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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the Scientific Committee of The 15th International Symposium on District Heating and 
Cooling.

Keywords: Heat demand; Forecast; Climate change

Energy Procedia 157 (2019) 1486–1493

1876-6102 © 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the scientific committee of Technologies and Materials for Renewable Energy, 
Environment and Sustainability, TMREES18.
10.1016/j.egypro.2018.11.313

 

Available online at www.sciencedirect.com 

ScienceDirect 
Energy Procedia 00 (2018) 000–000  

www.elsevier.com/locate/procedia 

 

1876-6102 © 2018 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)  
Selection and peer-review under responsibility of the scientific committee of Technologies and Materials for Renewable Energy, Environment 
and Sustainability, TMREES18.  

Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES18, 
19–21 September 2018, Athens, Greece 

Energy analytics for supporting built environment decarbonisation  
Lamberto Tronchin a,*, Massimiliano Manfren b, Benedetto Nastasi c 

a Department of Architecture (DA), University of Bologna, Via Machiavelli, 47521 Cesena, Italy 
b Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom 

c Department of Architectural Engineering & Technology, TU Delft University of Technology, Julianalaan 134, 2628BX Delft, The Netherlands  

Abstract 

The identification of techno-economically feasible decarbonisation paths and sustainability transitions for the built environment 
is a necessary task for research today and building stock renovation processes can act in synergy with innovative economic and 
technological development paradigms to achieve different types of benefits such as economic growth and employment, together 
with resource efficiency and sustainability for the whole sector. The research presented aims at selecting the most relevant data 
analysis processes and techniques to respond to practical technical questions and to support decision-making in the built 
environment, at multiple scales of analysis, from individual buildings, to building stock and urban environment. The research 
aims to indicate in this way the possibility to join the micro-scale view, involving technological and behavioral issues in 
buildings, and the macro-scale view, involving strategic problems at market and policy levels for energy and sustainability 
planning. Further, the combined use of modelling techniques with large scale data acquisition and processing could guarantee 
multiple feed-backs from measured data, useful for the evolution, first of all, of design and operation practices in building but 
also, more in general, of the whole value chain of the sector. A synthesis and integration of modelling methodologies is presented 
through case studies, showing a path to improve transparency of performance assessment across building life cycle phases. 
Finally, multivariate data visualization techniques are presented to ease wider applicability of the described numerical techniques. 
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1. Introduction 

Buildings have a great impact in terms of carbon emission at the EU [1], US and global scale [2]. At EU level, for 
example, building accounts for approximately 40% of carbon emission, determined by their direct energy use, and a 
larger impact if we consider the direct and indirect use of resources. Different modelling approaches at the state of 
the art can be used for extracting useful insights for the support of building stock renovation processes, dealing with 
relevant technical issues. A detailed discussion on the suitability of energy modelling approaches with respect to 
multiple criteria can be found in literature [3]. Energy efficiency measures can create multiple advantages [4], but 
the increase of efficiency of energy systems strengthens the interdependency between design and operational 
optimization with an impact at multiple scales, from individual technologies, to single buildings, to building stock 
and infrastructures [5]. This higher interdependency determines the need for formalized rules in optimization based 
approaches for energy research and practical applications [6], as well as the need for larger quantities of specific data 
for effective deployment of innovative strategies for built environment [7]. For this reason, a tight integration and 
comparability among different models is the focus of research. We should be able to pass from models to simulated 
data (model output, forward approach) and from measured data back to models (model input, inverse approach), in 
multiple ways, implementing effectively cycles of continuous improvement as well as its cost-benefit tradeoff [8]. 

 
Nomenclature 

Variables and parameters 
A  average value     R2  determination coefficient 
a,b,c,d,e,f  regression coefficients    RD  relative deviation 
Cv(RMSE)  coefficient of variation of RMSE   RMSE  root mean square error 
g  solar gain factor     S  simulated 
H  heat transfer coefficient    SS  sum of the squares 
I   solar radiation     y  numeric value 
NMBE   normalized mean bias error   ∆t  time interval 
q   specific energy transfer rate (thermal power)  η   heat sinks/source factor 
Q   heat transfer     θ   temperature 
R  regression value      
 
Subscripts and superscripts 
‒  average      sim  simulation 
^  predicted value     sink  heat sink, loss 
c  cooling      sol  solar gains 
e  external side, outdoor conditions   source  heat source, gain 
h  heating      tot  total 
i  internal side, index    tr  transmission 
int  internal gains (appliances, lighting, people)  ve  ventilation 
res  residual 

