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Abstract

Objective: This work focuses on the feasibility of using Electrical Impedance Spectroscopy
(EIS) to differentiate between cancerous and healthy tissues in real-time alongside the GI
tract. This is to see whether it is possible to support surgeons when taking biopsies, or to see
if it is possible to make biopsies obsolete with EIS. Methods: The study is limited to three
tissue types representing the GI tract. These tissues are the esophagus, ileum, and colon
tissue. Impedance measurements are taken with a 4-electrode probe on a Hewlett Packard
4192A LF HP Impedance Analyzer. All measurements are taken over a frequency range of
1 kHz to 7 MHz in 300 steps. Seven patients are included: three esophagus, two ileum, and
two colon. Forty-eight ex vivo measurements are taken; 32 are on healthy tissue and 16 on
cancerous tissue. Almost all measurements are verified by histological assessment (golden
standard). In this work, a combination of parameterization with a classification method is
made to create a classification strategy. These can be listed as the Cole impedance model, the
two-pole Cole impedance model, the two-pole Cole impedance model in combination with a
Constant Phase Element (CPE), and PCA. The Cole impedance models are combined with
thresholding, and the PCA is combined with a SVM. Results: The thresholding algorithm is
created in combination with the α2 parameter (P < 0.05) from the two-pole Cole impedance
model in combination with a CPE. The thresholding value is determined in a LOOCV
approach via ROC curves created to search for the threshold that gives the most significant
summation of sensitivity and specificity. In the combination of PCA and SVM, the PCA uses
three principal components (containing 96.37% of the total variance), and the SVM applies
an Radial Basis Function (RBF) kernel. For the 2-pole Cole impedance model with CPE
in combination with thresholding, we find an accuracy 0.5208, sensitivity 0.4375, specificity
0.5625, Positive Predictive Value (PPV) 0.3333, Negative Predictive Value (NPV) 0.6666, and
Mathews Correlation Coefficient (MCC) 0.0000. For the PCA in combination with the SVM,
we find an accuracy of 0.4167, a sensitivity of 0.0000, specificity of 0.6250, PPV of 0.0000,
NPV of 0.5556, and MCC -0.4082. Conclusion: It is concluded that we cannot create an
algorithm that either supports surgeons or replaces a biopsy in the GI tract with the current
setup. This is highly likely due to the extremely low amount of data that is included to train
the algorithm.
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Chapter 1

Introduction

This introductory chapter defines the problem-statement & motivation for this thesis work,
which transformed into several research questions that are posed in the objectives for this work.
The introduction is concluded with the outline of this report document.

1-1 Problem-Statement and Motivation

Combining a biopsy in the gastrointestinal (GI) tract with cytology renders the highest detec-
tion rates for cancer [45, 20]. During this procedure, a surgeon uses an endoscope to remove
a small tissue sample from the affected area. After this, a pathologist looks at the specimen
and tries to find unique cancer cell patterns under a microscope.

However, it can be challenging to determine where to take the biopsy from (as sometimes
cancer cells are spread and not visible), and therefore, using an endoscope can be seen as a
limited technique where the surgeon needs more guidance toward achieving the best biopsy.
Additionally, taking a biopsy is rather time-consuming, as multiple specialized individuals
are needed to determine whether the tissue specimen is cancerous or non-cancerous. Thus,
real-time feedback on whether the tissue is cancerous or non-cancerous during a biopsy in the
GI tract could be a solution that tackles both issues.

Electrical Impedance Spectroscopy (EIS) is a minimally-invasive, quantitative method for de-
termining cellular changes in tissue as a function of frequency, which can potentially facilitate
real-time classification between cancerous and healthy tissue, resulting in better procedural
outcomes [35].

Along the entire GI tract, the walls have the same four primary layers (mucosa, submucosa,
muscularis externa, and serosa) [24], it can be hypothesized that the EIS measurement results
yield similar outcomes for healthy tissue along the GI tract, making it possible for classification
of healthy versus non-healthy tissue along the entire tract. Therefore, EIS may be a supportive
tool when taking biopsies or can even replace biopsies.
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Before this work, a literature survey was conducted on using EIS techniques in real-time cancer
detection during surgery and on techniques that are most appropriate for the data analysis
[35]. This work focuses on the feasibility of using EIS to differentiate between cancerous and
healthy tissue identification in real-time alongside the GI tract. It should be noted that we
limit ourselves to three tissue types that are represented in the GI tract, which are: esophagus,
ileum, and colon tissue. Additionally, this work is a collaboration between the Department of
Surgical Oncology and Gastrointestinal Surgery, the Erasmus MC Cancer Institute, Philips,
and the TU Delft.

1-2 Objectives

To ensure the relevance of this thesis work, the author has created various research questions
in combination with a summary of the question’s motivation.

Research Questions

• Is it possible to create classification algorithms that can be used on the esoph-
agus, colon, and ileum tissue to detect cancerous versus non-cancerous tis-
sue?
By answering this research question, the possibilities within the realm of tissue classifi-
cation with EIS for tissues of the GI tract is understood.

• Which classification strategy has better performance, the more classical Cole
Impedance parameterization in combination with thresholding, or the newer
principal component analysis (PCA) in combination with a trained support
vector machine (SVM) algorithm.
The answer to this question shows different techniques to achieve the same end goal.
This question is interesting because it tests two different approaches. A more classical
approach that uses parameterization via data-fitting with a threshold to determine
whether a sample is cancerous or non-cancerous, and a more new-school approach that
uses PCA and a SVM algorithm.

• Is EIS a technique that can be used in combination with a parameterization
and classification algorithm to replace or support biopsies in the GI tract?
This question serves as the most critical question that is answered in this thesis work. It
is also the most crucial question as it examines the current golden standard technique:
a biopsy of the GI tract.

1-3 Document Outline

This document is structured as follows. Chapter 2 discusses the theory that is required to
understand this work. It ranges from the physiology of the GI tract to the theory behind
EIS. Chapter 3 gives an overview of the methods that are used to perform this research.
This section elaborates on the data acquisition, parameterization, and classification methods.
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In Chapter 4, the results from the measurements are shared and the performance of the
classification strategies are shown. In Chapter 5, a discussion is given on this work, where all
the significant findings and the meaning behind those findings are discussed. Finally, Chapter
6 concludes all the work and findings presented in this document. Also, some suggestions
regarding future research in this direction are made, where the author points out the main
challenges and questions to be answered.
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Chapter 2

Theory

This chapter encompasses the theory that is required to create this work. We start off by
covering the physiological and clinical theory, followed by more technological theory about
Electrical Impedance Spectroscopy (EIS) and how EIS can be used in biological tissue.

2-1 Physiology and Clinical Biopsy of the GI tract

Food is ingested into the digestive system, which breaks it down into nutritional molecules,
absorbs them into the bloodstream, and excretes the indigestible waste from the body. In
Figure 2-1, one can observe the gastrointestinal (GI) tract, commonly known as the gut. It
is a continuous muscular tube that winds through the body, which starts at the mouth and
ends at the anus. The alimentary canal (GI tract) consists of the mouth, pharynx, esophagus,
stomach, and small and large intestines that lead to the anus [24].

The walls of the alimentary canal have the same four primary layers: mucosa, submucosa,
muscularis externa, and serosa. These four can be observed in Figure 2-2. Each layer has a
dominating tissue type that contributes in a particular way to the breakdown of food [24].

The inner layer is the mucose that lines the GI tract lumen from the mouth to the anus.
Its functions are to secrete mucus, digestive enzymes, hormones, absorb the end nutrients of
digestion into the bloodstream, and act as a protection mechanism against infectious disease.
The mucus that is produced protects specific digestive organs from being digested themselves.
Additionally, it aids in the passage along the entire tract. In the stomach and small intes-
tine, the mucose contains enzyme-synthesizing and hormone-secreting cells. The submucosa
lines the mucosa and is a connective tissue that contains many blood and lymphatic vessels,
lymphoid follicles, and nerve fibers to supply the surrounding tissue of the GI tract wall.
Surrounding the submucosa is the muscularis external. The responsibility of this layer is to
ensure segmentation and peristalsis. The muscularis externa typically consists of an inner
circular layer and an outer longitudinal layer of smooth muscle cells. This layer acts as valves
in specific segments of the GI tract to control the food’s propulsion and prevent backflow. In
the GI tract’s canal organs, the serosa’s outermost layer is formed of rigid and flexible tissue
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Figure 2-1: The GI tract or gut with all its organs [24].

Figure 2-2: The four layers that can be found within the entire GI tract [24].
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2-1 Physiology and Clinical Biopsy of the GI tract 7

(areolar connective tissue) covered with a single layer of squamous epithelial cells [24]. For
this work we focus on thee parts of the GI tract: the esophagus, the ileum, and the colon,
therefore, we will give a more detailed description of of the esophagus, the small intestine and
the large intestine.

2-1-1 The Esophagus

The esophagus begins at the pharynx and runs through the diaphragm down to the stomach.
The canal is approximately 25 centimeters long and functions as a passageway to the stomach
for ingested food. Additionally, the esophagus aids in food transport by antegrade peristaltic
contractions that push the food bolus toward the stomach. The esophagus contains two
sphincters at the proximal and distal ends of the esophagus. When no food is ingested,
the esophagus relaxes, and its upper and lower sphincters are contracted to prevent acid
reflux. Additionally, the upper sphincter prevents aerophagia (excessive and repetitive air
swallowing) during inhalation. [8].

The esophagus can be divided into the cervical, thoracic, and abdominal parts, which can
be found in Figure 2-3. The cervical segment starts at the cricoid cartilage’s lower border
and finishes at the thoracic inlet of the jugular notch [8]. The cervical segment is positioned
between the anterior trachea and posteriorly prevertebral layer of the cervical fascia posteri-
orly [8]. The thoracic segment is subdivided into three parts: upper, middle, and lower. The
upper thoracic esophagus spans the length of the superior mediastinum between the thoracic
inlet and the carina [8]. The middle and lower part of the thoracic esophagus lies in the pos-
terior mediastinum and are divided by the middle between the tracheal bifurcation and the
esophagogastric junction. The lower esophagus consists of, the lower thoracic esophagus and
the abdominal part of the esophagus. The abdominal segment ranges from the diaphragm to
the gastro-esophageal junction.

2-1-2 The Small Intestine

The small intestine is the longest part of the GI tract and can be seen as a long twisted tube
extending from the pyloric sphincter to the ileocecal valve, where it joins the large intestine.
The small intestine is considered the body’s major digestive organ as this is where virtually
all absorption occurs with the help of bile and pancreatic enzymes [24].

The small intestine is divided into the duodenum, the jejunum, and the ileum. The duodenum
is the initial part of the small intestine; it curves around the head of the pancreas and
is approximately 25 centimeters long (see Figure 2-1). The jejunum is approximately ten
times the size of the duodenum and extends from the duodenum to the ileum. The ileum is
approximately 3.6 meters long and joins the large intestine. This happens at the ileocecal
valve. Both the jejunum and ileum hang in a coil-like shape in the central and lower part of
the abdominal cavity; here, the distal parts of the small intestine are encircled by the large
intestine [24].

The primary function of the small intestine is to absorb nutrients. The intestine is highly
adapted to this task due to its long length. Additionally, the small intestine has three struc-
tural modifications that amplify its absorptive function: circular folds, villi, and microvilli
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Figure 2-3: The three segments that make up the esophagus [8].

J.W.G. Remmerswaal MSc. Thesis



2-1 Physiology and Clinical Biopsy of the GI tract 9

Figure 2-4: The circular fold, villi, and microvilli in the small intestine [24].

(see Figure 2-4) [24]. The folds in the wall of the small intestine are nearly 1-centimeter-deep
permanent folds of the mucosa and submucosa, which force chyme (a semi-fluid mass of partly
digested food expelled by a person’s stomach) to propagate through the lumen spirally. It also
slows down the chyme’s movement, allowing for more digestion time and better absorption
of nutrients in the small intestine. The villi are small extensions of the mucose that are over
1 millimeter in height. The villi are the largest in the duodenum since most of the nutrient
absorption occurs here. Their size gradually decreases along the length of the small intestine.
The core of a villus contains a dense capillary bed and a wide lymphatic capillary. This allows
for optimal absorption of nutrients through the epithelial cells. On the villi, there are long
and densely packed cytoplasmic extensions of micro absorptive cells of mucosa that give the
mucous surface a furry-like appearance. These extensions are referred to as microvilli. The
microvilli’s plasma membrane contains brush border enzymes used to complete the digestion
of carbohydrates and proteins [24].

2-1-3 The Large Intestine

The large intestine surrounds the small intestine on three sides (see Figure 2-5) [24]. The large
intestine starts at the ileocecal valve and ends down at the anus. Its diameter is approximately
seven centimeters, meaning it’s much wider than the small intestine. However, the large
intestine is about 1.5 meters long and much shorter than the 6-meter-long small intestine.
The large intestine’s main function is to absorb the remaining water of the chyme and to
store the semi-solid chyme momentarily. After this, the feces are excreted via the anus and
leave the body. Additionally, the large intestine absorbs metabolites (intermediate or end
product of metabolism) produced by bacteria in the large intestine. These bacteria ferment
carbohydrates that are not absorbed by the small intestine [24].

The large intestine contains three distinct features not seen elsewhere in the body: teniae
coli, haustra, and epiploic appendages. The teniae coli is a muscle layer that runs in the
middle over the entire span of the large intestine and consists of three bands of smooth

MSc. Thesis J.W.G. Remmerswaal



10 Theory

Figure 2-5: The gross anatomy of the large intestine [24].

muscle. The shape of the intestine wall is exhibited as pocketlike sacks sewed together called
haustra. Another distinct feature of the large intestine is its epiploic appendages, which are
little pouches filled with fat hanging from the intestinal wall. Their function is still unknown
to humans to this date [24].

The large intestine can be subdivided into the following parts: the cecum, appendix, colon,
rectum, and anal canal. the cecum has a saclike shape that lies right below the ileocecal
valve. Attached to the cecum is the appendix. The appendix plays an important role in the
body’s immunity as it contains much lymphoid tissue. Furthermore, it stores microorganisms
and recolonizes the stomach as necessary. However, the appendix has a significant structural
flaw, its twisted form makes it prone to obstruction [24].

The colon has a subdivision of its particular regions. The ascending colon ascends to the
right side of the abdominal cavity to the level of the right kidney. At the right colic (hepatic)
flexure, the colon turns right and becomes the transverse colon, which proceeds to cross the
abdominal cavity. The right colic (hepatic) flexure turns right-angled at this point, and the
transverse colon proceeds across the abdominal cavity. Next, it ascends the right side of the
abdominal cavity at the same angle as the ascending colon to the level of the right kidney.
After traversing the abdominal cavity, the colon bends sharply at the left colic (splenic)
flexure in front of the spleen. Then it begins as the descending colon, along the left side
of the posterior abnormal wall. Then it enters the pelvis inferiorly, transforming into the
S-shaped sigmoid colon. The sigmoid colon joins the rectum, which runs posteroinferiorly
immediately in front of the sacrum at the level of the third sacral vertebra in the pelvis. The
rectum has three bends, each representing a transverse fold called a rectal vale. These valves
prevent the passage of excrement combined with gas. The anal canal is the last segment of
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(a) The workings of an endoscope
through the mouth [34].

(b) A biopsy being taken in the intes-
tine [41].

Figure 2-6: The endoscope and the biopsy.

the large intestine and lies external to the abdominopelvic cavity. The anal canal is about
three centimeters long and begins where the rectum penetrates the pelvic floor muscles and
opens up to the body’s exterior via the anus. The anal canal contains two sphincters, an
involuntary internal anal sphincter and a voluntary external anal sphincter. The first is
composed of smooth muscle, and the latter is composed of skeletal muscle, both sphincter act
to open and close the anus [24].

2-1-4 Gastrointestinal Endoscopy and Biopsy

Gastrointestinal endoscopy, combined with the acquisition of a tissue sample, is an essential
technique used to later diagnose various diseases in and of the digestive system [30].

During a biopsy, a small piece of tissue is taken from the lining of the GI tract for further ex-
amination under a microscope [32, 38]. The biopsy is typically performed using an endoscope,
a long and flexible fiberoptic, or a video tube [34]. The endoscope contains a camera and a
light at the end of it and is inserted through the mouth or nose [34]. After this, it is guided
through the GI tract towards the biopsy site [34, 32]. Then, by watching the endoscopic
images on the monitor, the doctor steers the endoscope through the patient’s gastrointestinal
tract using the control handle [34] (see Figure 2-6a).

Once in position, a small biopsy catheter is passed through the endoscope to remove a tiny
piece of tissue from the GI tract’s lining (see Figure 2-6b), which is later assessed by a
pathologist [38, 31]. The procedure is generally safe and well-tolerated, but there is a small
risk of bleeding or infection at the biopsy site [31, 38]. Patients may be asked to avoid eating
and drinking for a while before the procedure and may receive sedation or anesthesia to help
them relax and minimize discomfort [38].

