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Journal Name

Small Brownian objects self-align in nanofluidic chan-
nels

Giulia Fiorucci,a Johan T. Padding,b and Marjolein Dijkstra∗a

Although experiments and theory have widely investigated the self-alignment of asymmetric
macro-sized objects (few tens of microns in size), the accessibility of much smaller length scales is
still hindered by technical challenges. We combine Molecular Dynamics and Stochastic Rotation
Dynamics techniques to investigate the self-orientation phenomenon at different length scales,
covering from the micron to the nano scale by progressively increasing the relative strength of dif-
fusion over convection. To this end, we model an asymmetric dumbbell particle in Hele-Shaw flow
and explore a wide range of Péclet numbers (Pe) and different particle shapes, as characterized
by the size ratio of the two dumbbell spheres (R̃). By independently varying these two parameters
we analyse the process of self-orientation and characterize the alignment of the dumbbell with
the direction of the fluid flow. We identify three different trends of strong, weak and no alignment
and we map out a state diagram in Pe versus R̃ plane. Based on these results, we estimate
dimensional length scales and flow rates for which these findings would be applicable in experi-
ments. Finally, we find that the characteristic reorientation time of the dumbbell is a monotonically
decreasing function of the dumbbell anisotropy.

1 Introduction
In recent years microfluidic devices have found increasingly wide
application in several scientific areas1. They are widely employed
in clinical and biological research for disease diagnosis2,3 and for
cytometric analysis4. For instance, microfluidic technology may
be used to efficiently sort and analyse mixtures of healthy and dis-
eased cells based on their differing physical properties5,6. Other
applications are found in chemical and pharmaceutical industries,
which use suspended micron-sized soft particles in confined flows
as models to design deformable drugs delivery carriers7–10. The
development of microfluidic technologies has opened new paths
to manipulate suspended particles by having fine control over
their position and orientation. Engineering particle trajectories
in a device is now possible in three different ways, by means of
external fields11, by taking advantage of hydrodynamic interac-
tions in laminar flows, or by exploiting inertial effects in flow
drag of finite Reynolds numbers12. The latter has been achieved
with recent studies on flow sculpting13–15, while hydrodynamic
interactions are exploited in laminar flows by engineering the ge-
ometry of the channel16–20 or, alternatively, the shape of the sus-
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b Process and Energy Department, TU Delft, Leeghwaterstraat 39, 2628 CB, Delft, The
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pended particles21–23. This work is concerned with the last of
these and specifically with dumbbell shaped particles. Such a
particle, consisting of two connected disks, transported in a Hele-
Shaw flow exhibits a rich variety of dynamic behaviours22, which
are induced entirely by hydrodynamic interactions (HIs). By fine-
tuning the relative size of the two disks, it is possible to control
the trajectory of the particle. A comprehensive experimental and
theoretical study is reported in Ref. [22], where the authors inves-
tigated the non-Brownian regime. A recent work has further anal-
ysed this particular system, providing an alternative and more
efficient theoretical framework to solve the Stokes flow around
the particle23. Their study focuses on the already known phe-
nomenon of self-orientation, the spontaneous alignment of the
long axis of the particle with the flow direction, provided that
the two disks have different radii (R1 6= R2). This phenomenon
originates from the hydrodynamic self-interaction, i.e. the hydro-
dynamic interactions the two disks exert on each other. In the
present case of high confinement, a disk with diameter σ gener-
ates a flow disturbance which decays with distance r as a dipole
field ∝ σ/r2. In addition, the magnitude of the generated ve-
locity field linearly increases with the diameter of the disk. In
case of a symmetric dumbbell, where the two disks have equal
radii (R1/R2 = R̃ = 1), the hydrodynamic force that disk 1 ex-
erts on disk 2 is perfectly balanced by the force disk 2 exerts
on disk 1, resulting in only a lateral drift of the particle with-
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out rotation. However if the dumbbell is asymmetric (R1 > R2,
R̃ > 1) the imbalance of internal hydrodynamic forces results in
a torque on the dumbbell that must be balanced by a frictional
torque of rigid rotation, which causes the small disk to be dragged
downstream of the large disk. Although this specific system has
been extensively examined, the studies performed so far concern
macro-sized particles, which are considerably much less affected
by thermal fluctuations as compared to colloids or polymer chains
or macromolecules. The experiments22 were performed at very
high Pe number (of the order of 104), which was essential to
drag particles of few tens of microns in width and 100 microns
in length, dimensions that are quite big if compared to the typi-
cal colloidal length scales (100−1000 nm). Similarly, in numerical
studies22–24, the lack of thermal noise in the deterministic model
limits the investigations to ideally infinite Pe and do not provide
insights on the possibility of self-orientation of smaller objects. On
the basis of these arguments, natural questions arise: is the self-
alignment still possible for nano-particles or macromolecules with
an asymmetric conformation? What is the effect of thermal fluctu-
ations on the self-orienting process? The progressively increasing
interest in nanofluidics for "lab-on-a-chip" bioanalysis technology
and for DNA manipulation25, leads to an urgent need to bridge
these length scales and verify whether self-organization can still
be exploited down to the nanoscale. In this study we show for the
first time, at the best of our knowledge, that very small Brown-
ian objects can exhibit self-alignment in nanofluidic channels. To
do so, we combine Molecular Dynamics and Stochastic Rotation
Dynamics techniques (MD+SRD) to simulate a dumbbell particle
in a Hele-Shaw flow. This hybrid technique naturally includes hy-
drodynamic interactions as well as thermal fluctuations, and will
be described in more detail in Section 2.2. In addition it enables
us to arbitrarily tune the relative strength of the convection over
the diffusion. This study aims to explore the Brownian regime
where both thermal fluctuations and hydrodynamic interactions
are important. In particular, we analyse the self-orientation phe-
nomenon and the stability of the alignment with the flow by ex-
ploring a wide range of Péclet numbers, from the fully-Brownian
regime towards the non-Brownian regime, and different particle
shapes.