2. Multi-scale analysis of building energy performance 

Research should be oriented to the creation of a theoretically consistent framework matching indicators, technical 
issues (and related practical questions), actions and computational techniques to put continuous improvement in 
practice. What emerges from scientific literature is the necessity of standardizing building data in order to derive 
useful insights, for example by means of the reference building concept. Further, people behavior and comfort 
preferences constitute additional elements of uncertainty, even from the point of view of business models. All these 
factors can lead to a consistent gap between predicted and actual performance [9] and modelling methodologies 
should be able to deal with them as well. In this research we propose an integration and comparison among results 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2018.11.313&domain=pdf
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1. Introduction 

Buildings have a great impact in terms of carbon emission at the EU [1], US and global scale [2]. At EU level, for 
example, building accounts for approximately 40% of carbon emission, determined by their direct energy use, and a 
larger impact if we consider the direct and indirect use of resources. Different modelling approaches at the state of 
the art can be used for extracting useful insights for the support of building stock renovation processes, dealing with 
relevant technical issues. A detailed discussion on the suitability of energy modelling approaches with respect to 
multiple criteria can be found in literature [3]. Energy efficiency measures can create multiple advantages [4], but 
the increase of efficiency of energy systems strengthens the interdependency between design and operational 
optimization with an impact at multiple scales, from individual technologies, to single buildings, to building stock 
and infrastructures [5]. This higher interdependency determines the need for formalized rules in optimization based 
approaches for energy research and practical applications [6], as well as the need for larger quantities of specific data 
for effective deployment of innovative strategies for built environment [7]. For this reason, a tight integration and 
comparability among different models is the focus of research. We should be able to pass from models to simulated 
data (model output, forward approach) and from measured data back to models (model input, inverse approach), in 
multiple ways, implementing effectively cycles of continuous improvement as well as its cost-benefit tradeoff [8]. 

 
Nomenclature 

Variables and parameters 
A  average value     R2  determination coefficient 
a,b,c,d,e,f  regression coefficients    RD  relative deviation 
Cv(RMSE)  coefficient of variation of RMSE   RMSE  root mean square error 
g  solar gain factor     S  simulated 
H  heat transfer coefficient    SS  sum of the squares 
I   solar radiation     y  numeric value 
NMBE   normalized mean bias error   ∆t  time interval 
q   specific energy transfer rate (thermal power)  η   heat sinks/source factor 
Q   heat transfer     θ   temperature 
R  regression value      
 
Subscripts and superscripts 
‒  average      sim  simulation 
^  predicted value     sink  heat sink, loss 
c  cooling      sol  solar gains 
e  external side, outdoor conditions   source  heat source, gain 
h  heating      tot  total 
i  internal side, index    tr  transmission 
int  internal gains (appliances, lighting, people)  ve  ventilation 
res  residual 

2. Multi-scale analysis of building energy performance 

Research should be oriented to the creation of a theoretically consistent framework matching indicators, technical 
issues (and related practical questions), actions and computational techniques to put continuous improvement in 
practice. What emerges from scientific literature is the necessity of standardizing building data in order to derive 
useful insights, for example by means of the reference building concept. Further, people behavior and comfort 
preferences constitute additional elements of uncertainty, even from the point of view of business models. All these 
factors can lead to a consistent gap between predicted and actual performance [9] and modelling methodologies 
should be able to deal with them as well. In this research we propose an integration and comparison among results 
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obtained with dynamic simulations (forward models) and energy signatures analyzed by means of multivariate 
regression (inverse models). 

2.1. Multivariate regression to link forward to inverse modelling 

Simulation data are generated by means of a dynamic hourly simulation tool [10]. In order to develop a 
regression model starting from monthly data, we considered the simplified energy balance of the building, used in 
the semi-stationary calculation methodology defined in technical standard [10]. The heat flows in building zones can 
be subdivided in two categories, heat sources (e.g. heat input, heat gains) and heat sinks (e.g. cold input, heat 
losses). Heat sources and sinks are reported in Table 1 and subdivided according to the specific internal and external 
conditions. 

     Table 1. Heat sources/sinks definition. 

