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Abstract 

Analytical and numerical methods have been used to extract essential engineering parameters 

such as elastic modulus, Poisson’s ratio, permeability and diffusion coefficient from 

experimental data in various types of biological tissues. The major limitation associated with 

analytical techniques is that they are often only applicable to problems with simplified 

assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the 

simplified assumptions but require substantial computational expertise, which is not always 

available. In this paper, we propose a novel approach that combines inverse and forward 

artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion 

coefficient of cartilage without any need for computational modeling. In this approach, an 

inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model 

of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage 

given the concentration-time curves. Robust estimation of the diffusion coefficients, 

however, requires introducing certain levels of stochastic variations during the training 
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process. Determining the required level of stochastic variation is performed by coupling the 

inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns 

the concentration-time curve as output. Combined together, forward-inverse ANNs enable 

computationally inexperienced users to obtain accurate and fast estimation of the diffusion 

coefficients of cartilage zones. The diffusion coefficients estimated using the proposed 

approach are compared with those determined using direct scanning of the parameter space as 

the optimization approach. It has been shown that both approaches yield comparable results.          

Keywords: artificial neural network, diffusion coefficient, biphasic-solute finite element, 

micro-computed tomography, finite bath, noise cancellation 

  

1. INTRODUCTION 

Transport of molecules in articular cartilage depends on factors such as orientation and 

concentration of collagen fibrils, proteoglycans, and water content, which vary significantly 

across cartilage thickness (Leddy and Guilak, 2008). The rate of transport can be affected by 

the progression of the most common disease of diarthrodial joints, i.e. osteoarthritis (OA), 

which is due to changes in molecular structure of cartilage (Arbabi et al., 2015b; Huttunen et 

al., 2014; Ko and Quinn, 2013; Kokkonen et al., 2011a; Pouran et al., 2015). Molecular 

transport (diffusion) plays a key role in monitoring OA progression, delivery of therapeutics 

and nutrients as well as in the exchange of signaling molecules between cartilage and its 

surrounding tissues of subchondral bone and synovial fluid (Jackson and Gu, 2009; Pan et al., 

2012; Pan et al., 2009). Previous studies used analytical solutions, mathematical fits, and 

computational models to derive the diffusion coefficients of solutes in cartilage (Arbabi et al., 

2015b; Ateshian et al., 2011; Ateshian et al., 2012; Huttunen et al., 2014; Kokkonen et al., 

2011a; Kokkonen et al., 2011b). The available analytical solutions can only be applied to 

problems where either simple geometries are used or simplified assumptions are made 
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(Crank, 1979). Occasionally mathematical fits have been used when analytical solutions were 

not available, however, since mathematical formulae involving diffusion coefficients are 

fitted to the experimental data, the physical importance of certain phenomena might be 

neglected (Kokkonen et al., 2011a). Computational models have been used to obtain the 

diffusion coefficient of neutral and charged solutes in complex geometries (Arbabi et al., 

2015b; Ateshian et al., 2011). Nevertheless, computational models are often associated with 

optimization algorithms which require advanced computational expertise while being 

cumbersome and lacking the capacity to recognize pattern of the experimental data.  

Artificial neural networks (ANNs) are considered as intelligent tools which can be trained 

using input data and output target to efficiently fulfill pattern recognition (Arbabi et al., 

2015a). In biomechanics, ANNs have been applied to problems such as bone remodeling, 

indentation tests as well as sport/gait mechanics (Campoli et al., 2012; Darling and Guilak, 

2008; Hahn et al., 2005; Oh et al., 2013; Zadpoor et al., 2012).  

Previously, we described a finite-bath finite element model and derived the diffusion 

coefficients of a neutral solute across cartilage zones using direct scanning of the parameter 

space as the optimization algorithm (Arbabi et al., 2015b). We aim to create a package that 

can obtain the diffusion coefficients of a neutral solute in cartilage zones using series of 

micro-computed tomography (micro-CT) data even in labs where no computational expertise 

is available. From our previous studies, we know that ANNs are extremely sensitive to 

deviations from their underlying model (Arbabi et al., 2015a). To improve the robustness of 

ANN the training data has to be contaminated with some level of stochastic variation i.e. 

