
Delft University of Technology

Can Fourier Neural
Operators Replicate the

Intrinsic Predictability of
Spatiotemporal Chaos?

for the Kuramoto-Sivashinsky System

K. R. Schuurman



Can Fourier Neural Operators
Replicate the Intrinsic Predictability of

Spatiotemporal Chaos?
for the Kuramoto-Sivashinsky System

by

K. R. Schuurman
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday May 12, 2023 at 15:45 AM.

Student number: 4557859
Project duration: September 1, 2022 – May 12, 2023
Thesis committee: Dr. S. Basu, TU Delft, supervisor

Prof. dr. P. A. Siebesma, TU Delft
Dr. M. A. Schleiss, TU Delft
Dr. R. Taormina, TU Delft



Preface

Modelling the atmosphere was the reason I picked Geosciences & Remote Sensing. I was fascinated
by how we can model something so untangibly complex as the fluid flow in our atmosphere. From a
mathematical standpoint, the computational models used in weather forecasting are fascinating. In the
last few years, the deep learning revolution brought a new type of model that can forecast the weather
through training on the giant vault of weather datasets there are. The intersection between a bleeding
edge type deep learning model combined with complex weather systems led me to this research. The
journey taught me exciting topics in chaos theory, functional analysis, and predictability. The common
knowledge that we should take a two-week forecast with a grain of salt became quantifiable for me. I
hope to help the reader develop a similar understanding of weather predictability.

I would like to, first and foremost, thank my supervisor Dr. S. Basu for guiding me through my
thesis. Basu knew how to excite me about the current state of weather forecasting. He involved me in
the atmospheric sciences community, advised me on my career, and helped me form my ambitions. He
always managed to steer me in new directions when I tunnel-visioned within my research. He is one
of the most passionate researchers that I have met and could not have wished for a better supervisor.
I am also very grateful for the other thesis committee members, whose constructive criticism helped
me while their excitement showed me that my work was not for nothing. I want to thank my partner
for supporting me throughout the year with the many ups and downs while letting me practice my
presentations in her presence. Thanks should also go to my parents, who helped comb through my
report for grammar mistakes. I’d like to acknowledge the assistance of chatGPT in rewriting some
smaller parts of the report when I lost the patience to do it properly.

K. R. Schuurman
Delft, May 2023

i



Abstract
The use of deep learning in global weather forecasting has shown significant promise in improving
both forecasting accuracy and speed. Traditional numerical weather prediction models have gradually
improved forecasting skills but at the cost of increased computational complexity. In contrast, new deep
learning models, trained directly on reanalysis data, have demonstrated significant gains in forecasting
accuracy, achieving competitive levels of performance.

However, the potential of deep learning in predicting spatiotemporal chaotic systems, such as weather
patterns, remains unexplored. To address this gap, we investigate the efficacy of a data-driven Fourier
neural operator Markovian forecaster to replicate the intrinsic predictability and the characteristic
Lyapunov spectrum of the Kuramoto-Sivashinsky system. FNO reproduces intrinsic predictability and
precisely estimates the characteristic Lyapunov spectrum, even with a small dataset. They cannot
represent one of the invariant symmetries, a zero characteristic Lyapunov exponent in the spectrum.

Our findings suggest that deep learning can not only enhance the speed and accuracy of tradi-
tional numerical forecasting models but also replicate the weather’s chaotic nature. This has significant
implications for generating large ensembles and improving overall probabilistic forecasts.

The research is limited to a deterministic system defined on a single process time scale surrogated by
FNO. The future merits a similar study to investigate if FNO models can perform similarly on larger,
stochastic, coupled, and/or multiple time-scale spatiotemporal chaotic systems.
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1
Introduction

In 1922 Lewis Fry Richardson was the first to idealize modelling a global weather system using numerical
methods [1]. At the time, Richardson lacked a way to compute the numerical simulation efficiently.
That did not stop him from theorizing how it would work. Richardson imagined a theatre in the form
of a globe filled with computers [people who compute]. Each computer would calculate the physical
equations related to their box in the theatre and communicate them to the adjacent computers. At the
centre of the orchestra of computers would be a conductor guiding the entire process and ensuring no
computer slacked behind.

Figure 1.1. Graphical explanation of a weather model. Credit: Cantner K., AGI

The idea of the process being divided into smaller boxes is a reality that has come true. Numer-
ical Weather Prediction (NWP) appeared with the arrival of modern computers. NWP divides the
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atmosphere into smaller grid boxes, each connected with adjacent grid boxes. In figure 1.1, a graphical
representation of these grid boxes spanning the globe is given. Within each box, a set of equations spec-
ify the evolution of a group of variables, including temperature, precipitation, humidity, wind vectors
and aerosols. The boxes communicate to each other in the form of exchanging fluxes. As an example, a
persistent northerly wind will convect aerosols from a northern grid box to a southern grid box. Subgrid
scale processes are parametrised, such as the small-scale deviations in humidity across distances within
the grid or drag induced by the topography. The parametrization adds the subgrid processes to the
bulk forces weighing on the grid box. After the communication between the grid boxes, a consistent
time-stepping is applied to propagate the system further in time from an initial weather state.

These painstaking processes have never been hand calculated by a group of human computers locked
in a theatre. Still, Richardson did get to experience the first functional weather forecast by a modern
computer ENIAC in 1950. He responded that the results were an “enormous scientific advance”. It took
ENIAC 24 hours to produce a 24-hour forecast [2].

The first NWPs had coarse resolutions and limited value because they could only forecast the weather
a few days in advance. After these few days, the forecasts would deviate too far from reality. What
made it more difficult was that it was impossible to observe the global weather over the entire earth,
meaning the starting point of each forecast was very uncertain. These initial condition uncertainties
have a significant impact on the predictability of an NWP model.

Nowadays, state-of-the-art NWP uses grid boxes in order of 0.1◦ latitude longitude with many more
vertical levels than before. The governing equations are essentially the same, but the numerical methods
for solving them have evolved. Many more new processes and effects on subgrid scales were also added
to the parametrizations. Simultaneously, by assimilation of satellite observations and local observations,
it is possible to get a current state of the weather more accurately. These combined developments have
increased the predictability score, which makes it possible to forecast around 10 days ahead of time
using deterministic forecasts [3].

On the flip side of all the improvements, the needed computing power increases by a power law. With
every decrease in grid size by a power of 10, the amount of computing necessary is raised by an order
of 1000. Currently, the global NWP of the European Center for Medium-Range Weather Forecasts
(ECMWF) runs on a supercomputer with over one-million cores and a total output of 30 petaflops
[E1]. The necessary growth in computing power and associated power consumption is plotted against
the average grid size in figure 1.2. Even though computer transistor count has evolved exponentially
(according to Moore’s Law), higher resolution forecasts start to cost more and more energy. The
extensive material and energy cost makes global NWP a task for big institutes.

Figure 1.2. Schematic evaluation of the required compute cores and energy for global weather
forecasting models. Bauer et al. 2015 [3]

https://www.ecmwf.int/en/about/media-centre/focus/2022/fact-sheet-supercomputing-ecmwf
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A century later, a new revolution in Deep Learning (DL) emerged, opening up many exciting pos-
sibilities. DL has found its way into challenging or unappealing domains for humans, such as image
classification, translation, essay writing, and various other automation tasks prone to human errors.

Weather forecasting has conformed to the trend of the DL revolution. Currently, it is possible to
run global weather forecasts with DL. Even though the dislike of many atmospheric physicists and
meteorologists, DL forecasts of the global weather display a lot of potential. DL forecasting models
train solely on historical data without the constraints of fundamental laws of physics. In figure 1.3, a
DL model named Pangu-Weather is used to predict the track of hurricane Michael in 2018. The model
is presented against the best deterministic forecasting model available in 2022, the High-Resolution
Forecast (HRES). Where HRES deviates from the ground truth earlier, Pangu-Weather predicts the
track almost perfectly until the storm crosses the Atlantic Ocean. At the time, this HRES forecast was
used by ECMWF to boast its accuracy during hurricane Michael (P. Siebesma, personal communication,
April 27, 2023).

Figure 1.3. Pangu-Weather performance on the Hurricane Michael tracking compared to HRES
deterministic ECMWF forecast. Adapted from Bi et al. 2022 [4]

The first DL model to compare itself to HRES was by Weyn et al. 2021 [5]. The main advantage
of using a DL model is the computing power required for a forecast. DL models are accelerated on
GPU hardware which efficiently parallelises the computation. Secondly, DL can take larger timesteps
for forecasting than NWP without instabilities, reducing the computing power significantly. In table 1.1
the largest DL-based global weather prediction networks are summarized as of April 2023. Compared
to an NWP, a single 10-day forecast Integrated Forecasting System (IFS) running on thousands of CPU
nodes, the computational time cost is estimated to be on order 105 lower [6]. The performance gains in
computer power would hint that running weather forecasts will be possible on a future laptops instead
of waiting for forecasts published by weather institutes.

However, there are many questions left unanswered about the DL forecasting methods. The NWP
models are chaotic, and the problems of predictability and limit of predictability are not studied yet.
The unpredictable behaviour in weather prediction is a form of chaos. In 1961 Edward Lorenz was the
first to document chaos when a seemingly predictable deterministic system showed erratic behaviour.
Lorenz worked with a simplified weather model simulating convection in the atmosphere [11]. Lorenz
ran the model numerically with certain initial conditions, similar to how a weather forecast is made
from an initial weather state. Running a numerical model in those days involved punching holes in a
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Model Published in Type Resolution Efficiency Hardware
Weyn et al. [5] 2021 CNN 1.4◦ 320-member forecast in 3

1/2 minutes
NVIDIA
Tesla V100

FourCastNet [6] 2022 U-FNO 0.25◦ 24-hour 100-member fore-
cast in 7 seconds

4 NVIDIA
A100

Keisler et al. [7] 2022 GNN 1.4◦ 5-day forecast in 0.8 sec-
onds

NVIDIA
A100

Pangu-Weather
[4]

2022 Transformer 0.25◦ 24-hour forecast in 1.4 sec-
onds

4 NVIDIA
Tesla V100

GraphCast [8] 2022 GNN 0.25◦ 10-day forecast in under
60 seconds

Cloud TPU
v4

Table 1.1. Efficiency of the current DL global weather forecasting models. The abbreviations are
CNN; Convolutional Neural Network, AFNO; Adaptive Fourier Neural Operator [9, 10], GNN; Graph
Neural Network.

card to program the computer. The results would come out in the form of printouts. At some point in
his research, Lorenz wanted to revisit a simulation he had done previously. To save time, Lorenz used
a printout from his previous simulation as the initial condition for his second simulation. The second
time he ran the simulation, the results came out entirely different.

The culprit in Lorenz’s work was the printout paper he used as starting point for his second sim-
ulation. During printing, the computer rounded off the last three decimals of the internally stored
6-decimal variables. While the effect of the round-off would be considered to be a minimal deviation
because of the small relative error, in Lorenz’s simulation, the slight deviation in initial conditions
caused a wildly different simulation outcome [11].

Lorenz studied this case of chaos and popularized the famous concept: A sensitive dependence
on initial conditions. The fact that Lorenz discovered chaos in a simplified weather model was no
coincidence because research has shown that the weather is a chaotic system. However, the weather is
not the only system that contains chaos. In Lorenz’s own words

“Two states differing by imperceptible amounts may eventually evolve into two considerably
different states ... If, then, there is any error whatever in observing the present state-and
in any real system such errors seem inevitable-an acceptable prediction of an instantaneous
state in the distant future may well be impossible....In view of the inevitable inaccuracy and
incompleteness of weather observations, precise very-long-range forecasting would seem to
be nonexistent.”

The Lorenz butterfly wings shown in figure 1.4 are a product of Lorenz’s model. The butterfly
wings would later become famous in popular culture under the quote and many different variants:
”Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”. The sentence
implies that a tiny weather disturbance in Brazil can set off a tornado in due time. In practice, this is
a gross generalization of sensitivity to initial conditions.

The importance of chaos to our research is related to the predictability of our weather. From
previous NWP simulations, it is known that some weather states have higher predictability than others.
Given certain sea-surface temperature anomalies, the weather can be entirely predictable in the tropics
[12]. While in some other cases, such as with the forecast of the severe storm ’Lothar’ in 1999, the
predictability was limited to 4 days [13]. Figure 1.4 shows changing predictability in the case of the
Lorenz system. Three different initial conditions are picked. A group of equally perturbed points around
these initial conditions are propagated in time. Situation (a) depicts a highly predictable state where
the ensembles stay together, (b) depicts a less predictable state and (c) depicts a highly unpredictable
state in which the spread explodes quickly.
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Figure 1.4. Predictability of the Lorenz system by Palmer et al. 2019 [14]

The group of perturbed points is named a group of ensembles. Equivalently, ensembles are used for
NWP to quantify predictability in weather. Meteorologists use ensembles to specify in which timescale
weather is predictable given an initial weather state. Supercomputers run large ensembles at large
weather prediction institutes, such as ECMWF, NOAA/NCEP and KNMI, to forecast where different
ensemble members could evolve to. In ensemble forecasting, a large group of models is initialized with
slightly different initial conditions from the current weather state, together with differences in boundary
conditions, parametrizations and numerical schemes. Different parametrization schemes accentuate
different processes in the atmosphere, and specific numerical schemes contain biases when used in
forecasts. The combined ensembles give a better forecast by spreading out the uncertainties in the
initial conditions and the model.