Performing an endoscopy can be divided into two classes: upper endoscopy and lower en-
doscopy [30]. Recommended biopsies for upper endoscopies are Barrett’s esophagus, gastroe-
sophageal reflux disease, and infectious esophagitis. [30] Recommended biopsies for the lower
endoscopy are primary intestinal malabsorption and other intestinal diseases, including celiac
disease, Crohn’s disease, ulcerative colitis, and cancer [31]
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2-2 Electric Impedance Spectroscopy

EIS is an effective and powerful method for studying the electrical characteristics of a wide
range of tissue and biomaterials. It involves applying a voltage or current to the sample
to measure its impedance over an appropriate chosen frequency range [35]. In actuality, a
fitting is made to an equivalent electrical model, which represents the sample’s electrical
fingerprint, providing an understanding of its characteristics and actions [3, 35]. EIS is a fast
and straightforward solution in various applications. The essential fundamental theoretical
concepts behind impedance spectroscopy are examined in this section. EIS was conceptualized
and worked out by Oliver Heaviside in 1886 and has turned into an effective tool that is
currently being applied in multiple domains [12, 23, 35]. Electrical impedance is the opposition
to alternating current that consists of a combination of resistance and reactance [23]. The
opposition to the flow of electric currents is resistance, and the opposition to the flow of
electric currents by inductance or capacitance is reactance [23, 35]. Although reactance and
resistance both create resistance to the current flow, resistance results in the dissipation of
electrical energy in the form of heat, while this is not the case for reactance [12]. A resistor
continuously loses energy as time passes, whereas reactance stores energy and returns it to the
circuit every one-fourth-cycle [12]. Reactance is measured in ohms (Ω) like resistance, with
negative values representing capacitive reactance and positive values representing inductive
reactance [12].

2-2-1 Impedance and Permittivity

Impedance is a complex-valued electrical resistance, which varies with the voltage frequency
[40, 35]. Impedance is usually written as Z or Z(ω), emphasizing that is dependent on the
frequency [40, 3]. Admittance, or complex-valued conductivity, is closely related to impedance
and is a quantity that is defined as 1

Z and typically denoted as Y [40, 3].

Z(ω) = 1
Y (ω) = |Z|ejϕ = R + jX. (2-1)

Here, R represents the resistance, and X represents the reactance [40]. Additionally, |Z| is
the impedance magnitude, ϕ is the impedance phase, R = |Z| cos ϕ is the real part of the
impedance, and X = |Z| sin ϕ is the imaginary part of the impedance [40, 35]. Both forms
are shown in Figure 2-7.

As mentioned earlier, impedance can also be denoted as admittance as [40],

Y (ω) = 1
Z(ω) = G + jB(ω),

= G + jCω.

(2-2)

Here G represents the conductance, and B(ω) represents the susceptance measured in Siemens,
and is expressed in capacitance and frequency [40, 35]. It should also be noted that the
capacitance and the conductance are related to the relative permittivity (εr) and conductivity
(σ) [12, 35]. The dielectric constant, also known as relative permittivity, is the permittivity
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Figure 2-7: The complex-valued electric impedance [3].

of a material when it is expressed as a ratio of the electric permittivity that is being held in
a vacuum (vacuum permittivity, ε0) [12].
The absolute permittivity, or permittivity, measures the dielectric’s electric polarizability in
electromagnetism [12, 35]. When a material has a high permittivity it will polarizes more in
response to an applied electric field than a material with a low permittivity, allowing it to
store more energy [12, 35]. The permittivity plays an important role, In electrostatics, when
determining the capacitance of a capacitor [12, 35].
Relative permittivity represents the factor by which the electric field between the charges
is reduced relative to a vacuum [12, 35]. In addition, relative permittivity is the ratio of
the capacitance of a capacitor using that material as a dielectric, compared with a similar
capacitor when using a vacuum as its dielectric [12, 35]. For a simple electrode configuration
of two plates that are placed in parallel, the relation is given as [12, 35].

εr = Cd

ε0S
= ε

ε0
, (2-3)

σ = Gd

S
. (2-4)

Here the distance between the two parallel plates is represented by d, the cross-sectional
area of the electrodes is S, and the vacuum permittivity is ε0 [12, 35]. For time-varying
electromagnetic fields, this relative permittivity becomes frequency-dependent [12, 35]. As a
result, it is is expressed as [12, 35]

εr(ω) = ε(ω)
ε0

. (2-5)
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In contrast to the response of a vacuum, the response of normal materials to external fields
is mainly determined by the frequency of the field [12, 35]. This frequency dependence
reflects that when an electric field is applied, the polarization of a material does not change
immediately [12, 35]. A phase difference can represent the response, which is always causal,
and therefore arises after the applied field [12, 35]. This results in the permittivity being
frequently modeled as a complex function of the applied field’s frequency ω [12, 35].

Since the response of materials to alternating electric fields are characterized by a complex
permittivity, it is sensible to split it up into real and imaginary parts [9, 35]. This is done by
convention in the following way [9, 35].

ε̂(ω) = ε′(ω) − iε′′(ω) (2-6)

with ε′(ω) as the relative permittivity [9, 35]

ε′(ω) = εr(ω), (2-7)

and ε′′(ω) as the out-of-phase loss factor such that [9, 35]

ε′′(ω) = σ

ε0ω
. (2-8)

In most cases, the complex permittivity is a complicated function of frequency ω as it is a
superimposed portrayal of dispersion phenomena happening at multiple frequencies [9].

The low-frequency limit of permittivity, also known as the static permittivity εs, expresses a
medium’s reaction to static electric fields [13, 35]. At the high-frequency limit, the complex
permittivity is generally referred to as ε∞ [13, 35]

εs = lim
ω→0

ε̂(ω), (2-9)

ε∞ = lim
ω→∞

ε̂(ω). (2-10)

2-2-2 Electrical Impedance Spectroscopy in Biological Tissue

The capability to investigate the acquired impedance spectra using the equivalent circuits
(EC) approach is one of the main benefits of EIS as an experimental technique [40]. The
main idea behind these methods is to construct an equivalent electrical circuit with a similar
impedance as the sample that is being analyzed [40]. The membrane found around living
cells is semi-permeable and allows specific ions to pass while obstructing others [24]. This
behavior mimics a capacitor [3, 40]. A capacitor is a charge-storing device made of two
conducting plates with an insulating layer in between [44]. Due to the lipid bilayer in the
cell membrane, the conductive salt solutions of the intracellular and extracellular fluids are
separated. This makes the cell membrane act as a capacitor [3]. The parallel RC circuit is
an excellent equivalent circuit for a living cell membrane since it has very high conductivity
at a high-frequency current and a low conductivity at a constant current [3, 40, 26]. The
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Figure 2-8: Transfer from live cell to electrical circuit [29].

*
Figure 2-9: Pathway for low and high-frequency currents in living cells [3]

resistor represents the membrane’s resistance, while the capacitor describes the geometrical
capacitance of the cell membrane [3, 40, 26]. As a result, the equivalent circuit method lets
the user create a direct association of the impedance spectrum with physical, chemical, and
biological phenomena in living cells and extract its properties [40].

Biomaterials will vary in electrical properties, tissue structure, and chemical composition
[3, 26]. This results in different frequency characteristics of each biological tissue [3, 26].
Overall, the extracellular space in the cell influences the low-frequency region, whereas the
intracellular space influences the high-frequency region [3, 26]. Low-frequency currents cannot
penetrate cell membranes because of their high capacitance. Therefore, they must pass around
the cells, i.e., through the extracellular area [3, 26]. In contrast, high frequencies can pass
through cell membranes and other electronic barriers. Therefore, these can pass through
the cell and intracellular area [3, 26]. As a result, different rudimentary properties of the
cells affect different frequency regions [3, 26]. The difference in the pathway due to low and
high-frequency currents is illustrated in Figure 2-9 [3, 26].

The electrical impedance spectra of biological tissue include various frequency regions where
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Figure 2-10: Electrode polarization [14].

the impedance declines with a rising frequency [3]. The areas where a drop in impedance
is observed correspond to specific electrochemical processes named dispersions [3]. In 1957
Schwan discovered three main dispersions of electro-bioimpedance spectra [37]. These three
dispersion regions are the α-, β-, and γ-dispersion, and can be seen in Figure 2-11 [3]. The
α-dispersion reflects the polarization of ionic clouds around the cells and is observed in the low-
frequency regions between the Hz to tens of kHz region [3, 9]. It should also be noted that when
performing impedance measurements in lower frequency ranges, electrode polarization can
occur [16]. Electrode polarization occurs because of the free ions from the tissue sample around
the electrode [14]. These free ions advance towards the electrode/tissue sample interface when
exposed to an electric field [14]. This results in an ionic double layer on the surface of the
electrode (see Figure 2-10) [14]. This layer will then acts as a capacitor, which results in an
electrode impedance [14]. The amount of electrode polarization depend on several aspects,
e.g., the type of tissue sample under study, shape of the electrode, structure, the radius, the
roughness, the distance between the electrode, and the temperature [16, 14].

The β-dispersion represents cell membrane polarization and structural shifts to the mem-
brane[3, 9]. Therefore, this region is usually interesting because it includes the most clinically
relevant data [3]. The β-dispersion is active between the KHz and hundred MHz regions [3,
9]. The γ-dispersion represents water molecules’ relaxation and is seen over the hundred MHz
regions [3, 9]. later a fourth dispersion was discovered, the δ-dispersion, which is in in the
low GHz region [3].

The geometry of the electrodes has a considerable impact on the probe’s performance [7].
The length between the electrodes, the tissues’ physical properties, and the excitation signal
frequency influence the depth of current penetration in biological tissue [7]. This phenomenon
is shown in Figure 2-12, where the measurement’s deepness increases as the length between
the electrodes grows [7].
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Figure 2-11: Different dispersion regions [3].

Figure 2-12: The depth penetration in layered tissue depends on the depth selectivity principle,
which notes that the length between the injection electrode and the current detector determines
the depth of penetration. [7].
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Chapter 3

Methods

This Chapter covers the methods that are used during this work. Therefore it shows the
measurement methods used to obtain the impedance, permittivity, and conductivity data. As
well as the data analysis techniques and their performance metrics.

3-1 Measurement Methods

This section discusses the measurements of tissue in the Erasmus MC. Taking measurements
is divided into two trials: trial 1 and trial 2. In the first trial, measurements of different tissue
types are taken, and in the second trial, a focus on the esophagus, colon, and ileum tissue is
conducted. These specimens also represent the data of the gastrointestinal (GI) tract. In this
work, a combination of the tissue data of trials 1 and 2 is made to create a more extensive
final data set. It should be noted that although the period of trial 2 focused on the esophagus,
colon, and ileum tissue, no ileum tissue samples were available during this period.

3-1-1 Data Collection Setup

All tissue measurements are conducted on the Hewlett Packard 4192A LF HP impedance
analyzer and an HP Power Pavilion 15-cb093nd laptop; both are depicted in Figure 3-1 [48].

For all measurements, a 4-electrode probe is used. Different combinations of measurements
can be created, e.g., between the first and second, between the first and third, between the
second and fourth, etc. However, in this work, all measurements are taken between the
second and third electrodes, shown in Figure 3-2. The second electrode is connected to the
low potential output, and the third electrode is connected to the high potential output [42].
The length and distance between each electrode are 5 mm, and the radius of each electrode
is 0.5 mm [22].

Before a measurement can be taken, the entire system needs to warm up for at least 30
minutes; this is done to prevent noise in the measurements [48]. An increase in noise is
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Figure 3-1: The 4192A LF HP impedance analyzer and an HP Power Pavilion 15-cb093nd laptop,
with the 4-electrode probe. The second electrode is connected to the low potential output, and
the third electrode is connected to the high potential output.

(a) The 4-electrode probe that is used
in this work.

(b) The 4-electrode probe, with the
electrode’s number on the probe itself.

Figure 3-2: The 4-electrode probe with which all measurements are taken.
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observed whenever the system is not warmed up properly. For all measurements, the probe is
fixated on the tissue. In all cases, this is done by pressing the electrodes deep into the tissue
and ensuring no movement of the 4-electrode probe is detected. The reason for this fixation is
to mitigate the noise obtained by the hand’s trembling during a measurement. Additionally,
the fixation allows all measurements to be of similar depth with minimal variance.
The Hewlett Packard 4192A LF HP impedance analyzer can either measure the absolute
impedance and the phase angle, or the capacitance and conductance. Running two dedicated
software packages in NI LabVIEW 2018 (LabVIEW) allows one to decide what information
to extract during the measurement time. In LabVIEW, one can also determine the frequency
range over which the measurements are made and the number of steps measured. In this
work, the measurements are taken in the α and β dispersion over a frequency range between
1 kHz and 7 MHz, with 300 steps. After the measurement is completed, the data is analyzed
via a custom MATLAB script in MATLAB R2023A. The absolute impedance, |Z|, and phase
angle, θ, are transformed into the real and imaginary impedance as [3]

Zre = |Z| · cos (θ) , (3-1)

and

Zim = |Z| · sin (θ) , (3-2)

with the real and imaginary impedance in Ohms (Ω). Measuring with the 4-electrode probe
between two electrodes, the configuration can be seen as two parallel cylinders of length L,
with radius r, and distance b [33, 22]. If b ≫ r, the capacitance C, in Farads, can be calculated
as

C = πε0εr

ln
(

b
r

)L, (3-3)

and the conductance, G in Siemens S can be calculated as

G = πσ

ln
(

b
r

)L, (3-4)

with the vacuum permittivity, ε0 = 8.854 × 10−12, and σ as the electrical conductivity in
S/m [33, 47, 22]. To analyze the relative permittivity, εr, and the electrical conductivity, σ.
The analysis uses the capacitance and conductance from Equation (3-3) and (3-4) is used to
obtain the relative permittivity, and the electrical conductivity as [33, 47, 22]

εr =
C ln

(
b
r

)
πε0L

, (3-5)

and

σ =
G ln

(
b
r

)
πL

. (3-6)
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It should be noted that in this work, only the real and imaginary impedance are used.

3-1-2 Measurement Protocol

The work conducted regarding the measurements was split up into two trials. Trial one was
used to find suitable tissues to conduct research for this work, and trial two was used to find
more data on the esophagus, ileum, and colon tissue.

The first trial started on 25-08-2022 and ended on 14-10-2022. During this period, different
tissues of different patients were measured. All tissues were measured within 24 hours of re-
section. During this trial, the resemblance in esophagus, ileum, and colon tissue was observed,
which can be because these three tissues are all in the GI tract and therefore have similar cell
characteristics [24]. During the first trial period, impedance, phase, conductance, and capaci-
tance measurements were made over 1 kHz to 7 MHz in 300 steps. Three measurements were
made on the healthy part of the tissue, and three measurements were made on the cancerous
part of the tissue. After measurements, the pathologist cut out the tissue on which the mea-
surements were conducted for further research by histological analysis (the golden standard).
The measurement protocol for the first trial can be found in Figure 3-3. At all times, the
measurement process was started by turning on the impedance analyzer so it could warm up
for at least 30 minutes. After this, the 4-electrode probe was cleaned with 96 % alcohol and
rinsed it with distilled water. To check if the system is operable, a test measurement was
ran that consisted of holding the probe still and measuring the impedance of the surrounding
air. If no anomalies were detected, official measurements were taken. The pathologist would
bring in and assess the tissue sample, showing areas that could be measured. In trial one, the
measurements were conducted at two locations: healthy and unhealthy, i.e., non-cancerous
and cancerous. After all the measurements were conducted, the pathologist would cut away
both locations and verify them by histological assessment.
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Pathologist
assesses incoming

sample

Pathologist tells
cancer from non-

cancer

Hewlett Packard 4192A LF HP
impedance

analyzer
Turned on (30 minutes)

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

A: Non-cancerous tissue
measurement is made in

LabVIEW.

Test measurement is made in
LabVIEW.

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

B: Cancerous tissue measurement
is made in LabVIEW.

Histological
assessment

Figure 3-3: The measurement protocol for the first trial that was conducted at the Erasmus MC.

The second trial, trial 2, lasted from 31-01-2023 until 09-06-2023. Here, all measurements were
conducted following a slightly different measurement protocol than trial one (see Figure B-1).
During trial 2, the system was warmed up, the probe was cleaned, and the system was checked.
However, in trial 2, at least three places were measured: A, B, and C. If time permitted, a
fourth place, D, was included. Locations A and B would always be non-cancerous tissue,
whereas location C would always be cancerous tissue.

After identifying all locations, the 4-electrode probe was carefully inserted into the first lo-
cation (A), ensuring that electrodes 2 and 3 were in the tissue. After this, we first measured
the absolute impedance and phase angle twice, and then we measured the capacitance and
conductance. This process was then repeated for the remaining locations. During the trial
period, impedance, phase, conductance, and capacitance measurements were made over a
frequency range of 1 kHz to 7 MHz in 300 steps.

The histological assessment would also verify the tissue at locations A, B, and C. Due to time
and resource constraints, this was not done for location D. For a more visual understanding
of the different locations, please see Figure 3-5.
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Pathologist
assesses incoming

sample

Pathologist tells
cancer from non-

cancer

Hewlett Packard 4192A LF HP
impedance

analyzer
Turned on (30 minutes)

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

A: Non-cancerous tissue
measurement is made in

LabVIEW.

