. 3.60 +/- 0.07 3.72 +/- 0.03 -3.3% 2.77 +/- 0.01 2.80 +/- 0.01 -0.9% 2.58 +/- 0.00 2.96 +/- 0.01 -14.8%

Industry 1 4.17 +/- 0.46 4.73 +/- 0.32 -13.4% 1.30 +/- 0.02 1.34 +/- 0.01 -2.8% 2.21 +/- 0.07 2.71 +/- 0.11 -22.5%
2 4.76 +/- 0.58 5.68 +/- 0.37 -19.4% 2.05 +/- 0.06 1.80 +/- 0.04 12.4% 2.61 +/- 0.15 2.62 +/- 0.09 -0.7%
4 4.44 +/- 1.26 6.66 +/- 2.08 -49.9% 3.54 +/- 0.43 3.34 +/- 0.58 5.5% 3.55 +/- 0.99 4.42 +/- 1.14 -24.6%
8 3.45 +/- 0.34 6.18 +/- 1.24 -79.3% 2.57 +/- 0.07 3.07 +/- 0.26 -19.4% 2.79 +/- 0.27 3.20 +/- 0.26 -14.8%
16 4.56 +/- 0.51 5.55 +/- 0.52 -21.6% 2.92 +/- 0.11 3.58 +/- 0.25 -22.6% 3.07 +/- 0.24 3.19 +/- 0.29 -4.1%

Avg. 4.28 +/- 0.63 5.76 +/- 0.91 -34.7% 2.48 +/- 0.14 2.62 +/- 0.23 -6.0% 2.85 +/- 0.34 3.23 +/- 0.38 -13.5%

Sales 1 2.38 +/- 0.01 4.33 +/- 0.09 -82.1% 2.53 +/- 0.03 2.39 +/- 0.02 5.6% 2.27 +/- 0.02 3.24 +/- 0.06 -42.8%
2 2.64 +/- 0.01 4.72 +/- 0.07 -78.4% 2.59 +/- 0.01 3.46 +/- 0.38 -33.7% 2.47 +/- 0.01 3.61 +/- 0.04 -46.1%
4 3.15 +/- 0.00 4.75 +/- 0.07 -50.8% 3.22 +/- 0.02 3.36 +/- 0.01 -4.5% 3.03 +/- 0.01 4.34 +/- 0.03 -43.0%
8 3.65 +/- 0.01 6.83 +/- 0.03 -87.1% 3.58 +/- 0.00 3.79 +/- 0.01 -5.9% 3.70 +/- 0.02 5.32 +/- 0.02 -43.6%
16 2.98 +/- 0.01 5.24 +/- 0.09 -76.1% 3.17 +/- 0.02 3.04 +/- 0.03 4.1% 2.69 +/- 0.03 5.50 +/- 0.14 -104.0%

Avg. 2.96 +/- 0.01 5.17 +/- 0.07 -74.8% 3.02 +/- 0.02 3.21 +/- 0.09 -6.3% 2.83 +/- 0.02 4.40 +/- 0.06 -55.3%

Crypto 1 2.24 +/- 0.14 3.50 +/- 0.43 -55.9% 1.19 +/- 0.02 1.48 +/- 0.03 -24.5% 1.32 +/- 0.01 2.09 +/- 0.03 -58.0%
2 1.97 +/- 0.09 3.32 +/- 0.39 -68.7% 1.17 +/- 0.02 1.21 +/- 0.02 -3.6% 1.40 +/- 0.02 1.95 +/- 0.03 -39.1%
4 2.41 +/- 0.11 2.98 +/- 0.14 -23.5% 1.21 +/- 0.02 1.28 +/- 0.02 -5.7% 1.57 +/- 0.03 2.24 +/- 0.05 -42.9%
8 2.89 +/- 0.16 4.37 +/- 0.52 -51.1% 2.06 +/- 0.07 1.65 +/- 0.02 20.0% 1.84 +/- 0.03 2.63 +/- 0.05 -43.0%
16 3.67 +/- 0.19 5.40 +/- 0.55 -47.0% 2.80 +/- 0.10 2.43 +/- 0.07 13.2% 2.22 +/- 0.01 3.10 +/- 0.04 -39.3%

Avg. 2.64 +/- 0.14 3.91 +/- 0.41 -48.3% 1.69 +/- 0.04 1.61 +/- 0.03 4.5% 1.67 +/- 0.02 2.40 +/- 0.04 -43.7%

Solar 1 1.40 +/- 0.01 1.70 +/- 0.02 -21.2% 0.71 +/- 0.00 0.77 +/- 0.01 -7.8% 0.83 +/- 0.01 0.99 +/- 0.02 -19.5%
2 1.81 +/- 0.02 2.51 +/- 0.08 -38.8% 1.44 +/- 0.02 1.19 +/- 0.02 17.5% 1.16 +/- 0.02 1.43 +/- 0.03 -23.4%
4 1.67 +/- 0.02 2.10 +/- 0.02 -25.5% 1.13 +/- 0.00 0.99 +/- 0.01 12.1% 1.03 +/- 0.01 1.34 +/- 0.02 -30.9%
8 2.60 +/- 0.04 3.08 +/- 0.06 -18.4% 1.80 +/- 0.02 1.82 +/- 0.01 -1.1% 1.69 +/- 0.03 1.86 +/- 0.04 -10.0%
16 3.36 +/- 0.07 3.97 +/- 0.18 -18.0% 2.04 +/- 0.02 2.25 +/- 0.02 -10.5% 2.20 +/- 0.05 2.27 +/- 0.08 -3.2%

Avg. 2.17 +/- 0.03 2.67 +/- 0.07 -23.1% 1.42 +/- 0.01 1.40 +/- 0.01 1.4% 1.38 +/- 0.02 1.58 +/- 0.04 -14.3%

Table F.2: Average MAE and standard deviation for different methods with Vertical restrictions and Horizontal restrictions. We
compare the performance increase for methods if we introduce vertical privacy restrictions.



Additional experiments 73

Dataset PW FedAvg TPHFL-H Imp. TPHFL-NP TPHFL Imp.

