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SUMMARY & CONCLUSION

As aircraft maintenance is transitioning towards data-
driven condition-based maintenance (CBM), its cost and
performance objectives need to be re-evaluated: how are these
objectives related under various CBM strategies?; which
objectives are conflicting?; what are the trade-offs between the
conflicting objectives?; what is the impact of this transition on
aircraft maintenance? We propose a methodology based on
discrete-event simulation to analyze CBM of aircraft from the
perspective of multiple objectives. The simulation considers an
aircraft operations model, systems of multiple, redundant
aircraft components, stochastic degradation models for
components, and specific CBM strategies. In particular, we
analyze two CBM strategies for component replacement, which
are based on sensor monitoring and remaining-useful-life
prognostics. As objectives for these strategies, we consider the
minimization of the number of component replacements, the
number of unscheduled replacements, the number of
degradation incidents, the delay caused by maintenance, and the
mean number of flight cycles to replacements (MCTR). We
identify the main conflicting objectives and generate Pareto
fronts. We show non-trivial trade-offs between the
performance-oriented objectives (the number of degradation
incidents and the delay due to maintenance) and cost-oriented
objectives (MCTR). In fact, the CBM strategy based on
remaining-useful-life  prognostics dominates the other
strategies in the knee region of the Pareto fronts. This implies
that the transition towards data-driven CBM strategies can
reduce the cost while maintaining the performance. Moreover,
the proposed methodology is readily applicable to analyze
general aircraft systems and other maintenance strategies.

1 INTRODUCTION

With the increasing use of condition monitoring systems,
the maintenance of aircraft is undergoing a paradigm shift
where data analysis is central [1, 2]. Traditionally, aircraft
maintenance tasks are executed at fixed time intervals. These
strategies are referred to as time-based maintenance (TBM) [3].
Nowadays, TBM is gradually replaced by condition-based
maintenance (CBM), where sensor data are used to specify
when and which maintenance tasks to execute. An example of
CBM is the case when a maintenance task is executed as soon

as sensor data indicate degradations above accepted levels [4].
Advanced CBM analyzes sensor data to estimate the remaining-
useful-life (RUL) of components [4]. This estimated RUL is
further used to schedule maintenance tasks, in anticipation of
failures.

Transitioning from TBM to CBM requires the
consideration of multiple objectives. One main objective of
CBM for aircraft is the reduction of maintenance costs [5, 6].
Additionally, aircraft maintenance aims to comply with aircraft
operational regulations [3, 7], to limit the need for unscheduled
maintenance tasks [8], to reduce aircraft delays due to
maintenance [9], and to utilize the aircraft as much as possible
[10]. Given these multiple objectives, it is of interest to
understand how they are impacted by maintenance strategies,
how they are related to each other, and what are the trade-offs
between them.

In this paper, a methodology based on discrete-event
simulation is proposed to analyze the relation between multiple
objectives of aircraft maintenance, and to identify the trade-offs
between them. Specifically, a general aircraft maintenance
model is proposed for which a discrete-event simulation is
conducted. The aircraft maintenance model considers the
operation of the aircraft, systems of multiple, redundant aircraft
components, and a stochastic degradation model for aircraft
components. With this framework, multiple objectives are
analyzed for a sensor-based CBM, a RUL-based CBM, and, for
comparison reasons, a traditional TBM strategy. Then,
conflicting objectives are identified and Pareto fronts are
obtained. The resulting Pareto fronts show that the CBM
strategies are located in the attractive Pareto knee region where
conflicting objectives are balanced.

2 METHODOLOGY

Multiple objectives of the maintenance of multi-
component aircraft systems are analyzed by means of a discrete
event simulation. Below we introduce the aircraft maintenance
model that is being simulated. This aircraft maintenance model
is based on our study in [4].

2.1 Multi-Component Aircraft Maintenance Model

We model the maintenance of multi-component aircraft
systems considering the following events: aircraft operation
(aircraft arrival and departure), degradation of components,



maintenance tasks (component replacement, component
inspection, and sensor monitoring), and degradation incidents
when the components reach such a high level of degradation
that the system becomes inoperable.

