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SUMMARY & CONCLUSION 

As aircraft maintenance is transitioning towards data-

driven condition-based maintenance (CBM), its cost and 

performance objectives need to be re-evaluated: how are these 

objectives related under various CBM strategies?; which 

objectives are conflicting?; what are the trade-offs between the 

conflicting objectives?; what is the impact of this transition on 

aircraft maintenance? We propose a methodology based on 

discrete-event simulation to analyze CBM of aircraft from the 

perspective of multiple objectives. The simulation considers an 

aircraft operations model, systems of multiple, redundant 

aircraft components, stochastic degradation models for 

components, and specific CBM strategies. In particular, we 

analyze two CBM strategies for component replacement, which 

are based on sensor monitoring and remaining-useful-life 

prognostics. As objectives for these strategies, we consider the 

minimization of the number of component replacements, the 

number of unscheduled replacements, the number of 

degradation incidents, the delay caused by maintenance, and the 

mean number of flight cycles to replacements (MCTR). We 

identify the main conflicting objectives and generate Pareto 

fronts. We show non-trivial trade-offs between the 

performance-oriented objectives (the number of degradation 

incidents and the delay due to maintenance) and cost-oriented 

objectives (MCTR). In fact, the CBM strategy based on 

remaining-useful-life prognostics dominates the other 

strategies in the knee region of the Pareto fronts. This implies 

that the transition towards data-driven CBM strategies can 

reduce the cost while maintaining the performance. Moreover, 

the proposed methodology is readily applicable to analyze 

general aircraft systems and other maintenance strategies. 

1 INTRODUCTION 

With the increasing use of condition monitoring systems, 

the maintenance of aircraft is undergoing a paradigm shift 

where data analysis is central [1, 2]. Traditionally, aircraft 

maintenance tasks are executed at fixed time intervals. These 

strategies are referred to as time-based maintenance (TBM) [3]. 

Nowadays, TBM is gradually replaced by condition-based 

maintenance (CBM), where sensor data are used to specify 

when and which maintenance tasks to execute. An example of 

CBM is the case when a maintenance task is executed as soon 

as sensor data indicate degradations above accepted levels [4]. 

Advanced CBM analyzes sensor data to estimate the remaining-

useful-life (RUL) of components [4]. This estimated RUL is 

further used to schedule maintenance tasks, in anticipation of 

failures. 

Transitioning from TBM to CBM requires the 

consideration of multiple objectives. One main objective of 

CBM for aircraft is the reduction of maintenance costs [5, 6]. 

Additionally, aircraft maintenance aims to comply with aircraft 

operational regulations [3, 7], to limit the need for unscheduled 

maintenance tasks [8], to reduce aircraft delays due to 

maintenance [9], and to utilize the aircraft as much as possible 

[10]. Given these multiple objectives, it is of interest to 

understand how they are impacted by maintenance strategies, 

how they are related to each other, and what are the trade-offs 

between them. 

In this paper, a methodology based on discrete-event 

simulation is proposed to analyze the relation between multiple 

objectives of aircraft maintenance, and to identify the trade-offs 

between them. Specifically, a general aircraft maintenance 

model is proposed for which a discrete-event simulation is 

conducted. The aircraft maintenance model considers the 

operation of the aircraft, systems of multiple, redundant aircraft 

components, and a stochastic degradation model for aircraft 

components. With this framework, multiple objectives are 

analyzed for a sensor-based CBM, a RUL-based CBM, and, for 

comparison reasons, a traditional TBM strategy. Then, 

conflicting objectives are identified and Pareto fronts are 

obtained. The resulting Pareto fronts show that the CBM 

strategies are located in the attractive Pareto knee region where 

conflicting objectives are balanced.  

2 METHODOLOGY 

Multiple objectives of the maintenance of multi-

component aircraft systems are analyzed by means of a discrete 

event simulation. Below we introduce the aircraft maintenance 

model that is being simulated. This aircraft maintenance model 

is based on our study in [4]. 

2.1 Multi-Component Aircraft Maintenance Model 

We model the maintenance of multi-component aircraft 

systems considering the following events: aircraft operation 

(aircraft arrival and departure), degradation of components, 



maintenance tasks (component replacement, component 

inspection, and sensor monitoring), and degradation incidents 

when the components reach such a high level of degradation 

that the system becomes inoperable.  

