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We study the model of a molecular switch comprised of a molecule with a soft vibrational degree of freedom
coupled to metallic leads. In the presence of strong electron-ion interaction, different charge states of the
molecule correspond to substantially different ionic configurations, which can lead to very slow switching
between energetically close configurations �Franck-Condon blockade�. Application of transport voltage, how-
ever, can drive the molecule far out of thermal equilibrium and thus dramatically accelerate the switching. The
tunneling electrons play the role of a heat bath with an effective temperature dependent on the applied transport
voltage. Including the transport-induced “heating” self-consistently, we determine the stationary current-
voltage characteristics of the device and the switching dynamics for symmetric and asymmetric devices. We
also study the effects of an extra dissipative environment and demonstrate that it can lead to enhanced
nonlinearities in the transport properties of the device and dramatically suppress the switching dynamics.
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I. INTRODUCTION

The apparent limitations of the silicon-based technology
on the way to further acceleration and miniaturization have
prompted active research into alternative electronic
architectures.1,2 In particular, molecular electronics holds a
lot of promise because each molecule, being only about a
nanometer in size, can in principle perform such nontrivial
operations as information storage3 or electrical current
rectification.4 Since molecules, even intricate ones, can be
mass produced by means of well-controlled chemical synthe-
sis, one expects them to be less susceptible to the issues of
disorder that plague the silicon-based electronics below the
10 nm scale. The ultraminiaturization that molecular elec-
tronics affords, however, also leads to the problem of con-
necting the molecular elements to each other, as well as of
the necessary interfacing with large-scale conventional elec-
tronics. Indeed, early on, this problem has caused many dif-
ficulties in reproducing results from one device to another.5

However, recent advances in fabrication6 as well as better
theoretical understanding of physics and chemistry at the
point of contact7 demonstrate that this difficulty is not fun-
damental and promise to make reliable and reproducible mo-
lecular junctions a reality.

There is, however, a fundamental difference that distin-
guishes the molecular devices from the conventional semi-
conductor ones. For a molecule to perform its unique func-
tion, it has to be well isolated from most environmental
influences, except for the �metallic or semiconducting� con-
tacts that are required to access it. Under standard operation
of the device, the chemical potentials differ by the value of
the applied transport voltage V multiplied by the electron
charge e, and thus the environment that the molecule expe-

riences cannot be considered as equilibrium if the voltage is
greater than the temperature, eV�kBT �kB being Boltzmann
constant�. Therefore, to determine the behavior of a molecu-
lar device under such conditions, one needs to determine
self-consistently the influence, e.g., of electrical current on
the molecular dynamics, and vice versa, the influence of non-
thermal vibrations or electronic excitations of the molecule
on the current. This is very different from the conventional
electronics where devices are rarely driven out of thermal
equilibrium far enough to significantly affect the perfor-
mance �exceptions are the nonlinear devices, such as Gunn
diode�.

One of the most promising and interesting molecular de-
vices is a switch, which can be used for information storage.
Switching has been observed experimentally in several mo-
lecular junctions.8 Proposed theoretical explanations for
switching range from �a� large and small-scale molecular
conformational changes, �b� changes in the charge state of
the molecule, or �c� combination of the two, or “polaronic.”9

The purely electronic switching mechanism �b�, while pos-
sible, appears quite impractical since it would require a sepa-
rate contact in order to change the charge state of the part of
the molecule that would play the role analogous to the float-
ing gate in flash memory by electrostatically affecting the
“channel” current. The switching mechanisms �a� and �c�
upon closer inspection turn out to be fundamentally the
same, since in order to be able to switch and read out the
conformational state of the molecule electronically there nec-
essarily has to be a coupling between the electronic and ionic
degrees of freedom. The dynamical stability of the “on” and
“off” states in these mechanisms is achieved due to the col-
lective nature of the states, which now involve not only the
electronic occupancy but also all the positions of the ions in
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the molecule. Thus the change of the charge state of the
molecules is accompanied by the ionic rearrangement, which
for strong enough electron-ion coupling can dramatically
slow down the charge state switching. This is the essence of
the Franck-Condon “blockade.”10–14 By chemically engineer-
ing molecules with strong electron-ion coupling and soft
�low-frequency� vibrational modes one can achieve arbi-
trarily slow equilibrium switching rates.

In order for molecular memory element to be useful, it
has to have a long retention time �slow switching rate in the
absence of any drive� but fast write time, i.e., it should be
possible to accelerate the switching rate by gate or transport
voltages. It is easy to see that in molecular switches with
polaronic mechanism the transport-driven switching accel-
eration occurs naturally. As soon as the transport voltage
exceeds the vibrational energy quantum, eV���0, addi-
tional transport channels open, which correspond to electron
tunneling on and off the molecule with simultaneous excita-
tion of vibrational quanta.11,14 Moreover, enhanced charge
fluctuations on the molecule effectively “heat up” the mol-
ecule, further increasing the current through the device. This
leads to a positive feedback loop which saturates when the
energy transferred to the molecule from nonequilibrium tun-
neling electrons exactly balances the energy transferred back
from the molecule to electrons. Due to this electronic non-
equilibrium heating, in the stationary state, the switching be-
tween the metastable polaronic states corresponding to dif-
ferent trapped charges can be dramatically enhanced.