AirQuality 1 1.77 +/- 0.01 1.31 +/- 0.00 26.2% 2.57 +/- 0.06 1.78 +/- 0.00 30.9%
2 2.06 +/- 0.04 1.52 +/- 0.00 26.1% 2.42 +/- 0.02 1.91 +/- 0.00 21.1%
4 2.00 +/- 0.00 1.91 +/- 0.00 4.3% 2.23 +/- 0.02 2.00 +/- 0.01 10.0%
8 3.63 +/- 0.01 3.43 +/- 0.01 5.7% 4.41 +/- 0.01 3.84 +/- 0.01 12.9%
16 5.09 +/- 0.02 4.74 +/- 0.02 6.9% 5.81 +/- 0.04 5.29 +/- 0.01 9.0%

Avg. 2.91 +/- 0.02 2.58 +/- 0.00 11.3% 3.49 +/- 0.03 2.96 +/- 0.01 15.0%

Industry 1 2.66 +/- 0.14 2.21 +/- 0.07 16.7% 3.50 +/- 0.14 2.71 +/- 0.11 22.4%
2 3.16 +/- 0.21 2.61 +/- 0.15 17.7% 3.53 +/- 0.14 2.62 +/- 0.09 25.6%
4 3.79 +/- 1.15 3.55 +/- 0.99 6.4% 5.27 +/- 1.46 4.42 +/- 1.14 16.1%
8 3.83 +/- 0.31 2.79 +/- 0.27 27.2% 4.70 +/- 0.58 3.20 +/- 0.26 31.9%
16 3.74 +/- 0.29 3.07 +/- 0.24 17.9% 4.43 +/- 0.44 3.19 +/- 0.29 28.0%

Avg. 3.44 +/- 0.42 2.85 +/- 0.34 17.2% 4.29 +/- 0.55 3.23 +/- 0.38 24.6%

Sales 1 2.67 +/- 0.01 2.27 +/- 0.02 14.8% 7.29 +/- 0.11 3.24 +/- 0.06 55.5%
2 2.92 +/- 0.01 2.47 +/- 0.01 15.4% 7.41 +/- 0.10 3.61 +/- 0.04 51.3%
4 3.64 +/- 0.01 3.03 +/- 0.01 16.6% 7.86 +/- 0.08 4.34 +/- 0.03 44.8%
8 4.53 +/- 0.03 3.70 +/- 0.02 18.3% 8.29 +/- 0.02 5.32 +/- 0.02 35.8%
16 3.39 +/- 0.03 2.69 +/- 0.03 20.5% 7.54 +/- 0.12 5.50 +/- 0.14 27.1%

Avg. 3.43 +/- 0.02 2.83 +/- 0.02 17.3% 7.68 +/- 0.09 4.40 +/- 0.06 42.7%

Crypto 1 1.71 +/- 0.05 1.32 +/- 0.01 22.7% 2.60 +/- 0.10 2.09 +/- 0.03 19.7%
2 1.79 +/- 0.08 1.40 +/- 0.02 21.7% 2.78 +/- 0.06 1.95 +/- 0.03 30.0%
4 1.74 +/- 0.04 1.57 +/- 0.03 9.9% 2.97 +/- 0.03 2.24 +/- 0.05 24.4%
8 2.10 +/- 0.03 1.84 +/- 0.03 12.2% 2.86 +/- 0.03 2.63 +/- 0.05 7.9%
16 2.38 +/- 0.00 2.22 +/- 0.01 6.6% 3.50 +/- 0.03 3.10 +/- 0.04 11.3%

Avg. 1.94 +/- 0.04 1.67 +/- 0.02 14.0% 2.94 +/- 0.05 2.40 +/- 0.04 18.3%

Solar 1 1.49 +/- 0.01 0.83 +/- 0.01 44.5% 1.63 +/- 0.02 0.99 +/- 0.02 39.3%
2 1.67 +/- 0.03 1.16 +/- 0.02 30.8% 2.24 +/- 0.04 1.43 +/- 0.03 36.3%
4 1.43 +/- 0.01 1.03 +/- 0.01 28.3% 2.20 +/- 0.04 1.34 +/- 0.02 38.8%
8 2.53 +/- 0.06 1.69 +/- 0.03 32.9% 2.96 +/- 0.05 1.86 +/- 0.04 37.0%
16 3.13 +/- 0.06 2.20 +/- 0.05 29.8% 3.86 +/- 0.15 2.27 +/- 0.08 41.2%

Avg. 2.05 +/- 0.03 1.38 +/- 0.02 32.7% 2.58 +/- 0.06 1.58 +/- 0.04 38.8%

Table F.3: Average MAE and standard deviation for different methods with Horizontal and Hybrid privacy constraints. We show
the improvement of introducing the personalization mechanism.

Dataset PW Independent TPHFL-I2 Imp. Independent TPHFL Imp.

AirQuality 1 2.38 +/- 0.02 1.90 +/- 0.00 20.0% 2.38 +/- 0.02 1.91 +/- 0.00 19.6%
2 2.21 +/- 0.01 2.02 +/- 0.01 8.8% 2.21 +/- 0.01 2.00 +/- 0.01 9.5%
4 4.42 +/- 0.02 3.76 +/- 0.01 15.0% 4.42 +/- 0.02 3.84 +/- 0.01 13.2%
8 6.68 +/- 0.24 5.19 +/- 0.01 22.3% 6.68 +/- 0.24 5.29 +/- 0.01 20.8%
16 3.60 +/- 0.07 2.93 +/- 0.00 18.7% 3.60 +/- 0.07 2.96 +/- 0.01 17.8%

Avg. 4.17 +/- 0.46 2.84 +/- 0.12 31.8% 4.17 +/- 0.46 2.71 +/- 0.11 34.9%

Industry 1 4.76 +/- 0.58 2.81 +/- 0.10 40.9% 4.76 +/- 0.58 2.62 +/- 0.09 44.9%
2 4.44 +/- 1.26 4.16 +/- 1.05 6.3% 4.44 +/- 1.26 4.42 +/- 1.14 0.4%
4 3.45 +/- 0.34 3.31 +/- 0.29 4.1% 3.45 +/- 0.34 3.20 +/- 0.26 7.2%
8 4.56 +/- 0.51 3.29 +/- 0.32 27.9% 4.56 +/- 0.51 3.19 +/- 0.29 29.9%
16 4.28 +/- 0.63 3.28 +/- 0.38 23.2% 4.28 +/- 0.63 3.23 +/- 0.38 24.4%

Avg. 2.38 +/- 0.01 3.70 +/- 0.09 -55.7% 2.38 +/- 0.01 3.24 +/- 0.06 -36.3%

Sales 1 2.64 +/- 0.01 3.76 +/- 0.05 -42.3% 2.64 +/- 0.01 3.61 +/- 0.04 -36.6%
2 3.15 +/- 0.00 4.83 +/- 0.03 -53.4% 3.15 +/- 0.00 4.34 +/- 0.03 -37.7%
4 3.65 +/- 0.01 7.60 +/- 0.01 -108.3% 3.65 +/- 0.01 5.32 +/- 0.02 -45.8%
8 2.98 +/- 0.01 6.72 +/- 0.15 -125.9% 2.98 +/- 0.01 5.50 +/- 0.14 -84.7%
16 2.96 +/- 0.01 5.32 +/- 0.07 -79.9% 2.96 +/- 0.01 4.40 +/- 0.06 -48.7%

Avg. 2.24 +/- 0.14 2.11 +/- 0.02 5.8% 2.24 +/- 0.14 2.09 +/- 0.03 6.9%

Crypto 1 1.97 +/- 0.09 1.99 +/- 0.03 -1.0% 1.97 +/- 0.09 1.95 +/- 0.03 1.0%
2 2.41 +/- 0.11 2.39 +/- 0.05 0.8% 2.41 +/- 0.11 2.24 +/- 0.05 7.0%
4 2.89 +/- 0.16 2.65 +/- 0.05 8.4% 2.89 +/- 0.16 2.63 +/- 0.05 9.0%
8 3.67 +/- 0.19 3.08 +/- 0.04 16.2% 3.67 +/- 0.19 3.10 +/- 0.04 15.6%
16 2.64 +/- 0.14 2.44 +/- 0.04 7.4% 2.64 +/- 0.14 2.40 +/- 0.04 8.9%