Test measurement is made in
LabVIEW.

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

C: Cancerous tissue measurement
is made in LabVIEW.

B: Non-cancerous tissue
measurement is made in

LabVIEW.

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

D: Non-cancerous tissue
measurement is made in

LabVIEW.

Histological
assessment

Figure 3-4: The measurement protocol for the second trial that was conducted at the Erasmus
MC.
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A

C

D

B

Figure 3-5: Different measurement locations the pathologist cuts out at the Erasmus MC.
Location A, B, and D are healthy tissue, and location C is cancerous tissue. Only locations A, B,
and C will be verified by histological analysis.

3-2 Parameterization Methods

The analysis of biological impedance spectra presents several challenges because the data is
multivariate, the impedance is complex, and two numbers represent each data point, i.e., the
magnitude and phase, or the real and imaginary parts [3]. Furthermore, complex numbers
are difficult to numerically analyze [3]. Therefore, to interpret bio-impedance data, the raw
data must be fitted into a model or, in some other way, the data must be simplified to
a small number of clinically relevant parameters [3]. When the data is simplified, post-
processing is frequently necessary to interpret the data [3]. This section describes two essential
parameterization techniques used in this work: the Cole Impedance Modeling, and derivations
of it, and principal component analysis (PCA).
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(a) A equivalent circuits (EC) of the
Debye model . (b) A EC of the Cole impedance model.

Figure 3-6: The Debye and Cole impedance model ECs [10].

3-2-1 Cole Impedance Modeling

The Cole impedance model is a theoretical model that describes the tissue’s impedance being
studied. It is similar to the Cole-Cole model; however, that model describes the permittivity
[10]. The aim is to identify equivalent electronic circuits with characteristics similar to the
material that is being studied [40]. In this work we fit our impedance data to the Cole
Impedance model with the fminsearchbnd algorithm from Matlab [27]. The models reduce
the impedance spectra to a limited number of electronic components with a small number of
parameters, producing a set of specific electronic elements [40].

In 1940 Kenneth Cole created a model named the Cole impedance model, which was based
on the Debye model. However, the Cole impedance model replaces the ideal capacitor in the
Debye model by a Constant Phase Element (CPE), as is depicted in Figure 3-6.

The impedance of the Debye circuit can be expressed as

Z = R∞ + 1
Gvar + Gvarjωτ

, τ = C

Gvar
. (3-7)

In equation 3-7 Z represents the complex impedance, R∞ the resistance at an infinite fre-
quency, j is the imaginary number, ω the angular frequency, τ is the characteristic relaxation
time constant that corresponds to the characteristic angular frequency, which is ω = 1

τ , C
represents the parallel capacitance, and Gvar is the conductance [10]. The idea behind chang-
ing the ideal capacitor with a CPE came after findings in electrochemistry and tissue and
cell suspension research. It was found that the impedance loci in the complex plane of living
tissue had depressed circle centers in their shape, which was best mimicked by introducing a
CPE [6, 10]. The Cole Impedance equation with the CPE is

Z = R∞ + R0 − R∞
1 + (jωτ)α . (3-8)

Here R0 is the resistance at zero frequency, τ again represents the characteristic time constant
of the system corresponding to a characteristic angular frequency ω = 1

τ , α is a dimensionless
exponent that lies between zero and one. The exact meaning behind α has still not reached
a consensus. Although consensus on the meaning behind α is not yet achieved, many believe
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that it is caused by the heterogeneity of the cell size shape of living tissue [4, 19]. In [15], it
is stated that when a magnitude phase plot is made, the value of α influences the minimal
spectral width as α = 1 corresponds to the minimal spectral width, and it tends to broaden
when α becomes lower (see Figure 3-7). Additionally, it is stated that using α makes it
possible to detect tissue structural alterations as it was observed that a decrease of alpha
was observed due to modification of the extracellular medium. Subsequently, the value for α
can also be regarded as the derivation from the Fricke-Morse model, which is obtained when
α = 1 [15].

Figure 3-7: The absolute impedance and phase angle from the Cole equation for different values
of α [15].

The product ωτ is also dimensionless, and the combination of (jωτ)α represent a CPE when
α is a constant value because [10]

jα = cos(απ/2) + j sin(απ/2). (3-9)

The Cole Impedance model from Equation 3-8 is a single-dispersion model [10], meaning that
it accounts for one dispersion. However, living tissue usually exhibits the dispersions of α
and β. When one would like to use the model but over a frequency range, e.g., the α and β
dispersions, the Two Pole Cole Impedance model can be a good option by creating a series of
Equation 3-8 [27, 15].

Z = R∞ + R1
1 + (jωτ1)α1 + R2

1 + (jωτ2)α2 . (3-10)

In [27], the two pole cole model is also brought in series with an additional CPE model. A CPE
model, as mentioned before, is used to mitigate the negative effects (increase in impedance)
due to electrode polarization as explained in Section 2-2-2. In this work,a similar model to
[27, 36] is used.

ZCP E = K(jω)−m (3-11)

According to [36], K represents the ion concentration that is found at the electrode-tissue
interface, and m is related to the surface roughness of the electrode. If one combines the
two-pole Cole impedance model with the CPE model from Equation 3-11, they obtain [27]

Z = R∞ + R1
1 + (jωτ1)α1 + R2

1 + (jωτ2)α2 + K(jω)−m. (3-12)
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3-2-2 Principal Component Analysis

This section’s main objective is to explain the principal component analysis method, which
is used to reduce the dimensionality of multivariate data. The calculations show how to use
singular value decomposition and orthogonal diagonalization.

Eigenvalues and Eigenvectors

Eigen is the German word for “latent” or “characteristic”. In both pure and applied mathe-
matics, the fundamental ideas of eigenvectors and eigenvalues come into play in contexts that
are highly varied. For example, in addition to being used in engineering design, Eigenvalues
are used to study various equations and continuous dynamical systems.

The eigenvector of an n × n matrix A is a nonzero vector x such that

Ax = λx, (3-13)

for some scalar λ. A scalar λ is named an eigenvalue of A if there is a nontrivial solution
(any solution in which at least one variable has a nonzero value) x of Ax = λx, such that x
is named the eigenvector corresponding to λ [39].

(3-13) can be rewritten into so that λ is an eigenvalue of the x × n matrix A if and only if
the equation

(A − λI)x = 0, (3-14)

has a nontrivial solution. The set of all solutions of (3-14) is the null space of the matrix
A − λI. So this set is a subspace of Rn and is called the eigenspace of A corresponding to λ.
The eigenspace consists of the zero vector and all the eigenvectors correspondingly to λ [21]

The Singular Value Decomposition

The Singular Value Decomposition (SVD) is one of the most useful matrix factorization
techniques in linear algebra. SVD can be used for non-square real and complex matrices,
where it generalizes the eigendecomposition of a normal square matrix with an orthonormal
eigenbasis to any m×n matrix. The absolute values of the eigenvalues of a symmetric matrix
A measure the amounts that A stretch or shrink the eigenvectors. As previously stated
Ax = λx, if it is assumed that the x is of unit length, i.e., ∥x∥ = 1, then

∥Ax∥ = ∥λx∥ = |λ|∥x∥ = |λ|. (3-15)

If the eigenvalue with the largest magnitude is found, λ1, then a corresponding unit eigenvector
v1 shows the directions for which the stretch of A is the greatest. This entails that, the
magnitude of Ax is the greatest when x = v1, and ∥Av1∥ = |λ1|. Describing v1 and |λ1| in
this way is comparable to using the SVD for rectangular matrices [21].
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If again matrix A is taken as an m×n matrix, then A⊤A is symmetric and can be orthogonally
diagonalized. Let {v1, . . . , vn} be an orthonormal basis for Rn consisting of the eigenvectors
of A⊤A, and let λ1, . . . , λn be the eigenvalues of A⊤A [39]. Then, for 1 ≤ i ≤ n,

∥Avi∥2 = (Avi)⊤ Avi = v⊤
i A⊤Avi,

= v⊤
i (λivi) ,

= λi.

(3-16)

Since the eigenvalues of A⊤A are all positive, they can be reordered in such a way that it is
assumed

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. (3-17)

The singular values, σ1, . . . , σn, of matrix A are the square roots of the eigenvalues of A⊤A,
arranged in deceasing value (σi =

√
λi for 1 ≤ i ≤ n). By observing (3-16), it can be seen

that the singular values are equal to the length of matrix Av1, . . . , Avn, i.e., ∥Avi∥ [21].

The decomposition of A involves an m × n matrix Σ as

Σ =
[

D 0
0 0

]
. (3-18)

here D is an r × r diagonal matrix for some r that does not exceed m and n.

For the SVD A is used, which is an m × n matrix of rank r. Then there is a matrix Σ of the
same dimensionality as A, for which the diagonal entries of D are the first r singular values
of A, σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and there exists an m × m orthogonal matrix U and an n × n
orthogonal matrix V such that

A = UΣV T (3-19)

Any matrix that is factorized as A = UΣV T , with U and V orthogonal, and Σ as in (3-18),
is called the Singular Value Decomposition of matrix A. Both matrices U and V are not
uniquely determined by A. However, the diagonal entries always are the singular values of A.
Furthermore, the columns of U are referred as the left singular vectors of A and the columns
of V as the right singular vectors of A [21].

The workings of the SVD can be proven by first supposing that the {v1, . . . , vn} is an or-
thonormal basis of Rn consisting of eigenvectors of A⊤A, arranged in such an order that the
first eigenvector corresponds to the largest eigenvector of A⊤A. Additionally, suppose that
matrix A has r nonzero singular values. Then the Span {Av1, . . . , Avr} is an orthogonal basis
for the column space Col A, and the rank of A equals r. If each Avi is normalized to obtain
an orthonormal basis {u1, . . . , ur}, where

ui = 1
∥Avi∥

Avi = 1
σi

Avi (3-20)
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and

Avi = σiui (1 ≤ i ≤ r) (3-21)

If {u1, . . . , ur} is extended to {u1, . . . , um} in Rm, and let U =
[

u1 u2 · · · um

]
and

V =
[

v1 v2 · · · vn

]
. By construction of these matrices, they are both orthogonal

matrices. From (3-21), the matrices can be filled in and extended after r entries by zero [21].

AV =
[

Av1 · · · Avr 0 · · · 0
]

=
[

σ1u1 · · · σrur 0 · · · 0
]

(3-22)

Let D be the diagonal matrix with the singular values on the diagonal, and let Σ be as in
(3-18). Then

UΣ =
[

u1 u2 · · · um

]


σ1 0
σ2 0

. . .
0 σr

0 0


=
[

σ1u1 · · · σrur 0 · · · 0
]

= AV

(3-23)

Since V is an orthogonal matrix UΣV T = AV V T = A.

When the Σ contains columns and rows that contain only zeros and the rank of A is r, a
so-called Reduced Singular Value Decomposition can be used to decompose matrix A [39]. If
this is the case, the matrices U and V can be partitioned into sub-matrices as

U =
[

Ur Um−r

]
V =

[
Vr Vn−r

] (3-24)

Then Ur is m × r and Vr is n × r. s.) By filling in these matrices in (3-19), it is obtained:

A =
[

Ur Um−r

] [ D 0
0 0

] [
V T

r

V T
n−r

]
= UrDV T

r . (3-25)

Because the diagonal elements of matrix D are all nonzero, they can be inverted. The following
matrix is called the Moore–Penrose inverse or pseudoinverse of A [21]

A+ = VrD−1UT
r (3-26)

J.W.G. Remmerswaal MSc. Thesis



3-2 Parameterization Methods 31

Prinipal Component Analysis

Any data that consists of a list of measurements taken on a group of items or people can
be subjected to PCA. PCA, can be used to examine challenging to interpret multivariate
data. The equations below demonstrate how to use the SVD and orthogonal diagonalization
to create the principal components of a data set [21].

An example of an observation vector is Xn, with n = [1, 2, . . . , N ]. Each observation vector
consists of two variables with variable αn and βn, then the data matrix X contains a total of
N measurements and is given in (3-27).

X =
[

X1 X2 · · · XN

]
=
[

α1 α2 · · · αN

β1 β2 · · · βN

]
(3-27)

To prepare a PCA, the data matrix
[

X1 · · · XN

]
is a p × N matrix of observation (in

the case of (3-27) p = 2). The sample mean, M , is then calculated as

M = 1
N

(X1 + · · · + XN ) (3-28)

for, k = 1, . . . , N , let

X̂k = Xk − M (3-29)

The columns of the p × N matrix

B =
[

X̂1 X̂2 · · · X̂N

]
(3-30)

have a sample mean equal to zero, and B is said to be in mean-deviation form. The (sample)
covariance matrix is the p × p matrix S defined by

S = 1
N − 1BBT . (3-31)

The covariance is a measure of the joint variability of two random variables. The covariance
of the diagonal is the covariance of the variable with itself and is called the variance. Variance
serves as a measure for dispersion, or the degree to which a set of numbers deviates from their
mean [21].

The sum of the variances along the diagonal of S is the total variance of the data set. In
general, the sum of the diagonal entries of a square matrix is called the trace of that matrix
[21]. Thus,

{ total variance } = tr(S) (3-32)

Whenever an entry in the covariance matrix S equals 0, these variables are said to be un-
correlated. Multivariate data analysis is greatly simplified when most or all variables are
uncorrelated, that is when the covariance matrix S is diagonal or nearly diagonal [39].
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For simplicity, it is assumed that our data matrix is already in mean-deviation form. PCA
attempts to find an orthogonal p × p matrix (a square matrix with the size of the number of
variables) P =

[
u1 · · · up

]
that determines a change of variable X = PY


x1
x2
...

xp

 =
[

u1 u2 · · · up

]


y1
y2
...

yp

 (3-33)

with the property that the variables y1, . . . , yp are uncorrelated (meaning that its covariance
matrix is diagonal) and arranged in order of decreasing variance.
The orthogonal change of X = PY means that each observation vector Xk = PYk. The new
variable Yk can then be expressed as

Yk = P −1Xk = P T Xk (3-34)

for k = 1, . . . , N . It is not hard to see that for any orthogonal P , the covariance matrix of
Y1, . . . , YN is P T SP . The wanted orthogonal matrix P makes P T SP diagonal [21].
If D is let to be a diagonal matrix with the eigenvalues of S on its diagonal, arranged in such
a manner that λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, and matrix P is let to be orthogonal, with its columns
being the corresponding unit eigenvectors u1, . . . , up. Then S = PDP T and P T SP = D. The
unit eigenvectors u1, . . . , up, of the covariance matrix S are called the principal components
of the data. Therefore, the first principal component is the eigenvector that corresponds with
the largest eigenvalue of S, the second principal component is the eigenvector that corresponds
with the second largest eigenvalue of S, and so on [39].
With the first principal component, u1, the new variable can be created in the following way.
Here c1, . . . , cp are the entries in u1. Because u⊤

1 is the first row of P ⊤, equation (3-34) shows
that

y1 = uT
1 X = c1x1 + c2x2 + · · · + cpxp. (3-35)

This means that y1 is a linear combination of the weights from the eigenvector u1 and the
original variables x1, . . . , xp. Similarly, u2 contains the weights that can be linearly combined
with the original variables to create y2, and so on.
It can be shown that an orthogonal change of variables X = PY does not change the total
variance of the data . .) This means that S = PDP T then,

{
total variance
of x1, . . . , xp

}
=
{

total variance
of y1, . . . , yp

}
= tr(D) = λ1 + · · · + λp (3-36)

The variance yj is λj , and the quotient λj/ tr(S) measures the fraction of the total variance
that is “explained” or “captured” by yj [21].
The SVD can also be used to compute the principal components. If B is a P ×N matrix that
is in the mean-deviation form, and A =

(
1/

√
N − 1

)
B⊤, then A⊤A will equal the covariance
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matrix S as seen in (3-31). The singular values of A are the p eigenvalues of S, and the right
singular vectors of A are the principal components of the data [21].

3-3 Classification Methods

In this our two classification methods are treated, thresholding and support vector machine
(SVM). The thresholding algorithm is used for the parameters that are obtained via the Cole
impedance model, the SVM is used as a classification method in conjunction with the PCA.

3-3-1 Statistical Significance and Thresholding

To create a classification algorithm that takes a parameter or multiple parameters as its
input, one must first examine whether it is even possible to make a classification algorithm
with these parameters.

This work starts with the one-sample Kolmogorov-Smirnov test, which has the null hypothesis
that the data in vector x comes from a standard normal distribution. This means that if
the test is rejected, it indicates that the data in x does not come from a standard normal
distribution, and when the test is accepted, it does come from a standard normal distribution.
If it is found, via the one-sample Kolmogorov-Smirnov test, that the data in x belongs to a
standard normal distribution, the t-test proceeds. The t-test has the null hypothesis that
the data in vector x comes from a normal distribution with a zero mean (with an unknown
variance). When this hypothesis is rejected, it would indicate that the data in x does not
have a mean equal to zero. To determine which parameter can be used for the classification
via thresholding, a parameter that does not have equal means when created with cancerous
and non-cancerous data is required. To check this, the two-sample t-test is used, with the null
hypothesis that the samples in x and y have equal means. If the null hypothesis is rejected
for a parameter at a significant level (P < 0.05), it indicates it can be used for classification
via thresholding.