Most of the molecular devices studied experimentally so
far have been weakly coupled to the leads.15–21 This corre-
sponds to the bare tunnel broadening �� of molecular elec-
tronic levels smaller than the energy required to excite one
oscillator quantum �phonon� ��0. The single-electron effects
play a crucial role in this case. They are well theoretically
described by a model of a single-electron tunneling �SET�
device coupled to a single-mode harmonic oscillator, devel-
oped mostly in the context of nanoelectromechanical sys-
tems. In the strong-coupling regime and for ���0, when the
electron-ion interaction energy Ep �defined below� exceeds
��0, the physics is governed by the Franck-Condon effect,
i.e., when the tunneling of an electron onto the molecule with
the simultaneous emission or absorption of several phonons
is more probable than elastic tunneling. The current as the
function of voltage exhibits steps separated by ��0 /e,10,22–24

and the nonequilibrium electronic heating of the molecular
vibrational mode leads to self-similar avalanche dynamics of
current with the intervals of large current alternating with the
periods of strongly suppressed current.11

In this paper, we study the case of “slow” phonons at
strong coupling, ���0 for eV���0.12,14,25–27 The physical
distinction between this case and the one of “fast” phonons,
���0, can be understood in the following way: For fast
phonons, every electron tunneling event occurs over many
oscillator periods. Thus effectively electrons can only couple
to �or “measure”� the energy �i.e., occupation number� of the
oscillator.28,29 In the opposite regime, ���0, electron tun-
neling is fast, and thus electrons are sensitive to the position
of the oscillator. Therefore, in the former case, as a result of
electron tunneling, the oscillator density matrix becomes
close to diagonal in occupation number basis �and thus non-

classical�, and in the latter case, it is nearly diagonal in the
position basis �and thus classical�. In Ref. 14 it has been
rigorously demonstrated that for arbitrary coupling between
single electronic level and oscillator displacement, the con-
dition for the onset of the classical �Langevin� dynamics is
given by min��� ,eV����0. At strong couplings, Ep���0,
the system can be in two metastable states corresponding to
�approximately� 1 or 0 electrons on the molecule. For rela-
tively small voltages, eV�Ep, switching between these
states can be effectively activated. This multistability and
switching can be described within the generalization of the
Born-Oppenheimer approach to open systems.14 Similar
switching behavior also exists in the “metallic” case, corre-
sponding to multiple closely spaced electronic orbitals on the
molecule.27 Finally, even at weak coupling, Ep���0, if a
high enough bias is applied between the leads, the oscillator
dynamics can become nontrivial, with the possibility of
switching between stationary states of different amplitudes.30

The slow �or “classical”� phonon strong-coupling case is
attractive since besides switching between the different
charge-ion states, it allows a readout of the state by means of
cotunneling transport through the molecule. In cotunneling,
the charge state of the molecule changes only virtually for a
period of time determined by the energy uncertainty prin-
ciple. This time can be much shorter than the vibration pe-
riod, and thus the ionic configuration and the average charge
occupancy need not change. On the other hand, in sequential
tunneling, the tunneling events between the leads and the
molecule are energy-conserving, with the rates determined
by Fermi’s golden rule. Typically, cotunneling currents are
much smaller than sequential ones since they are higher or-
der in the tunneling matrix element. However, if the sequen-
tial tunneling is strongly suppressed by the Franck-Condon
physics, the cotunneling, which need not be affected by it,
may dominate. In the case ���0 and strong electron-ion
coupling the role of cotunneling was recently studied in Ref.
31, where it was found that while it does not destroy the
Franck-Condon blockade, it can dramatically affect the low-
voltage current and current noise, as well as the vibrational
dynamics.

The purpose of this work is to provide a unified self-
consistent description of the sequential and cotunneling
transport regimes in the case of a molecular switch in the
“classical” regime ���0 and eV���0. This regime allows
for a systematic nonperturbative treatment for an arbitrary
electron-ion coupling strength.14 We determine the dynamics
of the vibrational degree of freedom, the average current and
current noise through the device, and the switching times as
functions of transport and gate voltages. We also analyze the
role of extrinsic dissipation.

II. MODEL

We consider the model for a molecular switch proposed in
Refs. 12 and 14. The molecule is modeled as a single elec-

tronic level d̂ strongly interacting with a vibrational mode, x.
It is located between two leads, from which electrons can
tunnel into the electronic level. The interaction is provided
by the force 	 �typically of electrostatic origin� acting on the
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molecule. The system is described by the Hamiltonian

H = �
0 + 	x�d̂†d̂ +
p2

2m
+

m�0
2x2

2

+ �
k,�


k�ĉk�
† ĉk� + �

k,�
t��ĉk�

† d̂ + d̂†ĉk�� , �1�

where � is the lead index �L or R� and ĉ and d̂ are the
electron annihilation operators for the leads and local orbital,
respectively. We consider the model for spinless electrons for
simplicity. �Inclusion of spin along with onsite Coulomb
blockade should lead to qualitatively similar results.� The
vibrational mode is characterized by the “bare” frequency �0
and the effective mass m. The displacement and coordinates
are described by the canonically conjugate operators x and p.
The coupling between the electronic level and the mode is
characterized by the “polaron” energy Ep=	2 / �2m�0

2� and
the coupling to the leads by tunnel rate ��=�
�t�

2 /�, where

� is the density of states in lead �. In Refs. 12 and 14 it has
been shown that for strong enough coupling, Ep /�� ��L
+�R�, the system can exhibit bistability, with one state cor-
responding to empty resonant level and nondisplaced mode
x, and the other to occupied level and the mode displaced by
the amount �	 / �m�0

2�. In the previous work, Ref. 14, cur-
rent and current noise were determined in the regime of
small transport voltage, �eV��Ep �where eV=�L−�R� in the
approximately “symmetric” situation, 
0�Ep. In the present
work, we generalize the previous results for current and cur-
rent noise as well as determine the behavior of the switching
rates between the metastable states for arbitrary transport and
gate voltages.