Forecasting with an ensemble shows how the system will evolve statistically. It can be seen as a
probability distribution of the range of future states. Figure 1.5 shows a schematic depiction of an
ensemble precipitation forecast in the UK. Each ensemble member follows a perturbed initial condition
path towards the future state. Together the ensembles give an approximate precipitation probability
at the forecast time. People that use this probabilistic forecast can decide if they want to risk painting
their house on that specific day based on the probability of precipitation.

Ensembles aim to account for three sets of uncertainty: model uncertainty, uncertainty in boundary
conditions and uncertainty in initial conditions. The first is an uncertainty that is aimed to be minimized
by constant model improvements. The second relates to uncertainties in, for example, sea-surface
temperature. The last uncertainty relates to the uncertainty in observations of the atmosphere. With
a perfect model assumption, the first two uncertainties are negligible. The perfect model would be able
to simulate everything without error leaving only the intrinsic predictability of the system to quantify.

For a perfect model, the spread is a predictability metric: a large spread in a short timeframe
indicates very low predictability in the weather, while conversely, a small spread indicates high pre-
dictability.
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Figure 1.5. Ensemble forecast schematic for precipitation prediction over Europe. From Bauer et al.
2015 [3]

Our research investigates if DL weather forecasting models can be used in ensembles to give a similar
probabilistic forecast to NWP. The focus will be on the predictability of a DL forecast. This research is
a start-up as the aim is not to analyze the computationally expensive global weather forecasting model
but to analyze a chaotic toy model. The Kuramoto-Sivashinsky system is picked for the endeavour
because it is thoroughly analyzed in the literature [15–17].

The goal is to verify that the DL forecasting model can reproduce the predictability of a known
chaotic system. We will go into extra depth by comparing the long-term chaotic dynamics between our
DL forecaster and the ground truth.

In chapter 2, the recent background of DL forecasting will be given. Followed by a background of
predictability problems in weather forecasting. In chapter 3, a more rigorous mathematical description of
Chaos Theory is given, after which the Kuramoto-Sivashinsky system is introduced. Lastly, a description
of the DL architecture used is given. Chapter 4 details the training of the DL algorithm, together with
the methods used for our results. Subsequently, the results, conclusion and discussions are given in
chapters 5, 6, 7.



2
Background

Our research contains elements of four diverse topics: numerical weather prediction, the Kuramoto-
Sivashinsky system, deep learning surrogacy and Chaos theory. On each topic, there is a wealth of
knowledge available in the form of papers and books. We aim to provide a surface-level insight into
them all. This chapter builds upon the introduction while chapter 3 will give a mathematical insight.

With respect to DL, the topics it includes are such niches that a comprehensive review of previously
introduced deep-learning techniques would be impossible. We also do not recommend starting with the
papers cited but with the wide variety of online free courses surrounding machine learning and deep
learning.

The following sections are read mostly separately.

Figure 2.1. Sketching out the overlap of different topics.

7



2.1. Deep learning in atmospheric sciences 8

2.1. Deep learning in atmospheric sciences
In recent years the amount of Deep Learning (DL) papers has skyrocketed. DL originally a subtopic
of Machine Learning (ML) has overtaken the majority of other ML disciplines. Figure 2.2 shows the
growth of DL compared to other ML proficiencies [18]. The growth is mainly due to the interest in
computer vision and extensive language modelling. Large transformers can generate images out of thin
air with Stable Diffusion and Dall-E on the forefront, while as recently as 2023, ChatGPT-4 seems to
be a constant table topic due to the perceived knowledge it contains.

Figure 2.2. Number of publications per year including the term DL; deep learning, CNN;
convolutional neural network; DBN, deep belief network; LSTM, long short-term memory; AEN,
autoencoder; and MLP, multilayer perceptron. The two dashed lines are scaled down by 5 (deep
learning) and 3 (convolutional neural network) factors. The legend shows the search terms used to
query the Web of Science publication database. Copied from Emmert-Streib et al. 2020 [18]

DL, or more generally ML, learns to solve complicated problems requiring only data and a framework.
The framework comprises an algorithm/network, a loss function and a learning method. The network
is a set of parameters linked together that can be moulded into learning a solution to a problem. The
loss function penalizes the network when it makes wrong predictions. The loss function is adapted to
the dataset and can be modified to include artificial constraints. The learning method is the teacher
that modifies the network parameters according to the loss function.

Figure 2.3 shows an intercomparison in methodology between ML and classical models. The DL
paradigm is fundamentally different from a classical physical approach. In physics-based model building,
a model is built based on observation from the ground up. Mathematics describes individual parts of
the observed physical processes on which basis the model is built. After which, the model is used to
generalise for different situations. In one, the model is built to fit the dataset, while in the other, a
predefined model learns how to approximate the problem defined on the dataset.

DL can often be seen as a statistical approximation. It learns approximate trends from a dataset
with which it predicts the data points it has not seen before. The universal approximation theorem
states that even the simplest Multi-Layer Perceptron (MLP) could approximate any solution with a
large enough network size.

Even though DL is just the tip of the iceberg when it comes to ML, there are many types of DL
specialities. The general idea is that all DL networks can be traced back to a group of artificial neurons
connected, similar to how brains work is outdated at best. It is still often possible to consider some
parts of a DL network as made up of neurons resembling an MLP. However, the connection between
the neurons is significantly more complex in recent advanced DL networks than previously imagined.
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Figure 2.3. Schematic depiction of the difference between ML and physical methodology.

2.1.1. Surrogates
On the back of the exploding diversity in new DL algorithms, a new paradigm for scientific DL is slowly
evolving. The scientific world is slowly getting saturated with DL looking around the corner in many
disciplines. ML and, to an extent DL, has been used for many classification and regression tasks for
some time now. In the atmospheric sciences, it can help scientists classify cloudy satellite imagery or
give an estimate of the shortwave radiation at the surface. Until recently more complicated topics, such
as time series prediction, have not been tackled to satisfactory levels.

DL surrogates are brand new in the scientific community. Conceived as a way to save on expensive
time-consuming numerical simulations are now used for predictive task as well. A surrogate model is
a model that mimics another model. The original model is considered the ground truth relating to
phenomena. Figure 2.4 shows a surrogate model for non-chaotic Kolmogorov flow [19]. Even though
the flow predictions happen on a coarser scale, it still accurately predicts the vorticities without being
specified in the system equations.

As an example surrogate, imagine a model for the radiative transfer through an atmospheric column.
The physics concerning radiation is known, and a model can numerically calculate the radiation, but
it is time-consuming to run the model. Therefore a DL model is trained on a small generated dataset,
after which the DL model generalises to situations outside of the dataset. The DL surrogate is faster
and generalizes accurately enough for the team to produce more results.

Data-driven surrogacy is a type of surrogate model that trains solely on the data produced by
a numerical model, while not applying extra physical constraints. Data-driven surrogacy is often less
computationally expensive but means that a surrogate could hallucinate physically incoherent situations.

Surrogates for dynamical systems can also be trained to forecast an approximate trajectory. Fore-
casting surrogates usually use an autoregressive method to forecast the future. In autoregressive models,
previous model states are input to predict the future state(s).

XT+N , . . . ,XT+2,XT+1 = M(XT ,XT−1,XT−2, . . . )

Often it is simplified to a Markov operator, where the prediction only depends on the current state, and
only one state ahead in time is predicted XT+1 = M(XT ).

We aim to apply data-driven surrogate modelling to the Kuramoto-Sivashinsky (KS) dynamical
system. A system where chaos limits the predictability for a forecasting surrogate. The KS system has
been studied thoroughly so that a comparison can be made between the chaotic dynamics of the exact
and surrogated model.

Previously, the KS model has been surrogated by a reservoir computer [20], a Fourier Neural Op-
erator and a few other DL methods [21]. Visual and statistical comparisons have been made between
the surrogates and exact models, but a comparison between dynamics in the case of FNO surrogacy
remains an open question.

In NWP, few groups have taken surrogate modelling to the next stage. Instead of using mathe-
matically defined systems, such as Kolmogorov flow, where creating new data by solving the systems
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Figure 2.4. Vorticity fields of a Direct Numerical simulation of 2d-Kolmogorov flow on a torus (top)
and a factorized FNO surrogate model (bottom). Factorized FNO (F-FNO) factorizes a
two-dimensional domain into two separate Fourier domains on which FNO learns. The exact model
uses Direct Numerical Simulation on a 2048x2048 grid. The F-FNO DL model infers on a 128x128
grid. Copied from Tran et al. 2021 [19]

numerically is possible. They proposed using the same surrogate modelling methods on a reanalysis
dataset. Hereby the data generation step can be bypassed but is also limited by the number of obser-
vations. The associated model biases and parameterization problems from a generated dataset can be
avoided. In the global NWP sphere, five surrogates are published (table 1.1). These surrogates aim to
replace the entire forecasting step in global NWP with a DL network.

The observations used are those from the ECMWF ReAnalysis dataset v5 (ERA5). The schemat-
ics of how ERA5 is created are shown in figure 2.5. ERA5 combines vast historical observations into
structured global estimates. Satellites, weather stations, weather balloons, aeroplane and marine obser-
vations are all combined with the highest resolution ECMWF model HRES to create the dataset that
most accurately represents historical weather. ECMWF uses advanced modelling and data assimilation
systems to create these estimates.1 ERA5 raw data is available hourly from 1979 to today on a 0.25◦

latitude-longitude grid (721× 1440 grid points) with 37 vertical levels [22]
The DL surrogates train directly on the ERA5 dataset without extra constraints. In figure 2.6, one

of the DL global weather forecasting networks FourCastNet [6] is shown. The initial condition is a test
sample from the ERA5 dataset. Both the HRES and FourCastNet forecast the next 96 hours. The
near-surface wind speed is plotted with insets zooming into typhoon Manghkut and three Hurricanes
(Florence, Issac and Helene). The agreement between the locations of the hurricanes in the ERA5
and the FourCastNet forecast cannot be understated. The forecasting performance of FourCastNet
is comparable, if not better than HRES in short-range forecasts up to 48 hours. After 48 hours, the
FourCastNet becomes less performant than HRES.

Other global weather forecasting surrogates that are worth mentioning are, Weyn et al. 2021 [5] who
was one of the first to show the capability of DL in weather forecasting using a Convolutional Neural
Network. Keisler et al. 2022 [7] used a Graph Neural Network first, Pangu-Weather [4] showed better
performance than ECMWF in forecasts up to 120 hours ahead with a transformer-based architecture.
And most recently GraphCast [8] a Google initiative showed lower RMS error on 10-day forecasts
compared to HRES.

1Using the HRES NWP model for the reanalysis means that model errors can still seep through to the ERA5 dataset.
ERA5 is not perfect, but it is the best type of structured weather observation.
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Figure 2.5. Schematic representation of how the ERA5 reanalysis dataset is created. Acquired from
ECMWF on 03-2023.

Figure 2.6. A FourCastNet forecast of the global near-surface wind speed over the globe at a
resolution of 0.25◦ on an out-of-sample test initial condition. Copied from Pathak et al. 2022 [6]

https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanalysis
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2.2. Predictability
To assess a surrogate model on predictability, it is first necessary to specify what predictability means.
Predictability was already introduced as a ‘sensitivity to initial conditions’. This section will expand
the concept towards the rate of error growth in a system.

Normally the predictability of the weather needs to be estimated. This is done by setting up an
ensemble. In the ensemble there is a control simulation with an initial condition, the initial weather
state. Around the control, a number of ensemble members are set up with a perturbed initial condition.
The ensemble is propagated in time and the difference between the control and ensemble member is
plotted in a predictability window.

In figure 2.7, the average and the standard deviation of the Root Mean Square (RMS) difference
between the control and 107 ensembles are plotted for the NMC DERF experiments [23]. The pre-
dictability window has three distinct regions. The first region shows the exponential perturbation
growth of the initial perturbation. In the second part, the growth slows down showing linear growth.
After which it reaches a plateau which is called the saturation level. When the saturation level is
reached, there is no correlation left between the ensemble and the control. If the deviation between
the ensemble and control reaches the saturation level, then the ensemble forecast is not worth anything
more than the climatological average. The time at which the average error reaches the saturation level
is seen as the predictability in NWP. In figure 2.7 the saturation level is at 130 RMS difference and is
reached in about 20 days.

Figure 2.7. RMS error for 107 ensembles in the NMC DERF experiments. Copied from Chen et al.
1989 [23]

Predictability windows in NWP do not only deal with the uncertainty of initial conditions but also
uncertainty in model error and boundary conditions. Our research disregards the model uncertainty
and uncertainty in boundary conditions. The perfect model assumption is used. The only uncertainty
left is the sensitivity to initial conditions inherent to the KS system. The predictability derived from
the perfect model assumption is the intrinsic predictability of the model. As no other uncertainty apart
from the initial condition uncertainty affects this predictability.