Avg. 1.40 +/- 0.01 1.01 +/- 0.01 28.2% 1.40 +/- 0.01 0.99 +/- 0.02 29.5%

Solar 1 1.81 +/- 0.02 1.45 +/- 0.02 20.0% 1.81 +/- 0.02 1.43 +/- 0.03 21.1%
2 1.67 +/- 0.02 1.35 +/- 0.03 19.2% 1.67 +/- 0.02 1.34 +/- 0.02 19.4%
4 2.60 +/- 0.04 1.90 +/- 0.04 27.0% 2.60 +/- 0.04 1.86 +/- 0.04 28.3%
8 3.36 +/- 0.07 2.37 +/- 0.07 29.5% 3.36 +/- 0.07 2.27 +/- 0.08 32.5%
16 2.17 +/- 0.03 1.61 +/- 0.04 25.6% 2.17 +/- 0.03 1.58 +/- 0.04 27.2%

Table F.4: Average MAE and standard deviation for Independent, TPHFL-I2 and TPHFL. We show the improvement over Inde-
pendent.



74 Additional experiments

Dataset PW Independent Centralized TPHFL Imp.

AirQuality 1 2.13 +/- 0.03 1.91 +/- 0.05 2.09 +/- 0.00 1.8%
2 2.17 +/- 0.00 1.80 +/- 0.01 2.11 +/- 0.00 2.9%
4 2.16 +/- 0.00 2.03 +/- 0.00 2.21 +/- 0.00 -2.5%
8 4.57 +/- 0.02 4.01 +/- 0.00 3.78 +/- 0.00 17.2%
16 6.21 +/- 0.01 5.91 +/- 0.01 5.37 +/- 0.00 13.6%

Avg. 3.45 +/- 0.01 3.13 +/- 0.02 3.11 +/- 0.00 9.7%

Industry 1 6.65 +/- 0.33 3.59 +/- 0.20 4.25 +/- 0.13 36.1%
2 8.17 +/- 0.46 3.91 +/- 0.13 2.36 +/- 0.02 71.2%
4 2.25 +/- 0.10 3.06 +/- 0.25 1.74 +/- 0.02 22.6%
8 3.52 +/- 0.38 2.04 +/- 0.06 3.54 +/- 0.36 -0.5%
16 7.19 +/- 0.28 4.12 +/- 0.37 4.91 +/- 0.06 31.7%

Avg. 5.56 +/- 0.31 3.34 +/- 0.20 3.36 +/- 0.12 39.5%

Sales 1 2.58 +/- 0.01 2.37 +/- 0.01 2.77 +/- 0.02 -7.6%
2 2.66 +/- 0.01 2.70 +/- 0.01 2.97 +/- 0.03 -11.4%
4 3.32 +/- 0.00 3.16 +/- 0.00 3.44 +/- 0.02 -3.8%
8 3.88 +/- 0.00 3.62 +/- 0.00 4.78 +/- 0.00 -23.0%
16 2.98 +/- 0.00 2.80 +/- 0.00 4.52 +/- 0.05 -51.6%

Avg. 3.09 +/- 0.00 2.93 +/- 0.00 3.70 +/- 0.02 -19.8%

Crypto 1 3.36 +/- 0.38 1.50 +/- 0.02 2.19 +/- 0.09 34.9%
2 1.96 +/- 0.12 1.74 +/- 0.05 2.03 +/- 0.06 -3.2%
4 2.24 +/- 0.07 1.14 +/- 0.01 1.63 +/- 0.02 27.3%
8 3.31 +/- 0.24 1.82 +/- 0.05 2.60 +/- 0.16 21.5%
16 4.90 +/- 0.26 2.29 +/- 0.02 5.10 +/- 0.29 -4.1%

Avg. 3.15 +/- 0.21 1.70 +/- 0.03 2.71 +/- 0.12 14.2%

Solar 1 1.33 +/- 0.01 1.05 +/- 0.01 1.20 +/- 0.01 9.3%
2 1.64 +/- 0.01 1.21 +/- 0.00 1.73 +/- 0.01 -5.5%
4 1.58 +/- 0.00 1.20 +/- 0.00 1.54 +/- 0.02 2.5%
8 2.19 +/- 0.03 2.03 +/- 0.05 2.14 +/- 0.03 2.4%
16 3.24 +/- 0.14 2.35 +/- 0.03 2.68 +/- 0.07 17.4%

Avg. 2.00 +/- 0.04 1.57 +/- 0.02 1.86 +/- 0.03 6.9%

Table F.5: 2 tasks: Average MAE and standard deviation for methods with no privacy constraints and TPHFL. The relative
improvement of TPHFL over Independent (Rel. Imp.) is shown in percentages.
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Dataset PW Independent Centralized TPHFL Imp.

AirQuality 1 2.36 +/- 0.05 1.51 +/- 0.02 2.09 +/- 0.00 11.7%
2 2.25 +/- 0.01 1.70 +/- 0.01 1.93 +/- 0.00 14.0%
4 2.18 +/- 0.00 1.82 +/- 0.00 1.97 +/- 0.00 9.9%
8 4.49 +/- 0.02 3.81 +/- 0.00 3.81 +/- 0.00 15.3%
16 6.36 +/- 0.10 5.28 +/- 0.02 4.78 +/- 0.01 24.7%

Avg. 3.53 +/- 0.04 2.82 +/- 0.01 2.91 +/- 0.00 17.4%

Industry 1 4.56 +/- 0.64 1.59 +/- 0.02 2.59 +/- 0.09 43.1%
2 5.91 +/- 0.77 2.23 +/- 0.03 2.76 +/- 0.04 53.2%
4 2.61 +/- 0.13 1.77 +/- 0.03 1.96 +/- 0.01 24.9%
8 3.04 +/- 0.28 2.72 +/- 0.13 2.69 +/- 0.16 11.5%
16 5.08 +/- 0.86 2.39 +/- 0.06 3.17 +/- 0.25 37.6%

Avg. 4.24 +/- 0.54 2.14 +/- 0.05 2.64 +/- 0.11 37.8%

Sales 1 2.61 +/- 0.01 2.66 +/- 0.01 2.44 +/- 0.01 6.7%
2 2.79 +/- 0.01 2.83 +/- 0.01 2.58 +/- 0.01 7.5%
4 3.42 +/- 0.00 3.40 +/- 0.01 3.64 +/- 0.01 -6.2%
8 3.93 +/- 0.01 3.55 +/- 0.02 5.71 +/- 0.00 -45.2%
16 3.13 +/- 0.01 2.88 +/- 0.01 4.46 +/- 0.02 -42.4%