The aircraft is operated based on a sequence of flight 

cycles, each cycle 𝑖 being defined by a departure and an arrival 

time (see Figure 1). The aircraft departs from the airport at time 

𝜏𝑖
dep

 and arrives at the arrival airport after a flight-time Δ𝜏𝑖,, 

where Δ𝜏𝑖 ∼ 𝒩(Δ𝜏̅̅ ̅
𝑖 , 𝜎𝑖

2). If an arrival time is 𝜏𝑖
arr = 𝜏𝑖

dep
+

Δ𝜏𝑖 , then the time interval between this arrival and the 

successive departure is referred to as ground-time. Maintenance 

tasks are performed during ground-time. If a task is not 

completed until the next departure time 𝜏𝑖+1
arr , the departure is 

delayed (see Figure 1). 

  

Figure 1. Flight cycle, where maintenance tasks can be 

executed during ground-time. 

The aircraft consists of components that degrade during 

flight-time. Let the degradation level of a component at time 𝑡 

be 𝑍(𝑡). A new component without degradation has 𝑍(𝑡) = 0. 

We say that the component is inoperable, considering a safety 

margin of degradation, if 

𝑍(𝑡) ≥ 1.   (1) 

We consider components that degrade monotonically and 

gradually over time, as is the case of bearings that wear out over 

time or brake pads that erode over time. For such components, 

a Gamma process is shown to model well the degradation [11]. 

Similarly, we assume that the degradation increment resulting 

from flight cycle-𝑖 follows a Gamma distribution [11]: 

𝑍(𝜏𝑖
arr) − 𝑍(𝜏𝑖

dep
) ~ Gamma(𝛼, 𝛽)  (2) 

where, 𝛼 is the shape parameter, and 𝛽 is the scale parameter of 

the Gamma process. It is assumed that the degradation is 

negligible during ground-time, i.e.,  

𝑍(𝜏𝑖
dep

) − 𝑍(𝜏𝑖
arr) = 0.    (3) 

Following equations (2) and (3), 𝑍(𝑡)  becomes a piecewise 

Gamma process.  

Over time, the components undergo maintenance. As for 

the maintenance tasks, we consider component replacement, 

component inspection, and sensor monitoring.  

Component replacement: When a component is replaced 

with a new one at time 𝑡, the degradation process is reset to be 

𝑍(𝑡) = 0 . The time Δ𝑡Rep  spent for the replacement of this 

component is modeled as an exponential time, i.e., 

Δ𝑡Rep~Exp(𝛿R̅ep). 

Component inspection: When a component is inspected, 

the degradation level is known with an error. Let 𝑍̂(𝑡) be the 

degradation level obtained following an inspection. Then,  

𝑍̂(𝑡) = 𝑍(𝑡) + 𝜖Ins, 

where 𝜖Ins~N(0, 𝜎Ins
2 ). The inspection time Δ𝑡Ins is assumed to 

follow an exponential distribution, i.e., Δ𝑡Ins~Exp(𝛿I̅ns).  

Sensor monitoring: For modern aircraft equipped with 

condition-monitoring systems, sensors are used to 

automatically monitor the degradation level of the component. 

Let 𝑍(𝑡) be the degradation level of the component obtained 

from sensor monitoring. Then 

𝑍(𝑡) = 𝑍(𝑡) + 𝜖Sen, 

where 𝜖Sen~𝒩(0, 𝜎Sen
2 ). We assume that the sensor error is 

larger than the inspection error, i.e., 𝜎Ins
2 ≤ 𝜎Sen

2 . Compared to 

other tasks that require an execution time, we assume that 

sensor monitoring is instantaneous, i.e., Δ𝑡Sen = 0.  

Figure 2 shows an example of the degradation of a 

component following equations (2) and (3). The gray regions 

represent flight-times, while the hatched regions represent 

ground-times. 𝑍(𝑡)  jumps after each flight-time following 

equation (2). During the 5th ground time, the component is 

replaced, and after time Δ𝑡Rep = 2.5, the degradation level of 

this component is reset to zero. In this example, this component 

is replaced before its degradation level exceeds a level of 

inoperability 𝜂 = 1. 

For redundancy, an aircraft system often consists of 

multiple components. Here, we say that a multi-component 

system has redundancy   𝑛C𝑚  if the system consists of 𝑛 

components and needs to have at least 𝑚 operable components, 

( 0 < 𝑚 ≤ 𝑛) . As soon as more than (𝑛 − 𝑚)  components 

become inoperable in a system with redundancy 𝑛 C𝑚, we say 

that a degradation incident occurs. The main objective of 

aircraft maintenance is to avoid degradation incidents, and to 

keep the aircraft systems operable. 