Thermal balance component Heat source Heat sink 

always - 
always - 

 
The thermal demand for heating and cooling (sensible heat demand, based on balance) is calculated using the 

following formulas, where a heat sinks/sources utilization factor is introduced, according to the standard previously 
cited. 

h sink h sourceQ Q Q           (1) 

c source c sinkQ Q Q           (2) 

The subdivision among heat sources and sinks specified in Table is useful because it enable partitioning with 
respect to external temperature data. By introducing the heat transfer coefficient H [11] and the notation used in 
Table 1 we can reformulate equation 1 and 2 respectively in equation 4 and 5. 

tr veH H H            (3) 
   ,h h i e h sol h intQ H t Q Q      

       (4) 
   ,c sol c int c c i eQ Q Q H t      

       (5) 
The limitations of the semi-stationary method are mainly related to the hypothesis of a fixed and 

predetermined internal temperature θi and to the calculation of the utilization factors for gains ηh and losses ηc.  
However, if we use this method for inverse modelling they are not constrained (in regression. models). 

2.2. Inverse modelling by means of multivariate regression modelling 

The monthly heating demand preliminary calculated is divided by the number of operating days and then by 
24 hours (i.e. total operating hours) to derive an average thermal power for heating and cooling demand, called 
energy signature in technical standard [12].  

   ,h h i e h sol h intq H q q             (6) 

   ,c sol c int c c i eq q q H             (7) 

, 0 1sol h eq e e            (8) 

, 0 1sol c eq f f             (9) 

 tr ve i eQ H t     i e  i e 

solQ

intQ
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In this case, the thermal power has been also divided by building volume, to enable a meaningful comparison 
among buildings with different sizes. Further, in formulas 8 and 9 the dependence on solar radiation is eliminated by 
introducing a simplification, using correlation between solar radiation and temperature. The regression models 
obtained are reported in Table 2 and 3 respectively for heating and cooling, considering only external temperature 
dependence (model type 1) and dependence on both external temperature and solar radiation (model type 2). 

Table 2. Regression models for heating demand analysis. 

Element Model type 1  Model type 2  
Model (10) 

 
(11) 

Regression 
coefficients 

(12) 

 

(13) 

Table 3. Regression models for cooling demand analysis. 

Element Model type 1  Model type 2  
Model (14) 

 
(15) 

Regression 
coefficients 

(16) 

 

(17) 

 
In order to verify the goodness of fit of inverse model we use a calibration approach. A detailed description of 

metrics for model calibration R2, NMBE, and Cv(RMSE) and acceptability criteria for calibrated models can be 
found in literature [13]. The threshold limits considered by different protocols are reported in Table 3. 

Table 4. Threshold limits of metrics for model calibration with monthly data. 

Metric ASHRAE 
Guidelines 14 (%) 

IPMVP (%) FEMP (%) 

NMBE ± 5 ± 20 ± 5 

Cv(RMSE) 15 - 15 

3. Results and Discussion 

An example of application of this scalable data analysis technique is reported, employing a selection of 10 case 
studies out of a larger sample of case studies previously analyzed [14]. Multivariate linear regression models are 
used to compare design assumptions (forward model data) and inverse model parameters. This application is meant 
to validate simulation data and enable progressive model calibration. The case studies selected are 10 real Italian 
buildings previously simulated and their results are ranked with respect to the value of H, global heat transfer 
coefficient due to the sum of transmission Htr and ventilation Hve components, as explained before. The multivariate 
linear regression approach proposed is based on energy signature concept [12], where energy consumption is 
divided by the duration of the time interval of analysis to obtain an average power, plotted against the screening 
variable, in this case the external air temperature. The regression models used are reported in Table 2 and 3, where 
qh, qc are average heating and cooling thermal power, normalized by gross volume (to enable comparability across 
different scales), θe is the average external air temperature and Isol is the global solar radiation on horizontal radiation 
divided by the time interval of analysis, monthly in this case. Finally, a, b, c and d are regression coefficients and ε 

,1 0 1h eq a a    ,2 0 1 2h e solq b b b I    

 
 

0 0

1 1

h i h int

h h

a H e q
a H e

 


  
  

 
 

0

1

2

h i h int

h

h h

b H q
b H
b g

 



 
 
 

c,1 0 1 eq c c    c,2 0 1 2e solq d d d I    

0 0

1 1

int c c i

c c

c f q H
c f H

 


  
 

0

1

2

int c c i

c c

c

d q H
d H

d g

 


 


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obtained with dynamic simulations (forward models) and energy signatures analyzed by means of multivariate 
regression (inverse models). 
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the semi-stationary calculation methodology defined in technical standard [10]. The heat flows in building zones can 
be subdivided in two categories, heat sources (e.g. heat input, heat gains) and heat sinks (e.g. cold input, heat 
losses). Heat sources and sinks are reported in Table 1 and subdivided according to the specific internal and external 
conditions. 