Avg. 3.18 +/- 0.01 3.06 +/- 0.01 3.77 +/- 0.01 -18.4%

Crypto 1 2.48 +/- 0.27 1.07 +/- 0.01 2.20 +/- 0.04 11.1%
2 1.75 +/- 0.07 1.30 +/- 0.02 1.69 +/- 0.01 3.0%
4 1.96 +/- 0.05 1.20 +/- 0.01 1.95 +/- 0.03 0.6%
8 2.74 +/- 0.16 1.65 +/- 0.02 2.60 +/- 0.06 5.0%
16 3.82 +/- 0.25 2.42 +/- 0.02 3.77 +/- 0.09 1.4%

Avg. 2.55 +/- 0.16 1.53 +/- 0.02 2.44 +/- 0.05 4.2%

Solar 1 1.38 +/- 0.02 1.16 +/- 0.01 0.91 +/- 0.02 33.6%
2 1.88 +/- 0.06 1.48 +/- 0.01 1.25 +/- 0.03 33.2%
4 1.78 +/- 0.02 1.13 +/- 0.01 1.16 +/- 0.02 34.8%
8 2.39 +/- 0.07 1.75 +/- 0.02 1.60 +/- 0.04 32.8%
16 3.30 +/- 0.13 2.09 +/- 0.03 2.07 +/- 0.08 37.4%

Avg. 2.14 +/- 0.06 1.52 +/- 0.02 1.40 +/- 0.04 34.7%

Table F.6: 4 tasks: Average MAE and standard deviation for methods with no privacy constraints and TPHFL. The relative
improvement of TPHFL over Independent (Rel. Imp.) is shown in percentages.
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Dataset PW Independent Independent+ Imp. Centralized Centralized+ Imp. TPHFL-H TPHFL Imp.

AirQuality 1 2.13 +/- 0.03 2.77 +/- 0.02 -30.1% 1.91 +/- 0.05 1.88 +/- 0.01 1.8% 1.81 +/- 0.00 2.09 +/- 0.00 -15.4%
2 2.17 +/- 0.00 2.39 +/- 0.01 -10.3% 1.80 +/- 0.01 1.97 +/- 0.01 -9.2% 1.84 +/- 0.00 2.11 +/- 0.00 -14.6%
4 2.16 +/- 0.00 2.30 +/- 0.01 -6.6% 2.03 +/- 0.00 2.00 +/- 0.00 1.8% 1.90 +/- 0.00 2.21 +/- 0.00 -16.2%
8 4.57 +/- 0.02 4.49 +/- 0.00 1.7% 4.01 +/- 0.00 4.06 +/- 0.00 -1.1% 3.60 +/- 0.01 3.78 +/- 0.00 -4.9%
16 6.21 +/- 0.01 5.76 +/- 0.01 7.3% 5.91 +/- 0.01 5.49 +/- 0.02 7.0% 5.42 +/- 0.00 5.37 +/- 0.00 0.9%

Avg. 3.45 +/- 0.01 3.54 +/- 0.01 -2.7% 3.13 +/- 0.02 3.08 +/- 0.01 1.8% 2.92 +/- 0.00 3.11 +/- 0.00 -6.7%

Industry 1 6.65 +/- 0.33 5.91 +/- 0.20 11.1% 3.59 +/- 0.20 6.36 +/- 1.43 -77.1% 4.34 +/- 0.20 4.25 +/- 0.13 2.2%
2 8.17 +/- 0.46 6.17 +/- 0.54 24.6% 3.91 +/- 0.13 7.11 +/- 1.67 -81.7% 4.15 +/- 0.20 2.36 +/- 0.02 43.2%
4 2.25 +/- 0.10 3.58 +/- 0.22 -59.1% 3.06 +/- 0.25 2.13 +/- 0.05 30.2% 1.38 +/- 0.02 1.74 +/- 0.02 -26.7%
8 3.52 +/- 0.38 4.82 +/- 0.83 -37.0% 2.04 +/- 0.06 4.72 +/- 0.14 -131.6% 2.79 +/- 0.35 3.54 +/- 0.36 -26.8%
16 7.19 +/- 0.28 6.05 +/- 0.21 15.9% 4.12 +/- 0.37 6.98 +/- 0.33 -69.3% 3.86 +/- 0.03 4.91 +/- 0.06 -27.3%

Avg. 5.56 +/- 0.31 5.31 +/- 0.40 4.5% 3.34 +/- 0.20 5.46 +/- 0.72 -63.3% 3.30 +/- 0.16 3.36 +/- 0.12 -1.7%

Sales 1 2.58 +/- 0.01 5.37 +/- 0.03 -108.3% 2.37 +/- 0.01 2.79 +/- 0.01 -17.9% 1.97 +/- 0.01 2.77 +/- 0.02 -40.6%
2 2.66 +/- 0.01 5.65 +/- 0.02 -112.1% 2.70 +/- 0.01 2.72 +/- 0.01 -0.6% 2.29 +/- 0.02 2.97 +/- 0.03 -29.7%
4 3.32 +/- 0.00 6.14 +/- 0.03 -85.2% 3.16 +/- 0.00 3.57 +/- 0.00 -12.9% 2.92 +/- 0.01 3.44 +/- 0.02 -18.0%
8 3.88 +/- 0.00 7.81 +/- 0.01 -101.1% 3.62 +/- 0.00 4.87 +/- 0.05 -34.6% 3.47 +/- 0.00 4.78 +/- 0.00 -37.6%
16 2.98 +/- 0.00 6.11 +/- 0.01 -104.8% 2.80 +/- 0.00 3.35 +/- 0.00 -19.5% 2.42 +/- 0.00 4.52 +/- 0.05 -86.6%

Avg. 3.09 +/- 0.00 6.22 +/- 0.02 -101.5% 2.93 +/- 0.00 3.46 +/- 0.02 -18.1% 2.62 +/- 0.01 3.70 +/- 0.02 -41.4%

Crypto 1 3.36 +/- 0.38 5.36 +/- 1.25 -59.4% 1.50 +/- 0.02 1.74 +/- 0.06 -16.1% 1.20 +/- 0.01 2.19 +/- 0.09 -82.6%
2 1.96 +/- 0.12 4.24 +/- 0.74 -116.2% 1.74 +/- 0.05 2.00 +/- 0.10 -14.8% 1.18 +/- 0.00 2.03 +/- 0.06 -72.2%
4 2.24 +/- 0.07 3.14 +/- 0.04 -40.4% 1.14 +/- 0.01 1.42 +/- 0.02 -24.2% 1.27 +/- 0.01 1.63 +/- 0.02 -27.6%
8 3.31 +/- 0.24 5.88 +/- 0.96 -77.9% 1.82 +/- 0.05 2.65 +/- 0.14 -46.0% 1.55 +/- 0.01 2.60 +/- 0.16 -67.2%
16 4.90 +/- 0.26 7.75 +/- 0.58 -58.2% 2.29 +/- 0.02 4.28 +/- 0.04 -86.7% 2.81 +/- 0.07 5.10 +/- 0.29 -81.2%