We consider two aircraft systems, each of which consists 

of 4 components with redundancy  4 C3 , i.e., a total of 8 

components. We assume that the components follow the same 

Gamma process with parameters 𝛼  and 𝛽  as in equation (2), 

and that the degradation of one component is independent of the 

degradation of the other components. 

 

Figure 2. Example of component degradation over time. 

2.2 Aircraft Maintenance Strategies and Parameters 

Maintenance strategies determine the execution of 

maintenance tasks, i.e., which types of tasks should be 

executed, and when should these tasks be executed. In this 

study, we consider a TBM strategy named fixed-interval 

inspection (FII) [12], and two CBM strategies, named sensor-

based replacement (SBR), and RUL-based replacement (RBR). 

These strategies are discussed in detail in [4]. 

1) The fixed-interval inspection (FII) strategy is a TBM 



strategy that schedules component replacements based on 

periodic inspections performed by mechanics, without 

sensor monitoring [12]. Under the FII strategy, all 

components are inspected every 𝑑Ins flight cycles. If upon 

inspection it is observed that the degradation of a 

component exceeds a threshold (𝑍̂(𝑡) ≥ 𝜂Rep ), then the 

replacement of this component is scheduled within 𝑑Rep 

flight cycles. The FII strategy has been widely 

implemented in traditional aircraft maintenance [4, 12]. 

2) The Sensor-based replacement (SBR) strategy is a CBM 

strategy that utilizes sensor monitoring, instead of 

inspections performed by mechanics [4]. Under the SBR 

strategy, sensors measure the degradation level 𝑍(𝑡)  of 

components and report this after each flight-time. If 

𝑍(𝑡) ≥ 𝜂Rep, where 𝜂Rep is a degradation threshold, then 

the component is replaced within 𝑑Rep  flight cycles. 

Unlike the component inspections in the FII strategy, 

sensor monitoring does not cause any delays.  

3) The RUL-based replacement (RBR) strategy is a CBM 

strategy which uses the sensor data indicating the level of 

degradation to estimate the remaining-useful-life of the 

component, 𝑅𝑈𝐿[4]. Here, 𝑅𝑈𝐿 is estimated based on the 

last sensor monitoring data {𝑍(𝑡′) for 0 < 𝑡′ ≤ 𝑇}, where 

𝑇  is the current time. We consider the following linear 

model to estimate the degradation level of a component at 

time 𝑇 + 𝑡: 

 𝑍(𝑇 + 𝑡) = 𝑐0 + 𝑐1𝑡. 

The coefficients 𝑐0 and 𝑐1 are estimated after every flight 

cycle based on the most recent sensor data using the 

ordinary least square method. Then, after each flight cycle 

we predict 𝑅𝑈𝐿 as follows [4]: 

𝑅𝑈𝐿 = min{𝑡 |𝑐0 + 𝑐1𝑡 ≥ 1}  (4) 

Lastly, if 𝑅𝑈𝐿 is below a threshold 𝑅𝑈𝐿min, a component 

replacement is scheduled within 𝑑Rep flight cycles.  

Each of the three maintenance strategies has its own 

parameters. For instance, the FII strategy has the parameters 

𝑑Ins, and 𝜂Rep; the SBR strategy has the parameter 𝜂Rep; and 

the RBR strategy has the parameter 𝑅𝑈𝐿min. In this paper, we 

consider the parameter values given in Table 1. Each parameter 

has its range, and its value is selected from evenly distributed 𝑙-
levels following full factorial design (FFD) [13]. For example, 

for the values of 𝑅𝑈𝐿min , we consider the range 20 ≤
𝑅𝑈𝐿min ≤ 60 with steps of 1, which leads to a 41-level FFD.  

Table 1 – Maintenance strategies and their parameters  

Strategy Parameter Range Step Level 

FII 
𝑑Ins [20, 80] 10 7 

𝜂Rep [0.95, 1.00] 0.002 26 

SBR 𝜂Rep [0.95, 1.00] 0.001 51 

RBR 𝑅𝑈𝐿min [20, 60] 1 41 

2.3 Multiple Objectives of Aircraft Maintenance 

In general, aircraft maintenance has multiple objectives, 

i.e., keeping the aircraft systems operational while minimizing 

maintenance costs and maximizing the quality of service. We 

introduce the following objectives [4, 5, 8, 9]. 