When electrons are driven out of equilibrium by an ap-
plied transport voltage, the dynamics of the vibrational mode
becomes very simple, even for strong coupling between the
mode and electrons. That is because when the characteristic
time scale for electronic subsystem becomes shorter than os-
cillator frequency �0, electrons appear to the mode as a
“high-temperature,” albeit position-dependent and strongly
coupled, bath. Physically, for any position x, the electronic
bath adjusts �almost� instantaneously, in a manner analogous
to how electrons adjust to the instantaneous positions of ions
in isolated molecules, as described by the Born-
Oppenheimer approximation. Indeed, as in the standard
Born-Oppenheimer approximation in equilibrium bulk sol-
ids, one effect of the nonequilibrium fast electronic environ-
ment is the modification of the effective potential experi-
enced by the mode; however, what is more, the electronic
subsystem, by virtue of being open, also provides force noise
�fluctuations� and the dissipation to the mode. Since the force
acting on the mechanical mode is simply −	n, where n

= d̂†d̂ is the occupation of the electronic mode, in order to
obtain the average force and its fluctuation it is enough to
calculate the average of n and its fluctuation �charge noise�
for a given static position x. When a weak time dependence
of x�t� is included one finds that a correction to the average
of n appears that is linear in dx /dt. This last term corre-
sponds to the dissipation induced by the retardation of the
electronic degrees of freedom, which do not respond imme-

diately to a change in x �first nonadiabatic correction�.25 It
can also be traced to the “quantum” nature of the charge
noise, i.e., a slight asymmetry between the charge noise at
positive and negative frequencies.32–34 As a result, the dy-
namics of the mode x becomes essentially classical, de-
scribed by the Langevin equation,14

mẍ + A�x�ẋ + m�0
2x = F�x� + ��t� , �2�

where the position-dependent force F, damping A, and the
intensity of the white noise D, ���t���t���=D�x���t− t��, are
related to the electronic Green’s functions on the Keldysh
contour as

F�x� = −
	�

2�i
	 d�Gfr��,x� , �3�

A�x� =
	2�

2�
	 d�Gfr��,x���Grf��,x� , �4�

D�x� =
	2�

2�
	 d�Gfr��,x�Grf��,x� . �5�

The zero-temperature Green’s functions �for the forward-
reverse Keldysh time path� are

Gfr��,x� = 2i
��L���L − ��� + ��R���R − ���

��� − 
0 − 	x�2 + �2�2 , �6�

Grf��,x� = − 2i
��L���� − �L� + ��R���� − �R�

��� − 
0 − 	x�2 + �2�2 . �7�

Here �=�L+�R. These expressions are valid also at finite
but low temperatures such that kBT���. 
At higher tem-
perature the step functions ��
� have to be replaced by
Fermi functions nF�−
 /kBT�.� Therefore, at low tempera-
tures, we obtain

F�x� = −
	

��
��L
tan−1�L − 
 − 	x

��
+

�

2
�

+ �R
tan−1�R − 
 − 	x

��
+

�

2
�� , �8�

A�x� =
	2��3

�
� �L


��L − 
0 − 	x�2 + �2�2�2

+
�R


��R − 
0 − 	x�2 + �2�2�2� , �9�

D�x� =
	2�L�R

��3 
tan−1 z +
z

z2 + 1
�

��R−
0−	x�/��

��L−
0−	x�/��

. �10�

Note that the expression for the force is just F=−	n�x�,
where n�x� is the occupancy of the d level for a fixed dis-
placement x. The expression for D is given for �L��R, oth-
erwise, the �L and �R have to be interchanged.
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III. CURRENT AND NOISE FROM THE FOKKER-
PLANCK DESCRIPTION

From the Langevin Eq. �2� one can derive a Fokker-
Planck equation for the probability P�x , p , t� that at a given
time t the displacement and the momentum of the vibrational
mode are x and p=mẋ,

�tP = −
p

m
�xP − F�x��pP +

A�x�
m

�p�pP� +
D�x�

2
�p

2P .

�11�

This Fokker-Planck equation can be used to study both the
stationary properties of the system, as well as the time evo-
lution from a given initial condition.

A. Current

Given our assumption about the separation between the
slow ionic—vibrational—and fast electronic—tunneling—
time scales, the problem of evaluating the stationary current
reduced to the evaluation of the quasistationary current av-
eraged over the fast electronic times for a fixed position x
and momentum p of the mode, with the consequent averag-
ing over the stationary probability distribution, P�x , p�. In
our case, the quasistationary current through the molecule
depends only on the position x �for kBT����,

I�x� =
e

2�
	

�R

�L

d�T��,x� , �12�

with

T��,x� =
4�L�R

�� − 
o − 	x�2 + �2 . �13�

The expectation value current is then

I�t� =	 dxdpP�x,p�I�x� . �14�

Solving the stationary Eq. �11� one can thus obtain the
current-voltage characteristics for the device.

B. Current noise

We are also interested in the current noise:

S��� =	 dtei�t�Ĩ�t�Ĩ�0� + Ĩ�0�Ĩ�t�� , �15�

where Ĩ= Î− �Î� and Î is the current �quantum� operator.
Again, since in our problem we have a clear time-scale sepa-
ration between the vibrational and electronic degrees of free-
dom, we can distinguish two contributions to the current
noise. The first is quasistationary �for a given position x� shot
noise which arises due to the discrete nature of the electron
charge. It has the usual form for a device with a single chan-
nel and transparency T�x ,��,35

Sshot�� = 0,x� =
2e2

�
	

�R

�L d�

2�
T��,x�
1 − T��,x�� . �16�

The only change due to the presence of the oscillator is the
fact that it must be averaged over the position, in the same
way as we have done for the average current above.

