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Summary

Dynamic origin-destination (OD) demand is important input to many 

simulation models applied within dynamic traffic management systems 

(DTMS) for predicting traffic states on the network. The inability to 

provide high-quality dynamic OD demand estimates makes prediction 

with simulation models simply impossible, irrespective of how well 

these models have been calibrated.  This thesis presents methods 

regarding the provision of efficient and reliable dynamic OD demand 

information for DTMS applications. 

About the Author

Tamara Djukic conducted her PhD research at Delft University of Technology. 

She holds a MSc degree in Civil Engineering with specialization in road 

traffic and transport. Her research interests include the traffic state 

estimation and prediction and data processing.

TRAIL Research School ISBN 978-90-5584-179-0

Tamara Djukic

Dynamic OD Demand Estimation and
Prediction for Dynamic Traffic Management



Dynamic OD Demand Estimation and
Prediction for Dynamic Traffic Management

Tamara Djukic

Delft University of Technology



This thesis is the result of a project funded by ITS Edulab (a cooperation between
Rijkswaterstaat and Delft University of Technology) and the Netherlands Research

School for Transport, Infrastructure and Logistics TRAIL.

Cover illustration: Tamara Djukic



Dynamic OD Demand Estimation and
Prediction for Dynamic Traffic Management

Proefschrift
ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 18 November 2014 om 12.30 uur
door

Tamara DJUKIC

Master of Science in Civil Engineering
University of Belgrade, Serbia

geboren te Cacak, Servië
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Summary

A desirable feature of dynamic traffic management systems (DTMS) is the ability to
estimate network states and predict their short-term evolution. Unreliability and lack
of knowledge about past and prevailing traffic conditions may well lead to poor pre-
dictions that would, for example, render computed Intelligent Transportation System
(ITS) measures irrelevant or outdated by the time they take effect. One of the key in-
put traffic variables required by this system is traffic demand represented by dynamic
origin destination (OD) matrices. Each cell of this matrix represents the number of
vehicles departing from origin zone during one time interval to destination zone.

The inability to provide high quality dynamic OD demand estimates makes predic-
tion with advanced simulation models simply impossible, irrespective of how well
these models have been calibrated. In this respect, the estimation and prediction of
a dynamic OD demand with sufficient data and sufficient granularity are critical in
establishing the credibility of simulation tools for real-time purposes. Driven by the
aforementioned issues and requirements for improvement, this thesis addresses sev-
eral problems pertaining to the provision of efficient and reliable dynamic OD demand
information for DTMS applications.

The literature review is largely based on a newly developed categorization of the dy-
namic OD demand estimation and prediction methods. A rich variety of methods de-
veloped so far and in use today are classified based on the modeling-steps with which
the OD demand estimation and prediction is described; the types of input data, the way
in which their relationship with OD flows is modeled, and the solution approaches for
the estimation and prediction of dynamic OD demand. This approach shows better
how various challenges within each modeling-step have been solved and how different
methods relate to each other.

Dynamic OD demand estimation methods differ in many aspects, such as mapping
methodology of traffic data and OD flows, measures of error, solution approaches and
type of networks; adding to the difficulty of creating generic assessment of OD esti-
mation methods. In this thesis, a benchmarking methodology for the qualitative as-
sessment of dynamic OD demand estimation methods is developed. The methodology
presented here is generic, in the sense that various OD estimation approaches can be
tested under numerous diverse circumstances related to, for example, data availabil-
ity and quality, and network lay out. The objective of the benchmark methodology is
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not to conclude that one approach is the ”best”, but to provide support for comparison
in a variety of settings and conditions. With this benchmark methodology one can,
for example, determine the particular situations and conditions under which one ap-
proach might behave more favorably than another. One can also use the methodology
to perform sensitivity analyses on single or multiple dynamic OD estimation methods.

The dynamic OD demand estimation and prediction problem is computationally inten-
sive because solution methods have to deal with high-dimensional structures of OD
matrices and computational complexity of these methods. One possible solution ap-
proach to solve the issue of high-dimensionality is to approximate prior OD demand
dataset into the lower-dimensional space without significant loss of accuracy. The new
reduced set of variables is defined instead of the OD flows. As a result, the dimen-
sionality of the state is reduced substantially and the complexity of the estimation and
prediction problem is likewise reduced. For real-time application, at the end of each
interval, the observed traffic counts would be used to sequentially update OD flows for
the current time interval. The problem is formulated as state-space model solved by
colored Kalman filter. In a case study, the proposed method demonstrates that by sig-
nificantly reducing the dimensionality of the OD data while, preserving the structural
patterns, the computational costs can be dramatically reduced.

The spatial correlation between OD pairs carries important information about the struc-
tures in OD matrices. An emerging alternative performance indicator, structural sim-
ilarity (SSIM) index, has been presented to quantify these correlations. For example,
under the assumption that any prior OD matrix contains the best possible pattern in-
formation, the SSIM index can be viewed as an indication of the quality of the esti-
mated OD matrix compared to the prior OD matrix. This is important in applications
where it is necessary to know whether a particular OD demand estimation method can
reproduce actual OD demand. This quality metric has been shown to have several ad-
vantages over existing statistical measures that measure pointwise deviations between
two OD matrices. Therefore, the proposed measure can be applied as additional per-
formance indicator for benchmarking tasks of dynamic OD estimation methods.

This thesis gives new insights in real-time dynamic OD demand estimation and pre-
diction for large-scale networks and provides efficient methodologies to assess the per-
formance of existing methods. The presented methods are ready to use in practice and
can be compared with existing methods.



Samenvatting

Een aantrekkelijk kenmerk van dynamische verkeersmanagementsystemen (DVMS) is
het vermogen de toestand in een netwerk te schatten en hun ontwikkeling op de korte
termijn te voorspellen. Onbetrouwbaarheid en gebrek aan kennis over historische en
huidige verkeersomstandigheden kan mogelijk leiden tot slechte voorspellingen waar-
door, bijvoorbeeld, gecomputeriseerde Intelligente Transport Systemen (ITS) maa-
tregelen niet meer relevant of gedateerd zijn op het moment dat ze worden ingezet.
Een van de cruciale input verkeersvariabelen die dit systeem nodig heeft, is dat de ver-
keersvraag weergegeven wordt in dynamische herkomst-bestemming (HB) matrixen.
Elke cel van deze matrix geeft het aantal voertuigen weer die tijdens n tijdsinterval uit
de herkomstzone vertrekken naar de bestemmingszone.

Het niet in staat zijn om hoogwaardige schattingen van de dynamische HB-vraag te lev-
eren zorgt ervoor dat voorspellingen met geavanceerde simulatiemodellen eenvoudig-
weg onmogelijk zijn, ongeacht hoe goed deze modellen ook gekalibreerd zijn. In dit
opzicht zijn het schatten en voorspellen van een dynamische HB-vraag met voldoende
data en voldoende granulariteit cruciaal in het vaststellen van de geloofwaardigheid van
simulatie-instrumenten voor directe doeleinden. Gedreven door de hiervoor genoemde
kwesties en behoeften voor verbetering, stelt dit proefschrift diverse problemen aan de
orde die betrekking hebben op het leveren van efficinte en betrouwbare informatie over
de dynamische HB-vraag voor DVMS-applicaties.

De literatuurstudie is grotendeels gebaseerd op een nieuw ontwikkelde categoriser-
ing van de schattings- en voorspelmethodes voor de dynamische HB-vraag. De rijke
variteit aan methoden die tot nu toe zijn ontwikkeld en toegepast, zijn geclassificeerd
op basis van de modelleer stappen waarmee de schatting en/of voorspelling van de
HB-vraag wordt beschreven. Voorbeelden zijn het type data-invoer, de manier waarop
hun relatie met HB-verkeersstromen is gemodelleerd, en de oplossingsstrategien voor
het schatten en voorspellen van dynamische HB-vraag. Deze aanpak laat beter zien
op welke wijze de uitdagingen binnen iedere modelleer stap zijn opgelost en hoe de
verschillende methoden zich tot elkaar verhouden.

Dynamische HB-vraag schattings- en voorspelmethoden verschillen op veel eigen-
schappen, zoals de indelingsmethodiek van verkeersdata en de herkomsten en bestem-
mingen van verkeersstromen, de meting van de fout, de oplossingsaanpakken en de
type verkeersnetwerken; Deze diversiteit draagt bij aan de moeilijkheid van het creren

v



vi TRAIL Thesis series

van een algemene beoordelingsmethodiek voor HB-schattingsmethoden. In dit proef-
schrift wordt een methodiek voor de kwalitatieve beoordeling van dynamische HB-
vraag schattingsmethode ontwikkeld. De methodologie die wordt besproken is gener-
iek in de zin dat verschillende HB-schattingsmethoden getest kunnen worden onder
vele verschillende omstandigheden. Deze zijn bijvoorbeeld gerelateerd aan de beschik-
baarheid van data, de kwaliteit van de data en de verkeersnetwerk lay-out. Het doel van
de standaard beoordelingsmethodiek is niet om te beoordelen wat de beste aanpak is,
maar om de verschillende aanpakken voor verschillende instellingen en omstandighe-
den onderling te vergelijken. Met behulp van deze standaard beoordelingsmethod-
iek kan bijvoorbeeld worden bepaald onder welke omstandigheden de ene aanpak de
voorkeur heeft boven de andere. De beoordelingsmethodiek kan ook worden gebruikt
om gevoeligheidsanalyses met n or meerdere dynamische HB-schattingsmethoden uit
te voeren.

Het dynamische HB-vraag schattings- en voorspellingsprobleem is rekenkundig inten-
sief omdat oplossingsmethoden om moeten gaan met de hoogdimensionele structuren
van HB-matrices en de rekenkundige complexiteit van deze methodes. Een mogelijke
aanpak om het probleem van de hoge dimensionaliteit op te lossen is om het voor-
gaande HB-vraagdataset te benaderen in de lager-dimensionele ruimte zonder signifi-
cant verlies van de nauwkeurigheid. Het nieuwe gereduceerde set van variabelen wordt
gedefinieerd in plaats van de HB-stromen. Dit resulteert in een substantile afname van
de dimensionaliteit van de toestand en daarmee een afname van de complexiteit van het
schattings- en voorspellingsprobleem. Voor realtime toepassing worden, aan het eind
van elk interval, de geobserveerde verkeerstellingen gebruikt voor de opeenvolgende
update van de HB-stromen van het huidige tijdsinterval. Het probleem is geformuleerd
als state-space model welke wordt opgelost met het gekleurde Kalman filter.

The ruimtelijke correlatie tussen HB-paren bevat belangrijke informatie over de struc-
turen van de HB-matrices. Een alternatieve prestatie-indicator, de structurele gelijke-
nis (SSIM) index, is gepresenteerd om deze correlaties te kwantificeren. De SSIM
index kan bijvoorbeeld, onder de aanname dat een voorgaande HB-matrix de best
mogelijke patrooninformatie bevat, worden gezien als een indicatie van de kwaliteit
van de geschatte HB-matrix vergeleken met de voorgaande matrix. Dit is belan-
grijk voor toepassingen waarbij het nodig is om te weten of een specifieke HB -
vraagschattingsmethode de werkelijke HB-vraag kan reproduceren. Deze kwaliteitsmee-
teenheid heeft laten zien dat deze verschillende voordelen heeft boven bestaande statis-
tische maten welke puntsgewijs afwijkingen meten tussen twee HB-matrices. Daarom
kan de voorgestelde maat worden toegepast als additionele prestatie-indicator voor de
benchmarking taken van dynamische HB-schattingsmethoden.

Dit proefschrift geeft nieuwe inzichten in realtime dynamische HB-vraag schatting
en voorspelling voor grootschalige netwerken en levert efficinte methodologien om de
prestatie van bestaande methoden te schatten. De gepresenteerde methodes zijn gereed
om in de praktijk te gebruiken en kunnen worden vergeleken met bestaande methodes.
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Chapter 1

Introduction

Dynamic traffic management system (DTMS) aims to identify traffic problems in a net-
work before they appear, and are used to find a better match between demand and
supply to meet the desired network performance. The goal of this dynamic control
and influence on the transport system is to anticipate and prevent the occurrence of
unfavorable traffic conditions, and to optimize the efficiency, costs and safety of the
transport system. Dynamic OD demand estimation and prediction methods have been
a major input for a DTMS for many years. These methods are subject to continuous
improvement, expending their capabilities and prediction power. In this thesis dynamic
OD demand estimation and prediction methods for real-time applications are devel-
oped and analyzed.

The outline of this introductory chapter is as follows. Section 1.1 describes the context
and the background of this research, where the dynamic OD demand estimation and
prediction problem is introduced. In section 1.2 the objectives and scope of the thesis
are discussed. The scientific and practical contributions of this research are listed in
section 1.3. Section 1.4 gives an overview of the chapters in this thesis.

1
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1.1 Research motivation

Given the exponential growth of vehicle mobility in the past decades and the increased
complexity of traffic and travel patterns over heterogeneous road networks both within
and between large metropolitan areas, transport and traffic simulation models have be-
come critically important tools providing road agencies and city planners with support
for their decisions in both operations and longer-term planning. An exciting and grow-
ing field of application is the use of simulation tools for real-time intelligent transporta-
tion systems (ITS) and dynamic traffic management systems (DTMS). DTMS aim to
identify traffic problems in a network before they appear, and are used to find a better
match between demand and supply to meet the desired network performance. With
advanced real-time simulation tools that are able to integrate data from many different
sensors, both traffic operators and travelers can be provided with up-to-date and even
projected travel and traffic information. The goal of this dynamic control and influence
on the transport system is to anticipate and prevent the occurrence of unfavorable traffic
conditions, and to optimize the efficiency, costs and safety of the transport system.

A desirable feature of such systems is the ability to estimate network states and predict
their short-term evolution. Unreliability and lack of knowledge about past and pre-
vailing traffic conditions (the supply side of road transport operations) may well lead
to poor predictions that would, for example, render computed ITS measures irrelevant
or outdated by the time they take effect. The traffic assignment tool is a central com-
ponent of many (more advanced) DTMS measures, and steers decisions regarding the
activation and the intensity of these measures. Regardless of either the simulation tools
or the application, a necessary input into the operation process is the underlying traffic
demand imposed on a transport network. This traffic demand is often expressed in
matrix form, know as dynamic or time-varying origin destination (OD) matrix, where
each cell represents the number of vehicle trips departing from origin zone in particular
time interval and traveling to destination zone on transportation network. In contrast
to static OD matrices (aggregated traffic demand over relatively long period), dynamic
OD matrices reflect temporal variation of vehicle departure times over the analysis pe-
riod on network. They are important input for DTMS applications that capture, for
example, dynamic and spatial effects of congestion, dynamic link and path flows or
changes in travel times. The inability to provide high quality dynamic OD matrix esti-
mates makes prediction with advanced simulation models simply impossible, irrespec-
tive of how well these models have been calibrated. In this respect, the estimation and
prediction of an OD matrix with sufficient data and sufficient granularity are critical in
establishing the credibility of simulation tools for real-time purposes.

Direct observation of dynamic OD demand is extremely difficult and rare. Full knowl-
edge of OD demand would require the tracking of vehicles on a network, and the ex-
traction of trips’ characteristics, i.e. origin of trip, destination of trip, departure time,
and mode of transportation. For example, there are emerging data collection systems
today that can deduce (sample of) the OD flows using GPS devices, Automatic Vehicle
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Identification (AVI), and cell phones. Concerns about these surveillance systems have
concentrated on privacy fears, small and not representative sample rates. For exam-
ple, GPS navigation systems are typically less frequently used for daily recurring trips.
As a result of the limitations of surveillance systems, in most networks it is still not
possible to observe the OD flows directly.

Since the OD demand cannot be observed, another approach is to turn to demand
models that provide an estimate of the OD demand. There are two types of demand
models: trip-based and activity-based demand models. These demand models provide
reliable estimate of the structure and the order of magnitude of the OD demand for an
average day. However, considering the sensitivity of advanced simulation models for
small changes in OD demand, the resulting OD demand seldom obtains the required
accuracy that is necessary when used as input for these systems. Therefore, the usual
procedure is to estimate dynamic OD demand indirectly from the observed traffic data
and network conditions they induce on the links and routes of the network. The latter
can be obtained using surveillance equipment such as loop detectors, GPS, Bluetooth
and WiFi scanners, transit smart cards, and cameras. The estimation and prediction
procedure also includes any available prior information on OD demand, which typi-
cally comes from results of previous estimations. This research focuses on estimation
and prediction of dynamic OD demand for dynamic traffic management (DTMS) sup-
port. Because of real-time requirements of DTMS, current and future OD flows must
be estimated and predicted at any point in time, on the basis of the most up-to-date ob-
served traffic data. Then, as time proceeds and more traffic data become available, the
estimates and predictions must be updated to reflect the evolution of the OD demand
and network conditions.

Most real-time applications, such as dynamic traffic control or route guidance gener-
ation, require a model to provide output in nearly real-time fashion. Moreover, the
stochastic nature of simulation models (e.g., simulation-based dynamic traffic assign-
ment (DTA)) implies the need to make multiple runs to generate statistically robust
results. This adds more time constraints on the computational efficiency of dynamic
OD demand estimation and prediction model. Speeding up the solution process is de-
sirable even for off-line planning applications, where the evaluation of a single plan
may require many simulation runs, adding an excessive cost of time to the evaluation
of potential plans. In general, there are three factors that increase the computational
effort: a) the size of the state vector, b) the complexity of model components (e.g.,
assignment matrix, covariance matrices), and c) the number of traffic observations to
be processed.

Unfortunately, in contrast to the richness of literature on the topic of dynamic OD
estimation and prediction methods, few are tested and proved to be successful for real-
world networks. Despite their impact on traffic state estimation, control and manage-
ment, our understanding of the strengths and weaknesses of OD demand estimation
methods for real-time applications has been limited by the lack of tools to assess the
performance of existing methods in a generic way. These tools are necessary, because
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methodologies developed for small networks with high quality traffic data may not
work effectively in practice. Benchmark methodologies are therefore needed to pro-
vide a support comparison in a variety of input data settings and network scales. The
benefits of determining the particular situations and conditions on the network under
which one dynamic OD estimation and prediction method might behave more favor-
ably than another can be significant for practitioners and researchers.

1.2 Research objectives and scope

1.2.1 Research objectives

Driven by the aforementioned issues and requirements for improvement, this thesis
addresses several problems pertaining to the provision of efficient and reliable dynamic
OD demand information for dynamic traffic management operational applications. The
focus of the thesis are dynamic OD demand estimation and prediction, and qualitative
analysis in the context of large-scale, real-world networks with various traffic data
sources. There are two subproblems presented in this aim listed as follows:

1. Formulate and develop a real-time dynamic OD demand estimation and pre-
diction model that satisfies a real-time computation constraints for large-scale
networks.
The first objective is important to the successful deployment of dynamic traffic
management systems, where dynamic OD demand information serves as an es-
sential input for traffic simulation tools. The dynamic OD demand estimation
and prediction problem is computationally intensive because solution methods
have to deal with high-dimensional structures of OD matrices and computational
complexity of these methods. One possible solution approach to solve the is-
sue of high-dimensionality is to approximate prior OD demand dataset into the
lower-dimensional space without significant loss of accuracy. The quantitative
methods that explore the information and structure in the (estimated, predicted
or realized) OD flows themselves, where the major concern is to reduce dimen-
sionality of the OD matrices, are required. As a result, the dimensionality of the
state can be reduced and the complexity of the estimation and prediction problem
is likewise reduced. The importance and originality of this approach lies in the
possibility of capturing the most important structural information in OD demand
without loss of accuracy and considerably decreasing the model dimensionality
and computational complexity for real-time applications.

2. Develop an efficient and generic benchmarking framework to assess the perfor-
mance of dynamic OD demand estimation methods.
One of the key traffic variables required for both ex-post and ex-ante evalua-
tion of traffic management and policy measures are OD demand matrices. This
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implies that the effect of traffic management measures highly depends on the
quality of OD demand estimates and predictions. Thus, the second objective
is to handle a common issue in the choice and performance assessment of dy-
namic OD demand estimation and prediction methods in practice. The assess-
ment methodology needs to be generic, in the sense that various OD estimation
approaches can be tested under numerous diverse circumstances related to, for
example, data availability and quality, and network lay out. In addition, there is
no undisputed performance indicator for assessment of estimated and predicted
OD matrices. Instead, there are many candidate statistical metrics that are lim-
ited to evaluate temporal and spatial patterns in estimates. The consequence of
this sensitive, wide range of statistical metrics is that researchers and practition-
ers may use different metrics according to their needs, rather then as objective
assessment criteria. A structured and generic methodology for benchmarking
dynamic OD estimation methods under different circumstances would enable
researchers to pinpoint the strengths and weaknesses of various OD estimation
methods.

1.2.2 Research scope

This thesis concerns real-time estimation and prediction of dynamic OD demand through
the use of dynamic traffic assignment (DTA) models and the observed traffic data. The
observations of link traffic counts have been obtained by loop detectors in a real net-
work. Though continuing advances in wireless technologies have made it possible to
track each suitably-equipped or electronically-tagged vehicle, widespread adoption of
these technologies is not likely in the near future. Companies specializing in emerging
data collection (e.g., TomTom, Vodafone, Inrix, and Google) have built their own tools
and methods employing their practical expertise in collecting, pre-processing and se-
curing these data. However, this practice often seems diverging and has not yet been
formalized in a comprehensive way to supply suitable input to models of complex
transport systems, and as a consequence, advanced traffic data are not generally avail-
able. However, the problem formulations and solutions presented in this thesis are
generic, meaning that they are flexible with respect to the type of traffic data and corre-
sponding modeling assumptions they use. This implies that additional traffic data, such
as speeds and density measurements, or even a sample of direct OD flow observations,
can be included in problem formulation.

In this thesis, the focus is on the aggregate OD demand modeling approach to estimat-
ing and predicting dynamic OD demand in the context of DTA. This approach views
trips between every origin to every destination as the unit of analysis, that is, the ob-
served link counts per time interval are used to directly estimate the OD trips over
time intervals. Demand correlations across subsequent time intervals are represented
in an aggregated way, e.g. by auto-regressive process. It should be noted that this
approach differs from the disaggregate demand modeling approach. The disaggregate
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demand modeling approach views individual’s behavior and activities as the unit of
analysis, using the observed link counts to calibrate the parameters of the behavioral
model to estimate OD trips. The behavioral models can range from a simple departure-
time choice model (as in Lindveld et al. (2003)) to a finer activity-based model (as in
Flötteröd et al. (2011)). A shortcoming of the current practice is that despite the dis-
aggregate nature of activity-based travel demand models, dynamic traffic simulation
models used for dynamic traffic management are still based on aggregate OD demand.
Thus, this thesis focuses on estimation and prediction of aggregate OD demand.

Furthermore, the scope of this thesis is limited to the unimodal transport mode of mo-
torized traffic (e.g., cars and trucks). Other transport modes, such as bicycles, trains
and scheduled buses, are not considered. Another limitation is that only a single user
class has been considered, as opposed to multiple user classes each group among mul-
tiple groups of drivers exhibits a different behavior (e.g. route choice behavior). In
addition to these limitations pertaining to the problem formulations and solution al-
gorithms proposed and applied in this thesis, they are also generally applicable to
all dynamic OD demand estimation and prediction approaches used in practice (e.g.,
transport management centers, traffic simulation software).

In this thesis, a real-time dynamic OD demand estimation and prediction method will
be developed for DTMS applications. The term real-time has been defined to avoid
misinterpretation with the term on-line, as these terms are often used interchangeably
in literature. The term real-time in this thesis refers to the ability of the method to
handle traffic data continuously and automatically acquired from traffic surveillance
equipment. This means that current and future OD flows must be estimated and/or pre-
dicted at any point in time, in as short time as possible, based on the most up-to-date
traffic data. Then, as time proceeds, the method uses new sets of observed traffic data
to update the solution and reflect the evolution of transport demand. In fact, many au-
thors refer to their studies as on-line without explicitly quantifying their response time
or any time performance bound, while referring only to the on-line availability of traf-
fic data. Although this research concerns methodological developments for dynamic
OD demand estimation and prediction, it aims to be oriented to application. When
appropriate, the goal is to use real networks and datasets to illustrate proposed models
and algorithms.

1.3 Thesis Contributions

The main contribution of this research has been the presentation of various approaches
to the identification of correlation structures (patterns) in OD flows and the method-
ology to solve the dynamic OD demand estimation and prediction problem efficiently
for real-time applications. More specifically, this has been achieved through following
scientific and practical contributions.
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1.3.1 Scientific Contributions

In summarizing this research’s main scientific contributions, this section combines in-
formation from previous sections with details from the rest of the thesis, in order to
make the scientific contributions concrete.

Literature review classified based on modeling-steps
A rich variety of methods developed so far and in use today are classified based on
the modeling-steps with which the OD demand estimation and prediction is described;
the types of input data, the way in which their relationship with OD flows is modeled,
and the solution approaches for the estimation and prediction of dynamic OD demand.
This approach shows better how various challenges within each modeling-step have
been tackled and how different methods are related to each other.