The aircraft is operated based on a sequence of flight
cycles, each cycle i being defined by a departure and an arrival
time (see Figure 1). The aircraft departs from the airport at time
Tfep and arrives at the arrival airport after a flight-time Az, ,
where At; ~ NV (At;, 02). If an arrival time is 72" = 70 +
At;, then the time interval between this arrival and the
successive departure is referred to as ground-time. Maintenance
tasks are performed during ground-time. If a task is not
completed until the next departure time ¢, the departure is
delayed (see Figure 1).

Flight cycle i
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P uusassanssasnnsnnnns »>
r? ep AT, Tarr rl.d o
Departure Arrival Departure

Figure 1. Flight cycle, where maintenance tasks can be
executed during ground-time.

The aircraft consists of components that degrade during
flight-time. Let the degradation level of a component at time ¢t
be Z(t). A new component without degradation has Z(t) = 0.
We say that the component is inoperable, considering a safety
margin of degradation, if

Z(t) = 1. 1)

We consider components that degrade monotonically and
gradually over time, as is the case of bearings that wear out over
time or brake pads that erode over time. For such components,
a Gamma process is shown to model well the degradation [11].
Similarly, we assume that the degradation increment resulting
from flight cycle-i follows a Gamma distribution [11]:

Z(td™) — Z(Tfep) ~ Gamma(a, ) )
where, « is the shape parameter, and S is the scale parameter of
the Gamma process. It is assumed that the degradation is
negligible during ground-time, i.e.,

Z(2P) - Z(z¥) = 0. 3)
Following equations (2) and (3), Z(t) becomes a piecewise
Gamma process.

Over time, the components undergo maintenance. As for
the maintenance tasks, we consider component replacement,
component inspection, and sensor monitoring.

Component replacement: When a component is replaced
with a new one at time t, the degradation process is reset to be
Z(t) = 0. The time Atge, spent for the replacement of this
component is modeled as an exponential time, i.e.,
AtRep'\’Exp(é‘Rep)-

Component inspection: When a component is inspected,
the degradation level is known with an error. Let Z(t) be the
degradation level obtained following an inspection. Then,

2(t) = Z(t) + €ps,
where €;,s~N(0, o). The inspection time At is assumed to
follow an exponential distribution, i.e., At;,s~EXp(Sins)-

Sensor monitoring: For modern aircraft equipped with
condition-monitoring  systems, sensors are used to
automatically monitor the degradation level of the component.
Let Z(t) be the degradation level of the component obtained
from sensor monitoring. Then

Z(t) =Z(t) + €sen;
where egen~N (0, 04,,,). We assume that the sensor error is
larger than the inspection error, i.e., o5 < 0., Compared to
other tasks that require an execution time, we assume that
sensor monitoring is instantaneous, i.e., Atge, = 0.

Figure 2 shows an example of the degradation of a
component following equations (2) and (3). The gray regions
represent flight-times, while the hatched regions represent
ground-times. Z(t) jumps after each flight-time following
equation (2). During the 5th ground time, the component is
replaced, and after time Atge, = 2.5, the degradation level of
this component is reset to zero. In this example, this component
is replaced before its degradation level exceeds a level of
inoperability n = 1.

For redundancy, an aircraft system often consists of
multiple components. Here, we say that a multi-component
system has redundancy ,C,, if the system consists of n
components and needs to have at least m operable components,
(0 <m < n). As soon as more than (n —m) components
become inoperable in a system with redundancy ,, C,,, we say
that a degradation incident occurs. The main objective of
aircraft maintenance is to avoid degradation incidents, and to
keep the aircraft systems operable.

We consider two aircraft systems, each of which consists
of 4 components with redundancy , C5, i.e., a total of 8
components. We assume that the components follow the same
Gamma process with parameters ¢ and 8 as in equation (2),
and that the degradation of one component is independent of the
degradation of the other components.
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Figure 2. Example of component degradation over time.