The KS model shows spatiotemporal chaos, meaning chaos in a spatially extended domain. A small
perturbation will grow exponentially. In KS system the rate of exponential growth in the respective
predictability shows a certain consistency. The rate of exponential growth after a small perturbation
can be described by a Lyapunov Exponent (LE). The rate of divergence between control and perturbed
is defined as the LE λi. A schematic representation of the perturbation growth is shown in figure 2.8.
A control flow and a perturbed flow are evolved over time showing a growth of the perturbation.
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Figure 2.8. Given two initially close flows, the exponential rate at which the flows diverge is given by
the Lyapunov Exponent.

LEs give the doubling rate of different orthogonal perturbation vectors for a specific initial condition.
The maximum LE describes the maximum growth in perturbation and is dominant in the long term.
Due to the fact that a random perturbation often has a component in the direction of maximum
perturbation growth, the mLE is the only LE considered in predictability plots, such as figure 2.7. In
that figure, the first region is expected to show a constant doubling of error growth associated with the
LE. Here it is difficult to see the exponential growth due to the fact the RMS starts at 25 and quickly
slows to a linear rate.

When comparing a surrogate with the ground truth, it is expected that the surrogate shows a similar
exponential rate and that the saturation level is reached at the same time. Additionally, it is expected
that both the exact model and surrogate model reach the same saturation level. The saturation level
has nothing to do with predictability, but it is the first sign that the surrogate model approximates the
same climate as the ground truth. The saturation level gives the approximate standard deviation of
weather in the climate.

Extrapolating the exponential trend to an infinitesimally small error and measuring how many days
it would take to reach the saturation level gives the limit of predictability for this model. In the case
of the NMC DERF experiments, the limit of predictability was found to be 24 days. So assuming
there is a perfect model out there and the exact state of the weather was known around NMC DERF
experiments, an infinitesimally small error would make it impossible to forecast the weather more than
24 days in advance [23].

In the case of the KS system, there is no limit of predictability. The KS system is deterministic;
without a perturbation in the initial condition, the KS model is completely predictable.

A last property of the error growth can be deduced from the spread in error growths. A large spread
in error growth between ensembles represents a low predictability of the error growth. Combining both
properties of the intrinsic predictability plot and the spread becomes the predictability of predictability.
In other words how well can the ensemble predict the perturbation growth? Does each ensemble follow
the same mLE or do they differ?

2.3. Dynamical climate reproduction
The exponential growth rate of small perturbation of the KS system becomes a constant in the long-time
average. In other words, the average growth of a infinitesimally small perturbation follows a Character-
istic LE (CLE). The CLE is defined the expectation of exponential error growth of the KS system. With
the CLE something can be said about the average predictability of the KS system because it directly re-
lates to the time in which the saturation level is reached. The CLEs are constant for the entire ’climate’
of the KS system. They will be expanded on in chapter 3, where an introduction to chaos theory is given.

As the climate is the probability distribution of the weather state, climate dynamics is the probability
distribution of the weather’s time-dependent behaviour. What is the average predictability of the weather
with time?

Here the analogue between the weather and KS systems has reached its limit. For NWP, it is of
limited usefulness to find the average predictability. There exists no perfect model of the weather, and
even if it did, the predictability of weather is so dependent on external conditions that there would be
limited use of an average with time [24]. Neither can we assume that climate is constant due to all the
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external influences, which is a required assumption for calculating the long-term time averages. Nor
would it be practical for the weather forecasts made.

There is a reason they are used calculated in the report as they are an in-depth dynamical metric
for the performance of the surrogate model. Similar comparisons have been made for simpler chaotic
systems such as the Röossler and Lorenz63 system [25] but have only been done once with Kuramoto-
Sivashinsky in Pathak et al. 2018 [20] using a reservoir computer DL model.

A more extensive explanation of the dynamical properties of the KS system is given in section 3.1.
The idea of LEs will be expanded to local and characteristic LEs, together with the advanced concepts
of attractors that are used for comparison in the climate dynamics.



3
Theory

3.1. Nonlinear systems, chaos, attractors and Lyapunov exponents
Our research will compare the dynamics of the one-dimensional Kuramoto-Sivashinsky model with its
surrogate. Before something diving into the detailed dynamics, a refresher in mathematical theory is
expected. The following sections will introduce concepts used in Chaos theory from the ground up.
A Lorenz system will be used as an example to aid mathematics. Afterwards, the concepts will be
expanded to KS.

Nonlinearity is at the basis of chaos. In most engineering careers, non-linear systems are discussed
sparsely. linear systems are, by definition, easier to predict and, thus, easier to understand. While in
general linear systems are the exception to the rule. Polish scientist and mathematician Stanislaw Ulam
once remarked:

“Using a term like nonlinear science is like referring to the bulk of zoology as the study of
non-elephant animals.”

All chaotic systems are non-linear and out of all non-linear systems almost all are chaotic. Therefore
to understand our world better it is important to study the chaos that is spawned by non-linearity.

3.1.1. Sensitivity on initial conditions
Chaotic systems are everywhere around us. The most well-known chaotic system is the weather. As
we all know, a weather prediction further than two weeks ahead is useless due to the chaotic nature of
the atmosphere. The definition of chaos is ”small perturbations in the initial conditions lead to vastly
different solutions”.

There is a need to approach chaotic systems with caution. Often there are no generalized analytical
solutions to chaotic systems, so numerical solutions are the only ones we have. Still, numerical models
are often flawed when used on chaotic systems. Numerical errors might cause error propagation and
trigger the sensitivity to initial conditions down the line. The solution would then differ from when the
discretization resolution is increased.

3.1.2. Lorenz system
The Lorenz system will be used as an illustrative example of chaotic systems. The three-dimensional
Ordinary Differential Equation (ODE) is given by

dx

dt
= σ(y − x), (3.1)

dy

dt
= x(ρ− z)− y, (3.2)

dz

dt
= xy − βz. (3.3)

With parameters σ = 10, β = 8
3 and ρ = 28. The second line in the equations contains the non-linearity

causing the chaotic behaviour in the Lorenz system.

15
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The three variables x, y, z and all the states they can take up is what we call the phase space of
the Lorenz system. u = (x, y, z) can take up any real values; thus the phase space can be represented
by a real three-dimensional space R3. We are most interested in the structures that form in the phase
space and the behaviour of trajectories in the phase space.

Fixed/equilibrium points are points in the phase space where the time derivatives are equal
to zero. Theoretically, if the system reached such a state, it would never leave it again. The Lorenz
system with previously given parameters has three fixed points, p1 := (0, 0, 0), p2 := (

√
72,
√
72, 27) and

p3 := (−
√
72,−

√
72, 27). These states alone cannot describe the phase space structure, although they

give us the first puzzle piece. The second comes from describing the flow around the fixed points. The
flow is the trajectory a point with specific initial conditions will follow with respect to time. In general,
flows are derived by numerically integrating the ODE with time. Do these points attract the flow or
repulse the flow? Or maybe something in between?

A stable point denotes a point where if the flow is in the neighbourhood of the fixed point, it will
stay in the neighbourhood indefinitely. This does not mean that surrounding flows will converge to the
stable point; the flows might be periodic around the stable point.

An attractor point is where every neighbourhood flow converges to the stable point. An attractor
point is always stable, but a stable point does not have to be an attractor point. Attractors have a basin
of attraction, meaning that within a domain in the phase space, all flows will end up on this attractor.
Analogously you could think of river basins often divided by mountain ridges; if it rains on one side
of a mountain ridge, it will flow to a distinct basin. The divisions (ridge) between multiple attractor
basins are also structures of interest in chaos theory. Lastly, there are unstable fixed points where the
flows are repulsed in one or more directions. These are coined unstable since if a flow starting at an
unstable point is perturbed only slightly, it will diverge from the fixed point.

In three-dimensional space figure 3.1, the flows around fixed points of the Lorenz system can be
visualized by a vector field of the differential around the fixed point. The arrows are indicative of where
the flow wants to move to. Due to the three dimensions, it is difficult to conclude from figure 3.1 alone.

(a) (0, 0, 0) (b) (
√
72,

√
72, 27) (c) (−

√
72,−

√
72, 27)

Figure 3.1. The differential calculated on a uniform grid around the fixed points of the Lorenz system
with σ = 10, β = 8/3, ρ = 28. The arrow length is proportional to the magnitude of the differential.

p2 and p3 seem to have some cyclic behaviour around them. Integrating multiple solutions on a
uniform grid around the fixed points shows a complete picture, figure 3.2. p1 is an unstable point,
repulsing flows in an approximate plane y = −x while attracting flows in other directions. p2 and p3
show cyclic behaviour in a plane around the fixed points. So do all flows converge to periodic solutions
around p2 or p3? Not quite.

3.1.3. Chaotic attractor
The Lorenz system is dissipative by nature. Due to this, we could have guessed that one of the fixed
points must be an attractor. The argument is that if the system loses energy over time, the system must
also reach an equilibrium point. The Lorenz system (with these parameters) has a chaotic attractor. As
the name suggests, chaotic attractors show high sensitivity to initial conditions. p2 and p3 are unstable
points but do not repulse the flows like p1; instead, the flow erratically visits the neighbourhood of both
points. In figure 3.3, a single flow is integrated for 100 seconds, showing the Lorenz attractor’s two
wings.
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(a) (0, 0, 0) (b) (
√
72,

√
72, 27) (c) (−

√
72,−

√
72, 27)

Figure 3.2. Multiple flows integrated over 0.2 seconds on a uniform grid around the fixed points of the
Lorenz system with σ = 10, β = 8/3, ρ = 28. a. shows an unstable fixed point with the flows being
repulsed in the approximate directions towards fixed point b or c. b. shows flows attracted to a cyclic
plane around the fixed point. c. idem.

Figure 3.3. Lorenz flow integrated for 100 seconds with i.c. (blue point) close to the fixed point
p2 = (

√
72,
√
72, 27) with σ = 10, β = 8/3, ρ = 28.

The ellipsoidal flows around p2 and p3 are aperiodic but will always stay on one of the wings.
The wings together are the structure that is called a Chaotic attractor. All neighbourhood flows are
attracted to this structure and are chaotic because they behave erratically with high sensitivity on
initial conditions. The chaotic attractor is the only attracting structure in the phase space because
there are no other fixed points to consider. Thus, the basin of attraction is all points in R3.

The second part of chaos; vastly different solutions can be illustrated best by integrating two infinites-
imally close flows with time shown in figure 3.4. Within 10 seconds, both flows show little correlation
to each other.

The separation between initially close flows is described by the Lyapunov Exponents (LEs). The
LEs represent the expansion/contraction in phase space where there is an LE for each dimension in the
phase space. Combined, they are called the LE spectrum. Imagine if we have an infinitesimally small
separation vector δu0 in the direction of λ. Eqn 3.4 can approximate the separation between the two
flows.

||δu(t)||2 ≈ eλt||δu0||2 (3.4)

The LE changes within the phase space, but it has a structure. Every LE describes the expansion or
contraction in a specific direction within the phase space. While the LE magnitude and associated
direction are variable in phase space, averaged over the entire attractor, the magnitude of each LE is
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Figure 3.4. Two Lorenz flows integrated for 10 seconds with infinitesimally close i.c. on the Attractor
with σ = 10, β = 8/3, ρ = 28.

constant. The average separation rates are sought after because they are characteristic of the system’s
dynamics.

The averaged separation rate between two infinitesimally close flows is described by the Character-
istic Lyapunov Exponents (CLEs). Due to the exponential nature, there can be made a distinction
between three types of CLEs:

λ > 0 Expansion between infinitesimally close trajectories. Positive CLE is an im-
portant sign of chaos.

λ = 0 Invariance, meaning the infinitesimally close trajectories theoretically stay the
same distance apart.

λ < 0 Contraction between infinitesimally close trajectories. Theoretically, the flows
should converge to a common flow.

The CLEs for the Lorenz system are given in table 3.1.

Lorenz system CLE
λ1 0.906
λ2 0
λ3 -14.572

Table 3.1. The characteristic Lyapunov exponents for the Lorenz system with
σ = 10, β = 8/3, ρ = 28.

In practice, the effect of a positive CLE will dominate the flow on the attractor. While the CLEs
are global, the direction in which the flow contracts or expands is not and changes locally. Often a tiny
part of the separation vector will be in the direction of a positive LE, causing the separation to grow in
an unstable direction. Estimating the CLE is a non-trivial task involving an algorithm countering the
abovementioned problem. In section 4.3, the CLE spectrum estimation algorithm is introduced.

Another property of the chaotic attractor can be estimated using the CLE spectrum. The Kaplan-
Yorke conjecture concerns the dimension of an attractor. Here the dimension used is the Hausdorf
dimension. The Hausdorf dimension of a point is 0, a line 1, a square surface 2, a cube 3 and so on.
The dimension of an attractor does not have to be an integer, but can also be a fractal number. The
fractal dimension can appear when the topological shape of the attractor is somewhere between two
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fundamental shapes, such as a line and a surface. These shapes can be found often in nature, such as
the outline of a snow crystal or a coastline. The fractal dimension of Britain is estimated at 1.21 [26].

The Kaplan-Yorke dimension eqn. 3.5 is an estimate of the Hausdorf dimension based only on
the CLE spectrum. The estimate is defined as a fractal number where the sum of CLEs crosses zero.
Visually it can be seen as the dimension where expansion and contraction balance each other.