Dimensionality reduction methods in OD demand estimation
A method for dimensionality reduction and approximation of OD demand has been
proposed based on the feature extraction technique, that is, principal component anal-
ysis (PCA). OD flows, obtained for several previous days or months, subsume var-
ious kinds of information about trip making patterns and their spatial and temporal
variations. The research shows how results of the PCA method can be used to reveal
structures in the underlying temporal variability patterns in dynamic OD matrices. The
results indicate that three main patterns in dynamic OD matrices can be distinguished:
structural, structural deviation and stochastic trends. Insight is presented into how each
OD pair contributes to these trends and how this information can be used further in pre-
dicting dynamic OD matrices on the basis of a set of dynamic OD matrices obtained
from real data. By applying PCA, we find that the dimensionality of dynamic OD de-
mand can indeed be significantly reduced. The research provides illustration of how
PCA can be applied to linearly transform the high-dimensional OD matrices into the
low-dimensional space without significant loss of accuracy.

Methodology for real-time dynamic OD demand estimation and prediction
A methodology to solve the high-dimensionality problem in real-time OD demand es-
timation has been developed, and the research shows the efficiency of the resulting ap-
proximation for large-scale networks. With the acquired knowledge of the potential to
linearly transform the high-dimensional OD matrices into low-dimensional space with-
out a significant loss of accuracy, a new problem formulation and solution approach are
developed. A new, transformed set of variables (demand principal components) is de-
fined and used to represent the dynamic OD demand in low-dimensional space. These
new variables are defined as state variables in a novel reduced-state space model for
real-time estimation and prediction of OD demand. The enhanced quality of dynamic
OD demand estimates is demonstrated using this new formulation and a so-called col-
ored Kalman filter approach for dynamic OD demand estimation and prediction, in
which correlated observation noise is taken into account. Moreover, this demonstrates
that by significantly reducing the dimensionality of the dynamic OD demand while,
preserving the structural patterns, the computational costs can be dramatically reduced.
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Methodology for benchmarking dynamic OD demand estimation
In this research, a methodology for the qualitative assessment of dynamic OD de-
mand estimation methods is developed. Over the last three decades, many dynamic
OD demand estimation methods using various traffic data have been developed. These
methods differ in many aspects, such as time dimension, mapping methodology of traf-
fic data and OD flows, measures of error, solution approaches and type of networks;
adding to the difficulty of creating generalized assessment of OD estimation methods.
The methodology discussed here is generic, in the sense that various OD estimation
approaches can be tested under numerous diverse circumstances related to, for exam-
ple, data availability and quality, and network lay out. One of the central components
of the methodology presented is an efficient Monte Carlo sampling method, the so-
called Latin hypercube (LHC) method. With the results of the benchmark study, it is
easier to decide which methods should be subject to further improvement and which
can be neglected because of their qualitatively undesirable features. The objective of
the benchmark methodology is not to conclude that one approach is the ”best”, but
to provide support for comparison in a variety of settings and conditions. One can
use the methodology to perform sensitivity analysis on single or multiple dynamic OD
estimation methods.

Measures of performance in OD demand estimation
The structural relationships in OD demand can generally be explained by two types of
patterns in OD demand, i.e., temporal and spatial pattern. In this thesis, a new perfor-
mance indicator, Structural SIMilarity (SSIM) index, that quantifies the dependencies
between OD pairs is proposed. To illustrate, under the assumption that any prior OD
matrix or available true OD matrix contains the best possible pattern information, the
SSIM index can be viewed as an indication of the quality of the estimated OD matrix
compared to the prior OD matrix or true OD matrix, respectively. This is important
in applications where it is necessary to know whether a particular OD demand estima-
tion method can reproduce actual OD demand. Therefore, the performance indicator
can be applied as additional quality measure for benchmarking task of dynamic OD
estimation methods.

1.3.2 Practical Contributions

The proposed dynamic OD demand estimation method is developed for specific ap-
plications on large-scale networks. When compared to other dynamic OD demand
estimation methods, the dimension of the state vector is drastically reduced. Because
of this dimensionality reduction the development of a solution approach that allows for
efficient computations of dynamic OD demand using traffic data in real time was pos-
sible. This is well-suited for applications that require a methodology using observed
up-to-date data from the traffic network and gives fast, accurate estimation and predic-
tion results. The practical relevance of the methodology presented here emerges in the
following applications: dynamic traffic assignment, real-time traffic state estimation
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and prediction, dynamic traffic management in uncongested and congested networks,
or in case of unforeseen events. These applications have a great impact on the develop-
ment of tools and information- generation tailored to influencing individual behavior.
For example, city and transport authorities will get more efficient transport networks at
a within-day level through better individualized travel advice. On the other hand, the
users of those networks will have more reliable journey times, either through reduced
journey times or perhaps higher quality experiences.

Insights into the performance of dynamic OD demand estimation methods also greatly
benefit practitioners for whom a benchmarking tool would provide a way to assess
the quality of the estimated dynamic OD matrices and construct confidence bounds
around them. This would, in turn, facilitate the calibration and validation of simulation
models using OD demand estimations. With this benchmark methodology one can, for
example, determine the particular situations and conditions under which one approach
might behave more favorably than another. In the case of transport modelers and ITS
operators, these advanced tools will allow them to update their applications to meet the
latest modeling advances and evaluate the transport benefits of different management
and operation scenarios. Road agencies and city planners will also profit from the tools
to make reliable decisions regarding investment in data-collection technologies.

1.4 Thesis Outline

This thesis is structured on four papers and the chapters are given in the their chrono-
logical order. The content of each chapter and how they relate are schematically out-
lined in Figure 1.1.

The outline of the thesis is presented in the following and for each chapter reference
to the publication is given. Chapter 2 gives an extensive overview and discussion
of the methods previously proposed in literature to estimate and predict dynamic OD
demand. The discussion points out relevant challenges and research gaps, laying the
foundation for the rest of this thesis.

Chapter 3 presents the efficient benchmark methodology to assess the performance
of dynamic OD demand estimation methods. Special attention is dedicated to the de-
sign of a generic approach and efficient generation of scenarios and simulations. Each
chapter consists of a methodological part and an illustrative case study for real net-
works. This chapter has been published as: Djukic, T., J. W. van Lint, S. Hoogendoorn,
An Efficient Methodology For Benchmarking Dynamic OD Demand Estimation Meth-
ods. Transportation Research Record: Journal of the Transportation Research Board
2263(1): 35-44, 2011.

In Chapter 4 the concept of dimensionality reduction and approximation of OD de-
mand is presented as a solution for the high dimensionality of the OD demand estima-
tion and prediction problem. This chapter has been published as: Djukic, T., J. W. van
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Figure 1.1: Outline of the content of this thesis

Lint, S. Hoogendoorn, Application of Principal Component Analysis to Predict Dy-
namic Origin-Destination Matrices. Transportation Research Record: Journal of the
Transportation Research Board 2283(1): 81-89, 2012.

In Chapter 5, dynamic OD estimation and prediction methodology is adapted to im-
prove computational efficiency and provide reliable OD demand estimates for real-time
applications. In this way, the dimensionality of the state vector is reduced, while en-
suring that most of the structural information about demand is preserved. This chapter
has been published as: Djukic, T., G. Flötteröd, H. van Lint, S. Hoogendoorn, Efficient
real time OD matrix estimation based on Principal Component Analysis. Proceedings
of the Intelligent Transportation Systems Conference, Anchorage, Alaska, 2012.

The focus of Chapter 6 is placed on the choice and evaluation of performance indi-
cators in dynamic OD demand estimation. Potential drawbacks in standard measures
are identified and a new performance indicator is proposed to evaluate the patterns in
OD matrices. This chapter has been published as: Djukic, T., S. Hoogendoorn, H. van
Lint, Reliability assessment of dynamic OD estimation methods based on structural
similarity index. Proceedings of the of the Transportation Research Board: 13p, 2013.

Finally, Chapter 7 summarizes the main conclusions and implications of this thesis
and gives recommendations for future work on this topic.



Chapter 2

State-of-the-art dynamic OD demand
estimation and prediction

This chapter presents a review of dynamic OD matrix estimation and prediction meth-
ods. The review follows the evolution of the development of dynamic OD demand
estimation and prediction methods since they were first introduced in the 1980’s. It
started with the use of link traffic counts at intersections (Cremer & Keller (1987)),
which were translated into a practical generic optimization problem by Cascetta et al.
(1993). This OD demand problem formulation has received a lot of attention in the lit-
erature and has been continuously improved and extended. Increasing effort has been
put into making dynamic OD estimation and prediction methods produce empirically
more realistic outcomes and improving their computational efficiency, resulting in a
variety of approaches to the dynamic OD estimation and prediction problem.

The chapter starts with a generic description and formulation of the dynamic OD es-
timation and prediction problem in Section 2.1. A brief overview of the categorization
based on the modeling-steps with which the OD demand estimation and prediction is
described is given in Section 2.2. Further, special attention is paid to each of these
modeling-steps and detailed literature review is provided in Section 2.3. How the mod-
els evolved to predict OD flows is described in Section 2.4. Section 2.5 connects the
discussions of all chapters and gives an overview of the main findings.

11
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2.1 Generic formulation of the dynamic OD estimation
and prediction problem

The purpose of this section is to provide a generic formulation of the dynamic OD
demand estimation and prediction methods that would accommodate all methods cur-
rently proposed in the literature.

2.1.1 Generic formulation of the dynamic OD estimation problem

In transportation modeling, the study area is divided into zones, and each zone’s char-
acteristics, like attraction (e.g., vicinity to employment) and production (e.g., popula-
tion) are determined. The transportation network, which is illustrated in Figure 2.1, is
represented as a directed graph G(U,L).
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Figure 2.1: Network description: origins, destinations and intermediate nodes, con-
nected by direct links

This network consists of directed links l ∈ L, where L is the set of links which are
connected by nodes u ∈U , where U is set of nodes. Three node types exist: origins
o ∈ O, where O is the set of origin nodes, i.e. the locations from where the trip starts;
destinations d ∈ D, where D is the set of destination nodes, i.e. the locations at which
trip ends; and intermediate nodes z ∈ Z, where Z is the set of intermediate nodes, i.e.,
intersections on network. Each zone is connected to the network via centroids, the
centroid corresponds to origin or destination nodes in the zone. Let Ω ⊆ U ×U be
set of all n OD pairs in the network, and L̂ ⊆ L be the set of r links where traffic data
observations are available. The time horizon under consideration is discretized into K
time intervals of equal duration, indexed by k = 1,2, ...,K. If x ∈ Rn represents the
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OD demand for each OD pair in Ω , the xk represents the OD demand at departure time
interval ki, i = 1, ...,K. In this chapter the dynamic OD demand is represented by a
vector, rather than a matrix. It is also important to define κ , the maximum number
of time intervals needed to travel between any OD pair in the network. For instance,
in dynamic context, depending on the size of the network and its complexity (travel
times and distance from the origin o to the destination d), some vehicles could need
more than one time interval to reach their destination d or pass traffic sensor at link
l. The vector yk,L̂ = A(xh) ∈ Rr, for time interval h = k,k−1, ...,k−κ , represents the
observed link traffic data at time interval k (e.g. link traffic counts) for each link in L̂.

Before defining the dynamic OD demand estimation problem, it is necessary to express
the relationship between the vector of observed link traffic data and the OD flows,
given by assignment function A(xh). Clearly, the assignment function A(xh) plays an
important role in estimation process of dynamic OD demand. To explain the traffic
assignment model we assume that vector yk represents link traffic counts observed in
time interval k. The assignment process can be decomposed as follows, independently
of the nature of the traffic assignment model.

For all i ∈Ω , let Pi be the set of pi feasible paths linking OD pair i. The total number
of paths in the network is given by p = ∑i∈Ω pi. The formal dependence between link
and route flows is given by link-route proportion matrix, Rh

k ∈ Rr×p, whose elements
denote the proportion of route flow i departing in time interval h contributing to link
flow l in time interval k. These proportions depend on how link flows are defined, when
each route flow reaches link l, and how flows move on links. Commonly, path flows are
modeled as space-discrete packets, which means that for this approach the elements of
Rh

k are either 0 or 1, depending on whether packet [p,h] crosses the detector on link l
during time interval k.

The formal dependence between OD flows and route flows is defined by demand-route
proportion matrix, Bh ∈Rp×n. This matrix express the proportion of OD flow i choos-
ing a route p given the departure interval h. Clearly, in uncongested networks, the
matrix Bh vary moderately as a function of the OD flows. However, in congested net-
works, the dependence of the matrix Bh to the OD flows becomes more pronounced
and significantly complicates dynamic OD estimation problem (more elaborate discus-
sion will be provided in Section 2.3.2).

By combining link-route and demand-route proportion matrix, the traffic assignment
matrix Ah

k ∈ Rr×n is defined as

Ah
k =

k

∑
h=k−κ

Rh
kBh (2.1)

and assignment model is given by

A(xk−κ , ...,xk) =
k

∑
h=k−κ

Ah
kxh (2.2)
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Thus, the relationship between observed link traffic counts and OD demand can be
expressed as:

ŷk =
k

∑
h=k−κ

Ah
kxh (2.3)

Now, dynamic OD demand estimation problem can be defined. Given a vector of
observed traffic data at time interval k, yk ∈ Rr, the dynamic OD estimation problem
consists of finding an OD demand for departure time k, xk, such that ŷk,L̂(xh) is as close
as possible to observed values yk. Therefore, the dynamic OD estimation problem is
formulated as:

x̂k = argmin
x≥0

f (
k

∑
h=k−κ

Ah
kxh,yk) (2.4)

Function f is given in the form of functions measuring the deviation between estimated
and observed traffic data, as will be discussed in section 2.3.3.

Usually, the information on dynamic OD flows contained in link traffic counts, repre-
sented by the system of stochastic equations depicted in (2.3), is insufficient to estimate
the dynamic OD flows. Indeed, even if we assume linear system of equations, the num-
ber of r independent equations is usually much less then the number of unknown OD
flows n to be estimated. Thus, for most practical applications, the dynamic OD esti-
mation problem is underdetermined. That is, there is an infinite number of valid OD
matrices that, when assigned on the network, exactly reproduce the link traffic counts
observed on the links.

In summary, the information contained in link traffic counts must be combined with
that from other sources to estimate the unknown OD demand flows. To overcome that
problem, it is common to use a historical OD demand for time interval k, x̃k, referred
here as a prior OD demand, and to select among the infinite number of potential can-
didates the one that is closest to the prior OD demand to reach a unique solution. The
prior OD demand is usually obtained from a transportation studies, travel surveys, or
estimations of OD flows from previous days. Further techniques, based on additional
data to identify a structure of the OD demand, have also been proposed as an attempt
to address underdetermination (see, for example, Bierlaire and Toint, (1995)). Sec-
tion 2.3.1 provides a detailed overview of different types of traffic data that provide
additional information on OD flows.

Finally, the dynamic OD estimation problem can be rewritten as follows:

x̂k = argmin
x≥0

[α f (xk, x̃k)+(1−α) f (
k

∑
h=k−κ

Âh
kxh,yk)] (2.5)

Regardless of the function f used, the purpose is to obtain an OD matrix that yields
OD flows and traffic data as closely as possible to their observed values. Note that
the weighted formulation can be adopted to combine the two sets of deviations, with
respective weights α and (1−α) for the first and second function. The weights could
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be interpreted as the decision maker’s relative preferences or importance belief for the
different objectives. For example, if provided prior OD demand information is not
reliable a small value of α is used, and vice versa.

2.1.2 Generic formulation of the dynamic OD prediction problem

Let t ∈ K be a prediction horizon, t > 0, and xk+t is a vector of predicted dynamic OD
demand for time interval [k,k+ t]. Let τ , k > τ ≥ 0, denotes the number of past time
intervals that capture the effect of previous state estimates on the state in current time
interval k. Given a vector of prior OD demand x̃, and vector of real-time OD demand
estimates x̂, the dynamic OD prediction problem can be formulated as:

xk+t = g(x̂k, x̂k−1, ..., x̂k−τ , x̃k+1, x̃k, ..., x̃k−τ) (2.6)

where g is function that represents the spatial and temporal OD flow relations between
intervals k− τ and k + 1. For example, function g can be formulated as a random
walk model, linear trend model, or autoregressive model. Section 2.4 provides more
elaborate discussion on various examples of dynamic OD demand prediction methods.

The dynamic OD matrix estimation and prediction framework is depicted in figure 2.2.

Estimated  
OD demand 

Predicted traffic data: 
flows, speeds, densities, 

travel times, etc. 

Prior 	


OD demand	



Traffic assignment model 

Observed traffic data: 
flows, speeds, densities, 

travel times, etc.	



OD demand estimation and 
(prediction) model	



Figure 2.2: The overview of dynamic OD matrix estimation (and prediction) frame-
work
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2.2 Categorization of dynamic OD demand estimation
methods

In this section, categorization of dynamic OD demand estimation methods proposed
in literature is presented. It serves as reference for the overall picture in the detailed
discussions of the problem formulations and solution approaches in Section 2.3.

The focus in literature in the dynamic OD estimation problem has been quite diverse.
To present the different methods in organized fashion, a classification is therefore nec-
essary. Categorization of dynamic OD demand estimation and prediction methods
has been done so far according to different criteria such as whether the DTA model
is needed for generating link flow proportions - traffic assignment-based or non-traffic
assignment-based (Zhou (2004)), recursive vs. non-recursive approaches (Nie (2006)),
the scale of the application - closed networks vs. open networks (Ashok (1996)), off-
line vs. on-line (Antoniou et al. (2004), Zhou (2004), Peterson (2007)), traffic con-
ditions - uncongested vs. congested (Bert (2010)). These classifications are closely
related since they have in common that they refer to the application domain of the
dynamic OD estimation methods.

The overview given in this chapter takes different approach and gives a literature
overview through the most important steps involved in dynamic OD demand estima-
tion and prediction modeling. A rich variety of methods developed so far and in use
today are classified based on the modeling-steps with which the OD demand estimation
and prediction is described; the types of input data y, x̄, the way in which their rela-
tionship with OD flows is modeled A(x), and the solution approaches f for the estima-
tion and prediction of dynamic OD demand. This approach shows better how various
challenges within each modeling-step have been tackled and how different methods
are related to each other. This review will mainly consider theoretical issues of each
modeling-step derivations and characteristics. However, some practical issues, such as
application domain, are discussed as well. Furthermore, it forms the basis for further
research directions within each modeling step. Static OD demand estimation methods
are omitted in literature review. This would make review much more extended without
adding much insight since all dynamic OD estimation methods has been formulated as
extensions of static methods.

To this end, the discussed dynamic OD estimation methods are classified according to
the following modeling steps:

• Input data: The input data can represent link flows, OD flows, travel times,
traffic densities, route paths, network design, etc. This distinction is important
because different types of input data provide different information on OD flows
and result in different problem formations and assumptions. In this respect, OD
flow data, route flow data and link condition data will be distinguished.
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• Mapping of OD flows to input data: From a modeling point of view, the most
distinguishing difference between the OD demand estimation approaches, is how
the relationship between state variables (e.g., OD flows, OD proportions) and
any available traffic data (e.g., link traffic counts) is defined, calculated and re-
calculated through out the estimation process. An accurate description of this
relationship leads to an accurate description of traffic state reality, but to more
complexity as well. With respect to the operationalization criterion, this rela-
tionship can be operationalized either as analytical solutions of sets of equations
or as a simulation model.

• Objective function and solution approach: The definition and/or choice of
objective functions depends on whether explicit assumptions are made on the
probability distribution of the random residuals of OD flows and traffic observa-
tions. In this respect, existing approaches are distinguished by applied objective
functions, i.e., least squares, state-space and entropy maximization. The solution
framework has to take into account the formulated objective function and con-
straints imposed in the previous two steps. The properties of a solution frame-
work and algorithm determine the application domain of dynamic OD demand
estimation model, i.e., for off-line or real-time applications.

Table 2.1 presents an overview of some well known dynamic OD estimation methods
based on proposed criteria. While not being exhaustive, the table provides insights
into dynamic OD demand estimation efforts during the last three decades of related
research.

In the reminder of this chapter, the dynamic OD estimation methods are discussed in
more detail, in the order of the modeling− steps classification (input data, mapping
of OD demand to input data and solution approaches). The aim of the discussion is
to provide some insight into main challenges and goals of each modeling-step and
resulting solution approaches.

2.3 Dynamic OD demand estimation: State-of-the-art

2.3.1 Types of input data used in dynamic OD demand estimation
and prediction

OD flows are difficult to observe directly, because this would require continuous ac-
cess to the trips and tracking of vehicles on network. Since it is not often possible
to directly observe OD matrices, they must be estimated from available traffic data.
In the last decades, the amount of empirical traffic data becoming available for both
on-line and off-line use has increased, particularly in terms of the wide range of sensor
technologies developed and applied to collect traffic data. Traffic sensors may range



18 TRAIL Thesis series

Table 2.1: Overview of dynamic OD demand estimation methods

Input data Mapping Objective function
Author ODF RF LC A-DTA S-DTA GLS SS ME
Bell (1991) + + + +
Cascetta et al. (1993) + + + +
Chang & Wu (1994) + + + +
Chang & Tao (1996) + + + + +
Wu (1997) + + + +
Van Der Zijpp &
De Romph (1997) + + + + +

Tavana (2001) + + + +
Sherali & Park (2001) + + + +
Dixon & Rilett (2002) + + + +
Ashok & Ben-Akiva
(2002) + + + + +

Mishalani et al. (2002) + + + +
Tsekeris (2003) + + + +
Lindveld et al. (2003) + + + +
Bierlaire & Crittin
(2004) + + + +

Kwon & Varaiya
(2005) + + + + +

Zhou & Mahmassani
(2006) + + + +

Antoniou et al. (2006) + + + + +
Balakrishna (2006) + + + +
Zhou & Mahmassani
(2007) + + + + +

Barcelo (2010) + + + + +
Cipriani et al. (2011) + + + +
Frederix et al. (2011) + + + +
Input data: ODF, OD flow data; RF, route flow data; LC, link condition data; Map-
ping of OD flows to inout data: A-DTA, analytical based dynamic traffic assignment;
S-DTA, simulation based dynamic traffic assignment; Objective functions: GLS, gen-
eralized least squares; SS, state-space; EM, entropy maximization.
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from inductive loop detectors, radar, ultrasonic sensors, and electronic toll collection
devices to infrared cameras (automatic vehicle identification (AVI) data) and in-vehicle
GPS/GSM receivers/transmitters (automatic vehicle location (AVL) data). Nowadays,
AVL data (or floating car data (FCD)) can also be obtained with mobile phones and
Bluetooth devices, among others. Sensors typically measure traffic characteristics,
which are the result of not only OD demand, but also route choice and traffic opera-
tions.

Although data from traffic sensors come in many forms and qualities, they can essen-
tially be subdivided into three categories depending on the source of information on
OD flows and traffic operations. The types of input data that are used in literature for
dynamic OD estimation and prediction are subdivided as depicted in Figure 2.3: (1)
OD flow data; (2) route flow data; and (3) traffic condition data. The first type of input
data, OD flow data, represent direct observations of OD flows obtained from surveys
or probe vehicles. The second type of input data, route flow data, are determined by
the travel behaviour process. This process describes travel choices: when to depart,
which mode to use, which route to choose. The third category of input data, traffic
condition data over network, is determined by traffic operations. These data describe
traffic state on a network: link flows, travel speeds, travel times, densities, etc. The
sources of input data and their application in dynamic OD demand estimation and pre-
diction process are discussed below.

Traffic 
operations 

Route 
choice 

OD flow 	


data	



Route flow 	


data	



Traffic condition 
data	



Figure 2.3: Types of input data used in dynamic OD demand estimation and prediction

To illustrate on a very simple network example, suppose there are four OD flows go-
ing from A to C, A to D, B to C and B to D (see Figure 2.4). Figure 2.4 gives some
examples of different traffic sensors and the spatio-temporal semantics of the traffic
variables that can be observed with those sensors. This figure will be used as a refer-
ence to explain the most important sources of OD data, and their features for dynamic
OD demand estimation and prediction.

OD flow data

OD flow data may be collected from traffic data collection points and surveys that
provide observation of OD flows on a network. These data, that depend on the degree
of information on OD flows available, encompass full information (i.e., OD flows over
all OD pairs are known) or partial information on OD flows (i.e., a fraction of OD
flows over few or all OD pairs are known).
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Figure 2.4: Examples of some traffic data and their sources

Observations of OD flow data are rare. Data on OD flows collected from preference
surveys among a sample of travelers (derived from home- and road-side interviews)
may provide a detailed picture of trip patterns and travelers’ destination choices. These
surveys collect sample data related to the OD flows and spatial distribution of OD
flows. However, this information on OD demand represents an aggregate value over
fixed time, i.e. static OD demand and does not provide temporal distribution of demand
over time. Different proposals have been elaborated for pre-processing static OD de-
mand to obtain dynamic OD flows. One approach is a time slicing of the static OD
matrix based on available traffic counts per time interval (TSS (2006)). Accordingly,
each OD pair flow for one time interval is modified by the same percentage, resulting
in unreliable input information for the OD demand estimation and prediction problem.
The practical and theoretical limitations of survey OD generation techniques have led
to an exploration of how such data could be derived from equipped vehicles with in-
vehicle traffic sensors that act as probes by transmitting their origin and intended trip
destination when they initiate a trip.