2.2 Aircraft Maintenance Strategies and Parameters

Maintenance strategies determine the execution of
maintenance tasks, i.e., which types of tasks should be
executed, and when should these tasks be executed. In this
study, we consider a TBM strategy named fixed-interval
inspection (FII) [12], and two CBM strategies, named sensor-
based replacement (SBR), and RUL-based replacement (RBR).
These strategies are discussed in detail in [4].

1) The fixed-interval inspection (FIl) strategy is a TBM



strategy that schedules component replacements based on
periodic inspections performed by mechanics, without
sensor monitoring [12]. Under the FII strategy, all
components are inspected every dy, flight cycles. If upon
inspection it is observed that the degradation of a
component exceeds a threshold (Z(t) = ngep), then the
replacement of this component is scheduled within dge,,
flight cycles. The FIlI strategy has been widely
implemented in traditional aircraft maintenance [4, 12].

2) The Sensor-based replacement (SBR) strategy is a CBM
strategy that utilizes sensor monitoring, instead of
inspections performed by mechanics [4]. Under the SBR
strategy, sensors measure the degradation level Z(t) of
components and report this after each flight-time. If
Z(t) = Nrep, Where nge, is a degradation threshold, then
the component is replaced within dge, flight cycles.
Unlike the component inspections in the FII strategy,
sensor monitoring does not cause any delays.

3) The RUL-based replacement (RBR) strategy is a CBM
strategy which uses the sensor data indicating the level of
degradation to estimate the remaining-useful-life of the
component, RUL[4]. Here, RUL is estimated based on the
last sensor monitoring data {Z(t") for 0 < t’ < T}, where
T is the current time. We consider the following linear
model to estimate the degradation level of a component at
time T + t:

Z(T +t) = ¢y + cyt.

The coefficients ¢, and ¢, are estimated after every flight
cycle based on the most recent sensor data using the
ordinary least square method. Then, after each flight cycle
we predict RUL as follows [4]:

RUL = min{t |cy + c;t = 1} (@)
Lastly, if RUL is below a threshold RUL ,;,, @ cOmponent
replacement is scheduled within dge,, flight cycles.

Each of the three maintenance strategies has its own

parameters. For instance, the FlI strategy has the parameters

dins, and Ngep; the SBR strategy has the parameter ng.p; and
the RBR strategy has the parameter RUL,;,. In this paper, we
consider the parameter values given in Table 1. Each parameter
has its range, and its value is selected from evenly distributed [-
levels following full factorial design (FFD) [13]. For example,
for the values of RUL.;,, we consider the range 20 <
RULmin < 60 with steps of 1, which leads to a 41-level FFD.

Table 1 — Maintenance strategies and their parameters

Strategy | Parameter | Range Step Level
= Ains [20, 80] 10 7
"IRep [0.95,1.00] | 0.002 | 26
SBR MRep [0.95,1.00] | 0.001 |51
RBR RULmin | [20, 60] 1 41

2.3 Multiple Objectives of Aircraft Maintenance

In general, aircraft maintenance has multiple objectives,
i.e., keeping the aircraft systems operational while minimizing
maintenance costs and maximizing the quality of service. We

introduce the following objectives [4, 5, 8, 9].

e N, — The number of degradation incidents. This directly
represents the performance of a maintenance strategy from
the perspective of keeping the aircraft systems operable
[4]. A low Ny, implies that it is less likely to have
inoperable systems considering ,, C,,, redundancy.

®  Ngep— The number of component replacements. Since
maintenance tasks require new components, manpower,
and other resources, the number of component
replacements gives a direct indication of the maintenance
cost [5]. A small N, is preferred as long as the aircraft
systems are kept operational.