DKY = j +

∑
j λi

|λj |
(3.5)

where for j,
∑

k λi ≥ 0 and
∑

k+1 λi < 0.
The Kaplan-Yorke dimension of the Lorenz system is DKY = 2 + 0.906/14.572 = 2.06.

3.2. Kuramoto-Sivashinsky
The Kuramoto-Sivashinky equation is a famous example of Chaos. Yoshike Kuramoto and Gregory
Sivashinksy [27] derived the Partial Differential Equation (PDE) 3.6 in the 1970s to model flame fronts
in combustions. The Kuramoto-Sivashinsky (KS) equation models diffusive-thermal laminar flame
fronts. Figure 3.5 shows one of such flame fronts in a weakly turbulent flow. The cells of the flame front
show chaotic self-motion in the form of rising and dispersing peaks. The variable u(x, t) can be seen as
the height of the flame at the front of the combustion with peaks and troughs.

Figure 3.5. Rich propane-air cellular flame showing chaotic motions. Copied from Sivashinsky et al.
1998 [28], originally appeared in Sabathier et al. 1980.

The KS is also used to model plasmas, chemical reaction dynamics and two-phase flows in cylindrical
pipes [29]. For these purposes, it has also been extended to two and higher dimensions, but for our
purpose, the 1d-KS eqn. 3.6 is studied,

∂tu+ ∂2
xu+ ∂4

xu+ u∂xu = 0, (3.6)

u(x+ L, t) = u(x, t) ∀ 0 ≤ x ≤ L. (3.7)

A periodic domain eqn. 3.7 is normally considered, but different boundary conditions, such as odd-
periodic [30], constant u(0, t) = c and Neumann b.c. (0,t)

x = c can be considered. The periodic boundary
conditions make it suitable for spectral integration methods and are similar to how many atmospheric
variables are solved in NWP. The periodic domain size L is an important parameter which changes the
KS dynamics.

KS is well known for its chaotic behaviour and is one of the simplest chaotic PDEs. Due to this
fact, it is also well studied in literature [15, 31, 32]. The KS shows a smooth, coherent spatial structure
together with temporal chaos. In figure 3.6a Wittenberg et al. 1999 [33] shows the smooth spatial KS
structure with its erratic behaviour with time.
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Figure 3.6. A line plot of the periodic Kuramoto-Sivashinsky equation with L=100. Each line is
separated by ∆t = 1. Copied from Wittenberg et al. 1998 [33]

KS is well posed, meaning for every initial condition u0, there is a unique deterministic solution
dependent on the initial condition [15]. In other words, the KS can never revisit a state it has already
been to.

In figure 3.7 there is an intercomparison between four KS flows with increasing domain sizes. With
L = 12, the KS shows a travelling wave. Increasing L to 13.5 intermittent bursts interrupt the pattern.
A complex periodic system can still be seen in its dynamics. L = 36 shows chaotic cellular structures
interacting. Lastly, with L = 100 the spatiotemporal chaotic pattern is set.

At those large L, the KS generally shows aperiodic behaviour in time. This aperiodic behaviour
follows from what is named a period-doubling cascade [16]. A period-doubling cascade is when the
solution doubles in a period following a parameter (L) increase. It is as if a delivery driver has to follow
a route with 5 stops, and then his route is doubled the next time. He now has to go to 10 stops, and the
next day again doubles the number of stops until you can say that it is not a delivery round anymore
but a route that he will follow for eternity. KS evolves with the increments in L to an erratic behaviour
that signifies chaos.
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Figure 3.7. KS trajectories with periodic b.c. for increasing domain size L. Copied from Edson et al.
2019 [30]

The KS eqn.3.6 is a fourth-order PDE with a negative diffusion term (∂2
xu) and a negative hyper-

diffusion term (∂4
xu). The convection term (u∂xu) connects the larger scales to the smaller scales in a

non-linearly similar to turbulent fluids. The negative diffusion term destabilises solutions, which shows
in spontaneous energy bursts in the smaller spatial scales [16]. During one of these bursts, a new wave
is formed. The convection term quickly disperses the bursts to form a smooth sinusoidal wave.

KS contains multiple symmetries, (i) temporal translation invariance u(x, t) → u(x, t + τ) for ar-
bitrary τ , (ii) spatial translation invariance u(x, t) → u(x + l, t) for arbitrary l, (iii) parity u(x, t) →
−u(−x, t) and (iv) Galilean invariance u(x, t)→ u(x, x− ct, t)− c where c is a constant. These invari-
ances break with the onset of chaos but are still seen in a time-averaged sense [30].

The Power Spectral Density (PSD) of KS is shown in figure 3.8. KS contains a peak power around
q ≈ 1/

√
2. At lower frequencies q < 0.3, the power is relatively constant. At higher frequencies, the

power decays exponentially.
The PSD is similar to those of turbulent fluid flows as most energy is included in the lower frequencies,

but the high-frequency tail differs from atmospheric fluid flows. In turbulence, there are high energy low-
frequency ranges in which turbulence is created by larger-scale effects, after which the energy cascades
downwards to the inertial subrange with a range of higher frequencies. The slope in the inertial subrange
is considered constant q−5/3. In KS, there is a short inertial subrange 1/

√
2 < q < 1.5. Afterwards, the

energy decreases exponentially to zero. The exponential decrease is associated with the hyperdiffusion
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term, which quickly dampens the higher frequencies.

Figure 3.8. Power Spectrum Density S(q) of the Kuramoto-Sivashinsky Equation for two different
domain sizes. Copied from Wittenberg et al. 1998 [33]

3.2.1. Chaos for the Kuramoto-Shivashinsky equation
The KS system is fundamentally different from the Lorenz system as the solution lives not only on a
temporal continuum but also on a spatial continuum. Therefore, the phase space for KS is infinite-
dimensional compared to the three-dimensional phase space for the Lorenz system. The usual way to
deal with this is to discretize the system into an M-dimensional spatial system.

To extend the chaotic analysis analogous to the Lorenz system, there need to be a few compromises.
It will not be possible to present even an m-dimensional phase space in 2d figures; 2d/3d slices of the
phase space will be something we’d have to settle on. Flows will be shown in image maps, such as figure
3.6 & 3.7, where the colour denotes u(x, t).

For the KS system, it is more difficult to identify the fixed points apart from the trivial solution
u(x, t) = 0 ∀ 0 ≤ x ≤ L. The usual method for finding fixed points is doing an initial condition grid
search to find periodic solutions or attracting points [16]. Unstable fixed points will not be identified in
this fashion, although it can be deduced from the flow around zero that the trivial solution u(x, t) = 0
is an unstable point.

Although there might be more fixed points, analysing the KS system further is a job for seasoned
mathematicians [34]. It is enough to state that the KS system contains a global attractor where all
states will evolve to. The chaotic attractor of the KS can be thought of as a low dimensional structure
on the entire phase space [31]. Equivalent to how the Lorenz attractor is contained to a subset of the
entire phase space. The Lorenz attractor can be visualized in 2d images as the butterfly wings, which
is impossible to do for the KS attractor.

The attractor can be seen as the climate of the KS system. Without an external force or change
in parameters, the KS flow will never leave this collection of states. One can make the parallel to the
weather climate here as well as if the weather lives on this gigantic weather attractor [35, 36]. but the
attractor is variable due to changing boundaries, forcings and seasonality.

It is important to note that because the KS attractor is finite-dimensional, the solution for the KS
system can be completely and accurately simulated by a discretized numerical method.

The long-term dynamics of the KS attractor can be described with the CLEs. As KS is infinite-
dimensional there are also an infinite number of CLEs. In general, we are only interested in the most
positive CLE or mCLE. For the comparison study, we will only compute at most 48 CLE. In table
3.2 the computed CLE spectra together with the estimated Kaplan-Yorke dimension for a few different
domain sizes are shown as they are presented in the literature [30]. The mCLE increases with L until
approximately 0.09 where it flattens out. The CLE spectra contain three approximately zero CLE
which come forth out of the three spatial invariances in the KS system. The Kaplan-Yorke dimension
follows an approximately linear trend with L, DKY ≈ 0.226L− 0.160 [30].
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L = 12 L = 13.5 L = 22 L = 36 L = 60 L = 100
λ1 0.003 0.059 0.043 0.080 0.089 0.088
λ2 -0.005 0.004 0.003 0.056 0.067 0.082
λ3 -0.088 -0.004 0.002 0.014 0.055 0.070
λ4 -0.089 -0.227 -0.004 0.003 0.041 0.061
λ5 -0.186 -0.730 -0.008 -0.003 0.030 0.048
λ6 -3.524 -1.467 -0.185 -0.004 0.005 0.041
λ7 -3.525 -1.529 -0.253 -0.021 0.003 0.033
λ8 -9.835 -6.956 -0.296 -0.088 0.000 0.028
λ9 -9.849 -6.963 -0.309 -0.160 -0.004 0.018
λ10 -9.959 -7.977 -1.965 -0.224 -0.009 0.012
λ11 -10.01 -7.993 -1.967 -0.309 -0.029 0.005
λ12 -10.12 -9.199 -5.599 -0.373 -0.066 0.003

DKY 1.663 3.259 5.198 8.229 13.56 22.44

Table 3.2. Computed characteristic Lyapunov exponents for the periodic Kuramoto-Sivashinsky
models. Copied from Edson et al. 2019 [30]

3.3. Fourier Neural Operator
The research focuses on the Fourier Neural Operators (FNO), the backbone of FourCastNet. FNO
is a relatively new type of transformer network introduced by Li et al. in 2020 [10]. FNO works by
learning resolution-independent convolutions over the entire domain. It is claimed to be the fastest
Neural Operator (NO) by leveraging the speed of the Fast Fourier Transform when converting spatial
data to the Fourier domain [37]. The advantage of learning an operator in the Fourier domain is that
the operator becomes resolution invariant for forecasting. The disadvantages are that FNO can not
deal appropriately with discontinuities because the periodic functions it learns are global.

FNO shows excellent promise in modelling continuous fluid dynamics [10, 19]. In figure 3.9 Li et al.
2020 [10] simulated viscous incompressible 2-d Navier-Stokes flow on a unit torus with ν = 1e− 4. The
FNO was trained on a 64x64x20 (Nx ×Ny ×Nt) dataset and set to predict all 30 steps in time in one
FNO run.

Figure 3.9. 2-d Navier-Stokes equation for a viscous, incompressible fluid. The top row is a CFD
simulation, and the bottom is an FNO prediction. Taken from Li et al. 2020 [10]

Firstly the problem description of operator learning will be given. The structure of a generalized
NO will be defined. Thirdly, the Fourier variant of NO will follow from a few assumptions made, and
lastly, the architecture of the FNO will be expanded on.

3.3.1. Operator learning
Many types of DL networks including Convolutional Neural Networks, Graph Neural Networks and
Transformers could be considered learning operators, although it is sparsely mentioned in the computer
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science world. For surrogate modelling, it is convenient to name them operators, due to the fact that
operators are a fundamental part of the mathematical models that describe physics. FNOs are special
in that they aim to find an operator parametrized in the Fourier domain. It assumes the operator can
be divided into a collection of sinusoid functions of which the amplitude and phase are taught through
deep learning.

Operator learning’s premise is finding approximations to mathematical operators in continuous space.
Operator learning aims to approximate an infinite-dimensional nonlinear mapping between function
spaces. Figure 3.10 visualizes what is meant with the operator over function spaces with the most basic
example. With a(x) = cosx and u(x) = sinx we want to approximate the continuous operator G† so
that u(x) = G†(a(x)). More generally, the set of all potential input functions describe a function space
A is to be mapped into a specific output function from the output function space U , G† : A → U . With
a single input/output function pair, there might be multiple operators which can transform between
them. As an example, the spatial derivative operator ∂

∂x is a candidate that fits the requirements, but
a translation operator u(x) = a(x − π/2) is a possibility as well. G† does not have to be a unique
operator that maps between the function spaces. The concept is generally applicable to function spaces
with all different domains, but in this report, it is sufficient to consider the domain where x lives on a
1-dimensional line x ∈ R.

Figure 3.10. An example of a group of operators acting between a coefficient function a(x) ∈ A(D;R)
and a solution function u(x) ∈ U(D′;R) defined on the same domain D = D′ := (−π, 2π). In this
example, The mapping operator G† can be a differentiation or translation operator. Properties of the
function spaces A and U are essential to narrow down the operator, but there may be no unique
operator G† : A(D;R)→ U(D;R).

Mathematical description: Assume we have a u ∈ U(D;Rdu) solution function specified on domain D
with the function living in Rdu and a ∈ A(D;Rda) coefficient function defined on the domain D. Both A,
U are infinite-dimensional Banach function spaces. Assume there is/are an/multiple operator(s), which
map between the function spaces G : A → U . The Neural Operator is an approximate (non-linear)
mapping G† between infinite-dimensional function spaces defined on open bounded domains D ⊂ Rd

and D′ ⊂ Rd′ so that G† ≈ G.
From now on we assume a(x) and u(x) are defined on the same domain if not explicitly said otherwise.