The second, more interesting type of noise is caused by
the fluctuations of the position x. It occurs on a long time
scale, and thus, at low frequencies, it can be much more
important than the standard electronic shot noise.30 When the
typical electronic and mechanical fluctuation times are of the
same order of magnitude one has to take into account the
correlation between the two sources of fluctuations.36 How-
ever, for our system the separation of the time scales makes
these two noises additive and allows for their separate evalu-
ation without regard for one another.

To obtain the low-frequency “mechanical” contribution to
the noise one needs to consider the autocorrelator of the qua-
sistationary current 
Eq. �14�� at different times. This re-
quires knowledge of the time-dependent solution of the
Fokker-Planck Eq. �11�. The evolution of the probability can
be rewritten in a more compact form as

�tP = LP , �17�

where L is the Fokker-Planck operator; in this notation P is
a vector �Pi� and L is a matrix �Lij�. The index i= �x , p�
represents all the stochastic variables in discrete notations.
For instance, the current operator I is diagonal in the i vari-
ables 
cf. Eq. �14�� so that the average current can be written
as

�I� = �
i

Iiv0i = �w0,Iv0� , �18�

where vni and wni are the right and left eigenvectors of L
with eigenvalue 	n �Lvn=	nvn and wn

†L=	nwn
†�. If the eigen-

values are not degenerate then one can always choose the
normalization so that �wn ,vm�=�n,m. The conservation of the
probability implies that 	0=0, and by definition v0 is the
stationary solution and w0i=1. The fluctuation operator for

the current is Ĩ=I− �I� in terms of which we can define the
current fluctuations:

S�t � 0� � �
ij

ĨiUij�t�Ĩ jv0j . �19�

Here Uij�t� is the conditional evolution probability that the
system evolves from the state j at time 0 to the state i at
time t. It must satisfy the evolution equation �17� with
the boundary condition Uij�0�=�ij. By Laplace transform


Û�s�=�0
+�U�t�e−stdt with Re s�0 and U�t�

=�a−i�
a+i��ds /2�i�Û�s�est, a�0� we obtain

�s − L�Û�s� = U�t = 0� = 1. �20�

We can then calculate the noise spectrum by using the sym-

metry S�t�=S�−t�: S���= Ŝ�s=−i�+0+�+ Ŝ�s= i�+0+�. Here

Ŝ�s� is the Laplace transform of S�t� and has the form
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Ŝ�s� = �
ij

Ĩi�s − L�ij
−1Ĩ jv0j . �21�

We thus obtain the final expression for the noise spectrum37

S��� = − 2�
ij

Ĩi
 L
�2 + L2�

ij

Ĩ jv0j . �22�

IV. RELEVANT PARAMETER RANGE

We assumed from the beginning that �0��. This ensures
that the electronic dynamics of the device is faster than the
vibrational one. The only remaining relevant energy scale is
Ep, which we have to compare to the other two parameters
��0 and ��. If ��Ep /� the switching effects are difficult to
observe since the boundaries of the Coulomb diamonds are
blurred on a scale �� much larger than the energy scale of
the vibrational motion. We thus will not investigate this limit,
but shall concentrate on the opposite one of ��Ep /�.

It is convenient at this point to rewrite the Fokker-Planck
equation in dimensionless form by introducing the variables
y=kx /	, �= t�0, q= pk /	�0m. Equation �11� becomes

��P = − q�yP − F�qP + A�q�qP� +
D
2

�q
2P �23�

with

F�y� = − y − 1/2 −
1

���L tan−1
vg + v/2 − y

�̃
�

+ �R tan−1
vg − v/2 − y

�̃
�� , �24�

where �i=�i /�,

A�y� =
�̃�̃2

� � �L


�vg + v/2 − y�2 + �̃2�2

+
�R


�vg − v/2 − y�2 + �̃2�2� , �25�

D�y� =
�L�R

�

�̃

�̃

tan−1 z +

z

z2 + 1
�

�vg−v/2−y�/�̃

�vg+v/2−y�/�̃

. �26�

We have also introduced the bias and gate voltages,

�L − �R = 2vEp, ��L + �R�/2 − � = 2vgEp, �27�

and the dimensionless system parameters �̃=2�� /Ep and
�̃=2��0 /Ep.

We can now discuss the limit of interest �0���Ep /�.
The fluctuating and dissipative parts of the Fokker-Planck
equation �coefficients A and D� are much smaller than the
force term �F� since they are proportional to �̃�1. For �̃
→0 the force term remains finite, while A and D vanish.
One therefore expects that the evolution of the system can be
further coarse-grained in time. The system evolves under the
influence of F most of the time and thus conserves its effec-

tive energy defined by Eeff�y ,q�=Ueff�y ,q�+q2, with

Ueff�y� = − 	y

dy�F�y�� . �28�

The effect of the small terms A and D is to produce a slow
drift among the nearby constant-energy orbits. The stationary
solution should then be a function of Eeff�y ,q� alone and it is
possible to reduce the Fokker-Planck equation to an energy
differential equation that in the presence of a single mini-
mum has the analytical stationary solution

Q�E� = Ne�E���E��/��E���dE�/��E� . �29�

Here N is a normalization factor and Q�E ,��=�dydq�
E
−Eeff�y ,q��P�y ,q ,��. The coefficients � and � are obtained
by averaging a combination of A and D on the trajectories of
given constant effective energy Eeff�y ,q�=E, as discussed in
detail in Ref. 27: �= �D�y� /2−A�y�q2�E and �
= �p2D�y� /2�E. Note that in Eq. �29� �̃ cancels out in the
exponential. Thus the limit �̃→0 is well defined for the
stationary distribution of probability. Obviously in this limit
the time to reach the stationary state diverges since it is in-
versely proportional to �̃.

