
Binary Neural
Networks for Object

Detection
by

Yizhou Wang
to obtain the degree of Master of Science in Embedded Systems

at the Delft University of Technology,
to be defended publicly on Thursday August 29, 2019 at 4:00 PM.

Student number: 4740629
Project duration: October 1, 2018 – August 29, 2019
Thesis committee: Dr. ir. Z. Al-Ars, TU Delft, Chair

Dr. A. van Genderen, TU Delft
Dr. W. Pan, TU Delft
B. Zhu, MSc, TU Delft

This thesis is confidential and cannot be made public until August 31, 2020.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

In the past few years, convolutional neural networks (CNNs) have been widely utilized and shown
state-of-the-art performances on computer vision tasks. However, CNN based approaches usually re-
quire a large amount of storage, run-time memory, as well as computation power in both training and
inference time, which are usually used on GPU based machines to ensure the speed for inferences. But
they are usually insufficient to be deployed on low-power applications. Although many approaches
were proposed to compress and accelerate the CNN models, most of them were only evaluated on rela-
tively simple problems (e.g. image classification), which only support limited real-world applications.
Especially, among those methods, binary quantization can achieve very high model compression, but
only a few works have been observed to utilize it on more complex tasks. Therefore, the exploration
and evaluations of applying binary quantization on more complex tasks like object detection are worth-
while, which can be used in much more applications like autonomous driving and face detection. In
this project, we apply and evaluate two different binary quantization approaches, named ABC-Net [32]
and PA-Net on object detection tasks. Also, we specify the exact implementation details for the binary
convolutional operations in this project. As a result, we can achieve maximally 6.1× (around 16% of
the full-precision model) compression, and minimal 2.5% accuracy reduction for weight quantization.
The weight quantized models were able to outperform some existing real-time detectors in terms of
both accuracy and storage size. Although large accuracy reduction was observed for input quantiza-
tion, the quantized model could still maintain an acceptable accuracy compared to existing real-time
object detectors.

iii

Contents

List of Tables vii

List of Figures ix

1 Introductions 1
1.1 Context . 1
1.2 Problem description and research questions . 2
1.3 Thesis outline . 2

2 Background and related work 5
2.1 Neural networks for object detection . 5

2.1.1 Convolutional neural networks (CNNs) . 5
2.1.2 Object detection. 6
2.1.3 Object detection networks . 7

2.2 Overview of deep neural network compression . 10
2.2.1 Low-precision and binary quantization. 10
2.2.2 Code-book based quantization . 11
2.2.3 Connection pruning . 11

2.3 Related works in binary neural networks. 11
2.3.1 Binary neural networks on image classification 11
2.3.2 Related work of binary neural networks for object detection 13

3 Solution strategy and experiment setup 15
3.1 Experiments details . 15

3.1.1 Data set . 15
3.1.2 Evaluation metrics . 16

3.2 Implementation of full precision baseline networks 17
3.2.1 Implementation for Faster R-CNN . 18
3.2.2 Implementation for SSD . 19
3.2.3 Training the baseline full precision networks 20

3.3 Strategies to train binary object detectors . 21
3.3.1 Binary object detector outlines . 22
3.3.2 Training binary object detectors . 22

4 Accurate binary convolutional networks (ABC-Net) 25
4.1 Methodology . 25

4.1.1 Weight quantization. 25
4.1.2 Input/activation quantization. 27
4.1.3 Multiplication-free binary convolutional operation 28
4.1.4 Training. 29

4.2 Experiments . 29
4.2.1 Weight quantization. 29
4.2.2 Extension to input quantization . 32

v

vi Contents

5 Piecewise approximation networks (PA-Net) 33
5.1 Methodology . 33

5.1.1 Weight quantization. 33
5.1.2 Inputs/activation quantization . 36
5.1.3 PA Scheme based binary convolutional operation 37
5.1.4 Training. 38

5.2 Experiments . 38
5.2.1 Weights quantization . 39
5.2.2 Extension to input quantization . 41

6 Discussions 43
6.1 Storage/memory analysis . 43
6.2 Further compression of the object detectors. 44
6.3 Comparisons and trade-offs . 45

6.3.1 Comparisons between ABC and PA scheme on object detection 46
6.3.2 Trade-offs . 47

7 Conclusions 49
7.1 Summary . 49
7.2 Future work . 50

Bibliography 51

List of Tables

2.1 Comparison for modern object detectors . 10
2.2 Comparison for different quantization approaches . 13

3.1 Performances for baseline full precision object dictators 22
3.2 Performances of the Faster R-CNN trained with the two different options 23

4.1 Performances for binary Faster R-CNNs with ABC-Net quantization 31
4.2 Performances for binary SSD with ABC-Net quantization 31

5.1 Example of the boundary points for PA scheme . 34
5.2 Performances for binary Faster R-CNNs with PA quantization 39
5.3 Performances for binary SSD with PA quantization 40
5.4 Evaluation results of 5-bits PA scheme based binary weights and binary inputs models 41

6.1 Storage saving and compression rates of the binary models 44
6.2 Evaluation and comparison between different quantization ratios 44
6.3 Performances comparisons between 5-bits ABC-Net and PA schemes 46

vii

List of Figures

2.1 Example for different CV tasks . 6
2.2 R-CNN series architecture . 7
2.3 R-FCN Architecture [11] . 8
2.4 YOLO and SSD Architectures [33, 38] . 9
2.5 The unified network proposed in [42] . 13

3.1 Mean average precision calculation . 17
3.2 Implementation of the full-precision Faster R-CNN 19
3.3 Implementation of the RPN network . 19
3.4 Implementation of the full-precision SSD . 20

5.1 Example for the forward and backward approximation of the piecewise function 𝑃(𝑊) 35
5.2 Example for the forward and backward approximation of the piecewise activation bi-

nary function 𝐴(𝑋) . 37

6.1 Model storage for different object detectors . 45
6.2 Brief trade-offs between accuray and storage size . 47

ix

Acknowledgements

I would like to thank my supervisor Dr. Zaid Al-Ars for the help and guidance during the project.
Thanks to Dr. Wei Pan for sharing inspiring ideas about this project. Furthermore, thanks for Baozhou
Zhu for all his great help and discussions during the whole project.

I would also like to thank theQuantum&Computer Engineering department, TUDelft for providing
the compute servers used to run the experiments of this project. And thanks for all of my colleagues for
the inspiring discussions.

Last, but certainly not least, many thanks to my family for their support during not only the project,
but also the study in TU Delft, and throughout my life.

Yizhou Wang
Delft, August 2019

xi

1
Introductions

1.1. Context
Deep neural networks (DNNs) have achieved great successes in various research topics such as com-
puter vision, natural language processing, speech recognition, etc. Among those topics, computer vision
tasks such as image classification [40], object detection [13, 31], and semantic segmentation [13, 31]
have attracted increasing research interests due to the potential in a wide range of real-world applications
like autonomous driving, human-machine interaction, etc.

Although, in the past few years, convolutional neural networks (CNNs) have been widely utilized
and they have shown state-of-the-art performances on computer vision (CV) tasks. Those CNN based
approaches require a large amount of storage, run-time memory, as well as computation power in both
training and inference time. For instance, popular CNN models in image classification like the single-
precision floating-point ResNet-101 [22] consume 158 MB parameters storage and over 300 MBmem-
ory bandwidth to feed-forward only one image, and the consumption is even bigger for VGG-16 [41],
which requires 490 MB for parameters storage and over 800 MBmemory bandwidth during inferences.
For more complex tasks like object detection, the size of the models [33, 39], and the run-time memory
utilization will be even larger. Moreover, as those large CNN models do not fit in on-chip storage, they
will require a large amount of costly DRAMaccess as well as a large amount of computation resource for
dot products, which will make the power consumption easily exceeding the budget for normal embed-
ded devices [19]. Thus, in practice, most of the CNN based systems are running on machines equipped
with powerful GPUs. Those CNN based systems cannot usually be deployed on cheaper machines with
strict memory, power, and execution time constrains (e.g. smartphones, wearable devices, drones, etc),
as they could easily run out of the computation resources.

To increase the scalability and to reduce the cost, research to compress and accelerate the CNN
models have drawn growing attention in both the industry and in academia. Many approaches were
proposed to compress and accelerate the deep CNN models, such as connection pruning and weight
sharing [2, 21], low-precision/binary quantization [32, 35, 45], code-book based compression [5, 19],
and the combination of multiple compression technique [19]. Almost all of those approaches were
only proved and evaluated for image classification problems, where the system only needs to determine
one label for each input image. However, the majority of vision systems are required to provide more
information than image classes: multiple labels for all the objects appeared in the single input image
respectively, and even the locations of those objects. This kind of problem, known as object detection
and instance segmentation, have been the primary focus in most of CV applications (e.g. autonomous
driving, drones, pose estimations). The models [33, 39] are made more complex to ensure satisfactory
performance in those problems. Despite the fact that there is significant demand for model compression
of those complex CV tasks, only a few results have yet been reported in the literature, especially for

1

2 1. Introductions

binary quantization, see Chapter 2. Thus, further evaluations and improvements of those compression
approaches on relatively complex CV tasks are needed.

1.2. Problem description and research questions
Most of the existing CNN quantization methods [8, 10, 19, 32, 35] can largely reduce the network size
in image classification tasks, but they will also result in quantization errors and will further lead to per-
formance reduction in terms of accuracy. Especially, binary quantization of neural networks usually
gives the largest compression by quantizing the floating-point parameters to only 1 bit (up to 32x com-
pression for single-precision and up to 64x compression for double-precision models), while it could
result in a relatively high quantization errors. Although, researchers have shown that it is possible to
compress the models with the classification accuracy being preserved [8, 10, 35] in major image clas-
sification data set. And attempts have been made to make the classification performance tend to be
lossless after binary quantization with more accurate quantization methods [32]. However, only a few
published results have been reported about the model compression on object detection, especially for
binary quantization. Recently, a large accuracy reduction was observed for binary quantized CNN in
object detection tasks even with very limited compression [42], see Chapter 2. Meanwhile, the newly
proposed binary quantization scheme PA-Net by Zhu et al. from our groups was also only designed and
tested on image classification tasks, further evaluations on complex tasks are also valuable.

In short, the goal of this project can be described using the research questions listed below:

• Is it possible to utilize binary convolutional neural networks for object detection tasks (i.e. will
the training phase converge towards a usable model)?

• How much accuracy and compression can we achieve on object detection tasks using binary
quantization? And how can we make some trade-off between compression rate and accuracy?

• Evaluate the newly proposed PA scheme on object detection tasks and compare it with other
state-of-the-art binary quantization approaches.

To reach its goal, this project can be divided into the following parts:

• Literature Survey: Study the existing neural network architectures for object detection. Mean-
while, the existing approaches for network compression, especially, the existing attempts for
binary quantization in object detection should be reviewed.

• Design and implementation: Design the binary neural networks for object detection based on
the existing approaches.

• Experiments and Evaluation: Evaluate and compare different approaches on the major date set
for object detection.

• Analysis and Improvements: Analyze the results of the experiments, andmake further improve-
ments based on it.

1.3. Thesis outline
Themain objective of this project is to verify the possibility of utilizing binary quantization on CNNs for
object detection tasks. To bemore specific, binary CNNswithmultiple existing quantization approaches
as well as a newly proposed CNN quantization approaches, namely piece-wise approximation networks
(PA-Net), will be implemented and evaluated for object detection tasks. Furthermore, strategies to
construct and train binary neural networks with preserved performance in terms of accuracy for object
detection tasks will also be discussed.

1.3. Thesis outline 3

This thesis includes seven chapters. In Chapter 1, the context of the project, the project outline and
the motivation behind this project will be introduced. In Chapter 2, we will discuss the background for
object detection and neural network compression. Different approaches for object detection and binary
compression will be discussed and compared. We will also talk about the related works on networks
compression for object detection in this chapter. Then in Chapter 3, the implementation details of the
baseline networks and the strategies used to train the networks will be discussed. Introductions to the
experiment setup, data set, as well as the evaluation methods will also be given in Chapter 3. Then in
Chapter 4 and 5 we will discuss the detailed methodologies for ABC [32] and PA quantization, respec-
tively. Furthermore, experiments and evaluations will also be presented in Chapter 4 and Chapter 5.
Based on the results from the previous chapters, in Chapter 6 further discussion and the comparison of
different approaches will be provided. And further compression of the binary models obtained from the
previous chapters as well as the trade-off between compression and accuracy will be discussed. Finally,
in Chapter 7, we will summarize the project and give suggestions for future work.

2
Background and related work

2.1. Neural networks for object detection
In this section, we will first introduce the underlying knowledge of convolutional neural networks, and
then the background information of object detection problems as well as the state-of-the-art approaches
to handle it will also be discussed.

2.1.1. Convolutional neural networks (CNNs)
a) CNN architectures
CNN is a kind of neural networks in deep learning, which are widely used in visual recognition prob-
lems. Comparing to other visual recognition methods, such as SVM classifiers, CNN can handle the
input image to the desired result end-to-end without any human-designed features. Typical CNN con-
sists of the combination of the following components:

Convolutional layer: The main components of a typical CNN, which aims to collect the local
information from the previous layer and map them to higher-level features in the later layer. Different
from the convolutions in signal and image processing, the convolution operations in CNN are sliding
dot products between the inputs and the filter kernels, where each filter kernel will slide over the input
image to calculate the dot products and the result of each sliding window position will be mapped as a
single element (or feature) on the output feature map.

Non-linearity layer: An non-linearity layer, or activation layers is normally added after a convo-
lutional layer, which aims to add non-linearity to the model. In activation layers, typical non-linearity
function will be used to map the element in the input feature map to the activation map element-wisely.

Pooling layer: Pooling layers are responsible to downsample the activation maps, which are nor-
mally added after multiple convolutional layers. Similar to the convolutional layers, pooling layers
also collect the information from the inputs using sliding windows, and all the elements at a single
window-position will be downsampled to one element on the output feature map. The goal of pooling
is to gradually reduce the computations as well as to reduce the probabilities of over-fitting when the
networks go deeper.

Fully connected layer: Typically, fully connected layers are added at the end of a CNN to connect
the hidden layers and the output layer. The parameters in fully connected layers are trained to summarise
the features and map them to a vector with the element representing the score of each class.

In CNN, the convolutional layers usually takes most of the computation resources, due to a large
number of floating-point multiplications between the high-dimension convolutional kernels and the
inputs, which are the bottleneck of execution speed for most of the typical CNN models.

5

6 2. Background and related work

b) Overview of CNNs for large scale image recognition
Researches to improving the performances of CNN in computer vision tasks have attracted great con-
cerns since AlexNet achieved significant successes on ImageNet large scale classification challenge
in [28]. Simonyan et al. utilized smaller 3×3 convolution kernels and 2×2 maximum pooling in VGG
networks [41], which improved the classification performances with over 3 times deeper architectures
than AlexNet. Although VGG showed convergences with the depth up to 19 layers, He et al. found an
unexpected performance reduction when increasing depth of the network, even without overfitting [22].
Addressing this issue, He et al. proposed residual neural networks, which utilized shortcut connections
to take previous layers’ information into accounts. As a result, ResNet was able to converge with over
1000 layers, and ResNet also showed further increases in classification accuracy on ImageNet. In the
past few years, there were some other attempts, to improve both the accuracy and the efficiency for im-
age recognition problems, such as DenseNet [25] andMobileNet [24]. Those CNNs are not only used in
image classification tasks, but also in much more complex tasks like object detection and segmentation,
which will be introduced in the next section.

2.1.2. Object detection
In computer vision and recognition problems, object detection aims to determine the semanteme and the
location of some specific objects in digital images or videos. To be more specific, in object detection
tasks, the systems are required to not only give the label, but also the location of the target instances.
As shown in Figure 2.1, in practice, such location information is normally presented by giving the co-
ordinates of the bounding boxes, and the regions which contain the target objects is called foreground,
while the regions without targets are named background. Furthermore, different from typical classi-
fication problems, which treat the whole image as one single instance, object detection systems need
to handle multiple instances with uncertain quantities and locations at the same time. Thus, it is easy
to see that guessing the correct results for object detection is way more difficult than the classification
problem [13]. But it is also true that detection can fit the needs of more applications than classification.

(a) Image classification (b) Classification+Localization (c) Object detection

Figure 2.1: Example for different tasks: (a) Image classifications: whole Image as one instance, only class
information needed. (b) Classification+localization: Only one object, but both class and location information
are needed. (c) Object detection: Multiple objects with unknown quantities, both classes and information are
required.

The methods to solve the object detection problem can be divided into hand-engineered features
basedmachine learning approaches, or CNN based deep learning approaches. For the machine learning-
based approaches, the idea is to carefully design and extract the features from the images [12, 34, 44],
and then design the classifiers (e.g. support vector machine) based on them. However, in recent years,
deep learning-based approaches [33, 38, 39] have achieved a significant performances’ improvement
comparing to those machine learning methods, and have been used in a wide range of real-world appli-
cations, such as face detection, human pose estimation, etc. Another advantage of deep learning-based
methods is that the feature extraction can be handled by typical convolution and fully connected layers,
which makes the whole process end-to-end during both training and inference time.

2.1. Neural networks for object detection 7

2.1.3. Object detection networks
There are mainly two types of neural networks for object detection: the region proposal based two stages
networks [11, 39], and the one-stage networks [33, 38]. Both of these two kinds of networks consist of
the backbone networks and head networks. The backbone networks act as feature extractors, where the
feature maps will be extracted from input images or video frames in the backbone networks. And the
head networks are normally added after the backbone networks to summary the features and generate
the corresponding labels as well as the bonding box coordinates of the target objects. Normally, the
backbone networks are classic CNN from classification tasks, such as Alex Net [28], VGG Net [41]
and ResNet [22]. In practice, to ensure good performance, the networks should be deep and wide
enough, and thus, they need to be trained on richer data sets. However, it is much more costly to label
the images for object detection than classification, so the training set in object detection is typically
smaller than that in classifications. Hence, the backbone networks are usually trained on large scale
data set for classification tasks. (e.g. ImageNet classification [40]), and fine-tuned together with the
head networks on detection data sets.

a) Region based two-stages networks
As introduced earlier in this chapter (see Figure 2.1), the difference between object detection and classi-
fication is that detection tasks are required to not only classify the type of the targets but also determine
the location of them in a single image. The main difficulty is that normal classification systems cannot
figure out the regions where they should perform the classifications, and thus, it is inevitable to first
’manually’ locate all the possible targets before applying a typical classifier. To do that, the most direct
way is to use the sliding window approach, where we need to define a group of sliding windows with
different sizes and aspect ratios, and feed all the sub-regions cropped by the sliding windows to the clas-
sifiers to determine the classes. However, in object detection tasks, the number, location, size, aspect
ratio of the targets are unknown, and thus, to figure out the target objects, a huge number of sub-regions
sampled by sliding windows need to be fed into the CNN, which makes it extremely computational
expensive! Addressing this issue, instead of naively collect the regions using sliding windows, differ-
ent region proposal methods were presented to efficiently estimate the regions where the targets might
exist [43], which lead to a considerable reduction on the number of sub-regions. Then the proposals (or
region of interests) generated by region proposals can be fed into the classifiers for further classification.