Avg. 3.15 +/- 0.21 5.27 +/- 0.71 -67.3% 1.70 +/- 0.03 2.42 +/- 0.07 -42.4% 1.60 +/- 0.02 2.71 +/- 0.12 -68.8%

Solar 1 1.33 +/- 0.01 1.40 +/- 0.01 -5.7% 1.05 +/- 0.01 1.05 +/- 0.01 0.4% 1.13 +/- 0.01 1.20 +/- 0.01 -6.2%
2 1.64 +/- 0.01 2.22 +/- 0.04 -35.4% 1.21 +/- 0.00 1.37 +/- 0.00 -13.1% 1.48 +/- 0.01 1.73 +/- 0.01 -16.8%
4 1.58 +/- 0.00 1.95 +/- 0.02 -23.2% 1.20 +/- 0.00 1.21 +/- 0.00 -0.8% 1.12 +/- 0.00 1.54 +/- 0.02 -37.9%
8 2.19 +/- 0.03 2.87 +/- 0.13 -30.9% 2.03 +/- 0.05 2.10 +/- 0.02 -3.4% 1.98 +/- 0.03 2.14 +/- 0.03 -7.8%
16 3.24 +/- 0.14 3.50 +/- 0.09 -7.9% 2.35 +/- 0.03 2.66 +/- 0.05 -13.3% 2.45 +/- 0.06 2.68 +/- 0.07 -9.3%

Avg. 2.00 +/- 0.04 2.39 +/- 0.06 -19.6% 1.57 +/- 0.02 1.68 +/- 0.02 -7.0% 1.63 +/- 0.02 1.86 +/- 0.03 -13.8%

Table F.7: 2 tasks: AverageMAE and standard deviation for different methods with Vertical restrictions and Horizontal restrictions.
We compare the performance increase for methods if we introduce vertical privacy restrictions.
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Dataset PW Independent Independent+ Imp. Centralized Centralized+ Imp. TPHFL-H TPHFL Imp.

AirQuality 1 2.36 +/- 0.05 2.82 +/- 0.03 -19.2% 1.51 +/- 0.02 1.65 +/- 0.00 -9.0% 1.84 +/- 0.00 2.09 +/- 0.00 -13.2%
2 2.25 +/- 0.01 2.56 +/- 0.01 -13.9% 1.70 +/- 0.01 1.74 +/- 0.00 -2.7% 1.73 +/- 0.00 1.93 +/- 0.00 -11.4%
4 2.18 +/- 0.00 2.32 +/- 0.01 -6.2% 1.82 +/- 0.00 1.78 +/- 0.00 2.1% 1.92 +/- 0.00 1.97 +/- 0.00 -2.3%
8 4.49 +/- 0.02 4.84 +/- 0.02 -7.8% 3.81 +/- 0.00 3.68 +/- 0.01 3.4% 3.61 +/- 0.00 3.81 +/- 0.00 -5.5%
16 6.36 +/- 0.10 6.08 +/- 0.03 4.3% 5.28 +/- 0.02 5.14 +/- 0.03 2.7% 5.22 +/- 0.01 4.78 +/- 0.01 8.4%

Avg. 3.53 +/- 0.04 3.72 +/- 0.02 -5.5% 2.82 +/- 0.01 2.80 +/- 0.01 0.9% 2.87 +/- 0.00 2.91 +/- 0.00 -1.7%

Industry 1 4.56 +/- 0.64 4.47 +/- 0.45 1.9% 1.59 +/- 0.02 3.09 +/- 0.16 -94.3% 1.78 +/- 0.00 2.59 +/- 0.09 -45.2%
2 5.91 +/- 0.77 5.40 +/- 0.45 8.7% 2.23 +/- 0.03 3.09 +/- 0.13 -38.6% 1.93 +/- 0.03 2.76 +/- 0.04 -43.1%
4 2.61 +/- 0.13 3.55 +/- 0.17 -36.0% 1.77 +/- 0.03 2.61 +/- 0.12 -48.0% 1.50 +/- 0.01 1.96 +/- 0.01 -31.0%
8 3.04 +/- 0.28 4.32 +/- 0.61 -42.0% 2.72 +/- 0.13 3.84 +/- 0.40 -41.3% 1.99 +/- 0.08 2.69 +/- 0.16 -35.4%
16 5.08 +/- 0.86 5.24 +/- 0.46 -3.1% 2.39 +/- 0.06 4.81 +/- 0.38 -101.4% 2.14 +/- 0.05 3.17 +/- 0.25 -48.1%

Avg. 4.24 +/- 0.54 4.60 +/- 0.43 -8.4% 2.14 +/- 0.05 3.49 +/- 0.24 -63.1% 1.87 +/- 0.04 2.64 +/- 0.11 -41.1%

Sales 1 2.61 +/- 0.01 5.42 +/- 0.04 -107.5% 2.66 +/- 0.01 2.63 +/- 0.01 1.3% 2.10 +/- 0.01 2.44 +/- 0.01 -15.8%
2 2.79 +/- 0.01 5.57 +/- 0.03 -99.3% 2.83 +/- 0.01 3.17 +/- 0.02 -11.7% 2.35 +/- 0.01 2.58 +/- 0.01 -9.8%
4 3.42 +/- 0.00 6.21 +/- 0.02 -81.5% 3.40 +/- 0.01 3.66 +/- 0.01 -7.4% 2.92 +/- 0.01 3.64 +/- 0.01 -24.7%
8 3.93 +/- 0.01 7.81 +/- 0.03 -98.6% 3.55 +/- 0.02 3.95 +/- 0.02 -11.3% 3.51 +/- 0.00 5.71 +/- 0.00 -62.8%
16 3.13 +/- 0.01 6.40 +/- 0.03 -104.3% 2.88 +/- 0.01 3.05 +/- 0.01 -5.9% 2.47 +/- 0.01 4.46 +/- 0.02 -81.0%

Avg. 3.18 +/- 0.01 6.28 +/- 0.03 -97.6% 3.06 +/- 0.01 3.29 +/- 0.02 -7.3% 2.67 +/- 0.01 3.77 +/- 0.01 -41.1%

Crypto 1 2.48 +/- 0.27 4.03 +/- 0.89 -62.7% 1.07 +/- 0.01 1.62 +/- 0.03 -52.4% 1.26 +/- 0.01 2.20 +/- 0.04 -74.5%
2 1.75 +/- 0.07 3.19 +/- 0.50 -82.5% 1.30 +/- 0.02 1.44 +/- 0.01 -10.5% 1.30 +/- 0.01 1.69 +/- 0.01 -30.2%
4 1.96 +/- 0.05 2.52 +/- 0.06 -28.8% 1.20 +/- 0.01 1.54 +/- 0.02 -28.6% 1.34 +/- 0.01 1.95 +/- 0.03 -45.0%
8 2.74 +/- 0.16 4.47 +/- 0.73 -63.0% 1.65 +/- 0.02 2.21 +/- 0.04 -34.2% 1.65 +/- 0.01 2.60 +/- 0.06 -58.1%
16 3.82 +/- 0.25 6.00 +/- 0.69 -57.0% 2.42 +/- 0.02 3.08 +/- 0.07 -27.2% 2.32 +/- 0.02 3.77 +/- 0.09 -62.5%