Automatic vehicle location (AVL) data are receiving attention for their potential to
provide a large sample of OD flow data. The observation of OD flows from in-vehicle
traffic sensors (e.g., GPS and GSM) allows the detection of vehicles in multiple loca-
tions as they traverse the network. This feature makes the re-identification and tracking
of these probe vehicles possible, which in turn may (under certain conditions) provide



Chapter 2. State-of-the-art dynamic OD demand estimation and prediction 21

information on particular OD pairs (e.g., OD pair AC in Figure 2.4). In an ideal case,
if data on OD flows are collected from all vehicles equipped with in-vehicle traffic
sensors, full information on OD flows over all OD pairs can be extracted. Today, probe
vehicles constitute only a fraction of the total number of vehicles in a network. Thus,
in-vehicle data provide partial information on total OD flows as depicted in Figure
2.5(b). Several models have been developed for the estimation of OD flows using AVL
data (N. Caceres (2007), Ashok & Ben-Akiva (2000), Van Aerde et al. (1993)). Ashok
& Ben-Akiva (2000) introduced the notion of direct measurements for the incorpora-
tion of AVL data into the solution of the OD estimation and prediction problem.
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Figure 2.5: Illustration of full and partial information on OD flows from OD flow data
sources: a) full information on OD flows and b) examples of partial information on
OD flows with respect to full information on particular OD pairs (dark blue color) or
their sample (light blue color)

Automatic vehicle identification (AVI) data represent another OD flow data source of
growing importance for estimating dynamic OD demand flows. The observation of
OD flows from AVI sensors (e.g., electronic-toll collection devices, infrared cameras,
Bluetooth, WiFi, etc.) depends on: a) the location of these traffic sensors on a network,
as depicted in Figure 2.4 and b) the sample of tagged vehicles. In an ideal case, if cam-
eras are located on links connected to origin and/or destination nodes on a network,
they can provide under some assumptions total demand that departs from origin B or
arrives at destination C, as represented in Figure 2.5(b). If only a subset of vehicles is
equipped with transponder tags or only a subset of vehicles is correctly identified by
the AVI readers, then these OD flow data need to be explicitly considered in order to in-
fer OD flows over all OD pairs. Several models have been developed for the estimation
of OD flows using AVI data (Asakura et al. (2000), Dixon & Rilett (2002), Antoniou
et al. (2006)). In brief, these models require estimating the sample rate (either market
penetration rates or identification rates) so as to relate the AVI samples to the OD de-
mand. The estimation of sample rates, however, is a difficult problem in its own right,
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as these rates are essentially time-dependent and location-dependent random variables.
Moreover, the inclusion of sample rates in the OD demand estimation problem could
dramatically increase the number of unknown variables and impact the reliability of
OD demand estimates. To circumvent primary difficulties associated with estimating
sample rates, Zhou & Mahmassani (2007) developed an OD demand estimation model
using partially observed AVI data.

Route flow data

New technologies for probe vehicle re-identification and tracking (e.g. AVI systems
and AVL systems) might provide route data, such as partial point-to-point travel times,
route choice fractions, vehicle paths, and turning fractions. The data may come from
cameras that capture and compare vehicle plates or from floating car data which may
report the vehicle’s location at certain intervals to construct trajectories, as is depicted
in Figure 2.4. The difficulty for the OD demand model formulation is to define the
relationship between traffic flow data and OD flows. Thus, the identification of trajec-
tories or route travel times can help to identify or estimate route flows. Therefore, they
provide constraints on the traffic conditions resulting from assigning the OD flows to
the network. Estimating OD matrices only from link flow data can be rather challeng-
ing given the indeterminate relation between link flow observations and route flows
(Parry & Hazelton (2012)). Hence, few researchers have tried to integrate route flow
data into the dynamic OD demand estimation problem. Examples include: turning
fractions (e.g.,(Van Der Zijpp & De Romph (1997), Mishalani et al. (2002)) and route
flows (e.g., Sun & Feng (2011), Antoniou et al. (2006)).

Traffic condition data

Traffic link flow data collected from loop detectors at specific locations on a network
are the most common type of input data used in dynamic OD demand estimation and
prediction. The traffic link flow data could either be collected in the middle of a road-
way segment, at entry or exit ramps on highways, or across a screen-line in an urban
area. The number and position of loop detectors on an urban or highway network plays
an important role, since traffic link flow data from these detectors can provide different
information on OD flows. In an ideal case, if link flow data are collected on road seg-
ments belonging exclusively to routes used to serve one particular OD pair, they can
provide information on OD volume for that particular OD pair. In addition, if loop de-
tectors are located on links connected to origin or destination nodes on a network, they
can provide under some assumptions total demand that departs from origin B or arrives
at destination C, as represented in Figure 2.5(b). The traffic link flow data observed
by loop detectors located on links between nodes 1 and 2 in Figure 2.4 are comprised
of contributions from several OD flows (i.e., OD pairs: AC, AD, BC, BD). Thus, such
link flow data require adequate specification of relation and mapping with OD flows.
This procedure is discussed in detail in Section 2.3.2.
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Apart from traffic link flow data, loop detectors are able to detect speeds and occupancy
at links in the network. The available speed or derived density measurements can help
to identify whether traffic link flow data represents a congested or uncongested traffic
state on a network. As such, they can facilitate correct interpretation of traffic link flow
data, and identification of OD flows that need to be adjusted, and in which direction.
The simplest approach to including this type of input data is to include speed or density
measurements in the goal function of the dynamic OD estimation problem given by
equation 2.5 (e.g., Balakrishna (2006), Cipriani et al. (2011), Frederix et al. (2011));
or travel times (e.g., Barcelo (2010), Cipriani et al. (2011)).

Discussion

The above summary of the traffic data used to estimate the OD demand follows the his-
torical lines of the development of dynamic OD matrix estimation methods since they
were first introduced in the 1980’s. The application of link flow data for estimation
of dynamic OD flows has largely remained present in relevant literature since the pio-
neering work of Willumsen (1978), Van Zuylen (1978) and Nguyen (1977). However,
today, the development of new traffic surveillance technologies has turn researchers’
attention and attempts to applying observations of OD flows and traffic condition data
in OD demand estimation and prediction.

The traffic data may be unreliable, inaccurate or have limited time-space coverage.
Concerns about emerging data collection systems have concentrated on privacy fears,
high error rates, misidentification and high investments. Therefore, in this thesis, link
flow data and OD flow data will be taken as input data, as they provide the minimum
data needed to complete an OD estimation, and in a majority of cases, they are the
only available data for the concerned study area (including other type of input data is
an interesting area for further research, see Chapter 7.2).

The next sections will show how the existing OD demand estimation methods use the
above-mentioned input data to estimate dynamic OD flows.

2.3.2 Mapping of OD flows to input data

This section describes the most critical issue in OD matrix estimation, whether static or
dynamic, the relationship (mapping) of the observed link flow data and traffic condition
data with unobserved OD flows. From a modeling point of view, the most distinguish-
ing difference between the OD demand estimation approaches presented in literature,
is how the relationship between OD flows and any available traffic data (e.g. link traf-
fic counts, speeds, densities, etc.) is defined, calculated and re-calculated through out
the estimation process. This relationship is accomplished by means of an assignment
matrix introduced in Section 2.1.1. In the dynamic problem, the assignment matrix
depends on link and path travel times and traveler route choice fractions - all of which



24 TRAIL Thesis series

are time-varying, and the result of dynamic network loading models and route choice
models. These dynamics are reflected in travel times between each origin and destina-
tion trips on a network, influenced by traffic link flow. While a vast body of literature
has been developed in this area over the past three decades, this section focuses on
some of the efforts that highlight the basic problem dimensions.

The assignment function that provides mapping between the unknown OD flows and
link traffic counts is a complex function of the OD demand, driver route choice de-
cisions, departure time choice and resulting network travel times. Here we recall as-
signment function defined in section 2.1, where the relationship between observed link
traffic counts and OD demand can be expressed as:

ŷk =
k

∑
h=k−κ

Ah
kxh + εk (2.7)

where random vector εk is the sum of two (independent) modeling and observation
errors.

The elements of assignment matrix are generally a function of the OD flows, and they
represent both the propagation of the OD flows, the departure time and the route choice
decisions related to an OD flow. The assignment matrix can be seen as the product of
two terms (see Cascetta et al. (1993)):

Ah
k =

k

∑
h=k−κ

Rh
kBh (2.8)

Equation (2.8) shows that the actual computation of a dynamic assignment matrix de-
pends on the modeling of users’ route choice behavior (i.e., route choice model) and
the modeling of route flow movement in the network (i.e., dynamic network loading
model). These two models form part of the Dynamic Traffic Assignment (DTA) frame-
work depicted in Figure 2.6.

In the equation (2.8), the elements bi,h
p of the demand-route proportion matrix, Bh, ex-

press the proportion of OD flow i departed in time interval h choosing a route p. In
practice, the demand-route proportion matrix can be obtained through use of a Route
Choice (RC) model. The RC model distributes trips in the dynamic OD matrix over the
available routes for each departure time and each OD pair. The route flows are trans-
ferred to a Dynamic Network Loading (DNL) model that simulates spatio-temporal
propagation of route flows through the network and computes the dynamic link travel
times and dynamic link flows. The elements, ri,h

l,k, of the link-route proportion matrix,
Rh

k , denotes the proportion of route flow i departing in time interval h contributing to
link flow l at time interval k. These proportions depend on how link flows are defined,
when each route flow reaches link l, and how flows move on links. Route travel times
are transferred back into the RC model and users may adapt their chosen route accord-
ing to the new traffic conditions. The DTA is thus an iterative procedure, converging to
dynamic traffic equilibrium. In addition to choosing a route, travelers can also decide
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Figure 2.6: Dynamic traffic assignment framework

to change their departure time. The departure time choice model uses the OD travel
times for each departure time to determine the optimal departure time for all travelers
and produces departure time rates. The departure time choice model is an optional
component of DTA models. To be as realistic and flexible as possible, here analytic
and simulation based DTA approaches will be discussed briefly, including which traffic
data (route flows and traffic condition data) are important for these approaches.

Analytic DTA models

When route flows or traffic condition data are observable (travel times in the network
or route-choice fractions can be estimated), the analytical expressions can be derived
to compute the traffic assignment matrix. The elements of assignment matrix can be
calculated easily if travel times on all links are known under free-flow conditions on
a network. The analytic DTA models describe the average behavior of traffic with
macroscopic traffic flow variables such as inflow rates and travel times. In addition,
to accommodate considerations of erroneous travel times or route-choice fractions, a
stochastic assignment matrix based model might be preferred (Ashok & Ben-Akiva
(2002), Van Der Zijpp (1997)). Although these models have potential as tools for de-
riving theoretical insights, well-behaved mathematical formulations are currently un-
available, which remains the primary difficulty in ensuring the first-in-first-out (FIFO)
property (Peeta & Ziliaskopoulos (2001)). These negative properties severely restrict
the function that maps route flows on travel times, i.e., the DNL model. There may be
situations, however, where the available surveillance system only allows for measure-
ment of link counts. In such a scenario, and to avoid mathematical intractability, the
assignment matrix would be obtained through the iterative application of simulation-
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based DTA models and OD estimation models, to describe certain traffic phenomena
more accurately, even at higher computational costs.

Simulation DTA models

Simulation DTA models use a traffic simulator to replicate the complex traffic flow dy-
namics, critical for developing meaningful operational strategies for real-time deploy-
ment (Peeta & Ziliaskopoulos (2001)). Indeed, simulation DTA models keep track of
individual vehicles, or vehicle packets, at each time step, and describe more accurately
certain traffic flow phenomena than analytical models. The models use sophisticated
algorithms and detailed macroscopic, microscopic, and mesoscopic simulation tech-
niques to estimate current network performance, predict future conditions and gener-
ate traffic guidance. Both in academia and in practice, many different DTA simulation
models are used to compute assignment matrices in the context of dynamic OD de-
mand estimation. Examples include DYNASMART (Zhou & Mahmassani (2006), Ta-
vana (2001)), Dynamaq (Cipriani et al. (2010)), MitSimLab (Balakrishna et al. (2007)),
DynaMIT (Gupta (2003)), and Aimsun (Barcelo et al. (2010)).

These simulation models use different DNL models and RC models, which have dif-
ferent effects on dynamic OD demand estimation. The choice of DNL model and RC
model within a DTA framework significantly influences the accuracy of dynamic OD
demand estimation. The effect of DNL models on DTA based OD demand estima-
tion has been studied by Frederix et al. (2010). Their results indicated that applying
a DNL model that represents queuing properly is a necessary condition, but not suffi-
cient to guarantee an accurate OD estimation. The authors note that convergence is not
guaranteed when the historical OD matrix is not close to real OD demand. Including
traffic condition data about the traffic state in the OD estimation problem, in the form of
speeds or travel times can be an effective solution to this problem (see e.g., Balakrishna
et al. (2007), Ashok & Ben-Akiva (2002), Tavana (2001)). In general, there are two
recognized approaches to including traffic condition data in OD estimation process.
The first approach uses speed measurements and travel times as an empirical alterna-
tive to an analytical DNL model to derive the assignment matrix as discussed above.
The second approach uses speed measurements and densities as additional information
within an objective function (equation 2.5). While the effect of DNL models has been
studied in literature, the effect of RC models still remains open for research. Peeta
& Ziliaskopoulos (2001) provided a state-of-the-art review and detailed discussion of
formulation approaches, solution methodologies and traffic flow modeling strategies
on the DTA problem.

Recently, research efforts have emphasized the importance of accurate modeling of
the relationship between unknown OD flows and link flows under the congested traffic
state to improve dynamic OD demand estimation. To determine OD flows, it becomes
necessary to understand which information traffic observations provide in congested
networks (Figure 2.7).
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Figure 2.7: Mapping in congested traffic conditions

Suppose that there is a bottleneck between node 1, n1, and destination node B, nB, with
a capacity lower than the demand between A and B. Then, the queuing occurs upstream
of this bottleneck (see Figure 2.7). As long as demand exceeds capacity, this queue will
grow, and it will eventually spill back onto detector d12. From that moment, link traffic
counts will no longer provide information on OD demand, but will rather measure
information on the supply, i.e., capacity of the bottleneck. Thus, the assumption that
the traffic assigned to a path or a link is proportional to the demand values is not valid
in congested traffic conditions. As can be deduced from the assignment relationship in
equation (2.8), there are two main sources of non-linearity leading to the non-convexity
of the dynamic OD estimation problem: the dependence of the link-route proportion
matrix, D, on OD flows, and the dependence of the demand-route proportion matrix,
R, on OD flows. The influence of non-linearity of the link-route proportion matrix on
OD estimation has been studied by several authors (e.g., Flötteröd & Bierlaire (2009),
Frederix et al. (2011)). In Frederix et al. (2011), the method of Marginal Computation
is used to efficiently calculate the sensitivity of the link flows to the OD flows, which is
not captured by the linear approximation of the relationship between OD flows and link
traffic counts given by equation (2.7). The difficulty of deriving an exact calculation
of the non-linear relationship between traffic condition data and OD flows has resulted
in different solution frameworks that will be discussed in detail in following sections.

The following section will provide an overview of how this complex relationship be-
tween traffic data and OD flows was incorporated within solution frameworks.

Discussion

Current efforts, while continuing to address the fundamental issues, are increasingly
focusing on real-time operational issues such as robustness of the DTA, given the in-
herent system randomness. An important research direction is to improve the represen-
tation capability of DTA models to adequately describe traffic dynamics and behavioral
processes in a network. It is vital to have an accurate DTA models that would realis-
tically describe network flow distributions, to capture the effects of congestion as well
as route choices. If DTA models are not realistic, they will lead to biased OD demand
estimates.

The work presented in this thesis focuses on simulation DTA approaches concerning
traffic assignment. Indeed, simulation tools are more realistic and flexible in terms
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of utilization, customization and validation in benchmark task with other models pro-
posed by the scientific community. Moreover, the models deal better with the complex
dynamic situations and high level of network detail than analytical models. Never-
theless, in this thesis it is assumed that a DTA model should always ensure that the
evolution of congestion patterns and travel times are well-captured.

2.3.3 Objective functions and solution frameworks

This section discusses the error measures f , given in equation (2.5) as part of the dy-
namic OD demand estimation problem. The error measures are distinguished based
on probability assumptions regarding OD flows, i.e., depending on whether explicit
assumptions are made on the probability distribution of the random residuals of OD
flows and traffic observations. This overview on error measures is complementary to
the one given by Cascetta & Postorino (2001) for the static OD demand estimation
problem. In this section, the focus is on a review of error measures for the dynamic
OD demand estimation problem. Unlike the dominant studies on how the relation-
ship between dynamic OD flows and traffic observations is made, the dynamic OD
matrix estimation problem has been formulated incorporating multiple OD flow dis-
tribution rationales, such as maximum entropy, least squares, and Bayesian inference.
Furthermore, some new relationships between the objective functions and approaches
to dealing with non-linear constraints are discussed. The remainder of this section will
consist of an overview of several prospects for the error measures, namely generalized
least squares, maximum entropy, and the state space model, followed by a review of
the solution frameworks and algorithms for specific problems.

Generalized least squares (GLS) formulation

The Generalized Least Squares (GLS) method is concerned with determining the most
probable value of OD demand as the value that minimizes the sum of the squares of
the residuals. The residuals of traffic condition data and prior OD demand are modeled
as

εx = x̂k− x̃k εy = ŷk−yk (2.9)

where the residuals εx and εy have symmetrical distributions (i.e., normal or uniform)
and E(εx) = E(εy) = 0 is assumed. The dispersion matrices of the ε’s must be known;
they are formally defined as Var(εx) = Vt and Var(εy) = Wt . If measure of error f
given in equation (2.5) is defined as GLS, then objective function can be formulated
as:

[x̂1...x̂K] = argmin
[x1...xK ]≥0

K

∑
k=1

[(xk− x̃k)
TV−1

k (xk− x̃k)]+
K

∑
k=1

[(ŷk−yk)
TW−1

k (ŷk−yk)]

(2.10)
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subject to

ŷk =
k

∑
h=k−κ

Ah
kxh (2.11)

This formulation of objective function provides estimation of OD demands for all de-
parture time intervals ([x̂1...x̂K]) in a single step by processing observed traffic condi-
tion data over all study period; and is referred in literature as simultaneous approach.
The sequential formulation of GLS objective function, where OD demand is estimated
for one departure time interval, can be formulated as

x̂k = argmin
xk≥0

[(xk− x̃k)
TV−1

k (xk− x̃k)]+ [(ŷk−yk)
TW−1

k (ŷk−yk)] (2.12)

subject to

ŷk =
k−1

∑
h=k−κ

Ah
k x̂h +Ak

kxk (2.13)

Although there are some remarks in literature that discuss how to derive dispersion
matrices Vt and Wt , it is often assumed that the matrices are diagonal. This implies that
there is no covariance between error components and the diagonal elements of disper-
sion matrices are the variances. i.e., Var(εx) and Var(εy). Hence, the GLS estimator
has the form of a weighted Euclidean norm, where the elements of the dispersion matri-
ces Vt and Wt are weights selected to indicate the degree of confidence in the available
data (that is, in prior OD matrix and traffic condition data, respectively). Note that the
weighted GLS formulation can be adopted to combine the two sets of deviations, with
respective weights α and (1−α) for the first and second objectives as discussed in
Section 2.1.1.

Having a closer look at the GLS estimation given in equations (2.10) and (2.12), the
optimal solution is dominated by the representatives of the prior OD demand matrix.
For example, the structure of the dynamic OD demand may change substantially com-
pared to the prior OD demand (e.g, in case of irregular events, bad weather conditions).
Difficulties arise when the prior OD demand matrix produces a traffic state different
from the actual traffic state. Using only link traffic counts in vector y and prior OD
demand is not sufficient to determine optimal OD demand, specially in congested net-
works, as we discussed in Section 2.3.2. It follows that using traffic condition data,
such as speed or density observations, can improve estimation accuracy. Thus, the
simple modification of GLS estimator in equations (2.10) and (2.12) requires normal-
ization of objective function.

In this section the solution frameworks for simultaneous GLS problem formulation for
dynamic OD demand estimation are discussed. In case a given solution approach is
proposed for sequential problem formulation this will be explicitly stated. Note that
most of sequential GLS problem formulations for estimating dynamic OD demand in
literature have resulted in equivalent state-space formulations; these are presented in
the state space model formulation section.
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Solution frameworks for GLS objective function

Different solution frameworks and algorithms have been developed to solve the dy-
namic OD demand estimation problem defined by the GLS objective function in equa-
tions (2.10) and (2.12). The issue of modeling the relationship between OD demand
and observed traffic data (e.g., link traffic counts), given by equations (2.11) and (2.13),
and its use in the estimation process, has led to development of multiple solution di-
rections. First, the section gives an overview of a solution framework where assign-
ment matrices have been determined exogenously, followed by solution methods that
deal with endogenously-derived assignment matrices. In addition, alternative solution
frameworks are presented, that do not rely on derivation of assignment matrices at all.

Solution framework when link costs are known

The GLS objective function in equation (2.10) for uncongested networks or congested
networks for which link costs are known, is solved as a quadratic optimization problem
using standard gradient methods, Cremer & Keller (1987), Bell (1991), Cascetta et al.
(1993). These solution algorithms assume linear formulation between OD flows and
link traffic counts and elements of assignment matrix, Ah

k , are exogenously computed
using a path choice model (either deterministic or stochastic). The most sophisticated
solution algorithm for least square problems, the LSQR algorithm (see Paige & Saun-
ders (1982)), has been proposed by Bierlaire & Crittin (2004). The LSQR algorithm
is analytically equivalent to a conjugate gradient method, but exhibits better numerical
properties, especially when A is ill-conditioned. Since assignment matrices are large
and sparse, a key property of the LSQR algorithm is that the matrix A is used only
to compute products of the form Ax or AT y, which is attractive for large sparse prob-
lems. Based on transponder-tag data collected from a freeway corridor in Houston,
Dixon & Rilett (2002) applied the framework developed by Cascetta et al. (1993) to
exogenously calculate the link flow proportions based on the observed travel time from
AVI counts. It should be noted that AVI data only provide OD demand distribution in-
formation, so OD demand volume information from link traffic counts and historical
OD matrices must be added to identify a unique solution.

Despite the authors’ significant contributions to the estimation of dynamic OD de-
mand through GLS linear model formulation, there is a still a serious problem with
linear formulation between OD flows and link traffic counts. In other words, in their
formulation, like many other previously published works, the dependence of link-flow
proportions on the OD demand is not explicitly included in the solution procedure.
This dependency and non-linearity in link-flow proportions can be significant particu-
larly in congested networks.

Bi-level solution framework

In the literature, the GLS formulated OD demand estimation problem for congested
networks has typically been formulated as a bi-level optimization problem (Tavana
(2001), Van der Zijpp & Lindveld (2001), Zhou et al. (2003), Lindveld et al. (2003),
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Zhou & Mahmassani (2006)). Tavana (2001) were the first to endogenously formu-
late a non-linear relationship between dynamic OD flows and link traffic counts under
congested conditions. The upper level represents an optimization step, in which an
auxiliary OD demand solution is obtained through the optimization of a GLS objective
function (equation 2.10). The lower level represents an assignment step, which uses
OD demand estimated in upper level, x̂, to generate dynamic assignment matrix or
traffic variables is given as:

yk(xk) = argmin ∑
l∈L̂

∫ yl

0
sl,k(x)dx (2.14)

subject to

yk =
k

∑
h=k−κ

Ah
kxh (2.15)

where sl,k(.) is a cost function which defines the delay depending on the flow for the
link l ∈ L. If time is discretized the integration over time can be approximated by sum-
mation over observation intervals k.The function sl,k(.) expresses the general objective
function that can be formulated as dynamic user equilibrium (DUE) or stochastic user
equilibrium (SUE). The solution algorithm iterates between the upper and lower lev-
els. The new OD matrix is obtained by moving from the current solution in a search
direction, which is defined by the difference between the auxiliary solution and that of
the previous iteration step. The step size in this search direction may be pre-defined by
exact or approximate line search methods, to minimize the value of the performance
function along the descent direction.