(a) R-CNN (b) Fast R-CNN (c) Faster R-CNN

Figure 2.2: Architecture of R-CNN series: (a) R-CNN [17]: whole Image as one instance, only class information
needed. (b) Fast R-CNN [16]: Only one object, but both class and location information are needed. (c)Faster
R-CNN [39]: Multiple objects, both classes and information are required.

R-CNN Series: With the region proposal approach, R-CNN (R stands for regions) was proposed by
Girshick et al. [17] in 2014, known as the first CNN based approach which successfully leaded to large
performance improvement on object detection tasks. The idea of R-CNN is first to generate the region
proposals using selective search [43], then all the proposals are fed into CNN separately for feature
extractions, and finally the SVM classifier is applied on the top of the feature maps extracted by CNNs

8 2. Background and related work

for classifications. Meanwhile, shown in Fig.2.2, as the region generated by the region proposal algo-
rithm, is only acted as a rough estimation of the target location, to ensure more accurate localization,
budding boxes regression is performed together with the network parameters updating during training
time. However, R-CNN is still very slow to run (47 seconds per image with VGG-16 as backbone net-
work [16]). Because, the expensive convolution operations will be performed separately for thousands
of region proposals in each image to obtain the feature map for each proposal, and those feature maps
will cost hundreds of gigabytes during training [16], which make R-CNN completely expensive to train
in both time and storage issues.

To accelerate the detection processes, Fast R-CNN was proposed by Girshick et al. in [16]. To
reduce the computation cost, instead of obtaining the proposals directly on the input image in R-CNN,
the input image will be first fed into the backbone CNN for feature extractions and the region proposals
are collected from the feature maps generated by the backbone CNN. As shown in Figure 2.2, Fast R-
CNN significantly reduced the computation cost by simplifying the over thousand times of forwarding
propagation of the region proposals to only one forward propagation of the original input image. As
a result, Fast R-CNN achieved over 200x speed up and higher detection accuracy comparing to R-
CNN [16].

Although the computation cost of the convolution operations was largely reduced by sharing the
convolution layers, computing the region proposals from the feature map was still time-consuming,
which dominated the computation time of Fast R-CNN [39] (over 85% of the computation time for one
image). Addressing this issue, Ren et al. proposed the Faster R-CNN in [39], which aims to further im-
prove the speed and accuracy. Similar to Fast R-CNN, Faster R-CNN also utilized the shared backbone
convolution layers to extract the feature map from the input image, but instead of using selective search,
a novel region proposal network (RPN) was used to generate the region proposals with pure convolu-
tional layers. The idea was to add a sub-network consists of several convolution layers on the top of the
backbone CNN, which took pieces of the feature map as input and generated the proposals as output
based on foreground/background classifications and bounding boxes regressions [39]. The generated
proposals were then reshaped to the same size through RoI (region of interests) pooling, and the final la-
bels and the locations for each proposal were determined by performing classification and bounding box
regression separately through the head networks. As the sub-network is fully convolutional networks,
it makes the whole Faster R-CNN an end-to-end process and can be largely benefited by the utilization
of GPU paralleling. As a result, the RPN approach enabled a quick region proposal in around 10ms per
image using GPU [39]. Meanwhile, Faster R-CNN also shows state-of-the-art detection accuracy even
in nowadays.

Figure 2.3: R-FCN Architecture [11]

R-FCN:Another region-based two-stagesmodel, named region-based fully convolutional networks
(R-FCN), was proposed by Dai et al. in [11] to further accelerate Faster R-CNN by sharing more
computation. Similar to Faster R-CNN, R-FCN also used RPN to generate proposals. However, in

2.1. Neural networks for object detection 9

Faster R-CNN all the proposals were fed independently into the following head networks after the
RoI pooling, where costly convolution operations were performed multiple times for each input image.
Thus, in R-FCN, Dai et al. removed the head networks after RoI pooling and used novel position-
sensitive score map and average voting layer instead to calculate the final detection results. This extra
position-sensitive score map and voting layers only took negligible overheads, so almost all of the
computations were taken in convolutional layers. Consequentially, each input image can pass through
the whole R-FCN with almost all computations being shared. As a result, R-FCN run 2 to 2.5x faster
than Faster R-CNN during inference time, with a small reduction in detection accuracy.

b) One Stage Networks
Although attempts weremade to accelerate the region proposal process (e.g. Faster R-CNN) for the two-
stages networks, the region-based two-stages networks were still computationally expensive. Thus, one
stage models without the region proposal were proposed for more efficient object detection.

YOLO:Redmond et al. proposed a unified object detector YOLO (You only look once) [38], which
aimed to achieve real-time object detection with GPUs (e.g. 45 frames per seconds). YOLO detector
also regards the object detection task as regression plus classification problem, which takes the input
image and output the regressed bounding boxes as well as the targets’ labels. But different from the two-
stage approaches, the input image will be only looked once, which means the images can be directly
feed through a single forward pass without the overhead to calculate region proposals. As a result,
YOLO can run in 45 fps (frame per seconds) during inference time, and the fast version YOLO with
less convolutional layers can even run in 155 fps. However, as the cost of the speed, YOLO showed
a large accuracy reduction compare to Faster R-CNN. The trade-off for speed and accuracy had been
made by the authors in the following version of YOLO in [36, 37].

Figure 2.4: YOLO and SSD Architectures [33, 38]

SSD: Single-shot detector (SSD) was published by Liu et al. in [33], aiming to solve the accu-
racy reduction in real-time single-stage detectors. The main resource of the accuracy reduction is that
detectors like YOLO were suffering from localizing objects in different scales, especially for small ob-
jects [33, 38], which can be mitigated by using region proposals like the two-stages model. Addressing
this issue, SSD uses a multi-boxes scheme to take into account not only the feature map from the last
convolution layer but also features from the shallower layers. The authors figured out that the feature
maps in shallower layers will contain more information for smaller objects, and in deeper layers, the
larger object will be represented better. Thus, by combing the features from different layers, the detec-
tor can handle objects in different scales and sizes even without region proposals. As a result, SSD was
able to achieve 59 fps with preserved detection accuracy.

10 2. Background and related work

c) Comparison
In conclusion, Table 2.1 shows a comparison of the modern object detectors introduced in this section.
Among those models, R-CNN was the first successful attempt to utilize CNNs in object detection tasks,
where the efficiency of R-CNN was limited by the unnecessary repetitions of convolution operations
as well as the region proposal process. Fast R-CNN largely boosted the detection speed by sharing the
computation of most of the convolution layers for the whole input image, but the slow region proposal
process then became the bottleneck. Addressing this issue, in Faster R-CNN, RPN was proposed to
accelerate the region proposal step. And as a result, Faster R-CNN showed a significant speed-up as
well as state-of-the-arts accuracy comparing to the previous R-CNNs. Inspired by Faster R-CNN, R-
FCN showed higher speedups with an accuracy reduction by sharing the computations of not only the
backbone network but also the head network.

On the other hand, one-stage models showed much higher speeds, but relatively lower accuracy.
YOLO and Fast YOLO were able to achieve real-time detection by removing the region proposal pro-
cesses and combining the object localization with classification in one single forward pass. While,
YOLO showed unsatisfactory performances to detect the object in different scales, especially for small
objects. Comparing to YOLO, SSD [33] introduced a novel multi-layer anchor scheme to take multi-
level feature maps into account, which boosted the performance to detect objects in different scales.
Consequentially, SSD was able to run in real-time with competitive accuracy on GPUs during infer-
ence time.

Table 2.1: Comparison for modern object detectors

Two-stages Models Localization Computation Sharing Accuracy Speed
R-CNN Selective Search No sharing + +
Fast R-CNN Selective Search Shared backbone ++ ++
Faster R-CNN RPN+anchor Shared backbone ++++ +++
R-FCN RPN+anchor Share all +++ ++++
One-stage Models
YOLO Anchor Share all ++ +++++
Fast YOLO Anchor Share all + ++++++
SSD Multi-layer anchors Share all ++++ +++++

2.2. Overview of deep neural network compression
Although those CNN based systems are very powerful in computer version tasks, a large amount of
storage, memory, and computational power consumption are required to run those models. Thus, in
practice, most of the CNN models are trained deployed on machines with powerful GPUs. To increase
the scalability of those CNN models on cheaper machines, several approaches have been presented in
recent years, which will be briefly introduced in this section.

2.2.1. Low-precision and binary quantization
In practice, the parameters of CNNsmodels are usually represented by 32-bits single-precision floating-
point numbers or 64-bits double-precision floating-point numbers. Those CNN models are largely ac-
celerated by using GPUs, which are very efficient to handle floating-point operations. However, on
normal CPUs or embedded devices, floating-point operations are usually very costly. Modern CNN
models, such as ResNet-50 (3.6 billion FLOPs per image [22]) and VGG-19 (19.6 billion FLOPs per
image [22]) could easily run out of the computational resource on thosemachines. In low-power embed-
ded applications, one straightforward but effective way to reduce the cost is cutting down the number
of FLOPs with fix-point representations. In [7, 18], CNN models with 32-bits and 16-bits fix-point
representation were proved to be able to work on image classification tasks with negligible accuracy

2.3. Related works in binary neural networks 11

decreases. Courbariaux et al. showed that was also possible to train the networks with low-precision
fix-point representation [9]. Further approach with 8-bits representation for both parameters and inputs
was proposed and evaluated on ImageNet [45]. To the extreme case of low-precision representation,
another trend was to quantize the network parameters and even the inputs to only 1-bit binary num-
ber [8, 10]. However, those methods resulted in large reductions in classification accuracy. Further
explorations were made to improve the accuracy, such as ternary quantization [1], adding scaling fac-
tors [32, 35], using the linear combination of multiple binary bits [35, 45]. The detailed comparison of
different binary quantization approaches will be discussed in the next section.

2.2.2. Code-book based quantization
Code-book based quantization aims to quantize each specific network parameter to an element from the
code-book, where the code-book is a finite set consisting of real numbers. As a result, all the original
parameters in the models will be replaced by the elements from the code-book, and therefore the model
size can be largely reduced. There are several different ways to encode the parameters. For instance,
Chen et al. extend hashing method to DNNs in [5] by randomly separating the network parameters
into different hash groups and encoding the values in the same group to one specific number. Chen
et al. further improved the performance of the compressed models by grouping the weights from the
frequency domain’s point of view in [6]. Han et al. applied Huffman encoding in CNN [19], and
achieved a large reduction in network size.

2.2.3. Connection pruning
Connection pruning reduces the computational complexity directly by figuring out and removing cer-
tain redundant connections from CNNs. In [3, 29], attempts were made by adding sparsity constraints
to the neural network. Lebedev et al. further introduced group-sparsity regularization during training
time with group-wise brain damage method, which simplified the convolutional operations to the mul-
tiplications of spare matrices. To reduce the efforts to represent the pruned networks with irregular
connections, as well as to make the pruned network better fiting the parallel computing system, Anwar
et al. proposed structured pruning method in [2]. Structured pruning added sparsity at different scales,
such as channel-wise and kernel-wise sparsity. Han et al. proposed a three-stages pruning approach
in [20]. They first trained the network to figure out the essential connections, then they removed the
redundant connection from the network, and finally, they performed training on the compressed net-
work again. Han et al. also proposed a deep compression method in [19], which significantly reduced
the size of the networks by performing connection pruning, low-precision quantization, and Huffman
encoding simultaneously to the networks.

2.3. Related works in binary neural networks
2.3.1. Binary neural networks on image classification
Table 2.2 illustrates the comparison among different binary quantization methods. In theory, for con-
volutional layers, the maximum compression achieved with binary quantization is 32× and 64 × for
single-precision and double-precision floating-point numbers respectively. For instance, BC (Bina-
ryConnect) [10] simply quantized the weights of the convolutional parameter to 1-bit {−1, 1} represen-
tation, which has the highest compression among all methods. And BNN (binarized neural network) [8]
further quantized the input images to simplify the costly floating-point arithmetic (e.g. multiplications,
additions) to bit operations like XNOR and bit count. BNNwas able to achieve significant compression
as well as dramatic speedups on image classification tasks. However, these early quantization methods
like BC and BNN showed large reductions in classification accuracy (comparing to the full precision
AlexNet on ImageNet classification, approximately 20% and 30% decreases with BC and BNN respec-
tively were reported in [35]).

To solve the accuracy issues, Rastegari et al. proposed a more accuracy approach named BWN

12 2. Background and related work

(binary weight networks) [35]. BWN used an extra scaling factor 𝛼 for each convolutional kernel
aiming to better represent the full precision weights. To be more specific, during inference time, each
parameter in the convolutional kernel was represented by {−𝛼, 𝛼} instead of {−1, 1} in BC. The shifting
parameters were determined by solving regression problems during training time, and they were saved
together with the binary weights for further inferences. The shifting parameter only took an overhead
of 32-bits for each convolutional kernel, which was negligible for CNN models with over a hundred
megabytes. Similarly, in XNOR-Net [35], the scaling factors were utilized to represent the binary inputs
with {−𝛼, 𝛼}with small overheads, while the convolutional operations in the proposed XNOR-Net were
still maintained in XNOR and bit count form. Therefore, BWN was able to improve ∼ 17% accuracy
comparing to BC on ImageNet classification, and XNOR-Net was able to improve ∼ 25% accuracy
comparing to BNN [35].

Another trend to improve the accuracy was using ternary representations with {−1, 0, 1} to quan-
tize the parameters. Li et al. proposed TWN (ternary weight networks) [30] by using this {−1, 0, 1}
representation for the weight. For ResNet-18, TWN increased around 2% accuracy on ImnageNet
classification comparing to BWN. Also, the ternary neural network (TNN) with both ternary inputs and
ternary weights was proposed and evaluated on FPGA in [1]. However, to represent the ternary weights
or inputs with {−1, 0, 1}, 2-bits numbers are required, which results in relatively large overheads com-
paring to binary quantization approaches.

Moreover, further methods were proposed to enable trade-offs between compression and accuracy.
For instance, Zhou et al. proposed DoReFa-Nets, which used combinations of multiple-bits binary
numbers to represent both the weights and inputs. The number of bits used to quantize the model with
DoRaFa-Net scheme can be flexibly defined, and thus the compression of DoReFa-Net can be defined
as 𝑘 × {−1, 1} with 32/𝑘× memory and storage-saving, where 𝑘 means 𝑘-bits quantization. Another
important contribution of DoRaFa-Net is that it can be also trainedwith lower bit-width gradients, which
not only accelerate the inferences but also the training processes.

Aiming to further reduce the quantization errors, Lin et al. proposed an accuracy-toward scheme,
named ABC-Net (Towards accurate binary convolutional network) to train binary networks in [32].
Similar to XNOR-Net, ABC-Net uses scaling factors defined by regressions. However, instead of only
1-bit in BNN and BWN, ABC-Net uses the linear combination of flexible multiple-bits to represent
the convolutional kernel and the inputs, and ABC-Net uses one specific scaling factors for each bit.
In other words, the weights of ABC-Net can be represented as {−𝛼ᑚ, 𝛼ᑚ‖𝑖 ∈ [1, 𝑘], 𝑖 ∈ 𝕫}, where 𝑘
means k-bits quantization and 𝛼ᑚ is the scaling factor for each bit respectively. Similarly, the inputs in
ABC-Net scheme was represented by {−𝛽ᑚ, 𝛽ᑚ‖𝑖 ∈ [1,𝑚], 𝑖 ∈ 𝕫}, where 𝛽ᑚ is the scaling factor for each
quantized bit of the inputs. With such approach, ABC-Net can achieve almost lossless accuracy: within
2% accuracy loss on ImageNet classification with 5-bits quantization when use quantized weights and
full precision inputs, and within 6% accuracy loss on ImageNet classification with 5-bits quantization
when use quantized weight and inputs. As the cost of high performances, the compression of ABC-Net
is relatively low (e.g. ∼6.4×for 5-bits ABC-Nets). The detailed approach of ABC-Net will be discussed
in Chapter 4.

With the similar motivation to ABC-Net an unpublished approach proposed by our group, named
PA-Net.1 (piecewise approximation network). Similar toABC-Net, PA-Net also uses a flexiblemultiple-
bits quantization scheme. However, instead of using the factor 𝛼s to scale the convolutional kernel as
whole [32], PA-Net scheme approximate both the convolutional kernels and inputs by looking on the
elements’ level. To be more specific, PA-Net will divide each element into the corresponding pieces by
the numerical value, and one specific scaling factor will be tuned to scale the elements in each piece.
Thus by using such element-wise quantization, PA-Net scheme can better represent the convolutional
kernels and the input images, even with the same compression({−𝛼ᑚ, 𝛼ᑚ‖𝑖 ∈ [1, 𝑘], 𝑖 ∈ 𝕫}, where
k means k-bits quantization) as ABC-Net scheme. Comparing to the full precision models, PA-Net

1PA-Net was first proposed by Zhu et al. from computer engineering group from EEMCS faculty, TU Delft.

2.3. Related works in binary neural networks 13

achieved approximately 1% accuracy dedication for ResNet in different depths, which can outperform
ABC-Net on image classification tasks. The detailed methodologies of PA-Net will be discussed in
Chapter 5.

Methods Weights Inputs Operations Memory
Full precision 𝐹 𝐹 +, - , × 1

BC [10] {−1, 1} 𝐹 +, - ∼32×
BNN [8] {−1, 1} {−1, 1} xnor,bitcount ∼32×
BWN [35] {−𝛼, 𝛼} 𝐹 +,- ∼32×
XNOR [35] {−𝛼, 𝛼} {−𝛽, 𝛽} ⨀,bitcount ∼32×
TNN [1] {−1, 0, 1} {−1, 0, 1} and,bitcount ∼16×
TWN [30] {−𝛼, 0, 𝛼} 𝐹 +,- ∼16×

DoReFa [45] 𝑘 × {0, 1} 𝑘 × {0, 1} +,-,x,and 32/𝑘
ABC [32] {−𝛼ᑚ, 𝛼ᑚ‖𝑖 ∈ [1, 𝑘], 𝑖 ∈ 𝕫} {−𝛽ᑚ, 𝛽ᑚ‖𝑖 ∈ [1,𝑚], 𝑖 ∈ 𝕫} +,-,⨀,bitcont 32/𝑘

PA2 {−𝛼ᑚ, 𝛼ᑚ‖𝑖 ∈ [1, 𝑘], 𝑖 ∈ 𝕫} {−𝛽ᑚ, 𝛽ᑚ‖𝑖 ∈ [1,𝑚], 𝑖 ∈ 𝕫} +,-,and, bitcont 32/𝑘

Table 2.2: Comparison for different quantization approaches. Where F means 32-bits floating numbers, and k
means k-bits quantization. Memory represents the memory or storage saving for convolution operations. and,⨀,
and bitcount are bit operations representing AND, XNOR, and bit counting, respectively.