2 Model and Methods

2.1 The dumbbell in geometrical confinement

We perform numerical simulations (MD+SRD) to study the effect
of Brownian fluctuations on the self-orientation process of a sin-
gle dumbbell particle transported by a pressure-driven flow. In
Figure 1 (a) we present a schematics of the system. We consider
a shallow channel with a rectangular cross section. The confin-
ing walls are orthogonal to the x and y axes, while we implement
periodic boundary conditions (PBC) along the z axis. The height
of the channel is H and the width is W. The fluid flows with
an approximately uniform maximal velocity U0 parallel to the z
axis, as shown by the black arrows in the figure, and it drags
the dumbbell particle embedded in the fluid. The dumbbell is
composed of two colloidal spheres with radii R1 and R2 ≤ R1.
Note that we use spheres instead of disks as in Refs. [ 22,23],
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Fig. 1 Schematics of the system. Dumbbell particle flowing at the cen-
tre of a 3D channel of a rectangular cross section transported by the
fluid flow at constant pressure gradient (a). Model of a dumbbell parti-
cle composed of two spheres of radius R1 and R2 ≤ R1. We model five
different dumbbell shapes by varying the sphere size ratio R̃ = R1/R2.
The center-to-center equilibrium distance s = 8.8 a0 is kept constant (b),
or changes with R̃ as s = R1 +R2 (c). Note that the particle longitudi-
nal axis can slightly wiggle in the yz plane, therefore we define the angle
θ ∈ (−180◦,180◦] as the angle between the projection of the particle axis
on the xz plane and the z axis.

because dumbbell spheres are simpler to simulate and easier to
create experimentally at the small (colloidal) scales where Brow-
nian motion is relevant. The spheres are bounded by a harmonic
potential βUh (r12) = k ( r12− s )2 /2a2

0, where β = 1/kBT is the
inverse temperature, kB is the Boltzmann constant and T is the
temperature. The instantaneous center-to-center distance of the
spheres is r12 = |r2− r1|, with the spheres at positions r1 and r2,
respectively. The parameter s denotes the equilibrium distance
and a0 our unit of length, to be defined later. The parameter k is a
dimensionless harmonic spring constant. We choose k = 105 such
that the characteristic period of elastic vibration of the dumbbell
is much smaller than the time needed for the acoustic wave in
the fluid to travel over the particle radius. The phenomenon of
self-orientation depends sensitively on the shape of the particle,
as characterized by the size ratio R̃ = R1/R2. To investigate the
effect of particle shape on the hydrodynamic self-orientation, we
consider dumbbells with five different size ratios. The radius of
the cyan sphere R1 is kept constant, whereas the radius of the
red sphere R2 is varied. We test two models, in the first s is held
constant for different size ratios at a value of 8.8 a0, while in
the second s = R1 +R2, as illustrated in Figures 1(b) and (c), re-
spectively. The interaction between each sphere of the dumbbell
and the confining walls is described by a purely repulsive Weeks-
Chandler-Andersen (WCA) potential26

βφcw (ri) =

4βεcw

[(
σcw
ri

)12
−
(

σcw
ri

)6
+ 1

4

]
ri ≤ 21/6σcw

0 ri > 21/6σcw,

(1)
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where ri is the distance along i = {x,y} between the center of the
sphere and the surface of the wall, εcw = 40 kBT sets the colloid-
wall energy scale and σcw represents the colloid-wall collision ra-
dius. The dimensions of the channel are W×H = 100×10 a2