If the null hypothesis of the one-sample Kolmogorov-Smirnov test is rejected for the data
in x, i.e., the samples in x do not come from a normal distribution, it proceeds with a
two-sided Wilcoxon signed rank test where the null hypothesis is that the data in x comes
from a distribution whose median is equal to zero. To execute this test, it is assumed that
the data in x comes from a continuous distribution symmetric and is symmetric about its
median. We use the two-sided Wilcoxon rank sum test to determine which parameters can
be used as a classification parameter. This tests the null hypothesis that vector x and y data
are from a continuous distribution with equal medians. It is assumed that the two samples
are independent. If the null hypothesis is rejected in the two-sided Wilcoxon rank sum test
with statistical significance (P < 0.05), that parameter can be used to classify cancerous and
non-cancerous tissue. An overview of the flow chart and methods can be seen in Figure 3-8
[27].

To determine the threshold value, the Receiver Operator Characteristic (ROC) curve is opti-
mized by brute force. This entails testing a range of threshold values and creating the ROC
curve. The moment the ROC curve is created, the point that is the furthest away from the
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One-sample
Kolmogorov-
Smirnov test

One-sample t-test Two-sided Wilcoxon
signed rank test

Normal
Distribution

Different
Distribution

Two-sample t-test Two-sided Wilcoxon
rank sum test

P < 0.05
Accept Parameter

P > 0.05
Reject Parameter

P < 0.05
Accept Parameter

P > 0.05
Reject Parameter

Figure 3-8: The flow chart to determine whether or not a parameter can be used for classification
via thresholding to determine whether tissue is cancerous.

mid-line, which corresponds to the largest summation of specificity and sensitivity is found.
The index that corresponds to that point is used to find the Threshold value.

Thresholding is frequently used in academic Electrical Impedance Spectroscopy (EIS) re-
search. For instance, after colorectal cancer surgery, EIS is conducted on 22 freshly resected
specimens of excised human colorectal tumor tissue and the matched normal colonic mu-
cosa in [28]. The recorded measurements were not normally distributed (as determined by
the Shapiro-Wilk test), so the Wilcoxon rank sum test for paired non-parametric data of
small sample sets was used to test for differences between matched normal and malignant
tissue transfer impedance magnitudes at each frequency. Fourteen different frequencies were
calculated to plot the ROC curve and to measure the corresponding Area under the ROC
Curve (AUC). These were the transfer-impedance magnitude thresholds that, at all fre-
quencies, would classify a sample as cancerous. Eventually, the authors found an AUC of
0.7105. The goal in [2] was to research how well EIS worked for finding cervical intraep-
ithelial neoplasia using cervical impedance spectroscopy. The initial data set, consisting of
80 measurements, was averaged to produce mean impedance values for each of the 30 fre-
quencies chosen. Then, R0, R∞, and Fc were calculated by fitting these data, which formed
an impedance spectrum, to a Cole equation using the least square deviation method. There
were 680 measurements from normal squamous epithelium, 178 from cervical intraepithe-
lial neoplasia 2/3 (high grade), 39 from cervical intraepithelial neoplasia 1 (low grade); 28
points were designated as columnar tissue, 135 as mature metaplastic, and 79 as immature
metaplastic. The parameters clearly distinguished the cervical intraepithelial neoplasia lesion
from the squamous, mature metaplastic, and columnar epithelium. The authors obtained a
sensitivity of 74% and specificity of 53%. In [43], the goal is to determine if EIS can aid in
the diagnostic accuracy of colposcopy. EIS was assessed against colposcopic impression and
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histopathology from biopsies taken from patients. Real-time EIS data collection and analysis
was conducted. In total, 474 women were recruited, and 214 were eligible for analysis. Using a
cut-off value, the accuracy of colposcopic impression to detect HG–CIN when using EIS as an
adjunct at the time of examination improved the Positive Predictive Value (PPV) from 78.1%
(95% Confidence Interval (CI) 67.5–86.4) to 91.5%. The Negative Predictive Value (NPV)
was unchanged, but specificity increased from 83.5% (95% CI 75.2- 89.9) to 95.4%. However,
sensitivity significantly decreased from 73.6% (95% CI 63.0-82.5) to 62.1%. In [25] EIS was
used on 36 ex vivo human prostates. The magnitudes of the mean reactance and resistivity
were significantly higher in cancerous tissues (P < 0.05). According to the ROC curves, the
mean resistivity at 63.09 kHz had a AUC of 0.779, 75.4% specificity, and 76.1% sensitivity,
making it the best frequency for separating cancerous tissues from healthy ones. The best
frequency for using the mean reactance to distinguish between cancer and benign tissues was
251.1 kHz; this parameter had a AUC of 0.79, a 77.9% specificity, and a 71.4% sensitivity.
The authors of [46] used EIS for differentiating cancerous from benign breast masses. The
least squares algorithm was applied to the Cole-Cole model fitting. To evaluate the sensitivity
and specificity, the final EIS results were compared to the frozen section and postoperative
pathological examination results. In total 622 breast masses were identified, and 66 were de-
termined to be malignant and 556 to be benign. The authors achieved a sensitivity of 92.4%,
and a specificity of 96.0%. In [18], 53 patients were analyzed with EIS, 44 had lung cancer, 5
of whom had metastatic lung tumors, and 4 of whom had pneumonia. EC was used consisting
of two resistors and a capacitor representing the extracellular and intracellular resistance and
the cell membranes’ capacitance. These three parameters were calculated using EIS on the
lung tissue. The differences between mean values were assessed by a one-way analysis of vari-
ance and an unpaired Student’s t-test.It was shown that malignant tumors had significantly
higher extracellular resistance and intracellular resistance values compared to pneumonia, and
the membrane capacitance was significantly less in malignant tumors. Thresholding was used
to diagnose a malignant tumor and pneumonia. This resulted in a sensitivity of 100% and
a specificity of 66%. A thresholding algorithm, with the use of a two-pole Cole impedance
model with a CPE, was used in [27]. Here a four-electrode probe was used over a frequency
range from 100 Hz to 1 MHz to measure ablated and non-ablated on three porcine hearts. A
total of 340 measurements were conducted on the three porcine hearts. With the thresholding
algorithm an accuracy of 81.4%, sensitivity of 84.4%, specificity of 78.6%, PPV of 77.8%, NPV
of 85.0%, and a Mathews Correlation Coefficient (MCC) of 0.629 were created. It should be
noted that these results indicate the proper performance of the algorithm; however, no Leave-
One-Out Cross Validation (LOOCV) strategy was employed. This entails that the training
or determination of the threshold was conducted with a priori knowledge of the testing data.

3-3-2 Support Vector Machine

This section discusses the SVM as a classification method. When given a data set consisting
of two classes, the idea is to create an algorithm that can automatically classify to which of
the two classes a new point belongs [11].

In its most basic form, a classification algorithm uses a linear function. If there is a set of
training data, m, with different data points xi ∈ Rn, of the class yi, which is either yi = 1 or
yi = −1. Ideally, one would like to find a separation line between the positive and negative
points. Suppose one can find a hyperplane wT x + b = 0 that can separate the positive and
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Margin

Figure 3-9: A linear hyperplane separating data.

negative points; this would require

wT xi + b ≥ +1 for yi = +1,
wT xi + b ≤ −1 for yi = −1.

(3-37)

The hyperplanes aim to separate the positive from the negative points. To obtain the best
results, one should create a hyperplane that separates the points as far apart as possible. The
distance between the two hyperplanes, i.e., the separation margin, is 2

∥w∥ [11]. Finding the
hyperplanes that maximize the separation margin equals minimizing wT w [11].

minimize f(w, b) = 1
2wT w

subject to yi

(
wT xi + b

)
≥ 1, i = 1, . . . , m.

(3-38)

In Figure 3-9, a few data training points are found of either class yi = −1 or yi = 1; the training
points are separated by a hyperplane that is created by a margin, which is determined by
the training points that lie on the boundary of either of the hyperplanes. These are called
support vectors and are indicated with a black circle. If a training point that is a support
vector is removed, it will alter the coefficients of the hyperplane. Removing a training point
that does not act as a support vector would keep the coefficients unchanged. This method is
called SVM because of the support vectors used for classifying new data points as part of the
machine learning process [11].

The example above assumes that the data is separable, meaning a hyperplane separates all
points of a different class. However, this is often not the case. When the dataset is not
separable, the approach must be refined. If one lets the equation of separation be violated
but imposes a penalty for this violation, it is possible to create a SVM that can work with
separable data. The non-negative variable is introduced,ξi, which represents the amount by
which the point xi does not adhere to the constraint at the margin [11].
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Margin

Figure 3-10: A linear hyperplane separating data for a nonseparable data set.

wT xi + b ≥ +1 − ξi for yi = +1,
wT xi + b ≤ −1 + ξi for yi = −1.

(3-39)

To impose this penalty, one can add a term proportional to the sum of the violation to the
objective function. This added penalty term is denoted as C

∑m
i=1 ξi, where C determines how

large the penalty is for violating the initial equation of separation. The objective function
becomes

minimize f(w, b, ξ) = 1
2wT w + C

∑m
i=1 ξi

subject to yi

(
wT xi + b

)
≥ 1 − ξi, i = 1, . . . , m

ξi ≥ 0.

(3-40)

The image in Figure 3-10 shows a linear hyperplane in the case of a nonseparable case. In
this case, three points are classified wrong since they are on the wrong side of the hyperplane
wT x + b = 0.
SVM can handle both linearly separable and non-linearly separable data using the kernel
trick. The kernel trick transforms the input data into a higher-dimensional feature space,
where it becomes possible to find a hyperplane that separates the data [11]. This allows SVM
to work effectively with complex, non-linearly separable data. In this thesis work, we work
with a Radial Basis Function (RBF) kernel. RBF kernel is a non-linear function that maps
the input data into a higher-dimensional feature space, allowing SVM to handle non-linearly
separable data effectively. The RBF kernel function calculates the similarity between two
data points by computing the distance between them in the feature space. The RBF kernel
function is defined as

K (X1, X2) = exp
(

−∥X1 − X2∥2

2σ2

)
. (3-41)

Here X1 and X2 are two data points, σ represents the hyperparameter that controls the width
of the kernel, and ||X1 − X2||2 is the squared Euclidean distance between the two data points
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in the feature space [11]. The RBF kernel allows SVM to capture complex patterns in the
data by creating decision boundaries that are curved or irregular. The RBF kernel also allows
SVM to handle data that is not linearly separable by projecting it into a higher-dimensional
space, where it may become linearly separable. The choice of the hyperparameter gamma in
the RBF kernel can affect the performance of SVM. A high gamma value creates a narrow
kernel, which can lead to overfitting. A low gamma value creates a wider kernel, which can
lead to underfitting. Therefore, the gamma value must be carefully tuned to achieve the best
performance of SVM with RBF kernel.

SVM has several advantages over other classification algorithms, including its ability to handle
high-dimensional data, its effectiveness in handling non-linearly separable data, and its ability
to avoid overfitting by maximizing the margin between the classes. SVM is currenly already
employed within EIS cancer research. For example in [5], a study is developed that introduces
a method with the potential to intraoperatively localize pulmonary nodules in-depth. In vitro
investigation of the bioimpedance data from 286 lung tissue samples was performed using a
bioimpedance probe. Based on the bioimpedance phase and magnitude, an analysis tool was
developed to distinguish between tumoral and healthy lung tissue. In [5] SVM was combined
with PCA, and the classifier accuracy was over 97%. In [17], an ex vivo investigation of 14
human prostates is conducted with a total of 23 cancerous and 53 benign EIS measurements.
After the measurements, the Composite Impedance Metrics were calculated over various
frequencies. Using a leave-one-patient-out cross-validation strategy, the predictive value of
complex impedances measured data for differentiating between benign and malignant tissue
was assessed. A SVM classifier was trained using a RBF kernel. The predictive accuracy was
90.8%, with a specificity of 94.3% and a sensitivity of 82.6%.

3-4 Performance Analysis Methods

For the performance analysis of our data fitting algorithm, which makes use of Cole impedance
modeling the Mean Square Error (MSE) for every data point of the fit is calculated and
summed up. The MSE which can be calculated as

MSE = 1
n

n∑
i=1

(yi − ỹi)2 (3-42)

For our classification technique analysis LOOCV is used. With this technique, our data set is
split into two sets, a training set, and a validation set. In Figure 3-11, an example is created
where we treat five patients. For every run of the classification algorithm, we separate one
patient (leaving that one out) and train our thresholding or SVM algorithm on the remaining
patients. After the threshold is determined and the SVM is trained, the algorithms with the
new data from the patient that was left out are tested.

The same metrics are used for both classification methods to analyze our results from the
LOOCV. The performance of the classification is described in a confusion matrix, which can
be found in Figure 3-12

In the confusion matrix, the following options are observed: a classification predicted as
cancerous that actually is cancerous is considered a True Positive (TP). When a prediction
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Training Validation

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Figure 3-11: A example of a LOOCV with a 5 patient population.

True Positive (TP) False Positive (FP)

False Negative (FN) True Negative (TN)

Cancerous (1) Non-cancerous(0)

Cancerous (1)

Non-cancerous (0)

Actual
outcome

Predicted
outcome

Figure 3-12: The confusion matrix.
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is non-cancerous, and it is, this is considered a True Negative (TN). Both TP and TN are
correct classifications. A False Positive (FP) is when a prediction states that the tissue sample
under test is cancerous but it is not, and a False Negative (FN) occurs when the classification
algorithm predicts that the tissue sample is non-cancerous but it is cancerous. In cancer
research, one can easily argue that a FN is the worst possible outcome as it may lead to no
treatment when treatment is required.

After obtaining the amount of TP, TN, FP, and FN a further analysis can be performed
that showcases the capabilities of the classification algorithms under study. In this work, the
Accuracy, Sensitivity Specificity, PPV, NPV, and MCC are provided which are calculated as
follows

Accuracy = TP + TN
TP + TN + FP + FN (3-43)

Sensitivity = TP
TP + FN (3-44)

Specificity = TN
TN + FP (3-45)

PPV = TP
TP + FP (3-46)

NPV = TN
TN + FN (3-47)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3-48)

The accuracy depicts the ratio between correctly classified tissue samples and the number
of predictions made. The sensitivity gives insight into the ability to detect cancerous tissue
correctly, while the specificity gives insight in detecting non-cancerous tissue. The PPV
and NPV give the proportion of positive and negative predictions that are truly positive or
negative, respectively. The MCC is used as a general measure for the classification quality.
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Chapter 4

Results

This chapter, discusses the results and all the relevant findings. It starts off with the measure-
ment results of trials one and two. It is followed by the creation of the final data set. After
this, the two classification strategies are discussed: the Cole impedance analysis in combina-
tion with thresholding and principal component analysis (PCA) in combination with support
vector machine (SVM)

4-1 Measurement Results

In this section, an overview of the measurement results is given. As mentioned before, two
trials were conducted, trial one and trial two. Trial one focused on collecting different can-
cerous and non-cancerous tissue types, and trial two focused on collecting tissue that could
represent the gastrointestinal (GI) tract. The esophagus, colon, and ileum tissue were mea-
sured. In Table 4-1, one can find an overview of the measurements conducted during the first
trial period. For an even more extensive description of trial 1, please refer to Appendix A.
During the second trial, three patients were included, with their information in Table 4-2.
During trial two, images of every cut-out at the pathologist department were made, which
also indicate the different measurement areas (A, B, C, and D). These figures can be seen
in Figure 4-5, Figure 4-7, and Figure 4-9. For an even more extensive description of trial 2,
please refer to Appendix B.

4-2 Final Data Set

After conducting the two trials, the esophagus, ileum, and colon data were merged into a final
data set that is used within this thesis work. The complete data set can be found in Table
4-3. As can be seen from the table, measurements on a total of seven different specimens
were taken, three esophagus, two colon, and two ileum.
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# Date of
Measurement

Gender
(M/F)

Year of
Birth Tissue

1 25-08-2022 F 1971 Adrenal Gland
2 22-09-2022 F 1963 Retroperitoneal Soft Tissue
3 27-09-2022 F 11971 Breast
4 29-09-2022 M 1952 Liver, Ileum and Colon
5 29-09-2022 F 1971 Ileum
6 30-09-2022 M 1942 Glute
7 30-09-2022 M 1951 Esophagus
8 11-10-2022 M 1951 Pancreas
9 11-10-2022 F 1947 Lung
10 14-10-2022 M 1947 Esophagus

Table 4-1: The year of birth, gender, and date of the measurement per patient and the corre-
sponding tissue the measurements were conducted during trial 1.