2.3.2. Related work of binary neural networks for object detection
As also introduced in Chapter 1, although many approaches were proposed for binary quantization of
DNNs and CNNs, almost all of them were designed and evaluated for image classification problems.
However, only a few results were reported about the binary quantization based model compression for
object detection tasks, which are much more complicated comparing to image classification.

Figure 2.5: The unified network proposed in [42]

In [42] Sun et al. proposed a unified network for object detection and quantized their network based
on binary quantization approach. The proposed one stage unified object detector can be shown in Fig-
ure 2.5 below. Their proposed network also utilized the backbone and head-network based architecture,
and similar to [33, 39], VGG-16 pre-trained on ImageNet classification tasks was chosen as the back-
bone network. Four additional convolutional layers are added on the top of the backbone network as
the head network. Similar to other one-stage object detectors, region proposal stages are not used, and
all the convolutional operations except 𝐶𝑜𝑛𝑣9 are shared by the whole image in one single forward
pass. In the last convolution layer (𝐶𝑜𝑛𝑣9), convolutional kernels with different sizes from 1 × 1 to
𝑘𝑤 × 𝑘ℎ are used to generate the features for object classification and bounding box regression[42].
During training time, the mean square error is used for box regression, and the class scores are obtained
by calculating the softmax losses [42]. As multiple different convolutional kernels are utilized to gener-
ate the final features, the total losses are calculated by accumulating the losses from all the kernels [42].

14 2. Background and related work

Based on the proposed unified network, Sun et al. proposed a partially quantized network for further
memory saving and speedups, where the head network and the last convolutional layer are kept in full
precision and the convolutional layers, as well as the inputs in the head network from 𝐶𝑜𝑛𝑣6_3 to
𝐶𝑜𝑛𝑣8, are binarized with approaches introduced in [35]. However, with such an approach, dramatic
accuracy reductions were observed from their experiments on PASCAL VOC data set, where the mean
average precision(mAP) dropped from 68.9% to 44.3% [42].

The result of [42] illustrates that, binarizing both the weights and inputs of CNN resulted in signif-
icant performance reductions on object detection tasks, even with the majority of the parameters in the
network kept in full precision. This also showed that training binary CNNs for object detection tasks
is much more difficult than for classification problems. Thus, further exploration and improvement for
binary networks on object detection are consequential for practical applications.

3
Solution strategy and experiment setup

In this chapter, the implementations of the baseline full-precision object detectors will be discussed.
And the experimental setups, as well as the data set used to evaluate the models will be described.
The metrics to measure the model performances will also be included. Finally, we will talk about the
strategies used to train the models during the experiments.

3.1. Experiments details
The main experiments of the project were performed on the GPU server of computer engineering group,
EEMCS faculty, TU Delft with one NVIDIA K40 GPU. The models are implemented with Python.
And in this section, we will introduce the data set used to train and evaluated the models, as well as the
evaluation methods used in the experiments.

3.1.1. Data set
In this project, all the models are trained and evaluated on the data set of PASCAL VOC (visual object
classes) challenge [13], which is one of the most popular data set used to evaluate the models for object
detection problems. The contents of the data set for PASCAL VOC challenges were changed each year
from 2005 to 2012. Typically, most of researches [11, 33, 38, 39] for object detection problems only
adopted the data sets from 2007 (PASCAL VOC2007), 2012 (PASCAL VOC2012), or the combination
of PASCAL VOC2007 and PASCAL VOC2012.

The PASCAL VOC2007 challenges contained totally 9,963 images for both image classification
and object detection problem. And 24,640 objects within 20 different categories were annotated for
the object detection problem, such as a person, car, airplane, etc. The whole data set can be divided
into the train and validation set (VOC07 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙) and the test set (VOC07 𝑡𝑒𝑠𝑡). To be more spe-
cific, the 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙 set include 5,011 images with 15,662 labeled objects, and the 𝑡𝑒𝑠𝑡 set include 4,952
images with 8,978 labeled objects. Similarly, PASCAL VOC2012 consists of the 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙 set with
11,540 images for 27,450 objects, and non-public 𝑡𝑒𝑠𝑡 set with approximately equal targets compar-
ing to VOC2012 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙, where the target objects are within the same 20 categories as PASCAL
VOC2007. The 𝑡𝑒𝑠𝑡 sets must keep strictly independent to the training processes.

In the researches for object detection during recent years, there were two most widely used ways to
evaluate the models on PASCAL VOC data set, which will also be adopted in this project: a) train the
models on PASCALVOC2007 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙, and evaluate on PASCALVOC2007 𝑡𝑒𝑠𝑡, b) train themodels
on PASCAL VOC2007 + PASCAL VOC2012 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙 and evaluate them on PASCAL VOC2007
𝑡𝑒𝑠𝑡. The former option was the standard way used in 2007 challenges, and the latter was chose to
evaluate the models with much more training samples.

15

16 3. Solution strategy and experiment setup

3.1.2. Evaluation metrics
Evaluating an object detector is much more complex than evaluating an image classifier because both
accuracies for classification and localization should be considered. In researches and practical applica-
tions, mean average precision (mAP) is the most widely used metrics to evaluate object detectors, in the
sense of both localization and classification accuracy. But before the mean average precision, we will
first introduce precision, recall, and intersection over union, which will be used in mAP calculations.

a) Intersection over union (IoU)
Intersection over Union (IoU) is the metric to measure the overlapping between two areas, and in object
detection, it is usually used to measure the overlapping between the areas bounded by the predicted
box and the ground truth box. The calculation for IoU is illustrated in Equation 3.1, where 𝐴ᑡ and 𝐴ᑘᑥ
represent the predicted and ground truth areas respectively. The value of IoU is between 0 to 1, and
in object detection tasks, high IoU means high overlapping between predicted boxes with ground truth
boxes and represents high localization accuracy.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝐴ᑡ ∩ 𝐴ᑘᑥ)
𝐴𝑟𝑒𝑎(𝐴ᑡ ∪ 𝐴ᑘᑥ)

(3.1)

b) Precision and recall
Before talking about the precision and recall, we should first introduce four notions, named true positive,
false positive, true negative, and false negative, which are usually mentioned in information retrieval
and searching systems:

• True positive (TP): In object detection, TP typically represents the objects being detected which
should indeed be detected (the prediction matches the ground truth). Normally, the prediction is
said to match the ground truth if the IoU between them is larger than one threshold (e.g. thresh-
old=0.5 is used for PASCAL VOC).

• False positive (FP): The objects being detected by the detector, but should not be detected (the
prediction does not match the ground truth). Normally, the prediction is considered to be FP if
the IoU between them is below the threshold.

• True Negative (TN): The instances not being detected, which should not be detected.

• False Negative (FN): The instances not being detected, but should be detected. For example, the
undetected ground truth.

It is important to note that, typically, TP, FP, TN, and FN are independent for each object class. Based on
the four notions, precision is defined in Equation 3.2, which measures the ability of models to identify
relevant targets. The precision is defined as the fraction between the correct detection and all detection
in object detection problems.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3.2)

However, in object detection, only the precision cannot clearly describe the performances of the models.
Because precision only measures the correctness of the detection, while the undetected contents will
not be concerned. Thus, the recall is defined and utilized simultaneously with precision, as shown in
Equation 3.3. Recall measures the ability of models to figure out the relevant objects, which is defined
as the fraction between the correct detection and all the ground truth.

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.3)

3.2. Implementation of full precision baseline networks 17

c) Mean average precision
One good way to evaluate the performance of an object detector is to combine the precision with recall
for each specific object class. The object detector is considered to have a good performance if for all
object classes, the precision maintains in a high level with the increase of the recall, which means that
the object detector has good abilities to both retrieve the relevant target (high recall) as well as identify
the target (high precision). However, in practice, object detectors usually suffer from the precision
deduction, when trying to figure out all desired targets (or ground truth) to achieve high recall. Because
to retrieve all ground-truth objects, the object detectors should increase the number of detected objects
(positive), which will cause the increase of false-positive objects, and consequentially the decrease in
precision. This suggests that considering the precision on single recall value is usually not enough.

Figure 3.1: One example for precision v.s. recall curve and the AP calculation. The mAP will calculated using the
areas under the interpreted precision v.s. recall curve (red).

Thus, in PASCAL VOC challenge [13], instead of one precision and recall, the average precision
(AP) for all recall values was used to measure the overall performance of an object detector on all
the different recall levels. In PASCAL VOC standard [13], the average precision can be obtained by
calculating the areas under the precision v.s. recall curves. One example of the precision v.s. recall
curves and the AP (area under curve) calculation used in PASCAL VOC data set [13] can be found in
Figure 3.1. Note that all the precision and recall here are for each particular object class separately.
To evaluate the performance for all the object classes, the mean average precision can be obtained by
calculating the average of APs over all the classes, shown in Equation 3.4. 𝑁ᑔᑝᑤ is the total number of
classes. 𝑟 is the unique recall value for each data point. And 𝜌ᑚᑟᑥᑖᑣᑡ = 𝑚𝑎𝑥ᑣ̃ᐳᑣᑟᎼᎳ𝜌(�̃�), where 𝜌(�̃�)
is the corresponding precision for recall 𝑟.

𝑚𝐴𝑃 = 1
𝑁ᑔᑝᑤ

∑
ᑅᑔᑝᑤ

∑(𝑟ᑟᎼᎳ − 𝑟ᑟ)𝜌ᑚᑟᑥᑖᑣᑡ(𝑟ᑟᎼᎳ) (3.4)

It is also important to note that in PASCAL VOC standard, the IoU threshold used to determine the
true positive is set to 0.5. This threshold is different in other data set. For example in COCO [31] set,
the AP for multiple IoU thresholds (from 0.5 to 0.95 with a step size of 0.05) will be considered, and
the overall mAP will be obtained by calculate the average for all those thresholds.

3.2. Implementation of full precision baseline networks
As introduced in Chapter 2, different object detectors were proposed to improve the performance in
terms of both detection speed and detection accuracy. In general, among those object detectors, region-

18 3. Solution strategy and experiment setup

based two-stage models tend to achieve higher accuracy and batter ability to be generalized with differ-
ent backbone architectures [26]. However, those region-based methods like Faster R-CNN and R-FCN
were observed to require more computations (e.g. FLOPs, memory usages) comparing to the single-
stage model like SSD [26, 33]. Thus, in practice, most of the visual recognition systems are based on
single-stage approaches. Those two-stages models usually are very difficult to be deployed on low-
power machines due to the power and memory constraints. Therefore, the exploration to compress
those accurate but heavy models are worthwhile for real-world applications. And for single-stage like
YOLO and SSD, although they can run in real-time with the support of GPUs, further compression to
reduce the computational cost for low-power devices is still worthwhile.

Due to the reasons discussed above, in this project, we first chose the Faster R-CNN as one of our
baseline model, which is one of the most accurate but slowest approaches among all the state-of-the-art
object detectors. And the SSD model was also chosen as another baseline to explore further run-time
resource reductions, as it showed equal or even higher performance compared to Faster R-CNN in some
experiments [26].

3.2.1. Implementation for Faster R-CNN
a) Backbone network
Figure 3.2 illustrates the architectures of the full-precision Faster R-CNN baseline network. Instead of
using VGG network as shown in the implementation in [39], we choose to use ResNet as the backbone
networks for our Faster R-CNN implementation. There are several reasons to use ResNet for the back-
bone. Firstly, existing researches in [22, 26] showed that ResNet can better extract the features from the
input images, and as a result, ResNet successfully achieved higher accuracy for both the classification
and the object detection tasks comparing to VGG based networks. Secondly, ResNet was proved to be
relatively robust to the error resulted by binary quantization in previous works of binary networks for
image classification in [32, 35]. Lastly, ResNet is computationally more efficient than VGG networks:
VGG-16/19 nets require 15.3 and 19.6 billion FLOPs respectively to feed one single image while even
the deepest 152 layers ResNet-152 only takes 11.3 billion FLOPs for single image [22]. Thus, the
ResNet based Faster R-CNN tend to be more accurate and computational cheaper comparing to the
VGG based implementation in [39].

In this project ResNet in different depths will be used as the backbone for the baseline full-precision
Faster R-CNN networks. To be more specific, similar to [23], we adopt ResNet [22] from 𝑐𝑜𝑛𝑣1 to
𝑐𝑜𝑛𝑣4_𝑥 to extract the feature maps as the inputs of the RPN head for region proposals generating,
which is shown in Figure 3.2. And we adopt 𝑐𝑜𝑛𝑣5_𝑥 on the top of the ROI pooling layer, which will
be fine-tuned to calculate the feature map of each generated region proposal (or region of interests) for
final object classifications. All the backbone ResNet were pre-trained on ImageNet classification and
will be fine-tuned together with the head network end-to-end during training time.

b) Region proposal network
Shown in Figure 3.3, the implementation of the region proposal network(RPN) is kept the same as
that proposed in original paper [39]. Firstly, a 3 × 3 convolutional layer is attached to the top of the
feature maps extracted from 𝑐𝑜𝑛𝑣4_𝑥. Then two branches are used for the foreground/background
classification and the preliminary bounding box regression respectively. 1 × 1 convolution is used
in both the of the branches. For the foreground/background classification branch, each pixel in the
outputs from the last 3 × 3 convolutinal layer will be mapped to 2𝑘 two-classes scores (representing
the foreground and the background respectively) with the 1 × 1 convolution, where 𝑘 is the number of
anchors defined before training. And the final class of each anchor will be determined by the softmax
classifier. Similarly, this 1×1 convolution layer is also used in the bounding boxes branch, which maps
each pixel from the outputs of 3×3 convolutinal layer to 𝑘 bounding boxes coordinates in 4 dimensions,
and the preliminary bounding box regression will be performed to optimize the coordinates for better

3.2. Implementation of full precision baseline networks 19

Figure 3.2: The implementation of the baseline full-precision Faster R-CNN: ፂ፨፧፯ኻ to ፂ፨፧፯_፱ are pre-trained
ResNet blocks [22]. FC stand for the fully connected layers. RPN is the region proposal network with the same
implementation in [39]. And RoI_pooling is the region of interests pooling layer used to collect the proposals and
map them to the same size for further convolutional operations. Predicted_bboxes and Predicted_Classes are the
outputs of the network for bounding boxes predictions and the target class predictions respectively.

localization. Finally, before generating the proposals, non-maximum suppression will be utilized to
filter the overlapping boxes [39].

Figure 3.3: The Implementation of the region proposal networks in Faster R-CNN[39]: The RPN takes the feature
map extracted from ፨፧፯ኾ_፱ and generate the region proposals by applying foreground/background classification
and bounding boxes regressions with a fully convolutional form.

3.2.2. Implementation for SSD
Similarly, ResNet in different depths are chosen as the backbone networks for the SSD networks instead
of the original implementation with VGG nets in [33] due to the same reasons discussed above. It
is important to note that the original SSD added several extra plain convolutional layers (e.g.VGG
like convolutional layers) on the top of the backbone networks to extract the feature maps in different
levels. However, as discussed in the ResNet paper [22], such plain-style CNNs showed a large accuracy
degeneration when the networks become deep. Thus, we cannot just simply apply them for feature
maps extractions when using a deep backbone network. For instance, a ResNet-50 based SSD contains
over sixty convolutional layers, and ResNet-101 based SSD contains approximately 120 convolutional
layers, where it is very likely to suffer from the accuracy degeneration issues discussed in [22]. Thus,
instead of using the plain convolutional layers, extra residual blocks are used to extract the feature maps
for SSD on the top of the ResNet backbone networks. This implementation was also used in [15].

Figure 3.4 showed the implementation of SSD network for the experiments in this project. Similarly
to the Faster R-CNN implementation above, 𝐶𝑜𝑛𝑣1 to 𝐶𝑜𝑛𝑣5_𝑥 from the pre-trained ResNet models
are used as the backbone network for SSD. And we apply residual blocks as the extra feature layers
on the top of the backbone network and we keep the number of feature maps the same as the original
implementation [33]. To be more specific, 3×3 convolutional kennels are applied as the classifiers for

20 3. Solution strategy and experiment setup

Figure 3.4: The Implementation of the baseline full-precision SSD network: ፂ፨፧፯ኻ to ፂ፨፧፯_፱ are pre-trained
ResNet blocks [22]. Feature maps extracted from ፨፧፯ኽ_፱, ፨፧፯_፱ as well as all extra SSD layers will be used
as multiple box features for the final prediction.

feature maps collected from the different layers, and the size of each feature map is also kept totally the
same as the original implementation in [33] and [14], which is extracted from 𝐶𝑜𝑛𝑣3_𝑥, 𝐶𝑜𝑛𝑣5_𝑥 and
all the extra SSD layers respectively.

3.2.3. Training the baseline full precision networks
a) Faster R-CNN
For both Faster R-CNN and SSD, the backbone ResNet networks were pre-trained on ILSVRC data
set [40]. And for Faster R-CNN, instead of the multiple-stages training process [39], we fine-tuned
the RPN together with pre-trained backbone network end-to-end with the joint multi-task loss function
based approach introduced in [39] and their official code. The loss function for the end-to-end training
is showed below:

𝐿 = 𝐿ᑙᑖᑒᑕ + 𝐿ᑣᑡᑟ + 𝐿ᑣᑖᑘ (3.5)

The 𝐿ᑙᑖᑒᑕ and 𝐿ᑣᑡᑟ represent the final prediction losses and the region proposal losses respectively,
and 𝐿ᑣᑖᑘ is the regression losses to prevent over-fitting. 𝐿ᑙᑖᑒᑕ and 𝐿ᑣᑡᑟ are the same as the loss function
used in the original implementation [16, 39], which includes the multi-task loss for object classifica-
tion and localization. For the classification losses, the softmax losses over the foreground/background
classes are used for RPN loss 𝐿ᑣᑡᑟ, and the softmax losses over all the object classes are used for the
head loss 𝐿ᑙᑖᑒᑕ. The softmax loss (or cross-entropy loss) function is shown in Equation 3.6 below.
𝑁ᑔᑝᑤ is the number of classes (2 for 𝐿ᑣᑡᑟ, and total number of classes for 𝐿ᑙᑖᑒᑕ). 𝑦ᑩ,ᑝ is the indicator
in {0, 1}, 𝑦ᑩ,ᑝ = 0 when the prediction 𝑥 is correct for ground truth label 𝑙, or 𝑦ᑩ,ᑝ = 1 otherwise. 𝑝ᑩ,ᑝ
is the probability for prediction 𝑥 on class 𝑙.

𝐿ᑔᑝᑒᑤᑤ = −
ᑅᑔᑝᑤ
∑
ᑝ
𝑦ᑩ,ᑝ log(𝑝ᑩ,ᑝ) (3.6)

While, for bounding box regression loss, smoothed L1 loss (or equally Huber loss) is applied for
both the head and RPN loss functions. The smooth L1 loss can be shown in Equation 3.7, where 𝑙
and 𝑔 represent the predicted and ground truth bounding boxes coordinate respectively. The final box
loss for each proposal is the sum of the smoothed L1 losses for the four coordinates calculated by
Equation 3.7 [16].