Tavana (2001) proposed heuristic solution approach for solving the general bi-level
framework, which uses a sensitivity analysis-based (SAB) algorithm to solve a gen-
eralized least-squares problem in the upper level. Based on the SAB algorithm, the
changes of link flow proportions due to the adjustments in dynamic OD flows are ex-
plicitly considered, and numerical derivatives of link flow proportions with respect to
OD flows are obtained from a mesoscopic DTA simulation program. However, the
SAB algorithm has revealed a critical shortcoming when there is a significant differ-
ence between the prior OD matrix and the true OD matrix. This problem stems from
the heavy dependence of the SAB algorithm on historical OD information. Such de-
pendence may lead to a state in which the OD estimation cannot produce a correct
solution, especially when travel patterns are dramatically changed. In addition, the
SAB algorithm needs to approximate the derivatives through simulation for each OD
pair and each time interval in every iteration, which is computationally intensive, es-
pecially for large-scale networks.

Single-level solution framework

To avoid the bi-level formulation of the dynamic OD demand estimation problem,
Sherali & Park (2001) proposed a constrained least squares model with time-dependent
path flows as decision variables (i.e., flows on the path connecting OD pair) instead
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of OD flows based on observed link traffic counts. In literature, these methods are
referred to as Path flow estimators (PFE). Final OD flow estimates can be obtained by
summing up path flows for each OD pair. As such, a bi-level formulation is avoided in
which the equilibrium conditions would implicitly be accounted for by the constraints.
This is done by adding a term that penalizes the path flows that experience a high cost,
leading to a single-level formulation where the equilibrium conditions are added as
soft constraints. The developed algorithm uses a decomposition scheme that employs
a simultaneous least square model, along with dynamic shortest path sub-problems,
in order to generate additional path information as needed to solve the problem. The
constrained least squares model is solved using a projected conjugate gradient method,
while the sub-problem is a dynamic shortest path problem on an expanded time-space
network (STEN). Unfortunately, convergence cannot be guaranteed.

Along the same lines, Nie et al. (2005) formulated the OD demand estimation problem
as a variational inequality (VI) to take the response of travelers into account in the
objective function in the case of deterministic user equilibrium (DUE). This formu-
lation is achieved by balancing the path cost and the path deviation (which measures
the deviation between measured and simulated traffic flows), weighted by a disper-
sion parameter.The dispersion parameter determines to which extent DUE is satisfied.
Such methods become quite complex if the incorporated DNL model needs to capture
congestion speelback, complex node intersecting, path set generation, etc. The latest
work of Nie et al. (2013), utilize the mesoscopic DNL model (i.e., Newell’s simplified
KW model) to derive analytical, local gradients of different traffic observation, such as
link flow, density and travel time, with respect to path flow. By dualizing the difficult
DUE constraint into the GLS objective function, the authors have proposed an effec-
tive Lagrangian relaxation-based solution framework. The proposed PFE framework
is highly dependent on the effect of multiple path flow solutions corresponding to the
same equilibrium link flow pattern. Further tests and case studies using larger and
real-size networks are required with these PFE based methods for better assessment.

Joint solution framework

In contrast to the bi-level and single-level solution frameworks of a GLS objective
function, Balakrishna et al. (2007) proposed solution framework that does not rely
on the calculation of assignment matrices. Rather, the complex relationship between
the OD flows and traffic observations is captured directly, by treating the assignment
model (e.g., any DTA model) as a black box. The proposed approach allows estimation
of dynamic OD demand solving the GLS objective function given by equation (2.10),
that is, using an additional set of traffic observations. This framework represents a
non-linear, non-analytical optimization problem, due to the use of a sophisticated sim-
ulator to obtain fitted traffic condition data observations. Instead of assuming a specific
analytic relationship between OD flows and for example, speeds, simulation is used to
determine this relationship. For example, the speeds at sensors are outputs of run-
ning the DTA simulator with a given set of OD inputs, and can be compared against
real-world speed measurements. Therefore, there are a number of advantages to this
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methodology: while the assignment matrix is only a linear approximation of the inter-
relation between OD flows and input data (i.e., link traffic counts and traffic condition
data), a DTA model captures these relationships directly. Thus, the proposed approach
does not require the analytical form of these relationships to be known. The most stud-
ied solution algorithm of this problem in literature (Balakrishna (2006), Balakrishna
& Koutsopoulos (2008), Cipriani et al. (2011), Frederix et al. (2011)) is the Simulta-
neous Perturbation Stochastic Approximation (SPSA) algorithm (see Spall & Member
(1992)). In the SPSA algorithm, the gradient is found by perturbing all elements in x
simultaneously. Thus, it requires just two performance function evaluations per iter-
ation, irrespective of the size of the estimation problem (i.e., the number of unknown
OD flows, d). In contrast, traditional gradient based approaches must evaluate 2 ∗ d
objective functions per iteration, since the gradient is approximated by perturbing each
element in x. There are different methods for defining a step size (see Cipriani et al.
(2011)). While the algorithm’s simplicity is appealing, it still requires extensive com-
putation time, even for the medium size network, for example, 15 hours to estimate an
OD demand with four departure time intervals for the Calgary network (734 links, 221
nodes and 77 centroids, see Cipriani et al. (2011)).

Solution framework based on meta-heuristic approaches

In addition, several authors have proposed meta-heuristic solution approaches that do
not rely on the assignment matrix at all. These methods include advanced evolutionary
algorithms (EA) (Kattan & Abdulhai (2006), Park & Schneeberger (2003)) and simu-
lated annealing (Stathopoulos & Tsekeris (2004)). Solving the GLS objective function
(equation 2.10) with an EA based framework eliminates the need for the iterative pro-
cess (Kattan & Abdulhai (2006)). In other words, the EA approach computes the exact
equilibrium flow corresponding to each candidate OD demand, simultaneously satisfy-
ing both levels of the bi-level and single-level formulation. An important advantage of
these methods is that they are generally able to find global and not only local optima.
However, they usually require a large number of performance function evaluations,
which, in the context of dynamic OD demand estimation for real-time applications,
can be computationally expensive.

State space formulation

The most widely utilized sequential GLS problem formulation applied in real-time dy-
namic OD demand estimation problems is the state space model and its Kalman Filter
(KF) solution algorithm (and/or its variations). In this section, it is shown that the
sequential GLS objective function presented in equation (2.12) can be viewed, under
most circumstances, as a state-space based formulation. Here, the connection between
the Kalman Filter and least square estimation theory is pointed out. More precisely,
the application of results obtained by classical generalized least squares (GLS) to dis-
crete stochastic linear processes leads to the Kalman Filter (Genin (1970)). The main
advantage of Kalman Filters that makes them popular for real-time applications is that
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the computational and memory cost can be lower compared to simultaneous solution
approaches.

Okutani & Stephanedes (1984) were one of the first to formulated the dynamic OD
estimation problem in state space form in such a way that it can be solved by a Kalman
filter:

xk+1 =
k

∑
q=k−τ

Φqxq +wk (2.16)

yk =
k

∑
h=k−κ

Âk
hxh + vk (2.17)

The process equation (2.16) represents an autoregressive process of order τ , with coef-
ficients fd,q. Note that if the noise wk is identical to zero and if Φq is the identity matrix,
then the state is a constant for all k and one has returned basically to the least square
method. The observation equation (2.17) represents relation between traffic observa-
tions and OD flows. Equations (2.16) and (2.17) constitute a linear state space system
of equations that can be solved using the Kalman filter algorithm (Kalman (1960)). Al-
though this formulation encapsulates the dynamics, there are a still a number of serious
problems with this linear formulation.

Solution frameworks for state space problem formulation

Solution framework regarding assumptions on OD flows

The first problem relates to the typical Kalman filter assumptions on the noise terms
wk and vk in (2.16) and (2.17). Arrival processes (vehicles entering the network) are
typical Poisson processes, with exponentially distributed headways. Moreover, both
demand and link flows are by definition positive. Consequently, Gaussian assumptions
on these noise terms make no sense, because this would allow negative OD flows and
link flows, particularly for smaller average values. Ashok et al. (1993) have revised
Okutani’s work where the state vector is defined as the difference between the OD
flow xk and average prior OD flow x̃k. Instead of predicting the actual number of trips
between origins and destinations as in process equation (2.16), the proposed idea is to
predict how much these trips deviate from a certain prior OD pattern. There are two
reasons for doing this. First, by defining the state variables as deviations from certain
historical dynamic OD demand, the state estimation errors are now more amenable to
approximation by normal distribution (property of the Kalman filter). Secondly, this
adaptation leads to a more valid process model. For example, series of prior OD ma-
trices x̃k have been estimated from historical data for several previous days or months.
Hence, Ashok et al. (1993) formulated deviations of OD demand from historical av-
erages as an autoregressive process. In general, historical averages reflect regular OD
demand patterns, but prior OD demand subsume a wealth of information about the
structural variations over both space and time (think of daily peak periods and the dif-
ferences between Tuesdays and Saturdays). If the prevailing OD demand is structurally
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different from the regular (average) demand pattern, demand deviations will not sat-
isfy the fundamental stationary assumptions for an AR process and could degrade the
prediction performance given by process equation (2.16). Therefore, by considering
demand deviations from the a priori estimate of the regular pattern as a dynamic pro-
cess with smooth trend, a polynomial trend filter in process equation (2.16) is proposed
by Zhou & Mahmassani (2007) to capture structural deviations in prevailing OD de-
mand. Furthermore, they proposed an adaptive day-to-day updating formulation based
on the Kalman filter framework to update the a priori estimate, using the new demand
estimate and new observations. The updating procedure aims to adaptively recognize
and capture the systematic day-to-day evolution, and also maintain robustness under
disruptions. Since the definition of process equation (2.16) refers to dynamic OD de-
mand prediction, this issue will be revisit later in Section 2.4.

Solution framework regarding assumptions in congested networks

The second problem relates to the observation equation (2.17). Particularly in con-
gested networks the assumption of linearity is highly debatable, due to traffic flow dy-
namics and queuing, and to the effect of these dynamics on route choice as discussed
in Section 2.3.2. The consequence is that traffic condition data (speeds, travel times)
and associated observation equations are needed to solve the problem for congested
networks. Also, such a non-linear dynamic system has to be solved with modified
Kalman filter solution approach. The most straight forward extension is the Extended
Kalman Filter (EKF), which involves a first order Taylor linearization of the observa-
tion equation (2.17) about the best available estimate of the state vector. The EKF so-
lution approach requires a computationally intensive linearization step and is sensitive
to the quality of the initial estimates of the state or the process model. An improvement
to the extended Kalman filter led to the development of the Unscented Kalman filter
(UKF) and Iterated Extended Kalman Filter (IEKF). In the UKF, the probability den-
sity is approximated by a non-linear transformation of a random variable, leading to
more accurate results than the first-order Taylor expansion of the non-linear functions
in the EKF. The Iterated EKF method attempts to improve upon EKF, by using the cur-
rent estimate of the state vector to linearize the measurement equation in an iterative
mode. Details on KF solution algorithms and their variations can be found in many
textbooks (e.g., Grewal & Andrews (2008), Anderson & Moore (1979)).

Chang & Wu (1994) were first to attempt to formulate non-linear relationship between
OD distributions and link traffic counts under congested conditions. Their proposed
model employs information from link traffic counts collected on on-ramps, off-ramps
and mainlines, and macroscopic traffic characteristics to construct a set of non-linear
observation equations. The set of non-linear equations, where the state variables are
assumed to follow a random walk process in time, is solved by the EKF. Chang & Tao
(1996) have extended the work of Chang & Wu (1994) to generalized networks. They
introduced the concept of additional link traffic counts at cordon lines to increase the
state observability. A cordon line is defined as a closed curve that intersects with a set
of links, and subdivides the network into inside and outside parts. An additional set of
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observation equations is formulated and the state space model was solved by EKF.

Solution framework regarding assumptions on traffic condition data

A weakness of these two models is that observation equations 2.17 with assignment
fractions derived from stochastic assignment are specified only for the initial time in-
terval, but not for subsequent intervals. To encapsulate the dynamic evolution of the
assignment matrix and its uncertainty, Ashok & Ben-Akiva (2002) extend their previ-
ous framework (Ashok & Ben-Akiva (2000)) with additional process and observation
equations. The state vector is augmented by the travel times and route choice fractions
to explicitly model and estimate the stochastic assignment matrix, Âk

h. The non-linear
equation system is solved by EKF algorithm. Along these lines, Hu & Chen (2004)
augment the state vector of unknown OD flows with link travel times, and the obser-
vation equation with observed link speeds. An important difference with respect to the
approach of Ashok & Ben-Akiva (2002) is the use of link speeds without route choice
fractions. Good knowledge of the underlying process that describes the temporal evo-
lution of speeds provides easer definition and calibration of the process equation.

Dixon & Rilett (2002) estimated OD flows by using AVI tag counts and OD split pro-
portions derived from collected AVI data. In this method, the AVI penetration rate is
assumed to be randomly distributed, with the AVI data collection points acting as the
origins and the destinations, and AVI tag data provide OD split proportions that are
used in addition to traffic counts as measurements in observation equation (2.17) in
addition to traffic counts. The solution algorithm is a constrained Kalman filter on the
assumption of a random walk process equation (2.16), where the non-negativity con-
straints are defined by Langrangian multipliers (Bell (1991)) and added to state vector.
This model, however, is limiting in terms of its applicability of the model. Antoniou
et al. (2006) estimated dynamic OD demand by incorporating direct measurements of
OD flows from AVI systems or probe vehicles, in addition to traffic counts. Since the
direct observation of OD flows requires the location of AVI stations close to origin and
destination points, Antoniou et al. (2006) relax this assumption to formulate indirect
observation equation by extracting ”sub-paths” from several connected AVI detector
locations. They proposed several solution approaches, ranging from EKF to UKF. Fur-
ther, Sohn & Kim (2008) used cell-based trajectories as probe phones to estimate the
average path choice proportions. Unlike a previous direct approaches that used sample
OD flows extracted from the cell-based location data as additional observations, they
proposed an indirect approach wherein the assignment matrix is derived from passing
time at observation locations, and the path choice proportions. The estimation of dy-
namic OD flows by cell-phone data detected by Bluetooth system was also studied by
Barcelo et al. (2010) and Barcelo (2010). The tracking of vehicles is assumed by pro-
cessing Bluetooth and WiFi signals, and the distribution of travel times between OD
pairs or between each on-ramp and sensor locations are directly observable and are no
longer state variables but measurements in the observation equation. A set of linear
state and observation equations is solved by Kalman filter algorithm.
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Maximum entropy / minimum information formulation

The theory of maximum entropy (EM) for dynamic OD matrix estimation follows the
rational that the a priori probability function p(xk|x̃k) is assumed to be the Poisson
distribution function with parameters x̃i,k for each OD pair i, i ∈Ω . Then, the simulta-
neous EM generic dynamic OD demand formulation given in equation (2.4) becomes:

λ ∑
k∈K

xk

(
log

xk
x̃k
−1
)

(2.18)

subject to

ŷk =
k

∑
h=k−κ

Ah
kxh (2.19)

where the vector λ , denotes relevant weights that allow for some prior OD matrix
elements to be assumed more reliable than others.

Solution frameworks for maximum entropy objective function

The solution of an EM objective function can be derived with the following structure
(Wu (1997)):

x̂k = x̃k

n

∏
i=1

[λ
Ah

k
i ] (2.20)

where λi, i ∈ Ω , are positive Lagrangian multiplier parameters. Equations (2.18) and
(2.20) constitute an equation system that captures the optimal solution of the EM
model.

Despite to the popularity of the GLS objective function and state space formulation,
the formulation of dynamic OD demand estimation problem as an EM objective func-
tion and its solution have been studied by several authors (Wu (1997), Tsekeris (2003),
Yamamoto et al. (2009)). The common assumption in proposed solution approaches is
that the assignment matrices are derived exogenously, assuming a linear relationship
between link traffic counts and OD flows. In addition, Yamamoto et al. (2009) used
observed link travel speeds from probe vehicles to estimate the assignment matrices
and link flows. Wu (1997) proposed two iterative algorithms to solve the EM objective
function, namely the Multiplicative Algebraic Reconstruction Technique (MART) al-
gorithm and Revised MART (RMART) algorithm. Although the RMART algorithm is
designed to accelerate the convergence speed, it is not proved for conservation of the
convergence. Therefore, Tsekeris (2003) proposed the double iterative matrix adjust-
ment procedure (DIMAP), in the sense that the multiproportionally-adjusted matrix
in each iteration is one that has already been corrected on the basis of the MART al-
gorithm. Although algorithm convergence is ensured, its on-line application is very
limited due to the extensive computational requirements.
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Discussion

The problem formulations are distinguished based on probability assumptions on OD
flows and whether traffic condition data are included in addition to link flow data.
The problem formulation can have a large influence on the problem complexity. An
example of this is that in the case of simultaneous problem formulations, the problem
contains far more unknown variables to be estimated. When traffic condition data are
included in the problem formulation, the problem complexity additionally increases
since more unknowns and constraints are included in formulation.

The main difference between the solution frameworks presented above is how the re-
lationship between OD demand and observed traffic data (e.g., link flow data, traffic
condition data) is modeled and used in the problem formulation. Thus, the solution
frameworks differ in whether the relationship between OD demand and observed traf-
fic data is given by linear model or non-linear model. Once a solution framework is
defined, different solution algorithms have been proposed that result in a global opti-
mum or an approximate solution.

Many authors give attention to the performance of solution algorithms in terms of
real-time applications and computational efficiency. However, the presented results
are case-study-dependent and do not contain sufficient information to enable a fair
comparison, presenting a limit to the overview included here.

2.4 Dynamic OD demand prediction: State-of-the-art

Unlike the substantial research efforts devoted to dynamic OD demand estimation,
dynamic OD demand prediction problems have been formulated by few authors. Ex-
isting OD demand prediction methods can be categorized according to the underlying
assumptions in representing dynamic OD demand process.

In general, prediction OD demand methods rely on time series prediction models, so-
called ARIMA (AutoRegressive Integrated Moving Average) models and their deriva-
tives. The main building blocks of these models are Autoregressive models of order
q (AR(q)) and Moving Average of order s (MA(s)) models, while integrated c times
(I(c)) holds for integrated application of previous models to remove a non-stationary
in data.

The most straightforward short-term dynamic OD demand prediction model for in-
corporating the state estimate, x̂k, for the previous time interval can be expressed as
a random walk model corresponding to an AR(1) model with autocorrelation coeffi-
cient of 1. Cremer & Keller (1987) and Chang & Wu (1994) applied the random walk
model, given as:

xk+1|k = x̂k|k +wk+1 (2.21)
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to predict dynamic OD flows, by directly extending the latest state estimates as the fu-
ture predictions. Equation (2.21) corresponds to the sequential generic formulation of
dynamic OD demand estimation method given in equation (2.12). This simple predic-
tion model does not explore the information in prior OD demand. In order to capture
the effect of state estimates over lagged time intervals, Okutani & Stephanedes (1984)
proposed an autoregressive process of order q, AR(q) model, expressed as

xk+1|k =
k

∑
q=k−τ

Fq
k x̂k|q +wk+1 (2.22)

to predict dynamic OD flows at time interval k+ 1 by its previous q estimates: x̂k,...,
x̂k−τ . The matrix Fq

k denotes the effects of state estimates x̂k|q on future OD demand
state xk+1|k. The elements of matrix Fq

k can be derived from the optimization process
such as ordinary least square (OLS) procedure on prior OD demand information.

The autoregressive processes given in equations (2.21) and (2.22) can only capture
temporal interdependencies among OD flows. However, the OD demand is a function
of spatial and temporal distribution of activities and characteristics of a transportation
system. Such information is present in prior OD demand information obtained from
the off-line OD estimation results or day-to-day demand, updating using previous real-
time demand estimates. One simple way then of incorporating structural relationships
is to include all the prior OD demand information into the OD demand prediction
model.

Ashok & Ben-Akiva (2002) formulated an OD demand prediction model using the
deviations of OD demand from historical averages, x̄k|k, instead of the estimated OD
flows from previous intervals. Thus, the proposed OD demand prediction model repre-
sents the temporal evolution among deviations in OD flows by autoregressive process
(AR), in which a fourth-order autoregressive model based on calibration results from
several historical OD data sets is adopted. The OD demand prediction model then can
then be expressed by the following equation:

xk+1|k =
k

∑
q=k−τ+1

Fq
k (x̂k|q− x̄k|q)+wk+1 (2.23)

where elements of matrix Fq
k are predetermined autoregression coefficients, wk+1 is

system evolution noise, and τ is the order of autoregressive process.

An autoregressive model is suitable to describe a stationary random process with con-
stant mean and variance. However, if prevailing OD demand were structurally differ-
ent from the historical OD demand pattern, overall prediction of OD demand would
be seriously degraded. Also, autoregressive models with higher order terms require
extensive off-line calibration efforts to find the autocorrelation coefficients of matrix
Fq

k . This will affect the computation time for on-line applications, especially for large-
scale networks. In order to overcome the drawbacks of an autoregressive model, Zhou
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& Mahmassani (2007) proposed the third-order polynomial model to represent tempo-
ral evolution of structural deviations. To obtain the future OD demand with prediction
horizon k+1, the prediction model is given as:

xk+1|k = x̄k+1|k +Mk(x̂k|k− x̄k|k)+wk (2.24)

where one needs to first predict the demand deviation at time k+1 based on estimated
derivatives at the current time interval k, and then substitute the predicted demand
deviation, Mk(x̂k|k− x̄k|k), and the historical OD demand for prediction horizon k+1
into equation (2.24). Refer to the work of Zhou & Mahmassani (2007) for a more
details on the derivation of the third-order polynomial filter.

Discussion

Previously presented dynamic OD prediction models emphasized the importance of
incorporating the historical OD demand information, in terms of estimation of coef-
ficients for autoregressive process or in terms of regular pattern, to ensure prediction
accuracy and robustness. However, the dimensionality of the state vector imposes lim-
itations on higher-order terms in an autoregression model and polynomial function.
The reduction of the model order substantially decreases the size of the state vector,
and therefore improves computational efficiency (Zhou & Mahmassani (2007)).

2.5 Conclusions

The importance of considering traffic as a typical dynamic process has become clear
and during the last three decades, during which a variety of dynamic OD demand
estimation and prediction models have been developed, as presented in this chapter.
In the specific context of Intelligent Transportation Systems (ITS), the dynamic nature
of the OD demand problem and the real-time requirements make the estimation and
prediction of OD demand even more intricate. Thus, the estimation and prediction
of OD demand has become an important element of Dynamic Traffic Management
Systems (DTMS). These systems impose several criteria that must be captured:

1. The dynamic nature of the process must be captured in the modeling framework.

2. Input data are (easily) observable and available in real-time.

3. Relevant phenomena, especially in congested networks are reproduced and pre-
dicted by the model

4. The model estimates and predicts OD flows; as time proceeds and more data
becomes available, the solution must be updated to reflect the evolution of the
OD demand and network conditions.
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5. The model allows efficient computation for different scales of network.

This chapter has shown that the dynamic OD demand estimation and prediction prob-
lem is very complex and formulations proposed in literature differ in multiple ways,
both in functionality and problem complexity. For example, the relationship between
OD flows and traffic data observations can be described by flow-independent func-
tions, or detailed traffic flow models can be used. Differences also relate to the type
of input data used in problem formulation. For example, link traffic counts, or traffic
condition data in combination with link traffic counts can be used. The final differ-
ence is in the application possibilities. For example, sequential formulations of an OD
estimation problem are better suited for real-time applications than the corresponding
simultaneous formulations, due to computational and time constraints.

Studies often mentioned the importance of DTMS requirements to be satisfied, yet they
are hardly ever incorporated or demonstrated in the proposed formulations. The ques-
tion of trade-off between accuracy and efficient solution approaches is often pointed
out. However, the importance of accuracy of OD demand estimates, especially in
congested networks, has received a lot of attention despite adding more complexity
in proposed methods. The overview has shown the limited attention to OD demand
prediction methods that are very important input for DTMS. Therefore, the efficient
solution approaches on dynamic OD demand estimation and prediction for dynamic
traffic management will be dealt with in the following chapters.
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Chapter 3

Methodology for benchmarking
dynamic OD demand estimation
methods

One of the key traffic variables required for both ex-post and ex-ante evaluation of
traffic management and policy measures are dynamic OD demand matrices. However,
a major contradiction is that quite frequently these evaluations have as main input
very rough and low quality information on the dynamic OD demand. Consequently,
errors in OD demand have an unintended consequences on subsequent stages of traffic
state analysis. This state has fostered the interest in the assessment and comparison of
various dynamic OD demand estimation methods under different circumstances (e.g.
different network structures and different sets of data available in different qualities).

In this chapter such an assessment methodology is proposed, based on the Latin Hy-
percube (LHC) method, which is particularly suited for high-dimensional estimation
problems. The objective of the benchmark methodology is not to conclude that one
approach is the ”best”, but to provide support for comparison in a variety of set-
tings and conditions. With this benchmark methodology one can, for example, perform
sensitivity analysis on single or multiple OD estimation methods. The methodology
is demonstrated on a real urban corridor network for a well-known OD estimation
method (the entropy maximization estimation method) to illustrate which results can
be obtained and how these can be used to benchmark different OD estimation methods.