0. The
length of the channel along the z direction, Lz, is chosen to be suf-
ficiently large that the hydrodynamic interactions of the dumbbell
particle with its own periodic image can be neglected. In a quasi-
2D system, the flow disturbance generated by the presence of the
particle decays as σ2/r2, hence the disturbance is less than 0.1%
for r = 50 σ , and with a typical σ of 8 a0 we therefore choose
Lz = 400 a0. We choose σcw = 4.4 a0 for the largest sphere, such
that it is highly confined in the y direction, leaving a lubricating
gap of 0.6a0 to the wall. Position Ri and velocity Vi of each sphere
i are integrated via the velocity Verlet algorithm27

Ri(t +∆tMD) = Ri(t)+Vi(t)∆tMD +
Fi(t)
2Mi

∆t2
MD, (2)

Vi(t +∆tMD) = Vi(t)+
Fi(t)+Fi(t +∆tMD)

2Mi
∆tMD, (3)

over a timestep ∆tMD. Fi(t) is the force acting on sphere i at time
t and Mi is the mass of the sphere. We match the mass density of
each dumbbell bead with the mass density of the fluid.

2.2 The fluid

The MD+SRD method was introduced by Malevanets and Kapral
in 199928,29. Since then it has been implemented to study a large
variety of systems. For example, it has been employed to study the
fluid flow in confinement, or driven by an external force30. In ad-
dition, it has been applied to investigate polymers in solution31 or
the sedimentation in colloidal suspensions32. Moreover this tech-
nique is particularly convenient for the study of colloidal suspen-
sions embedded in a fluid, since the intrinsically stochastic nature
of the algorithm naturally incorporates the thermal noise28, i.e. it
automatically captures the Brownian fluctuations experienced by
the colloidal particles in a suspension. Within MD+SRD the fluid
is represented by the explicit presence of coarse-grained point
particles of mass m f , whose positions and velocities are contin-
uous variables in space. Hence we refer to these point particles as
“fluid particles”, even if the physical properties of the fluid are not
represented at the single particle level, but are rather extracted
from a local average. Fluid particles are subjected to Newton’s
laws of motion and their positions and velocities are integrated
via the MD scheme. This is the streaming step of the simulation
method, where we implement the velocity Verlet algorithm27

ri(t +∆tMD) = ri(t)+vi(t)∆tMD +
fi(t)
2m f

∆t2
MD, (4)

vi(t +∆tMD) = vi(t)+
fi(t)+ fi(t +∆tMD)

2m f
∆tMD, (5)

where ∆tMD is the integration time step, ri and vi are, respectively,
the position and the velocity of particle i, which is subject to the
total force fi. In the streaming step fluid particles do not inter-
act with each other and behave as an ideal gas. Therefore the
total force acting on a fluid particle arises from the colloid-fluid
interaction and the pressure gradient imposed externally. While

executing the collision step, the SRD algorithm enables the ex-
change of momentum throughout the solvent performing coarse-
grained collisions among the fluid particles. Every time interval
∆tc = 4 ∆tMD we partition the volume of the system into cubic cells
(SRD cells of size a3

0), we compute the center of mass velocity vcm

in each cell, and we rotate the relative velocities by a fixed angle
α = π/2 about a randomly oriented axis33

v new
i = vcm +R(α)× (v old

i −vcm), (6)

where v old
i and v new

i are the velocities of particle i before and
after the collision step, respectively, and R is the rotation ma-
trix. We shift the SRD cells before performing the collision step,
in order to maintain Galilean invariance34,35. The SRD method
locally conserves both energy and momentum, which is crucial
for correctly reproducing the Navier-Stokes hydrodynamics28. In
order to generate a fluid flow, as shown in Figure 1, we apply an
external driving force on the fluid particles. The force is parallel
to the z direction. In order to maintain a constant temperature
of the fluid, we implement a modified version of the stochastic
thermostat proposed by Heyes36, which is extensively described
in Ref. [ 37]. To ensure the velocity of the fluid is zero at the
wall, we impose no-slip boundary condition by implementing the
bounce-back rule28. In order to prevent spurious slip, we also in-
sert virtual particles into the SRD cells that are overlapping with
the wall when performing the collision step30. The fluid is rep-
resented by N f = 2× 106 particles corresponding to a mass den-
sity ρ f = 5m f /a3

0. The fluid particles interact with the dumbbell
through the repulsive WCA potential

βφc f (r) =

4βεc f

[(
σc f
r

)12
−
(

σc f
r

)6
+ 1

4

]
r ≤ 21/6σc f

0 r > 21/6σc f ,

(7)

where εc f = 2.5 kBT sets the colloid-fluid energy scale and σc f is
the colloid-fluid collision radius. We remark that σc f should be
smaller than σcw to prevent the effect of spurious depletion that
might arise between colloid and wall33. Therefore we impose
σcw = 1.1 σc f . In addition, we highlight that we implement the
slip boundary condition on the surface of the colloidal particle;
this property naturally comes from the isotropic property of the
colloid-fluid interaction potential.