When the potential can be approximated by a quadratic
function around a local minimum and the y dependence of
the coefficients A and D can be neglected, the expression for
the probability becomes

Q�E� = Ne−E/T�
, �30�

where T�=2D�ym� /A�ym� and ym is the position of the local
minimum.

Even if in the general case the stationary distribution is
not determined in such a simple way it is instructive to study

the structure of Ueff�y�. This is particularly simple for �̃�1
since in this limit the force becomes

F�y� = − y − �L��vg + v/2 − y� − �R��vg − v/2 − y� .

�31�

The analysis of the corresponding potential shows that up to
three minima can be present at the positions y=0 for
vg�−v /2, y=−�L for −v /2−�L�vg�v /2−�L, and y=−1
for vg�v /2−1. �For simplicity we consider only the v�0
case.� The minimum at y=−�L is due to the sequential tun-
neling for which the average occupation of the dot is 0
��L�1 �the energy level lies in the bias window�. The other
two minima correspond instead to classically blocked trans-
port �thus cotunneling is the dominant current mechanism�,
either in the n=0 or n=1 state. There are regions where two
or three minima are present at the same time. For −v /2
−�L /2�vg�v /2+1−�L /2 and v�1 /2 the sequential tun-
neling minimum at y=−�L is the absolute minimum. In the
rest of the plane either the blocked state 0 or the blocked
state 1 is the true minimum; the separation line between the
two joins the point vg=−1 /2, v=0 to the apex of the con-
ducting region vg=−3 /4+�R /2 and v=1 /2 �cf. Figs. 1 and
2�. For finite value of � the stability diagram changes, the
main difference is the expansion of the region of sequential
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tunneling that extends toward the axis v=0, as shown in Fig.
2.

At low voltage and small �̃ one of the two blocked states
has the minimum energy. For �L=�R=1 /2 and vg=−1 /2 the
effective temperature of these states vanishes linearly with
the bias voltage. Thus for v→0 these are the “cold” states.
The effective temperature at the sequential tunneling mini-

mum �x=−1 /2� is T�=�v4 /24 / �̃, thus for small �̃ this state
is always “hot.” Around v=1 /2 the hot sequential tunneling
state becomes the Ueff minimum, and the system starts to
fluctuate between the hot and cold states. The dimensionless

current Ĩ= I /�e in the cold state is very small ��̃v while in
the sequential tunneling regime it is of the order one. The
fluctuations between these two states produce large telegraph
current noise, as discussed for small v in Ref. 14.

The fact that the effective noise temperature varies as a
function of the position can lead to dramatic consequences.
In the conventional equilibrium statistical mechanics, ac-
cording to the Gibbs distribution, the lowest energy state is
the most probable one. However, if the noise temperature
varies as a function of position, it may happen that the lowest
energy state, if it experiences higher temperature, may be
less likely than a higher energy state that experiences lower
temperature. We illustrate this point in Fig. 3, which com-
pares the naive effective potential profile Ueff with the actual
self-consistent probability distribution.

We need to stress here, however, that we assume that the
only environment that is experienced by the vibrational
mode so far is the nonequilibrium electronic bath due to the
attached leads. If the dominant environment was extrinsic
�nonelectronic�, with a fixed temperature, then, in this ex-
treme limit, the effective potential would indeed uniquely
determine the probabilities of particular states. We will come
back to this point in Sec. VIII.

In order to discuss the behavior of the device in the full
range of parameters here we turn to a numerical solution of
the Fokker-Planck equation from which we can determine
both the current and the current noise of the device.

V. NUMERICAL RESULTS FOR THE CURRENT AND
ZERO-FREQUENCY NOISE

Expressions �14�, �16�, and �22� can be used to calculate
the current and the noise of the device. In general the ana-
lytical evaluation of these expressions is not possible. Nu-
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FIG. 1. �Color online� Regions in the v−vg plane of existence of

the minima of Ueff for �̃→0. The letters A, B, and C stand for the
presence of a minimum at y=−1, −�L, and 0, respectively. The
plane is separated into three dashed regions according to which of
the three minima is the lowest.
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FIG. 2. �Color online� Regions of stability of the sequential

tunneling solution for �L=1 /2 �a� and �L=0.1 �b�, and �̃=0.02,
0.04, 0.08, 0.16, and 0.30 �from the outer blue to the inner red
lines�. The region of sequential tunneling evolves from the small

triangular shape in the top of the plot �for �̃ small� to a large

trapezoidal shape �for large �̃� that touches the V=0 axis. The re-
gions to the left and the right of the sequential tunneling are
“blocked” in the 0 or 1 occupation state, respectively.
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FIG. 3. �Color online� Effective potential Ueff�y� �red dashed�
compared to ueff=−ln P�y� �blue� for �̃=0.08, �L=0.1, �̃=10−3,
vg=0 and different values of v as indicated in the panes. The quan-
tity ueff plays the role of an effective potential if T� was constant.
Note in particular the case v=1.2 for which the absolute minimum
of Ueff is not the absolute minimum of ueff due to the fact that T� is
much lower in the other minimum.
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merically, the solutions can be obtained by rewriting Eq. �11�
on a discrete lattice �x , p� and replacing the derivatives with
their finite difference approximations. If the equation is
solved in a sufficiently large �e.g., rectangular� region in the
x-p plane, one can use vanishing boundary conditions, since
the probability vanishes far from the origin. The matrix cor-
responding to the discretized Fokker-Planck operator L is
very sparse and the numerical solution is relatively easy for
matrices of dimensions up to 105. The discretization step
sizes k�x /	 and �pk /	�0m must be smaller than �� /EP in
order to have a good convergence. This practically limits our
numerical procedure to values of �� /Ep�0.01.