noise. Since the required level of noise is generally unknown, we have proposed, for the first 

time, to use a second ANN that could be used to estimate the required level of noise. The 

combination of both ANNs (after training) enables estimating the diffusion coefficients of a 

neutral solute across different zones of cartilage without any computational modeling.       
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2. METHODOLOGY  

2.1. Experiments 

The descriptive details of the experiments consisting of sample preparation, image 

acquisition, and image processing are presented elsewhere (Arbabi et al., 2015b; Pouran et 

al., 2015). Osteochondral plugs (n=3, cartilage thickness= 2.8 mm, and diameter= 8.5 mm) 

were extracted from two fresh equine femora using custom-made drill bits while the site of 

extraction was constantly sprayed using phosphate buffer solution (PBS) to prevent 

overheating. Iodixanol solutions (finite bath of 650 µL, 1550.2 g/mol, charge=0, condition A: 

420 mM, 290 mOsm/kg H2O, condition B: 420 mM, 600 mOsm/kg H2O, condition C: 210 

mM, 290 mOsm/kg H2O, GE Healthcare, The Netherlands) were prepared and the diffusion 

of Iodixonal from each condition was restricted to occur only from the articular surface of 

cartilage (Figure 1a). A micro-CT scanner (40 µm spatial resolution, Quantum FX, Perkin 

Elmer, USA) allowed monitoring the transport of Iodixonal through cartilage at room 

temperature. After each experiment, samples underwent desorption process using a large bath 

of PBS and protease inhibitor (cOmplete, Roche, The Netherlands). Using the in-built 

software of micro-CT (Analyze 11.0), 2D slices with TIFF format were generated. The mid-

sagittal slice was then isolated and processed to render the concentration-time curves for 17 

different time points until 48 hours (Figure 2).  

2.2 Computational model 

The required equations to describe the transport of iodixanol across cartilage are conservation 

of linear momentum for the mixture, conservation of the mass for the mixture, and 

conservation of mass for solute, which were described in our previous work (Arbabi et al., 

2015b). We assigned a neo-Hookean material model for cartilage with a Young’s modulus of 

10 MPa, Poisson’s ratio of 0, hydraulic permeability of 10
-3

 mm
4
/Ns, and effective solubility 

of 1. Diffusion coefficient of iodixanol was set to 0.00025 mm
2
/s (Nair et al., 2008) and the 
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diffusion tensor was assumed isotropic. Since cartilage is a heterogeneous material, we used a 

previously proposed multi-zone model where water content varied from 0.8 in the superficial 

zone (20% of the cartilage thickness) to 0.7 in the middle zone (50% of the cartilage 

thickness) and 0.6 in the deep zone (30% of the cartilage thickness) (Sophia Fox et al., 

2009)(Figure 1b). The required initial and boundary conditions to solve the problem have 

been presented earlier (Arbabi et al., 2015b).  

2.3 Inverse-forward artificial neural networks 

A conventional feed-forward ANN consists of artificial neurons that is trained using a set of 

input data and a set of target data. The trained ANN processes the data in the hidden layer 

and generates the result as the output signal (Figure 3). Each artificial neuron in the hidden 

layer has a so-called signal activation function such as tang-sigmoid function which 

processes the signal transmitted by the other artificial neurons, gives a weight to it, and biases 

it to generate the output signal (Arbabi et al., 2015a). The biphasic-solute multi-zone finite 

element modeling was performed in FEBio for a wide range of diffusion coefficients in the 

superficial (0.1-99.1 µm
2
/s with interval 1 µm

2
/s) and middle zones (0.1-10 µm

2
/s with 

interval 0.1 µm
2
/s) resulting in 10,000 models, based on the findings of our previous study 

(Arbabi et al., 2015b). Using a FEBio-MATLAB interfacing program developed in-house, 

concentration-time curves (10,000×17 time points) were obtained from the biphasic-solute 

multi-zone finite element model and constituted the input matrix of the so-called inverse 

ANN while diffusion coefficients of superficial and middle zones (10,000×2 diffusion 

coefficients) served as the target matrix of the same ANN. Since the diffusion within the deep 

zone is not high enough to enable accurate determination of diffusion coefficient in the deep 

zone, we did not report the diffusion coefficients of the deep cartilage zone (Arbabi et al., 