This chapter is an edited version of the article:
Djukic, T., J. W. van Lint, S. Hoogendoorn, An Efficient Methodology For Bench-
marking Dynamic OD Demand Estimation Methods. Transportation Research Record:
Journal of the Transportation Research Board 2263(1): 35-44, 2011.

43
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3.1 Introduction

The problem of estimating dynamic OD demand from various traffic data observations
has been widely studied in the literature as presented in Chapter 2. Dynamic OD de-
mand is important input to many models applied within DTMS for predicting traffic
state on network. However, a major contradiction is that quite frequently these so-
phisticated models have as main input very rough and low quality information on the
temporal variability of trip patterns as described by the dynamic OD demand. Conse-
quently, errors in OD demand have an unintended consequences on subsequent stages
of traffic state analysis. This results in situations in which it is hard for the analyst
to identify whether flaws in the intended model are due to modeling mistakes, an im-
properly calibrated model or an unsuitable specification of the dynamic OD demand.
This state has fostered the interest in the evaluation and cross-comparison of various
dynamic OD demand estimation methods under different circumstances (e.g. differ-
ent network structures and different sets of data available in different qualities). From
the literature, however, three key difficulties in the evaluation and cross-comparison of
various dynamic OD matrix estimation methods can be identified.

The first difficulty is that there is no undisputed performance indicator for estimated
and predicted dynamic OD matrices. Instead, there are many candidate statistical met-
rics (e.g., RMSE, MSE, NMSE, MAE), which evaluate quality of estimated OD ma-
trices with respect to available ground truth OD matrices (e.g., Marzano et al. (2009)).
The consequence of this wide range of statistical metrics is that researchers and prac-
titioners may use different metrics according to their needs, rather then as objective
assessment criteria. Few studies have focused on evaluation of uncertainty and quality
of the estimated dynamic OD matrices in absence of the ground truth OD matrices
(Bierlaire (2002) and Yang et al. (1991)). For example, Bierlaire has proposed to-
tal demand scale measure, that evaluates the level of arbitrariness introduced by the
prior OD matrix in estimation process. This measure is not depended on the prior OD
matrix, neither on the traffic data observations. However, this performance indicator
should be used in addition to, not instead of, standard statistical metrics.

A second reason why generalization of assessment of OD estimation methods is diffi-
cult is the many aspects in which these methods differ, as discussed in Chapter 2. Since
these methods differ in so many aspects, it is difficult to make a priori statements as to
which dynamic OD demand estimation method is most suitable for a particular traffic
network problem or model employed by DTMS. Even when a proposed approach is
compared with alternative approaches, it can be expected that due to various reason,
such as familiarity with alternatives and selection of suboptimal parameter values, the
comparison might be not completely fair and informative.

A third problem in comparison of dynamic OD matrix estimation methods is the lack
of consistence in the experimental design and presented results. Each researcher or de-
veloper tests their algorithms and methods under different assumptions, with different
networks and traffic conditions, using different traffic data and performance indicators.
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Usually, demand and traffic condition data characteristics are generated by random and
structural perturbations of ground truth data to reflect various traffic situations on net-
work. In most performance evaluations, for each scenario, one or multiple runs are
conducted. However, the focus is on the average response of a dynamic OD estimation
method on the basis of simulated OD demand and traffic data characteristics, rather
then an OD demand distribution. This leads to the main subject of this chapter.

A structured and generic methodology for benchmarking different OD estimation meth-
ods under different circumstances (e.g. network lay-out, data availability and quality
of prior OD) would enable researchers to pinpoint the strengths and weaknesses of
different OD estimation methods and their applicability and validity under different
circumstances. For example, there may be clear limits to the type and nature of er-
rors in available data for which a particular OD estimation method would still provide
adequate estimation results. Likewise, some OD demand estimation methods may be
fundamentally inappropriate for reliably estimating OD demands for certain network
topologies. For practitioners, such a benchmarking tool would provide a way to assess
the quality of the estimated OD matrix, and construct confidence bounds around these.
This will be very helpful in calibrating and validating simulation models using OD
demand estimations.

This chapter presents and demonstrates such a generic framework for benchmarking
dynamic OD estimation methods. It is generic in the sense that a wide range of OD
estimation approaches can be tested under a wide range of different circumstances,
related to, for example, data availability and quality, and network lay out. One of the
central components of framework is an efficient Monte Carlo sampling method, the so
called Latin Hypercube (LHC) method, used to generate series of inputs for cross com-
parison. The framework considers ground truth dynamic OD demand as a benchmark
against which quality of OD demand estimates from various dynamic OD estimation
methods can be evaluated. In addition, proposed framework provides opportunity to
generate wide range of performance indicators to get better grasp and insight on per-
formance of considered methods. The objective of the benchmark methodology is not
to conclude that one approach is the ”best”, but to provide support for comparison in
a variety of settings and conditions. With this benchmark methodology one can, for
example, perform sensitivity analysis on single or multiple OD estimation methods.

The chapter introduces the framework for comparison of dynamic OD demand esti-
mation methods and highlights its main features. These include the methods for gen-
erating structural and random variations in input data that are relevant for assessing
different OD estimation methods, the computational platform, and the sampling LHC
technique used. In the second part of this chapter, the methodology is demonstrated
on a real urban corridor network for a well-known OD estimation method (entropy
maximization estimation method) to illustrate which results can be obtained and how
these can be used to benchmark different dynamic OD estimation methods. The chap-
ter closes with a discussion of the results, conclusions and recommendations on further
research and possible application directions.
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3.2 The concept of benchmarking framework based on
LHC

As reflected by equation (3.1), a particular OD estimation method h with a set of pa-
rameters and assumptions H, aims to infer the maximum probable OD matrix given the
set of available inputs (data Y , prior and previous OD estimates Xprior and Xt−1,Xt−2, ...

and all the assumptions H used in the method, that is

Xt = h(Xt−1,Xt−2, ...,Xprior,Y,H) (3.1)

Typically, h is a highly nonlinear and dynamic function of its inputs. A typical ques-
tion to be investigated would be, ”How does Xt change when the inputs vary according
to a certain assumed joint probability distribution?” Related questions are, ”What is
the expected value of Xt?” and ”What is the 99th percentile of Xt?” This is even more
important in case one wants to compare different OD estimation methods. Since OD
estimation methods differ in many aspects (objective function, optimization method,
single or bi-level, etc.), and since they may be assessed under many different circum-
stances (network type, with or without route choice, different traffic conditions, vary-
ing data availability, etc.), the number of simulations required for an exhaustive and
statistically-sound comparison between different OD estimation methods will quickly
become very large.

For example, if one wanted to assess a single OD estimation method in terms of its
sensitivity to the availability of data Y (e.g. link traffic counts) in a network with say
L links, each either equipped with a detector or not, the total number of data scenarios
mounts up to 2L. Furthermore, if the impact of data quality is to be considered, and
one would assume that detectors may produce data, in example, 4 qualities (e.g. zero,
2%, 5% and 10% random errors), the total number of scenarios increases to (1+4)L.
For a toy network with 15 links, this already corresponds to a ten-digit number. If
data from combinations of different sources, each with different characteristics and
prior error distributions is additionally considered, different parameter settings within
this considered OD estimation method, different network types (e.g. grid networks
versus freeway networks), and many of the other attributes which may affect the OD
estimation problem, one would clearly require an enormous number of samples to
come up with a statistically-sound estimate of the conditional distribution in equation
(3.1).

The main purpose of the benchmarking framework is to execute a large number of
simulations for varying OD estimation method inputs, reflecting the variability and
uncertainty of both traffic demand and traffic data characteristics. Since the framework
has be applicable to a whole range of OD estimation approaches, the workings of which
are not explicitly considered, a simulation-based approach is deemed most adequate.
In doing so, the OD estimator is considered as a black box, providing a certain outcome
(OD estimate) given certain input.
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The obvious choice for a simulation-based approach is to use some sort of constrained
or stratified form of Monte Carlo sampling (Reuven (1981)), which does not scale with
input dimensionality. There are various solutions to limit the large number of samples
needed without fundamentally changing the overall idea. In this benchmarking frame-
work, the solution strategy is to use so-called stratified sampling techniques such as
the Latin hypercube (LHC) method.

3.2.1 The Latin hypercube sampling

The LHC method (McKay et al. (1979)) provides a computationally much more ef-
ficient alternative to random (Monte Carlo) sampling for estimating the conditional
distribution in (3.1). The LHC is typically used to estimate multidimensional inte-
grals for which a closed form solution is either very difficult to obtain or simply not
available, such as many multivariate probability density functions arising from the sim-
ulation of physical processes. The LHC method has been used in traffic science before,
for example for the estimation of a Mixed Logit model (Hess et al. (2006)) and in the
calibration of microscopic traffic simulation software (Park & Schneeberger (2003)).

To illustrate the process of Latin hypercube sampling, a two-dimensional example is
given in Figure 3.1.

The figure shows how random points are sampled from both (assumed known) cumu-
lative distribution functions of inputs X1 and X2 from N=5 strata of equal probability,
each encompassing 20% of the probability mass (Figure 3.1 top left and bottom right).
The resulting samples are combined in a matrix (a 2-dimensional hypercube), which
now contains 5 2-dimensional input samples (Figure 3.1 top right). The LHC method
can be applied straightaway in the benchmarking framework given in the next section
of this chapter. The requirement for applying this method is that knowledge of a priori
distributions for the inputs is considered needed. For example, in case one wants to
test OD methods under different degrees of measurement errors, one has to assume a
particular distribution for these errors, for example a normal distribution or any other
distribution deemed appropriate. This feature allows for comprehensive comparison
between different dynamic OD estimation methods with different distribution assump-
tions on input data that exhibit certain properties and assumptions of these methods.
The same holds for errors in the a priori OD matrices or variations in, for example, link
capacities used in the assignment procedure for a particular OD estimation method.
To keep the focus on the main components of benchmarking framework, the detailed
mathematical derivation of LHC method is presented in Appendix A.

In Section 3.3.2, the application of the LHC method will be shown to generate input
scenarios in terms of input data quality. In doing so, we will illustrate the specific
issues encountered when applying the LHC method to model OD demand patterns and
traffic data characteristics.
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  Figure 3.1: Example of LHC method for two variables with a normal distribution
(Budiman & Alex (2006)).

3.3 Components in the benchmarking framework

In this section the overall framework will be discussed and some details on its consti-
tuting components will be provided. Figure 3.2 schematically outlines the proposed
framework.

The benchmarking framework consists of three main components. Component 1 rep-
resents an OD demand and traffic data generator and essentially determines which
input scenarios, varying in terms of network topology, traffic conditions, and data avail-
ability, need to be considered during the assessment. The OD demand and traffic data
generator provides input to component 2, computational platform. The computa-
tional platform needs to ensure equal testing conditions for various OD demand es-
timation methods that would support fair comparison and an understanding of their
relative merits. The main elements of the platform are: traffic simulator and dynamic
OD demand estimation methods - selection and implementation of a single or mul-
tiple OD demand estimation methods to be assessed and compared. Component 3
represents an output processor. The final component in the benchmarking framework
processes the outcomes of the OD demand estimations and calculates a series of per-
formance indicators. It describes the output required for assessment, cross-comparison
and analysis.
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Figure 3.2: Framework for comparison of dynamic OD estimation methods.

In the following subsections more detail on the components and method used to sample
the input scenarios will be provided.

3.3.1 Computational platform design and implementation

Computational platform needs to ensure equal testing conditions for various OD de-
mand estimation methods that would support fair comparison and an understanding of
their relative merits. The platform consists of two main elements:

• Traffic simulator: The traffic simulator must be able to replicate traffic flow
dynamics and phenomena on network for given traffic demand. A short list
of these simulators includes DYNASMART (Zhou & Mahmassani (2006), Ta-
vana (2001)), Dynamaq (Cipriani et al. (2010)), MitSimLab (Balakrishna et al.
(2007)), DynaMIT (Gupta (2003)), and Aimsun (Barcelo et al. (2010)). The se-
lection of traffic simulator for benchmarking study depends on user experience
and computational efficiency. For example, the mesoscopic models are substan-
tially faster than the microscopic one. Thus, it allows for more elaborate testing
and a richer experimental design.



50 TRAIL Thesis series

• OD demand estimation methods: This element refers to selection and imple-
mentation of a single or multiple OD demand estimation algorithms to be com-
pared.

A dynamic communication between the OD demand estimation methods and traffic
simulator is necessary in order to execute a traffic simulation run within the OD de-
mand estimation algorithm. Selected dynamic OD demand estimation methods receive
following inputs from component 1, i.e., demand and supply generator:

• The demand pattern to be simulated in the form of OD flows per time interval;

• The time series of traffic data, e.g., link traffic counts, speeds, densities and
occupancies at detectors;

Then, traffic simulator receives as input a dynamic OD demand generated by the dy-
namic OD estimation method and runs a new traffic simulation. When the simulation
is finished, the platform runs component 3, i.e., output data processor, to collect and
organize all the outputs.

Figure 3.3 presents a flowchart that shows the main elements of this computational
platform. Within the dynamic OD demand estimation main function, whenever a sim-
ulation run is needed the traffic simulator is initiated. After the simulation runs have
been completed, it imports the observed traffic data and the simulation outputs and
runs output data processor.
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AIMSUN.m#

AIMSUN#
format#OD##

Batch#file#

Python#
Script#
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Figure 3.3: Flowchart with the main elements of the computational platform (Antoniou
et al. (2014))
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3.3.2 OD demand and traffic data generator

The OD demand and traffic data generator provides the input to the computational
platform. A key requirement for the task of evaluating an OD demand estimation algo-
rithms, and for comparison of multiple ones, is to test the performance under a range
of different conditions and scenarios and to ensure that these conditions are consistent
across algorithms. For that purpose, the OD demand and traffic data generator was
developed taking into account multiple dimensions, including:

• Prior OD demand characteristics, including varying bias and random errors;

• Traffic data characteristics, including the number and location of sensors and the
type of surveillance information, as well as its quality.

On the basis of various sources of systematic and random variations in input data, the
stochastic generation of the OD demand and traffic data values proceeds in two steps:

1. First, random realizations of the different sources of variability are generated.
For this generation, the LHC method is used. In the LHC simulation, data on the
probabilities or frequencies of occurrence of different possible conditions are
used. Important interdependences between the different sources of variability
are taken into account by using conditional probability specifications.

2. Subsequently, the stochastically generated circumstances are translated into ef-
fects on the OD demand and traffic data, by using correction factor, α , as pre-
sented in following scenarios. By applying the correction factor on the ground
truth values of OD demand and traffic data characteristics, the stochastic realiza-
tions of these OD demand and traffic data characteristics are generated.

Prior OD demand simulation scenarios

To estimate the dynamic OD matrix for a specific day and time period t, the prior
matrix turns out to be an important source of information. Generally, the dynamic OD
prior matrix x̃ (with elements x̃i, j,k) provides the base OD matrix which is matched and
scaled on the basis of additional information (e.g. from loops are other data sources).
The value of x̃ may be determined from different sources of information (e.g. land-
use models, travel surveys, or historical OD information) using different methods. In
the ideal case, x̃ reflects an OD matrix which is very close to the actual OD matrix,
in the sense that it has a similar structure, for example, in terms of the distribution of
trips over destinations, and the trip length distribution. In practice, however, x̃ may
differ substantially from real OD matrices, due to, for example, changed trip patterns
or changes in within-day trip patterns.
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By implementing the LHC method described in section 3.2.1, the fact that prior OD
matrix may contain errors may be simulated. In following prior OD demand scenar-
ios, the different sources of both structural and stochastic daily fluctuations present in
within-day travel demands have been modeled.

1. Scaled (total) demand variation scenario: This scenario illustrates how the
variation of demand flows across the sequence of departure intervals can influ-
ence the estimation results without changes in OD matrix pattern (the distribu-
tion over destinations in x̃ is kept similar to the one in the ground truth OD
matrix). To this end all demand values within the same departure interval are
scaled with a factor αk drawn from a random uniform distribution over the range
[0.5, 1.5], that is

x̃i, j,k = xi, j,k×αk αk ∼U(0.5,1.5) (3.2)

2. Random demand variation scenario: This scenario is based on the assumption
that the prior OD matrix is the best estimate of the mean of the dynamic OD
matrices. Any survey or off-line OD estimation procedure will utilize data from
several days, essentially smoothing out any day to day variation present in the
OD flows. In this case x̃ is varied by adding uniformly random components to
the ground truth OD matrix, representing the difference between the smoothed
historical estimate and the particular daily realization:

x̃i, j,k = xi, j,k× [0.8+0.4×αi, j,k] αi, j,k ∼U(0,1) (3.3)

3. Systematic demand variation scenario: This scenario addresses situations where
the prior OD demand might contain other, structural errors besides the random
daily fluctuations. The structural errors might occur due to a structural deviation
in the demand pattern resulting from unforeseen events, or from out-of-date sur-
veys resulting in a structurally incorrect estimation of OD flows. The demand per
each origin over destinations is generated from positively and negatively skewed
mean values of distribution from a random demand scenario:

x̃i, j,k = γi,k× xi, j,k× [0.8+0.4×αi, j,k] αi, j,k ∼U(0,1) γi,k =±20%
(3.4)

Traffic data simulation scenarios

The previous scenarios described realistic variations in the prior matrix. Next to the
prior OD, the observed traffic data, yk, presents an important source of information.
In general, OD estimation methods that use link traffic counts assume the availability
of accurate link traffic counts from all links in a study network (Wu & Chang (1996),
Hu et al. (2001)). In reality, detector availability is often limited. In recent years,
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optimal detector locations aiming at maximizing observability of OD flows and the
inherent uncertainty has been considered in several research studies (Gan et al. (2005),
Antoniou et al. (2004), Oh & Ritchie (2005)). Depending on the optimization objective
when determining detector layout, one may roughly classify the presented approaches
into the following two categories:

1. Coverage of detectors with maximum link flows.

2. Coverage of detectors to separate as many OD pairs as possible (here an OD pair
is regarded as separated when each of its feasible paths passes at least one of the
counting links and hence all trips between any OD pair are observed for at least
one link of their path).

For a comprehensive benchmark study it is important to take into account the real
state and conditions (in terms of output, errors, location, etc.) of the detectors on
the network. Additionally, consideration of the two aforementioned approaches to
determining detector layouts can provide information on what kind of improvement
can be gained if the availability of traffic counts is increased according to different link
detector coverage rules. The discussion will therefore maintain the main idea of both
categories without going into detail during the implementation of algorithms proposed
in literature. Consequently, the random perturbations of traffic count measurements
are assumed using the following two detector layouts:

1. Detector layout based on maximum coverage of all links in network: In this
”best” case, the aim is to obtain benchmark results for the comparison of OD
estimates with other detector layouts.

2. Detector layout based on the maximum link flows: Link traffic detectors are
chosen according to maximum link flow measurements so that links with high-
est volume have priority. First, the links with highest volume are identified (in
the study network these are the links on the main arterial road). Then, the detec-
tor layout is defined randomly removing the detectors from links to obtain tree
scenarios with 80%, 60%, 40% and 20% coverage of the total number of links
on network. This approach uphold the concept that link counts detectors must
be located on the network so that a portion of trips between chosen OD pairs are
observed passing at least one link on their paths.

A similar approach to capture variations in prior OD matrices was followed in de-
veloping scenarios regarding the quality of observed link traffic counts. For each of
the prior OD demand levels described above, using the ground truth demand within
traffic simulator, the ground truth link traffic counts, yk, were calculated. These link
traffic counts need to be perturbed with noise to mimic observation errors in the real
world. In this experimental design, we consider only link traffic counts since selected
OD demand estimation method uses this information in estimation process. However,
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the proposed scenario can be applied to any other traffic condition data, e.g. densi-
ties, travel times, etc. The following scenarios are defined, applied to each observation
point (i.e., detector location l and time interval k):

1. Error-free observations scenario (EF): This scenario assumes ideal operation
of detectors on network which ensures observation of each vehicle that passed
detector, that is

yEF
k = yk (3.5)

2. Low-error observations scenario (LE): This scenario is based on the assump-
tion that detectors fail to observe all vehicles. Therefore, the observed link traffic
counts are generated for 90% of the ground truth link traffic counts and varied
by adding uniformly random components in range of ±10%, that is

yLE
l,k = yl,k× [0.8+0.2×αl,k] αl,k ∼U(0,1) (3.6)

3. High-error observations scenario (HE): This scenario addresses situations when
detectors are more uncertain; e.g. in peak-hours, when congestion occurs on net-
work. The observed link traffic counts are generated for 90% of the ground truth
counts but varied by adding uniformly random components in range of ±20%,
that is

yHE
l,k = yl,k× [0.7+0.4×αl,k] αl,k ∼U(0,1) (3.7)

3.3.3 Output data processor

The final component in the benchmarking framework processes the outcomes of the
OD demand estimations and calculates a series of performance indicators. The choice
of performance indicators plays an important role in benchmark analysis of OD de-
mand estimation methods under input uncertainty. In this benchmarking framework,
we distinguish two levels of performance indicators:

1. Statistical performance indicators

A number of statistical measures can be used to evaluate the overall performance
of OD estimation methods. They measure the divergence between estimated out-
puts, (e.g., OD demand, x̂, traffic counts , ŷ, travel times, T̂) and their ground
truth values (e.g., OD demand, x, traffic counts , y, travel times, T). A short list
of statistical measures includes: route mean square error (RMSE), mean abso-
lute error (MAE), mean absolute normalized error (MANE), mean error (ME)
and normalized mean error (NME).
These statistical performance indicators have their limitations, because each of
them represents only part of the information contained in OD demand distribu-
tion. This problem can be dealt with only by considering multiple statistics of
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these OD demand distributions. As a basis, of course, one needs to estimate
(sufficiently accurate) the entire OD demand distribution, which is calculated
for all (or user selection of) OD pairs. From this distribution, one can calculate
the 90th percentile OD demand (T T 90), the average and median OD demand
(T Tmean, T T 50), or any other statistic.

2. Computational efficiency

The one of research objectives in this theses is improvement in the computational
efficiency of the dynamic OD estimation and prediction problem for real time
applications. To quantify the computational efficiency, one can calculate the
CPU computation time of selected OD demand estimation methods.

3.4 Case study

3.4.1 Network topology and method selection

A benchmarking exercise of several dynamic OD estimation methods requires famil-
iarity with these methods to ensure fair and informative comparison. Thus, the purpose
of this case study is to demonstrate the main features of the proposed benchmarking
framework for well-known dynamic OD estimation method (maximum entropy esti-
mation method (Van Zuylen & Willumsen (1980), Wu (1997), Tsekeris (2003))). The
Section 2.3.3 provides a detailed explanation of maximum entropy OD demand esti-
mation method.

The performance of the maximum entropy method is evaluated on a real corridor net-
work, given in Figure 3.4. This network was chosen because of the availability and
quality of an empirical detector data on the network, and because a calibrated OD de-
mand was available in the microscopic version of the PTV VISSIM multi-modal traffic
simulation model for reproducing the traffic propagation over the network. In this net-
work, each node represents the origin and destination with a single route between them.
The network consists of 214 OD pairs and 118 corresponding links. The evening peak
hour reflecting the congested state at the network which was divided in 6 departure
time intervals of 10 minutes is chosen for experiment. Consequently, the trips between
some of the OD pairs are not completed within one interval. In this way, a vehicle en-
tering the network during a particular departure time interval may need more than one
time interval to reach a traffic detector where the departure time interval and detection
time are different. In this study network, the maximum travel time between OD pairs
observed on network takes two time intervals, q = 2. The true assignment matrix is
derived from the assignment of true OD matrix in PTV VISSIM.
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   Figure 3.4: Urban corridor network, Kruithuisweg street, the Netherlands.

3.4.2 Considered scenarios and performance indicators

In terms of input data scenarios, the following selections are made:

1. Low-error observation scenario (LE) presented in Section 3.3.2 is selected in
terms of traffic counts data quality and loop detectors availability.

2. All scenarios in terms of prior OD matrices presented in Section 3.3.2 are se-
lected.

For the evaluation of the results of entropy maximization method from defined scenar-
ios, the mean OD demand from resulting distributions is calculated as a performance
indicator. This performance indicator choice stems from the fact that estimated dy-
namic OD demand may be compared with ground truth OD demand. In addition, per-
formance indicator for link traffic counts is omitted because, it is possible that, even
though the estimated link counts closely match the measured link counts, the estimated
OD demand differ considerable from the ground truth OD demand. Also, two statisti-
cal metrics from the resulting distributions were calculated as performance indicators,
the mean error (ME) and mean absolute error (MAE). In addition, CPU computation
time is analyzed. The results are presented regarding total OD demand estimates, and
followed by a more detailed analysis for separate OD pairs.