®  Nynsch The number of unscheduled component
replacements. Component replacements are scheduled in
advance (before dge, flight cycles) in order to have time to
prepare the necessary resources. When a component
replacement is necessary but there is not enough
preparation time because the failure was unexpected, we
call this an unscheduled component replacement. Because
unscheduled replacements involve higher costs and delays
[8], it is desired to minimize Nypsch-

e Ty — Aircraft delay caused by maintenance tasks. Among
many causes of aircraft delay, maintenance is the second
most likely cause of delays longer than one hour [9]. Thus,
it is of interest to complete the maintenance tasks before a

next departure time ridff. This is achieved by scheduling
maintenance tasks only when enough ground-time is
available.

e MCTR — The mean number of flight cycles to component
replacement. This measures the exploitation time of the
components. A high MCTR implies that the maintenance
strategy utilizes the component efficiently and does not
waste the useful life of the component [4]. Thus, it is
desired that MCTR is maximized.

The goal is to minimize (or maximize) all these objectives by

selecting a maintenance strategy with proper parameter values.

However, some objectives may conflict with others. Therefore,

their relation and trade-offs are analyzed next.

2.4 Discrete Event Simulation of Aircraft Maintenance

Based on the aircraft maintenance model in Section 2.1, we
conduct a discrete event simulation of 10 years of aircraft
operations, to estimate the objective values of different
maintenance strategies and parameters. A maintenance strategy
and specific parameter values are referred to as a case.
Specifically, a case is defined as a tuple of (strategy,
parameter), e.g., (the RBR strategy, RULi, = 30 ).
Considering the ranges and levels of the parameters in Table 1,
we simulate 7 x 26 cases for the FlI strategy, 51 cases for the
SBR strategy, and 41 cases for the RBR strategy, which results
in a total of 274 cases. For each case, we run the discrete event
simulation 10* times and estimate the objectives using Monte
Carlo methods.

3 SIMULATION RESULTS: MULTI-OBJECTIVE ANALYSIS

Using simulation, the objective values of the 274 cases are
obtained. Again, each case corresponds to a maintenance



strategy and its specific parameter values. Below we present the
results obtained.

3.1 Relation Between Multiple Objectives

Figure 3 shows (3) pairs of objective. Circle, triangle, and
square markers denote the objective values of cases with the
FIl, SBR, and RBR strategies, respectively. Except for
MCTR, all objectives are considered for minimization.

Each plot in Figure 3 shows the relation of a pair of
objectives, where some pairs of objectives are conflicting (plots
(2) — (7)), while other pairs of objectives are improved together
(plot (1), plots (8)-(10)). Some relations (whether conflicting or
not) can be expected before simulations. For example, it is
expected thatas MCTR increases, Ny, decreases (see plot (1)).
However, since their trend and trade-off are not trivial, the
simulation results can be analyzed further to obtain an in-depth
understanding of the characteristics of these objectives and the
maintenance strategies considered. For example, in plot (1), the
relation between MCTR and Nge, is neither linear nor inversely
proportional. Rather, when Nge,, = 2.4, MCTR suddenly drops
from 1200 to 1250. This is because MCTR can be significantly
different depending on the moment when components are
replaced, even if the same number of component replacements
are performed.

More interesting relations between conflicting objectives
are shown in Figure 3, plots (2) — (7). For example, in plot (6)
it is shown that fewer degradation incidents occur (low Ny,.)
when components are replaced often (high Ngep), i.e., there is a
trade-off between Ni,. and Nge,. However, the trade-off is
unclear under the SBR strategy where there are nearly zero
degradation incidents but different numbers of replacements.
This shows that in some cases of the SBR strategy, the
components are replaced unnecessarily often. A similar trade-
off is shown between Nypgch, and Ngepin plot (5). The similarity
between plots (5) and (6) is because Nj,. and Nypsch are
positively correlated, as shown in plot (8).

Table 2 — The Pearson correlation coefficient of objectives for
274 cases of maintenance strategies and parameters.