3.3. Strategies to train binary object detectors 21

𝑠𝑚𝑜𝑜𝑡ℎ_𝐿Ꮃ(𝑙 − 𝑔) = {
0.5(𝑙 − 𝑔)Ꮄ if|𝑙 − 𝑔| < 1
|𝑙 − 𝑔| − 0.5 otherwise, (3.7)

During training, Faster R-CNN models are trained with the momentum optimizer with the momentum
of 0.9, weight decay of 0.0005, learning rate of 0.01 with a 0.1 decay factor, and mini-batch size of 1,
which is the same as [39].

b) SSD
On the other hand, as SSD networks do not contain the region proposal network, the SSDmodels can be
trained with one Multi-boxes loss function, which is the same as loss function in the original paper [33].
The specific Multi-box loss function [33] is shown in Equation 3.8 below.

𝐿(𝑥, 𝑐, 𝑙, 𝑔) = 1
𝑁(𝐿ᑔᑠᑟᑗ(𝑥, 𝑐) + 𝛼𝐿ᑝᑠᑔ(𝑥, 𝑙, 𝑔)) (3.8)

𝑁 is the number of anchor boxes. 𝐿ᑔᑠᑟᑗ and 𝐿ᑝᑠᑔ are the classification confidence (or score) and
localization loss respectively. The confidence loss function 𝐿ᑔᑠᑟᑗ takes the ground truth labels of the
targets (𝑐) and the predicted classes (𝑥) as inputs and calculate the multi-class softmax losses to obtain
the confidence for the predictions of input images. To be more specific, to calculate the losses during
training, SSDwill first figure out the positive (objects) and negative (backgrounds) anchors bymatching
every anchor box to the ground truth bounding box. The anchor is set to positive when the IoU between
the anchor box and gourd truth box is larger than 0.5. The confidence function 𝐿ᑔᑠᑟᑗ takes both positive
and negative anchors into account during training. As the same as in [33] the confidence loss function
for SSD is shown in Equation 3.9. 𝑁 is the number of anchor boxes, and 𝑦ᑚ,ᑛ is the binary indicator,
which is set to 0 when the prediction for 𝑖th anchor equals to the 𝑗th ground truth label. 𝑝 and 0 represent
the object label and background label respectively. As a result, Equation 3.9 calculates the softmax loss
for the class predictions in all positive anchors and also penalizes the loss according to the confidence
in the background class 0.

𝐿ᑔᑠᑟᑗ = −
ᑅ

∑
ᑝ∈ᑇᑠᑤ

𝑦ᑚ,ᑛ log(𝑐ᑡᑚ) − ∑
ᑚ∈ᑅᑖᑘ

log(𝑐Ꮂᑚ) where 𝑐
ᑡ
ᑚ =

exp(𝑥ᑡᑚ)
∑ᑡ exp 𝑥

ᑡ
ᑚ

(3.9)

And similar to Equation 3.7, the localization loss function takes the ground truth bounding boxes(𝑔),
the predicted bounding boxes (𝑙) as well as the class predictions 𝑥 to calculate the smooth L1 cost be-
tween ground truth and predicted coordinates. The hyper parameter 𝛼 is used to balance the localization
and the confidence losses, which is set to 1 determined by cross-validation in [33]. Same as the imple-
mentation in SSD paper [33], we trained SSD using momentum optimizer with the momentum of 0.9,
weight decay of 0.0005, learning rate of 0.01 with 0.1 decay factor, and a batch size of 32.

c) Performances
Both of the Faster R-CNN and SSD are fine-tuned on PASCAL VOC train_val data set and evaluated
on PASCAL VOC 2007 text set [13] as introduced in last section. The performances of the baseline full
precision models can be found in Table 3.1 below.

3.3. Strategies to train binary object detectors
Before we discuss the detailed methods and implementations for binary quantization of the object de-
tectors in next chapter, in this section we will first introduce the strategies to train the binary object
detectors.

22 3. Solution strategy and experiment setup

Detector Backbone network Training set mAP@IoU=0.5

Faster R-CNN

ResNet-18 VOC07 60.057
ResNet-50 VOC07 65.381
ResNet-50 VOC07+12 73.432
ResNet-101 VOC07+12 75.41

SSD-300 ResNet-50 VOC07+12 74.35

Table 3.1: Performances for baseline full precision object dictators. VOC07 means PASCAL VOC2007 train_val
set, and VOC07+12 means the combination of PASCAL VOC2007 train_val and PASCAL VOC2012 train_val set.
All the results were evaluated on PASCAL VOC2007 test set.

3.3.1. Binary object detector outlines
The previous works on binary quantized convolutional neural networks for both the classification [32,
35], and the object detection [42] have observed non-negligible accuracy reduction after quantization
even with some layers kept in 32-bits full-precision numbers. This suggests that the binary networks
should be carefully designed. The general strategies used to design binary object detectors are as fol-
lows:

• First convolutional layer and the last layer: Large accuracy deductions were witnessed in
existing works [32, 35] when the networks being fully binarized. However, researchers figured
out that higher accuracy can be preserved when keeping the first convolutional layer and the last
layer (mostly fully connected layers) in full precision. This design choice was widely applied and
proved helpful in binary quantization models in past few years [32, 35].

• Layers in the head networks: The layers in the head network of object detectors are usually
used to generate the feature maps, where the classification stages are always performed directly
on the output of those layers. For example, in the RPN of Faster R-CNN shown in Figure 3.3,
the outputs of the 𝑐𝑜𝑛𝑣_1 × 1 will be used for the foreground/background classification. And
in SSD, the outputs of multi-box convolutional layers will be used as the final feature maps for
object classification. Thus, similar to the last layer of the whole network, those layers will be
kept in full precision.

• Further trade-off1: Except the layers discussed above, further trade-off between the accuracy
and compression can be made by carefully choosing a part of the intermediate layers to maintain
in full precision. Or more layers can be quantized for further compression. The trade-off will be
discussed in Chapter 7.

Based on the strategies above, for Faster R-CNN, we will first binarize the backbone convolutional
layers from 𝐶𝑜𝑛𝑣2_𝑥 to 𝐶𝑜𝑛𝑣5_𝑥, but keeping the first 𝐶𝑜𝑛𝑣1 layer, the layers in RPN, and the last
fully connected layers for both objects classification and bounding boxes regression in full-precision.
On the other hand, for SSD, all the backbone layers except 𝐶𝑜𝑛𝑣1 are binarized, while all the convo-
lutional layers in the head network will be first kept in full-precision.

3.3.2. Training binary object detectors
There are basically two options can be applied to train the binary object detectors, which is shown as
follows:

• Option 1: The training process can be separated into two stages. For the first stage, the full-
precision backbone network for image classification task will be trained on ImageNet. Then for

1We will first adopt the first two strategies for the experiments from Chapter4 to 6, and make further trade-off in
Chapter7

3.3. Strategies to train binary object detectors 23

object detector, the full-precision backbone network, as well as the head network will be fine-
toned simultaneously with the binary quantization scheme on the data set for object detection.
With this option, the binary object detectors are trained from scratch, and this method was fre-
quently used in existing works to train binary networks for classification [10, 32, 35].

• Option 2: This project suggests a different three-stages training process for binary object de-
tectors. Similarly, on stage one, the full-precision backbone network will be trained on Ima-
geNet classification problem. But, then on the second stage, full-precision object detectors will
be trained with the strategies discussed in section 3.2.3 and the original papers [33, 39]. Finally,
on stage three, we fine-tuned the pre-trained object detectors from stage two with the binary
quantization scheme on the object detection data set.

Although option 1 was frequently used in the binary networks for image classification problems, we
observed large accuracy degeneration when training the object detectors with this option. Thus, in this
project, we adopted the three-stages strategies during training time. As a result, much higher accuracy
was achieved by adopting option 2 instead of option 1. Table 3.2 illiterates the experiments performed
to compare the two methods. By applying option 2, we achieved approximately 1.5 times higher mAP
than using option 1, when training binary Faster R-CNN, based on ResNet-18 and ABC-Net with 5 bits
binary representation.

Detector Backbone network Method mAP@IoU=0.5

Faster R-CNN ResNet-18 option 1 37.17
ResNet-18 option 2 55.13

Table 3.2: Performances of the Faster R-CNN trained with the two different options. Both of them are based on
ResNet-18, and quantized with ABC-Net with 5-bits binary representation. The models are fine-tuned on PASCAL
VOC2007 trainval. All the results were evaluated on PASCAL VOC2007 test set.

The reasonable explanation is that by fine-tuning on the pre-trained detectors, the binary object
detectors can better approximate the parameters from full-precision models, and therefore it tends to
converge easier than option 1 during training time.

4
Accurate binary convolutional networks

(ABC-Net)

As introduced in Chapter 2, accurate binary convolutional networks (ABC-Net) is an accuracy-oriented
scheme to binarize the convolutional neural networks proposed in [32]. The key idea of ABC-Net is to
represent the network parameters and input images with a linear combination of multiple binary num-
bers. Although ABC-Net requires higher bit-length, it can sufficiently save the accuracy for binarizing
image classification models, and therefore ABC-Net is a more suitable approach to be used to check
the possibility of unitizing binary quantization on more complex object detection problems.

In this chapter, the detailed ABC-Net based binarization scheme will be discussed. And this chapter
further specifies a practical way to perform the binary convolutional operation with ABC-Net scheme.
Then, the experiments will be performed to evaluate the binary object detectors quantized with ABC-
Net.

4.1. Methodology
The ABC-Net scheme includes both the weights and inputs quantization. And the methodologies for
both binary convolution in forward propagation, and the gradients based weight updates in backward
propagation were involved. It is important to note that, similar to BWN [35], in ABC-Net scheme, the
32-bits full-precision parameters are used during training time, and the binary weights and inputs are
applied only for inference time [32].

4.1.1. Weight quantization
a) Forward propagation
For weights quantization, two options were proposed in [32], which is approximating the weight as
a whole, and approximating the weight channel-wisely. As the channel-wise approximation requires a
large amount of memory during training, we approximate the parameters as a whole to save the memory
during training time.

To be more specific, the full-precision weight for each convolutional layer 𝑊 can be represented
by the linear combination of𝑀 binary filters from 𝐵Ꮃ to 𝐵ᑄ as shown in Equation 4.1. Note that, each
binary kernel 𝐵ᑞ has the same size with the full precision kernel 𝑊, which are 4-D tensors with the
channel of layer input 𝑐ᑚ𝑛, the channel of the layer output 𝑐ᑠᑦᑥ, the convolutional kernel width 𝑤, and
the convolutional kernel height ℎ. And each full-precision parameter from𝑊 is then represented by the
weighted sum of the binary weight from 𝐵ᑞ, where the binary element is scaled by the corresponding
scaling factor 𝛼ᑞ.

25

26 4. Accurate binary convolutional networks (ABC-Net)

𝑊 ≈
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ𝐵ᑞ, where𝑊 ∈ ℝᑔᑠᑦᑥ×ᑔᑚᑟ×ᑨ×ᑙ and𝐵 ∈ {−1, 1}ᑔᑠᑦᑥ×ᑔᑚᑟ×ᑨ×ᑙ (4.1)

The binary kernels 𝐵ᑚs are directly mapped from the full-precision kernel 𝑊, with Equation 4.2,
where 𝑢ᑚ is the parameters to shift the weights in range [−𝑠𝑡𝑑(𝑊), 𝑠𝑡𝑑(𝑊)].

𝐵ᑞ = 𝐹ᑦᑞ(𝑊) = 𝑠𝑖𝑔𝑛(𝑊 −𝑚𝑒𝑎𝑛(𝑊) + 𝑢ᑞ𝑠𝑡𝑑(𝑊)), 𝑖 = 1, 2,⋯𝑀 (4.2)

𝑢ᑞ = −1 +
2(𝑚 − 1)
𝑀 − 1 (4.3)

The shifting parameter 𝑢ᑞs are hyper parameters pre-defined by using Equation 4.3. Or equally, 𝑢ᑞs
can be also maintained as a trainable parameters to be defined together with the whole network during
weight updates. Then the scaling factor 𝛼ᑞs can be determined by solving the regression problem as
shown in Equation 4.4. 𝐵 = [𝑣ᐹᎳ , 𝑣ᐹᎴ , ⋯ , 𝑣ᐹᑄ] is the matrix consists of the vectorized binary weights
𝑣ᐹᑞs, where 𝑣ᐹᑞs have fixed values calculated from Equation 4.2 above. And 𝑣ᑎ is the vectorized
full-precision weight.

𝑚𝑖𝑛
ᒆ
𝐽(𝛼) = ||𝑣ᑎ − 𝐵𝛼||Ꮄ (4.4)

Recap the full-precision convolutional operations in CNNs, each element in the output feature map
for the current layer is obtained by the sum of element-wise products (dot products) between the weight
kernel and input image shown in Equation 4.5, where 𝑥ᑔ,ᑨ,ᑙ, 𝑤ᑔ,ᑨ,ᑙ and 𝑦ᑔᖤ ,ᑨᖤ ,ᑙᖤ represent each sin-
gle element from the input, weight kennel and output feature map respectively. The above ABC-Net
binarization can not only reduce the bit length of the parameters but also simply this full-precision
convolutional operations.

𝑦ᑔᖤ ,ᑨᖤ ,ᑙᖤ = ∑
ᑔ,ᑨ,ᑙ

𝑥ᑔ,ᑨ,ᑙ𝑤ᑔ,ᑨ,ᑙ (4.5)

With the ABC-Net weight quantization method, this thesis further specify a practical way to perform
the binary convolutional operation to obtain each output element in Equation 4.6, where 𝑠𝑖𝑔𝑛𝑠𝑒𝑡(.) is
the bit operation to set the sign of each input element 𝑥ᑔ,ᑨ,ᑙ according to the binary weight element
𝑏ᑞᑔ,ᑨ,ᑙ. As the result, the quantized convolutional operation only require 𝑀 multiplications for one
output feature, which largely reduces the computational cost during forward propagation. Meanwhile,
the weight kernels can be compressed to𝑀/32 of the full-precision kernels, which also saved the storage
and the run-time memory.

𝑦ᑔᖤ ,ᑨᖤ ,ᑙᖤ =
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ ∑
ᑔ,ᑨ,ᑙ

𝑠𝑖𝑔𝑛𝑠𝑒𝑡(𝑥ᑔ,ᑨ,ᑙ, 𝑏ᑞᑔ,ᑨ,ᑙ) (4.6)

For more general overview, the forward propagation for the ABC-Net binary convolutional layers can
conclude as in Equation 4.7 below, where 𝐵𝑖𝑛𝑊𝐶𝑜𝑛𝑣 represent the binary convolution operation with
sign-setting. 𝐵ᑞs and 𝛼ᑞs are solved by Equation 4.2 and Equation 4.4 respectively.

𝑌 =
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ𝐵𝑖𝑛𝑊𝐶𝑜𝑛𝑣(𝐵ᑞ, 𝑋)where𝐵ᑞ = 𝐹ᑦᑞ(𝑊), (4.7)

4.1. Methodology 27

b) Backward propagation
As for the backward propagation, the gradients can be calculated and fed backward with the standard
optimiser like SGD (stochastic gradient descent), expect the non-differentiable binary mapping function
𝐵ᑞ = 𝐹ᑦᑞ(𝑊) in Equation 4.2. Addressing to this issue, ABC-Net adopts straight-through estimator
(STE) proposed in [4] to estimate the gradients flowing through 𝐵ᑞs. Here, the concepts of STE is
to copy the gradient with respect to the output directly as an estimator for the gradients of the non-
differentiable binary mapping function [4]. Then the specific backward propagation function for the
ABC-Net binary convolution layer can be defined in Equation 4.8 below, where 𝐶 represents the cost
during training.

𝜕𝐶
𝜕𝑊 = 𝜕𝐶

𝜕𝑌(
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ
𝜕𝑌
𝜕𝐵ᑞ

𝜕𝐵ᑞ
𝜕𝑊) ᑊᑋᐼ≈ 𝜕𝐶

𝜕𝑌(
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ
𝜕𝑌
𝜕𝐵ᑞ

) =
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ
𝜕𝐶
𝜕𝐵ᑞ

(4.8)

It is important to note that, during training, the weights𝑊, and all the gradients are kept in full-precision.
But only the binary weights 𝐵ᑞs and scaling factors 𝛼ᑞs will be saved for inferences.

4.1.2. Input/activation quantization
a) Forward propagation
Based on the approach discussed above, with the binary weights, ABC-Net is able to simply the convo-
lutional operation with only a few multiplications, and with significantly reduced model size. However,
further speedups can be achieved by also binarizing the inputs of the convolutional layers.

ABC-Net applies the binary activation function to create a binary feature map as the input to next
convolutional layers. To be more specific, the first step of inputs quantization is to bound the inputs in
the range [0, 1]with Equation 4.9 below, which is similar to [45]. 𝑣ᑟs are additional shifting parameters
for the further steps to generate multiple binary bases, and 𝑁 is the number of binary bases used to
represent the full-precision inputs. 𝑟ᑟ represents one single bounded element of the 𝑛th binary base 𝑅ᑟ,
generated with the corresponding shifting parameter 𝑣ᑟ. And 𝑥 denotes one single element from the
full-precision inputs 𝑋 of the activation layer.

𝑅ᑟ = ℎ(𝑋, 𝑣ᑟ) = 𝑐𝑙𝑖𝑝(𝑋 + 𝑣ᑟ), for 𝑛 = 1, 2,⋯ ,𝑁 (4.9)

where,

𝑐𝑙𝑖𝑝(𝑥) = {
𝑥 if 0 ≤ 𝑥 ≤ 1
1 if 𝑥 > 1
0 if 𝑥 < 0

(4.10)

The binary activation function then is defined in Equation 4.11, where the activated binary feature
maps𝐴ᑟs are obtained from the activation function𝐻(𝑅ᑟ). And𝑅ᑟ denotes the inputs with all elements
rectified with the mapping function in Equation 4.9 above.

𝐴ᑟ = 𝐻(𝑅ᑟ) = 2𝐼(𝑅ᑟ) − 1, (4.11)

𝐼(.) is the indicator function performing element-wise operation for each element of 𝑅ᑟ shown in Equa-
tion 4.12.

𝐼(𝑟) = {1 if 𝑟 ≥ 0.5
0 otherwise

(4.12)

As a result, similar to the weights quantization discussed above, the approximated activation𝑋ᑒᑡᑡᑣᑠ
can be represented by the linear combination of multiple binary activations with Equation 4.13, where
𝑋ᑒᑡᑡᑣᑠ and 𝐴ᑟ represent the approximated activation and binary activation bases respectively with

28 4. Accurate binary convolutional networks (ABC-Net)

channel 𝑐ᑩ, height ℎᑩ, and width𝑤ᑩ. 𝛽ᑟs are the scaling factors similar to 𝛼ᑞs for the weight quantiza-
tion above. Note that, the scaling factors 𝛽ᑟs and the shifting factor 𝑣ᑟs are both trainable parameters,
which will be updated during training time. It is important to note that 𝑋ᑒᑡᑡᑣᑠ here is just for un-
derstanding and discussion. In forward propagation, 𝑋ᑒᑡᑡᑣᑠ will not be actually calculated, while the
binary activation bases 𝐴ᑟs will be directly used to compute the output of binary convolutional opera-
tions, which will be introduced in section 4.1.3 latter.