The different hydrodynamic regimes are characterised by di-
mensionless numbers that determine the relative importance of
the different physical processes. The dependence of these dimen-
sionless numbers on the simulation parameters are described in
Ref. [33]. First, we ensure that the fluid modelled by SRD parti-
cles reproduces a liquid-like rather than a gas-like dynamics. The
Schmidt number distinguishes between these two different be-
haviours, being defined as Sc = ν/D f the rate of diffusive mo-
mentum transfer over the rate of diffusive mass transfer in the
fluid. When momentum transfer results from collisions among
particles rather than mass diffusion, the SRD fluid represents a
liquid and Sc� 1. In our simulations Sc > 6 is sufficiently high
to guarantee a liquid-like dynamics. Second, we ensure that the
Mach number38 Ma = U0/c f , which compares the velocity of the
fluid U0 with respect to the speed of sound c f , is small enough
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to avoid compressibility effects so that the fluid can be assumed
to be effectively incompressible. Hence, we set Ma ∼ 0.1 in our
simulations. Another important parameter is the Reynolds num-
ber38 Re = U0 σc f ρ f /η which measures the relevance of inertial
over viscous forces and where η denotes the shear viscosity of
the fluid. We simulate a fluid in the Stokes regime, i.e. in absence
of turbulence. The critical Reynolds number Rec, which discrim-
inates the crossover from laminar to turbulent flow, depends on
the physical system under investigation. It is known that Rec ∼ 1
in bulk33 while it has been recently shown that the critical thresh-
olds is higher in a channel (Rec ∼ 800)39 and much higher in a
pipe (Rec ∼ 2000)40. In our simulations Re < 0.8, which corre-
sponds to Stokes flow. In the present work we perform simula-
tions exploring a wide range of Péclet numbers. This parameter
measures the relevance of convective over diffusive transport, and
we define it as follows

Pe =
U0R1

D0
, (8)

where R1 and D0 are, respectively, the radius and the bare diffu-
sion coefficient of the larger sphere. We chose R1 as a represen-
tative quantity for the size of the dumbbell since it does not vary
with size ratio R̃, implying that Pe and R̃ can be varied as inde-
pendent parameters. To explore different hydrodynamic regimes,
we vary the shear viscosity of the fluid η . More specifically in
terms of simulation parameters, we change the integration time
step from ∆tMD = 0.025 t0 for Pe∼ 40, to ∆tMD = 1.75×10−3 t0 for
Pe∼ 500, being t0 = a0

√
m f /kBT . With this choice of parameters

the shear viscosity varies from η = 2.5 η0 to η = 32 η0, respec-
tively, being η0 = m f /(a0t0).

2.3 Achieving steady state flow of the fluid

During the self-orientation process the asymmetric dumbbell
changes its orientation and eventually aligns with the fluid
flow with the small sphere dragged downstream of the large
sphere. This phenomenon is determined by the hydrodynamic
self-interaction, while the hydrodynamic interaction with the side
walls (the walls orthogonal to the x axis) plays no role in this
process22. We position the particle’s center of mass at the cen-
ter of the channel x = 0, with orientation θ = 170◦, where θ ∈
(−180◦,180◦] is defined as the angle between the projection of
the particle’s long-axis on the xz plane and the z axis (see Figure
1(a)). Before proceeding with the measurements of the angle θ

over time, we wait till the fluid forms the expected velocity pro-
file. In order to achieve this steady state without affecting the ini-
tial orientation of the dumbbell, we initially impose a constraint
on the dumbbell, such that the acceleration of the two spheres
along the y and the z axes are the same, while the acceleration of
the center of mass along the x axis is zero. This can be achieved
by imposing the following forces on the large particle (here with

 0  10  20  30  40  50  60  70  80  90 100

u
z  (a

0 /t0 )

x (a0)

Numerical data
Theory
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Fig. 2 Velocity profile of the fluid flow uz along x and y at different heights.
The dots represent the results obtained with the MD+SRD method, while
solid lines are theoretical predictions. The profile is determined by the
geometry of the channel. In this shallow channel we observe almost a
flat profile (Hele-Shaw flow) from the top view, where different colors de-
note velocity profiles at different heights along the y axis, and a parabolic
profile (Poiseuille flow) from the side view, where we show the profile at
x = 50.0 a0.

label 1)

F new
x1 = Fx1−

µ

M2
(Fx1 +Fx2)

F new
y1 =

µ

M2
(Fy1 +Fy2)

F new
z1 =

µ

M2
(Fz1 +Fz2),

(9)

where µ =M1M2/(M1+M2) is the reduced mass, M j is the mass of
sphere j and Fi j is the instantaneous force along i experienced by
sphere j. Similarly, the forces imposed on the small particle (la-
belled 2) can be obtained from (9) by exchanging the subscripts
1 and 2. Once the expected velocity profile is formed, we release
the constraints and start our measurements. The velocity profile
of the fluid along the z direction is determined by the specific
geometry of the channel. In our case, we expect to observe a
parabolic profile (Poiseuille flow) from the side view because of
the high confinement in the y axis, while we expect an approxi-
mately uniform profile (Hele-Shaw flow) from the top view.