Avg. 2.55 +/- 0.16 4.04 +/- 0.58 -58.6% 1.53 +/- 0.02 1.98 +/- 0.04 -29.6% 1.57 +/- 0.01 2.44 +/- 0.05 -55.2%

Solar 1 1.38 +/- 0.02 1.68 +/- 0.02 -22.0% 1.16 +/- 0.01 0.88 +/- 0.01 23.7% 0.78 +/- 0.01 0.91 +/- 0.02 -17.7%
2 1.88 +/- 0.06 2.44 +/- 0.08 -30.2% 1.48 +/- 0.01 1.52 +/- 0.01 -2.8% 1.06 +/- 0.02 1.25 +/- 0.03 -18.6%
4 1.78 +/- 0.02 1.97 +/- 0.02 -10.3% 1.13 +/- 0.01 1.38 +/- 0.01 -21.8% 0.93 +/- 0.01 1.16 +/- 0.02 -25.7%
8 2.39 +/- 0.07 2.95 +/- 0.08 -23.5% 1.75 +/- 0.02 1.53 +/- 0.02 12.3% 1.57 +/- 0.05 1.60 +/- 0.04 -2.4%
16 3.30 +/- 0.13 4.07 +/- 0.26 -23.3% 2.09 +/- 0.03 2.15 +/- 0.02 -2.8% 2.01 +/- 0.06 2.07 +/- 0.08 -2.9%

Avg. 2.14 +/- 0.06 2.62 +/- 0.09 -22.2% 1.52 +/- 0.02 1.49 +/- 0.02 1.9% 1.27 +/- 0.03 1.40 +/- 0.04 -10.5%

Table F.8: 4 tasks: AverageMAE and standard deviation for different methods with Vertical restrictions and Horizontal restrictions.
We compare the performance increase for methods if we introduce vertical privacy restrictions.

Dataset PW FedAvg TPHFL-H Imp. TPHFL-NP TPHFL Imp.

AirQuality 1 2.23 +/- 0.01 1.84 +/- 0.00 17.6% 2.35 +/- 0.01 2.11 +/- 0.00 10.4%
2 2.10 +/- 0.00 1.90 +/- 0.00 9.5% 2.30 +/- 0.01 2.21 +/- 0.00 3.8%
4 4.19 +/- 0.00 3.60 +/- 0.01 14.0% 4.46 +/- 0.01 3.78 +/- 0.00 15.3%
8 5.73 +/- 0.01 5.42 +/- 0.00 5.4% 5.56 +/- 0.01 5.37 +/- 0.00 3.4%
16 3.26 +/- 0.01 2.92 +/- 0.00 10.6% 3.51 +/- 0.02 3.11 +/- 0.00 11.5%

Avg. 5.74 +/- 0.24 4.34 +/- 0.20 24.4% 4.77 +/- 0.36 4.25 +/- 0.13 11.1%

Industry 1 5.94 +/- 0.06 4.15 +/- 0.20 30.2% 3.74 +/- 0.39 2.36 +/- 0.02 37.1%
2 2.30 +/- 0.08 1.38 +/- 0.02 40.3% 3.86 +/- 0.06 1.74 +/- 0.02 54.8%
4 3.95 +/- 0.76 2.79 +/- 0.35 29.3% 6.78 +/- 0.45 3.54 +/- 0.36 47.8%
8 5.88 +/- 0.12 3.86 +/- 0.03 34.4% 4.87 +/- 0.11 4.91 +/- 0.06 -0.8%
16 4.76 +/- 0.25 3.30 +/- 0.16 30.7% 4.81 +/- 0.27 3.36 +/- 0.12 30.1%

Avg. 2.50 +/- 0.01 1.97 +/- 0.01 21.0% 6.25 +/- 0.03 2.77 +/- 0.02 55.6%

Sales 1 2.73 +/- 0.01 2.29 +/- 0.02 16.3% 6.40 +/- 0.03 2.97 +/- 0.03 53.6%
2 3.31 +/- 0.01 2.92 +/- 0.01 11.9% 7.27 +/- 0.02 3.44 +/- 0.02 52.6%
4 4.14 +/- 0.00 3.47 +/- 0.00 16.1% 8.16 +/- 0.01 4.78 +/- 0.00 41.4%
8 2.95 +/- 0.00 2.42 +/- 0.00 17.8% 6.76 +/- 0.04 4.52 +/- 0.05 33.0%
16 3.13 +/- 0.01 2.62 +/- 0.01 16.3% 6.97 +/- 0.02 3.70 +/- 0.02 46.9%

Avg. 1.41 +/- 0.02 1.20 +/- 0.01 15.1% 3.72 +/- 0.14 2.19 +/- 0.09 41.1%

Crypto 1 1.23 +/- 0.01 1.18 +/- 0.00 4.6% 3.63 +/- 0.09 2.03 +/- 0.06 44.3%
2 1.70 +/- 0.01 1.27 +/- 0.01 25.2% 3.12 +/- 0.07 1.63 +/- 0.02 47.9%
4 1.99 +/- 0.09 1.55 +/- 0.01 21.8% 4.18 +/- 0.37 2.60 +/- 0.16 37.9%
8 3.20 +/- 0.06 2.81 +/- 0.07 12.2% 6.30 +/- 0.10 5.10 +/- 0.29 19.1%
16 1.91 +/- 0.04 1.60 +/- 0.02 16.0% 4.19 +/- 0.16 2.71 +/- 0.12 35.4%

Avg. 1.33 +/- 0.01 1.13 +/- 0.01 14.5% 1.65 +/- 0.01 1.20 +/- 0.01 26.9%

Solar 1 1.67 +/- 0.02 1.48 +/- 0.01 11.3% 2.23 +/- 0.04 1.73 +/- 0.01 22.4%
2 1.47 +/- 0.01 1.12 +/- 0.00 24.1% 1.86 +/- 0.01 1.54 +/- 0.02 17.0%
4 2.39 +/- 0.04 1.98 +/- 0.03 17.1% 2.43 +/- 0.04 2.14 +/- 0.03 12.0%
8 2.91 +/- 0.11 2.45 +/- 0.06 15.9% 3.35 +/- 0.13 2.68 +/- 0.07 20.1%
16 1.95 +/- 0.04 1.63 +/- 0.02 16.4% 2.30 +/- 0.05 1.86 +/- 0.03 19.3%

Table F.9: 2 tasks: Average MAE and standard deviation for different methods with Horizontal and Hybrid privacy constraints.
We show the improvement of introducing the personalization mechanism.
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Dataset PW FedAvg TPHFL-H Imp. TPHFL-NP TPHFL Imp.