 𝑁Inc – The number of degradation incidents. This directly 

represents the performance of a maintenance strategy from 

the perspective of keeping the aircraft systems operable 

[4]. A low 𝑁Inc  implies that it is less likely to have 

inoperable systems considering 𝑛 C𝑚 redundancy. 

 𝑁Rep – The number of component replacements. Since 

maintenance tasks require new components, manpower, 

and other resources, the number of component 

replacements gives a direct indication of the maintenance 

cost [5]. A small 𝑁Rep is preferred as long as the aircraft 

systems are kept operational. 

 𝑁Unsch  – The number of unscheduled component 

replacements. Component replacements are scheduled in 

advance (before 𝑑Rep flight cycles) in order to have time to 

prepare the necessary resources. When a component 

replacement is necessary but there is not enough 

preparation time because the failure was unexpected, we 

call this an unscheduled component replacement. Because 

unscheduled replacements involve higher costs and delays 

[8], it is desired to minimize 𝑁Unsch. 

 𝑇D – Aircraft delay caused by maintenance tasks. Among 

many causes of aircraft delay, maintenance is the second 

most likely cause of delays longer than one hour [9]. Thus, 

it is of interest to complete the maintenance tasks before a 

next departure time 𝜏𝑖+1
dep

. This is achieved by scheduling 

maintenance tasks only when enough ground-time is 

available. 

 MCTR – The mean number of flight cycles to component 

replacement. This measures the exploitation time of the 

components. A high MCTR implies that the maintenance 

strategy utilizes the component efficiently and does not 

waste the useful life of the component [4]. Thus, it is 

desired that MCTR is maximized. 

The goal is to minimize (or maximize) all these objectives by 

selecting a maintenance strategy with proper parameter values. 

However, some objectives may conflict with others. Therefore, 

their relation and trade-offs are analyzed next. 

2.4 Discrete Event Simulation of Aircraft Maintenance  

Based on the aircraft maintenance model in Section 2.1, we 

conduct a discrete event simulation of 10 years of aircraft 

operations, to estimate the objective values of different 

maintenance strategies and parameters. A maintenance strategy 

and specific parameter values are referred to as a case. 

Specifically, a case is defined as a tuple of (strategy, 

parameter), e.g., (the RBR strategy, 𝑅𝑈𝐿min = 30 ). 

Considering the ranges and levels of the parameters in Table 1, 

we simulate 7 × 26 cases for the FII strategy, 51 cases for the 

SBR strategy, and 41 cases for the RBR strategy, which results 

in a total of 274 cases. For each case, we run the discrete event 

simulation 104 times and estimate the objectives using Monte 

Carlo methods. 

3 SIMULATION RESULTS: MULTI-OBJECTIVE ANALYSIS 

Using simulation, the objective values of the 274 cases are 

obtained. Again, each case corresponds to a maintenance 



strategy and its specific parameter values. Below we present the 

results obtained. 

3.1 Relation Between Multiple Objectives 

Figure 3 shows (5
2
) pairs of objective. Circle, triangle, and 

square markers denote the objective values of cases with the 

FII, SBR, and RBR strategies, respectively. Except for 

𝑀𝐶𝑇𝑅, all objectives are considered for minimization. 

Each plot in Figure 3 shows the relation of a pair of 

objectives, where some pairs of objectives are conflicting (plots 

(2) – (7)), while other pairs of objectives are improved together 

(plot (1), plots (8)-(10)). Some relations (whether conflicting or 

not) can be expected before simulations. For example, it is 

expected that as 𝑀𝐶𝑇𝑅 increases, 𝑁Rep decreases (see plot (1)). 

However, since their trend and trade-off are not trivial, the 

simulation results can be analyzed further to obtain an in-depth 

understanding of the characteristics of these objectives and the 

maintenance strategies considered. For example, in plot (1), the 

relation between 𝑀𝐶𝑇𝑅 and 𝑁Rep is neither linear nor inversely 

proportional. Rather, when 𝑁Rep = 2.4, 𝑀𝐶𝑇𝑅 suddenly drops 

from 1200 to 1250. This is because 𝑀𝐶𝑇𝑅 can be significantly 

different depending on the moment when components are 

replaced, even if the same number of component replacements 

are performed. 

More interesting relations between conflicting objectives 

are shown in Figure 3, plots (2) – (7). For example, in plot (6) 

it is shown that fewer degradation incidents occur (low 𝑁Inc) 

when components are replaced often (high 𝑁Rep), i.e., there is a 

trade-off between 𝑁Inc  and 𝑁Rep . However, the trade-off is 

unclear under the SBR strategy where there are nearly zero 

degradation incidents but different numbers of replacements. 