3.4. Neural Operator
The general formulation of a NO is given in eqn. 3.8. Firstly, the input is locally transformed by
a linear mapping P , v1(x) = P (a(x)) to a higher channel width (as an example a single function
u(x)→ v11(x), ..., v

dw
1 (x) uplifted to dw functions). It is assumed that operator Gθ is easier to learn in a

higher dimensional latent space. Secondly comes an iterative process v0 7→ . . . 7→ vZ for Z ∈ N operator
iterations. Every iteration can be split into two parallel operations, an integral kernel operator and a
1d-convolutional operation with kernel width 1. The results are combined and a non-linear activation
function is applied. After the iterative layers, vZ is projected to the output dimension u(x) = Q(vZ(x))
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with a linear mapping Q.

v1(x) := P (a(x))

vz+1(x) := σ(Wz(vz(x)) + bz(x) + (Kzvz)(x))

u(x) := Q(vZ(x)),

(3.8)

where 1 ≤ z ≤ Z, σ : R → R is a non-linear local activation function, Wz(vz(x)) + bz(x) is a linear
transform given by a 1d-convolutional layer with kernel width 1, W : Rdv → Rdv with a bias term bz.

3.4.1. Integral kernel operator
Operator learning’s most important component, the integral kernel operator, is based on Green’s func-
tion [37]. Green’s function describes that for any linear ordinary differential operator (ODE) L, written
as Lu(x, t) = f(x), there exists a kernel function κ(x, s) so that

u(x) =

∫
D

κ(x, s)f(s)ds (3.9)

with u(x) being a solution function, f(x) a continuous forcing function and D specifying integration
over the entire domain of x. Applying L on both sides of Eqn. 3.9 would lead to the original ODE.
The integral kernel operator Eqn. 3.9 could be seen as the inverse operation of L. In mathematics, the
goal often is to find κ(x, s) analytically; for a NO, the goal is to fit the kernel function to the training
data. The kernel function κϕ(x, s) becomes a learnable function. Green’s function only applies to linear
ODEs but not non-linear PDEs such as Kuramoto-Sivashinsky eqn. 3.6.

The integral kernel operator is used within the hidden layers of the algorithm sequentially, with
a local non-linear activation function between every integral kernel operator layer. The idea is that
combining a linear operator with a non-linear activation function will be able to approximate non-linear
operators, similar to how a classical multi-layer perceptron uses linear matrix operations in combination
with a non-linear activation function [37].

Leaving out the Wz and bz in eqn. 3.8 the NO can be written as

Gθ := Q ◦ σ(KZ) ◦ . . . ◦ σ(K1) ◦ P,

where every Kz for 1 ≤ z ≤ Z is an integral kernel operator.

(Kzv)(x) =

∫
D

κϕ(x, s)v(s)ds

The different types of NOs are characterized by how the kernel function κ(x, s) is defined or how
the integral kernel operator is approximated [37].

3.4.2. Fourier transform
A simplification for the kernel function is to assume that κϕ(x, s) can be represented by a convolutional
kernel function κϕ(x− s) [10]. This assumes that v(s) is invariant on the domain x ∈ D.

(Kzv)(x) =

∫
D

κϕ,z(x− s)v(s)ds = (κϕ,z ∗ v)(x) (3.10)

Let F denote the Fourier transform and F−1 the inverse Fourier transform in space. Then Eqn.
3.10 can be written as

(Kzv)(x) = F−1(F(κϕ,z) · F(v))(x)

Instead of parametrizing the kernel function in the spatial domain, the parametrization is done in the
frequency domain Rϕ := F(κϕ,z).

Definition 1 (Fourier integral kernel). The definition of a Fourier integral operator is given by Eqn.
3.11

(Kzv)(x) = F−1(Rϕ,z · F(v))(x) (3.11)
assuming κϕ,z is a periodic function thus Rϕ conforms a Fourier series expansion.
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Figure 3.11. Architecture of the Fourier neural operator

3.4.3. Architecture
The FNO architecture consists of 3 distinct parts. It is schematically depicted in figure 3.11.

• Lifting operation P in the form of a Fully Connected Neural Network (FCNN) v1(x) = P (a(x)).
The dimensionality is increased by increasing the channel width. In general, the input consists of
two channels da = 2, a : D → Rda×n of which the function and its grid [u(x), x]T . P increases
the dimension by increasing the channel width to dw, P : Rda×n → Rdw×n with dw > da so that
v1 : D → Rdw×n.

• Iterative kernel integration for Z layers. In parallel, we have:

– Wz(vz(x)) + bz(x) is defined as a 1d Convolutional operation with kernel size 1 together
with a bias function, Wz : Rdw×n → Rdw×n and bz : D → Rdw×n. The convolutional layer
collapses all information across the channel dimension dw together to a new 1d function.
With dw amount of filters, the size is returned to the original size of vz(x). It could be seen
as a fully connected neural network solely working in the channel dimension.

– (Kϕ,zvz)(x) computes a 1d-Fourier transform along the spatial dimension n for all channels,
F(vz(x)) ∈ Cdw×n/2+1 (Only the positive modes k are calculated because of conjugate sym-
metry). The Fourier output is truncated to |k| ≤ kmax modes. After which it is multiplied
by the complex weights Rϕ,z ∈ Cdw×dw×kmax . Lastly, it is transformed back to the spatial
domain with an inverse Fourier transform using zero padding, ensuring the output recovers
the same discretization size n.

The results are combined, and a local non-linear activation function σ : R → R is applied to the
combined output.

• Projecting operation Q similarly to P a fully connected neural network projecting the channel
width back to appropriate dimension du, u(x) = Q(vZ(x)) with Q : Rdw×n → Rdu×n

The architecture of the FNO is shown in figure 3.11. The FNO architecture contains 3 hyperparam-
eters: the number of layers Z, the channel width/lifting dimension dv and the number of modes kmax
to truncate in the frequency domain.
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Methodology

4.1. FNO training
4.1.1. Dataset
The training methodology used here is meant to compare with training a DL model on a single flow.
Other training methodologies use multiple flows [38] or even ∆t segments initialized with a random u0

following a distribution function [21]. The latter is preferred for PDE emulation as the operator model
will see a larger region of the phase space.

For the dataset, three individual KS flows were simulated using the pseudo-spectral collocation
method, appendix B, for training, validation and testing. For Training, validation and testing, 5000,
1000 and 1000 seconds long flows are used respectively. All flows are initialized with an i.i.d. Gaussian
random field. The integration parameters are described in table 4.1. The first 500 seconds is considered
a spin-up period where the flow follows its transient to the KS attractor. It is not disregarded for
training nor testing/validation as the FNO attempts to learn an operator. The operator should not
differ between transient and attractor regions. The transitional part of the flow is expected to improve
the ability to generalize because the FNO sees a more significant portion of the phase space than when
trained solely on an attractor dataset.

Five surrogate models were created for differing L = 14, 32, 60, 100, 200. These L were picked to
show a progression to more chaotic KS models as the complexity of the attractor increases with L.
The KS14 and KS32 models were selected as a control because they show periodic attractors for this
L [16]. Increasing the L from 60 to 200 increases the dimension of the chaotic attractor, which is
estimated by the Dky Kaplan-Yorke dimension. Edson et al. 2019 [30] found an empirical relationship
as Dky = 0.226L− 0.160.

Models were trained on an RTX2070 super with double precision. The models used in hyperparam-
eter tuning were trained on single precision due to time constraints.

L 14 32 60 100 200
Nx 32 64 128 254 512
dt 0.0001 0.0001 0.0001 0.0001 0.0001

Table 4.1. Settings used for the pseudo-spectral method in generating the dataset.

4.1.2. Training
The FNO is trained as a Markov predictor because it is the simplest formulation of an operator. The
Markov predictor showed good results during testing.

u(x, t+∆t) := (G†u)(x, t) ≈ (Gθu)(x, t). (4.1)

Chaining the predictor GN
θ ◦G

N−1
θ ◦ · · · ◦G1

θ approximates a KS flow with a ∆t timestepping.
FNO is trained as a continuous operator between a function spaces. Considering a discretized

function is used, our input is considered as a pointwise subsampled function a(xi) = ai, where we have

27
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a uniformly spaced subdomain of the original domain DM = x0, . . . , xM ⊂ D. This seems unimportant
mathematical correctness, but it is needed to consider Gθ as a spatial resolution invariant operator
thus it should not matter how frequently both functions are sampled. Figure 4.1 illustrates the fact
that FNO could be used for different discretization sizes due to it assuming the discretized function
is subsampled from a continuous function. It is possible to train the FNO on lower-resolution data
but infer on a higher resolution. Data loss might occur if there are features present with a higher
characteristic frequency than the Nyquist frequency. We were not limited by computing power, thus
the FNO was trained on the full spatial resolution dataset.

(a)

(b)

Figure 4.1. Illustration of how the FNO should work on different discretizations, due to the
assumption the discretized points are subsamples of a continuous function. (a) and (b) are discretized
with 10 and 5 domain points, respectively.

The normalized L2-loss function is used for training

Lθ =
1

Nb

Nb∑ ||uj − ûj ||2
||uj ||2

(4.2)

where ûj is the predicted output and Nb denotes the batchsize.
Deciding on a good ∆t is fundamental to an excellent performing surrogate. A too-large timestep

and the correlation between the input and output becomes too low. A too-small timestep and the model
error would quickly propagate with time. Through testing, it was found that using a small ∆t made
the FNO unstable, while a large timestep (∆t = 10) worked fine.

A smaller ∆t = 1 was picked rather due to the limitations involved with the CLE spectrum estimation
algorithm. The timestep used for the algorithm is a tuning parameter set at T = 2. A larger ∆t > 2
invalidates the CLE spectrum comparison between the pseudo-spectral and FNO surrogate. It should
also be mentioned that Li et al. 2021 [21] showed that ∆t = 1 is the optimal value for training with an
L2-loss function.

10000 input-output pairs aj , uj were sampled uniformly from the training dataset with ∆t = 1 in
between. Overlapping input-output pairs are allowed. The models are trained for 300 epochs using an
ADAM optimizer with a variable learning rate and weight decay. The validation dataset is uniformly
sampled in 2000 input-output pairs. After every epoch, the validation loss and training loss are logged.



4.2. Intrinsic predictability window 29

The surrogate models generally show little overfitting after 300 epochs. Thus, the last model state is
used for further evaluation.

Model KS14 KS32 KS60 KS100 KS200
Nx 32 64 128 256 512
∆t 1
Modes 8 8 16 32 32
Width 50
Layers 4

Table 4.2. Model parameters

Hyperparameter
Epochs 300
Batchsize Nb 1000
Learning Rate 0.001
Stepsize 30
Gamma 0.75
Weight Decay 0.0001

Table 4.3. Hyperparameters

4.2. Intrinsic predictability window
The methodology that is used for calculating the intrinsic predictability window is based on ensembles
which are used in weather forecasting.

In the case of weather forecasting ensembles perturbed initial states of a model are used to give
an insight into the predictability at that initial state. A large spread in ensembles indicates a low
predictability of the weather state and vice versa for a small spread. In the case of low predictability,
the confidence that comes with a forecast is lower and can be adapted accordingly. The predictability
of an initial state is given by the maximum Local Lyapunov Exponent (mLLE) [39, 40].

A brute-force method is applied to give a visual representation of intrinsic predictability. A KS
control flow is simulated with initial conditions u0 for 600 seconds. 100 different ensembles are set up
with a slightly perturbed initial condition u′

0. The perturbation is in the form of point perturbation ϵ0
on one of the u0 gridpoints, so that ||e0||2 = ||u0 − u′

0||2 = 10−6. The ensembles are simulated for 600
seconds. The euclidean 2-norm ||u0 − u′

0||2 is used as a measure for perturbation growth.

4.3. Characteristic Lyapunov spectrum
The characteristic Lyapunov exponents (CLEs) describe the averaged expansion of perturbations in
different directions in phase space. In general, CLE cannot be calculated analytically and an algorithm
based on Benettin et al. 1980 [41, 42], the differential formulation of the standard method [43], is
used for estimation. The algorithm assumes the ergodicity of the KS system and uses the Oseledets
multiplicative ergodic theorem [42, 43].

The algorithm 1 can theoretically also be used for the computation of CLEs in the case of a DL
surrogate model because the concepts are similarly applicable. Pathak et al. 2017 [44] have used the
algorithm on a reservoir computer surrogating KS. The propagation interval T does have a lower limit
due to the time step on which the DL model is trained.

Firstly a higher-level interpretation of the algorithm is given along the lines of expanding and con-
tracting spaces using the Lorenz system as an example. Then the more generalized higher dimensional
approach is given. Lastly, in-depth details of the algorithm will be discussed and a pseudo algorithm is
given.

4.3.1. Lorenz ball
Imagine an initial perturbation sphere around initial conditions in the Lorenz phase space. Perturbation
ϵ being arbitrarily small, the maximum CLE describes the averaged magnitude of the largest expansion
of the sphere, and the second CLE describes the averaged magnitude of expansion in an orthogonal
direction to the first. And the third CLE gives the expansion in the last direction spanning the 3d
space.