2015b). Our previous study showed that ANNs are very sensitive to any deviations from the 

underlying computational model that is used for their training (Arbabi et al., 2015a). To 
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alleviate this problem, the training data of ANNs can be contaminated with some level of 

noise (Arbabi et al., 2015a; Derks et al., 1997; Zur et al., 2009) to increase the robustness of 

ANN. Therefore, we trained the ANN using the input concentration vs. time curves 

contaminated with different levels of Gaussian noise, i.e. 1-20%. The contaminated 

concentration function ( ( )c t ) is produced as follows: 

( ) ( ) (0, ( ))c t c t N t                                                                                                               (1)                                                                                                      

where (0, ( ))N t  is a Gaussian distribution function with the standard deviation 

( ) ( )t c t  , and ( )c t  is the concentration data obtained from finite element modeling. The 

parameter   represents the signal to noise ratio, which varies between 100 and 5 with step-

size of 5 corresponding to noise levels 1-20%. We used 90% of the input data for the training, 

5% for the validation, and 5% for the test of the ANN (30 neurons in the hidden layer).  

Next, we introduce the experimental concentration vs. time curves to the trained inverse 

ANNs to obtain diffusion coefficients of superficial (DSuperficial) and middle (DMiddle) zones 

corresponding to each noise level as the outputs. The only remaining question to answer is 

‘what level of noise should be used for contaminating the training data of the inverse ANN?’ 

This question cannot be answered in the general case without performing the actual finite 

element simulation to see which noise level produces diffusion coefficients that result in 

concentration-time curves that are as close as possible to the experimental values of the 

concentration-time curve. To circumvent this problem and avoid performing direct finite 

element simulations, we propose a novel approach that is based on using a forward ANN. 

This second ANN receives the diffusion coefficients as input and returns the concentration-

time curve associated with those values of diffusion coefficients. To maximize the fidelity of 

the forward ANN to the actual finite element simulations, fully clean training data is used for 

its training. Similar to inverse ANN, we used 90% of the input data for training, 5% for 

validation, and 5% for testing the forward ANN (30 neurons in the hidden layer). The 
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diffusion coefficients estimated by the inverse ANN were then fed back to the forward ANN 

to estimate the concentration-time curve. The noise level was optimized to minimize the root 

mean square error (RMSE) between the experimental concentration-time curve and the 

concentration-time curve estimated by the forward ANN (Figure 4). A MATLAB code for 

generating noisy data and training inverse-forward artificial networks is available in the 

Appendix. 

3.  RESULTS 

The high values of the Pearson correlation coefficients (R) clearly showed robustness of the 

inverse ANN when trained under different levels of noise (e.g. Figure 5a-c). The mean 

squared error drops to very low values for the training, validation, and test datasets, thereby 

confirming the efficacy of the training process (Figure 5d). All training, validation, and test 

datasets showed similar improvement as the training iterations progressed (Figure 5d). The 

identification error, i.e. the difference between the actual set of diffusion coefficients and 

those predicted by inverse ANN, for the test dataset that was not used in training process, was 

reminiscence of a normal distribution and was quite small (e.g. Figure 5e). Similar results 

were obtained for all levels of noise and the same observations held true (data not shown).   

The Pearson correlation coefficients for the forward ANN for all training, validation, and test 

datasets was equal to one (Figure 6a-c), which suggests perfect capability of the forward 

ANN in replacing the actual finite element model for the purpose of predicting the 

concentration-time curve given the diffusion coefficient. Similar to inverse ANN, the training 

diagram of the inverse ANN reveals a very small mean squared error for the training, 

validation, and test datasets, which further confirms the efficacy of the training process 

(Figure 6d). 

The combined forward-inverse ANN approach proposed here and the direct scanning of the 

parameter space as the optimization approach resulted in similar values of diffusion 
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coefficients (Table 1b) and similar concentration-time curves for all the cartilage samples for 

which experimental data were available from our previous experimental study (Figure 2). The 

coefficient of determination (R
2
) and RMSE between were similar for the combined forward-

inverse ANN approach and the optimization approach (Table 1a). Except for sample 3 and 

condition C where the required noise level in the training phase was around 7%, the other 

samples and conditions resulted in required noise levels below 2.5% (Table 1b). 