3.4.3 Results and discussion

Total demand analysis

The variations in OD flow over time as well as the uncertainty in the input data and their
availability affects the reliability of OD matrix estimates. We show that this results in
a considerable underestimation or overestimation of the total demand and/or between
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specific OD pairs. Two criteria were used to check whether estimated OD matrices
from the entropy method are on average equal to the true value, or show at least only
a small variation around this value. The first criterion relates to the assessment of
the total demand estimates under different scenarios of counting errors and errors in
the prior OD matrix. Secondly, the assessment of certain OD pairs to the same error
scenarios is examined.

The results are presented in a series of figures. Figure 3.5 presents the total estimated
demand per departure time interval. The first column denotes the results obtained
under influence of random prior OD matrices, while the second column denotes the
results obtained from scaled prior OD matrices over departure time intervals. The two
rows denote different scenarios with errors in link measurement for 20% and 40%.

The entropy method in presence of errors in link measurements on all links under-

Random prior OD matrices Scaled prior OD matrices
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Figure 3.5: Average total demand estimates for different scenarios

estimates the total demand in case of random prior OD matrices. With a decreasing
number of links that are measured, estimates of total demand are underestimated or
overestimated, depending on the magnitude of errors imposed on the link measure-
ments. It is also possible to observe that the prior OD information affects the reliability
of the estimated OD matrices. The peaks in the estimated total demand curves shown



58 TRAIL Thesis series

in the second column may be explained due to the fact that the demand in prior OD
matrices is scaled over departure time intervals.

In scenarios with random demand variation in the prior OD matrices, for all assumed
deviations it is observed that total demand estimates are very close to the real total
demand, although for some OD pairs or even for specific origins, demands are over-
estimated or underestimated. The second criterion focuses on demand estimates for
specific origins and analyzes the sensitivity of method under different scenarios.
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Figure 3.6: Average total demand for two origins with all links covered with detectors

The estimated total demands for two origins, one at the left inflow side (1056) and one
at the middle of the network (1028), or the scenario with random perturbations of 20%
in prior OD matrix, are given in the Figures 3.6 and 3.7. The reliability of estimated
demand for the origin with higher demand volume (left figures) is affected by the
availability of link counts data, which leads to underestimation and overestimation of
the demand. This variation in estimates is also present in the origin whose demand is
two times lower, in spite of the fact that the total demand in this scenario is very close
to the real value.

The estimated total demand and total demand per origin for the scenarios with random
prior OD matrices are given in the Figure 3.8 for total demand estimates and Figure 3.9
for origin 1030 (in the middle part of the network). The reliability of estimated demand
(left figures) is not affected by the availability of link counts data and also with the
size of random perturbations in prior OD. In contrary, the reliability of total demand
estimates per origin is affected by the availability of link counts data which leads to
underestimation of the origin demand. The entropy maximization method is robust
against random perturbations in prior OD matrices if information from measurements
from all links covered with the detector are used. The influence of higher random
perturbations in prior matrices in prescience of more realistic 20% covered links with
detectors leads to the underestimation and overestimation in estimates of total demand
and total demand per origin. Less information from measurements leads to higher
influence of prior matrices.
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Figure 3.7: Average total demand for two origins with 60% links covered with detec-
tors
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Figure 3.8: Total demand with all and 20% links covered with detectors

Since these variations are present among all origins and destinations, an additional
analysis of OD demand estimates has been performed to obtain a deeper understanding
of the efficiency and performance of the entropy method. The next subsection focuses
on the influence of path length and OD demand volume per each OD pair.

OD pair analysis

Figure 3.10 shows the entire estimated OD demand distribution for two selected OD
pairs. The first observation is the shape of the distribution, showing that for nearly all
estimated OD matrices under each of the considered scenarios, there are always a few
OD pairs that can be estimated very accurately, while at the same time, there are always
some OD pairs with bias in estimates (Figure 3.10). In all tested scenarios it has been
observed that the minimum absolute error for some OD pairs is close to zero while
the maximum error is usually over 35%. It is thus interesting to test whether some
OD pairs are more difficult to estimate than others, and to identify the properties of
the paths and magnitude of the demand associated with such ”problematic” OD pairs.
Also, it seems worthwhile to compare the performance of different OD estimation
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Figure 3.9: Total origin demand with all and 20% links covered with detectors

methods and their sensitivity on such OD pairs.
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Figure 3.10: Simulated OD flow distribution for several OD pairs

The relationship between the average errors and the following two properties related
to the topology of the network are explored:

1. The length of the path between origin and destination for an OD pair.

2. The magnitude of the OD demand for each OD pair.

The LHC method provides enough data to obtain meaningful error averages in all
scenarios. In this case, the network depicted in Figure 3.4 is examined. The path
lengths of all OD pairs are grouped from 1 to 7, where each group represents the
average path length class between two succeeding OD pairs. On this network, this is
close to 500m. All of the 214 OD pairs have been grouped into these 7 groups - one
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for each possible path length - and computed the average error for all OD pairs in each
group. Additionally, two different types of errors are considered: mean absolute error
(MAE) and mean error (ME) between estimated and ground truth values. The last error
provides more information on whether the flows underestimated or overestimated due
to the path length. These data are presented in Figure 3.11 for scenario with different
random perturbation of link measurements and 80% links covered with detectors.

!

1 2 3 4 5 6 7
-15

-10

-5

0

5

10

15

20

25

30

Path length per OD pair

Av
er

ag
e 

er
ro

r

 

 
Measurement error 20%
Measurement error 40%
Measurement error 60%
Measurement error 80%

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

Path length per OD pair

A
ve

ra
ge

 a
bs

ol
ut

e 
er

ro
r

 

 
Measurement error 20%
Measurement error 40%
Measurement error 60%
Measurement error 80%

Figure 3.11: a) Mean error and b) Absolute mean error per path length

It can be seen that entropy method is more sensitive to path length, with increas-
ing measurements errors leading to underestimation and overestimation of OD flows.
However, the difference in errors among the path lengths is small, except for paths in
group 7 which are around 4 km long. The dip in the curve for paths of length 2 and
4 may be explained by the fact that there were about twice as many OD pairs in these
groups than in the other groups.

The performance of entropy method is also analyzed with respect to the demand vol-
ume between OD pairs. To examine the relation between ME and OD demand volume,
a similar procedure is applied as was described above. In this case, the OD pairs are
divided into the 7 groups based on the volume between OD pairs, with a difference
of 5 vehicles per departure time interval between groups. The reason for such a small
difference between groups is the very large number of OD pairs with low demand per
departure interval. Subsequently, the average error for each group is computed. The
results are shown in Figure 3.12 for the same scenario.

It is evident that the entropy method is sensitive to higher volumes of the OD demand
and to increasing link measurements errors. Figure 3.12b) shows that the mean error
decreases as the volume of OD demand increases. The smaller error values within
group 7 reflect the case that the only 3 OD pairs have a higher demand of 45 ve-
hicle/departure interval. Comparing the performance of the entropy method to path
length and OD demand volumes, leads to conclusion that the entropy method is more
sensitive to the level of demand than to path length regard to the increasing measure-
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Figure 3.12: a) Mean error and b) Absolute mean error per OD demand volume

ments errors. In both figures, an overall error of around 5% is seen with low measure-
ments errors, while an increase in measurement error leads to an underestimation of
OD flows and increase of errors of around 15%.

Computational efficiency

Analysis of CPU computation time for maximum entropy method solved by itera-
tive Revised Multiplicative Algebraic (RMART) algorithm shows that method needs
around 32 minutes to simultaneously estimate OD demand with six departure time in-
tervals for network with 214 OD pairs and loop detectors on all links. Although the
RMART algorithm is designed to accelerate the convergence speed, it still requires
extensive computation time. With a decreasing number of detectors on links, one can
expect decrease in computational time but more uncertainty in OD demand estimates.
However, the performance of entropy method is still computationally complex for real
time applications.

3.5 Conclusions

This chapter demonstrates a new framework for assessing and comparing the perfor-
mance of dynamic OD estimation methods to different types of uncertainty in the input
data, and the parameters of the OD estimation methods. The analysis shows the de-
pendence on the quality of the input, in terms of sensor configurations and accuracy,
characteristics of data available, quality of the prior matrix, etc., that reveal confidence
levels of the estimation outcomes under varying circumstances. Such insights are of
high practical relevance, since the operational application of OD estimation methods,
whether on-line or off-line, carries specific requirements regarding the accuracy and
robustness of the OD estimators in relation to the characteristics of the input data.
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Central to this benchmarking framework is a well-known simulation-based stratified
sampling technique that allows assessing the performance without the need to perform
an unfeasible number of simulations. The Latin Hypercube (LHC) method provides
an efficient sampling method to effectively cover the whole range of the uncertain-
ties defined in the scenarios. To the best of our knowledge the LHC method has not
been applied to the OD estimation problem before and turned out to lead to a feasible
approach to compute sensitivities using only a limited number of simulations.

To demonstrate the benchmarking framework we applied it successfully to the entropy
maximization OD estimation method on a real urban test network. The application
provided new insights into the performance of this estimation method with respect to
the scale in the prior OD matrix. The entropy method furthermore was shown to be
sensitive to path lengths and demand per OD pair. As a result, it can be concluded that it
is harder to accurately estimate OD pairs that have longer paths or higher demand, since
these show larger error in the link measurements. It was also found that flow estimates
in case of higher demand per OD pairs were generally underestimated. Errors in link
measurements have been shown to lead to a larger range of errors, and this results
in underestimation and overestimation of total demand and per total origin demand.
Finally, the results also showed that the use of less accurate link measurements can
dominate the accuracy of entropy method especially when the link flow measurement
availability is limited.

The contribution of the proposed benchmarking methodology is to enhance the un-
derstanding of the impact of the above-mentioned aspects on dynamic OD estimation
methods in terms of robustness and accuracy. Using this benchmarking framework,
both researchers and practitioners will gain insight into which OD estimation meth-
ods are suitable for both off-line applications, such as ex-ante simulation studies, and
on-line applications, such as short-term traffic prediction, decision support systems,
etc.

Future research should be aimed at applying the framework to a variety of OD estima-
tion techniques in order to gain more insight into their characteristics, and to bench-
mark their performances in variety of situations. As motivated earlier in this Chapter,
the statistical performance indicators found in practice and international literature all
have their limitations, because each of them represents only part of information con-
tained in dynamic OD demand estimates. The basic foundation of these performance
indicators is that they are expressed as deviations in terms of OD demand or traffic
data in respect to available ground truth data. Although the underling rational makes
sense intuitively, the actual statistical measures in literature do not evaluate patterns
and spatial correlations between OD pairs. Therefor, further research should be aimed
at finding the new performance indicators as will be discussed in Chapter 6 of this
thesis.
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Chapter 4

Dimensionality reduction methods in
OD demand estimation

Since OD matrices are high-dimensional, multivariate data structures, the estimation
and prediction of such OD matrices is both methodologically and computationally
cumbersome. This chapter explores the idea of dimensionality reduction and approx-
imation of OD demand based on principal component analysis (PCA). In particular,
the application perspectives of PCA for this purpose are considered.

First, by using PCA, the dimensionality of the time series of OD demand can indeed
be significantly reduced. How PCA can be applied to linearly transform the high-
dimensional OD matrices into the lower-dimensional space without significant loss of
accuracy is shown. Moreover, the way in which the results from the PCA method can be
used to reveal structure in the underlying temporal variability patterns in dynamic OD
matrices is also described. The results indicate that it is possible to distinguish between
three main patterns in dynamic OD matrices that follow structural, structural deviation
and stochastic trends. Insight is provided into how these trends contribute to each OD
pair and how this information can be used further in estimating and predicting dynamic
OD matrices.

This chapter is an edited version of the articles:
Djukic, T., J.W.C. van Lint, S.P. Hoogendoorn, Application of Principal Component
Analysis to Predict Dynamic Origin-Destination Matrices. Transportation Research
Record: Journal of the Transportation Research Board 2283(1): 81-89, 2012.
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4.1 Introduction

Much of the work in OD matrix estimation and prediction has focused on improving
estimation and prediction of OD matrices with more sophisticated and less time con-
suming algorithms (Bierlaire & Crittin (2004), Kattan & Abdulhai (2006), Zhou &
Mahmassani (2007)), and by including additional available data, ranging from traffic
counts to automatic identification data (Antoniou et al. (2004), Asakura et al. (2000),
Dixon & Rilett (2005)), and data from Bluetooth devices (Barcelo (2010)), to name a
few. In this chapter focus will be on an important and often-overlooked aspect within
OD estimation and prediction, namely the analysis of the information and structure
contained in the (estimated, predicted or realized) OD demand. The use of quantitative
methods to exploit this structure for various purposes in the estimation of dynamic OD
demand shall be discussed, such as identifying underlying trends and correlations, and
reducing the complexity of the estimation and prediction problem.

Since dynamic OD matrices are high dimensional multivariate data structures, the es-
timation and prediction of dynamic OD matrices is both methodologically and compu-
tationally cumbersome for real-time applications. There are three factors that increase
the computational effort: a) the size of the state vector, b) the complexity of model
components (e.g. assignment matrix and covariance matrices), and c) the number of
measurements to be processed.

Firstly, solution algorithms typically scale O(n3) with the size of the state vector. For
example, the Kalman filter algorithm is commonly used method to estimate and predict
the OD matrices (Antoniou et al. (2006), Ashok et al. (1993), Barcelo (2010)). Since
the computational complexity of the Kalman filter is typically in the order of O(n3)

(Zhou & Mahmassani (2006)) where in the simplest case n is the total number of the
OD pairs in the network, this can represent a potential computational bottleneck. In
addition, each traveler takes a certain time to complete his/her trip in large-scale net-
works, and the resulting travel time can be very long depending on trip length between
OD pairs and prevailing traffic conditions (i.e. congestion level in the network). The
effect of time lag indicates that the traffic flow at the current observation time interval
can include OD flows departing from a previous time interval, leading to an enormous
computational strain. For example, if it is assumed that the number of lagged time
intervals is h, then the state vector includes the state variables for departure time inter-
vals k,k− 1, ...,k− h. Therefore, the size of the state vector (n× 1) at time interval k
increases by at least ((h+ 1) ∗ n× 1) and manipulation of vectors and corresponding
covariances becomes cumbersome. Lately, an approximation of OD flows to handle
the lagged OD flows has been proposed by Ashok & Ben-Akiva (2000). The approx-
imation is based on the conjecture that much of the information about an OD flow
related to redundancy over time is likely to be provided the first time it is counted.
If this were true, OD flows corresponding to prior departure intervals could be held
constant at their prior estimated values and only the flows for the current departure
interval need to be estimated. Alternatively, a polynomial trend model proposed by
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Zhou & Mahmassani (2007) can offer a compact representation of a time series of OD
flows. However, the polynomial trend model is still very computationally intensive for
large-scale networks due to high dimensionality of the state vector.

Secondly, the efficiency of solution algorithms depend on the complexity of its com-
ponents. For example, the assignment matrices are high-dimensional and sparse, and
most solution approaches require their multiplications and inversions, which is very
time consuming.

Third, the computational cost of solving OD estimation problems in many cases scale
with the number of available measurements. For example, the most critical factor
affecting state observability is the ratio between link traffic counts, r, and number
of OD pairs n. Therefore, for a given number of OD pairs, measuring more traffic
counts or adding densities or speeds increases the chances of state observability being
satisfied, which again increases the required computational effort.

Clearly, reducing the dimensionality of the state vector, is a way to improve compu-
tational efficiency. For example, let us assume that OD flows have been estimated for
several previous days or months. These flows subsume various kinds of information,
about trip making patterns and their spatial and temporal variations. Therefore, the key
idea in this thesis’ approach is to reduce the dimensionality of the OD matrix, in such
way that the structural patterns are preserved. With this approach the computational
cost can be speeded up dramatically, without significant loss of accuracy.

In other fields where large amounts of (dynamic) data are analyzed, Principal Compo-
nent Analysis (Pearson (1901), Hotelling (1933)) or PCA, also known as the Karhunen-
Loeve procedure, is a commonly used method. PCA extracts from data structures those
components that explain most of the variance. In this chapter, PCA is applied to an-
alyze times series of OD demand matrices on a real highway network. This shows
that on a longer time scale (days to weeks), their structure can be well-captured using
only a few dimensions, and that the principal components found can be categorized
into three meaningful trend classes. These include a structural trend that captures the
regular pattern; a large structural deviation trend that captures short-term fluctuations,
and a stochastic trend that captures the random fluctuations. This taxonomy derived
from the data itself resembles the characteristic trends in total OD demand observed in
the work of Zhou & Mahmassani (2007), and provides a useful basis for researchers in
the development of prediction models.

The chapter is organized as follows. The first part of the chapter demonstrates how
high-dimensional OD demand can be transformed in low-dimensional space using
PCA technique. In the second part of the chapter the structure of the experimental data
set is defined, as is the way in which times series of OD matrices per departure time
interval on a real highway network section are derived. Next, the chapter demonstrates
how PCA can be used to reveal the underlying temporal distribution patterns in these
data. The chapter closes with a discussion on further application perspectives of PCA
in estimation and prediction of dynamic OD demand method presented in Chapter 5.
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4.2 OD demand representation in low-dimensional space

This section gives a detailed explanation of the Principal Component Analysis (PCA)
method, also known as the Karhunen-Loeve procedure, through transformation of dy-
namic OD demand into a space of lower-dimensionality. PCA method was first in-
troduced by Pearson (1901) and Hotelling (1933) to describe the variation in a multi-
variate data set in terms of a set of uncorrelated variables. Since then, PCA has found
application in many fields, such as image analysis, pattern recognition, image compres-
sion, and time-series prediction (Kong et al. (2005), Pentland et al. (1994), Jaruszewicz
& Mandziuk (2002)). For example, Lakhina et al. (2004) has demonstrated applica-
tion of PCA method to explore temporal variability of traffic flows between routers in
internet traffic. It has also been used in traffic and transportation science before, for ex-
ample, for the dimensionality reduction in traffic counts prediction (Sun et al. (2009))
and for dimensionality reduction in the calibration of travel demand from traffic counts
(Flötteröd & Bierlaire (2009)).

Dynamic OD demand has a concise representation when expressed in terms of an
orthonormal basis of eigenvectors ei, i = 1,2, ...,n that can be derived using PCA. The
goal of the research presented in this section is to map vectors of the OD demand
X ∈ℜn onto the new vector in an m-dimensional space, where m < n.

To transform OD demand in lower-dimensional space, the same rational is followed
as the one presented in Jolliffe (2002) to describe the PCA procedure. Suppose that
we have used a microsimulation-based demand model to generate a large sample of
OD demand observations k (e.g. observations can represent daily OD demand, or OD
demand per departure time interval) in a network, each being a realization of the n-
dimensional OD demand vector xk = (x1,x2, ...,xn). Thus, there is (k×n) OD demand
matrix X , where each row i, i = 1,2, ...,k contains the vector of OD flows per time
(e.g. for whole day, per departure time interval) and column j, j = 1,2, ...,n denotes
the realizations of the n-th OD pair over time. The OD demand data matrix X must be
pre-processed before performing PCA. The columns of X are centered in such a way
that the mean of each column is equal to zero by subtracting the mean of each OD
pair over time. This will ensure that the cloud of data is centered on the origin of the
eigenvectors. Once the covariance matrix of the OD demand matrix X is generated,
PCA is applied to extract the eigenvectors ei, i = 1,2, ...,n and eigenvalues λi, i =
1,2, ...,n.

Now, transforming the OD demand data into the new coordinate system can proceed.
Since the covariance matrix of X is real and symmetric, its eigenvectors e1,e2, ...,en

can be chosen as an orthonormal basis. Therefore, OD demand matrix X , or actually
(X− X̄), can be represented, without loss of generality, as a linear combination of a set
of n orthonormal eigenvectors ei

X− X̄ = c1e1 + c2e2 + ...+ cnen =
n

∑
i=1

ciei (4.1)
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where the eigenvectors ei satisfy the orthonormality relation

eT
i e j = δi j (4.2)

in which δi j is the Kronecker delta symbol. Explicit expressions for the coefficients ci

in (4.1) can be found by using (4.2) to give

ci = (xi− x̄i)ei (4.3)

which can be regarded as a simple rotation of the coordinate system from original x’s
to a new set of coordinates given by c’s. An intuitive explanation of (4.3) is that the
eigenvectors are used as weights on each of the original variables to compute the new
set of variables: the principal demand components c1,c2, ...,cn. The representation
of (X̂ − X̄) on the orthonormal basis e1,e2, ...,en is thus given by principal demand
components c1,c2, ...,cn. The principal demand components ci capture the contribu-
tion of each eigenvector ei to the particular observations of OD demand. In turn, the
eigenvectors ei capture the common behavior of travelers over all OD pairs.

By sorting the eigenvectors in decreasing order by the size of the eigenvalue, the first
m eigenvectors (m ≤ n) can be retained, which captures the maximum data variance.
However, since the covariance matrix of observed OD demand in general can be very
large, it is inconvenient to evaluate and store all eigenvectors and eigenvalues explicitly.
To avoid this, efficient algorithms can be used, which determine the m largest eigen-
vectors of the covariance matrix, such as the orthogonal iteration and power method
(Golub & van Van Loan (1996)). The choice of first m eigenvectors depends on selec-
tion criteria. It can be based on simple heuristic observation of cumulative variance of
eigenvalues, or it can be based on a more complex statistical and hypothesis test. The
issue is discussed further in Section 4.3.2.

Once the m largest eigenvectors e1,e2, ...,em are found, a new low-dimensional repre-
sentation of the OD demand by using equation (4.1) can be expressed as follows:

X̂− X̄ =
m

∑
i=1

cieT
i (4.4)

where X̂ is the approximated OD demand constructed using the first m eigenvectors.
Thus, the explicit expression for the approximated OD demand X̂ in low-dimensional
space can be found by using equation (4.4) to give

X̂ =
m

∑
i=1

cieT
i + X̄ (4.5)

To examine the intrinsic dimensionality of OD demand and to understand the under-
lying patterns in the time evolution of OD demand, the following subsection presents
and explains the results obtained by applying PCA. First it is shown that only small set
of principal components is necessary for a good approximation of high-dimensional
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original data. Then, in order to discern the low dimensionality of OD demand, the
temporal patterns in the dynamic OD demand are examined.

4.3 Exploring the temporal variability of dynamic OD
matrices

4.3.1 Setting up OD matrices database

Following the process of performing PCA given in the previous section, the database of
OD demand needs to be generated. This database is usually generated from available
historical OD demand, off-line estimated dynamic OD demand or from synthetic OD
demand data generated from a detailed travel demand microsimulation method (e.g.
activity-based or trip-based methods). In addition, emerging data collection systems
are receiving attention for their potential to provide direct observation of OD flow data.
Although availability of these data is limited today, one may expect in near future large
samples of OD flow data to be collected. To demonstrate application perspectives of
PCA, the database of dynamic OD demand for network presented in Figure 4.1 is
generated as follows.

A simplified freeway network consisting of 26 OD pairs n = 26, 27 nodes and 52
corresponding links (Figure 4.1) is considered. This network was chosen because of
the availability and quality of empirical detector data, and turn fraction data for a long
time period. Furthermore, a calibrated OD matrix is available. In this network, each
on-ramp and off-ramp represents an origin and destination respectively, with a single
route between them. Traffic counts at origin links and destination links are measured
and aggregated in 15-minute intervals. In addition, available static OD matrices are
transformed into time sliced OD matrices using the temporal evolution trends from
collected traffic counts on the off-ramps and the on-ramps, yielding the dynamic OD
matrix. The entire day (from 00:00 to 24:00) for five weekdays (from Monday to
Friday) is considered.

	
   Figure 4.1: Freeway network, A12, Gouda Utrecht, the Netherlands.
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4.3.2 Reducing the dimensionality of dynamic OD matrices

The original data set can be represented with relatively high accuracy by projection
onto the first m - eigenvectors, (m < n) that have significantly larger eigenvalues, and
contain the most useful information relating to the specific problem.

Criteria for selecting a limited number of principal components

The eigenvalues indicate how much variance is explained by each eigenvector accord-
ing to the following equation:

‖Xe‖= eT Se = λeT e = λ (4.6)

where we have used the fact that since the eigenvectors are orthonormal, we have
ET = E−1.

A number of approaches are available for determining how many eigenvectors should
be retained in order to account for most of the variation in data X (Jolliffe (2002)).
In general, the choice of how many eigenvectors should be retained is often made by
means of visual examination of a number of different criteria. The simplest relates
to plotting the eigenvalues sorted by size, i.e. by making a so-called scree plot and
looking for an ”elbow” in this plot. Figure 4.2 presents the scree plot of eigenvalues
obtained from data set X for visual examination of eigenvalues magnitudes. A sharp
elbow appears around the fifth eigenvalue, showing that the effective dimensionality of
the time series of OD demand data is far smaller than the apparent dimensionality of
the total number of OD pairs in network, n.
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Figure 4.2: Scree plot of eigenvalues from centered OD matrix X .