In 3d this can be visualized by ϵ-ball that non-linearly transforms into an ellipsoid. Figure 4.2 shows
the deformation in the Lorenz system phase space. A unity ball is simulated for 1 second. It expands
and contracts along the plane of the attractor forming an elongated deformed disc.
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Figure 4.2. The deformation of an ϵ-ball in the Lorenz system.

From the deformed disc, a magnitude of maximum expansion can be estimated. The CLE algorithm
follows a single flow and constantly creates balls around the flow. Every time a ball is deformed for T
seconds, the deformations are stored, and a new round ball is created. From the stored deformation
components, the CLE spectrum is estimated.

4.3.2. CLE estimation for an m-dimensional system
Given an m-dimensional explicit system u̇(t) = F (u(t)). Consider u(t) the discretized KS solution. the
procedure is as follows. Starting with initial conditions u(0) on the attractor.

1. Define a hypersphere around u(t) with radius ϵ.
2. Propagate u(t) and the ϵ-hypersphere in the phase space around u(t)→ u(t+ T ).
3. Calculate from large to small m orthogonal vectors of deformation v1, . . . , vm.
4. Store the expansion norms ||vi||2

ϵ .
5. u(t+ T ) becomes u(t)

Repeat N times.
Using Eqn. 3.4, a perturbation in a LE direction in the phase space grows approximately exponen-

tially with LE λi, ||δu(t + T )|| ≈ eλiT δu(t). The expansion norm ||vi||2
ϵ is a good approximation to

||δu(t+T )||2
||δu(t)||2 as it describes the magnitude of expansion in the ith largest direction of expansion in the

phase space at time t. Thus

||δu(t+ T )||2
||δu(t)||2

≈ ||vi||2
ϵ
≈ eλiT . (4.3)

Rearranging Eqn. 4.3 and averaging over the N repetitions concludes the following estimator

λ̂i =

N∑
j

log ( ||v
(j)
i ||2
ϵ

)/(NT ). (4.4)
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4.3.3. Expansion of the e-hypersphere and reorthonormalization
The ϵ-hypersphere can be defined as a set of orthogonal perturbation vectors. In 3d space, it would thus
be made up of three orthogonal vectors scaled so that they are ϵ in length. It is possible to follow each
of them to find linear expansion magnitudes between the original perturbation and time-propagated
perturbation. This is an efficient method to represent a ϵ-hypersphere in a large dimensional system.
There are two problems with this method:

1. From an i.c. u0 on the attractor it is unknown which perturbation directions are associated with
which CLE.

2. In practice, any perturbation vector will eventually be corrupted towards the maximum CLE
direction.

Due to the latter, a reorthonormalization procedure is used every T seconds in which secondary pertur-
bation vectors are forced to become orthogonal to the primary larger perturbation vectors. The solution
automatically solves the first problem if repeated for many iterations because the primary perturbation
vector will eventually expand at a rate depicted by the maximum LE. Thus the primary vector becomes
associated with the maximum LE and the second with the second largest LE.

Using orthonormalization steps, the initial orthogonal set of vectors {qi} can be randomly selected,
because after taking a finite number of steps the directions automatically align. Typically a QR de-
composition procedure is used as a robust type of Gramm-Schmidt orthonormalization. The entire
pseudo-algorithm is shown in alg. 1.

4.3.4. Tuning parameters
Three parameters in the algorithm require tuning: the number of reorthonormalization steps N , the
interval for each reothonormalization step T and the perturbation size ϵ. N is discussed in the results.

ϵ is preferred to be as small as possible because the expansion coefficient is more accurate if solutions
are considered close to the actual point.

T balances a more accurate large CLE or low CLE. Edson et al. 2019 [30] computed the CLE
spectrum for many different values of domain length L in the KS eqn. 3.6. His findings are that for
small T , the large CLE (T < 0.1 for L = 10 and T < 1 for L = 100) are inaccurate because T is too
small to sufficiently capture the flow divergence, leading to an unstable QR decomposition. On the
other hand, a large T leads to inaccurate most negative CLE because they propagate too long and get
corrupted towards more positive CLE. In the case of a surrogate FNO model, the corruption towards
more positive CLE directions happens faster. When the interval T is 5 times larger than the surrogate
timestep, the results are corrupted towards the MLE.



4.3. Characteristic Lyapunov spectrum 32

Algorithm 1 Lyapunov Spectrum Estimation
du/dt = F (u, t) describes the ordinary differential equation (ODE).
ϵ: The perturbation magnitude.
N : The number of reorthonormalization steps.
T : The time between reorthonormalization steps.
m : The number of most positive Lyapunov Exponents to compute.
Q(0) ←

[
q(0)
1 . . . q(0)

m

]
▷ Initialize perturbation matrix with m orthogonal directions

Require: u(0) on the Chaotic Attractor ▷ Simulate for τ = 2000 seconds to get rid of transients.
for j ← 1 to N do

u(j−1) → u(j) ▷ Propagate for T seconds using ODE.
for i← 1 to m do

w(j−1)
1 ← u(j−1) + ϵq(i−1)

i ▷ Create perturbed flows
w(j)

i ← F(w(i−1)
i ) ▷ Propagate for T seconds using ODE.

Ψq(j)
i ← (w(j)

i − u(j))/ϵ ▷ Calculate expansion vectors
end for
ΨQ(j) ←

[
Ψq(j)

1 . . . Ψq(j)
m

]
Q(j)R(j) ← QR(ΨQ(j)) ▷ Gramm-Schmidt Orthogonalization using QR-decomposition.

end for
for i← 1 to m do

λ̂i =
∑N

j ln |R(j)
i,i |/(NT ) ▷ diag(R) estimates the expansion in orthogonal directions.

end for



5
Results

The results are divided into four general sections. Section 5.1 describes the performance of the surrogates
KS14, KS32, KS60, KS100 and KS200 compared to the Computational Fluid Dynamics (CFDs). Section
5.2 & 5.3 compare the intrinsic predictability window and characteristic Lyapunov exponent spectrum
respectively. Afterwards, section 5.4 is about hyperparameter tuning the FNO. And lastly, section 5.5
checks the zero-shot superresolution capability with respect to predictability.

5.1. Surrogates
In figure 5.2 a to e the performance of the surrogates is compared by a prediction of the last 200 seconds
on the test flow. The initial conditions for the surrogates are set equal to the CFD flow at 800 seconds
and propagated further to the end at 1000 seconds.

The last 200 seconds are used because they should be closest to the attractor of KS. The flows for
KS14 and KS32 both show periodic behaviour. At L=32 the solution flow shows a travelling wave.
The FNO shows a similar travelling wave but drifts slowly away from the control. With L=14 there
is more complex periodic behaviour. A travelling wave, similar to L=32, switches to a multitude of
states. The switching between one state and another has a periodicity itself. The FNO predicts the first
switch between the travelling wave states slightly later than the control, but the error thereafter stays
relatively low. The accumulation of smaller errors makes KS32 unstable after the first switch. From
this point on the KS32 predicts the switching at a higher frequency than the CFD.

KS60, KS100 and KS200 are tasked with predicting more difficult flows. At these lengths, the
non-linear nature of the KS system amplifies the errors greatly and the CFD and prediction diverge
exponentially. All show error growth that reaches saturation levels around 25-50 seconds in. Figure
5.1 show the root mean square error growth with all of them reaching the saturation level around 50
seconds. The KS60, KS100 and KS200 had a loss of 0.0012, 0.0011 and 0.0056 on the validation dataset
respectively. The model error for the KS200 is significantly higher which is seen in the error growth
plot as a higher starting point. From RMS > e−3.5, the error growths start to follow an exponential
slope of 0.09 LE equivalent.

After the saturation level is reached the surrogate flows still look similar to the CFD simulation in
a climatological sense.

Figure 29 shows a comparison between difference plots in Lyapunov time. Lyapunov time is the
time scaled by the maximum Characteristic Lyapunov Exponent λ1. The mCLEs are 0.084, 0.088, 0.092
for KS60, KS100 and KS200 respectively. They are computed with the CFD (shown in table 5.1) and
checked with Edson et al. 2019 [30]. This plot shows a predictability score relative to how unstable
each KS system is. KS200 shows a slightly faster divergence in Lyapunov time from the ground truth
compared to KS60 and KS100.

Figure 5.4 shows the spatial PSD averaged over the last 200 seconds. The dots denote the surrogates
and the dashed lines/crosses denote the CFD simulation. The PSD match greatly at large energies,
but in the expected exponential tail the surrogates settle at a much higher noise level than the CFD
simulations. With L=60, L=100 and L=200 the CFD noise level is at 10−16 while the noise levels for
the surrogates are higher at 10−9 for KS60 and KS100 and 10−8 for KS200. The higher noise level
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Figure 5.1. Root mean square error between the CFD control simulation and the FNO surrogate
predictions.

for KS200 concurs with the lower predictability score and a larger validation loss. In the case of KS14,
the noise level is similar to KS200. With the unique travelling wave solution for KS32, there are clear
peaks at modes where the travelling could be decomposed in a Fourier series. In between the peaks in
power, there are noise level modes with the CFD simulation at 10−22 and KS32 at 10−8.

The noise seems to set a precedent for the larger model error and thus the faster divergence of
individual surrogates. Given the initial seed of noise for the KS200 is higher, the error growth starts at
a higher point.

Although decreasing the surrogate model error/noise is interesting by itself. The focus of the results
is diverted to the intrinsic predictability and dynamics of the surrogate.
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Figure 5.2. Comparison between the simulated ’exact’ flow and the predicted flow by the FNO
surrogate.
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Figure 5.3. Comparing the differences between CFD and predicted in Lyapunov time. CLE
λ1 = 0.084, 0.088, and 0.092 for KS60, KS100 and KS200 respectively.



5.1. Surrogates 38

0.1 1 10
q

10−15

10−12

10−9

10−6

10−3

100
S(
q)

1000.5 310−4

10−3

10−2

10−1

100

L60
L100
L200

(a)

0.1 1 10
q

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

S(
q)

L14
L32

(b)

Figure 5.4. Power Spectral Density comparison between the FNO (dots) and the CFD (dashed line,
crosses).
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5.2. Intrinsic predictability window
The dynamics of a surrogate FNO are not adequately studied as far as we know. Here the first results
related to KS dynamics should make us think about whether FNO as a Markov operator cannot only
predict accurately but also give a reasonable estimate of the predictability. The intrinsic predictability
window is an internal property of the surrogate model that will be compared with that of the CFD. The
model error described previously can be disregarded in the following analysis because it is an intramodel
analysis.

The reasoning is, given a 300 second flow û1, û2 . . . , û300 predicted by the surrogate from the ini-
tial condition u0. We compare it to a slightly perturbed prediction û′1, û′2 . . . , û′300 where the initial
conditions are perturbed u′0 = u0 + ϵ. The difference û300 − û′300 solely dependent on the intrinsic
predictability.

The perturbation growth between the two sequences gives the predictability of the model. Comput-
ing the same intrinsic predictability window gives a basis to compare the two without taking care of
surrogate model errors. Creating an ensemble of 100 perturbed flows grants the necessary statistics to
give a comparison. Ensembles are created equally with the same perturbed initial conditions. In figure
5.5 a single ensemble member and control for CFD and KS100 are shown. The intrinsic predictability is
significantly increased compared to the intermodel prediction error. Both ensembles reach a saturation
level at 130 seconds, compared to 25-50 seconds in figure 5.2. Figure 4.2 shows the perturbation growth
of each ensemble vs. control in the form of a Euclidean norm. The perturbation is transformed with the
natural logarithm to show the exponential growth. The right plots compare the mean error growth of
the ensembles and the sample standard deviation between CFD and FNO. The spread in perturbation
growth intramodel is found to be approximately lognormally distributed, which justifies the use of a
sample standard deviation after the logarithmic transformation. The KS60 shows good agreement in
both spread and mean with the CFD. KS100 shows good agreement of the mean up to 100 seconds,
where the CFD becomes slightly more predictable. The saturation level is reached 10 seconds earlier by
the FNO. In the case of KS200, the CFD shows a larger spread between the ensembles, while the mean
is very similar. Overall the mean intrinsic predictability window is copied well by the surrogates. This
implies that the surrogate correctly copies the predictability for these respective initial conditions.

The spread of the predictability window signifies how well the predictability can be predicted. If the
low spread in predictability (such as KS200) is taken for granted, we might assume that the predictability
is relatively constant no matter how the initial conditions are perturbed. But if, in reality, a spread is
high, predictability is less ’predictable’.

In all plots from figure 5.6, the mean error is a straight line in a logarithmic plot. The growth
follows from theory, where a perturbation is expected to grow approximately exponentially with mLE
λ1. Repeating the experiment at multiple initial conditions will lead to different mLE. Averaging the
mLEs would lead to an estimate of the maximum Characteristic LE, as the CLE is by definition the
average exponential expansion rate of perturbation over the whole attractor. In figure 5.7, the intrinsic
predictability windows are plotted with the slope if it is assumed that the error grows with the mCLE.
Here we see that the maximum Local LE already approaches the maximum CLE with some minor
variations. We can do better than repeating the experiment above multiple times to find the CLE. The
following section will approach the surrogate from a dynamical climate perspective. Computing the
whole CLE spectrum with a computationally efficient method.
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(b) L100

(c) L200

Figure 5.6. Intrinsic predictability comparison between the numerical and FNO models when faced
with a perturbation in the initial conditions. 100 ensembles are computed against a control flow
starting on the attractor. Each ensemble adds a different ϵ0 = 10−4 point perturbation to the control
initial conditions. The error growth compared to the control is computed with the Euclidean 2-norm.
In the third plot, the sample means and sample standard deviations are plotted against each other.
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Figure 5.7. Average intrinsic predictability over 100 ensembles compared to the slope which the
maximum characteristic Lyapunov exponent predicts.