𝑋ᑒᑡᑡᑣᑠ =
ᑅ

∑
ᑟᎾᎳ

𝛽ᑟ𝐴ᑟ, where𝑋ᑒᑡᑡᑣᑠ ∈ ℝᑔᑩ×ᑨᑩ×ᑙᑩ and𝐴 ∈ {−1, 1}ᑔᑩ×ᑨᑩ×ᑙᑩ (4.13)

b) Backward propagation
As also discussed above, during forward propagation, binary activation bases 𝐴ᑟs will be directly used
instead of 𝑋ᑒᑡᑡᑣᑠ. Thus, during backward propagation, the gradients of the binary activation function
will be calculated separately regarding to each base, and they will be accumulated to back-propagate
to the shallower layers. The backward propagation function for each binary base is defined in Equa-
tion 4.14, where 𝐶 is the cost calculated through the forward pass, and ∘ denotes element-wise product
(a.k.a Hadamard product). To be specific, the gradients with respect to the full-precision inputs can be
calculated by applying chain role for activation function 𝐴ᑟ = 𝐻(𝑅ᑟ) though all the 𝑁 binary bases
independently. And similar to Equation 4.8, STE [4] is utilized to approximate the gradient for the
non-differentiable binary mapping function ᒟᐸᑟ

ᒟᑉᑟ
(gradients flowing through Equation 4.11).

𝜕𝐶
𝜕𝑋 =

𝜕𝐶
𝜕𝐴ᑟ

𝜕𝐴ᑟ
𝜕𝑅ᑟ

𝜕𝑅ᑟ
𝜕𝑋

ᑊᑋᐼ≈ 𝜕𝐶
𝜕𝐴ᑟ

∘ 𝐼ᖤ(𝑅ᑟ − 𝑣ᑟ), (4.14)

where ᒟᑉᑟᒟᑏ = 𝐼ᖤ(𝑅𝑛 − 𝑣ᑟ) shown in Equation 4.15 is the gradient for the clipping function 𝑐𝑙𝑖𝑝(.)
in Equation 4.10, which is differentiable in 𝑟 ∈ [0, 1] but non-differentiable for 𝑟 ∉ [0, 1]. STE is only
applied for the range where 𝑟 ∉ [0, 1].

𝐼ᖤ(𝑟) = {1 if 0 ≤ 𝑟 ≤ 1
0 otherwise

(4.15)

4.1.3. Multiplication-free binary convolutional operation
With the inputs also being binarized, the operations to generate each output with binary weights showed
in Equation 4.6 can be further reduced to Equation 4.16, where 𝑎ᑟᑔ,ᑨ,ᑙ represent the binary inputs of 𝑛th
base 𝐴ᑟ. 𝑠𝑖𝑔𝑛𝑠𝑒𝑡(.) is the bit operation to set the sign which is the same as in Equation 4.6. 𝑥𝑛𝑜𝑟 is
the bit XNOR operation used to represent the multiplications between the elements in {−1, 1}. Further-
more, as the shifting parameters 𝛼ᑞs and 𝛽ᑟs are already defined during training time, the term 𝛼ᑞ𝛽ᑟ
can be pre-calculated and can be directly used with look-up tables. Although no further compression
will be achieved, the inputs binarization enables much faster binary operation without any multiplica-
tions during inference time. Furthermore, the number of additions can also be reduced, because the
summation of binary numbers can be simplified to bit-count operations.

𝑦ᑔᖤ ,ᑨᖤ ,ᑙᖤ =
ᑄ

∑
ᑞᎾᎳ

ᑅ

∑
ᑟᎾᎳ

∑
ᑔ,ᑨ,ᑙ

𝑠𝑖𝑔𝑛𝑠𝑒𝑡(𝛼ᑞ𝛽ᑟ, 𝑏ᑞᑔ,ᑨ,ᑙ 𝑥𝑛𝑜𝑟 𝑎ᑟᑔ,ᑨ,ᑙ) (4.16)

In conclusion, the overview of forward propagation for ABC-Net based convolutional layers with
binary weights and inputs are defined in Equation 4.17, where 𝐵𝑖𝑛𝐶𝑜𝑛𝑣 denotes the binary convolu-
tional operations without multiplication. Each full-precision element from the inputs and weights is

4.2. Experiments 29

quantized to 𝑁 and 𝑀 bits. Binary weight and input bases 𝐵ᑞ and 𝐴ᑟ are obtained from Equation 4.2
and Equation 4.11 respectively.

𝑌 =
ᑄ

∑
ᑞᎾᎳ

ᑅ

∑
ᑟᎾᎳ

𝐵𝑖𝑛𝐶𝑜𝑛𝑣(𝛼ᑞ𝛽ᑟ, 𝐴ᑟ 𝑥𝑛𝑜𝑟 𝐵ᑞ), where𝐵ᑞ = 𝐹ᑦᑞ(𝑊) and𝐴ᑟ = 𝐻(𝑅ᑟ) (4.17)

4.1.4. Training
To train the object detector, this project used the same training algorithm discussed in the original pa-
per [32]. During training time, the full-precision gradients are used to update the network parameters.
At each training step, only the full-precision weights will be updated, and updated full-precision weights
will be converted to binary to calculate the forward propagation in the next step. The ABC-Net scheme
based binary object detectors can also be trained with optimizers such as ADAM and Momentum. As
the summery, the detailed training algorithm can be found in Algorithm 1 below.

Illustrated in Algorithm 1, 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(.) and 𝐵𝑎𝑐𝑘𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(.) represent the forward and
backward function for the batch normalization layer [27]. And 𝐵𝑎𝑐𝑘𝐶𝑜𝑛𝑣 is the backward propagation
of convolutional layers. 𝑈𝑝𝑑𝑎𝑡𝑎(.) is the weight updatingmethods such as ADAMorMomentum. And
𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑅(.) denotes the learning rate updatingmethod such as learning rate decay. The algorithm here
is based on the training algorithm introduced in [32], but extra branch is added to train the network with
only weight quantization.

4.2. Experiments
The previous researches on the performances of the binary CNNs for both classification tasks [8, 32, 35],
and object detection tasks [42], showed that using binary inputs/activation will result in a large reduction
in accuracies. Because binarizing the inputs will easily destroy the information in original feature maps,
especially for the deep convolutional layers whose receptive field could involve the information from
over one hundred pixels in the original images. Although the binary models could still be convergent
with such crude activation quantization in image classification tasks, over 35% accuracy lost have al-
ready been observed on object detection task even with over half of the layers kept in full-precision [42].
It is highly possible that the object detector would even be not convergent with the increase of the quan-
tized layers. Thus, as one main objective of the project, in this section, we start with only quantizing
the weights of the object detectors to check the possibilities to utilize binary quantization on object de-
tection tasks. Furthermore, we will also explore the possibility to binarize both weights and inputs with
ABC-Net scheme discussed above.

4.2.1. Weight quantization
As introduces in Section 3.3, the three-stages training strategy is used to train the binary weight object
detectors. All the backbone ResNet models are trained on ILSVRC12 ImageNet classification data set.
And for the second stage, the full-precision models are trained with the setting introduced in Section
3.2.3, which are exactly the same baseline full-precision models.

The third stage for Faster R-CNN models, the full-precision baseline models are fine-tuned with
ABC-Net quantization scheme directly on PASCAL VOC data sets. To be more specific, as discussed
in Section 3.3, all the layers are binarized, except the first convolutional layer, the last fully connected
layer as well as the RPN layers. The binary Faster R-CNN models are also trained with the momentum
optimizer with the momentum of 0.9, weight decay of 0.0005, learning rate of 0.001 with decay factor
of 0.1, and mini-batch size of 1. As a result, the trained models are also evaluated on PASCAL VOC07
test set. The performances of the quantized Faster R-CNN models are shown in Table 4.1 below.

Generally speaking, the binary Faster R-CNNs were able to be convergent based on ResNet back-
bone networks in different depths, with binary weights and full-precision input/activation. With the in-

30 4. Accurate binary convolutional networks (ABC-Net)

Algorithm 1 ABC-Net training algorithm [32]
Input: one mini-batch of input images and their ground truth, number of bits 𝑀 used to repre-
sent the weights, number of bits 𝑁 used to represent the activation/input, the full-precision
weight𝑊, initialized parameters 𝑢ᑞs, 𝑣ᑟs, 𝛽ᑟs, and the learning rate 𝜂.

Output: updated full-precision weights𝑊, and learning rate 𝜂 for next mini-batch.
forward propagation:
for 𝑙 = 1 to 𝐿 do

Compute 𝛼ᑝᑞ and 𝐵ᑝᑞ, where 𝑚 = 1, 2,⋯ ,𝑀 for 𝑙th layer using Eqn.4.4 and Eqn.4.2;
if Using binary activation/inputs then

Compute 𝑙𝑡ℎ convolutional layer’s output 𝑌ᑝ using Eqn.4.16;
else

Compute 𝑙𝑡ℎ convolutional layer’s output 𝑌ᑝ using Eqn.4.7;
end if
Optionally apply pooling operation;
Compute batch normalization 𝑋ᑝ ←− 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑌ᑝ);
if 𝑙 < 𝐿 then

if Using binary activation/input then
Compute 𝐴ᑝᑟ for 𝑛 = 1, 2,⋯ ,𝑁 using Eqn.4.11;

else
Compute full-precision activation 𝐴ᑝ (e.g. ReLU);

end if
end if

end for
backward propagation:
Compute 𝑔ᐸᑃ =

ᒟᐺ
ᒟᐸᑃ ;

for 𝐿 = 𝐿 to 1 do
if 𝑙 < 𝐿 then

if Using binary activation/input then

Compute 𝑔ᐸᑝ =
ᑅ
∑
ᑟᎾᎳ

𝛽ᑟ
ᒟᐺ
ᒟᐸᑟ

∘ 𝐼ᖤ(𝑅ᑟ − 𝑣ᑟ) based on Eqn.4.14;

else
Compute 𝑔ᐸᑝ (e.g. 𝐵𝑎𝑐𝑘𝑅𝑒𝐿𝑈);

end if
end if
Compute 𝑔ᑝᑐ ←− 𝐵𝑎𝑐𝑘𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑔ᐸᑝ , 𝑋ᑝ)
𝑔ᒇᑟ ,𝑔ᐹᑝᑟ ←− 𝐵𝑎𝑐𝑘𝐶𝑜𝑛𝑣(𝑔

ᑝ
ᑐ, 𝐵ᑝᎽᎳᑟ , 𝐴ᑝᎽᎳᑞ);

end for
parameter updating:
for 𝐿 = 1 to 𝐿 do

Compute 𝑔ᑎᑝ using Eqn.4.8, with known 𝑔ᐹᑝᑟ ;
Update 𝑙th layer’s weight𝑊ᑝ ←− 𝑈𝑝𝑑𝑎𝑡𝑒(𝑊ᑝ, 𝜂, 𝑔ᑎᑝ);
Update 𝛽ᑟ ←− 𝑈𝑝𝑑𝑎𝑡𝑒(𝛽ᑟ, 𝜂, 𝑔ᒇᑟ);
Update 𝑣ᑟ ←− 𝑈𝑝𝑑𝑎𝑡𝑒(𝑣ᑟ, 𝜂, 𝑔ᑧᑟ)
Update learning rate 𝜂 ←− 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑅(𝜂)

end for

crease of network depths (or the number of parameters), the performances’ gap between full-precision
and binary Faster R-CNN tend to be increased correspondingly. The smallest performance gap is

4.2. Experiments 31

Detector Backbone Methods Training set mAP(Binarized/FP)

Faster R-CNN

ResNet-18 ABC-3 VOC07 54.13 / 60.06
ResNet-18 ABC-5 VOC07 55.16 / 60.06
ResNet-50 ABC-5 VOC07 59.72 / 65.38
ResNet-50 ABC-5 VOC07+12 67.69 / 73.43
ResNet-101 ABC-5 VOC07+12 70.31 / 76.29

Table 4.1: Performances for binary Faster R-CNNs comparing to the full-precision baseline. Similarly, the mAP is
reported with the PASCAL VOC standard, where IoU threshold is set to be 0.5. And the results is the average of
three different initialization. Binarized and FP represent the binary and full-precision Faster R-CNN respectively.
ABC-3 and ABC-5 represent the 3-bits and 5-bits ABC-Net quantization scheme respectively.

achieved by Faster R-CNN with ResNet-18 backbone and 5-bits ABC-Net binarization, which is 4.9
mAP. And the performances for both binary and full-precision models can be improved with the in-
creasing network depths. In other words, the quantized object detector can still benefit from increasing
the network depth and the number of parameters, because even the largest mAP gap between binary and
full-precision network is still within 6.0 mAP with the deepest 101 layers’ ResNet backbone network.
Consequentially, the highest accuracy was obtained from the ResNet-101 based binary Faster R-CNN,
even with the largest mAP gap between the binary and full-precision models.

On the other hand, for the single-stage SSDmodels, the same strategies in Section 3.3 were used for
the third stage. Specifically, all the layers in the backbone networks except the 𝑐𝑜𝑛𝑣1 were quantized,
while the extra SSD layers were kept in full-precision for the experiments in this section, as discussed in
Section 3.3. For training, we directly quantized and fine-tuned the full-precision baseline SSD models
with ABC-Net scheme on PASCAL VOC data set. And similarly, we trained SSD using momentum
optimizer with the momentum of 0.9, learning rate of 0.001 with decay factor 0.1�weight decay of
0.0005, and a batch size of 32. The comparisons between the full-precision baseline and the binary
models for SSD are shown in Table 4.2 below.

Detector Backbone Methods Training set mAP(Binarized/FP)

SSD-300 ResNet-50 ABC-3 VOC07+12 71.19 / 74.35
ResNet-50 ABC-5 VOC07+12 72.47 / 74.35

Table 4.2: Performances for binary SSD comparing to the full-precision baseline. Similarly, the mAP is reported
with the PASCAL VOC standard, where IoU threshold is set to be 0.5. And the results is the average of three
different initialization. Binarized and FP represent the binary and full-precision Faster R-CNN respectively. ABC-
3 and ABC-5 represent the 3-bits and 5-bits ABC-Net quantization scheme respectively.

It is clear that, with 3-bits ABC-Net quantization and ResNet-50, the mAP gap between the full-
precision baseline and the binary SSD is 3.16 mAP. This accuracy lost can be further reduced by in-
creasing the quantization bit-length to 5-bits, where an mAP lost in only 1.88 mAP has been obtained.
Similar to the trend observed in binary Faster R-CNN, the gap between full-precision and binary models
tend to increase with the growing of model depths (or the number of total parameters).

The results above illustrated that, for only weight binarization, both the two-stages Faster R-CNN
and single-stage SSD models were able to be convergent with ABC-Net quantization schemes in 3-bits
and 5-bits. It is interesting to note that, the mAP reduction after quantization of single-stage SSDmodels
tend to be smaller than that of two-stage Faster R-CNN. For instance, the ResNet-50 based Faster R-
CNN showed approximately 5.5 mAP reduction after quantized with 5-bits ABC-Net scheme, which
was muchmore higher than the 5-bits ResNet-50 based SSD counterpart (only 1.88 mAP reduction after
quantization and the results for the models were obtained from the same training and test sets). This is
because the two-stages region-based object detectors like Faster R-CNN tend to be more complex than
the single-stage models, which is easier to accumulate quantization errors through the forward pass for

32 4. Accurate binary convolutional networks (ABC-Net)

both inference and training, and through the backward pass during training time. For instance, in Faster
R-CNN two stages of classifications will be performed, where the quantization error caused by the
first classification layers in RPN could result in incorrect region proposals and consequentially result
in accumulated errors for the final detection layers. On the other hand, SSD models do not require the
region proposal processes, which is less possibly to accumulate errors. Furthermore, SSD adopts the
multi-levels’ feature map scheme, where not only the output from the last layer but also the output maps
from intermediate shallower layers would be used for final detection. And as the feature maps from the
shallower layers contain less accumulated quantization errors, in theory, such a multi-level scheme can
naturally mitigate the error accumulation. The results suggests that SSD like object detection models
are more robust to accumulated quantization errors than the two-stages Faster R-CNN like networks,
and therefore they are more suitable for binary quantization.

As a result, the ABC scheme based binaryweight object detectors can still maintain very competitive
accuracy. For instance, the 5-bits ABC-Net and ResNet-50 based SSD-300 achieved 72.47 mAP on
PASCAL VOC2007 text set, which is only around 0.73 mAP lower than the original Faster R-CNN
implementation [39], around 1.9 mAP lower than the original SSD-300 implementation [33] with much
smaller model sizes.

4.2.2. Extension to input quantization
By further quantizing the input/activation discussed in Section 4.1.2, additional speedups can be achieved
by simplifying the multiplications of the convolutional operations. Thus, in this section, further eval-
uations will be made to adopt the ABC-Net based activation/inputs quantization on the binary weights
object detectors discussed in the last section.

For the Faster R-CNNmodels, we started with evaluating the ResNet-18 basedmodels, as the exper-
iments for weight quantization showed the shallower networks tend to suffer less from the quantization
errors. The same strategies and training setting in the last section and Section 3.3 were adopted to tune
the binary weight and binary activation Faster R-CNNs, where all the convolutional layers as well as
activation layers from 𝐶𝑜𝑛𝑣2_𝑥 to 𝐶𝑜𝑛𝑣5_𝑥. The binary models are tuned on PASCAL VOC07 based
on the full-precision models from stage two. However, even the shallowest ResNet-18 based Faster
R-CNN failed to converge (very low mAP). The similar results were also observed on SSD models
with ResNet-18.

Further attempts were made to improve the performance of binary inputs object detectors as follow-
ing. But generally, the ABC-Net based input quantization failed to binarize the object detectors with
accurate being preserved.

Using full-precision activation functions at the end of each ResNet block: As introduced in
Chapter 2, ResNet architectures use shortcut connection to take the output from previous layers into
account in each ResNet block. We consider this shortcut based architecture canmitigate the quantization
error by combining outputs from shallower layers with less accumulated noise. Thus, the attempts were
made to keep the last activation layer in each ResNet block in full-precision. Based on this approach,
although no performance improvement can be observed for the ABC-Net based binary Faster R-CNN
and SSD, higher accuracy can be achieved for PA-Net based quantization in next chapter.