4. DISCUSSION 

Interpretation of experimental data in tissue biomechanics often requires the use of complex 

material models such as multiphasic, biphasic-solute, as well as complex boundary conditions 

and/or geometries. Analytical and computational solutions have been developed to interpret 

experimental data while capturing the real multi-physics phenomena to the maximum 

possible extent (Arbabi et al., 2015b, 2016; Ateshian et al., 2011; Ateshian et al., 2012). 

Computational models such as FEM can remarkably boost the solution for more complex 

problems when complicated material models, boundary conditions, and geometries are 

concerned (Ateshian et al., 2013). The major drawback of computational models is that they 

are time-consuming to develop and require considerable computational modeling and 

mathematical physics expertise.  

Recently, we developed a multi-zone multi-physics model to study the transport of neutral 

solutes across articular cartilage which enabled us estimate the diffusion coefficients of 

different cartilage layers (Arbabi et al., 2015b). In spite of being a powerful approach for 

accurate estimation of diffusion coefficients, computational models similar to the one 

proposed in our previous study require considerable computational expertise that is not 

universally available. Based on the proposed method regarding the trained ANNs with noise 

(Arbabi et al., 2015a) in the present study we aimed to obtain the diffusion coefficients of 

different cartilage layers using experimental data collected during diffusion experiments. In 
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the current work we proposed to combines inverse and forward artificial neural networks 

(ANNs) to provide a fast and accurate estimation of the diffusion coefficient of cartilage 

without any need for computational modeling to simulate the diffusion. Determining the 

required level of stochastic variation was performed by coupling the inverse ANN with the 

forward ANN, which receives the concentration-time curve and returns the diffusion 

coefficient. 

This approach presented in this study is not only capable of cancelling the noise, but also 

eliminates the need for FEM knowledge. The first element of the inverse-forward ANNs is 

the inverse ANN which is trained with noisy data and is responsible to filter the noise, while 

the second element is the forward ANN which eliminates the necessity of FEM. Training 

with noise-free FEM data of the inverse ANN would result in overfitting and its subsequent 

failure (Arbabi et al., 2015a; Zur et al., 2009). The inverse ANN trained with noisy data 

(Gaussian random noise) is most sensitive to the general trend of the experimental data 

without being influenced by small deviations from FEM caused by uncertainties involved in 

the experimental data. 

The pattern recognition feature of ANN has been previously stressed and our findings also 

underscored this feature (Arbabi et al., 2015a; C. M. Bishop, 1995). The difference between 

RMSE and R
2
 from optimization algorithm and ANN predictions although not large (Table 

1a), might be due to differences in interval step sizes by which ANN was trained and 

optimization algorithm was processed.  

By training the ANN using sufficiently wide range of diffusion coefficients for different 

thicknesses of cartilage, different bath sizes and concentrations, non-FEM specialists can 

easily benefit from the application of the inverse-forward ANNs proposed in this work. 

Besides, since ANN has been shown to be applicable for both indentation of poroelastic 

materials (Arbabi et al., 2015a) and our diffusion experiments, one can take advantage of it in 
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other areas of tissue biomechanics where complex multi-physics computational models are 

needed to estimate specific properties of tissues. 

More complex computational models particularly nonlinear (i.e. hyperplastic) models may be 

needed for estimation of the diffusion coefficients of cartilage under different (loading) 

conditions. For example, there is some evidence that loading may influence the process of 

solute transport in cartilage (Entezari et al., 2014; Mauck et al., 2003). Experiments that 

investigate the effect of mechanical loading on the diffusion process may therefore be 

associated with relatively high levels of strain in cartilage, thereby necessitating the use of 

hyperplastic models for describing the elastic part of the cartilage mechanical behavior. The 

presence of large deformations and the use of hyperplastic models introduce strong 

nonlinearities in the involved equations one of the consequences of which may be non-

uniqueness of the solutions to the problem of identifying the physical properties of cartilage. 

It is important to assess the capability of ANN in estimating the diffusion coefficient in the 

cases where, similar to the case of large deformations, strong nonlinearity is present. 

Handling non-uniqueness is one of the challenging tasks for ANNs because non-uniqueness 

in the training data may confuse the training process of ANN and make it difficult for the 

ANN to find even one of the (non-unique) solutions of the problem.  