72 TRAIL Thesis series

A second criterion for choosing m eigenvectors is a predetermined total (cumulative)
percentage of total variation explained, such as 95%. The results of applying this
criterion are presented in Figure 4.3. In this case, both plots indicate that the choice
of eigenvectors between 5 and 10 are enough to represent 95% of the total variance in
data, where the first two eigenvectors represent over 70% of the total variance in data.
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Figure 4.3: Cumulative percentage of total variation explained by eigenvalues.

Projecting the data onto a limited set of eigenvectors

Among all linear techniques, PCA provides the optimal approximation of original data
X in terms of the quadratic reconstruction error ‖X − X̂‖; see (Sun et al. (2009)).
The original OD matrix X can be approximated by projecting this data on new m-
dimensional space applying equation (4.4).

To illustrate the observed low dimensionality of timeseries of OD matrices per depar-
ture time interval, graphical representation of a demand for two OD pairs with respect
to the first five eigenvectors and original data is given in Figure 4.4. The figure shows
that even if over 80% of dimensions are omitted from the original data X , the temporal
variability of these OD flows can be captured well.

In order to explain the potential reasons for the low dimensionality of timeseries of
OD matrices, the next subsection explores temporal variability patterns captured by
principal demand components.

4.3.3 Finding temporal patterns in time series of OD matrices

This subsection first explores which principal demand components are most significant
for each OD pair. Then, it shows the application of PCA to explore the temporal pat-
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Figure 4.4: Original and approximated OD demand of one OD pair with five eigenvec-
tors.

terns captured by principal demand components. It also demonstrates the application
of PCA method to identify and separate different temporal variability trends within
each OD pair.

Contribution of principal demand components to OD pairs

To understand how principal demand components contribute to each variable, and to
each OD pair, the coefficients in eigenvector matrix E defined in the previous section
are analyzed. The eigenvectors can be understood as the weights on each of the origi-
nal variables used to compute the new set of principal demand components. Note that
the row i of the eigenvector matrix E specifies the weights (referred to as loading coef-
ficients) on each of the original variables used to compute the set of principal demand
components (see equation (4.3)).

To explore the low dimensionality of time series of OD matrices, we will examine
how each OD pair is composed of significant principal demand components and how
the magnitude of the OD demand in each of OD pairs is related to these components.
First, the number of loading coefficients in the eigenvector matrix that are significantly
different from zero must be determined. This can be done by setting a threshold value
1/
√

n, which implies a perfectly equal mixture of all principal demand components,
taking into account that columns of E have a unit norm. Then, the number of significant
principal demand components is obtained by counting how many loading coefficients
in the rows of the eigenvector matrix E exceed this threshold in absolute value.

The cumulative distribution function of the number of loading coefficients per row
of the eigenvector matrix E that exceed this threshold value is shown in Figure 4.5.
The figure shows that most of the OD pairs are composed of five significant loading
coefficients, and no OD pair has more than ten significant loading coefficients. From
this result it can be concluded that each OD pair has only a small set of temporal
variability features captured by principal demand components.
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Figure 4.5: CDF of number of significant principal demand components that constitute
each OD pair.

This should be followed by an examination of which loading coefficients are most sig-
nificant per OD pair, and determining if they differ in terms of magnitude of OD flow.
To analyze this, the point in each OD pair where loading coefficients occur above the
threshold entries in eigenvector matrix E is inspected. Figure 4.6 shows the loading co-
efficients for each OD pair that exceed the threshold value as dots so that the OD pairs
are presented in increasing order of magnitude of OD flow. Note that the columns of
the eigenvector matrix E are organized in decreasing eigenvalue order, from the first
eigenvector to the last. Thus, as could be expected, the OD pairs with highest OD
flow consist mainly of the most significant principal demand components, while the
smaller OD demands consist of less significant principal demand components. There-
fore, the next subsection explores the temporal patterns captured by each principal
demand component as playing a key role in understanding the properties of temporal
variability of dynamic OD matrices.

Temporal variability patterns in time series of OD matrices

The previous subsection’s analysis of the contribution of principal demand components
to OD flows has emphasized the importance of understanding the temporal patterns
captured by principal demand components. This temporal patterns can be derived by
normalization of principal demand components to unit length by dividing by

√
λ , given

as (Jolliffe (2002))
u j =

c j√
λ j

j = 1, ...,d (4.7)

The vectors u j are vectors of size k and orthogonal by construction and are referred
to as the temporal data vectors of X . The value of contribution is between 0 and
1 and, for a given principal demand component; the sum of the contributions of all
observations over time is equal to 1. Thus temporal vector u j captures the temporal
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Figure 4.6: Correlation of OD flows volume and their principal demand components.

variability observed in all OD pairs along principal demand component c j. Since the
principal demand components are in order of contribution to the overall variance in
OD demand, temporal vector u1 captures the strongest temporal trend common to all
OD flows, u2 captures the next strongest, and so on. The set of temporal vectors u j is
stored in columns of a temporal pattern matrix U , which has size (k×n).

From an initial assessment of these temporal vectors, it turned out that there are always
three distinctly different temporal patterns. Figure 4.7 depicts plots of temporal vectors
on three principal demand components that capture the different patterns. In all tested
temporal vectors, it was observed that each vector captures one of the three different
temporal patterns that can be classified as follows:

1. Structural patterns The first plot in Figure 4.7 shows an example of a temporal
vector that exhibits a strong structural pattern with peaks in morning and evening
rush hours in weekdays. The observed periodicity clearly reflects average regular
daily activities.

2. Large structural deviation patterns The second plot in Figure 4.7 shows an
example of a temporal vector that exhibit a large structural deviation from the
average pattern. The deviation component captures events that cause unforeseen
deviations from the average pattern. Examples of such events could be large
sporting events, days with extreme weather conditions, etc.

3. Stochastic patterns - The third plot in Figure 4.7 shows an example of a tem-
poral vector describing the random deviations from the average pattern. These
vectors capture the remaining random variation in OD demand and the majority
of vectors u j appear to be of this type.

This taxonomy, derived from PCA, can be viewed as parallel to characteristic trends
in dynamic OD demand that have been found in other studies such as the work of
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Zhou & Mahmassani (2007). Also, the statistical inference of the temporal and spatial
correlation of OD demand has been studied by Martin L (2008). While previous studies
have generally focused on describing these features for the purpose of modeling OD
demand prediction methods, the above result show that the common patterns of OD
demand variability can be determined entirely from the data without any modeling
assumptions.

Decomposition of OD flows

Since the results show that each OD pair is composed of several significant principal
demand components and based on the classification of temporal patterns captured by
these components, it is interesting to investigate the decomposition of OD flows on
these patterns. A clear benefit of classifying the trends in variability of OD demand
would provide decomposition of each OD flow into its principal features.
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Figure 4.8: Decomposition of OD pairs into the temporal trends.

The relative contribution of each temporal pattern type to each OD pair has been de-
termined. The results are shown in Figure 4.8, where the OD pairs on x-axis are sorted
according to increasing order of demand volume per OD pair. For each OD pair we
plotted the fraction of its variability contributed by three patterns: structural, large
structural deviation and stochastic trends. It is possible to observe that high volume
OD pairs are dominated by structural trends. As the demand volume tends to decrease,
the relative contribution of the structural trend decreases, while the stochastic trend
and large structural deviation pattern increase.
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Figure 4.7: Three different temporal trends captured by temporal vectors on principal
demand components.
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4.4 Conclusions

This chapter discusses the potential of using PCA to pre-process the time series of
OD matrices per departure time for estimation of dynamic OD matrices. The contri-
butions of this study include the following aspects. The application of PCA to the set
of dynamic OD matrices over a long time period on freeway network section provides
evidence of the applicability of PCA to reduce the high dimensionality of OD data. By
using PCA, high-dimensional dynamic OD matrices can be accurately approximated
over time using 20% of the original data.

Exploring the reasons for such low-dimensionality, by examining the temporal vari-
ability patterns in every principal demand component over OD pairs, the existence of
three dominant patterns was presented. It was shown that the set of dynamic OD matri-
ces consist of three patterns: structural, large structural deviation and stochastic trend.
Furthermore, it was shown that each OD pair can be decomposed into these patterns.
High volume OD pairs are dominated by structural trends. As the demand volume
tends to decrease, the relative contribution of the structural trend decreases, while the
stochastic trend and large structural deviation pattern increase. This result will be used
further in Section 6, to determine structural correlation between OD pairs in matrix.

The next chapter shows how principal demand components are used as state variables
instead of OD flows for real-time dynamic OD demand estimation and prediction.
State space OD estimation model is formulated, where the eigenvectors ei define the
fixed structure of the OD matrices, and principal demand components are updated on-
line from link traffic counts. Furthermore, some practical points, such as temporal
correlation between traffic data observations introduced by dimensionality reduction
of the state vector, will be discussed.



Chapter 5

Methodology for real time OD demand
estimation and prediction

This chapter presents an methodology for solving the high dimensionality problem in
real time OD demand estimation and prediction and shows the efficiency of the result-
ing approximation for large-scale networks. A way of applying principal component
analysis (PCA) to linearly transform the high dimensional OD matrices into the lower
dimensional space, without significant loss of accuracy has been achieved. Next, a new
transformed set of variables (demand principal components) is defined, that is used to
represent the OD demand in lower-dimensional space. These new variables are de-
fined as state variables in a novel reduced-state space model for real-time estimation
of OD demand. The quality improvement of OD estimates has been demonstrated, us-
ing this new formulation and a so-called, ”colored” Kalman filter approach for OD
estimation, in which correlated observation noise is taken into account. In this chap-
ter, it is established that by significantly reducing the dimensionality of the OD data,
in such a way that the structural patterns are preserved, the computational costs can
be dramatically reduced. Moreover, the model performance and computational effi-
ciency are thoroughly analyzed using real data from a large network, and method for
obtaining a reduced set of state variables.

This chapter is an edited version of the articles:
Djukic, T., G. Flötteröd, H. van Lint, S. Hoogendoorn, Efficient real time OD matrix
estimation based on Principal Component Analysis. Proceedings of the Intelligent
Transportation Systems Conference, Anchorage, Alaska, 2012. and
Djukic, T., J. W. van Lint, S. Hoogendoorn, Methodology for efficient real time OD
demand estimation on large scale networks. Transportation Research Board, Wash-
ington, DC, 2014.
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5.1 Overview of methodology

This chapter focuses on the efficient estimation and prediction of OD matrices for
large-scale networks, since they will be used for real-time applications such as dy-
namic traffic management. Here, efficient denotes the estimation and prediction of
large-scale dynamic OD matrices with the least waste of computation time, to satisfy
real-time application requirements. A convenient way of understanding the proposed
methodology is to illustrate the proposed and OD demand estimation and prediction
methodology in the generic way.

In general terms, all dynamic OD demand estimation and prediction methods aim
to find the most probable OD matrix Xk, given previous within day estimates Xk−τ ,
τ = 1,2, ..., or historical OD matrices Xprior from day-to-day time period, the available
(sensor) data Y , and all the other assumptions H (related to, for example, the assign-
ment method and/or the assumed temporal evolution of the OD patterns). The common
methodology with inputs and outputs into an OD matrix estimation and prediction is
illustrated in Figure 5.1. The input data can be collected from different sources such
as detector data (e.g. link traffic counts, speeds and densities) or from Bluetooth data,
floating car data and licensee plate-recognition cameras (e.g. travel times and route
choice). The most widely used sensor data are link traffic counts yk, that are available
for the entire analysis period (all the departure intervals) or at the end of each interval
k. This generic methodology can be used for off-line and real-time applications. For
off-line application, the entire set of link traffic counts for the analysis period can be
used to simultaneously estimate OD matrices for all time intervals. For real-time ap-
plication, at the end of each interval k, only the counts corresponding up to kth time
interval can be used to sequentially estimate the OD matrix for the current time inter-
val. Finally, for real-time application, predictions of OD matrices are generated for
intervals k+1, k+2, ... and the estimation and prediction process continues.

OD demand	


estimation 	



(and prediction)	



Traffic link counts	

 Assignment matrix	



Estimated	


(and predicted) 	


OD demand	



Historical	


OD demand	



Off-line or On-line	


	



Figure 5.1: Overview of common OD estimation (and prediction) methodology

The OD estimation problem is computationally intensive because solution methods
have to deal not only with high-dimensional structures of OD matrices, but also with
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the computational complexity of these methods. One of the problems with high-
dimensional datasets is that, in many cases, not all the measured variables are cru-
cial to the understanding of the underlying phenomena of interest (e.g., temporal or
spatial correlation between variables or associated patterns, etc.). In other words, one
may postulate that high-dimensional data are multiple, indirect measurements of an
underlying source. As a result, one possible solution approach to solve this issue of
high-dimensionality is to map the high-dimensional OD matrices into a space of lower
dimensionality, as presented in previous Chapter 4.

OD demand	
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(and prediction)	



Off-line	



Traffic link counts	

 Assignment matrix	
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(and predicted) 	


OD demand	



Historical	


OD demand	



PCA approximation	



Reduced	


OD demand	
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Figure 5.2: Overview of proposed OD estimation (and prediction) methodology

Figure 5.2 illustrates the proposed methodology for real-time OD demand estimation
and prediction. This method, applies the Principal Component Analysis (PCA) Jolliffe
(2002), to a data set of historical OD demands or synthetic OD demand data gener-
ated from a detailed travel demand microsimulation method (e.g. activity-based or
trip-based methods). This historical OD dataset can be approximated as a linear com-
bination of a set of only a few orthonormal vectors (eigenvectors) and principal demand
components. These eigenvectors that capture the trip-making patterns and their spatial
and temporal variations are extracted off-line, whereas the principal demand compo-
nents capture the contribution of each eigenvector to the realization of a particular OD
flow. These principal demand components are defined as state variables instead of the
OD flows themselves. As a result, the dimensionality of the state is reduced substan-
tially and the complexity of the estimation problem is likewise reduced. For real-time
application, at the end of each interval k, the traffic counts corresponding up to the kth

time interval would be used to sequentially update principal demand components for
the current time interval. Finally, the estimated principal demand components are used
to obtain the estimates of OD matrix.

Reducing the dimensionality problem with PCA replaces the usual approach of using
prior OD matrices by structural information on OD flows obtained either from histor-
ical OD demand data or from synthetic OD demand data generated from a detailed
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demand microsimulation system (e.g. activity-based or trip-based methods). The im-
portance and originality of this approach lies in the possibility of capturing the most
important structural information without loss of accuracy and considerably decreasing
the model dimensionality and computational complexity.

This chapter is organized as follows. In the next section, state space OD estimation
model is formulated, where the eigenvectors ei define the fixed structure of the OD ma-
trices, and principal demand components are updated on-line from link traffic counts.
Next, the properties of the colored noise Kalman filter to solve the proposed dynamic
OD estimation and prediction method with time-correlated observations is presented.
Finally, the proposed method is demonstrated on large-scale urban network (Vitoria,
Spain).

5.2 A Reduced state space OD estimation and predic-
tion model formulation

This section includes a demonstration of the use of the approximated OD demand
presented in the Chapter 4 in a state space based formulation. The development of
state space based models, first requires state variables to be defines. Below is a brief
discussion of this definition in the context of dynamic OD demand estimation and
prediction using the PCA approach presented previously.

Following the idea presented in Chapter 4, the chosen state is defined as a (m× 1)
vector of principal demand components, ck, where m represents the reduced num-
ber of variables in the state vector at time interval k. The principal demand compo-
nents represent approximated OD demand, where each principal demand component
ci, for i = 1,2, ...,m captures the contribution of each eigenvector ei to the particu-
lar observations of OD demand. Therefore, the OD demand state in the network at
time k is uniquely described by the vector of the principal demand components ck in
m-dimensional space, where m < n.

The state space model formulation consists of process and observation equations.
Clearly, a process equation must be specified that captures the temporal evolution of
the state, and an observation equation that uses whatever new information (i.e. obser-
vation) is available to estimate the state.

A process equation is defined as an autoregressive process on principal demand com-
ponents, which provides a preliminary estimate of the OD flow. The process equation
is defined as follows:

ck =
k−1

∑
q=k−τ

φ
q
k cq +wk (5.1)

where φ
q
k , a (m×m ∗ q) is the process matrix that represents the effects of previous

states cq on current state ck, τ is a degree of the autoregressive process and wk is a
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vector of random variables capturing unobserved deviations in the process. The pro-
cess noise vector wk depicts a known Gaussian noise term defined with the following
assumptions:

• mean E[wk] = 0;

• variance E[w2
k ] = θkδk, where θk is a m×m variance covariance matrix, with

eigenvalues on the diagonal stored in decreasing order, and the δk is the Kro-
necker symbol.

In addition to this, the state space model formulation uses an observation equation,
defined as a linear relationship between the state variables (principal demand compo-
nents) and the observations (e.g., traffic counts):

yk =
k

∑
h=k−κ

Ah
kxh + vk (5.2)

where yk ∈ Rr denotes a vector of link traffic counts for time interval k, and Ah
k is

a (r× n ∗ h) matrix, known as an assignment matrix, mapping OD flows that depart
during intervals h to link traffic counts observed during interval k. Further, κ is the
maximum number of time intervals needed to travel between any OD pair, and vk is a
vector of random variables capturing the observations error on detectors during interval
k.

Following the lower-dimensional representation of OD demand by principal demand
components and substituting (4.4) in (5.2), the observation equation (5.2) can be refor-
mulated as:

yk =
k

∑
h=k−κ

Ah
k(chEh + x̄h)+ vk

=
k

∑
h=k−κ

Hh
k ch + ȳh + vk (5.3)

where Hh
k =

k
∑

h=k−κ

Ah
kEh is a (r×m ∗ h) matrix called observation matrix, mapping

the principal demand components during intervals h to traffic counts observed during
interval k. Note that the observation matrix Hh

k in equation (5.3) is not the same as
the assignment matrix Ah

k given in (5.2). Finally, the matrix Hh
k is used for the lin-

earization of the model; it equals the transformation of the assignment matrix Ah
k to

the orthonormal basis matrix of eigenvectors Eh. The observation noise vk depicts a
known Gaussian noise term defined with following assumptions:

• mean E[vk] = 0;

• variance E[v2
k ] = Rkδkm, where Rk is a (r×r) variance covariance matrix, and the

δkm is the Kronecker symbol.
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In conclusion, note that this model uses the following input variables: process transi-
tion matrix φ h

k , process error covariance matrix θk, and observation error covariance
matrix Rk. These input data are usually derived from, for example, existing historical
data on OD demand and observations. In transport modeling for the real-time appli-
cations, it is considered that data would be available over multiple days, making it
possible to calibrate model inputs.

5.2.1 State Augmentation

Travel time on large-scale networks can be very long depending on trip length be-
tween OD pairs and prevailing traffic conditions (i.e. the congestion level in the net-
work). The implication of trips with travel times that are significantly larger than the
discrete time steps between consecutive OD departure intervals is that observations
(traffic counts) made at the current time step k may include OD flows departing at a
range of earlier time intervals k− 1,k− 2, ...,k− s. This time lag effect can be dealt
with through state augmentation - each state variable is estimated s = max(κ + 1,τ)
times. Therefore, in this section the process equation (5.1) and observation equation
(5.3) are reformulated to capture time lag effect.

First, the state vector ck is augmented to include additional state variables from previ-
ous time intervals as:

Ck = [c′k c′k−1 . . . c′k−s]
′

Thus, the process equation (5.1) can be written in augmented form as:
ck+1

ck
...

ck−s+1

=


φ k

k+1 · · · φ
k−s−1
k+1 φ

k−s
k+1

I · · · 0 0
... . . . ...

...
0 · · · I 0

×


ck

ck−1
...

ck−s

+


wk+1

0
...
0


Then, the process equation (5.1) in matrix form is given as:

Ck+1 = ΦkCk +Wk+1 (5.4)

where
Ck is (n(s+1)×1)
Φk is (n(s+1)×n(s+1))
Wk+1 is (n(s+1)×1)

Now, the observation matrix is refined as

Hk = [hk
k hk−1

k . . . hk−s
k ]

where
Hk is (r×n(s+1))
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Then, the observation equation (5.3), expressed in terms of the augmented state vector,
can be written as

yk = HkCk + ȳk + vk (5.5)

Up to this point, a reduced state space OD estimation model has been formulated and
the following section proceeds with solution approach.

5.3 Solution approach

For the sake of clarity, we will start with a reference to the idea of variables reduction
in state vector and the state space model of Section 4.3. This is followed by the ex-
amination of a solution approach in which correlated observation noise is taken into
account through the reduction of variables in the state vector.

5.3.1 Temporal correlation between observations introduced by di-
mensionality reduction

Equations (5.1) and (5.3) constitute a linear state space model. The solution approach
of such a system of equations may seem fairly standard at first glance. However,
since there are practical points which are not entirely obvious, they are illustrated here,
before a solution algorithm is presented. The dimensionality reduction approach to ap-
proximate the dynamics of dynamic OD demand, X , given in equation (5.1) introduces
an additional noise term that represents the variance of those OD flows that are filtered
out by the PCA procedure. In order to explain the potential reasons for the tempo-
ral correlation between observations introduced by the dimensionality reduction of the
state vector, the observation noise correlation has been analytically derived. Here, the
effect of lagged time intervals κ has been omitted from observation equation (5.3), for
the sake of simplicity.

The given observation equation (5.3) for the reduced number of state variables m over
time interval k can be expressed as

yk = Ak

m

∑
i=1

ci,kei,k +Ak

n

∑
i=m+1

ci,kei,k + vk

yk = Ak

m

∑
i=1

ci,kei,k +ξk

ξk = Ak

n

∑
i=m+1

ci,kei,k + vk (5.6)
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where, ξk represent the observation noise that consists of additional noise introduced
by dropped state variables from m+1 till n at time interval k.
Further, observation equation (5.3) for the reduced number of state variables m for the
next time interval k+1 can be expressed as

yk+1 = Ak+1

m

∑
i=1

ci,k+1ei,k+1 +Ak+1

n

∑
i=m+1

ci,k+1ei,k+1 + vk+1

yk+1 = Ak+1

m

∑
i=1

ci,k+1ei,k+1 +ξk+1

ξk+1 = Ak+1

n

∑
i=m+1

(ci,k +wk)ei,k+1 +υk+1

ξk+1 = Ak+1

n

∑
i=m+1

ci,kei,k+1 +Ak+1

n

∑
i=m+1

wkei,k+1 + vk+1 (5.7)

where, ξk+1 represent the observation noise at time interval k+ 1 that consists of ad-
ditional noise introduced by omitted state variables from m+1 till n in previous time
interval k. It follows that, ξk and ξk+1 represent the temporal correlated observation
noise. It is well known that this condition destroys the assumption of independency
between process and observation noise that underlies the standard Kalman filter. The
objective of this section is to find an effective method to deal with this kind of correla-
tion.

5.3.2 Colored noise Kalman filter solution algorithm

If the observation noise is correlated, the new observation equation can be modeled as

yk = Hkck +ξk (5.8)

and the time-correlated observation noise is modeled as a first-order Gauss Markov
process as follows:

ξk+1 = ψξk +νk (5.9)

where, with reference to equations (5.8) and (5.9), the correlation matrix Ψ is equiva-
lent to the process transition matrix Φk for time correlated errors, and νk is an obser-
vation noise vector assumed to be uncorrelated with the process noise vector wk.

When the observation errors are temporally correlated, as has been shown in Subsec-
tion 5.3.1, the time differencing approach, first introduced in 1968 by Bryson & Hen-
rikson (1968), is commonly applied as a way to model correlated observation noise
in state-space model representations. The core idea behind this time differencing ap-
proach is the elimination of the time-correlated observation noise terms ξk, using a
pseudo-observation equation zk whose error is white. From equations (5.8) and (5.9),
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we have

zk = yk+1−Ψyk

= (Hk+1Φk−ΨkHk+1)ck +Hk+1wk + vk

= H∗k ck +ν
∗
k (5.10)

where H∗k = Hk+1φk−ψkHk and the new observation noise is given as

ν
∗
k = Hk+1wk + vk (5.11)

Moreover, the mean and the variance of the new observation noise ν∗k are defined as
follows:

• mean E[ν∗k ] = E[Hkwk + vk] = 0;

• variance E[ν∗k ν∗Tk ] = var(ν∗k )σk j = R∗k

where covariance matrix R∗k is given as

R∗k = E[(Hk+1wk + vk)(H j+1w j + v j)
T ]

= Hk+1θkHT
k+1 +Rk (5.12)

Further, the decorrelation technique presented in Bryson (2002) is applied to process
equation (5.6) to eliminate the correlation that now exists between the new observation
noise ν∗k (5.11) and the process noise wk. A new process equation can be written as

ck = φk−1ck−1 +wk−1 + Jk−1(zk−1−H∗k−1ck−1−ν
∗
k−1)

= φ
∗
k−1ck−1 + Jk−1zk−1 +w∗k−1 (5.13)

where the new state process matrix is expressed as φ∗k = φk−1−Jk−1H∗k−1, and Jk−1zk−1

is the control item of the new state-space equation system. The new process noise error
is defined as

w∗k−1 = wk−1− Jk−1ν
∗
k−1 (5.14)

To make the new process noise (5.14) and observation noise (5.11) uncorrelated, the
covariance matrix is given as

E[w∗kν
∗T
j ] = E[wkν

T
j ]− JkE[νkν

T
j ] = (Sk− JkRk)σk j = 0 (5.15)

Therefore, based on equation (5.15), the following condition should be satisfied:

Jk = SkR∗−1
k (5.16)

Moreover, the mean and the variance of the new state noise w∗k are given as follows:

• mean E[w∗k ] = E[wk− Jkν∗k ] = 0



88 TRAIL Thesis series

• covariance E[w∗kw∗Tj ] = var(w∗k)σk j = θ ∗k

where the covariance matrix θ ∗k is given as

θ
∗
k = E[(wkwT

k + JkE[νkν
T
k ]J

T
k −E[wkν

T
k ]J

T
k − JkE[νkwk)

T ]

= θk + JkRkJT
k −SkJT

k − JkST
k

= θk +SkR∗−1
k ST

k (5.17)

For a more detailed derivation of a colored noise Kalman Filter, and derivation of
covariance matrices θ ∗, R∗ and M∗ refer to Bryson (2002).