Decrease the number of binary layers: This attempt was also used in existing works [42]. We
firstly chose to maintain the deepest binary ResNet groups 𝐶𝑜𝑛𝑣5_𝑥 in full-precision, and then grad-
ually increase the number of full-precision groups. The binary networks start to show mAP improve-
ments when only two groups of ResNet layers in binary (𝐶𝑜𝑛𝑣3_𝑥 and 𝐶𝑜𝑛𝑣4_𝑥), but the performance
is still not sufficient (mAP less than 20). This phenomenon suggests that significant accuracy reduction
is largely caused by the error accumulation of inputs quantization.

5
Piecewise approximation networks

(PA-Net)

Aiming to reduce the quantization errors, and further improve the performance of binary models, piece-
wise approximation networks (PA-Net) was proposed and evaluated for image classification problems.
As already introduced in Chapter 2, PA-Net also adopted multiple bits quantization similar to ABC-Net,
but PA-Net showed better abilities to saving the accuracy of the models after quantization, even with
the same quantization bit-length as ABC-Net. Thus, in this project, we will further extend and evaluate
the PA-Net scheme on more complex object detection tasks, aiming to achieve more accurate detection
than the ABC-Net based binary object detectors discussed in the last chapter.

In this chapter, the detailed PA-Net quantization scheme will be first discussed. And this project
further specifies the inference-time binary operations for PA scheme based binary models. The per-
formance of PA-Net on image classification tasks will first be introduced, then evaluations on object
detection tasks will be performed.

5.1. Methodology
Similarly to previous works for network binarization [30, 32], PA-Net also includes the quantization
approach for both the weight and activation/inputs. But differently, PA scheme was designed to ap-
proximate the full-precision weights and inputs on the element level without increasing the quantiza-
tion bit-length. In this section, the detailed PA schemes for both weight and inputs quantization will be
discussed.

5.1.1. Weight quantization
a) Forward propagation
Similar to ABC-Net scheme in the last chapter, PA scheme also uses multiple binary bits to approxi-
mate the full-precision weights, and the weights are approximated as a whole because the channel-wise
approximation requires much more computational resources during training time.

The full-precision weights 𝑊 with input channel 𝑐ᑚᑟ, output channel 𝑐ᑠᑦᑥ, height ℎ and width 𝑤
can be approximated with combination of𝑀 binary weights by Equation 5.1.

𝑊 ≈
ᑄ

∑
ᑞ
𝑊ᑞ, (5.1)

With PA scheme, the full-precisionweights are separated into𝑀 pieces and quantizedwith the piecewise

33

34 5. Piecewise approximation networks (PA-Net)

mapping function 𝑃(𝑊) shown in Equation 5.2 below.

𝑊ᑞ = 𝑃(𝑊) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝛼Ꮃ × 𝐵ᑎᑞ 𝑊 ∈ (−∞, 𝑢Ꮃ]
𝛼ᑚ × 𝐵ᑎᑞ 𝑊 ∈ (𝑢ᑚᎽᎳ, 𝑢ᑚ], 𝑖 ∈ [2,

ᑄ
Ꮄ]

⋯
0 × 𝐵ᑎᑞ 𝑊 ∈ (𝑢ᑄ

Ꮄ
, 𝑢ᑄ

Ꮄ
+ 1]

𝛼ᑚ × 𝐵ᑎᑞ 𝑊 ∈ (𝑢ᑚ, 𝑢ᑚᎼᎳ], 𝑖 ∈ [
ᑄ
Ꮄ + 1,𝑀 − 1]

⋯
𝛼ᑄ × 𝐵ᑎᑞ 𝑊 ∈ (𝑢ᑄ, ∞]

(5.2)

where 𝛼ᑚs are the scaling parameters to represent the corresponding weight pieces. 𝑢ᑚs are the value
boundaries to separate the full-precision weights into 𝑀 pieces𝑊ᑞs determined directly by the value
of each element in the weight kernels. 𝐵ᑎᑞ is the binary masks with the same shape as𝑊, where the
values are set to be 1 if the elements from the full-precision kernel are located in the corresponding
ranges, while set to be 0 otherwise. The weight kernels tend to have distributions close to Gaussian,
which has been also observed in [32]. Therefore, the boundary points for the weights 𝑢ᑚs are fixed using
the averages 𝑊 = 𝑚𝑒𝑎𝑛(𝑊) and standard division 𝜎ᑎ = 𝑠𝑡𝑑(𝑊) of full-precision weights. To be
more specific, the 𝑀 boundary points 𝑢ᑚs are uniformly sampled from −2𝜎ᑎ to 2𝜎ᑎ. One example
can be shown in Table 5.1 blow when using𝑀 = 8 to represent the weight kernels.

𝑢ᑚ Values
𝑢Ꮃ

−1.5𝜎
𝑢Ꮄ
−1𝜎

𝑢Ꮅ
−0.5𝜎

𝑢Ꮆ
−0.25𝜎

𝑢ᑚ Values
𝑢Ꮇ

+0.25𝜎
𝑢Ꮈ

+0.5𝜎
𝑢Ꮉ
+1𝜎

𝑢Ꮊ
+1.5𝜎

Table 5.1: Example of the boundary points ፮ᑚs to separate the full-precision weights into ፌ ዂ pieces, where
is the standard division of ፰ ፬፭፝(ፖ)

Then, the scaling factor 𝛼ᑚs are determined by calculating the average value of each pieces using
Equation 5.3 below.

𝛼ᑚ = 𝑚𝑒𝑎𝑛(𝑊ᑞ), where 𝑖 = 𝑚 = 1, 2,⋯ ,𝑀 (5.3)

Again, the full-precision convolutional operation to obtain one single element on the output feature
map shown in Equation 4.5 in the last chapter can be reduced to the binary weight form shown in
Equation 5.4, where 𝑥ᑔ,ᑨ,ᑙ represent one single elements from the full-precision inputs, and 𝑏ᑞᑔ,ᑨ,ᑙ is
the binary weight of 𝑚th piece. 𝑎𝑛𝑑 denotes the bit and operation. As a result, the PA-based binary
weight convolutional operation to generate one output element requires only additions, 𝑎𝑛𝑑 operations
as well as𝑀 multiplications.

𝑦ᑔᖤ ,ᑨᖤ ,ᑙᖤ =
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ ∑
ᑔ,ᑨ,ᑙ

𝑥ᑔ,ᑨ,ᑙ 𝑎𝑛𝑑 𝑏ᑞᑔ,ᑨ,ᑙ (5.4)

More generally, the forward propagation of PA-Net based convolutional layers can be concluded in
Equation 5.5, where 𝑋 represents the full-precision inputs with batch size 𝑛, input channel 𝑐ᑚᑟ, height
ℎᑚᑟ and width 𝑤ᑚᑟ. And instead of {−1, 1} in ABC-Net scheme, the binary bases 𝐵ᑎᑞs are in {0, 1}.
The output 𝑌 within ℝᑟ×ᑔᑠᑦᑥ×ᑨᑠᑦᑥ×ᑙᑠᑦᑥ are then calculated by the 𝑎𝑛𝑑 operation based convolution

5.1. Methodology 35

based on Equation 5.4 above.

𝑌 =
ᑄ

∑
ᑞᎾᎳ

𝛼ᑞ𝐶𝑜𝑛𝑣𝐴𝑛𝑑(𝐵ᑎᑞ , 𝑋)where𝑋 ∈ ℝᑟ×ᑔᑚᑟ×ᑨᑚᑟ×ᑙᑚᑟ and𝐵ᑨᑞ ∈ {0, 1}ᑔᑠᑦᑥ×ᑔᑚᑟ×ᑨ×ᑙ (5.5)

b) Backward propagation
During backward propagation, the gradients with respect to the𝑀 quantized bases𝑊ᑞs have to be cal-
culated and summed up, as 𝐵ᑎᑞs are used separately during forward propagation in Eqn.5.5. However,
different from the straight-through estimator used in ABC-Net scheme, PA scheme uses linear functions
to approximate the gradients though the piecewise function 𝑃(𝑊). The gradients approximation func-
tion is showed in Equation 5.6 below.

𝜕𝑊ᑞ
𝜕𝑊 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝜆ᑎ(𝛼Ꮄ − 𝛼Ꮃ) 𝑊 ∈ (−∞, 𝑠Ꮃ]
𝜆ᑎ(𝛼ᑚᎼᎳ − 𝛼ᑚ) 𝑊 ∈ (𝑠ᑚᎽᎳ, 𝑠ᑚ], 𝑖 ∈ [2,

ᑄ
Ꮄ]

⋯
𝜆ᑎ(0 − 𝛼ᑄ

Ꮄ
) 𝑊 ∈ (𝑠ᑄ

Ꮄ
, 𝑠ᑄ

Ꮄ
+ 1]

𝜆ᑎ(𝛼ᑚᎼᎳ − 𝛼ᑚ) 𝑊 ∈ (𝑠ᑚ, 𝑠ᑚᎼᎳ], 𝑖 ∈ [
ᑄ
Ꮄ + 1,𝑀 − 1]

⋯
𝜆ᑎ(𝛼ᑄ − 𝛼ᑄᎽᎳ) 𝑊 ∈ (𝑠ᑄᎽᎳ, +∞)

(5.6)

Note that, during backward propagation, 𝑠ᑚs is another set of endpoints used to define the ranges where
the backward approximation for each weight piece𝑊ᑞ should be performed. And 𝜆ᑎ is a predefined
hyper-parameter, which is different according to the number of quantization pieces 𝑀. To be more
specific, the endpoints 𝑠ᑚ can be directly calculated using Equation 5.7.

𝑠ᑚ =
(𝑢ᑚᎼᎳ + 𝑢ᑚ)

2 , where 𝑖 ∈ [1,𝑀 − 1] (5.7)

As the result, the backward propagation for the piecewise function can be approximated with the linear
slop 𝜆ᑎ(𝛼ᑚ−𝛼ᑚᎽᎳ). Amore clear illustration of the forward and backward propagation of the piecewise
function can be found in Figure 5.1 below, where the estimated slops in [𝑠ᑚᎽᎳ, 𝑠ᑚ] are used to represent
the gradients flowing backwardly through the piecewise function in domain [𝑢ᑚᎽᎳ, 𝑢ᑚᎼᎳ].

Figure 5.1: The example for the forward and backward approximation of the piecewise function ፏ(ፖ). During
forward propagation, the weights in the same piece are mapped to the corresponding ᎎᑚs, while the gradients
flowing through ፏ(ፖ) are approximated with the linear slops.

36 5. Piecewise approximation networks (PA-Net)

5.1.2. Inputs/activation quantization
a) Foward propagation
To achieve further accelerations, PA-Net also introduces inputs quantization scheme with binary acti-
vation function. The full-precision inputs 𝑋, with batch size 𝑛, input channel 𝑐ᑚᑟ, height ℎᑚᑟ and width
𝑤ᑚᑟ will also be separated into multiple pices, and represented with multiple binary masks similar to
the weight quantization scheme discussed above. The full-precision activation is also represented by
the linear combination of 𝑁 binary bases by Equation 5.8.

𝑋 ≈
ᑅ

∑
ᑟ
𝐴ᑟ, (5.8)

And the piecewise quantization function to calculate each binary activation 𝐴ᑟ is showed in Equa-
tion 5.9 below.

𝐴ᑟ = 𝐴(𝑋) =

⎧
⎪⎪

⎨
⎪⎪
⎩

0 × 𝐵ᐸᑟ 𝑋 ∈ (−∞, 𝑣Ꮃ]
⋯
𝛽ᑚ × 𝐵ᐸᑟ 𝑋 ∈ (𝑣ᑚ, 𝑣ᑚᎼᎳ], 𝑖 ∈ [1, 𝑁 − 1]
⋯
𝛽ᑅ × 𝐵ᐸᑟ 𝑋 ∈ (𝑣ᑅ, +∞)

(5.9)

Similar to the weight quantization, scaling factor 𝛽ᑚ is used to scale the corresponding piece bounded by
the endpoints 𝑣ᑚs. And 𝐵ᐸᑟs denote the binary masks in {0, 1}, which have the same shape as the input
𝑋. But different from the 𝑢ᑚs and 𝛼ᑚs in weights quantization, both the endpoints 𝑣ᑚs and the scaling
factor𝛽ᑚs are trainable parameters, whichwill be fine-tuned together with the network parameters during
training time. Consequentially, full-precision inputs will be mapped to the 𝑁 binary masks 𝐵ᐸᑟs and
will be directly used to to calculate the outputs of the binary convolutional layers during inference time.

b) Backward propagation
For backward propagation, the similar piecewise approximation discussed in weight quantization above
is utilized to estimate the gradients flowing backwardly through the activation quantization function
𝐴(𝑋). Then the backward propagation function for the input/activation quantization of PA scheme is
defined in Equation 5.10. Note that, for more accurate approximation, the backward propagation for
input quantization is divided into 𝑁+2 pieces, by independently estimating the backward propagation
for the lower and upper bounds of 𝐴(𝑋).

𝜕𝐴
𝜕𝑋 =

⎧
⎪⎪

⎨
⎪⎪
⎩

0 𝑋 ∈ (−∞, 𝑡Ꮂ]
𝜆ᐸ(𝛽Ꮃ − 0) 𝑋 ∈ (𝑡Ꮂ, 𝑡Ꮃ]
⋯
𝜆ᐸ(𝛽ᑚᎼᎳ − 𝛽ᑚ) 𝑋 ∈ (𝑡ᑚ, 𝑡ᑚᎼᎳ], 𝑖 = 1,⋯ ,𝑁 − 1
0 𝑋 ∈ [𝑡ᑅ, +∞)

(5.10)

𝜆ᐸ is a pre-defined hyper-parameter, which is fixed for each CNN models. And 𝑡ᑚs, again are the
boundary points to separate the pieces. The values of 𝑡ᑚs are determined by Equation 5.11, where Δ is
a fixed parameters for each CNN model.

{
𝑡ᑚ = (𝑣ᑚ + 𝑣ᑚᎼᎳ)/2 for 𝑖 = 1, 2,⋯𝑁 − 1
𝑡Ꮂ = 2𝑣Ꮂ − 𝑡ᑚ
𝑡ᑅ = 𝑣ᑅ + Δ

(5.11)

5.1. Methodology 37

The endpoints 𝑡ᑚ, 𝑖 = 1, 2,⋯ ,𝑁−1 are the median points for the pieces during forward propagation. 𝑡Ꮂ
and 𝑡ᑅ are the endpoints of the lower and upper bound ranges 𝑋 ∈ (−∞, 𝑡Ꮂ] and 𝑥 ∈ [𝑡ᑅ, +∞), where
the backward propagation of the piecewise function are approximated to 0. As the results, for full-
precision activation 𝑋 ∈ [𝑡ᑚᎽᎳ, 𝑡ᑚ], the gradients following backwardly through the piecewise function
𝐴(𝑋) are estimated to 𝜆ᐸ(𝛽ᑚ − 𝛽ᑚᎽᎳ) and more specifically, one example for the approximation is also
illustrated in Figure 5.2 below.

Figure 5.2: The example for the forward and backward approximation of the piecewise activation binary function
ፀ(ፗ). During forward propagation, the activation in the same piece are mapped to the corresponding ᎏᑚs, while
the gradients flowing through ፀ(ፗ) are approximated with the linear slops.

Moreover, as the scaling parameter 𝛽ᑚs, and the boundary points 𝑣ᑚs are also trainable for input
quantization, their backward propagation should also be defined for updating. Equation 5.12 shows the
backward propagation for scaling parameter 𝛽ᑚs, where 𝐶 is the cost, and the backward propagation is
the calculated piece-wisely. And the gradients through the elements in each piece will be summed up
by 𝑠𝑢𝑚(.).

𝜕𝐶
𝜕𝛽ᑚ

= 𝜕𝐶
𝜕𝐴

𝜕𝐴
𝜕𝛽ᑚ

(5.12)

= {
0 𝐴 ∈ (−∞, 𝑣Ꮃ]
𝑠𝑢𝑚(ᒟᐺᒟᐸ) 𝐴 ∈ (𝑣ᑚ, 𝑣ᑚᎼᎳ], 𝑖 ∈ [1, 𝑁 − 1]
𝑠𝑢𝑚(ᒟᐺᒟᐸ) 𝐴 ∈ [𝑣ᑅ, +∞), 𝑖 = 𝑁

(5.13)

Then, the piecewise backward propagation for the boundary points 𝑣ᑚs in PA scheme is defined in
Equation 5.14 below, where the gradients with respect to 𝑣ᑚs are estimated and used for 𝑣ᑚs’ updating.

𝜕𝐶
𝜕𝑣ᑚ

≈ {
𝜆ᐸ(𝛽Ꮃ − 0) × 𝑠𝑢𝑚(

ᒟᐺ
ᒟᐸ) 𝐴 ∈ (𝑡Ꮂ, 𝑡Ꮃ]

𝜆ᐸ(𝛽ᑚᎼᎳ − 𝛽ᑚ) × 𝑠𝑢𝑚(
ᒟᐺ
ᒟᐸ) 𝐴 ∈ (𝑡ᑚ, 𝑡ᑚᎼᎳ], 𝑖 = 1, 2,⋯ ,𝑁 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5.14)

5.1.3. PA Scheme based binary convolutional operation
Based on the activation and weight quantization approaches discussed above, the convolutional opera-
tion can be then performed without any multiplications during inference time. The specific operation
to obtain one single element for the convolutional layer’s output 𝑦ᑔᖤ ,ᑨᖤ ,ᑙᖤ shown in Equation 5.4 can be
further reduced to Equation 5.15. 𝑎ᑟᑔ,ᑨ,ᑙ denotes one single element represented in {0, 1} from the 𝑛th
binary inputs 𝐵ᐸᑟ at one sliding window position, which is on 𝑐th input channel, height coordinate ℎ,
and width coordinate 𝑤. As 𝛼ᑞ and 𝛽ᑟ have already been fixed in the training stage, the term 𝛼ᑞ𝛽ᑟ

38 5. Piecewise approximation networks (PA-Net)

can be pre-calculated, and therefore can be directly used in a look-up-table form during inference time.
As the result, the element-wise multiplication of the convolutional operation can be reduced to only bit
𝑎𝑛𝑑 operations as well as look-up-tables, and then all the elements will be summed up to obtain the
outputs.

𝑦ᑔᖤ ,ᑨᖤ ,ᑙᖤ =
ᑄ

∑
ᑞᎾᎳ

ᑅ

∑
ᑟᎾᎳ

𝛼ᑞ𝛽ᑟ 𝑎𝑛𝑑 (∑
ᑔ,ᑨ,ᑙ

𝑎ᑟᑔ,ᑨ,ᑙ 𝑎𝑛𝑑 𝑏ᑞᑔ,ᑨ,ᑙ) (5.15)

From a more general point of view, the forward propagation of the PA scheme based convolutional
layers during inference time is summarised in Equation 5.16, where 𝐵𝑖𝑛𝐶𝑜𝑛𝑣𝐴𝑛𝑑 is the PA-based
binary convolutional operation in the form of Equation 5.15. The full-precision weight𝑊 and activa-
tion/input 𝑋 is quantized to only𝑀 and 𝑁 bits. The piecewise function Equation 5.4 and Equation 5.15
are applied to obtain the scaled binary weight 𝑊ᑞ and binary activation 𝐴ᑟ respectively. The whole
process is still maintained in a parallel form, which can also be benefited using hardware acceleration
techniques.