# Date of
Measurement

Gender
(M/F)

Year of
Birth Tissue

1 31-01-2023 F 1979 Colon
2 28-03-2023 M 1960 Colon
3 09-06-2023 M 1943 Esophagus

Table 4-2: The year of birth, gender, and date of the measurement per patient and the corre-
sponding tissue the measurements were conducted during the second trial.

After the histological assessment (golden standard) it was observed that there were multiple
deviations from what was intended to be measured to what actually was measured. It was
found by the pathology department that there were deviations in the fifth, the sixth and the
seventh patient. In the fifth patient measured on 31-01-2023 the measurements conducted on
section B also contained cancerous tissue. For the sixth and seventh patient the measurements
conducted on location C (the location where the tumor should be located) no cancerous
tissue was found. This means that the final data set with histological assessment is as found
in Table 4-4. These faulty measurements could be the fault of the probe, as there was no
complete control of the probe. The measurement protocol described that the probe is fixated
deep into the tissue, allowing minimal variance in the measurements. However, what could
have occurred is that the positioned at the surface (superficial), and the measurement was
conducted deep into the tissue.

4-2-1 Patient 1

The measurement on patient one was conducted on 29-09-2022, during the first trial, and is a
male who is 71 years old. The cancerous tissue was adenocarcinoma, the most common type
of cancer. It arises from epithelial cells. These epithelial cells are the top layer of tissue and
can be found all over the body, both inside and outside. It can be observed from Figure 4-1
that the impedance of the non-cancerous (A) and cancerous (B) tissue are different. The
real impedance of the cancerous tissue started about 300 Ω higher than that of the non-
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# Date of
Measurement

Gender
(M/F)

Year of
Birth Tissue

1 29-09-2022 M 1952 Ileum
2 29-09-2022 F 1971 Ileum
3 30-09-2022 M 1951 Esophagus
4 14-10-2022 M 1947 Esophagus
5 31-01-2023 F 1979 Colon
6 28-03-2023 M 1960 Colon
7 09-06-2023 M 1943 Esophagus

Table 4-3: The year of birth, gender, and date of the measurement per patient and the cor-
responding tissue the measurements were conducted during the trial measurement period in the
Erasmus MC.

# Tissue Measurement
Location

Histological
Analysis

1 Ileum A: Normal
B: Tumor

A: Normal
B: Tumor

2 Ileum A: Normal
B: Tumor

A: Normal
B: Tumor

3 Esophagus A: Normal
B: Tumor

A: Normal
B: Tumor

4 Esophagus A: Normal
B: Tumor

A: Normal
B: Tumor

5 Colon A, B: Normal
C: Tumor

A: Normal
B, C: Tumor

6 Colon A, B: Normal
C: Tumor

A, B: Normal
C: Normal

7 Esophagus A, B: Normal
C: Tumor

A, B: Normal
C: Normal

Table 4-4: The results from the histological assessment per patient.

cancerous tissue. However, as the frequency increased toward 7 MHz, the real impedance of
the cancerous and non-cancerous tissue seemed to cross. In the imaginary plane, it seemed
that the cancerous and non-cancerous tissue have a similar trajectory with little deviation
from each other.

4-2-2 Patient 2

The measurement on patient two was conducted on 29-09-2022 and was an ileum measurement
on a 53-year-old female. It was part of the first trial that was conducted for this work. The
tumor of patient 1 was a neuroendocrine tumor grade 2, which can arise from the excessive
dividing of cells in the neuroendocrine system. The amount of differentiation determines
the grade. Tumor grade 2 was intermediate, with one being the lowest and three being the
highest. In Figure 4-2, it is observed that, like patient one, the cancerous part (B) starts
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Figure 4-1: Impedance Patient 1 (Ileum)

with a higher real impedance and a similar imaginary impedance. However, as the frequency
increases, the real impedance of the non-cancerous tissue (A) becomes larger.
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Figure 4-2: Impedance Patient 2 (Ileum)

4-2-3 Patient 3

The third patient was analyzed on 30-09-2022 and belonged to the first trial. Patient three is
a male of 72 years old and was an esophagus specimen. The tumor was both adenocarcinoma
combined with signet ring cell carcinoma. Signet ring cell carcinoma is a rare and highly
malignant adenocarcinoma that produces mucin [49]. Mucins are proteins that help the
functioning of healthy cells and tissues. In mucinous carcinoma, mucin becomes part of the
tumor. In Figure 4-3, it is observed that the real part of the impedance is higher and the
imaginary part of the impedance is lower, which is a clear difference from patient one and
patient two. Additionally, the trajectory of the real part of the impedance for the cancerous
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tissue (B) is very gradual, while the non-cancerous tissue is more steep.
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Figure 4-3: Impedance Patient 3 (Esophagus)

4-2-4 Patient 4

The measurements on the fourth patient were conducted on 14-10-2022, and belong to the
measurements of trial one. The measurements were esophagus measurements of a male spec-
imen that was 76 years of age. The tumor of patient four is dysplasia, passing into squamous
cell carcinoma. Dysplasia is an abnormal development of cells, which separates them from
normal tissue regarding size, shape, and structural organization of the tissue. Squamous cell
carcinoma develops in the squamous cells that make up the middle and outer layers of the
tissue. Most variation in the data is observed in between 1 kHZ and 5 kHz in the imaginary
axis. For the real part of the impedance both the non-cancerous (A), and cancerous part (B)
follows a similar trajectory.
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Figure 4-4: Impedance Patient 4 (Esophagus).
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Figure 4-5: Different measurement locations of the fifth patient that is a colon specimen.

4-2-5 Patient 5

Patient five is the first patient that was included in this work that came from the second trial.
The measurements on patient five were conducted on 31-01-2023, and the tissue specimen
was colon tissue belonging to a 44 year old female patient. As mentioned before during the
second trail images were made by the author of the tissue specimen. For patient five the colon
specimen can be observed in Figure 4-5.
After histological assessment the pathologist concluded that the measurements on location
B (intended to be a healthy location) were cancerous. The tumor in location B and C were
both adenocarcinoma. It is observed in Figure 4-6, that the location C, which is cancerous
has a higher real impedance and lower imaginary impedance than that of location B, which
is also cancerous.

4-2-6 Patient 6

The sixth patient included in this work is another colon specimen from a 63-year-old male.
It was the second patient from the second trial. The measurement was conducted on 28-03-
2023. The measured locations can be observed in Figure 4-7. The black dye observed on
the colon specimen is used for the pathologist’s work and does not interfere with any of the
measurements taken.
The histological assessment showed that all the measurements, including location C, were
healthy non-cancerous tissue measurements. This means that for patient six there are no
cancerous tissue measurements. It is also observed in Figure 4-8 that all measurement are
highly similar. It can be seen that the measurements of location C (intended to be cancerous)
fall in between the measurements of location A, B, and D. In this measurement a similar
trajectory to the two ileum measurements from patient one and patient two is observed. This
makes sense as these tissues are very close to each other in the body.
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Figure 4-6: Impedance Patient 5 (Colon).

Figure 4-7: Different measurement locations of the sixth patient that is a colon specimen.
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Figure 4-8: Impedance Patient 6 (Colon).

4-2-7 Patient 7

The seventh patient was the last patient of this work and the second trial. It was conducted
on an esophagus specimen obtained from a 60-year-old male on 09-06-2023. The specimen
is depicted in Figure 4-9, and it should be noted that this esophagus specimen was pinned
to a board and cut up in between for another research project that another researcher did
parallel to this work. Additionally, it should be noted that their work does not influence our
measurements.

After the pathological assessment conducted at the Erasmus MC, it was found that similar
to patient 6, the measurements of patient seven were also all on non-cancerous tissue. In Fig-
ure 4-10, the measurements can be observed. It is seen that although pathological assessment
states that the measurements are all non-cancerous, the measurements at location C (in-
tended to be cancerous) are slightly deviating from the measurements at the other locations.
We also observe similar trajectories in the measurements compared to the other esophagus
measurements from patients three and four.
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Figure 4-9: Different measurement locations of the seventh patient that is an esophagus speci-
men.

10
3

10
4

10
5

10
6

10
7

Frequency (Hz)

0

200

400

600

800

1000

1200

R
e
a
l 
im

p
e
d
a
n
c
e
 (

)

Impedance of the Patient 7 (Esophagus)

A: Patient 7 (Esophagus) T1

A: Patient 7 (Esophagus) T2

B: Patient 7 (Esophagus) T1

B: Patient 7 (Esophagus) T2

D: Patient 7 (Esophagus) T1

D: Patient 7 (Esophagus) T2

C: Patient 7 (Esophagus) T1

C: Patient 7 (Esopahgus) T1

10
3

10
4

10
5

10
6

10
7

Frequency (Hz)

-600

-500

-400

-300

-200

-100

0

Im
a
g
in

a
ry

 i
m

p
e
d
a
n
c
e
 (

)

A: Patient 7 (Esophagus) T1

A: Patient 7 (Esophagus) T2

B: Patient 7 (Esophagus) T1

B: Patient 7 (Esophagus) T2

D: Patient 7 (Esophagus) T1

D: Patient 7 (Esophagus) T2

C: Patient 7 (Esophagus) T1

C: Patient 7 (Esopahgus) T1

Figure 4-10: Impedance Patient 7 (Esophagus).
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4-3 Cole Impedance Analysis in Combination with Thresholding

This section covers the analysis that is conducted with the Cole Impedance parameterization
in combination with thresholding. Section 4-3-1 and 3-3-1 cover the way that the parameters
are obtained with the Cole impedance parameterization method and how those parameters are
subsequently analyzed via the Receiver Operator Characteristic (ROC) to find the threshold.
It should be noted that the ROC analysis is only conducted if the data fit of the parameters
is satisfactory and if a parameter that is statistically significant is found, i.e., P < 0.05.

4-3-1 Cole Impedance Model

The first analyzed model is the Cole impedance model that is shown in Equation 3-8. It
has four parameters that were fitted via the fminsearchbnd algorithm in Matlab [27]. The
algorithm was run for a maximum of 100000 iterations, and it stops when the change in the
objective function has reached 1e-9. The initial values were determined in a few rounds of
running the algorithm, to empirically determine suitable starting values. It was determined
that R0 = 4000 Ω, τ = 3e − 4, α = 0.6, and R∞ = 100 Ω were good values. Convergence
of the data fit for every measurement was observed. In total there were 32 non-cancerous
measurements and 16 cancerous measurements. For the fitting of the non-cancerous tissue an
average Mean Square Error (MSE) of 9.8208e+05 was found, and for the cancerous tissue an
average MSE of 9.7343e+05 was found. This is a rather high value for the MSE. The fits of
the data for the non-cancerous data can be found in Figure 4-11, 4-12, 4-13, and 4-14. The
fits for the cancerous data can be found back in Figure 4-15 and 4-16. It can be observed that
all Cole impedance model fits, fit the data to a certain degree, but are not able to capture
the detailed curvature of the data.
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Figure 4-11: Cole impedance model fit for non-cancerous measurement 1A1, 1A2, 1A3, 2A1,
2A2, 2A3, 3A1, 3A2 (top left to right bottom).
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Figure 4-12: Cole impedance model fit for non-cancerous measurement 3A3, 4A1, 4A2, 4A3,
5A1, 5D1, 5A2, 5D2 (top left to right bottom).
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Figure 4-13: Cole impedance model fit for non-cancerous measurement 6C1, 6A1, 6B1, 6D1,
6C2, 6A2, 6B2, 6D2 (top left to right bottom).
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Figure 4-14: Cole impedance model fit for non-cancerous measurement 7C1, 7A1, 7B1, 7D1,
7C2, 7A2, 7B2, 7D2 (top left to right bottom).
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Figure 4-15: Cole impedance model fit for cancerous measurement 1B1, 1B2, 1B3, 2B1, 2B2,
2B3, 3B1, 3B2 (top left to right bottom).

MSc. Thesis J.W.G. Remmerswaal



56 Results

Figure 4-16: Cole impedance model fit for cancerous measurement 3B3, 4B1, 4B2, 4B3, 5C1,
5B1, 5C2, 5B2 (top left to right bottom).
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ID R0 τ α R∞
1B1 1452 2.51 0.2405 2.86
1B2 1424 2.52 0.2392 2.71
1B3 1438 2.90 0.2357 1.78
2B1 1261 2.80 0.3638 1.03
2B2 1237 2.74 0.3640 6.25
2B3 1229 2.74 0.3628 7.34
3B1 4309565 697 0.6484 210
3B2 6096296 1129 0.6504 210
3B3 4616395 721 0.6512 209
4B1 4653 3006 0.1058 0.44
4B2 5941 23886 0.1126 45.7
4B3 6214 46047 0.1107 38.1
5C1 7517 170907 0.0907 0.09
5B1 4142 8795 0.0896 18.8
5C2 6995 64323 0.0911 0.73
5B2 6100 81915 0.1159 164

Table 4-5: Four Cole impedance model parameters for the cancerous measurements.

After fitting the data, the parameters were extracted and stored in a separate table. For the
parameters made, with the non-cancerous data, one can look at Table 4-6. For the data that
was created with the cancerous data, one can observe Table 4-5. Please note that the ID
stands for the measurement and should be read as Patient-Location-Measurement, so 5D1
corresponds to patient five, location D, first measurement on that location. It is observed
from both tables that there is quite some variation regarding the parameters, for example, τ ,
either the parameter is in the 10000 range or close to 0, the same hold for the R∞ parameter,
this parameter either goes towards zero, or around the 200 - 300 Ω.

The analysis to determine the statistical significance of the parameters can now be executed
as was described in Section 3-3-1 and Figure 3-8. The parameters are not normally distributed
in the one-sample Kolmogorov-Smirnov test. This leads to the use of the Two-sided Wilcoxon
signed rank test and the Two-sided Wilcoxon rank sum test.

It was found via the Two-sided Wilcoxon signed rank test that the median is not zero for
all parameters. Additionally, one statistically significant parameter was found. The test
indicated that R∞ comes from a continuous distribution where the medians of the parameter
R∞ when it comes from non-cancerous data are statistically different than when it comes from
cancerous data. In Table 4-7, all parameters and their P-value of the Two-sided Wilcoxon
rank sum test are shown.

Although a statistical significance was found, the fourth parameter R∞, from the literature
it is known that this model is a single dispersion model; and since the tissue measurements in
this work were taken over a range of 1 kHz to 7 MHz, It is also known that the measurements
are in both the α and β dispersion, this also reflects in the large MSE values for the data
fit. Because of this, this model and these parameters are deemed unsuitable for further data
analysis.
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ID R0 τ α R∞
1A1 6571 6391 0.1088 0.06
1A2 7925 67286 0.1068 0.00
1A3 7293 25592 0.1075 0.28
2A1 8017 11772 0.1269 151
2A2 9653 50505 0.1287 166
2A3 9837 37454 0.1318 176
3A1 419094 218258 0.3019 173
3A2 260500 44220 0.3019 172
3A3 367066 155361 0.2998 171
4A1 573991 45573 0.3732 412
4A2 2349968 73547 0.4338 430
4A3 1257678 11660 0.4426 433
5A1 30504 1996558 0.1818 250
5D1 871134 47225 0.4038 320
5A2 16708 84617 0.1770 244
5D2 482731 15009 0.3962 321
6C1 956 1.15 0.3935 3.67
6A1 3733 0.03 0.1448 1.92
6B1 2037 0.00 0.1314 8.51
6D1 1217 3.99 0.1800 3.60
6C2 953 1.14 0.3927 4.45
6A2 1617 5.36 0.2036 6.14
6B2 2019 0.00 0.1320 2.50
6D2 1254 6.45 0.1734 1.34
7C1 9347733 346 0.7018 256
7A1 1463664 53280 0.3894 322
7B1 845987 70410 0.3552 253
7D1 1109590 119033 0.3688 252
7C2 8591727 161 0.7356 243
7A2 2212794 43909 0.4134 326
7B2 1115037 101718 0.3633 254
7D2 1385973 104790 0.3825 261

Table 4-6: Four Cole impedance model parameters for the non-cancerous measurements.

R0 τ α R∞
P-value 0.064 0.071 0.200 0.0130

Table 4-7: The P-values of the Cole impedance parameters, with only R∞ being statistically
significant (P< 0.05).
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4-3-2 Two-Pole Cole Impedance Model

The two-pole Cole impedance model is a model that makes use of two Cole impedance models
in series. It was introduced in Equation 3-10 in Section 4-3-1. The two-pole Cole impedance
model should be able to create a data fit for when two dispersion regions (in this case α and
β) are being considered [15]. For the initial parameter values R1 = 400000 Ω, τ1 = 2e7,
α1 = 0.6, R2 = 600 Ω, τ2 = 1e − 8, α2 = 0.6, and R∞ = 200 Ω were picked. After
running the data fitting algorithm, a much better fit was found in comparison to the Cole
impedance model. This was to be expected since there are more parameters the data can
fit. Additionally, [15] stated that the Cole impedance model could be placed in series with
another Cole impedance model if multiple dispersion regions were being researched. A MSE
of 4.1228e+04 was obtained for the non-cancerous data fits, and a MSE of 2.6642e+04 for
the data fits conducted on the cancerous data. This makes the two-pole Cole impedance
equation over ten times more accurate. It can also be observed in Figure 4-17, 4-18, 4-19,
4-20, 4-21, and 4-22, that the fit of the two-pole Cole model comes much closer to the actual
data. In some cases, it is impossible to see the data fit because it is plotted under the real
data (indicated with stars). A drawback of this method is however, that when the imaginary
part becomes positive, meaning that the impedance changes from capacitive to inductive
impedance, the algorithm is not able to track this change.