3 Results
3.1 Verification of fluid velocity profile
In Figure 2 we report the fluid velocity profile uz from the top
view at different heights y of the channel, and from the side view
at x = 50 a0. The points represent our numerical results, obtained
by averaging the velocities of the fluid particles over the volume
of a single SRD cell (a3

0). The profiles are in very good agree-
ment with the theoretical prediction41, represented here by the
solid lines. We highlight that there is no adjustable parameter for
the magnitude of the velocity field. However, our profile extrap-
olates to a finite non-zero velocity at the wall, and therefore we
obtain the best fit by including a small slip velocity of magnitude
∼ 0.01a0/t0.
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3.2 Hydrodynamic self-orientation: the state diagram
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Fig. 3 (a) The angle θ of the long-axis of the dumbbell with the flow direc-
tion as a function of reduced time t̃ = tU0/s for a dumbbell with s = 8.8 a0
and size ratio R̃ = 1.3 in a channel under an external flow at Pe = 480.
Different curves represent independent runs. The graph shows the self-
orientation process where the particle is initially positioned with θ = 170◦

and, due to the hydrodynamic self-interaction, it eventually aligns with the
fluid flow (θ = 0◦). The inset shows fluctuations of θ about the equilibrium
value θ = 0◦ as a function of t̃ for simulation runs where the dumbbell is
initially positioned with θ = 0◦. We measure the standard deviation of θ

obtaining σθ = 8◦. (b) Average of θ over eight runs presented in (a). In-
set: the left panel shows the average of θ over eight runs in (a), the right
panel shows the normalised histogram of θ . The horizontal lines indicate
the full width at half maximum.

We perform MD+SRD simulations on a single dumbbell parti-
cle with fixed s= 8.8 a0 as shown in Figure 1(b) in a fluid flow. We
study the self-orientation process by measuring the angle θ of the
long-axis of the dumbbell with the flow direction as a function of
time. Note that our model consists of a dumbbell in three dimen-
sions which can slightly wiggle in the yz plane. Hence the angle
θ is defined as the angle between the xz projection of the parti-
cle center-to-center axis and the z axis. For example, we plot the
angle θ as a function of the reduced time t̃ = t U0/s for Pe = 480
and R̃ = 1.3 in Figure 3(a). Each curve in the plot represents a
single run performed at the same physical conditions. We simu-
lated eight independent runs in order to investigate the statistical
fluctuations. All the curves show essentially the same trend. The
simulation is initiated with a dumbbell particle forming an an-
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Fig. 4 The average of θ over eight realizations as a function of reduced
time t̃ = tU0/s for a dumbbell with s = 8.8 a0 and size ratio R̃ = 1.3 in
a channel under an external flow at Pe = 170 (a) and Pe = 40 (b). By
decreasing Pe the curves presents larger fluctuations and σθ increases,
being σθ = 15◦ in (a) and σθ = 34◦ in (b).

gle θ = 170◦ with the direction of the fluid flow. After a certain
waiting time, the value of θ rapidly decreases towards θ = 0◦,
where it remains stable over time within small fluctuations due
to the thermal noise. Note that at this apparently high Pe Brow-
nian fluctuations are still visible, but, contrary to the case of the
Brownian regime, they do not significantly interfere with the hy-
drodynamic drag and the resulting particle orientation. The ther-
mal noise is not only the cause of the small fluctuations about
the equilibrium orientation at θ = 0◦ but it also prevents the im-
mediate reorientation of the dumbbell: the configuration charac-
terized by θ = 180◦ is an unstable equilibrium configuration22,
therefore the hydrodynamic torque about this angle is still quite
weak compared to the Brownian fluctuations. Consequently, the
competition between the hydrodynamic torque, which leads to
the reorientation of the particle, and the Brownian fluctuations,
determines the different waiting times at which the particle starts
reorienting. In Figure 3(a) we clearly observe this phenomenon
by comparing eight independent runs. Nevertheless the differ-
ent waiting times do not affect the self-alignment process itself.
Once the hydrodynamic forces start to dominate, the change in
θ with time for intermediate angles is very similar in the eight
runs. This is most clearly appreciated by the similarity of the
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Fig. 5 The average of θ over eight realizations as a function of reduced
time t̃ = t U0/s for a dumbbell with s = 8.8 a0 and size ratio R̃ = 1.3 (a) and
R̃ = 2.5 (b) in a channel under an external flow at Pe = 115. By increasing
R̃ the curves exhibits larger fluctuations and σθ increases, being σθ = 18◦

in (a) and σθ = 39◦ in (b).

slopes around θ = 90◦, in fact the typical time scale of the self-
orientation process is only intrinsically related to the shape of the
particle, parametrized here by R̃, and the geometry of the chan-
nel. Later in this section we will provide quantitative results on
this topic, while for the moment we focus on the alignment of
the particle once the self-orientation has occurred. Specifically,
we investigate how the alignment is destabilized by the thermal
fluctuations as we decrease the Péclet number. In addition, we
show that as we enter the Brownian regime, the stability of the
alignment depends also on the shape of the particle, therefore we
will also compare the behaviour at constant Pe and different R̃.