𝑌 =
ᑄ

∑
ᑞᎾᎳ

ᑅ

∑
ᑟᎾᎳ

𝐵𝑖𝑛𝐶𝑜𝑛𝑣𝐴𝑛𝑑(𝐴ᑟ,𝑊ᑞ), where𝑊ᑞ = 𝑃(𝑊) and𝐴ᑟ = 𝐴(𝑋) (5.16)

5.1.4. Training
To train the PA-Net based binary models, similar to the approach in [32] and [35], at each training
step the full-precision weight and inputs will be mapped to binary to calculate the cost for the forward
propagation, while for the backward propagation of each training step, only the full-precision weights
will be updated. The full-precision gradients will be calculated and fed backwardly during training,
and the binary models can also be trained with typical optimizers such as ADAM and Momentum.
This project basically adopts the same training algorithm the original proposed PA scheme, which is
summarised in Algorithm 2 below. Algorithm 2 included an extra branch to train the models with binary
weights and full-precision inputs.

Similarly, in Algorithm 2, 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(.) and𝐵𝑎𝑐𝑘𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(.) are the forward and backward
propagation function for the batch normalization respectively. 𝐵𝑎𝑐𝑘𝐶𝑜𝑛𝑣() is the backward convolu-
tional operation. 𝑈𝑝𝑑𝑎𝑡𝑒(.) denotes the weight updating with the optimizer, and 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑅(.) is the
learning rate updating function, such as learning rate decay. The activation/inputs can be chose to keep
in full-precision, when set using binary activation/input flag to 𝑓𝑎𝑙𝑠𝑒.

5.2. Experiments
In the last chapter, the ABC-Net based quantization scheme was used to binarize the object detection
networks. Attempts were made to quantize the weights as well as the inputs at the same time, and the
quantized models were evaluated on PASCAL VOC data set. In this chapter, we further adopt PA-Net
based quantization scheme to object detection models, as it tends to be more accurate than the ABC-
Net scheme, which has already been illustrated on ImageNet image classification problems. Also, as
another research question of this project, it is also interesting to evaluate the proposed PA-Net scheme
on object detection tasks and to make comparison with existing binarization approaches.

Similar to Chapter 4, we first adopt weight quantization with PA scheme on object detectors and
further make exploration to binarize both the inputs andweights. All the binarymodels will be evaluated
on PASCAL VOC date set.

5.2. Experiments 39

Algorithm 2 PA scheme based training algorithm.
Input: one mini-batch of input images and their ground truth, number of bits 𝑀 used to repre-

sent the weights, number of bits 𝑁 used to represent the activation/input, the full-precision
weight𝑊, initialized parameters 𝑢ᑚs, 𝑣ᑚs, 𝛽ᑚs, and the learning rate 𝜂.

Output: updated full-precision weights𝑊, scaling factor 𝛽ᑚs, boundary points 𝑣ᑚs, and learn-
ing rate 𝜂 for next mini-batch.

1: forward propagation:
2: for 𝑙 = 1 to 𝐿 do
3: Compute 𝛼ᑝᑞ and𝑊ᑝ

ᑞ, where 𝑚 = 1, 2,⋯ ,𝑀 for 𝑙th layer using Eqn.5.3 and Eqn.5.2;
4: if Using binary activation/inputs then
5: Compute 𝑙𝑡ℎ convolutional layer’s output 𝑌ᑝ using Eqn.5.15;
6: else
7: Compute 𝑙𝑡ℎ convolutional layer’s output 𝑌ᑝ using Eqn.5.5;
8: end if
9: Optionally apply pooling operation;

10: Compute batch normalization 𝑋ᑝ ←− 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑌ᑝ);
11: if 𝑙 < 𝐿 then
12: if Using binary activation/input then
13: Compute 𝐴ᑝᑟ for 𝑛 = 1, 2,⋯ ,𝑁 using Eqn.5.9;
14: else
15: Compute full-precision activation 𝐴ᑝ (e.g. ReLU);
16: end if

5.2.1. Weights quantization
The three stages training strategy is adopted also for the PA scheme based object detectors, and the
backbone networks of the first stage, as well as the full-precision object detectors of the second stage,
are exactly the same models used in Chapter 4. Then, the full-precision Faster R-CNNs and SSDs from
the second stage are fine-tuned with the PA weight quantization scheme discussed in Section 5.1.1 on
the PASCAL VOC data set.

To be more specific, on stage three for Faster R-CNNs, we binarized all the layers excepts the first
convolutional layer, the last fully connected layer, and the layers in RPN sub-net. The training setting
is the same as used in Chapter 4, where momentum optimizer with the momentum of 0.9, learning rate
of 0.001 with decay factor 𝛾 = 0.1 ,weight decay of 0.0005, and mini-batch size of 1 are used to tune
all PA scheme based Faster R-CNN models. The results are then evaluated on PASCAL VOC test set,
and are illustrated in Table 5.2 below.

Detector Backbone Methods Training set mAP(Binarized/FP)

Faster R-CNN
ResNet-18 PA-5 VOC07 55.32 / 60.06
ResNet-50 PA-5 VOC07+12 67.58 / 73.43
ResNet-101 PA-5 VOC07+12 69.86 / 75.41

Table 5.2: Performances for binary Faster R-CNNs comparing to the full-precision baseline. Similarly, the mAP is
reported with the PASCAL VOC standard, where IoU threshold is set to be 0.5. And the results is the average of
three different initialization. Binarized and FP represent the binary and full-precision Faster R-CNN respectively.
PA-5 represent the 5-bits PA scheme based quantization.

With PA scheme based weight quantization, Faster R-CNN with the backbone networks in different
depth maintained converge, and still showed comparable detection accuracy comparing to the existing
state-of-the-art ABC-Net [32] approaches with the same bit-length, and the detailed comparisons will
be given in Chapter.6. As also being observed in Chapter 4, the results showed that the PA-based binary

40 5. Piecewise approximation networks (PA-Net)

17: end if
18: end for
19: backward propagation:
20: Compute 𝑔ᐸᑃ =

ᒟᐺ
ᒟᐸᑃ ;

21: for 𝐿 = 𝐿 to 1 do
22: if 𝑙 < 𝐿 then
23: if Using binary activation/input then
24: Compute 𝑔ᑏᑝᑟ =

ᒟᐸᑝᑟ
ᒟᑏ based on Eqn.5.10;

25: Compute 𝑔ᒇᑝᑟ =
ᒟᐺ
ᒟᒇᑝᑟ

based on Eqn.5.12

26: Compute 𝑔ᑧᑝᑟ =
ᒟᐺ
ᒟᑟᑝ based on Eqn.5.14

27: 𝑔ᑝᑏ ←−
ᑅ
∑
ᑟ
𝑔ᑏᑝᑟ

28: else
29: Compute 𝑔ᑝᑏ (e.g. 𝐵𝑎𝑐𝑘𝑅𝑒𝐿𝑈);
30: end if
31: end if
32: Compute 𝑔ᑝᑐ ←− 𝐵𝑎𝑐𝑘𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑔ᑏᑝ , 𝑋ᑝ)
33: 𝑔ᑎᑝᑞ

←− 𝐵𝑎𝑐𝑘𝐶𝑜𝑛𝑣(𝑔ᑝᑐ,𝑊ᑝ
ᑞ, 𝐴ᑝᎽᎳᑟ) based on Eqn.5.6;

34: 𝑔ᑝᑎ ←−
ᑄ
∑
ᑞ
𝑔ᑎᑝᑞ

35: end for
36: parameter updating:
37: for 𝐿 = 1 to 𝐿 do
38: Update 𝑙th layer’s weight𝑊ᑝ ←− 𝑈𝑝𝑑𝑎𝑡𝑒(𝑊ᑝ, 𝜂, 𝑔ᑝᑎ);
39: Update 𝛽ᑟ ←− 𝑈𝑝𝑑𝑎𝑡𝑒(𝛽ᑟ, 𝜂, 𝑔ᑝᒇᑟ);
40: Update 𝑣ᑟ ←− 𝑈𝑝𝑑𝑎𝑡𝑒(𝑣ᑟ, 𝜂, 𝑔ᑝᑧᑟ)
41: Update learning rate 𝜂 ←− 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑅(𝜂)
42: end for

object detectors with greater depth (or more parameters) tend to have larger performance reductions
comparing to the full-precision baseline. Although only 4.7 mAP decrease with the shallow ResNet-18
can be obtained, the deepest ResNet-101 based binary Faster R-CNN showed a significant 5.8 mAP
reduction comparing to the full-precision model.

On the other hand, again we apply the training strategies in Section 3.3 to tune the single-stage SSD
models, where all the layers are binarized with PA scheme based weight quantization, except the first
convolutional layer, the last FC layer as well as the extra SSD layers. The SSD binary SSD models are
then fine-tuned on PASCAL VOC data set with momentum optimizer, which has the momentum of 0.9,
weight decay of 0.0005, and a batch size of 32. The evaluation results on PASCAL VOC2007 𝑡𝑒𝑠𝑡 are
shown in Table 5.3 below.

Detector Backbone Methods Training set mAP(Binarized/FP)
SSD-300 ResNet-50 PA-5 VOC07+12 72.53 / 74.35

Table 5.3: Performances for binary SSD comparing to the full-precision baseline. Similarly, the mAP is reported
with the PASCAL VOC standard, where IoU threshold is set to be 0.5. And the results is the average of three
different initialization. Binarized and FP represent the binary and full-precision SSD respectively. PA-5 represent
the 5-bits PA quantization scheme.

5.2. Experiments 41

It is clear that, with 5-bits PA scheme based quantization, the single-stage SSD models tend to have
less accuracy reductions resulted by the quantization noise. The mAP gap between the 5-bits ResNet-50
based binary SSD and the full-precision inputs is 1.82mAP, which is only approximately 2.4% losses.

Generally, as also observed in Chapter 4, the single-stage object detectors tend to suffer fewer accu-
racy reductions after weight binarization, because the two-stage models are more likely to accumulate
quantization errors. Although increasing the network depth (or network parameters) will result in a
larger performance gap compared to the full-precision models, binary object detectors can still benefit
from using stronger backbone networks.

5.2.2. Extension to input quantization
As introduced in Section 5.1.3, for further speedups, the inputs can also be quantized to further simplify
the convolutional operation with only additions, subtractions as well as bit 𝐴𝑁𝐷 operations.

In this section, the attempts of quantizing the inputs with the binary activation function discussed in
Section 5.1.2 are made for object detection tasks. More specifically, the 5-bits (𝑀 = 𝑁 = 5) activation
and weight quantization based on PA scheme is adopted for both the two-stage Faster R-CNN as well
as the single-stage SSD models. Also, we directly fine-tune the binarized object detectors on the top
of full-precision models from the second stage on PASCAL VOC data sets. And the strategies used
for the ABC-Net attempts discussed in Section 4.2.2 are also adopted to the PA scheme based object
detectors in this section. As for training, the same optimizer and hyperparameters in Section 5.2.1 are
used.The binary weight and binary inputs models are also evaluated on the PASCAL VOC2007 test set.
The evaluation results can be found in Table 5.4 below.

Detector Backbone network Training set mAP(Binarized/FP)

Faster R-CNN ResNet-18 VOC07 47.19 / 60.06
ResNet-50 VOC07 49.18 / 65.38

SSD-300 ResNet-50 VOC07+12 58.6 / 74.35

Table 5.4: Evaluation results of 5-bits PA scheme based binary weights and binary inputs Faster R-CNN and SSD
models. All results are obtained from PASCAL VOC2007 test set. All mAP are obtained using PASCAL VOC
standard with IoU threshold 0.5. Binarized and FP represent the quantized models and the full-precsion models
respectively.

Generally, shown in Table 5.4, both the single-stage SSD and two-stage Faster R-CNN could con-
verge with PA quantization scheme on PASCAL VOC data set but with significant accuracy reductions.
For instance, the 5-bits based binary activation Faster R-CNN showed a large mAP gap in 12.87mAP
comparing to the full-precision baseline, even with the shallowest ResNet-18 backbone networks. The
accuracy margin between the binary Faster R-CNN and full-precision baseline even grow to 16.18 mAP
when using the deeper ResNet-50 backbone. On the other hand, the single-stage SSD model showed
slightly lower accuracy reduction in 15.75mAP, with 5-bits PA-Net quantization, and the same ResNet-
50 backbone network.

Despite the large mAP reduction comparing to the full-precision baseline object detectors, the PA
scheme based binary models can still outperform some existing works. For example, the simplest
ResNet-18 based binary weight and binary activation Faster R-CNN can outperform the existing bi-
nary object detector in [42] with smaller models size, which showed 44.3mAP@IoU=0.5 on PASCAL
VOC2007. Moreover, the ResNet-50 and 5-bits PA-Net based SSD-300 still maintain acceptable ac-
curacy in 58.6mAP, which outperforms the real-time full-precision Fast YOLO [38] (52.7mAP trained
on PASCAL VOC07+12 trainval, and evaluated on VOC07 test).

6
Discussions

From Chapter 4 to 5, we introduced the methodologies to quantize the object detectors with both ABC-
Net and PA-Net based scheme, and we also evaluated the trained models on the PASCAL VOC data
set.

Then, in this chapter, a storage/memory analysis of the quantized model will be performed to give a
better understanding of the model compression point of view. Also, we will compare the two accuracy-
toward binarization approaches in the context of object detection. Furthermore, the attempts to make
further compression will be made to obtain models with an even smaller size, and, based on it, one
example will be showed to make trade-offs between model storage and detection precision for practical
applications.

6.1. Storage/memory analysis
In Chapter 4 and Chapter 5, we evaluated the ABC-Net based and PA-Net based object detectors respec-
tively. But in this section, we will measure the performances of the models in terms of the compression
rate and storage saving.

Theoretical, the maximum compression can be achieved by the multiple-bits binary quantization
schemes like ABC-Net and PA-Net is𝑀/32, where𝑀 stands for the𝑀-bits quantization. Note that the
maximum compression can only be achieved only when all of the network parameters are binarized.
However, in practice, binarizing all the parameters usually leads to huge accuracy reductions even for
the models used in image classification problems [32, 35], and therefore only intermediate compression
has been achieved by only binarizing a part of the network parameters [32, 35, 42]. Moreover, for more
complex tasks like object detection, more layers would be kept in full-precision to ensure sufficient
detection accuracy, which will result in lower compression.

For the results reported in Chapter 4 and Chapter 5, the first convolutional layer, the last convo-
lutional layer as well as the RPN sub-networks of the binary Faster R-CNN models are kept in full-
precision as discussed in Section 3.3. Meanwhile, similarly the first and last layers, as well as the extra
SSD layers, are kept in full-precision for SSD models. More specifically, the storage of the binary
object detectors can be found in Table 6.1 below.

Based on the ABC and PA schemes, the convolutional layers can be compressed to approximately
15.63% and 9.38% using 5-bits and 3-bits quantization. However, as considering parts of parameters
are kept in full-precision to save the detection accuracy, the storage of the quantized models are al-
most dominated by the layers maintained in full-precision. As a result, PA and ABC scheme was only
able to achieve the highest compression of approximately 26.31% and 31.39% with 3-bits and 5-bits
quantization respectively on ResNet-101 based Faster R-CNN models, which are much lower than the
theoretical maximum compression. Furthermore, for the single-stage SSD models, it is more clear that

43

44 6. Discussions

Detector Backbone Methods Quantized / MB(%) Kept FP / MB(%) Total (Comp.) / MB(%)

Faster R-CNN

ResNet-18 PA-3/ABC-3 3.99 (29.62%) 9.47 (70.30%) 13.47 (25.83%)
ResNet-18 PA-5/ABC-5 6.67 (41.33%) 9.47 (58.67%) 16.14 (30.96%)
ResNet-50 PA-3/ABC-3 8.38 (18.41%) 37.15 (81.59%) 45.53 (35.97%)
ResNet-50 PA-5/ABC-5 13.97 (26.29%) 37.15 (72.70%) 53.13 (40.39%)
ResNet-101 PA-3/ABC-3 15.16 (28.98%) 37.16 (71.02%) 52.32 (26.31%)
ResNet-101 PA-5/ABC-5 25.26 (40.47%) 37.16 (59.53%) 62.42 (31.39%)

SSD-300

ResNet-50 PA-3/ABC-3 8.43 (12.09%) 61.31 (87.91%) 69.74 (46.12%)
ResNet-50 PA-5/ABC-5 14.05 (18.64%) 61.31 (81.36%) 75.36 (49.83%)
ResNet-101 PA-3/ABC-3 15.25 (20.15%) 60.43 (79.86%) 75.68 (38.41%)
ResNet-101 PA-5/ABC-5 25.53 (29.70%) 60.43 (70.30%) 85.96 (38.41%)

Table 6.1: Storage saving and compression rates of the binary models discussed in Chapter 4 and Chapter 5.
Quantized and Kept FP represent the storage(in MB) as well as the proportion of the binarized parameters and
full-precision parameters respectively. And Comp. denotes the overall compression rate of the binarized models.

the overall compression is significantly limited by the parameters of the network kept in full-precision.
Although the majority of the network parameters are quantized in binary representations, only maxi-
mally 38.41% overall compression was obtained.

6.2. Further compression of the object detectors
Introduced above, for the binary object doctors’ implementations discussed in Chapter 4 and Chapter
5, except first and last layers, were kept in full-precision (suggested in [32, 35]), the extra layers used
to handle the bounding box are also maintained full-precision to save the accuracy. This led to high
storage costs, and largely limited the overall compression rate of the models, especially for the single-
stage SSD models, which contained relatively high proportions of extra parameters on the top of the
backbone networks. Thus, in this section, we will further explore the performances with more layers of
the models quantized to binary representations.

Aiming to obtain higher compression, for the SSDmodels, we only maintain the first and last layers
in full-precision, and binarize all the other layers including the extra SSD layers. On the other hand, for
the two-stages Faster R-CNN models, we further quantize the first 𝑐𝑜𝑛𝑣_3× 3 convolutional layers in
the sub RPN networks (see Figure 3.3) with PA scheme. But the 𝑐𝑜𝑛𝑣_1 × 1 layers in RPN are still
kept in full-precision as they are the last layers to create the feature maps for foreground/background
classification to generate the region proposals. In this section, ResNet-50 based Faster R-CNN and
Rsenet-50 based SSD are used to evaluate the results for further quantization. More specifically, the
performance of the models in terms of both storage as well as the detection accuracy can be obtained
in Table 6.2.