Seven different parameters were obtained after fitting the data to the two-pole Cole impedance
model. These are showcased in Table 4-9, and 4-8. It can be seen that the numbers variate
a large amount for parameters R1 and τ2. A possible reason could be that the solver gets
stuck in a local minima that allows the data to be fitted correctly but creates big differences
in parameter values.

ID R1 τ1 α1 R2 τ2 α2 R∞
1B1 24619 0.31 0.5480 622 2.00 0.6118 198
1B2 178717879 4434607 0.5437 604 2.03 0.6144 199
1B3 2977078 2765 0.5383 595 2.02 0.6176 200
2B1 1852129892 2074996758 0.5093 692 1.97 0.7257 243
2B2 226354171 2702995 0.5649 710 1.97 0.7065 229
2B3 2322085 746 0.5681 704 1.96 0.7079 229
3B1 2382416 149987579 0.3444 9.32 5.63 0.2265 172
3B2 1.e37 1.e36 0.8757 3690 3.e22 0.0448 34.9
3B3 215066021 7845 0.7814 64.4 1.18 0.5474 169
4B1 32768433 705 0.7677 300 3.55 0.6185 240
4B2 103679 0.37 0.7705 292 3.66 0.6164 246
4B3 127506 0.47 0.7708 295 3.58 0.6147 244
5C1 5881856 25.3 0.7993 810 2.23 0.4441 2.41
5B1 3460 0.00 0.7564 338 1.02 0.5437 241
5C2 2975066 15.0 0.7750 640 4.44 0.5127 152
5B2 1106665 4.70 0.8143 478 3.34 0.4001 105

Table 4-8: Seven two-pole Cole impedance model parameters for the cancerous measurements.

With the statistical analysis described in section 3-3-1, a similar result to the parameters of
the Cole impedance model was found. The parameters are not from a normal distribution.
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Figure 4-17: Two-pole Cole impedance model fit for non-cancerous measurement 1A1, 1A2,
1A3, 2A1, 2A2, 2A3, 3A1, 3A2 (top left to right bottom).
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Figure 4-18: Two-pole Cole impedance model fit for non-cancerous measurement 3A3, 4A1,
4A2, 4A3, 5A1, 5D1, 5A2, 5D2 (top left to right bottom).
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Figure 4-19: Two-pole Cole impedance model fit for non-cancerous measurement 6C1, 6A1,
6B1, 6D1, 6C2, 6A2, 6B2, 6D2 (top left to right bottom).
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Figure 4-20: Two-pole Cole impedance model fit for non-cancerous measurement 7C1, 7A1,
7B1, 7D1, 7C2, 7A2, 7B2, 7D2 (top left to right bottom).
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Figure 4-21: Two-pole Cole impedance model fit for cancerous measurement 1B1, 1B2, 1B3,
2B1, 2B2, 2B3, 3B1, 3B2 (top left to right bottom).
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Figure 4-22: Two-pole Cole impedance model fit for cancerous measurement 3B3, 4B1, 4B2,
4B3, 5C1, 5B1, 5C2, 5B2 (top left to right bottom).
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ID R1 τ1 α1 R2 τ2 α2 R∞
1A1 2292817 91.8 0.6618 399 1.61 0.6266 234
1A2 10983373 954 0.6629 397 1.61e-07 0.6268 234
1A3 9006204 692 0.6639 395 1.61 0.6272 233
2A1 260752926 308988 0.6330 426 8.79 0.5303 222
2A2 2095144250 8297387 0.6327 430 8.37 0.5276 220
2A3 8572704 1361 0.6330 433 8.40 0.5287 222
3A1 39384 0.94 0.4829 238 2.32 0.5163 134
3A2 1.e17 5.65e14 0.6997 346 2.04 0.6166 194
3A3 6296291 18840 0.5016 363 1.70 0.3652 65.1
4A1 540351 1.10 0.8368 544 1.78 0.2845 76.4
4A2 1237079 3.17 0.8228 526 1.24 0.3063 73.4
4A3 1031909 2.73 0.8143 471 1.94 0.3335 122
5A1 25727 0.10 0.7083 272 1.63 0.5521 240
5D1 389350 1.24 0.8095 381 2.92 0.2928 93.4
5A2 6652131 391 0.6863 314 1.20 0.5019 213
5D2 17004 0.04 0.7453 170 2.20 0.6301 256
6C1 30352855 443 0.7610 644 1.14 0.6852 159
6A1 1447294 5.03 0.7758 950 9.38 0.4426 8.24
6B1 428877 1.12 0.8050 615 6.62 0.5036 88.4
6D1 160341143 5618 0.7571 522 9.74 0.5600 144
6C2 1584302 9.08 0.7620 642 1.13 0.6832 158
6A2 1111687 2.56 0.8161 899 9.66 0.4582 31.0
6B2 16901573 115 0.8016 613 6.68 0.5045 89.9
6D2 1104035 7.39 0.7610 512 9.92 0.5630 146
7C1 326200060 7737 0.7795 38.7 4.84 0.9348 238
7A1 323477 0.60 0.7690 331 1.13 0.5670 271
7B1 5339011 249 0.6393 422 1.23 0.3894 82.1
7D1 27836 0.06 0.6892 420 8.18 0.3551 53.7
7C2 1082815 3.05 0.8257 455 2.72 0.0466 1.81
7A2 1750581382 22501 0.7940 352 1.32 0.5310 262
7B2 7806850 28.3 0.7893 338 1.36 0.6131 225
7D2 2780632 32.1 0.7096 476 7.64 0.3073 28.1

Table 4-9: Seven two-pole Cole impedance model parameters for the non-cancerous measure-
ments.
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This allowed for the use of the Two-sided Wilcoxon signed rank test, which showcased that
all parameters in both the cancerous and non-cancerous groups have a mean that is not equal
to zero. The Two-sided Wilcoxon rank sum test tested whether or not a parameter from the
two-pole Cole impedance model can be used for classification. However, a single parameter
with any statistical significance (P < 0.05) was not found. Therefore, this model and these
parameters were not continued in our classification strategy. The P-values for all parameters
can be found in Table 4-10.

R1 τ1 α1 R2 τ2 α2 R∞
P-value 0.718 0.309 0.330 0.319 0.241 0.241 0.185

Table 4-10: The P-values of the two-pole Cole impedance parameters, with no statistically
significant parameter (P< 0.05).

4-3-3 Two-Pole Cole Impedance Model with CPE

The last equivalent circuits (EC) model we analyzed was the Two-Pole Cole impedance model
in combination with the Constant Phase Element (CPE) model from Equation 3-11. This
led to a combined model that was displayed in Equation 3-12 and was also used in [27]. This
model contained nine parameters because of the additional two from the CPE model. The
initial parameters were set at R1 = 101 Ω, τ1 = 3e − 4, α1 = 0.7, R2 = 253 Ω, τ2 = 1e − 8,
α2 = 0.8, K = 2.5e − 6, m = 0.9, and R∞ = 188Ω. A very satisfying fit was obtained with
MSE of 1.68402e+04 and 1.1296e+04 for the non-cancerous and cancerous data, respectively.
This means that the data fit with the combined model is roughly twice as accurate as the
data fit from the two-pole Cole impedance model. The fitted data is displayed for the non-
cancerous data in Figure 4-23, 4-24, 4-25, and 4-26 and the cancerous data in Figure 4-27, and
4-28. These figures show the contribution of the CPE model and the two-pole Cole impedance
model separately. It can be observed that the main contribution of the CPE is in the lower
frequency range from 1 kHz until 10 kHz. This was expected as a CPE model is usually
introduced to mitigate the negative effect of electrode polarization, which occurs in the α
dispersion [14]. However, in some cases, it can also be observed that the CPE component
does not do anything; for example, in 2B3, the imaginary part of the CPE remains zero,
while for the second measurement on the similar patient at the similar location, 2B2, both
the imaginary and real part of the CPE component is non-zero. Also, here, it was observed
that with this model it is impossible to fit the data to the imaginary impedance when it
changes from capacitive to inductive impedance.
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Figure 4-23: Combined CPE and 2-pole Cole impedance model fit for non-cancerous measure-
ment 1A1, 1A2, 1A3, 2A1, 2A2, 2A3, 3A1, 3A2 (top left to right bottom).
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Figure 4-24: Combined CPE and 2-pole Cole impedance model fit for non-cancerous measure-
ment 3A3, 4A1, 4A2, 4A3, 5A1, 5D1, 5A2, 5D2 (top left to right bottom).
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Figure 4-25: Combined CPE and 2-pole Cole impedance model fit for non-cancerous measure-
ment 6C1, 6A1, 6B1, 6D1, 6C2, 6A2, 6B2, 6D2 (top left to right bottom).
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Figure 4-26: Combined CPE and 2-pole Cole impedance model fit for non-cancerous measure-
ment 7C1, 7A1, 7B1, 7D1, 7C2, 7A2, 7B2, 7D2 (top left to right bottom).
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Figure 4-27: Combined CPE and 2-pole Cole impedance model fit for cancerous measurement
1B1, 1B2, 1B3, 2B1, 2B2, 2B3, 3B1, 3B2 (top left to right bottom).
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Figure 4-28: Combined CPE and 2-pole Cole impedance model fit for cancerous measurement
3B3, 4B1, 4B2, 4B3, 5C1, 5B1, 5C2, 5B2 (top left to right bottom).
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Fitting the data with the combined model from Equation 3-12 yielded the following param-
eters for the non-cancerous data (Table 4-12) and for the cancerous data (Table 4-11). The
fact that there was so much variation in the parameters could be because of the complexity
and the many local minima the fitting algorithm converges to. Again by taking a glance
at 2B2 and 2B3. It was observed that for 2B3, R1 is relatively high, m is 1 (the maximum
value), and for 2B2, R1 was low, and m is approximately 0.5. By looking at equation 3-12, the
behavior could be explained as it was seen in the data fit. The initial impedance in 2B3 stems
from the Cole terms, and the initial impedance in 2B2 stems from the CPE. Again, these
variations are likely due to the optimizer finding an optimum in local minima. Therefore, a
true conclusion on the initial impedance in the α dispersion can not be made. It should be
noted that similar behavior regarding the parameters was observed in [27].

ID R1 τ1 α1 R2 τ2 α2 K m R∞
1B1 575 0.00 0.3435 500 1.76 0.6798 4.17 0.7950 210
1B2 588 2.02 0.6272 307 1.11 0.0005 2.58 0.5287 46.1
1B3 458 4.15 0.6191 122 8.04 0.9717 1.70 0.5810 236
2B1 104 0.00 0.9975 718 2.00 0.7063 2.22 0.5470 235
2B2 11.0 2.26 0.9985 716 1.99 0.7042 1.56 0.5904 229
2B3 2911 0.01 0.5001 686 1.93 0.7179 1.83 1.0000 232
3B1 237 0.00 0.1657 282 7.90 0.0147 1.89 0.9102 14.0
3B2 220 0.00 0.1955 16.66 4.08 0.4148 1.73 0.9194 157
3B3 255 0.00 0.1739 29.82 8.58 0.9293 1.65 0.9248 121
4B1 115 0.00 0.0000 300 3.55 0.6185 4.68 0.7677 182
4B2 75 0.00 0.0826 278 3.67 0.6273 4.37 0.7752 225
4B3 274 4.05 0.6506 21.53 1.72 0.9994 4.84 0.7601 238
5C1 184 0.00 0.7611 807 2.33 0.4435 8.69 0.9341 6.25
5B1 84.1 3.01 0.0000 326 1.03 0.5619 7.59 0.7101 206
5C2 862 0.00 0.6756 800 2.18 0.4479 1.20 0.9192 4.35
5B2 216 2.25 0.2176 356 9.17 0.5044 2.73 0.8268 0.03

Table 4-11: Nine parameters from the two-pole Cole impedance model in combination with a
CPE for the cancerous measurements.

After obtaining the parameters, the statistical analysis method described in Section 3-3-1, and
Figure 3-8 was used. Again, via the one-sample Kolmogorov-Smirnov test, it was observed
that parameters do not come from a normal distribution. It was found via the Two-sided
Wilcoxon signed rank test that the median is not zero for all parameters. Furthermore,
α2 has a P-value lower than 0.05 in the Two-sided Wilcoxon rank sum test. This means
a data-fitting equation has been found, Equation 3-12, that converges without large errors
and gives a statistically significant parameter. In Table 4-13, all nine parameters with their
P-value are displayed, and in Figure 4-29 a boxplot of the values of α2 can be observed for
the non-cancerous and cancerous data.
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ID R1 τ1 α1 R2 τ2 α2 K m R∞
1A1 1.80 0.00 0.2809 398 1.61 0.6276 8.68 0.6617 234
1A2 84.1 1.41 0.7406 285 1.17 0.7602 8.39 0.6654 260
1A3 161 1.81 0.8304 415 4.17 0.2969 6.98 0.6955 106
2A1 146 0.00 0.3111 397 8.51 0.5519 9.00 0.6708 228
2A2 138 9.01 0.1026 508 6.22 0.4605 8.54 0.6689 25.3
2A3 385 8.57 0.5514 333 3.74 0.0537 1.02 0.6472 66.9
3A1 1023 0.00 0.2593 167 6.50 0.0007 5.89 0.7085 6.20
3A2 346 2.04 0.6166 9.94 5.71 0.0039 4.46 0.6997 194
3A3 1660 0.00 0.2576 5.10 3.57 0.1861 5.56 0.9999 93.7
4A1 295 5.07 0.0632 461 1.49 0.3021 1.89 0.8448 0.02
4A2 56.3 0.00 2.4424 526 1.24 0.3065 2.09 0.8226 45.5
4A3 210 0.00 0.0130 466 1.79 0.3332 2.17 0.8160 22.0
5A1 3.49 0.00 0.3503 269 1.63 0.5560 7.86 0.7028 241
5D1 1215 0.01 0.5437 152 2.11 0.6692 3.14 0.8411 260
5A2 123 1.35 0.7031 523 4.32 0.1430 5.52 0.7558 31.4
5D2 635 0.00 0.5584 159 2.09 0.6570 2.96 0.8440 259
6C1 209 1.69 0.7578 441 8.69 0.6551 3.53 0.7564 151
6A1 654 9.40 0.1838 566 8.94 0.5646 1.86 0.8175 2.78
6B1 112 1.65 1.1102 615 6.62 0.5038 2.57 0.8046 32.4
6D1 276 0.00 0.0330 497 9.80 0.5712 4.00 0.7669 34.9
6C2 167 1.86 0.0006 643 1.13 0.6827 3.35 0.7631 70.1
6A2 293 0.00 0.7320 905 9.60 0.4551 1.56 0.8604 27.0
6B2 41.9 2.079 0.0586 625 6.24 0.4977 2.71 0.7997 36.1
6D2 46.9 0.00 0.2079 492 9.85 0.5735 3.81 0.7726 147
7C1 262 0.00 0.2092 224 1.68 0.0000 1.58 0.8753 101
7A1 330 1.12 0.5676 534 2.33 0.0000 2.12 0.7676 3.83
7B1 348 1.38 0.6134 327 2.53 0.0000 1.83 0.7862 63.0
7D1 271 8.78 0.6257 266 1.27 0.0000 2.58 0.7633 80.5
7C2 202 0.00 0.2690 7.52 7.65 0.0002 1.46 0.8851 216
7A2 352 1.32 0.5310 71.1 2.78 0.0000 1.63 0.7940 227
7B2 1381 0.00 0.2207 39.6 1.66 0.0009 3.82 1.0000 70.9
7D2 60.6 1.21 0.5239 262 9.44 0.6322 2.48 0.7671 162

Table 4-12: Nine parameters from the two-pole Cole impedance model in combination with a
CPE for the non-cancerous measurements.

R1 τ1 α1 R2 τ2 α2 K m R∞
P-value 0.9042 0.1786 0.5770 0.7678 0.5770 0.0101 0.4505 0.6382 0.3414

Table 4-13: The P-values of the two-pole Cole impedance in combination with a CPE, with α2
being statistically significant parameter (P< 0.05).
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Figure 4-29: A boxplot of the α2 parameter (P < 0.05) for the non-cancerous and cancerous
data.

Threshold Value
Patient 1 0.33320
Patient 2 0.33320
Patient 3 0.66930
Patient 4 0.66930
Patient 5 0.57360
Patient 6 0.33320
Patient 7 0.66930

Table 4-14: Threshold values.