The present study has several limitations. First, cartilage was modeled as a laterally isotropic 

material, although it is intrinsically an anisotropic material mainly due to spatial differences 

in terms of collagen fiber distribution/orientation. The molecular size has been shown to 

influence the diffusion, however, its effect could not be considered by the software used in 

this study. These limitations are, however, the intrinsic limitations of the full computational 

model which is used for training the forward and inverse ANNs. Should these limitations be 

remedied in the full computational model, it is expected that their correction can be reflected 
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in the proposed approach simply by using training data that are generated using the improved 

finite element model. 

In summary, a novel algorithm combining inverse and forward ANNs was proposed to 

estimate the diffusion coefficient of the various zones of cartilage based on multi-physics 

model. The diffusion coefficients obtained using the proposed approach were found to be 

similar to the ones obtained using the conventional approach of combining full multi-physics 

computational models and optimization algorithms. This approach, however, has an 

important advantage as compared to the conventional approaches: researchers and labs 

without computational modeling expertise can use it effortlessly, although it should be noted 

that the methodology of this work urges for initial FEM expertise but once established for a 

specific tissue type e.g. equine cartilage with similar morphology, no further computational 

skill will be required.  The proposed algorithm comprising of inverse-forward ANNs which 

could cancel out the input data noise (inverse-ANN) and eliminate the need for FEM 

expertise (forward-ANN) as much as possible could be used for similar biomechanical 

applications.  
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Figure captions 

 

Figure 1. Experimental (a) versus computational (b) models: Iodixonal finite bath is placed 

on the surface of the articular cartilage to study its axial diffusion across various zones of 

articular cartilage i.e. superficial zone (20% of cartilage thickness), middle zone (50% of 

cartilage thickness) and deep zone (30% of cartilage thickness) 

Figure 2. Normalized concentration of Iodixonal versus time for samples 1-3 and conditions 

A-C: points represent the experimental data, solid line is the inverse-forward ANNs result 

and dashed line is the optimization algorithm result 

Figure 3. Anatomy of the inverse-forward ANNs 

Figure 4. Flowchart of inverse-forward ANNs to obtain diffusion coefficients  

Figure 5. Regression diagrams for the training (a), validation (b), and test (c) datasets of the 

inverse ANN trained when it was trained with signal to noise ratio of 50 (2% noise level). 

ANN training diagram (d) and histogram of identification errors (e). 

Figure 6. Regression diagrams for the training (a), validation (b), and test (c) datasets of the 

forward-ANN (noise-free). ANN training diagram (d). 

 

 

 

 

Table captions 

 

Table 1. R
2
 and RMSE for samples 1-3 and conditions A-C for inverse-forward ANNs and 

optimization algorithm (a), Diffusion coefficients in the superficial (DSuperficial) and middle 

(DMiddle) zones obtained using inverse-forward ANNs and optimization algorithm (b). 
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Table 1         
 

 

 
Condition               A             B             C 

  ANN Optimization ANN Optimization ANN Optimization 

Sample 1 
R

2 
1.00 0.99 1.00 1.00 0.99 0.99 

RMSE 0.0059 0.0068 0.0052 0.0044 0.0131 0.0122 

Sample 2 
R

2
 0.99 1.00 0.99 0.99 0.99 0.99 

RMSE 0.0081 0.0058 0.0068 0.0074 0.01 0.0079 

Sample 3 
R

2 
0.97 0.97 0.95 0.95 0.95 0.94 

RMSE 0.0230 0.0207 0.0330 0.0348 0.0320 0.0349 

 

 

 
  Diffusion coefficient (μm

2
/s) 

 Condition A B C 
 DSuperficial

 
DMiddle

 
DSuperficial

 
DMiddle

 
DSuperficial

 
DMiddle

 

Sample 1 
ANN 8.00 0.48 5.28 0.35 11.5 1.20 

Optimization 7.50 0.55 5.30 0.30 13.00 1.00 

Sample 2 
ANN 9.34 0.59 8.00 0.65 7.40 0.72 

Optimization 10.00 0.60 7.30 0.55 8.80 0.75 

Sample 3 
ANN 26.00 1.85 35.20 3.50 60.40 3.50 

Optimization 30.00 2.25 35.00 3.00 60.00 4.00 

      (b) 

      (a) 
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Figure 1 
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Figure 2     
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Figure 4                   
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Figure 5 
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Figure 6 
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