Detector Methods mAP Quantized / MB(%) Kept FP / MB(%) Total (Comp.) / MB(%)

Faster R-CNN M1+PA-5 67.58 13.97 (26.29%) 37.15 (72.70%) 53.13 (40.39%)
M2+PA-5 60.89 19.60 (94.46%) 1.15 (5.54%) 20.75 (16.39%)

SSD-300 M1+PA-5 72.47 14.05 (18.64%) 61.31 (81.36%) 75.36 (49.83%)
M2+PA-5 71.32 25.50 (56.48%) 19.65 (43.52%) 45.15 (29.86%)

Table 6.2: Evaluation and comparison between two methods. For M1, the layers are binarized except the first
layer and last layers, the RPN layers, and the extra SSD layers. While, as introduced above, in M2, all the layers
excepts the first and the last layers are binarized. Faster R-CNN models are trained and evaluated on PASCAL
VOC2007, and the ResNet-50 based SSD are trained on VOC07+12 and evaluated on VOC07 test set. All mAP
are obtained using PASCAL VOC standard with mAP threshold at 0.5. Quantized and Kept FP represent the
storage(in MB) as well as the proportion of the binarized parameters and full-precision parameters respectively.
And Comp. denotes the overall compression rate of the binarized models.

Shown in Table 6.2, significantly higher compression was achieved when quantizing the layers in
head networks. The ResNet-50 based Faster R-CNN and SSD models can be compressed to only 20.75
MB and 45.15 MB, which have only approximately 16% and 30% storage size respectively comparing

6.3. Comparisons and trade-offs 45

to the full-precision model. Not surprisingly, with higher quantization ratios, further accuracy reduc-
tion can be observed for both the models. However, the further compressed models can still maintain
higher accuracy and smaller storage size comparing to other real-time full-precision models, like Fast
YOLO [38] (52.7 mAP on VOC07 𝑡𝑒𝑠𝑡) and Tiny YOLO v2 [36] (57.1 mAP on VOC07 𝑡𝑒𝑠𝑡).

Figure 6.1: Model storage for different object detectors with 3-bits and 5-bits PA and ABC quantization scheme.
M1 is the quantization method introduces in section 3.3. And for M2, based on M1,the extra SSD layers for single
stage SSD models and the ፨፧፯_ኽ×ኽ layers of the RPN for Faster R-CNN models are further quantized to obtain
higher compression.

Furthermore, a better view of the model storage with both of the methods can be found in figure
Figure 6.1. It is clear that the storage for the object detectors can be significantly reduced, by further
convert some of the layers in the head networks to binary representations. Note that some of the results
are obtained from measuring can calculating the storage of the models with random weights. This
project did not train all of the models with method 2 due to the limited computational resources. But
the results in Table 6.2 have already shown the trend of further accuracy reductions when binarizing
more layers of the object detectors. Based on the observation in previous chapters, the deeper ResNet-
50 and ResNet-101 based detectors would be very likely to suffer more accuracy reductions than the
models with ResNet-18 backbone network and methods 2. In practice, one can always make such trade-
offs between the detection accuracy and models storage/memory depends on the hardware platform and
precision requirements.

6.3. Comparisons and trade-offs
As one of the objectives for this project. In this section, we will compare the PA binarization scheme
with the existing ABC-Net scheme on object detection tasks. Moreover, we will also show an example
of a brief trade-offs between storage size and detection precision for the binary object detectors obtained
in the previous chapters.

46 6. Discussions

6.3.1. Comparisons between ABC and PA scheme on object detection
As already discussed in Chapter 4 and Chapter 5, both of the ABC and PA scheme are multiple-bits
binary quantization approaches for both network parameters and inputs quantization. ABC scheme ap-
proximates the weights and inputs by solving the optimal scaling factors which scale the binary bases as
a whole (see Chapter 4). while, instead of approximate the whole weight or input tensors, PA scheme
separates the weights and inputs into multiple pieces, and directly approximate each piece indepen-
dently (see Chapter 5). As a result, although they compress the full-precision weights and inputs to the
same bit length, the detection accuracy are much different. Table 6.3 below summaries and compares
the performances of the binarized object detectors with ResNet backbone networks in different depths
obtained from Chapter 4 and Chapter 5.

Detector Backbone mAP PA-5 mAP ABC-5

Faster R-CNN
ResNet-18 55.32 55.16
ResNet-50 67.58 67.69
ResNet-101 69.86 70.31

SSD-300 ResNet-50 72.53 72.47

Table 6.3: Performances comparisons between 5-bits ABC-Net and PA schemes for Faster R-CNN and SSD-300
object detectors with ResNet backbone. Except the ResNet-18 based Faster R-CNN, other models were all trained
on VOC07+12. And all the models are evaluated on VOC07 test set, with IoU threshold at 0.5.

It is clear that, for only weights quantization, no significant differences were observed in terms
of detection accuracy when using PA and ABC schemes with the same bit length for only network
parameter quantization. And for the object detectors with deeper backbone networks (e.g.ResNet-50,
ResNet-101) the ABC-Net based scheme tend to slightly outperform PA scheme. However, comparing
to ABC-Net scheme, PA scheme has the advantages as shown below:

• Much better performances for input/activation quantization: Although no significant im-
provement can be observed on the weights quantization comparing to ABC-Net scheme, PA
scheme was able to show significantly better abilities to quantize the inputs/activation than the
ABC-Net scheme. As the attempts made in the previous sections (see Section 4.2.2), ABC-Net
based approaches showed difficulties (very low mAP) to quantize activation. But on the contrast,
experiments in Section 5.2.1 illustrated PA schemes were able to quantize the object detectors
while maintaining comparable detection accuracy, which was able to outperform some real-time
object detectors such as Fast YOLO [38].

• High efficiency during training time: Another advantage of PA scheme is that it runs much
faster than ABC-Net based quantization during training time. To be more specific, ABC-Net re-
quires considerable extra run-timememory and computation resources to solve the LSE optimiza-
tion problems shown in Equation 4.4 for every weight tensors independently to obtain the scaling
factor 𝛼ᑞs during training time. While for PA scheme, the scaling factors are obtained directly by
averaging the elements from the corresponding pieces using Equation 5.3, which requires much
fewer computations comparing to the ABC-Net approach. As a result, for the implementations
used in this project,5-bits ABC-Net and ResNet-101 based Faster R-CNN network run at approx-
imate 0.76 iterations per second on one Nvidia Tesla P100 GPU during training. While 5-bits PA
scheme and ResNet-101 based Faster R-CNN was able to run at approximately 3.62 iterations
per second on the same machine, which was around 4.76 times faster than the ABC-Net scheme.

In short, although no big performance improvements can be observed for weight quantization be-
tween using PA and ABC scheme, PA scheme can run much faster than the ABC scheme during training
time. Moreover, the PA scheme outperformed ABC scheme for inputs/activation quantization, which
can still lead to comparable performances on object detection tasks.

6.3. Comparisons and trade-offs 47

6.3.2. Trade-offs
As introduced in the previous sections, in real-world applications, one can always make trade-offs be-
tween the model storage size and the detection accuracy by carefully selecting the number of layers to
apply binary quantization. Obviously, a high ratio of binary layers will result in high quantization errors
but lower storage and memory consumption. To be more specific, as shown in Figure 6.2 below, brief
examples were made to make trade-offs for ResNet-50 based Faster R-CNN and ResNet-50 based SSD
models with PA scheme.

Figure 6.2: Brief trade-offs between accuray and storage size for different object detectors with 5-bits PA quanti-
zation scheme.

From Figure 6.2, we can observe that the detection accuracy for both SSD and Faster R-CNN were
growing with the increasing number of full-precision layers (or model storage) as expected. It is clear
that the two-stages Faster R-CNN models tend to have a sharper improvement in detection accuracy
when we increase the number of parameters to be kept in full-precision. This means that Faster R-
CNN can benefit more when increasing the number of high precision layers than the SSD. On the other
hand, the performance of single-stage SSD models tends to be saturated when continually increasing
the number of full-precision parameters, where only slight improvement on mAP can be observed when
changing the model with approximately 30% storage size to full-precision model. This illustrated taht
the SSD models tend to have more stable performances than Faster R-CNN models when we decrease
the precision of the network parameters. In other words, the results suggested that SSD like models
tend to be more robust to binary quantization errors as also discussed in previous chapters.

7
Conclusions

7.1. Summary
In this project, attempts had been made to adopt binary quantization approaches to object detection
tasks. Different accuracy-preserving multiple bits quantization schemes were studied and applied to
two-stages Faster R-CNN and single-stage SSD models, which are two of the most popular object
detectors in real-world applications. The results were then evaluated on the PASCAL VOC data set.
Known as one of the state-of-the-art binary quantization schemes, ABC-Net based approaches were
first discussed and applied to compress the full-precision object detectors. And an unpublished PA
approach proposed by Zhu et al. from our group was then applied and compared with the existing ABC-
Net scheme on object detection problems. A three-stages training process was introduced to train the
quantized object detectors, which led to higher detection accuracy than the normal two-stage training.
Moreover, as for inference, we specified a practical way to calculate the ABC and PA schemes based
binary convolution. The results were evaluated on PASCAL VOC data set.

For only weights binarization, ABC-Nets and PA schemes were both able to quantize the object
detectors. The quantized binary models can still achieve acceptable performances on PASCAL VOC
data set with the maximum accuracy reduction of approximate 6 mAP, and with the compression rate
from approximately 26% to 50%. Observed from the experiment results, ABC-Nets tend to have more
stable performances to quantize the models in different depths. Although PA schemes slightly outper-
formed ABC scheme for shallower networks (e.g. ResNet-18 based Faster R-CNN), it showed a larger
mAP reduction than ABC scheme for deeper ResNet-50 and ResNet-101 based detectors. However,
PA schemes can train the models with approximately 4.8 times faster than ABC scheme with the same
setup. Moreover, the attempts to further reduce the models’ storage sizes and increase the compression
rate were also made by quantizing over 99% of the network parameters to binary representation. As a
result, the ResNet-50 based Faster R-CNNmodels can be compressed to the storage size within 21 MB,
but with a lager accuracy reduction in mAP. While the SSD models were compressed to approximately
45MB with only about 3 mAP reduction.

Furthermore, the explorations were also been made to quantize both the weights and inputs of the
object detectors for further speedups and run-time resources saving. We quantized both the inputs and
weights for ResNet-18 based Faster R-CNN and ResNet-50 based SSD with ABC and PA scheme.
Unfortunately, ABC-Net based inputs quantization failed to achieve sufficient detection performances
for both of the baseline models. However, the PA scheme is able to binarize the models with still
acceptable detection accuracy on PASCAL VOC data set.

Compared to the existing works, with only weight quantization, the PA and ABC based object de-
tection models can still preserve competitive detection accuracy. For instance, the 5-bits ABC-Net and
ResNet-50 based SSD-300 achieved 72.47 mAP, which is only around 0.73 mAP lower than the original

49

50 7. Conclusions

full-precision Faster R-CNN implementation [39], and around 1.9 mAP lower than the full-precision
SSD-300 implementation [33] but with smaller model sizes. In terms of both accuracy and storage, the
binary ResNet-50 based Faster R-CNN was able to outperform the real-time full-precision Tiny YOLO
v2 [36], where Tiny YOLO v2 achieved 57.1 mAP and required 60.5 MB storage. Moreover, the PA-
based binary weights and binary models achieved better performances than the existing binary weights
and inputs object detectors in [42], which is 45.6 mAP on PASCAL VOC07 test set.

7.2. Future work
As for further work, there are several aspects that can be considered. Firstly, in terms of accuracy, al-
though acceptable performances were achieved, the accuracy reductions from the full-precision models
were still significant even with parts of the network layers kept in full-precision, especially when the
inputs were binarized. Thus, further training techniques and more advanced binarization approaches are
needed. For instance, attempts, like introducing an additional cost function to punish the quantization
errors, or adopting a layer-by-layer training, could be reasonable ways to improve the performances.
Secondly, both ABC and PA schemes are multiple-bits quantization methods, further compression can
be obtained by using 1-bit compression such as BWN and XNOR scheme [35]. Thirdly, this project
only evaluated the accuracy and model storage on GPU based machines to evaluate the possibilities to
utilize binary quantization on object detectors, further evaluation and optimization of run-time memory,
as well as computational cost (e.g. FLOPs) on corresponding hardware platforms are required.

Bibliography

[1] Hande Alemdar, Nicholas Caldwell, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot.
Ternary neural networks for resource-efficient AI applications. CoRR, abs/1609.00222, 2016.
URL http://arxiv.org/abs/1609.00222.

[2] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional
neural networks. CoRR, abs/1512.08571, 2015. URL http://arxiv.org/abs/1512.
08571.

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, pages 153–160. MIT Press, 2007. URL http://papers.
nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.
pdf.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

[5] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Com-
pressing neural networks with the hashing trick. CoRR, abs/1504.04788, 2015. URL http:
//arxiv.org/abs/1504.04788.

[6] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compress-
ing convolutional neural networks. CoRR, abs/1506.04449, 2015. URL http://arxiv.org/
abs/1506.04449.

[7] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,
Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning supercomputer.
pages 609–622, 2014. URL https://ieeexplore.ieee.org/document/7011421/.

[8] Matthieu Courbariaux andYoshuaBengio. Binarynet: Training deep neural networkswithweights
and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016. URL http://arxiv.
org/abs/1602.02830.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks
with low precision multiplications. 2014. URL http://arxiv.org/abs/1412.7024.
cite arxiv:1412.7024v5.pdfComment: 10 pages, 5 figures, Accepted as a workshop contribution
at ICLR 2015.

[10] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. CoRR, abs/1511.00363, 2015. URL
http://arxiv.org/abs/1511.00363.

[11] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: object detection via region-based fully con-
volutional networks. CoRR, abs/1605.06409, 2016. URL http://arxiv.org/abs/1605.
06409.

51

http://arxiv.org/abs/1609.00222
http://arxiv.org/abs/1512.08571
http://arxiv.org/abs/1512.08571
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1506.04449
http://arxiv.org/abs/1506.04449
https://ieeexplore.ieee.org/document/7011421/
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1605.06409

52 Bibliography

[12] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. 1:886–893 vol. 1,
June 2005. ISSN 1063-6919. doi: 10.1109/CVPR.2005.177.

[13] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge: A retrospective. International Journal of Computer Vision,
111(1):98–136, January 2015.

[14] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg. DSSD : De-
convolutional single shot detector. CoRR, abs/1701.06659, 2017. URL http://arxiv.org/
abs/1701.06659.

[15] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg. DSSD : De-
convolutional single shot detector. CoRR, abs/1701.06659, 2017. URL http://arxiv.org/
abs/1701.06659.

[16] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL http://arxiv.org/
abs/1504.08083.

[17] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013. URL
http://arxiv.org/abs/1311.2524.

[18] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. CoRR, abs/1502.02551, 2015. URL http://arxiv.org/
abs/1502.02551.

[19] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. 2015. URL http://arxiv.
org/abs/1510.00149. cite arxiv:1510.00149Comment: Published as a conference paper at
ICLR 2016 (oral).

[20] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626, 2015. URL http://arxiv.org/abs/
1506.02626.

[21] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR,
abs/1703.06870, 2017. URL http://arxiv.org/abs/1703.06870.

[24] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. CoRR, abs/1704.04861, 2017. URL http://arxiv.
org/abs/1704.04861.

[25] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016. URL http://arxiv.org/abs/1608.06993.

[26] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian
Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Murphy. Speed/accuracy
trade-offs for modern convolutional object detectors. CoRR, abs/1611.10012, 2016. URL http:
//arxiv.org/abs/1611.10012.

http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1611.10012

Bibliography 53

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. pages
1097–1105, 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

[29] Honglak Lee, Chaitanya Ekanadham, and Andrew Y. Ng. Sparse deep belief
net model for visual area v2. In J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis, editors, Advances in Neural Information Processing Systems 20, pages 873–
880. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/
3313-sparse-deep-belief-net-model-for-visual-area-v2.pdf.

[30] Fengfu Li and Bin Liu. Ternary weight networks. CoRR, abs/1605.04711, 2016. URL http:
//arxiv.org/abs/1605.04711.

[31] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. 2014.

[32] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
CoRR, abs/1711.11294, 2017. URL http://arxiv.org/abs/1711.11294.

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C. Berg. Ssd: Single shot multibox detector. pages 21–37, 2016.

[34] David G. Lowe. Object recognition from local scale-invariant features. pages 1150–, 1999. URL
http://dl.acm.org/citation.cfm?id=850924.851523.

[35] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. CoRR, abs/1603.05279, 2016. URL
http://arxiv.org/abs/1603.05279.

[36] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[37] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018.

[38] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. CoRR, abs/1506.02640, 2015. URL http://arxiv.org/
abs/1506.02640.

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. pages 91–99, 2015. URL http://dl.acm.org/
citation.cfm?id=2969239.2969250.

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. Computer Science, 2014.

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2.pdf
http://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2.pdf
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1711.11294
http://dl.acm.org/citation.cfm?id=850924.851523
http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://dl.acm.org/citation.cfm?id=2969239.2969250
http://dl.acm.org/citation.cfm?id=2969239.2969250

54 Bibliography

[42] S. Sun, Y. Yin, X. Wang, D. Xu, W. Wu, and Q. Gu. Fast object detection based on binary deep
convolution neural networks. CAAI Transactions on Intelligence Technology, 3(4):191–197, 2018.
ISSN 2468-2322. doi: 10.1049/trit.2018.1026.

[43] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders. Selec-
tive search for object recognition. International Journal of Computer Vision, 2013.
doi: 10.1007/s11263-013-0620-5. URL http://www.huppelen.nl/publications/
selectiveSearchDraft.pdf.

[44] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.
2001.

[45] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016. URL http://arxiv.org/abs/1606.06160.

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://arxiv.org/abs/1606.06160

	List of Tables
	List of Figures
	Introductions
	Context
	Problem description and research questions
	Thesis outline

	Background and related work
	Neural networks for object detection
	Convolutional neural networks (CNNs)
	Object detection
	Object detection networks

	Overview of deep neural network compression
	Low-precision and binary quantization
	Code-book based quantization
	Connection pruning

	Related works in binary neural networks
	Binary neural networks on image classification
	Related work of binary neural networks for object detection

	Solution strategy and experiment setup
	Experiments details
	Data set
	Evaluation metrics

	Implementation of full precision baseline networks
	Implementation for Faster R-CNN
	Implementation for SSD
	Training the baseline full precision networks

	Strategies to train binary object detectors
	Binary object detector outlines
	Training binary object detectors

	Accurate binary convolutional networks (ABC-Net)
	Methodology
	Weight quantization
	Input/activation quantization
	Multiplication-free binary convolutional operation
	Training

	Experiments
	Weight quantization
	Extension to input quantization

	Piecewise approximation networks (PA-Net)
	Methodology
	Weight quantization
	Inputs/activation quantization
	PA Scheme based binary convolutional operation
	Training

	Experiments
	Weights quantization
	Extension to input quantization

	Discussions
	Storage/memory analysis
	Further compression of the object detectors
	Comparisons and trade-offs
	Comparisons between ABC and PA scheme on object detection
	Trade-offs

	Conclusions
	Summary
	Future work

	Bibliography