Group-1 Group-2
MCTR | Nrep | Nuynsch | Ninc Tp
MCTR - 0.69 -0.77 -0.76 | -0.80
Ngep 0.69 - -0.40 -0.47 | -0.50
Nynsen | -0.77 -0.40 - 0.90 0.73
Nine -0.76 -0.47 0.90 - 0.70
Tp -0.80 -0.50 0.73 0.70 -

The analysis based on Figure 3 is reinforced by the analysis
of the correlation between the considered objectives using the
Pearson correlation coefficient (see Table 2). The Pearson
correlation coefficient quantifies the linear correlation between
two objectives. A positive coefficient between two objectives
implies that they are likely to be improved together, while a
negative coefficient implies that they conflict with each other.
For example, the Pearson coefficient between T, and MCTR is
-0.80, which represents the trade-off shown in plot (4) of Figure

3.
FII A SBR O RBR
(1) (2)
2 B
£ 1250 £ 1250
» »
[ o
= =
S 1200 4 £ 1200
= =
= Braan o 4l =
T T T T
2400 2.405 0 1 2
Nrep (Minimize) Njsen, (Minimize)
(3) 4)
B 1250 - E 1250
s i1
@ e
z =
= 1200 - £ 1200
= =
T T T T T T
0.0 0.1 0.2 0.3 0.12 0.14
Niye (Minimize) Tp (Minimize)
(5) (6)
& A
— A — a
RS ® A
‘E 240544 ‘E 240544
£ 2.400 - £ 2.400 1
= =
T T T T T T T
U] 1 2 0.0 0.1 0.2 0.3
Nuyeen (Minimize) Nipe (Minimize)
(7) (8)
-
g y g 21
‘E 2405 1 £
‘2 E
g =
E =1
£ 2.400 A 4
= =
0 -
T T T T T T T
0.10 0.12 0.14 0.0 0.1 0.2 0.3
Th (Minimize) Nipe (Minimize)
9) (10)
g 2 7 03
= N
E E
i 202
2 2
E £ 01
= Z
0 | em—cl 0.0 | Pl o 0|
0.10 0.12 0.14 0.10 0.12 0.14
Tp (Minimize) Tp (Minimize)

Figure 3. Pairwise objectives of the aircraft maintenance for
the FII, SBR and RBR strategies.

Based on the Pearson correlation coefficient values, we
categorize the objectives into two groups such that the objective
pairs within the same group have positive coefficients (see
Table 2). Group-1 is {MCTR, Ngep}, and Group-2 is {Nypsch,
Nlnm TD}'

MCTR and Nge, in Group-1 are positively correlated as
both of them measure the exploitation time of a component.
Since the exploitation of components is directly related to the
cost of maintenance, these objectives imply an economic
benefit of the maintenance. On the other hand, Nynsch» Nine:
and Ty, in Group-2 measure the number of undesired events,
i.e., unscheduled maintenance, degradation incidents, and



aircraft delay due to maintenance. In other words, these
objectives represent the performance of the maintenance. The
conflict between Group-1 (Cost) and Group-2 (Performance)
shows the general trade-off between the performance and the
cost of aircraft maintenance.

Although aircraft maintenance has various objectives, it is
useful to analyze the maintenance strategies based on a small
number of representative objectives [14]. To consider both
performance and economic aspects, we analyze the aircraft
maintenance based on two objectives, one chosen from Group-
1 and one from Group-2. In particular, we chose MCTR from
Group 1 since it better represents the economic value because
the variance of N, is very small compared to that of MCTR
(see the scales of Ng., and MCTR in plot (1) of Figure 3). For
the objective representing performance (Group 2), Ny, or Tp
are chosen. Nynscn IS not chosen because it is strongly
correlated with MCTR (coefficient 0.9 in Table 2), and
therefore Nynscn IS improved together with MCTR.

3.2 Trade-off bettween Aircraft Maintenance Objectives

Following the analysis in Section 3.1, in this subsection we
analyze the trade-offs between Group 1 objective MCTR and
Group 2 objectives Ny, and Tp. Pareto fronts are generated for
{MCTR, Ny,.} and { MCTR, T} by collecting non-dominated
cases from the total 274 cases (the FII, SBR, or RBR strategy
with their parameter values, see Table 1).