     Table 1. Heat sources/sinks definition. 

Thermal balance component Heat source Heat sink 

always - 
always - 

 
The thermal demand for heating and cooling (sensible heat demand, based on balance) is calculated using the 

following formulas, where a heat sinks/sources utilization factor is introduced, according to the standard previously 
cited. 

h sink h sourceQ Q Q           (1) 

c source c sinkQ Q Q           (2) 

The subdivision among heat sources and sinks specified in Table is useful because it enable partitioning with 
respect to external temperature data. By introducing the heat transfer coefficient H [11] and the notation used in 
Table 1 we can reformulate equation 1 and 2 respectively in equation 4 and 5. 

tr veH H H            (3) 
   ,h h i e h sol h intQ H t Q Q      

       (4) 
   ,c sol c int c c i eQ Q Q H t      

       (5) 
The limitations of the semi-stationary method are mainly related to the hypothesis of a fixed and 

predetermined internal temperature θi and to the calculation of the utilization factors for gains ηh and losses ηc.  
However, if we use this method for inverse modelling they are not constrained (in regression. models). 

2.2. Inverse modelling by means of multivariate regression modelling 

The monthly heating demand preliminary calculated is divided by the number of operating days and then by 
24 hours (i.e. total operating hours) to derive an average thermal power for heating and cooling demand, called 
energy signature in technical standard [12].  

   ,h h i e h sol h intq H q q             (6) 

   ,c sol c int c c i eq q q H             (7) 

, 0 1sol h eq e e            (8) 

, 0 1sol c eq f f             (9) 

 tr ve i eQ H t     i e  i e 

solQ

intQ
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In this case, the thermal power has been also divided by building volume, to enable a meaningful comparison 
among buildings with different sizes. Further, in formulas 8 and 9 the dependence on solar radiation is eliminated by 
introducing a simplification, using correlation between solar radiation and temperature. The regression models 
obtained are reported in Table 2 and 3 respectively for heating and cooling, considering only external temperature 
dependence (model type 1) and dependence on both external temperature and solar radiation (model type 2). 

Table 2. Regression models for heating demand analysis. 

Element Model type 1  Model type 2  
Model (10) 

 
(11) 

Regression 
coefficients 

(12) 

 

(13) 

Table 3. Regression models for cooling demand analysis. 

Element Model type 1  Model type 2  
Model (14) 

 
(15) 

Regression 
coefficients 

(16) 

 

(17) 

 
In order to verify the goodness of fit of inverse model we use a calibration approach. A detailed description of 

metrics for model calibration R2, NMBE, and Cv(RMSE) and acceptability criteria for calibrated models can be 
found in literature [13]. The threshold limits considered by different protocols are reported in Table 3. 

Table 4. Threshold limits of metrics for model calibration with monthly data. 

Metric ASHRAE 
Guidelines 14 (%) 

IPMVP (%) FEMP (%) 

NMBE ± 5 ± 20 ± 5 

Cv(RMSE) 15 - 15 

3. Results and Discussion 

An example of application of this scalable data analysis technique is reported, employing a selection of 10 case 
studies out of a larger sample of case studies previously analyzed [14]. Multivariate linear regression models are 
used to compare design assumptions (forward model data) and inverse model parameters. This application is meant 
to validate simulation data and enable progressive model calibration. The case studies selected are 10 real Italian 
buildings previously simulated and their results are ranked with respect to the value of H, global heat transfer 
coefficient due to the sum of transmission Htr and ventilation Hve components, as explained before. The multivariate 
linear regression approach proposed is based on energy signature concept [12], where energy consumption is 
divided by the duration of the time interval of analysis to obtain an average power, plotted against the screening 
variable, in this case the external air temperature. The regression models used are reported in Table 2 and 3, where 
qh, qc are average heating and cooling thermal power, normalized by gross volume (to enable comparability across 
different scales), θe is the average external air temperature and Isol is the global solar radiation on horizontal radiation 
divided by the time interval of analysis, monthly in this case. Finally, a, b, c and d are regression coefficients and ε 
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is an error term. The normalized energy demand for heating and cooling is summed up on a yearly based and 
compared with regression results in Table 5. 

 

Table 5. Comparison of simulation and regression models for heating and cooling demand calibration. 