5.2.1. Perturbation size and numerical precision
The initial perturbation size must be picked carefully. The following plot for L=200 in figure 5.8 is
created the same as fig 5.6 but shows a rapid error growth at the start and a very small spread for
the FNO. The predictability is now underestimated compared to the CFD. The perturbation size is
ϵ0 = 10−6 similar to before.

The difference is that 32-bit floating point numbers are used for the FNO network. PyTorch uses
32-bit floats by default for all its operations and models to save memory, while the CFD ran in 64-bit
doubles. The perturbations in the FNO results were too small and caused numerical errors at the start
of the ensemble. Increasing the perturbation size to 10−4 or forcing PyTorch to use 64-bit doubles
solved the problem.

Figure 5.8. Intrinsic predictability comparison between the numerical and FNO models when faced
with a small 10−6 perturbation in the initial conditions, while the FNO uses 32-bit precision.
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5.3. Characteristic Lyapunov spectrum
The CLE spectrum is one of the dynamic constants within a model. It is expected that a surrogate
should have similar dynamical properties and thus also the same CLE spectrum. The most important
is the maximum CLE denoted by λ1, which has been frequently used in previous results.

Algorithm 1 converges with N → ∞, although a cut-off must be balanced between precision and
compute time. Edson et al. 2019 [30] reported N = 1000 was generally precise enough; We found that
N = 2000 gives better convergence. In figure 5.9, the positive CLEs are plotted against the number
of orthonormalization steps N used in the CLE computation. It shows sufficient convergence for the
mCLE, but the smaller the CLE, the longer it takes.
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Figure 5.9. Estimates of the CLE spectrum for L100 for increasing size of N.

In the case of the FNO, the CLE spectrum computation is on the order of O(104) times faster
(single CPU vs GPU). Therefore, it is repeated 25 times to give a sample mean and standard deviation
assuming the estimated CLE follows a normal distribution. The results are shown in figure 5.10 and
table 5.1. The CLE spectra for KS60 and KS100 show a good match apart from a missing zero CLE in
both. Shifting negative CLEs to the left once for the CFD and the entire spectra would line up. The
CLE spectrum for KS200 shows a positive bias for the positive CLE. The CFD mCLE falls outside
the lowest bound of the 95% confidence interval. Thus, it seems the KS200 generally has slightly lower
intrinsic predictability than the CFD. For KS200, a zero CLE is missing as well (not shown). A zero
CLE is missing for all models indicating FNO finds replicating one of the spatial invariances challenging.
Pathak et al. 2017 [44] obtained the same result.

The missing zero CLE is seen again in the Kaplan-Yorke dimension; for all surrogates, the Kaplan-
Yorke dimension is smaller by approximately one.
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Figure 5.10. CLE spectrum comparison between FNO surrogate and truth using algorithm 1[30, 42,
43]. The surrogate FNO show the sample mean (Nsample = 25), and the error bars denote the 95%
confidence interval assuming normality.
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L 60 100 200
i Edson CFD KS60 Edson CFD KS100 CFD KS200
1 0.089 0.084 0.085±0.0035 0.088 0.092 0.089±0.0029 0.092 0.097±0.0026
2 0.067 0.073 0.066±0.0031 0.082 0.080 0.076±0.0022 0.085 0.087±0.0021
3 0.055 0.049 0.051±0.0023 0.070 0.063 0.065±0.0019 0.079 0.080±0.0019
4 0.041 0.035 0.036±0.0024 0.061 0.060 0.056±0.0018 0.071 0.074±0.0014
5 0.030 0.022 0.023±0.0019 0.048 0.051 0.047±0.0015 0.066 0.068±0.0016
6 0.005 0.009 0.008±0.0019 0.041 0.037 0.040±0.0015 0.061 0.063±0.0013
7 0.003 -0.001 -0.001±0.0008 0.033 0.033 0.033±0.0019 0.054 0.059±0.0010
8 0.000 -0.001 -0.002±0.0008 0.028 0.022 0.026±0.0013 0.051 0.055±0.0012
9 -0.004 -0.003 -0.010±0.0021 0.018 0.018 0.019±0.0015 0.046 0.050±0.0013
10 -0.009 -0.017 -0.030±0.0030 0.012 0.013 0.011±0.0014 0.043 0.047±0.0013
DKY 13.56 13.6 12.42±0.081 22.44 21.9 21.3±0.101 44.7 44.1±0.137

Table 5.1. CLE spectrum comparison of the 10 largest CLE and the Kaplan-Yorke dimension DKY
between the surrogate, CFD ground truth and Edson et al. 2019 [30] literature reference using
algorithm 1 [30, 42, 43]. The surrogate shows a sample mean (Nsample = 25) with the sample
standard deviation assuming normality.

5.4. Hyperparameter tuning
During the testing of the FNO surrogate models, a large amount of different hyperparameter configura-
tions were checked. The loss on the validation dataset measures the performance of a model. In general,
most hyperparameters from table 4.3 were not found to impact performance significantly. However,
weight decay deserves special mention, as it prevents the model from overfitting.

From table 4.2, the Nx and ∆t were considered fixed. The number of modes, width and layers were
hyperparameter tuned for KS100. The number of modes was the most important for model performance.
It represents the truncation of the intermediate solution in the Fourier domain, where #modes are the
integer of the highest mode that is kept. Figure 5.11 shows the performance increase with an increasing
number of modes. The colours denote the width used in the FNO model. With a low number of modes,
the FNO can compensate for the performance using a larger model width, but at a larger number of
modes, the performance is almost equal between different model widths.

The effect of a larger number of modes is shown well in figure 5.12. Here the time-averaged PSD
is shown for models with a different number of modes. The vertical lines are the number of modes
represented in the FNO. The PSD is expected to exponentially reduce quickly after the peak at q ≈ 1/

√
2.

The lowest #modes model discontinues the exponential decay after q ≈ 2 where noise is seen to set in
at S(2) ≈ 10−4. Large #modes models follow the exponential decay until q ≈ 3, with a lower noise
level at 10−8. The #modes seem to suppress the onset of a noisy high-frequency range because models
with a large truncation show a jump in noise level after the last represented mode.

The model performance has a positive impact on dynamical climate reproduction. Figure 5.13 plots
the validation loss against the estimated Kaplan-Yorke dimension DKY. Low performance correlates
with an overestimation of the DKY. The CFD reference value is DKY = 20.9 or 21.44, excluding the
missing zero CLE. High-performing models consistently estimate a DKY ≈ 21.5 while low-performing
models overestimate the DKY. The KS200 model seems to overestimate the DKY similar to the lower
performing models here.

In terms of surrogating the KS system, the hyperparameter optimization shows that FNO works
best in the case where the highest frequency components can be accurately represented in the Fourier
domain. The highest frequency components for KS lie within the inertial part of the PSD. In figures
5.12, 5.4 & 3.8 the cross-over after the inertial domain is roughly at q ≈ 1.5. The increase of 16 to 32
#modes denotes the cross-over between a KS surrogate that does not represent all modes within the
inertial domain to a surrogate that does. The performance in terms of validation loss shows diminishing
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returns at the same moment. Although figure 5.13 shows that the dynamics are copied sufficiently for
16 #modes.
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Figure 5.11. Hyper parameter tuning the number of modes represented in the FNO against the
validation loss. The colour denotes the width used for the model.
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Figure 5.12. PSD for the different number of modes used. Vertical lines show the mode truncation
used in the FNO.
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Figure 5.13. The Kaplan-Yorke dimension as a performance metric for the CLE spectrum plotted
against the validation loss of the model. The ground-truth Kaplan-Yorke dimension is DKY = 21.9.
Although the FNO is expected to have one less dimension due to a missing zero CLE. The size of the
points denotes the FNO width. The colour denotes the number of FNO modes.

5.4.1. Lower amount of training data
The amount of training data is crucial to consider how well FNO can generalize to the entire phase
space. The training dataset was truncated at the end to create shorter flows on which the FNO can train.
At very short durations, the training dataset mainly comprises a transient flow towards the attractor.
The validation loss against the training dataset length is shown in figure 5.14. Even though the FNO
trains on short KS flows, it can still optimize an operator with high accuracy on the validation dataset.
It should be noted that the model trained on 100 seconds became unstable when autoregressively
predicting a longer KS flow. Thus, a flow of 200 seconds is necessary to train a working KS surrogate.
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Figure 5.14. Validation loss found for different Training Dataset lengths. Using only 100 seconds for
training made the model unstable. Every training dataset is divided into 104 input-output pairs. For
low dataset lengths, these pairs comprise mostly overlapping pairs.
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5.5. Invariance to discretization
To illustrate the property of invariance to discretization, the KS100 model was used for a zero-shot
superresolution prediction. An initial condition was upscaled to 384, 512 and 1024 gridpoints, after
which all were used to predict a flow in their respective spatial resolution. Figure 5.15 compares the
different resolution flows. Figure 5.16 shows the divergence between the higher and original resolution
flow. The error growth approaches the mCLE rate at λ1 ≈ 0.09 equivalent.
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Figure 5.15. KSL100 is used to predict 3 flows with higher spatial resolutions at Nx = 384, 512, 1024
starting from the same initial conditions.
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6
Conclusion

Global weather forecasting models using data-driven deep learning have shown excellent results, but
do they show the same spatiotemporal chaotic dynamics as numerical weather prediction would? This
research aimed to prove that Fourier Neural Operators (FNO) can replicate the intrinsic predictability
of spatiotemporal chaos in the form of the Kuramoto-Sivashinsky (KS) equation.

The data-driven Markovian FNO surrogates predict the KS system well. The noise level in the
power spectral density correlates negatively with the model performance and predictability score. The
surrogates replicate intrinsic predictability. Even the predictability of the intrinsic predictability is
accurately represented. The surrogate, with statistical certainty, reproduces the dynamical climate
regarding the characteristic Lyapunov spectrum. The FNO surrogate cannot represent one of the
invariant symmetries in KS, shown as a zero characteristic Lyapunov exponent in the spectrum.

Hyperparameter tuning correlates the surrogate performance to the Fourier modes represented in
the FNO. The lower limit in training length trajectory for a surrogate lacking instabilities is 200 seconds.
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7
Outlook & limitations

7.1. FNO
FNO is not the only DL network used in global weather forecasting. This section is dedicated to
discussing different DL forecasting networks, the performance of the FNO, its limitations and other
possible improvements to the network.

7.1.1. Limitations of FNO
In its current formulation, the FNO has a few limitations. FNO works only on uniform grids due to
using the FFT algorithm. This might not be a problem for weather forecasting, but for other problems
with non-uniform grids, it cannot work. An adaptation Geo-FNO [45] claims to solve the problem by
transforming the complex grid to a uniform grid.

Another problem that Geo-FNO aims to solve is dealing with discontinuities. FNO uses global
operations to predict a solution, which makes it difficult to approximate discontinuities. In many
systems, neither the domain nor the solution can be considered continuous. An operator that considers
only continuous Fourier series should then lead to errors in the surrogate. In Lu et al. 2022 [46], a
fair comparison is made between FNO and DeepONet, another neural operator-type network that does
not require strict conditions. The author ordered a list of differences shown in table 7.1. Notable
limitations, but not of importance for weather forecasting are: the input and output domains have to
be the same D = D′, discretization of output function is necessary, and prediction locations have to be
on the grid because for forecasting with an autoregressive operator, all are necessary. The necessary
full-field observation data is similarly not a problem if the FNO can train directly on reanalysis data of
ERA5.

DeepONet FNO
Input domain D′ & Output domain D′ Arbitrary Cuboid, D = D′

Discretization of output function u No Yes
Mesh Arbitrary Grid

Prediction location Arbitrary Grid points
Full-field observation data No Yes
Discontinuous functions Good Questionable

Table 7.1. Comparison between vanilla DeepONet and vanilla FNO. Copied from Lu et al. 2022 [46]

The zero-shot superresolution claimed by FNO works well for smooth functions as the FNO can
accurately predict the KS model using global convolutions. But, using the FNO to predict a process
with a lot of energy in the high frequencies close to the Nyquist frequency might not work well. To
the authors’ knowledge, it has also not been studied yet. Although FourCastNet [6] in figure 2.6 has
notable numerical diffusion with its smaller scale feature. Future research might apply FNO to non-
smooth problems and determine which truncation in the Fourier domain can accurately predict them.
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7.1.2. Larger timesteps
As shown in the results, the model error increases with larger timesteps, but that does not mean that
large timestep models should perform worse with longer-term forecasts. A small error made by a small
timestep model grows exponentially due to the chaos. Future research can try to find an optimal
timestep for high predictability.