This shows that in some cases of the SBR strategy, the 

components are replaced unnecessarily often. A similar trade-

off is shown between 𝑁Unsch and 𝑁Repin plot (5). The similarity 

between plots (5) and (6) is because 𝑁Inc  and 𝑁Unsch  are 

positively correlated, as shown in plot (8). 

Table 2 – The Pearson correlation coefficient of objectives for 

274 cases of maintenance strategies and parameters. 

 Group-1 Group-2 

 MCTR 𝑁Rep 𝑁Unsch 𝑁Inc 𝑇D 

MCTR ̶ 0.69 -0.77 -0.76 -0.80 

𝑁Rep 0.69 ̶ -0.40 -0.47 -0.50 

𝑁Unsch -0.77 -0.40 ̶ 0.90 0.73 

𝑁Inc -0.76 -0.47 0.90 ̶ 0.70 

𝑇D -0.80 -0.50 0.73 0.70 ̶ 

The analysis based on Figure 3 is reinforced by the analysis 

of the correlation between the considered objectives using the 

Pearson correlation coefficient (see Table 2). The Pearson 

correlation coefficient quantifies the linear correlation between 

two objectives. A positive coefficient between two objectives 

implies that they are likely to be improved together, while a 

negative coefficient implies that they conflict with each other. 

For example, the Pearson coefficient between 𝑇D and 𝑀𝐶𝑇𝑅 is 

-0.80, which represents the trade-off shown in plot (4) of Figure 

3.  

 

Figure 3. Pairwise objectives of the aircraft maintenance for 

the FII, SBR and RBR strategies. 

Based on the Pearson correlation coefficient values, we 

categorize the objectives into two groups such that the objective 

pairs within the same group have positive coefficients (see 

Table 2). Group-1 is {MCTR, 𝑁Rep}, and Group-2 is {𝑁Unsch, 

𝑁Inc, 𝑇D}.  

MCTR and 𝑁Rep  in Group-1 are positively correlated as 

both of them measure the exploitation time of a component. 

Since the exploitation of components is directly related to the 

cost of maintenance, these objectives imply an economic 

benefit of the maintenance. On the other hand, 𝑁Unsch , 𝑁Inc , 

and 𝑇D  in Group-2 measure the number of undesired events, 

i.e., unscheduled maintenance, degradation incidents, and 



aircraft delay due to maintenance. In other words, these 

objectives represent the performance of the maintenance. The 

conflict between Group-1 (Cost) and Group-2 (Performance) 

shows the general trade-off between the performance and the 

cost of aircraft maintenance. 

Although aircraft maintenance has various objectives, it is 

useful to analyze the maintenance strategies based on a small 

number of representative objectives [14]. To consider both 

performance and economic aspects, we analyze the aircraft 

maintenance based on two objectives, one chosen from Group-

1 and one from Group-2. In particular, we chose 𝑀𝐶𝑇𝑅 from 

Group 1 since it better represents the economic value because 

the variance of 𝑁Rep is very small compared to that of 𝑀𝐶𝑇𝑅 

(see the scales of 𝑁Rep and 𝑀𝐶𝑇𝑅 in plot (1) of Figure 3). For 

the objective representing performance (Group 2), 𝑁Inc  or 𝑇𝐷 

are chosen. 𝑁Unsch  is not chosen because it is strongly 

correlated with 𝑀𝐶𝑇𝑅  (coefficient 0.9 in Table 2), and 

therefore 𝑁Unsch is improved together with 𝑀𝐶𝑇𝑅. 

3.2 Trade-off bettween Aircraft Maintenance Objectives 

Following the analysis in Section 3.1, in this subsection we 

analyze the trade-offs between Group 1 objective 𝑀𝐶𝑇𝑅 and 

Group 2 objectives 𝑁Inc and 𝑇𝐷. Pareto fronts are generated for 

{𝑀𝐶𝑇𝑅, 𝑁Inc} and { 𝑀𝐶𝑇𝑅, 𝑇𝐷} by collecting non-dominated 

cases from the total 274 cases (the FII, SBR, or RBR strategy 

with their parameter values, see Table 1). 

Figure 4 shows the Pareto front for the objectives 𝑀𝐶𝑇𝑅 

and 𝑁Inc. Since these two objectives are conflicting, no single 

solution achieves a maximum 𝑀𝐶𝑇𝑅  and a minimum 𝑁Inc 

simultaneously. Rather, we should trade-off 𝑀𝐶𝑇𝑅  for 𝑁Inc . 