Now that a statistically significant parameter was found, α2, the ROC analysis with a Leave-
One-Out Cross Validation (LOOCV) approach can be performed to find a suitable threshold.
A threshold finding algorithm was run that iterated over a range of 0 to 1, in 10001 steps.
It ran over seven data sets, as one patient is left out of every data set, for example, our first
data set does not contain the data of patient one (as this is the one that is left out). The
algorithm was ran over the remaining six patients, and the optimal threshold value was found
by determining which value creates the largest summation in Specificity and Sensitivity. This
index is depicted in the ROC curve in Figure 4-30.

After running our algorithm, the following threshold values were found, were to be tested on
the left-out patient (Table 4-14). It can be observed that the threshold values are almost split
into two groups: 0.33320 and 0.66930; the reason for this is the low amount of data. When a
patient is left out, the algorithm’s encounter of the first index, where the summation of the
specificity and sensitivity is the largest, is often at the same index.

After obtaining the threshold values, testing them as intended with the LOOCV can be done.
The data from patient one was tested with the threshold intended for patient one, and the
data from patient two was tested with the threshold intended for patient two, and so on.
In total, 7 True Positive (TP), 18 True Negative (TN), 14 False Positive (FP), and 9 False
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Figure 4-30: The ROC curve for our threshold determination algorithm, with the threshold index
indicated as a red dot. Top left to bottom: TH1, TH2, TH3, TH4, TH5, TH6, and TH7
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Accuracy Sensitivity Specificity PPV NPV MCC
0.5208 0.4375 0.5625 0.3333 0.6666 0.0000

Table 4-15: The performance metric results for the LOOCV of the 2-pole Cole impedance
parameterization model in combination with thresholding.

Negative (FN) were obtained. This gave the following performance analysis metrics in Table
4-15.

The results were unsatisfactory, and the current thresholding method with the current pa-
rameters could not be used to separately classify cancerous and non-cancerous data in the GI
tract. The main issue is the low amount of data available, leading to low performance metrics
scores. The value of the Mathews Correlation Coefficient (MCC) equals zero because, in the
numerator, the TP and TN are summed and subtracted by the summation of the FP and
FN since both equal 25 the MCC equals zero. The values for the sensitivity and Negative
Predictive Value (NPV) were relatively high. However, it should be noted that this is due
to the large amount of non-cancerous data measurements in the data set compared to the
amount of cancerous data measurements.
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4-4 Principal Component Analysis in Combination with Support
Vector Machine

This section covers all the results that were obtained from the classification strategy where
PCA in combination with SVM was used. The PCA is created via the Singular Value De-
composition (SVD), and the SVM makes use of a Radial Basis Function (RBF) kernel trick,
which is preferred to be used when data in non-linear [11].
With the PCA one would like to maximize dimension reduction of the available data set
while keeping the maximum amount of variance. It is possible to asses how much variance is
captured by each principle component via Equation 3-36. To determine how many principal
components were required for the parameterization algorithm, an initial PCA was ran on
the entire data set. The results are displayed in Figure 4-31. It was found that for the first
five principal components contained 0.6818, 0.2503, 0.0316, 0.0219, and 0.0080 accounted
variance. This entails, that the first three principal components capture 0.9637 (96.37%) of
the total variance in the data set. Therefore, the decision was made to run the principal
component analysis during the LOOCV with three principal components

Figure 4-31: The accounted variance of the first five principal components.

We ran the PCA algorithm for seven data sets according to the LOOCV strategy. For example,
in the first data set, patient one was omitted and the PCA was performed on the remaining
six patients to reduce the dimensionality of the data matrix. When patient one is omitted,
the data matrix’s initial size is 42 × 600; after the PCA, this is reduced to a 42 × 3 matrix.
This is a great benefit as smaller amounts of data are faster and easier to work with. After
performing the PCA on the remaining six patients, the SVM was trained by giving the data
to the fitcsvm function in Matlab. This process was repeated seven times for each patient.
After running the trained SVM on the test subjects following the LOOCV strategy, a total
of 0 TP, 20 TN, 12 FP, and 16 FN were found. The performance metrics are given in Table
4-16.
The results of the PCA combined with the SVM were also unsatisfactory. Creating a proper
classification strategy in the current setting is impossible, mainly due to the low data avail-
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Accuracy Sensitivity Specificity PPV NPV MCC
0.4167 0.0000 0.6250 0.0000 0.5556 -0.4082

Table 4-16: The performance metric results for the LOOCV of the PCA in combination with the
SVM.

able. The combination of the PCA with the SVM was not able to detect any cancerous tissue
at all, meaning that targeting a biopsy in the GI tract is futile. It has a negative MCC score,
indicating low performance. Compared to the two-pole Cole impedance model combined with
a CPE model, it also performs less, except for the specificity score, which is higher for the
SVM. The MCC score for the thresholding algorithm is 0.0000, while for the PCA in combi-
nation with an SVM, it is negative. Since the MCC is a general measure for classification, it
is safe to say that the thresholding algorithm performed better.
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Chapter 5

Discussion

This work explores different classification strategies for cancerous and non-cancerous tissue
detection in the gastrointestinal (GI) tract to help surgeons who want to make taking a biopsy
easier or even make is obsolete. This section discusses all significant findings and, consecu-
tively, the meaning behind those findings.

5-1 Difference in Esophagus, Ileum, and Colon Tissue

In Chapter 4, it was observed from the figures in Figure 4-1 until Figure 4-10 that the ileum
and colon tissue are similar, they have a similar trajectory and are roughly around the same
impedance magnitude. However, the esophagus tissue deviates from these two tissues. In
both colon and ileum measurements, it was observed that the cancerous tissue had a high
real and imaginary impedance. At the same time, this was the other way around for the
esophagus tissue. This leads to the belief that the hypothesis made in the introduction is
false. It was stated that the esophagus, ileum, and colon tissue could be similar due to the
same four tissue layers (mucosa, submucosa, muscularis externa, and serosa) in the GI tract,
and therefore, it would be possible to make classification of cancerous and non-cancerous
tissue easier.

During the second trial, it was discovered by the pathologist that the measurements on the
fifth, sixth, and seventh patients contained faults. When measuring the tissue of patient
five, and having the intention of measuring healthy tissue, a tumor was measured. A similar
mistake occurred in patients six and seven, where it was intended to measure cancerous
tissue. However, in both cases, normal tissue was measured. This could be the fault of the
probe, as there was no complete control of the probe since it could not be seen in the tissue.
The measurement protocol describes that the probe is fixated deep into the tissue, allowing
minimal variance in the measurements. However, what could have occurred is that the tumor
was highly superficial, and the measurement was conducted too deeply into the tissue. This
is a clear disadvantage of a spiky electrode probe.
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5-2 Findings Cole Impedance Model

In Section 4-3, the Cole impedance model from Equation 3-8, the two-pole Cole model from
Equation 3-10, and the combined Constant Phase Element (CPE) model with the two-pole
Cole model from Equation 3-12 were analyzed. It was found in Section 4-3-1 that the Cole
impedance model is unsuitable for further data analysis because of the high error score in the
data fitting process. An average Mean Square Error (MSE) value of 9.8208e+05 for the non-
cancerous data fit was found, and for the cancerous tissue, an average MSE of 9.7343e+05 was
found. These significant errors were also visually reflected in the figures created to showcase
the model fit. In many cases, the model fit could not correctly follow the nuances of the
impedance data, especially in the lower frequency regions. The reasoning behind this lack of
performance is that the Cole impedance model is a single dispersion model [10]. This work’s
frequency range covers the α and β dispersion, as the measurements are taken from 1 kHZ
to 7 MHz [3]. The parameters that were obtained via the Cole impedance model did yield
a statistically significant (P < 0.05) parameter, R∞. Nevertheless, due to the large average
MSE of the data fit, it was concluded that this model is unsuitable for further analysis.

5-3 Findings Two-Pole Cole Impedance Model

By extending the existing Cole impedance model with another Cole impedance model, the
two-pole Cole impedance model is created [15]. This model was analyzed throughout Section
4-3-2. The two-pole Cole impedance model created an accurate data fit with an average MSE
of 4.1228e+04 and 2.6642e+04 for the non-cancerous and cancerous data, respectively. These
numbers indicate that compared to the Cole impedance model, the two-pole Cole model fit
is more accurate by a factor of 10. This is unsurprising as the second Cole element allows
the model to cover two dispersion areas [15]. A drawback of the fitting methods is that
the model does not account for changes in capacitive to inductive impedance (negative to
positive). Although a proper fit with the two-pole Cole model was achieved. Via the two-
sided Wilcoxon rank sum test not a single statistically significant (P < 0.05) parameter that
could have been used as a classification parameter was obtained.

5-4 Findings Two-Pole Cole Impedance Model with CPE

The two-pole Cole impedance model in combination with a CPE was showcased in Section
4-3-3 and was used previously in [27]. The model showed a more accurate data fit than
the 2-pole Cole impedance model, with an average MSE 1.68402e+04 and 1.1296e+04 for
the non-cancerous and cancerous data, respectively. This indicates that this model fit was
approximately twice as good as the model fit when the 2-pole Cole impedance model was used.
Although a satisfying data fit was obtained, it was observed that in some measurements, the
data is fitted more towards the Cole parameters and in others more towards the CPE model.
These phenomena mainly occurred in the α dispersion region around 1 kHz to 10 kHz. This
makes sense since the CPE is normally introduced to mitigate the adverse effects of electrode
polarization in the α dispersion region [16, 36]. In some measurements, a significant value of
R1 and m were observed in Table 4-12, and 4-11. This indicates that the Cole parameters
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are more dominant in the data fit, and therefore the contribution of the CPE is small. This
can be explained by the complexity of the data and objective function, probably leading to
the solver landing in a local minimum that gives good fitting results but does not consider
real-world phenomena (like electrode polarization). With the combination of the two-pole
Cole impedance model and a CPE, a statistically significant parameter (P < 0.05) was found
via the two-sided Wilcoxon rank sum test, meaning that it was eligible for tissue classification
via thresholding. The parameter α2 had a P-value equal to 0.0101, and it was shown in
Figure 4-29 that the values for α2 for non-cancerous and cancerous data are different.

5-5 The Meaning and Use of α2

In this work, α2 is used to create a threshold algorithm. The interpretation of this parameter
is somewhat difficult as current scientists have not yet reached a consensus on the meaning of
the α parameter in the Cole impedance model. In [4, 19], it is stated that it depends on the
heterogeneity of the cell size shape of living tissue. While in [15], it is stated that the value
of α influences the minimal spectral width and that it can be regarded as the deviation from
the Fricke-Morse model, which is obtained when α = 1.

To use the thresholding parameter correctly, the data was separated according to a Leave-
One-Out Cross Validation (LOOCV) strategy described in Section 3-4. In LOOCV, one
leaves out one patient’s data set and trains the algorithm on the remaining patient’s data
sets. This is iterated for the number of patients in the entire study. Receiver Operator
Characteristic (ROC) curves were created for every data set according to the LOOCV strategy
and iterated over threshold value between 0 and 1 in 10001 steps. The threshold was chosen
for the value where the specificity and sensitivity summation were the largest. It was found
that the threshold values (α2) were almost split into two groups: 0.33320 and 0.66930. It is
reasoned that this is due to the low amount of specimens. When a patient is left out due to
the LOOCV strategy, the threshold finding algorithm crosses the first index where the sum
of the specificity and sensitivity are the largest. It is often the case that these are the same.

5-6 The Performance of the Thresholding algorithm

The performance results of the thresholding algorithm were unsatisfactory. A total of 7 True
Positive (TP), 18 True Negative (TN), 14 False Positive (FP), and 9 False Negative (FN) were
obtained. Additionally, an accuracy of 0.5208, a sensitivity of 0.4375, a specificity of 0.5625, a
Positive Predictive Value (PPV) of 0.3333, a Negative Predictive Value (NPV) of 0.6666, and
Mathews Correlation Coefficient (MCC) of 0.0000 were obtained. These results are unsuitable
for a classification algorithm that distinguishes cancerous from non-cancerous tissue in the GI
tract. The low sensitivity and the low PPV stood out the most, as the sensitivity shows the
ability to detect cancerous tissue correctly, and the PPV shows the proportion of true positive
prediction. The literature has pointed out that Electrical Impedance Spectroscopy (EIS)
was used to detect cancerous and non-cancerous tissue [1, 43, 25, 46, 18]. However, those
performance results were more satisfactory. For example, in [2], the authors obtained a
sensitivity of 74% and specificity of 53% by using a Cole equation and thresholding. However,
it should be noted that over 800 measurements were conducted in this particular case. In
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[43], the authors obtained a PPV of 91.5%, a specificity of 95.4%, and a sensitivity of 62.1%.
However, it should be noted that, in total, 214 specimens entered this study. In [25], 36
specimens (prostate) were used. Thresholding was used to obtain a 75.4% specificity and a
76.1% sensitivity. [46] used EIS to differentiate cancerous from benign breast tissue. They
employed the Cole-Cole model on 622 breast masses, and 66 were determined to be malignant
and 556 benign. [46] achieved a sensitivity of 92.4%, and a specificity of 96.0%. In [18], 53
patients were classified with the help of an equivalent circuits (EC). Forty-four had lung
cancer, 5 had metastatic lung tumors, and 4 had pneumonia. This resulted in a sensitivity
of 100% and a specificity of 66%. In [27], three porcine hearts were measured with over 300
EIS measurements. A thresholding algorithm was created with the two-pole Cole impedance
model with CPE. This led to an accuracy of 81.4%, a sensitivity of 84.4%, a specificity of
78.6%, an PPV of 77.8%, a NPV of 85.0%, and a MCC of 0.629. These results are excellent.
However, it should be noted that the amount of measurements is relatively high compared
to this work, and no LOOCV strategy was employed, meaning that the training threshold
determination and testing were conducted on the same data (a priori data knowledge). The
performance of our thresholding algorithm is not comparable with the current literature.
However, it must be noted that there are almost no literature sources on EIS and cancer
detection in the GI tract. Additionally, it should be noted that all literature sources reviewed
in this work have access to significantly more data, and some create a classification algorithm
with a priori data knowledge.

5-7 The Performance of the Support Vector Machine

In Section 4-4, the principal component analysis (PCA) in combination with a support vector
machine (SVM) is displayed. The PCA is created to minimize the size of the data set while
maximizing the captured variance. The PCA is executed on the entire data set to determine
how many principal components are required for this work. This led to the discovery that the
first three principal components accounted for 96.37% of the total variance of the data set.

To make the SVM compatible with the highly non-linear impedance data, the Radial Basis
Function (RBF) kernel was used, which allows the SVM to capture complex patterns in the
data by creating decision boundaries that are curved or irregular. After following the LOOCV
strategy for the PCA with SVM, the following performance results were found: 0 TP, 20 TN,
12 FP, 16 FN. Additionally, the accuracy was 0.4167, the sensitivity 0.0000, the specificity,
0.6250. the PPV 0.0000, the NPV 0.5556, and the MCC -0.4082. The performance of the SVM
is unsuitable for classifying cancerous and non-cancerous tissue during a biopsy in the GI tract.
The zero-valued sensitivity and PPV resulted in an unusable algorithm. For comparison, SVM
is currently used in EIS cancer research. For example, in [5], an SVM was combined with
PCA, and the classifier accuracy was over 97%. In [17], 14 human prostates were researched
with 23 cancerous and 53 benign EIS measurements. Using a LOOCV strategy, the predictive
value of their parameterized data for differentiating between benign and malignant tissue was
assessed. The predictive accuracy was 90.8%, with a specificity of 94.3% and a sensitivity of
82.6%. By comparing This work’s PCA and SVM algorithms with current literature, it can
be observed that the algorithms in this work are not performing as well as the ones found in
current literature. However, it should be noted that the cause is likely to be the lack of data.
If the number of data points measured were to be increased, it would probably be possible
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to create a more successful classification strategy to showcase a proof-of-concept for EIS as a
supportive tool for biopsies.
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Chapter 6

Conclusion

This work presents the knowledge obtained during the master thesis project conducted at the
TU Delft in combination with the Erasmus MC and Phillips. Two measurement trials were
conducted, where the first trial was intended to explore different tissues, and the second trial
was to converge to a more specific area. In this work, measurements were made on the
esophagus, ileum, and colon tissue that represented the gastrointestinal (GI) tract. This work
explored different parameterization methods, like the Cole impedance model, the two-pole Cole
impedance model, and a combination of a Constant Phase Element (CPE) model with the two-
pole Cole impedance model. This work also explored principal component analysis (PCA) as a
parameterization technique. After the parameterization, the goal was to classify measurement
data and predict whether the data was cancerous or non-cancerous. This was done either by
setting a threshold determined via the Receiver Operator Characteristic (ROC) curve, where
a threshold based on the maximal summation of specificity and sensitivity was chosen, or by
using a support vector machine (SVM) with an Radial Basis Function (RBF) kernel. Via
a Leave-One-Out Cross Validation (LOOCV) analysis, the findings of these methods were
concluded. In this conclusion, the research questions created in the introduction are restated
and answered accordingly.