As we lower the Péclet number we enhance the strength of the
thermal noise relative to the strength of the convective flux. We
compare Figures 3(b), 4(a) and 4(b) where we show the average
of θ over eight realizations as a function of time, for R̃ = 1.3 and
Pe = 480, Pe = 170 and Pe = 40, respectively. It is apparent that
the curves present larger errorbars as we lower the Péclet number,
moreover the fluctuations in orientation about the equilibrium
position θ = 0◦ are more pronounced. To quantify the magnitude
of these oscillations we measure the standard deviation of the an-
gle θ with respect to its mean value 〈θ〉 as σθ =

√
〈θ 2〉−〈θ〉2.

By decreasing Pe, we observe an increase of σθ , as shown in the

1.3 1.5 1.7 1.9 2.1 2.3 2.5
R̃

50
100
150
200
250
300
350
400
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500
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15

30 10
15
20
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35
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45

σ
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◦
)

Fig. 6 State diagram of a dumbbell with s = 8.8 a0 describing the stability
of the particle self-alignment along the direction of the fluid flow for differ-
ent Péclet numbers Pe and size ratios R̃. The characterization of stability
is based on the magnitude of the standard deviation σθ =

√
〈θ 2〉−〈θ〉2 of

θ with respect to its mean value 〈θ〉. The blue region denotes oscillations
limited to σθ ≤ 15◦, where the alignment is strong. The light blue region is
characterized by oscillations 15◦ < σθ ≤ 30◦ so the alignment is weaker.
Finally, the red region denotes oscillations with σθ > 30◦, therefore the
alignment is no longer possible in this region. The black dots denote the
state points at which the simulations were performed. The heatmap is
computed by linear interpolation between these points. The black lines
delimit the three regimes of alignment.

inset of Figures 3(b) and 4. Here we also display the histogram
of θ , which broadens up as Pe decreases. This is clear evidence
that decreasing the Péclet number destabilizes the alignment of
the particle at θ = 0◦, which is the hydrodynamically stable con-
figuration.

The Péclet number is a good parameter to estimate the rele-
vance of the thermal fluctuations compared to the hydrodynamic
drag, but it is not sufficient to give a complete description of the
stability of the particle. From the definition given in Equation (8)
it is clear that Pe does not depend on the specific shape of the
particle, only on its typical length scale. However we expect that
the stability is also related to the shape of the dumbbell. For
instance we intuitively expect that as we decrease the radius of
sphere 2, the thermal fluctuations become more effective, leading
to destabilization. We therefore investigate also the behaviour of
the dumbbell by allowing R̃ to vary while we keep Pe constant.
In analogy to the previous analysis, we compare the fluctuations
around θ = 0◦ for different R̃. In Figure 5 we show the average of
θ as a function of time for Pe = 115 and size ratio R̃ = 1.3 (a) and
R̃ = 2.5 (b). As expected, we observe larger fluctuations as we
increase the size ratio R̃: we estimate that σθ = 18◦ for R̃ = 1.3,
while σθ = 39◦ for R̃ = 2.5.

In order to investigate how thermal fluctuations destabilize the
alignment of the particle as we vary both the Péclet number and
the size ratio, we ran many simulations for 40 . Pe . 500 and
for 1.0 < R̃ ≤ 2.5. By analysing the fluctuations of the angle θ

about the equilibrium position θ = 0◦, we discriminate three dif-
ferent regimes for the hydrodynamic self-alignment. Our results
are summarized in Figure 6. The black dots display the simulation
runs performed at a specific value of Pe and R̃. We compute the
σθ for each run and linearly interpolate between points to obtain
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a heatmap. The blue region represents the regime of strong align-
ment, where σθ ≤ 15◦. We delimit this region with a solid black
line corresponding to σθ = 15◦. The light blue region represents
the regime of weak alignment, where 15◦ < σθ ≤ 30◦. Finally, the
red region shows the regime of no alignment, where σθ > 30◦,
also here delimited by a black line corresponding to σθ = 30◦. For
a sufficiently high Péclet number, Pe ≥ 400, a change in the size
ratio does not affect the self-orientation process of the dumbbell,
as the convective flux leads to a strong hydrodynamic torque. We
define this range of high Pe as the non-Brownian regime. For
Pe < 50 the self-orientation does not occur for any size ratio of
the dumbbell. Therefore we define this regime as the Brown-
ian regime. In the intermediate Pe regime, i.e. 50 ≤ Pe < 400,
we find all three self-orientation behaviours: upon increasing R̃,
the strong alignment region shrinks, whereas the weak and no
alignment regions widen. This confirms our expectations that the
stability is also strongly related to the shape of the dumbbell, and
provides a quantitative estimation of this dependence. We note
that small changes in angle cut-offs for defining the stability re-
gions can determine a small shift of the boundaries, but the over-
all trends remain the same.