We begin by considering the symmetric case, �L=1 /2.
The current as a function of the voltage bias for different
values of �̃ is shown in Fig. 4. One can see that for �̃→0 the
current is suppressed for v�1 /2 and rises very rapidly for
transport voltages exceeding the threshold, as expected from
the qualitative arguments given above. Numerically it is dif-
ficult to reduce �̃ further, but we expect that for �̃→0 a
discontinuity should appear as found in the case when cotun-
neling is negligible.27

In Fig. 5 we plot on a log scale the Fano factor 
F=S��
=0� /2eI� of the current noise �the standard shot-noise con-
tribution is much smaller than the mechanically generated
one�. One can see that F reaches huge values on the order of
103, while it is typically 1 for the purely electronic devices.
The maximum of the Fano factor appears slightly below the
value of the voltage where there is a crossover from the cold
to the hot minimum; we will see later that this corresponds to
the value for which the switching rates between the two
minima are nearly the same. Since the blocked minimum is
colder than the sequential tunneling minimum, this crossover
happens before the hot minimum becomes the true mini-
mum. Enhancement of noise in this device should serve as a
strong indication of the presence of mechanical oscillations.
The large value of the Fano factor is typical for systems
where the current slowly fluctuates between two values �tele-
graph noise�. In the case of nanomechanical systems a large
Fano factor has been predicted for the bistabilities in
shuttles38 and superconducting SET.39

In Figs. 6–9 we show the behavior of the Fano factor in

the plane vg−v for �̃=0.08 and �L=0.5 and 0.1. Note that in

the asymmetric case, Figs. 8 and 9, there is a very sharp peak
in the Fano factor if we increase the bias voltage at fixed gate
voltage greater than zero. This structure appears at the
threshold of the sequential tunneling conducting region.

VI. SWITCHING RATE

In the previous sections we have studied the current and
the current noise. These quantities are the most readily ac-
cessible in transport measurements; however, it is interesting
also to investigate the typical switching time �s between the
different current states. This quantity can give an indication
if the telegraph noise could be detected directly as a slow
switching between discrete values of the average current. For
this to happen the switching time must be very long—at least
comparable to the average current measurement time �typi-
cally, in the experiment �1�s�.

To find a reliable estimate of �s we need to know the
typical time necessary for the system to jump from one local
minimum of the effective potential 
Eq. �28�� to a neighbor-
ing one. This concept is well defined since the diffusion and
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FIG. 4. �Color online� Current for �̃=0.02, 0.04, 0.08, 0.16, and
0.30, from the lowest to the highest curve at low bias. The other
parameters are �̃=10−3, �L=1 /2, and vg=−0.5.
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FIG. 5. �Color online� Fano factor of the current noise in loga-

rithmic scale for �̃=0.02, 0.04, 0.08, 0.16, and 0.30, from the low-
est to the highest curve at large bias. �̃=10−3, �L=1 /2, and vg=
−0.5.
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duced current noise as a function of vg and v for �̃=0.08, �L=0.5,
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damping term of the Fokker-Planck equation are very small
and the time evolution of the system on a short time scale is
controlled by the drift term. Let us denote the value of the
effective potential at the local maximum separating the two
minima of interest as Emax. The region � on the y-q plane
around the minimum defined by Emin�Eeff�y ,q��Emax can

be considered as the trapping region. If the system is at time
0 at the position �y ,q� inside � we can estimate the average
time to reach the boundary of � ���� by solving the equa-
tion

L†� = − 1 �32�

with �absorbing� vanishing boundary conditions on ��.40

Here � stands for the function ��y ,q�. Since we are interested
in the average time to leave the region, we average the es-
cape time with the quasistationary distribution function. The
vanishing boundary conditions introduce a sink; thus there is
no zero eigenvalue for the L operator with vanishing bound-
ary conditions on ��. We can nevertheless always identify
the eigenvalue with the smallest real part and call it 	0:
Lv0=	0v0. We thus obtain

��� �
��,v0�
�1,v0�

= −
1

	0
. �33�

The inverse of the lowest eigenvalue gives the average
switching time; this is not surprising since the time evolution
of the eigenstate v0 is e−t	0. It decays exponentially on a time
scale −1 /	0 due to the absorption at the boundaries of the
region �.

We implemented numerically the solution of the Fokker-
Planck equation in the energy-angle coordinates. If �y0 ,0� is
a minimum of the effective potential with energy Emin, we
rewrite the Fokker-Planck equation in terms of the variables
E�x ,q�=q2 /2+Ueff�x� and ��x ,q�=arctan�q / �x−x0��. In this
way the boundary conditions read P�E=Emax,��=0 for all
values of �. The results are shown in Figs. 10 and 11 for the
symmetric and asymmetric case, respectively.

Let us begin by discussing the symmetric case of Fig. 10.
For small bias voltage only two minima are present; they are
perfectly symmetric and they correspond to two “blocked”
�classically forbidden� current states with n=0 or 1. The
switching time is very long, and the system switches be-
tween two blocked states, each with very small cotunneling
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FIG. 7. �Color online� Symmetric case. Current and Fano factor
for the mechanically induced current noise as a function of vg and v
for �̃=0.08, �L=0.5, and �̃=10−3.
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FIG. 8. �Color online� Asymmetric case. Fano factor for the
mechanically induced current noise as a function of vg and v for