Case 
study Heating Cooling 

 Simulation  Regression 1 Regression 2 Simulation  Regression 1 Regression 2 

 kWh/m3 kWh/m3 kWh/m3 kWh/m3 kWh/m3 kWh/m3 

1 5.2 5.3 4.8 5.1 5.4 4.9 

2 9.4 9.4 9.4 1.8 1.8 1.8 

3 7.8 7.8 7.8 7.4 7.4 7.4 

4 10.4 10.5 10.4 3.9 3.9 3.9 

5 15.4 15.4 15.4 5.4 5.5 5.4 

6 9.7 9.7 9.7 2.9 2.9 2.9 

7 11.7 11.6 11.9 4.2 4.2 4.2 

8 16.8 16.8 16.8 12.0 12.2 12.0 

9 36.1 36.1 36.1 3.7 3.7 3.7 

10 36.9 36.9 36.9 3.6 3.6 3.5 

 
 
 It shows a good agreement between the result and, therefore, the suitability of regression for monthly based 

model calibration. Figures 1, 2, and 3 report respectively monthly energy demand normalized with respect to gross 
volume, related energy signatures and regression lines of model type 1. 

 
 

 

Fig. 1. Normalized monthly heating and cooling demand simulation. 
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Fig. 2. Normalized energy signature data. 

 

Fig. 3. Linear regression for heating and cooling demand - Model type 1. 

Further, as shown in Table 2, –a1 and –b1 coefficients represent an estimate of H [14], later cited as Hh,sim 
because, in this research, we start from simulated data of the heating season. A summary of the results obtained for 
heating regression models is reported in Figure 4 and Table 6, showing again, more in detail, the good agreement 
between simulation and regression results. Models can be further improved with respect to solar radiation, by 
introducing dummy variables to account for different periods of the year and multipliers to account for solar 
geometry and its impact on solar gains, depending on building geometry. 
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Fig. 4. Forward and inverse building energy models comparison, estimation of Hh,sim. 

Table 6: Comparison of simulation and regression models for heating and cooling demand calibration. 

Case 
study Simulation Regression model type 1 Regression model type 2 

 Hh,sim  -a1  R2  NMBE  Cv(RMSE)  -b1  R2  NMBE  Cv(RMSE)  

 W/m3K W/m3K - % % W/m3K  % % 

1 0.189 0.186 ± 0.016 0.978 2.7 12.9 0.170 ± 0.026 0.979 3.0 11.3 

2 0.223 0.228 ± 0.010 0.991 0.0 5.2 0.210 ± 0.006 0.999 0.0 2.0 

3 0.267 0.300 ± 0.051 0.920 0.0 15.7 0.235 ± 0.009 0.999 0.0 1.9 

4 0.317 0.331 ± 0.017 0.987 1.4 7.3 0.294 ± 0.006 0.999 0.0 1.7 

5 0.327 0.331 ± 0.019 0.983 0.0 6.6 0.298 ± 0.026 0.990 0.0 5.0 

6 0.330 0.321 ± 0.017 0.986 0.0 6.9 0.293 ± 0.009 0.998 0.0 2.5 

7 0.433 0.492 ± 0.075 0.704 2.6 23.2 0.475 ± 0.046 0.977 2.1 11.0 

8 0.454 0.547 ± 0.065 0.933 0.0 15.1 0.396 ± 0.040 0.991 0.0 5.5 

9 0.690 0.728 ± 0.030 0.991 0.0 4.4 0.653 ± 0.019 0.999 0.0 1.6 

10 0.801 0.826 ± 0.020 0.997 0.0 2.8 0.779 ± 0.016 0.999 0.0 1.3 

4. Conclusion 

Energy use and technologies affect sustainability in all its fundamental components, society, environment and 
economy. Research and development in energy transitions should necessarily face techno and socio-economic 
problems. The synergy among recent developments in economic and technological paradigms, energy efficiency 
measures, and renewable energy technologies can constitute an important factor to promote renovation in the built 
environment, but it is necessary to propose market effective solutions that can minimize the life cycle economic and 
environmental impact. In this sense, the interplay among forward and inverse modelling approaches (e.g. using 
energy analytics techniques) is essential to improve both design and operation practices. Further, it is important to 
investigate simultaneously the spatial and temporal scalability of modelling approaches and the standardization of 
data structures, considering in particular performance metrics and calibration criteria for decision-making. The role 
of models in the energy field is cross-sectorial and the use of common principles and techniques could stimulate a 
rapid development of multi-disciplinary research, which is an essential part of innovation in the quadruple helix 
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model, in which civil society organizations, industry, government and academia collaborate to share knowledge and 
data. 
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