On the basis of these results, we can extract informations on
the required experimental conditions to achieve a certain level
of alignment. In Table 1 are listed several values of particle’s ra-
dius, which ranges from few microns for a macro-colloid, down to
fractions of micron for nanoparticles and even smaller for macro-
molecules. For each value we compute the dimensions of the
channel and the critical flow rate Uc

0. The latter quantity is the
minimum fluid velocity required to obtain a certain level of align-
ment. For instance, a particle with R1 = 0.1µm and R̃ < 1.5 dis-
plays weak alignment for Uc

0 ≥ 1× 103µm and Uc
0 < 3× 103µm,

while it shows strong alignment for Uc
0 ≥ 3× 103µm. In order to

observe strong alignment of particle with same size and R̃ = 2.5,
ones has to set a flow rate Uc

0 ≥ 9×103µm. The critical flow rates
are derived by inverting equation (8), obtaining

Uc
0 =

PeckBT
6πηR2

1
, (10)

where Pec is the minimum value of Pe required to obtain a certain
level of alignment and D0 is rewritten in terms of the fluid viscos-
ity through the Stokes-Einstein equation D0 = kBT/(6πηR1). In
our computation we considered room temperature T = 300 K and
the viscosity of water η = 0.001Pa s.

R1 (µm) W (µm) H (µm) Uc
0 (µm/s)

10 250 25 (1,3,9)×10−1

1 25 2.5 (1,3,9)×101

0.1 2.5 0.25 (1,3,9)×103

0.01 0.25 0.025 (1,3,9)×105

Pec = (50,150,400)

Table 1 Critical flow speed Uc
0 for different particle’s sizes R1 and for

different regimes of alignment (Pec). We also display width W and height
H of the channel for each particle’s size.

3.3 Hydrodynamic self-orientation: the relaxation time

As mentioned earlier, in this section we provide a quantitative
analysis of the rate of the self-orientation process. An analytical
expression describing how θ evolves with time t̃ was derived for
the case of a dumbbell particle composed of two disks instead
of two spheres22. Even though the two dumbbell models are
different, the analytical expression is valid also for the present
case of a dumbbell composed of spheres. In fact it has recently
been shown that the analytical expression holds for all particles
which have the property to be mirror symmetric with respect to
the xy plane passing through their longitudinal axis24. Taking
t̃ = 0 when θ = 90◦, the dependence of θ with respect to t̃ can be
expressed implicitly as22

t̃ = τ̃ ln
(

1+ cos(θ)
sin(θ)

)
, (11)

where τ̃(R̃,H,W) is the relaxation time defined as the character-
istic time the particle spends in self-orienting from θ = 90◦ to
θ = 0◦. This parameter depends on the shape of the particle and
the geometry of the channel. This quantity can be extracted by
fitting equation (11) to the data obtained from the numerical sim-
ulations. Each simulation run is parametrized by Pe and R̃. We
perform eight independent runs to carry out our statistical analy-
sis.

To perform the fit, we first shift each single curve θ(t̃) in time,
such that θ = 90◦ corresponds to t̃ = 0. It is worth to mention that
the time shift is usually different for each curve. This is due to
the time delay the particle accumulates before starting the self-
orientation. We shift the curves also to perform an accurate av-
eraging of θ over the eight realizations. In fact, this procedure
guarantees that we get the best superpositions of the curves for
different runs, as the internal hydrodynamic torque is maximal at
θ = 90◦. We obtain the value of τ̃ by fitting equation (11) on a
single realization. We then average the values of τ̃ obtained over
eight runs. In Figure 7(a) we show the decay of the average of
θ over the eight realizations as a function of time for different
R̃ at Pe = 480, in the non-Brownian regime. Since time is scaled
by τ̃, all curves collapse onto the theoretical master curve. The
match with theory is remarkably good. In the inset we represent
the values of τ̃ for different size ratio R̃. The characteristic time of
alignment monotonically decreases with increasing size ratio. In
fact as the size ratio starts to increase from R̃ = 1.0, the hydrody-
namic torque also increases leading to a faster convergence to the
equilibrium configuration. A similar trend is shown in Figure 7(c)
where we illustrate the same analysis performed at Pe = 115, in
the intermediate regime. We highlight that the only noticeable
difference is the presence of small fluctuations within the curves
which denotes the relative importance of thermal noise over the
hydrodynamic convective drag with respect to the case of the non-
Brownian regime. These insets also show that the relaxation time
for self-alignment is mostly a function of particle geometry, and
not of Péclet number, for intermediate to large Péclet numbers.