AirQuality 1 2.24 +/- 0.06 1.84 +/- 0.00 17.7% 2.76 +/- 0.12 2.09 +/- 0.00 24.4%
2 1.95 +/- 0.01 1.73 +/- 0.00 11.3% 2.32 +/- 0.01 1.93 +/- 0.00 16.9%
4 2.00 +/- 0.00 1.92 +/- 0.00 3.9% 2.15 +/- 0.01 1.97 +/- 0.00 8.7%
8 3.96 +/- 0.01 3.61 +/- 0.00 8.9% 4.26 +/- 0.01 3.81 +/- 0.00 10.6%
16 5.59 +/- 0.01 5.22 +/- 0.01 6.6% 5.62 +/- 0.04 4.78 +/- 0.01 15.0%

Avg. 3.15 +/- 0.02 2.87 +/- 0.00 9.0% 3.42 +/- 0.04 2.91 +/- 0.00 14.9%

Industry 1 2.30 +/- 0.05 1.78 +/- 0.00 22.6% 3.72 +/- 0.22 2.59 +/- 0.09 30.4%
2 2.75 +/- 0.04 1.93 +/- 0.03 29.7% 3.68 +/- 0.22 2.76 +/- 0.04 24.9%
4 1.95 +/- 0.04 1.50 +/- 0.01 23.3% 2.88 +/- 0.06 1.96 +/- 0.01 31.8%
8 3.16 +/- 0.37 1.99 +/- 0.08 37.1% 4.77 +/- 0.64 2.69 +/- 0.16 43.5%
16 2.88 +/- 0.09 2.14 +/- 0.05 25.8% 4.52 +/- 0.70 3.17 +/- 0.25 29.8%

Avg. 2.61 +/- 0.12 1.87 +/- 0.04 28.4% 3.91 +/- 0.37 2.64 +/- 0.11 32.6%

Sales 1 2.52 +/- 0.01 2.10 +/- 0.01 16.4% 6.18 +/- 0.04 2.44 +/- 0.01 60.5%
2 2.87 +/- 0.01 2.35 +/- 0.01 18.0% 6.54 +/- 0.05 2.58 +/- 0.01 60.5%
4 3.48 +/- 0.00 2.92 +/- 0.01 16.1% 7.30 +/- 0.03 3.64 +/- 0.01 50.2%
8 4.19 +/- 0.01 3.51 +/- 0.00 16.4% 8.03 +/- 0.02 5.71 +/- 0.00 28.8%
16 3.03 +/- 0.00 2.47 +/- 0.01 18.5% 6.78 +/- 0.05 4.46 +/- 0.02 34.2%

Avg. 3.22 +/- 0.01 2.67 +/- 0.01 17.0% 6.96 +/- 0.04 3.77 +/- 0.01 45.9%

Crypto 1 1.48 +/- 0.01 1.26 +/- 0.01 14.7% 2.80 +/- 0.14 2.20 +/- 0.04 21.4%
2 1.44 +/- 0.00 1.30 +/- 0.01 9.9% 2.56 +/- 0.06 1.69 +/- 0.01 33.9%
4 1.44 +/- 0.01 1.34 +/- 0.01 6.8% 3.08 +/- 0.06 1.95 +/- 0.03 36.7%
8 1.97 +/- 0.01 1.65 +/- 0.01 16.4% 2.92 +/- 0.07 2.60 +/- 0.06 10.9%
16 2.56 +/- 0.01 2.32 +/- 0.02 9.3% 4.54 +/- 0.12 3.77 +/- 0.09 17.0%

Avg. 1.78 +/- 0.01 1.57 +/- 0.01 11.5% 3.18 +/- 0.09 2.44 +/- 0.05 23.2%

Solar 1 1.23 +/- 0.01 0.78 +/- 0.01 36.8% 1.74 +/- 0.04 0.91 +/- 0.02 47.5%
2 1.78 +/- 0.05 1.06 +/- 0.02 40.6% 2.13 +/- 0.06 1.25 +/- 0.03 41.2%
4 1.30 +/- 0.01 0.93 +/- 0.01 28.9% 1.99 +/- 0.01 1.16 +/- 0.02 41.5%
8 2.64 +/- 0.13 1.57 +/- 0.05 40.6% 3.06 +/- 0.13 1.60 +/- 0.04 47.6%
16 3.26 +/- 0.12 2.01 +/- 0.06 38.4% 3.84 +/- 0.16 2.07 +/- 0.08 46.2%

Avg. 2.04 +/- 0.06 1.27 +/- 0.03 37.9% 2.55 +/- 0.08 1.40 +/- 0.04 45.1%

Table F.10: 4 tasks: Average MAE and standard deviation for different methods with Horizontal and Hybrid privacy constraints.
We show the improvement of introducing the personalization mechanism.
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Dataset PW Independent TPHFL-I2 Imp. Independent TPHFL Imp.

AirQuality 1 2.13 +/- 0.03 1.99 +/- 0.00 6.5% 2.13 +/- 0.03 2.09 +/- 0.00 1.8%
2 2.17 +/- 0.00 2.02 +/- 0.00 7.0% 2.17 +/- 0.00 2.11 +/- 0.00 2.9%
4 2.16 +/- 0.00 2.19 +/- 0.00 -1.8% 2.16 +/- 0.00 2.21 +/- 0.00 -2.5%
8 4.57 +/- 0.02 3.77 +/- 0.01 17.4% 4.57 +/- 0.02 3.78 +/- 0.00 17.2%
16 6.21 +/- 0.01 5.26 +/- 0.00 15.3% 6.21 +/- 0.01 5.37 +/- 0.00 13.6%

Avg. 3.45 +/- 0.01 3.05 +/- 0.00 11.6% 3.45 +/- 0.01 3.11 +/- 0.00 9.7%

Industry 1 6.65 +/- 0.33 4.21 +/- 0.15 36.7% 6.65 +/- 0.33 4.25 +/- 0.13 36.1%
2 8.17 +/- 0.46 2.92 +/- 0.10 64.3% 8.17 +/- 0.46 2.36 +/- 0.02 71.2%
4 2.25 +/- 0.10 1.74 +/- 0.02 22.6% 2.25 +/- 0.10 1.74 +/- 0.02 22.6%
8 3.52 +/- 0.38 3.37 +/- 0.29 4.2% 3.52 +/- 0.38 3.54 +/- 0.36 -0.5%
16 7.19 +/- 0.28 4.64 +/- 0.03 35.4% 7.19 +/- 0.28 4.91 +/- 0.06 31.7%

Avg. 5.56 +/- 0.31 3.38 +/- 0.12 39.2% 5.56 +/- 0.31 3.36 +/- 0.12 39.5%

Sales 1 2.58 +/- 0.01 2.76 +/- 0.01 -7.0% 2.58 +/- 0.01 2.77 +/- 0.02 -7.6%
2 2.66 +/- 0.01 2.89 +/- 0.03 -8.6% 2.66 +/- 0.01 2.97 +/- 0.03 -11.4%
4 3.32 +/- 0.00 3.37 +/- 0.02 -1.5% 3.32 +/- 0.00 3.44 +/- 0.02 -3.8%
8 3.88 +/- 0.00 5.09 +/- 0.00 -31.0% 3.88 +/- 0.00 4.78 +/- 0.00 -23.0%
16 2.98 +/- 0.00 4.99 +/- 0.05 -67.3% 2.98 +/- 0.00 4.52 +/- 0.05 -51.6%