�̃=0.08, �L=0.1, and �̃=10−3.
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FIG. 9. �Color online� Asymmetric case. Current and Fano fac-
tor for the mechanically induced current noise as a function of vg

and v for �̃=0.08, �L=0.1, and �̃=10−3.
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currents. Since the cotunneling currents for both minima in
the symmetric state are the same, there is no telegraph noise
for small v. As it can be seen from the value of result for the
noise, the current fluctuations are nevertheless high, and the
reason is that to jump from one minimum to the other the
system has to pass through a series of states for which cur-
rent flow through the device is significant. Moreover the
slow fluctuations of the distribution function inside each
minimum are important for the noise as discussed in Sec.
VII. The fact that the escape times are so long may actually
hinder the observation of the current jumps in a real experi-
ment. In a real device then the observed noise could be
smaller in that case. Increasing the voltage to v�0.28, the
sequential tunneling minimum at x=−0.5 appears and a true
telegraph noise starts to be present. We see this very clearly

in the escape times, which are no longer symmetric �we plot
the y=−1 and y=−1 /2 minima escape times; the y=0 mini-
mum has the same behavior as the y=−1 minimum�, and the
average current at the minima also changes abruptly. Even
though the noise has a strong maximum near v=0.28 there is
no discontinuous change in the observables due to cotunnel-
ing. In fact, the noise has the maximum even at a lower
transport voltage than the one at which the sequential mini-
mum appears. The switching time changes by 6 orders of
magnitude in a very small range of bias voltage. Above v
�0.53 only the sequential tunneling minimum
survives.

We consider now the asymmetric case of Fig. 11. It is
clear that the evolution of the escape times is very different
from the symmetric case. In particular we consider the
strongly asymmetric case of �L=0.1. In this case the sequen-
tial tunneling minimum merges with the blocked n=0 mini-
mum, leading to a two minima landscape of the potential.
The consequence is that there is no abrupt appearance of a
new minimum for some values of the bias voltage; rather, the
two minima are always present at the same time until v
�0.4. At low voltage the potential landscape is nearly sym-
metrical, both minima are cold, but for the sequential tunnel-
ing one is characterized by a slightly higher T� and thus its
escape time is shorter �dashed line in Fig. 11�. By increasing
the voltage, the height of the potential barrier for the blocked
state reduces, thus reducing the escape time. At some point
�in the case of Fig. 11 for v�0.18� the escape time from the
cold state becomes shorter than the escape time of the hot
one, since the temperature has to be compared with the bar-
rier height, and at this point the barrier height is smaller in
the cold state. Near the crossing region the noise shows a
maximum, due to the fact that the system spends nearly half
of its time in each of the two minima, with different average
current. Tuning v one can thus cross from a region where the
system is trapped in one of the two minima, to a region
where it jumps on a relatively long time scale from one mini-
mum to the other. If the switching time scale becomes on the
order of the response time of the measuring apparatus it is in
principle possible to observe directly the fluctuation between
the two values of the current.

This is even more pronounced if we follow the evolution
of the current at vg=0. As can be seen in the contour plot of
the Fano factors �cf. Fig. 9�, in this way we will cross a very
sharp peak of the Fano factor. The results are shown in Fig.
12. At low voltage only a single nearly blocked state is
present �x=−1 and n=1�. For v�0.8 a new minimum ap-
pears at x�−�L=−0.1 that is for the moment at higher en-
ergy and with a very small barrier. The current associated
with this minimum is much higher than the other, and the
system starts to switch between the two states. The switching
is very slow thus the noise is high. Very rapidly as a function
of v the new local minimum becomes the true minimum, and
then the other minimum disappears.

VII. FREQUENCY DEPENDENCE OF THE CURRENT
NOISE

Equation �22� derived above can be applied to study not
only the zero-frequency noise, S��=0�, and the Fano factor,
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FIG. 10. �Color online� Symmetric case. �L=1 /2, �̃=0.08, vg

=−1 /2, and �̃=10−3. Switching time between the two minima: red
full line for the blocked transport minima �y=0� or y=−1� and blue
dashed line for the sequential tunneling minimum. In the inset: the
current in each minimum �same notation of main plot�, the average
current �black full line�, and the current noise �magenta dashed
line�.
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FIG. 11. �Color online� Asymmetric case. �L=0.1, �̃=0.08, vg

=−1 /2, and �̃=10−3. Same notations as in Fig. 10.
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as we did in Sec. V, but also the current noise at an arbitrary
frequency. In this section we numerically evaluate S��� and
provide a qualitative explanation for the observed trends. As
we mentioned before, the shot-noise contribution can be ne-
glected as far as the frequency considered is much smaller
than �. From the numerical calculations we find that the
frequency dependence is characterized by a single frequency
scale, and approximately is Lorentzian peaked at �=0. This
can be seen in the inset of Fig. 13 where we show S��� as a
function of � /�0 on a logarithmic scale for several values of
the bias voltage v. One can parametrize each curve by a
single number, which we choose as the frequency �c at
which S��c�=S�0� /2. It is instructive to compare the time
scale 1 /�c with the energy dissipation and the switching
time scales in various regimes.

At low voltages, since switching between the metastable
minima is exponentially slow, we anticipate that the low-
frequency ����0� current fluctuations will be determined
by the energy fluctuations within the single well in which the
molecule spends most of its time. For a simple harmonic
oscillator, the corresponding time scale is given by the in-
verse damping coefficient. For small energy fluctuations, the
current changes with energy linearly. Thus, current fluctua-
tions will track the energy fluctuations, i.e., will be Lorentz-
ian with the width given by A /m. To check this we plotted in
Fig. 13 the value of m�0 /A�x� evaluated at the minimum of
the potential �dotted line�. There is a reasonable agreement
for low voltage but, as expected, not for large voltages. The
reason is that at large v the system becomes hot, and the
energy dependence of A cannot be neglected. To address this
issue, we calculated the average of A�x� with the distribution
function P�x� obtained by solving numerically the stationary
problem. The result using thus obtained A is shown as a
dashed line on the figure. We find that it agrees very well
with the �c extracted from the numerical calculation of S���,
both at high and low voltages. Note that at high voltage the
energy dependence of A is crucial to understand the fre-
quency dependence of the noise. The effective temperature

changes the average of A, and hence �c by nearly 3 orders of
magnitude.