Figure 4 shows the Pareto front for the objectives MCTR
and Np,.. Since these two objectives are conflicting, no single
solution achieves a maximum MCTR and a minimum Ny,
simultaneously. Rather, we should trade-off MCTR for Ny,..
For instance, the number of degradation incidents can be
minimized (Nj,. < 107%) if we accept a small MCTR < 1235.
Or, if we want to extend MCTR > 1250, then Ny, is increased
to 0.02.

1280

&
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= 1260 4

o

N

g FII

% 1240 A & SBR

p= o0  RBR
T T T T T T T T
0.00 005 010 015 020 025 030 035

Minimize Ny

Figure 4. Pareto front considering MCTR and Ny,,.

The Pareto front in Figure 4 also provides insight into the
maintenance strategies considered. In all cases, the SBR
strategy is dominated by the FIl or RBR strategies, thus not
shown in the Pareto front in Figure 4. This means that the RBR
or FII strategies are preferred when considering MCTR and
Ni,e - More interestingly, the cases considering the RBR
strategy are located in the middle, or in the extruded region of
the Pareto front, which is called the knee region [15]. The non-

dominated solutions in the knee region are generally preferred
because they provide a balanced solution, i.e., both objectives
are moderately optimized. Outside of the knee region, an
objective is significantly deteriorated to achieve a slight
improvement in the other objective, which is less preferred for
aircraft maintenance [15, 16]. By comparing plot (3) of Figure
3 and Figure 4, it can be seen that the FII strategy cases in this
knee region are dominated by the RBR strategy cases. In Figure
4, the non-dominated FII strategy cases cause either a large
number of degradation incidents Nj,. > 0.04 or a low
MCTR < 1240, but the non-dominated RBR strategy cases
achieve a small Ny, < 0.04 and a moderate MCTR > 1240.
This indicates that CBM using RUL prognostics (the
RBRstrategy) is beneficial when we aim to improve both
MCTR and Ny,c.

Figure 5 shows the Pareto front between MCTR and the
delay Tp. Unlike the Pareto front in Figure 4, the SBR strategy
is visible in the lower-left corner of the Pareto front in Figure 5.
These non-dominated SBR strategy cases have a low delay
(Tp < 0.1) but they are not cost-effective (MCTR < 1230).
The RBR strategy, on the other hand, is located in the middle
of the Pareto front, where 0.105 < Tp < 0.115 and 1230 <
MCTR < 1250. In this region, many FIlI strategy cases are
dominated by the RBR strategy cases (compare plot (4) of
Figure 3 and Figure 6). Thus, when both objectives are
considered with similar importance (knee region), the
introduction of the RBR strategy improves both objectives.
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&
§ 1220 - FII
§ A SBR
=R o RBR
A
T T T T T
0.10 0.11 0.12 0.13 0.14

Minimize Th

Figure 5. Pareto front considering MCTR and Tp,.

Overall, these results show that CBM using RUL
prognostics (the RBR strategy) has a benefit in improving both
the performance ( Ny, Tp) and cost (MCTR) of aircraft
maintenance.

4 CONCLUSION

We have conducted a multi-objective analysis of aircraft
condition-based maintenance strategies, using discrete event
simulation. Our aircraft maintenance model covers the general
features of the maintenance of multi-component aircraft
systems, such as aircraft operations, stochastic degradation of
aircraft components, redundancy of aircraft systems, and
maintenance strategies.

We have considered as objectives the minimization of the
mean number of flight cycles to component replacement



(MCTR), the number of replacements (Ngp), the number of
degradation incidents ( Np,.), the number of unscheduled
replacements (Nynschn), and the delay due to maintenance (Tp).
Based on their correlation and trade-off, we chose two pairs of
conflicting objectives to represent the performance and cost of
aircraft maintenance. We constructed Pareto fronts between
these conflicting objectives under condition-based maintenance
strategies (the SBR and RBR strategies), and a traditional time-
based maintenance strategy (the Fll strategy). The results show
that the advanced CBM strategy (the RBR strategy) dominates
the other strategies in the knee region of the Pareto fronts. This
suggests that the introduction of CBM in aircraft maintenance
achieves a balance between the performance and the cost of
maintenance.
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