For instance, the number of degradation incidents can be 

minimized (𝑁Inc ≤ 10−4) if we accept a small 𝑀𝐶𝑇𝑅 ≤ 1235. 

Or, if we want to extend 𝑀𝐶𝑇𝑅 ≥ 1250, then 𝑁Inc is increased 

to 0.02. 

 

Figure 4. Pareto front considering MCTR and 𝑁𝐼𝑛𝑐. 

The Pareto front in Figure 4 also provides insight into the 

maintenance strategies considered. In all cases, the SBR 

strategy is dominated by the FII or RBR strategies, thus not 

shown in the Pareto front in Figure 4. This means that the RBR 

or FII strategies are preferred when considering 𝑀𝐶𝑇𝑅  and 

𝑁Inc . More interestingly, the cases considering the RBR 

strategy are located in the middle, or in the extruded region of 

the Pareto front, which is called the knee region [15]. The non-

dominated solutions in the knee region are generally preferred 

because they provide a balanced solution, i.e., both objectives 

are moderately optimized. Outside of the knee region, an 

objective is significantly deteriorated to achieve a slight 

improvement in the other objective, which is less preferred for 

aircraft maintenance [15, 16]. By comparing plot (3) of Figure 

3 and Figure 4, it can be seen that the FII strategy cases in this 

knee region are dominated by the RBR strategy cases. In Figure 

4, the non-dominated FII strategy cases cause either a large 

number of degradation incidents 𝑁Inc ≥ 0.04  or a low 

𝑀𝐶𝑇𝑅 ≤ 1240 , but the non-dominated RBR strategy cases 

achieve a small 𝑁Inc ≤ 0.04 and a moderate 𝑀𝐶𝑇𝑅 ≥ 1240. 

This indicates that CBM using RUL prognostics (the 

RBRstrategy) is beneficial when we aim to improve both 

𝑀𝐶𝑇𝑅 and 𝑁Inc. 

Figure 5 shows the Pareto front between 𝑀𝐶𝑇𝑅  and the 

delay 𝑇D. Unlike the Pareto front in Figure 4, the SBR strategy 

is visible in the lower-left corner of the Pareto front in Figure 5. 

These non-dominated SBR strategy cases have a low delay 

(𝑇D ≤ 0.1) but they are not cost-effective (𝑀𝐶𝑇𝑅 ≤ 1230). 

The RBR strategy, on the other hand, is located in the middle 

of the Pareto front, where 0.105 ≤ 𝑇D ≤ 0.115  and 1230 ≤
𝑀𝐶𝑇𝑅 ≤ 1250 . In this region, many FII strategy cases are 

dominated by the RBR strategy cases (compare plot (4) of 

Figure 3 and Figure 6). Thus, when both objectives are 

considered with similar importance (knee region), the 

introduction of the RBR strategy improves both objectives. 

 

Figure 5. Pareto front considering MCTR and 𝑇𝐷. 

Overall, these results show that CBM using RUL 

prognostics (the RBR strategy) has a benefit in improving both 

the performance ( 𝑁Inc , 𝑇D ) and cost ( 𝑀𝐶𝑇𝑅 ) of aircraft 

maintenance. 

4 CONCLUSION 

We have conducted a multi-objective analysis of aircraft 

condition-based maintenance strategies, using discrete event 

simulation. Our aircraft maintenance model covers the general 

features of the maintenance of multi-component aircraft 

systems, such as aircraft operations, stochastic degradation of 

aircraft components, redundancy of aircraft systems, and 

maintenance strategies. 

We have considered as objectives the minimization of the 

mean number of flight cycles to component replacement 



(𝑀𝐶𝑇𝑅), the number of replacements (𝑁Rep), the number of 

degradation incidents ( 𝑁Inc ), the number of unscheduled 

replacements (𝑁Unsch), and the delay due to maintenance (𝑇D). 

Based on their correlation and trade-off, we chose two pairs of 

conflicting objectives to represent the performance and cost of 

aircraft maintenance. We constructed Pareto fronts between 

these conflicting objectives under condition-based maintenance 

strategies (the SBR and RBR strategies), and a traditional time-

based maintenance strategy (the FII strategy). The results show 

that the advanced CBM strategy (the RBR strategy) dominates 

the other strategies in the knee region of the Pareto fronts. This 

suggests that the introduction of CBM in aircraft maintenance 

achieves a balance between the performance and the cost of 

maintenance. 
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