We also analyse the robustness of the model with respect to
small changes in the design of the dumbbell particle. More specif-
ically, we performed simulations with the model presented in Fig-
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Fig. 7 The average of θ as a function of rescaled time t̃/τ̃. Each coloured curve represents a different size ratio R̃ and is obtained by averaging over
eight independent runs. For R̃ = 1 the orientation of the dumbbell remains constant in time at θ = 90◦, which is the initial orientation. For R̃ > 1 we scale
the data by a fitted τ̃, collapsing all the curves onto a master curve predicted by theory and represented here with a black dashed line. The inset shows
the fitted relaxation time τ̃ for different R̃. In the range of R̃ investigated, τ̃ is a monotonically decreasing function of R̃. (a) and (b) Results obtained at
Pe = 480 by implementing the model with constant s = 8.8 a0 and the model with s = R1 +R2, respectively. (c) and (d) Results obtained at Pe = 115 by
implementing the model with constant s = 8.8 a0 and the model with s = R1 +R2, respectively. The two models give similar results.

ure 1(c) where the dumbbell is composed of spheres with their
surfaces at contact as we vary R̃. Hence the fluid is not allowed
to flow in between them. The results are shown next to the first
model in Figure 7(b) and (d). We observe that the two models
give consistent results and the values of the τ̃ fall in the same
range. Therefore we infer that the model of the dumbbell particle
is robust within small variation in the design of the particle, and
that the small gap between the spheres in the first model does not
have any major consequence on the self-orientation phenomenon
observed.

In order to assess the effect of side walls on the results, for
selected state points we performed simulations in a wider chan-
nel, characterized by W×H×Lz = 200× 10× 400 a3

0. We did not
observe statistically significant deviations on the values of τ̃.

4 Conclusions

In summary, we have performed numerical simulations to analyse
the self-orientation process of an asymmetric dumbbell particle in

a shallow channel at different hydrodynamic regimes. We have
implemented the MD+SRD simulation technique and have ver-
ified that this method is able to reproduce the correct velocity
profile of the fluid flow.

Next, we have investigated the self-orientation process at dif-
ferent relative strengths of Brownian motion and for different par-
ticle shapes by varying Pe and R̃, respectively. We define three
regimes of stability by analysing the amplitude of oscillations
about the equilibrium position θ = 0◦. For Pe≥ 400 the alignment
is strong for all R̃. As we lower the Péclet number, 50≤ Pe < 400,
thermal fluctuations start to affect the self-orientation process
first at large R̃, and progressively also at lower R̃. The self-
alignment process is no longer possible for Pe < 50 for any R̃.

On the basis of these results, we have computed the experi-
mental conditions, as in flow rates and channel’s dimensions, to
achieve a certain level of alignment in asymmetric particles whose
size ranges from tens of microns till fraction of microns. We ex-
pect this information will be of guidance for future experimental
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work focusing on manipulating nanosized objects.
Moreover, we have computed the time dependence of the ori-

entation angle θ , and compared it with the theoretical prediction
derived for the fully non-Brownian regime22. Our results are in
remarkably good agreement with theory, even for intermediate
Pe. We have fitted the analytical curves on our data set, where
the fitting parameter is the reorientation relaxation time τ̃. We
find that this parameter is a monotonically decreasing function of
R̃. We stress that this result is not in contradiction with recent
work where the relaxation time shows a minimum for R̃ = 1.923,
since their model of dumbbell particle is fundamentally different
from our model. In our model we increase R̃ by decreasing the
radius of one sphere, leading to a particle composed of two beads
for all R̃. In their model the dumbbell is instead composed of two
disks where the center-to-center distance is kept constant and the
radius of one disk increases with increasing R̃, thus eventually
leading to a particle composed of only one disk for high R̃.

This work has provided evidence that control over particle po-
sition and orientation is still possible at intermediate Péclet num-
bers, where diffusion becomes relevant in addition to convection.
Our finding is relevant for scientific applications which rely on
controlling dispersions in micron-sized devices at intermediate Pe.
In fact, several devices are explicitly designed to operate in this
regime42,43 such as H-filters, which enable separation of species
by exploiting the difference in diffusivity of the solute particles44.
Since the diffusivity plays a key role in this process, it is clear that
the range of applicability of these devices is confined to the low-
to-intermediate Pe regime. Another fundamental aspect of this
study reveals that the self-alignment still occurs at length scales
of the order of the micron or fraction of micron. This finding
is quite remarkable as there is no experimental evidence yet, to
the best of our knowledge, which proves that hydrodynamic self-
interaction can function at such small length scales. Therefore
our work paves the way to new methods for particle sorting down
to scales of fraction of microns by exploiting diffusivity, hydrody-
namic self-interactions and particle shape to govern particle posi-
tion and orientation.
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