A greedy algorithm can be used when the forecasting frequency required is higher than the optimal
forecasting timestep. A greedy algorithm uses multiple models trained on different timesteps, then uses
the least steps necessary to forecast at T time. Pangu-Weather used a greedy algorithm with three
models: a 1-hour, 6-hour and 12-hour step model [4]. For a prediction 20 hours ahead, the predictor
uses one 12-hour step, one 6-hour step and two 1-hour steps.

7.2. Global weather forecasting
NWP agencies use different methodologies than Lyapunov time and Lyapunov exponent when describing
predictability in the weather. The idea of error doubling with time loses relevance in practice. The KS
model abides by chaos theory, but the weather is significantly more complex. The following sections
will dissect the differences between a KS model and global weather.

7.2.1. Scale matters!
The weather consists of multi-scale processes. Global Weather Forecasting (GWF) mainly concerns
the planetary- and synoptic-scale processes in the atmosphere. The smaller mesoscale and microscale
on the order of 100-1km processes are mostly parametrized. In general, smaller-scale processes have
a shorter timescale as well. The timescale impacts the predictability of the process. A synoptic-scale
Rossby wave has a longer timescale; on its own, Rossby waves can be predicted multiple days into the
future [24]. On the other hand, mesoscale convective clouds are harder to predict and have timescales
of 1-10 hours. Assuming GWF could resolve both synoptic- and mesoscale processes, the question can
be asked, which timescale would impact the predictability the most? The mesoscale convective cloud’s
predictability is much lower than the Rossby wave. However, the mesoscale process could appear and
disappear simultaneously before the Rossby wave ends. The prediction error for a mesoscale convective
cloud reaches saturation levels faster than the Rossby wave.

In a GWF error growth graph, such as figure 2.7, it is hard to find exponential growth as many differ-
ent scale processes are superimposed within the model. Lorenz 2006 [24] illustrated the problem using
a simple coupled system consisting of two timescales. The predictability of the total system showed
exponential growth from the smallest scale first, after which it slowed down to quasi-exponential growth
from the larger scale process. The quasi-exponential growth reached a saturation level associated with
the larger scale process, while the initial exponential error growth indicates much lower predictability.

The assumption that predictability can be associated with the initial exponential error growth is
only partly correct. Past studies from the ’60s until the ’90s have used the initial exponential error
growth, or error rate doubling time, for predictability. Over those years, the resolution and accuracy
of NWP models increased significantly.
With the increase in resolution, the estimated error doubling rate decreased slowly: In 1965 Mintz-
Arakawa found a doubling rate of 4 days. Afterwards, Smagorinsky in 1969, Lorenz 1982, and Simmons
et al. 1995 described lower rates of 3, 2.1-2.4 and 1.5 days, respectively [24]. Poorer physics may
have overestimated the predictability, but a more significant factor was that the spatial resolution on
which the models operated increased over the years. Smaller features could now be represented in the
models. Errors in features formerly not captured amplified the initial error growth. Thus the smaller
scale processes were included in the resolved scales and seemed to decrease the intrinsic predictability.
Therefore using Lyapunov exponents to describe the predictability in the GWF was disregarded and
other predictability measures were found. Finite-Size Lyapunov Exponent (FSLE) or Finite-Time Lya-
punov Exponent (FTLE) are replacements which measure the expansion in phase space with a fixed
time length or expansion size, to overcome the difficulties with the instantaneous perturbation growth
of Lyapunov exponents. In the KS system, there is only one process scale influencing predictability.
Thus, Lyapunov exponents remain effective.
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Another reason the LE were disregarded was that the initial uncertainty in the weather state was
relatively large. Therefore the initial exponential growth could not be assumed in ensembles. Lyapunov
exponents do have a function in current-day ensemble forecasting, but the use is limited to the initial
perturbation in which the ensemble is perturbed.

7.2.2. Randomness on top of complexity
An essential assumption in the research methodology is the deterministic nature of the toy model.
Assuming a perfect model, a deterministic system should be entirely predictable using exact initial
conditions. Uncertainties in initial conditions can then be considered the only source of error growth in
KS.

In NWP, the parametrization of the small-scale processes has to be used. Proven is that the small-
scale features add randomness to the system [24]. ECMWF leans into the randomness by using stochas-
tic parametrization of the subgrid scales. The randomness increases the spread of ensemble predictions.
The randomness in smaller scales is added as uncertainty to the total uncertainty of an ensemble. The
randomness does not change the methodology of quantifying the predictability; it is simply another un-
certainty added to the ensemble. The validity of a predictability window in a stochastic system should
not change. Still, a surrogacy study of a stochastic chaotic toy model could be considered.

7.2.3. Climate change changes predictability?
In the analysis of CLEs, ergodicity is used to estimate the CLEs. By definition, CLEs are properties
formed by long-time averages. Ergodicity in a dynamical system describes that flow will eventually
visit all parts of the space it moves in. In more colloquial terms it describes the climate of a dynamical
system being constant.
The CLE algorithm is based on multiplying enough (N) short-term (T) perturbation growths to estimate
a long-term average. Averaging many local short-term dynamical values should approach the long-
term average dynamics. The theorem proving the algorithm’s validity, Osedelets multiplicative ergodic
theorem, assumes the ergodicity of the dynamical system. In the global weather system, there are
many outside forcings which do not depend on the weather itself but significantly impact predictability.
Ergodicity cannot be assumed in the weather, because the space in which the weather moves around
is time-dependent. The climate of the weather is not constant but is influenced by external processes
with the increase in CO2 levels being the obvious example. Therefore it proves challenging to describe
long-term time averages in predictability.

However, that is not the only reason NWP would not use CLE or similar predictability metrics. The
CLEs do not describe how predictable a system is in the short term. It is a coincidence that the local LE
found in the intrinsic predictability window aligns precisely with the CLE. In general dynamical systems
have wildly varying LE depending on where you are in the phase space. For example, figure 1.4 shows
three wildly different predictabilities derived from the same dynamical system. NWP shows similar signs
with local high or low predictability [12, 47, 48]. The interest in localized predictability is of greater
importance to weather forecasting agencies than estimating a long-term average of predictability.

7.2.4. Random perturbations in a high dimensional phase space
Part of the methodology is to use a brute-force approach to create the ensemble for the intrinsic pre-
dictability window. A hundred random orthogonal perturbation vectors are picked for a good statistical
representation. It works under the assumption that a random perturbation always has a component
in the direction of the maximum LE. The assumption is valid due to the relatively limited 128, 256,
and 512 gridpoint discretized models used. Compared to an NWP with model sizes on the order of
a billion gridboxes with multiple variables, a random perturbation is not expected to grow according
to the leading error growth vector. Random perturbations in an NWP model dissipate faster than
perturbations can grow with the maximum LE [49]. Meaning that the ensemble will not spread enough
to convey every possible forecast. A bad ensemble is schematically depicted in figure 7.1 with a control
forecast, a negatively and positively perturbed ensemble member. In the case of a bad ensemble, the
truth is not represented within the spread of the ensemble, while for a good ensemble, the spread is
larger and contains the truth.
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Figure 7.1. Schematic of a potential ensemble with (a) depicting a ’good’ ensemble when the truth
falls between the two perturbed ensemble members and (b) a ’bad’ ensemble. Copied from Kalnay et
al. 2006 [49]

In NWP, a different perturbation method is used. There are two main methods, the singular vector
and the bred vector. In both, the approximate goal is to find the most unstable vector around the initial
state and create perturbations around it. In the case of the KS model, these approaches (primarily bred
vectors) are similar to iteratively finding the vector related to the maximum LE and perturbing the
ensemble members in that direction.

7.3. Data-driven probabilistic forecasting
The theoretical implications of a fully data-based fully nonlinear network (FNO) inheriting the pre-
dictability of spatiotemporal chaos are noteworthy. Specifically, training an FNO using a global weather
observational dataset could potentially enable accurate prediction of the intrinsic predictability of global
weather. However, this conclusion must be approached with caution, as it overlooks the many differ-
ences between the KS model and the complex global weather system. Assuming that these discrepancies
are reconciled, the potential for accurately predicting the global weather’s intrinsic predictability using
a data-based FNO becomes conceivable. In practical terms, predicting the likelihood of rain in the
next three days is crucial for users seeking dependable weather forecasts, and this prediction directly
correlates with the current level of weather state predictability. While current numerical weather predic-
tion ensembles offer probabilistic forecasts, future advancements may include data-driven probabilistic
forecasts in addition to traditional physics-based ones.
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A
Viscosity-independent FNO

This section is dedicated to demonstrating FNO can also estimate flows where the attractor is not
constant. The viscosity constant ν is introduced as an extra variable. The ν directly impacts the
attractor due to the hyperdiffusion being more or less active. The formulation of the KS eqn. 3.6 with
a viscosity constant ν in front of the hyperdiffusion term becomes:

∂tu+ ∂2
xu+ ν∂4

xu+ u∂xu = 0, (A.1)

The combination of ν and L is found to dictate how the KS system bifurcates. The dimensionless
bifurcation parameter is L̃ = L√

ν
[16]. In this experiment, the domain size L will be set at 100 to

replicate constant geometry while the viscosity varies in value. Five 1000-second flows with different
viscosities are created for training. The upper limit is an equivalent flow to what KS200 is trained on,
and the lower limit is an equivalent flow to what KS60 is trained on. Four in-between values of viscosity
are picked as interpolation flows. The FNO does not see these flows during training. The viscosities
are given in table A.1.

L̃ 60 70 80 90 100 125 150 175 200
L̃ = L/

√
ν ν 25

9
100
49

25
16

100
81 1 16

25
4
8

16
49

1
4

Table A.1. Viscosities used in training and testing (grey).

The
√
ν is appended to the input for each gridpoint. The input to the FNO becomes [u, x,

√
ν].

In figures A.1 a to e and A.2 a to d, the predicted flows are plotted against the CFD ground truths.
The viscosity has an impact on predictability. High viscosity shows a slow-changing solution with high
predictability; the opposite is true for low viscosity. A PSD comparison is shown in figure A.3. The
peak PSD moves to the higher frequencies with a lower viscosity. The cut-off mode for FNO can be
seen at q = 3. At low viscosity, there is more energy in high frequencies above the cut-off mode, which
adds a lot of noise to the predicted flow. Increasing the number of modes in the FNO should help it
perform better based on the results shown in section 5.4.
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Figure A.1. Training dataset flows for the viscosity-independent FNO surrogate. Each shows a part of
the training flow and the predicted flow.
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Figure A.2. Interpolation viscosity flows for the viscosity-independent FNO surrogate. Each shows a
part of a sample flow with the predicted flow.
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Figure A.3. PSD comparison between CFD and FNO predictions. The solid lines denote the CFD,
and the dotted lines denote the FNO predictions.



B
Fourier collocation method

As a reference, we would need a good solution to the K-S equation. In literature, the periodic K-S
system is often solved by a Fourier Collocation method in space with an appropriate time-marching
time discretization. We will shortly address the method in the following section. To recall the K-S eqn.
3.6 in a conservative form where ∂xu

2 = 2u∂xu

∂tu+ ∂2
xu+ ∂4

xu+
1

2
∂xu

2 = 0,

u(x+ L, t) = u(x, t) ∀ 0 ≤ x ≤ L.

The spatial Fourier transform will be denoted by ũk(t) with k the wavenumber. Then u(x, t) can be
approximated with a truncated Discrete Fourier Transform over M collocation points

u(x, t) ≈
M/2−1∑
k=−M/2

ũk(t)e
i 2π

L kx, (B.1)

ũk(t) =

∫
ξ∈R

u(ξ, t)e−i 2π
L kξdξ (B.2)

and similarly, u2 can be written as:

u2(x, t) ≈
M/2−1∑
k=−M/2

ṽk(t)e
i 2πk

L x, (B.3)

ṽk(t) =

∫
ξ∈R

u2(ξ, t)e−i 2πk
L ξdξ ≈

M∑
j=0

u2(xj , t)e
−i 2πk

L xj . (B.4)

Substituting B.1 and B.3 into the K-S equation, taking the partial derivatives inside the summation
and defining λk := 2πk

L

M/2−1∑
k=−M/2

˙̃uk(t)e
iλkx −

M/2−1∑
k=−M/2

λ2
kũk(t)e

iλkx +

M/2−1∑
k=−M/2

λ4
kũk(t)e

iλkx +
1

2

M/2−1∑
k=−M/2

iλkṽk(t)e
iλkx = 0,

The dot notation denotes the partial time derivative. Due to the orthogonality of the basis functions
eiλkx, where f(x) denotes the conjugate:

< eiλpx, eiλqx >=

∫ L

0

eiλpxeiλqxdx = 0 if p 6= q,
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the terms in front of the basis functions should balance out for each individual wavenumber k in the
summation. The end result becomes an ODE system

˙̃uk(t) + (λ4
k − λ2

k)ũk(t) + i
λk

2
ṽk(t) = 0,

This ODE system is solved numerically in one way or another. The approximations lie in calculating
ṽk(t) and the numerical time integration.

It can be further simplified by multiplying by an integration factor eAt with A = λ4
k − λ2

k,

d

dt
(eAtũk) =

d

dt
w̃k(t) = −i

λk

2
ṽk(t)e

At
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