In the intermediate transport voltage regime, 1�v�1.3,
the system switches between the two wells frequently. There-
fore, we naturally expect that the time scale for the current
noise should depend on the switching rate between the wells.
If each of the wells would correspond to a fixed value of
current the resulting noise would be a telegraph, with the
Lorentzian line shape and width given by the sum of the
switching rates. However, in each well as a function of en-
ergy current is not constant. In fact, the current increases
gradually in the “blocked” well as the energy approaches the
top of the barrier, reaching the value I�� near the top of the
barrier. On the other hand, in the well where transport is
sequential, current remains approximately I�� for any en-
ergy. Therefore, one can naturally expect deviations from the
simple telegraph behavior. Indeed, we find that the time scale
1 /�c tracks the escape time from the “blocked” well �blue
dot-dashed line in Fig. 13�, which is the longer escape rate,
and the fast escape from the “hot” sequential well does not
matter. We therefore conclude that the noise is governed by
the energy �and thus current� fluctuations within the cold
�more probable� well, which also occur on the time scale
comparable to the escape rate from it.

VIII. ROLE OF EXTRINSIC ENVIRONMENTAL
DISSIPATION

As we discussed above most of the effects we found are
due to the nonequilibrium dynamics of the oscillator. In or-
der to improve our understanding of this fact, and to probe
robustness of the results to external perturbations, we con-
sider the influence of extrinsic dissipation on the system.
This can be easily included in the model since the coupling
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FIG. 13. �Color online� Inset: Frequency dependence of the cur-
rent noise for several values of the bias voltage. From this data we
extracted �c as the frequency at which S��c�=S�0� /2. Main plot:
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to an external bath implies only additional dissipation and
fluctuations on top of the intrinsic ones. We assume that the
system is damped due to the coupling to an external bath at
equilibrium at the temperature Tb. The fluctuations and dis-
sipation coming from this coupling satisfy the fluctuation-
dissipation theorem. Thus the presence of the extrinsic
damping � induces the following change in the variables A
and D defined in Eqs. �9� and �10�: A→A+� and D→D
+kBTb� /2. We present the numerical results for the dimen-

sionless parameters �̃=� /m�0 and T̃b=2kBT /EP. The nu-
merical procedure remains unchanged.

We show in Fig. 14 the behavior of the current and the

noise for the same parameters of Fig. 12 but at T̃b=0.01 and
for different values of the external dissipation. The main fea-
ture that can be clearly seen is the sharpening of the step for
the current. The external damping reduces the position fluc-
tuations of the oscillator thus reducing its ability to escape
from the “blocked” regions of the phase space. On the other
hand, if the oscillator is in a “conducting” region, the prob-
ability that it can fluctuate to regions of blocked transport is
smaller; thus the current is increased in the conducting re-
gions and reduced in the blocked regions, increasing the
steepness of the step. For the same reason the region of large
noise is reduced. We find that the value of the Fano factor
remains actually very large, but only in a very narrow range
of bias voltages. Increasing the coupling to the external bath
reduces this window and thus finally may rule out the possi-
bility of observing it at all.

A second interesting quantity to study is the distribution
function P�x�. If the coupling to the environment dominates

we expect that P�x�=const e−Ueff�x�/T̃b. To verify this fact we
compare U�x�=−ln P�x� and Ueff�x� in Fig. 15. We find that
for small coupling first U�x� deviates even more from the
form of Ueff: The minimum in the cold region becomes
deeper �left minimum in the figure�. The reason is that the

increase of the damping is more effective in the cold region
where both damping and fluctuations are small. In the hot
region �right minimum in the figure� the intrinsic fluctuations
and dissipation are very large and for small external damping
there is no noticeable effect. Upon increasing the coupling to
the environment also the hot minimum is cooled and the
shape of U becomes similar to that of Ueff, shown by the
dashed line in the plot. This clearly demonstrates the rel-
evance of the non-equilibrium distribution of the position for
the determination of the transport properties of the device.

IX. CONCLUSIONS

In this work our goal was to provide a unified description
of the transport properties of the strongly coupled nonequi-
librium electron-ion system mimicking a molecular device,
in a broad range of parameters. Our results are based on a
controlled theoretical approach, which only assumes that the
vibrational frequency is the lowest energy scale in the prob-
lem. In this regime, the vibrational mode experiences the
effect of the electronic environment as a nonlinear bath that
has three interrelated manifestations: �i� Modification of the
effective potential, including formation of up to two addi-
tional minima, �ii� position-dependent force noise that drives
the vibrational mode, and finally, �iii� position-dependent
dissipation. We have self-consistently included the effect of
tunneling electrons on the dynamics of the vibrational mode,
and the inverse effect of the vibrational mode on the electron
transport. This enabled us to obtain the average transport
characteristic of the “device,” i.e., the dependence of the cur-
rent on the transport and gate voltages, as well as address the
problem of current noise and mechanical switching between
the metastable states. The agreement between the switching
dynamics and the frequency dependence of the current noise
determined independently enabled us to construct a compre-
hensive but simple understanding of the combined electron-
ion dynamics in different transport regimes. In particular, the
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enhancement of current noise may serve as an indicator of
generation of mechanical motion, and its magnitude and fre-
quency dependence provide information on the regime the
molecular switching device is in and the values of relevant
parameters.
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