6-1 Answer of the First Research Question

Is it possible to create classification algorithms that can be used on the esophagus,
colon, and ileum tissue to detect cancerous versus non-cancerous tissue?

In Section 2-1, it was discussed that along the entire GI tract, the four primary layers (mu-
cosa, submucosa, muscularis externa, and serosa) are present [24]. This led us to hypothesize
that the esophagus, ileum, and colon tissue would respond similarly to Electrical Impedance
Spectroscopy (EIS). However, this is not true. A clear difference was shown in Chapter 4,
that esophagus, ileum, and colon tissue do not respond similarly to EIS. The trajectory of
esophagus tissue differs from that of ileum and colon tissue. However, it should be noted
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that the trajectory and magnitude of the impedance for the ileum and colon are similar. This
makes sense as these two parts of the GI tract are connected.

In Section 4-3-3, the creation of a working algorithm that uses an equivalent circuits (EC) in
the form of the two-pole Cole impedance model in combination with a CPE was showcased.
The algorithm can classify cancerous and non-cancerous data. However, the performance of
the classification algorithm is doubtful in this current setting, as the performance metrics
displayed in Section 4-3-3 indicated that the algorithm performs rather poorly. In Section
4-4, a description was made of how to use PCA and SVM together to create a working
classification algorithm for cancer detection. Similar to the algorithm that is based on the
two-pole Cole impedance model and threshold, this algorithm’s performance was poor.

The answer to this first research question is yes; it is possible to create classification algorithms
that can be used on the esophagus, colon, and ileum tissue to detect cancerous versus non-
cancerous tissue. However, in this work, the performance was relatively poor due to the
current setup.

6-2 Answer of the Second Research Question

Which classification strategy has better performance, the more classical Cole
Impedance parameterization in combination with thresholding, or the newer PCA
in combination with a trained SVM algorithm.

In Section 4-3-3, the statistically significant parameter α2 was found, which was used to
create a thresholding algorithm. This algorithm was used via the LOOCV strategy to de-
termine its performance. It was found that the algorithm performed unsatisfactorily since it
obtained 7 True Positive (TP), 18 True Negative (TN), 14 False Positive (FP), and 9 False
Negative (FN), which led to the following performance metrics.

Accuracy Sensitivity Specificity PPV NPV MCC
0.5208 0.4375 0.5625 0.3333 0.6666 0.0000

Table 6-1: The performance metric of the thresholding strategy

For the PCA in combination with a SVM, we also employed the LOOCV strategy to evaluate
the performance of this algorithm. We found that the combination of PCA and SVM also
performed unsatisfactorily. For the combination between the PCA and SVM, we found a
total of 0 TP, 20 TN, 12 FP, and 16 FN. This led to the following performance metrics

Accuracy Sensitivity Specificity PPV NPV MCC
0.4167 0.0000 0.6250 0.0000 0.5556 -0.4082

Table 6-2: The performance metric results of the SVM strategy.

The accuracy, sensitivity Positive Predictive Value (PPV), Negative Predictive Value (NPV),
and Mathews Correlation Coefficient (MCC) of the thresholding algorithm were higher. This
means that all but one performance metric is higher for the thresholding algorithm. This,
with the additional fact that the MCC (which is arguably the most important metric as it
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showcases the overall performance) is higher for the thresholding algorithm in comparison with
the SVM algorithm it can be stated that the 2-pole Cole impedance modeling in combination
with thresholding has better performance than the PCA in combination with SVM.

6-3 Answer of the Third Research Question

Is EIS a technique that can be used in combination with a parameterization and
classification algorithm to replace or support biopsies in the GI tract?

During a biopsy, a small piece of tissue was taken from the lining of the GI tract for fur-
ther examination under a microscope. It would be helpful if, with the aid of EIS, the biopsy
could support in finding cancerous tissue, or even be replaced by a probe that can distinguish
cancerous and non-cancerous tissue. In this work, EIS did not result as a technique that
can be combined with a parameterization and classification algorithm to neither replace nor
support surgeons in taking biopsies in the GI tract. The algorithms that are created in this
work perform too poorly to consider them as reliable tools that can either support or replace
biopsies.

6-4 Future Work

For future work, creating a more extensive data set is advised. This would undoubtedly help
to increase the performance metrics as the algorithms will have more data available from
which they can learn.

Sampling the ileum and colon tissue together could be possible as this work clearly showed
the similarities between these two tissues. This work also showed the clear difference between
intestine tissue (ileum and colon) and esophagus tissue. Therefore, it is suggested to individ-
ually perform the measurements on the ileum, colon, or esophagus tissue or to combine the
ileum and colon tissue measurements.

Different probes should also be explored, as the current probe does not allow the user to
know the measurements’ depth precisely. This could lead to measuring the wrong tissue,
e.g., measuring a layer of fat tissue while the researcher wants to measure muscle tissue or
measuring deep non-cancerous tissue while the researcher intends to measure cancerous tissue.
Therefore, the first suggestion for a different probe would be to use a surface probe. These
probes do not contain spiky electrodes that stick into the tissue. Additionally, when EIS
would be used in vivo, it would also be better to use a surface electrode as a spiky electrode
could harm the patient.

Another future work reference could be to include the permittivity and conductivity data
instead of only focusing on impedance data. Different EC models work with that data, which
might be interesting. However, one must find a EC that again covers the α and β dispersion
region if the measurements are made in the same range chosen in this work. It might be
possible to place the Cole model in a series (similar to what is done in this work with the
Cole impedance model). This work shows in Appendix A the permittivity and conductivity
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data from the first ten tissue samples, and those figures indicate there is some differentiation
possible. If, in any future work, the authors would like to use PCA with SVM, it is advised to
concatenate the permittivity and conductivity data with the impedance data, as this creates
a more extensive data matrix with more data. If used correctly, the PCA will be able to
reduce the dimensionality while keeping the maximum amount of variance.
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Appendix A

Trial One Measurement

This appendix will cover all measurements conducted during the measurement trial at the
Erasmus MC in Rotterdam. This period started on 25-08-2022 and ended on 14-10-2022.
During this period, different tissues of different patients were measured. All tissues were
measured within 24 hours of resection. It can be observed that the ileum, colon, and esophagus
tissue are most similar to one another. This can be because these three tissues are all in the
gastrointestinal (GI) tract and therefore have similar cell characteristics [24]. Due to these
observations, this work focused on the ileum and colon tissue.

During the trial period, impedance, conductivity, and permittivity measurements were made
over 1 kHz to 7 MHz. Three measurements were made on the healthy part of the tissue,
and three measurements were made on the cancerous part of the tissue. However, for the
retroperitoneal soft tissue, this was not possible because the entire tissue was cancerous. After
measurements, the pathologist cut out the tissue on which the measurements were conducted
for further research by histological analysis (the golden standard). The measurement protocol
for the first trial can be found in Figure A-1.

In Table A-1, one can find an overview of the measurements conducted during the trial period.
Additionally, Table A-2 shows where the measurements were conducted and the results of the
histological analysis performed in the Erasmus MC.
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Pathologist
assesses incoming

sample

Pathologist tells
cancer from non-

cancer

Hewlett Packard 4192A LF HP
impedance

analyzer
Turned on (30 minutes)

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

A: Non-cancerous tissue
measurement is made in

LabVIEW.

Test measurement is made in
LabVIEW.

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

B: Cancerous tissue measurement
is made in LabVIEW.

Histological
assessment

Figure A-1: The measurement protocol for the first trial that was conducted at the Erasmus
MC.

# Date of
Measurement

Gender
(M/F)

Year of
Birth Tissue

1 25-08-2022 F 1971 Adrenal Gland
2 22-09-2022 F 1963 Retroperitoneal Soft Tissue
3 27-09-2022 F 1971 Breast
4 29-09-2022 M 1952 Liver & Colon
5 29-09-2022 F 1971 Ileum
6 30-09-2022 M 1942 Glute
7 30-09-2022 M 1951 Esophagus
8 11-10-2022 M 1951 Pancreas
9 11-10-2022 F 1947 Lung
10 14-10-2022 M 1947 Esophagus

Table A-1: The year of birth, gender, and date of the measurement per patient and the corre-
sponding tissue the measurements were conducted on during the trial measurement period in the
Erasmus MC.
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# Tissue Measurement
Location

Histological
Analysis

1 Adrenal
Gland

A, B: Tumor
C: Normal

A, B: Small cell
lung carcinoma
C: Normal and
small cell lung
carcinoma
(macroscopically
not visible)

2 Retroperitoneal
Soft Tissue A: Tumor A: Differentiated

Liposarcoma

3 Breast A: Normal
B: Tumor

A: Normal
mammaparenchym
B: Invasive carcinoma

4
I: Liver
II: Liver
III-B: Ileum, III-C: Colon

I-A: Normal liver
I-B: Tumor liver

II-A: Normal liver
II-B: Tumor liver

III-A: Tumor ileum
III-B: Normal ileum
III-C: Normal colon

I-A: Normal liver with
small part adenocarcinoma
I-B: Adenocarcinoom

II-A: Normaal lever
II-B: Adenocarcinoom

III-A: Adenocarcinoom
III-B: Normal ileum
III-C: Normal colon

5 Ileum A: Tumor
B: Normal ileum

A: Neuroendocrine
tumor grade 2
B: Normal ileum

6 Glute
A: Tumor
B: Normal fat
C: Normal muscle

A: Renal cell
carcinoma
B: Normal Fat
C: Normal Muscle

7 Esophagus A: Tumor
B: Normal Esophagus

A: Adenocarcinoma
and signet ring cell
carcinoma
B: Normal Esophagus

8 Pancreas D: Normal pancreas
E: Tumor

D: Normal pancreas
and adenocarcinoma
E: Normal pancreas

9 Lung B: Tumor
C: Normal lung

B: Adenocarcinoma
C: Normaal lung

10 Esophagus A: Normal Esophagus
B, C: Tumor Esophagus

A: Normal Esophagus
B: Dysplasia of the
squamous epithelium
C: Dysplasia into
squamous cell carcinoma

Table A-2: The measurement tissue and the measured placed with the results from the histo-
logical results per patient.
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(a) The real part and the imaginary part of the resistance for the measured adrenal gland.
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(b) The permittivity and conductivity for the measured adrenal gland.

Figure A-2: The measured impedance of the adrenal gland, which shows the real impedance
and negative imaginary part of the impedance, corresponding to capacitive reactance. And the
measured permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured adrenal gland.
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(b) The permittivity and conductivity for the measured adrenal gland.

Figure A-3: The measured impedance of the adrenal gland, which shows the real impedance
and negative imaginary part of the impedance, corresponding to capacitive reactance. And the
measured permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured breast.
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(b) The permittivity and conductivity for the measured breast.

Figure A-4: The measured impedance of the breast, which shows the real impedance and negative
imaginary part of the impedance, corresponding to capacitive reactance. And the measured
permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured liver I.
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(b) The permittivity and conductivity for the measured liver I.

Figure A-5: The measured impedance of the liver I, which shows the real impedance and negative
imaginary part of the impedance, corresponding to capacitive reactance. And the measured
permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured liver II.
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(b) The permittivity and conductivity for the measured liver II.

Figure A-6: The measured impedance of the liver II, which shows the real impedance and negative
imaginary part of the impedance, corresponding to capacitive reactance. And the measured
permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured Ileum I.
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(b) The permittivity and conductivity for the measured Ileum I.

Figure A-7: The measured impedance of the Ileum I, which shows the real impedance and neg-
ative imaginary part of the impedance, corresponding to capacitive reactance. And the measured
permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured Colon.
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(b) The permittivity and conductivity for the measured Colon.

Figure A-8: The measured impedance of the Colon, which shows the real impedance and negative
imaginary part of the impedance, corresponding to capacitive reactance. And the measured
permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured Ileum II.
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(b) The permittivity and conductivity for the measured Ileum II.

Figure A-9: The measured impedance of the Ileum II, which shows the real impedance and neg-
ative imaginary part of the impedance, corresponding to capacitive reactance. And the measured
permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured glute muscle.
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(b) The permittivity and conductivity for the measured glute muscle.

Figure A-10: The measured impedance of the glute musce, which shows the real impedance
and negative imaginary part of the impedance, corresponding to capacitive reactance. And the
measured permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured glute fat.
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(b) The permittivity and conductivity for the measured glute fat.

Figure A-11: The measured impedance of the glute fat, which shows the real impedance and
negative imaginary part of the impedance, corresponding to capacitive reactance. And the mea-
sured permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured Esophagus I.

10
3

10
4

10
5

10
6

10
7

Frequency (Hz)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

Conductivity and Permitivity of the Esophagus I

Esophagus I Healthy 1

Esophagus I Healthy 2

Esophagus I Healthy 3

Esophagus I Cancerous 1

Esophagus I Cancerous 2

Esophagus I Cancerous 3

10
3

10
4

10
5

10
6

10
7

Frequency (Hz)

-1

0

1

2

3

4

5

P
e

rm
it
iv

it
y
 (

F
/m

)

10
6

Esophagus I Healthy 1

Esophagus I Healthy 2

Esophagus I Healthy 3

Esophagus I Cancerous 1

Esophagus I Cancerous 2

Esophagus I Cancerous 3

(b) The permittivity and conductivity for the measured Esophagus I.

Figure A-12: The measured impedance of the Esophagus I, which shows the real impedance
and negative imaginary part of the impedance, corresponding to capacitive reactance. And the
measured permittivity and conductivity.
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(b) The permittivity and conductivity for the measured Pancreas.

Figure A-13: The measured impedance of the Pancreas, which shows the real impedance and
negative imaginary part of the impedance, corresponding to capacitive reactance. And the mea-
sured permittivity and conductivity.
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(a) The real part and the imaginary part of the resistance for the measured lung.
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(b) The permittivity and conductivity for the measured lung.

Figure A-14: The measured impedance of the lung, which shows the real impedance and negative
imaginary part of the impedance, corresponding to capacitive reactance. And the measured
permittivity and conductivity.
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(b) The permittivity and conductivity for the measured esophagus II.

Figure A-15: The measured impedance of the esophagus II, which shows the real impedance
and negative imaginary part of the impedance, corresponding to capacitive reactance. And the
measured permittivity and conductivity.
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Appendix B

Trial Two Measurement

This appendix will cover all measurements conducted during the second measurement trial
at the Erasmus MC in Rotterdam. This period started on 31-01-2023 and ended on 09-06-
2023. We focused on esophagus, ileum, and colon tissue during this period. All tissues were
measured within 24 hours of resection. It should be noted that, although we focused on these
three tissues, no ileum specimens were available during this period.

During the trial period, impedance, conductivity, and capacitance measurements were made
over 1 kHz to 7 MHz in 300 steps. We measured at least three places: A, B, and C. If we
had enough time, we would include a fourth place: D. Locations A and B would always be
non-cancerous tissue, whereas location C would always be cancerous tissue. Additionally,
histological assessment would always verify the tissue at locations A, B, and C. Due to time
and resource constraints, this was not done for location D. The measurement protocol for the
second trial can be found in Figure B-1.

In Table B-1, one can find an overview of the measurements conducted during the trial period.
Additionally, Table B-2 shows where the measurements were conducted and the results of the
histological analysis performed in the Erasmus MC.

# Date of
Measurement

Gender
(M/F)

Year of
Birth Tissue

1 31-01-2023 F 1979 Colon
2 28-03-2023 M 1960 Colon
3 09-06-2023 M 1943 Esophagus

Table B-1: The year of birth, gender, and date of the measurement per patient and the corre-
sponding tissue the measurements were conducted on during the second trial measurement period
in the Erasmus MC.
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Pathologist
assesses incoming

sample

Pathologist tells
cancer from non-

cancer

Hewlett Packard 4192A LF HP
impedance

analyzer
Turned on (30 minutes)

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

A: Non-cancerous tissue
measurement is made in

LabVIEW.

Test measurement is made in
LabVIEW.

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

C: Cancerous tissue measurement
is made in LabVIEW.

B: Non-cancerous tissue
measurement is made in

LabVIEW.

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

4-electrode probe is disinfected
with 96% alcohol, and rinsed with

distilled water

D: Non-cancerous tissue
measurement is made in

LabVIEW.

Histological
assessment

Figure B-1: The measurement protocol for the second trial that was conducted at the Erasmus
MC.
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# Tissue Measurement
Location

Histological
Analysis

1 Colon A, B: Normal
C: Tumor

A: Normal
B, C: Tumor

2 Colon A, B: Normal
C: Tumor

A, B: Normal
C: Normal

3 Esophagus A, B: Normal
C: Tumor

A, B: Normal
C: Normal

Table B-2: The measurement tissue and the measured placed with the results from the histo-
logical results per patient.

Figure B-2: Different measurement locations of the first patient of the second trial
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Figure B-3: Impedance Patient 1 trial 2 (Colon).
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Figure B-4: Different measurement locations of the second patient of the second trial
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Figure B-5: Impedance Patient 2 trail 2 (Colon).
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Figure B-6: Different measurement locations of the third patient of the second trial
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Figure B-7: Impedance Patient 3 trial 2 (Esophagus).
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