Avg. 3.09 +/- 0.00 3.82 +/- 0.02 -23.8% 3.09 +/- 0.00 3.70 +/- 0.02 -19.8%

Crypto 1 3.36 +/- 0.38 2.28 +/- 0.08 32.1% 3.36 +/- 0.38 2.19 +/- 0.09 34.9%
2 1.96 +/- 0.12 2.07 +/- 0.06 -5.6% 1.96 +/- 0.12 2.03 +/- 0.06 -3.2%
4 2.24 +/- 0.07 1.71 +/- 0.01 23.4% 2.24 +/- 0.07 1.63 +/- 0.02 27.3%
8 3.31 +/- 0.24 2.64 +/- 0.15 20.2% 3.31 +/- 0.24 2.60 +/- 0.16 21.5%
16 4.90 +/- 0.26 5.21 +/- 0.25 -6.3% 4.90 +/- 0.26 5.10 +/- 0.29 -4.1%

Avg. 3.15 +/- 0.21 2.78 +/- 0.11 11.7% 3.15 +/- 0.21 2.71 +/- 0.12 14.2%

Solar 1 1.33 +/- 0.01 1.22 +/- 0.01 8.1% 1.33 +/- 0.01 1.20 +/- 0.01 9.3%
2 1.64 +/- 0.01 1.74 +/- 0.01 -6.4% 1.64 +/- 0.01 1.73 +/- 0.01 -5.5%
4 1.58 +/- 0.00 1.57 +/- 0.02 0.9% 1.58 +/- 0.00 1.54 +/- 0.02 2.5%
8 2.19 +/- 0.03 2.20 +/- 0.03 -0.2% 2.19 +/- 0.03 2.14 +/- 0.03 2.4%
16 3.24 +/- 0.14 2.70 +/- 0.07 16.7% 3.24 +/- 0.14 2.68 +/- 0.07 17.4%

Avg. 2.00 +/- 0.04 1.89 +/- 0.03 5.6% 2.00 +/- 0.04 1.86 +/- 0.03 6.9%

Table F.11: 2 tasks: Average MAE and standard deviation for Independent, TPHFL-I2 and TPHFL. We show the improvement
over Independent.
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Dataset PW Independent TPHFL-I2 Imp. Independent TPHFL Imp.

AirQuality 1 2.36 +/- 0.05 2.04 +/- 0.00 13.5% 2.36 +/- 0.05 2.09 +/- 0.00 11.7%
2 2.25 +/- 0.01 1.93 +/- 0.00 14.3% 2.25 +/- 0.01 1.93 +/- 0.00 14.0%
4 2.18 +/- 0.00 1.97 +/- 0.00 9.8% 2.18 +/- 0.00 1.97 +/- 0.00 9.9%
8 4.49 +/- 0.02 3.72 +/- 0.01 17.2% 4.49 +/- 0.02 3.81 +/- 0.00 15.3%
16 6.36 +/- 0.10 4.79 +/- 0.00 24.6% 6.36 +/- 0.10 4.78 +/- 0.01 24.7%

Avg. 3.53 +/- 0.04 2.89 +/- 0.00 18.1% 3.53 +/- 0.04 2.91 +/- 0.00 17.4%

Industry 1 4.56 +/- 0.64 2.76 +/- 0.12 39.3% 4.56 +/- 0.64 2.59 +/- 0.09 43.1%
2 5.91 +/- 0.77 2.91 +/- 0.05 50.7% 5.91 +/- 0.77 2.76 +/- 0.04 53.2%
4 2.61 +/- 0.13 1.90 +/- 0.01 27.3% 2.61 +/- 0.13 1.96 +/- 0.01 24.9%
8 3.04 +/- 0.28 2.60 +/- 0.17 14.5% 3.04 +/- 0.28 2.69 +/- 0.16 11.5%
16 5.08 +/- 0.86 3.16 +/- 0.21 37.7% 5.08 +/- 0.86 3.17 +/- 0.25 37.6%

Avg. 4.24 +/- 0.54 2.67 +/- 0.11 37.1% 4.24 +/- 0.54 2.64 +/- 0.11 37.8%

Sales 1 2.61 +/- 0.01 2.64 +/- 0.01 -0.9% 2.61 +/- 0.01 2.44 +/- 0.01 6.7%
2 2.79 +/- 0.01 2.73 +/- 0.02 2.4% 2.79 +/- 0.01 2.58 +/- 0.01 7.5%
4 3.42 +/- 0.00 3.89 +/- 0.02 -13.6% 3.42 +/- 0.00 3.64 +/- 0.01 -6.2%
8 3.93 +/- 0.01 6.57 +/- 0.01 -67.1% 3.93 +/- 0.01 5.71 +/- 0.00 -45.2%
16 3.13 +/- 0.01 6.21 +/- 0.01 -98.1% 3.13 +/- 0.01 4.46 +/- 0.02 -42.4%

Avg. 3.18 +/- 0.01 4.41 +/- 0.01 -38.6% 3.18 +/- 0.01 3.77 +/- 0.01 -18.4%

Crypto 1 2.48 +/- 0.27 2.23 +/- 0.04 10.1% 2.48 +/- 0.27 2.20 +/- 0.04 11.1%
2 1.75 +/- 0.07 1.73 +/- 0.01 1.1% 1.75 +/- 0.07 1.69 +/- 0.01 3.0%
4 1.96 +/- 0.05 2.14 +/- 0.04 -9.1% 1.96 +/- 0.05 1.95 +/- 0.03 0.6%
8 2.74 +/- 0.16 2.63 +/- 0.06 4.1% 2.74 +/- 0.16 2.60 +/- 0.06 5.0%
16 3.82 +/- 0.25 3.76 +/- 0.10 1.8% 3.82 +/- 0.25 3.77 +/- 0.09 1.4%

Avg. 2.55 +/- 0.16 2.50 +/- 0.05 2.1% 2.55 +/- 0.16 2.44 +/- 0.05 4.2%

Solar 1 1.38 +/- 0.02 0.96 +/- 0.02 30.3% 1.38 +/- 0.02 0.91 +/- 0.02 33.6%
2 1.88 +/- 0.06 1.28 +/- 0.03 31.5% 1.88 +/- 0.06 1.25 +/- 0.03 33.2%
4 1.78 +/- 0.02 1.19 +/- 0.02 33.4% 1.78 +/- 0.02 1.16 +/- 0.02 34.8%
8 2.39 +/- 0.07 1.62 +/- 0.04 32.3% 2.39 +/- 0.07 1.60 +/- 0.04 32.8%
16 3.30 +/- 0.13 2.13 +/- 0.07 35.5% 3.30 +/- 0.13 2.07 +/- 0.08 37.4%

Avg. 2.14 +/- 0.06 1.44 +/- 0.04 33.1% 2.14 +/- 0.06 1.40 +/- 0.04 34.7%

Table F.12: 4 tasks: Average MAE and standard deviation for Independent, TPHFL-I2 and TPHFL. We show the improvement
over Independent.
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