At this time and for the given problem, a state space model has been depicted by
equations (5.10) and (5.13), which satisfies the assumptions of the standard Kalman
Filter. Clearly, the new process noise w∗k and observation noise ν∗k are independent,
zero-mean, Gaussian noise processes of covariance matrices θ ∗k and R∗k respectively.
Algorithm 1 summarizes the colored Kalman Filter equations as a solution of such a
equation system.

Algorithm 1 The colored Kalman Filter

Initialization:
ĉ0|0 = E[c0|0] and P0|0 = E[c0|0−E[c0|0]

T ]

When no additional information is available, P0|0 is usually initialized as a matrix
with large diagonal entries, reflecting the fact that the correctness of the initial
estimate of ĉ0|0 is highly uncertain.

For k = 1,2, . . . do:

Compute the Kalman Gain:

Kk = Pk|kH∗Tk (H∗k Pk|kH∗Tk +R∗k)
−1 (5.18)

Correct mean and covariance:

ck−1|k = ck−1|k−1 +Kk(z∗k−H∗k ck−1|k−1) (5.19)

Pk−1|k = (I−KkH∗k )Pk−1|k−1(I−KkH∗k )
T +KkR∗kKT

k (5.20)

Update mean and variance of state variables:

ck|k = φ
∗
k ck−1|k + Jkzk (5.21)

Pk|k = φ
∗
k Pk−1|kφ

∗T
k +θ

∗
k (5.22)

End

Note that the time differencing solution algorithm uses one time interval latency in the
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observation updating because the observation in time interval k must be used to update
the state vector in the previous time interval, k− 1. Therefore, following the Kalman
Filter terminology, ck−1|k denotes correction of the state variable for time interval k−1,
using the information from link traffic counts for interval k, and Pk−1|k depicts the up-
dated state error covariance matrix. The Kalman filter gain in equation (5.18) evaluates
the importance of the new information obtained from link traffic counts at time interval
k and can be interpreted as the weight given to the most recent information. Equations
(5.19) and (5.20) reflect the corrected knowledge of the system state at time interval
k−1 with the obtained link traffic counts for interval k. In the update step, knowledge
of the evolution of state and observations is used to update prior corrections. There-
fore, the equations (5.21) and (5.22) reflect the best estimate of the system state ck|k
and Pk|k error covariance matrix at time interval k, including the information on link
traffic counts for time interval k.

Finally, the result of the colored Kalman filter, the estimated a posterior state vector
ck|k, is used to estimate OD demand by applying equation (4.5). All that is required to
extend the model to k-step prediction is to multiply the filtered vector by the appropri-
ate φk matrix k times.

5.4 Numerical experiments

This section begins with a description of the input data used by proposed dynamic
OD estimation and prediction method, e.g. historical OD demand generation and state
variables reduction procedure. Two assessment scenarios are considered, in terms of
number of variables in the state vector (i.e. with and without the reduction of state
variables). These scenarios will be discussed in more detail below. Numerical experi-
ments are performed on a large-scale network, (Vitoria, Basque Country, Spain) with
real data to evaluate the performance of the proposed model and solution algorithm.

5.4.1 Network topology

Prior to method evaluation, a Vitoria network has been defined, consisting of 57 cen-
troids, 3249 OD pairs with a 600km road network, 2800 intersections and 389 detec-
tors, presented as black dots in Figure 5.3. This network is available in the mesoscopic
version of the Aimsun TSS (2013) traffic simulation model for the reproduction of
traffic propagation over the network. The true OD demand is available for this net-
work, which allows analysts to assess the performance of the proposed method. The
true assignment matrix and traffic counts on detectors are derived from the assignment
of true OD matrix in Aimsun for the evening period from 19:00 to 20:00 reflecting a
congested state of the network. The simulation period is divided into 15 minute time
intervals with an additional warm-up time interval, K = 5. The link flows resulting
from the assignment of the true OD demand are used to obtain the traffic count data per
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observation time interval. The trips between some of the OD pairs are not completed
within one time interval due to congestion on the network or the distance between OD
pairs. In this way, a vehicle entering the network during a particular departure time
interval might need more than one time interval to reach a traffic detector, where the
departure time interval and detection time are different. In the chosen study network,
the maximum travel time between OD pairs observed on the network takes four time
intervals, which leads to very sparse assignment matrices, and the number of lagged
time intervals κ = 4.

Figure 5.3: The Vitoria network, Basque Country, Spain

5.4.2 Simulating historical daily OD demand

A major problem with all method assessments is obtaining meaningful evaluations
of the algorithm’s results and performance, because the true sources of data are not
available for comparison when working with real data. One solution is to use simulated
OD demand data, where underlying sources and phenomena are known. To generate
a simulated OD demand per departure time interval dataset for our case study, it is
necessary to define an arbitrary model for OD demand generation, which represents a
common spatial and temporal behavior of travelers.

Here, the Logit model is performed in sequence, in order to introduce the correlation
to OD flows. First, the set of traveler’s decisions before making a trip are defined,
including decisions to make a trip or not, destination choice and departure time choice.
Then, for each of these decisions, the set of alternatives available to travelers has been
defined. The activity and traveling intentions of traveler tr are presented in the Figure
5.4. The main principle of this model is that a large number of simulations are per-
formed for varying model inputs, reflecting the variability in the travelers’ behavior,
and consequently in OD demand, based on Monte Carlo simulations.

The total number of trips per origin from available true OD matrix is assumed as an
initial number of travelers per origin in simulations. Subsequently, 10.000 observa-
tions have been generated, each representing a realization of the 3249-dimensional
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Figure 5.4: The set of decisions and alternatives for traveler

OD demand vector, where the total number of travelers per origin is equal to the true
OD matrix, while their distribution over destinations is varied. Each generated OD de-
mand vector per departure time interval is stored in the OD demand matrix, where each
row represents one observation of OD demand, as defined in the section discussing the
definition of state variables.

5.4.3 State vector reduction

To examine the effect of reducing the number of principal demand components in
state vector, the PCA has been applied to the OD demand data matrix Xk over K = 5
departure time intervals. Once the PCA is performed, the set of eigenvectors ei,k for i=
1,2, ...,3249 and eigenvalues λi,k for i = 1,2, ...,3249 per time interval k are obtained.

It has been shown in previous sections that eigenvalues can be used to explore the data
reduction potential, for instance by considering the total (cumulative) percentage of
total variation explained (e.g. 95%), Figure 5.5. It can be observed that 90% of the
variance of the data is captured by the first 50 eigenvectors out of 3249. This result
indicates that the state vector can be reduced by more than 90% and still capture the
temporal and spatial variance in data.

The PCA has been performed on OD demand data set per time interval, so that it is
possible in every time interval to identify a potential number of variables in state vector
that describe the 95% of variance in the data set. Table 5.1 shows the number of state
variables m that describe the 95% of variance in data set per departure time interval.

Table 5.1: The number of state variables that capture 95% of variance per time interval
k

Departure time interval 1 2 3 4 5
The number of state variables 40 61 37 39 41
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Figure 5.5: Cumulative percentage of total variation explained by eigenvalues for time
interval k2

It is evident from Table 5.1 that different values of variables in state vector over time
intervals have been obtained. Therefore, the number of state variables is defined as
m = max(mk), for k = 1,2, ...,K, since omitting the principal demand components with
highest captured variance in OD demand would lead to non-effective dimensionality
reduction of the state vector. In the next subsection, the performance of the colored
Kalman Filter for reduced variables in a state vector (for m = 61) will be compared to
its performance when applied to a state vector with no reduced variables.

5.4.4 Method performance

Experiments have been conducted for a Vitoria network, Spain (given in Figure 5.3),
for following two scenarios:

• Case 1: in this experiment run, the state variables (principal demand compo-
nents) have been omitted from the state vector. Since the principal demand com-
ponents in the state vector are arranged in decreasing order of eigenvalues, the
principal demand components that capture the lowest variance have been re-
moved, while the first m = 61 state variables remain;

• Case 2: in this experiment run, all state variables (principal demand components)
in the state vector remain, so that m = n = 3249.
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Table 5.2 presents: (1) the root mean square error (RMSE) per departure time interval
and (2) mean absolute error (MAE) per departure time interval; that is

RMSE =

√
1
n

n

∑
i=1

(x̄i− xi) (5.23)

MAE =
1
n

n

∑
i=1
|x̄i− xi| (5.24)

for x̄k estimated OD demand per time interval, depending on the number of the vari-
ables in state vector, m and n respectively.

Table 5.2: Error in the solution given by number of state variables in the state vector

Time interval Case 2: No reduction of stat.var. Case 1: Reduction of stat.var
RMSE k1 6.803 14.674
RMSE k2 0.537 9.774
RMSE k3 0.493 10.026
RMSE k4 0.493 9.296
RMSE k5 0.527 9.553
MAE k1 3.039 8.186
MAE k2 0.288 4.330
MAE k3 0.243 4.501
MAE k4 0.233 4.268
MAE k5 0.278 4.409

It is clear from Table 5.2 that reducing the variables in state vector yields overestima-
tion of OD demand. However, it is possible to observe that by reducing the dimen-
sionality of the state vector by more than 90%, the colored Kalman Filter produces
a reasonable reduction in accuracy. In real-time applications, it is always a question
of trade-off between the computational efficiency and results’ accuracy. Therefore,
it is of interest to examine the optimal number of variables in a state vector, where
the lower bound is defined as a minimum number of variables that capture 95% of the
variance in the data set, while the upper bound is given by the computation time prefer-
ences. In addition, larger errors relate to the observability problem introduced by state
variables reduction. Therefore, the state identifiablity must be taken into account in
the computation of the optimal number of state variables to achieve the Kalman Filter
convergence.

Note that the initial idea of this research is to solve the computational complexity of
the OD estimation problem for real-time applications. Therefore, in Table 5.3 the run
time of colored Kalman Filter is shown for each scenario (e.g. no reduction of state
variables in state vector and reduced number of state variables) on the Vitoria network.
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Table 5.3: CPU time computations in seconds

Time interval 1 2 3 4 5 Total
Case 1 0.21 0.32 0.18 0.12 0.11 0.94
Case 2 5.89 12.34 9.74 8.37 5.92 42.26

Table 5.3 conveys that a significantreduction in CPU computation time can be achieved
through the reduction of state variables. These times have been obtained by run-
ning MATLAB on a Dell computer with Intel Xeon, Quad Core processor, and 8GB
(1600mHz) memory.

5.5 Conclusions

From the results presented in this chapter, it can be concluded that PCA can be used
to linearly transform high-dimensional OD matrices into the lower- dimensional space
without significant loss of estimation accuracy. A novel dynamic OD estimation and
prediction method has been proposed, that uses the eigenvectors and principal demand
components as state variables instead of OD flows. These variables can be used to con-
struct a state space model that can be solved with recursive solution approaches such
as the Kalman Filter. The proposed state space model, however, appears to be sen-
sitive to the dimensionality reduction of the state vector due to the induced temporal
measurement correlation. The chapter includes the derivation of an analytical solution
for the so-called colored noise Kalman Filter algorithm that accounts for temporally-
correlated measurement noise to avoid this limitation. It has been shown that a reduc-
tion of state variables in the proposed OD estimation and prediction model for large-
scale networks will lead to computational efficiency with an acceptable degradation in
results’ accuracy.

An improvement of the algorithm presented in this chapter can be seen in two features:
(1) the definition of the optimal number of principal demand components in the state
vector so that the computational efficiency, results’ accuracy and state observability are
satisfied, and (2) adaptation of the model when additional data (i.e. speeds, density,
travel times from different technological sources) can be considered to improve the
quality of the estimated OD demand.



Chapter 6

Measures of performance in OD
demand estimation

In this chapter we explore the application perspectives of so-called Structural SIMi-
larity (SSIM) index, a performance indicator that evaluates the structural similarity.
By structural similarity, we mean that the spatial and temporal behavior of travelers
reflected in OD trip patterns have a strong spatial and temporal correlation expressed
by the OD pairs. To illustrate, if it is assumed that any prior OD matrix or available
true OD matrix contains the best pattern information that we can think of, then the
SSIM index can be viewed as an indication of the quality of the estimated OD matrix
compared to the prior OD matrix or true OD matrix, respectively.

In the first part of the chapter we explain the concept of structural similarity in OD
patterns. The theoretical background of SSIM is outlined and its main properties are
explained. Furthermore, the properties of SSIM index are examined, compared to
certain statistical measures. In doing so, it is shown that the statistical measures,
such as MSE, are more sensitive in identifying and evaluating the structural pattern
in OD matrices. Therefore, the SSIM index can be used as additional performance
measure for benchmarking the dynamic OD estimation methods. According to the final
objective of this section of the research - showing potential application of SSIM index
as a new performance function, a new framework for the estimation of OD demand is
presented.

This chapter is an edited version of the articles:
Djukic, T., S.P. Hoogendoorn, J.W.C. van Lint, Reliability assessment of dynamic OD
estimation methods based on structural similarity index. Proceedings of the of the
Transportation Research Board: 13p, 2013;
Djukic, T., J.W.C. van Lint, S.P. Hoogendoorn, Incorporating the structural informa-
tion into the estimation of OD matrices. Proceedings of the TRISTAN conference: 5p,
2013.
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6.1 The concept of structural similarity

OD matrices may be determined from different sources of information (e.g. land-use
models, travel surveys, macroscopic demand simulation models, OD demand estima-
tion methods) using various methods, and represent a common spatial and temporal
behavior of travelers. These OD matrices subsume a wealth of information about re-
lationships that affect trip making, and about their variation over space and time. The
OD demand pattern is a function of the spatial and temporal distribution of travelers’
activities as well as characteristics of the transportation system (Ashok et al. (1993)).
Therefore, the structural relationships in OD demand can generally be explained by
two types of patterns in OD demand, i.e. the temporal and spatial pattern. The tempo-
ral OD demand pattern represents the correlation of the OD demands for the same OD
pair over different time periods (e.g., 8:00 - 8:15 - 8:30 - 8:45 - 9:00 a.m.). The spatial
OD demand pattern refers to the correlation of the OD demands during the same time
period between different OD pairs (e.g., at 8:00, at 8:15, at 8:30, at 8:45 or at 9:00
a.m.). Rules that yield the spatial correlation between OD pairs can be explained on a
simple network example, outlined in Figure 6.1.

A

B

C

D

E

G

H

J

I 
F

K

Figure 6.1: Illustration of spatial interaction between OD pairs

In the case of Figure 6.1, a residential area is depicted by nodes A, B, C, K, G, H
and a workplace area is depicted by nodes D, F, I, E, J. The gravity model illustrates
the macroscopic relationships between locations (homes and workplaces) to predict
spatial interaction patterns. It has long been postulated that the interaction between
two locations (e.g., A and F) declines with increasing distance, time, and cost between
them, but at the same time, the interaction is positively associated with the amount
of activity at each location. Furthermore, it has been recognized that the nature of an
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individual’s activities from which the travel demand derives is interdependent among
events and spatio-temporal features of the transportation network, as an essential re-
search foundation in activity-based travel demand modeling. In view of the above OD
demand research foundations, it is clear that the correlation between OD pairs should
not be overlooked. Thus, structural similarity refers to the strong spatial and temporal
correlation of the spatial and temporal behavior of travelers reflected in OD matrices.

Statistical measures that ignore the spatial correlation between OD pairs in OD ma-
trices may fail to provide effective and accurate quality measures. To show this, the
mean square error (MSE) is used as a performance indicator in following example. In
Figures 6.2(b) and 6.2(c), the two estimated OD matrices are compared at one time
interval (at 8:00 a.m.) using two different OD estimation methods with the available
ground truth OD matrix (Figure 6.2(a)).

((a)) Real OD matrix

((b)) MSE=69, SSIM=0.8724 ((c)) MSE=69, SSIM=0.9702

Figure 6.2: Comparison of patterns in real and estimated OD matrices: a) real OD
matrix; b) and c): estimated OD matrices that have the same MSE with respect to the
real OD matrix, but different structural patterns.
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For better visual examination of the pattern in the OD matrices, where the origin zones
are given in rows and destinations in columns, they are represented as images where
the number of trips per OD pair is used as an index to the colormap that determines the
color for each OD pair. For example, if u represents the number of trips for OD pair
(1,2), x1,2 = u, (Figure 6.2(a)), then the color of OD pair x1,2 is the color represented
by row u of the color map. In Figure 6.2, the OD pair with demand of 20 trips has a
dark green color, and OD pair with demand of 400 trips has a light yellow color. The
MSE between the ground truth OD matrix and both of the estimated OD matrices are
exactly the same. However, the visual examination of the two estimated OD matrices
clearly indicate that they capture different structural patterns. For example, a close
look at the top left corner in Figures 6.2(b) and 6.2(a) shows that not only the number
of trips, but also the spatial correlation between OD pairs in the estimated matrix is
destroyed, compared to the ground truth OD matrix. Contrary to this, a pattern in the
top left corner of Figure 6.2(c) resembles the same spatial correlation between OD
pairs as in the ground truth OD matrix. This indicates that such statistical measures are
only designed to find the distances between a pair of attributes in a data set or overall
distance amongst all data.

One possible solution approach to tackle this issue is to propose a new metric that will
incorporate the structural correlation between OD pairs. In this chapter, the application
perspectives of the so-called Structural Similarity (SSIM) Index (Wang et al. (2004))
are explored, which is used to quantify the similarity between two images, based on the
degradation of the structural information in an image compared to a reference image.
Originating from image processing and analysis, the SSIM approach was motivated
by the observation that images are highly structured, meaning that samples of natural
images have strong dependencies. These dependencies carry important information
about the structures of the objects in the visual scene. The key idea is that if the OD
demand is represented in the form of a matrix, the OD pairs can be seen as pixels in
an image (see Figure 6.2). The spatial correlation between OD pairs is preserved and
carries information on dependencies between OD pairs. Such OD matrices are thus
highly structured and stem from the combination of various kinds of information, such
as OD matrix demand volume and the spatio-temporal correlation between OD pairs.
When applying SSIM index to evaluate OD matrices, one needs to consider ordering of
OD pairs and their physical meaning in OD matrix, and hence if it is valuable measure
to compare OD matrices. Detailed analysis of SSIM index properties is required to
demonstrate potential application in evaluation of OD demand.

In the next sections a definition and detailed explanation of the SSIM index and its
application to OD matrices are presented. The measure ensures that the amount of
structural information in a reference OD matrix is preserved in an estimated OD matrix.
The suitability of the MSE and SSIM index under different scenarios are demonstrated
and compared, to illustrate the key benefits of the SSIM. In addition, sensitivity of
SSIM index on ordering of OD pairs in OD matrix is demonstrated.
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6.2 Theoretical background of the SSIM

The SSIM index is typically used as a method for measuring the similarity between
two images, based on the degradation of the structural information in one image com-
pared to its reference. In general, this method has been employed for image and video
processing in three ways. First, it can be used to monitor image quality for quality
control systems. Second, it can be applied to benchmark image processing systems
and algorithms. Third, it can also be embedded into image processing systems to op-
timize algorithms and parameter settings (Brunet et al. (2012)). Note that Wang et al.
(2004) introduced the SSIM index in the context of measuring similarity to explore
and compare the structural information between images, a problem that is in a many
respects similar to exploring the structures in OD matrices. An exciting consideration
is the possibility of numerous extended applications beyond image processing, since
the SSIM index does not rely on specific image or visual models. The generic defini-
tion of SSIM suggests that it should find broad applicability.

To explain the SSIM metric, a similar rationale is followed as in (Wang et al. (2004)), to
represent its application within the OD demand context. Assume that the OD demand
for a particular time interval k is defined by the form of the matrix where the rows of
matrix represents the origins i, i = 1,2, ..., I, and columns represent the destinations j,
with j = 1,2, ...,J, of trips. The SSIM index is computed within a local N×N square
box, which moves cell-by-cell from the top-left to the bottom-right corner of the OD
matrix, as is shown in Figure 6.3. This results in computing a SSIM index for each
square box.

Figure 6.3: Computation of local SSIM index per sliding N×N square box

To evaluate the structural similarity between two OD vectors, let x= {xn|n = 1,2, ...,2N}
and x̂ = {x̂n|n = 1,2, ...,2N} be two vectors that have been extracted from the same
spatial location of the square box from reference OD matrix X and estimated OD ma-
trix X̂ (as shown in Figure 6.4).

The most general form of the metric that is used to measure the structural similarity
between two vectors x and x̂ consists of three main components and is given as

SSIM(d, d̂) = [l(d, d̂)α ][c(d, d̂)β ][s(d, d̂)γ ] (6.1)
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((b)) Estimated OD matrix

Figure 6.4: Computation of local SSIM index per sliding N ×N square box in OD
matrices

In this equation l is used as a distance metric to compare the mean values of the two
matrices, c compares the standard deviation of the matrices, and finally, s compares
the matrix structure. Now let us look at each of the components in detail. As said, the
term l(x, x̂) compares the mean values of the vectors x and x̂, µx =

1
N ∑

N
n=1 xn, and is

defined by the following expression

l(x, x̂) = l(µx,µx̂) =
2µxµx̂ +C1

µ2
x +µ2

x̂ +C1
(6.2)

The term c(x, x̂) compares the standard deviation (the square root of variances) of the

vectors, σx =

√
1
N

N
∑

n=1
(xn−µx)2 , and takes the similar form given by

c(x, x̂) = c(σx,σx̂) =
2σxσx̂ +C2

σ2
x +σ2

x̂ +C2
(6.3)

Finally, the structure term s(x, x̂) is defined as the correlation (inner product) between
the normalized OD demand vectors x and x̂, x−µx

σx
and x̂−µx̂

σx̂
, and is an effective metric

for quantifying structural similarity. This is equivalent to the correlation coefficient
which measures the degree of linear correlation between vectors x and x̂. Geomet-
rically, s(x, x̂) correspond to the cosine of the angle between two vectors x− µx and
x̂− µx̂, independent of the lengths of these vectors. Thus, the structure term s(x, x̂) is
defined as follows:

s(x, x̂) = s(
x−µx

σx
,
x̂−µx̂

σx̂
) =

σxx̂ +C3

σxσx̂ +C3
(6.4)

where σxx̂ =
1

N−1 ∑
N
i=1(xi−µx)(x̂i−µx̂) The structure term s(x, x̂) reflects the similarity

between two OD demand vectors. It equals one if and only if the structures of the two
demand vectors being compared are exactly the same.

The constants C1,C2,C3 in equations (6.2), (6.3) and (6.4) are used to stabilize the met-
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ric for the case where the means and variances become close to zero. The parameters
in equation (6.1), α > 0, β > 0 and γ > 0, are used to adjust the relative importance of
the three components. In order to simplify the expression, as is recommended in (Zhou
& List (2004)), the following is set: α = β = γ = 1, and C3 =C2/2. This results in a
final form of the SSIM index between two OD matrices

SSIM(x, x̂) =
(2µxµx̂ +C1)(2σxx̂ +C2)

(µ2
x +µ2

x̂ +C1)(σ2
x +σ2

x̂ +C2)
(6.5)

Finally, at each step the local statistics µx, σx, σxx̂ and SSIM index within the square
box are calculated. The measure of overall quality of the entire estimated OD matrix
is given as a mean of the local SSIM indexes as

MSSIM(X , X̂) =
1
M

M

∑
m=1

SSIM(xm, x̂m) (6.6)

where X and X̂ are the reference and the estimated OD matrices, respectively, xm and
x̂m are the vectors of OD matrix contents at the mth local square box; and M is the
number of local square boxes of the entire OD matrix.

The main properties of the SSIM index can be listed as follows:

• Symmetry: SSIM(x, x̂) = SSIM(x̂,x). The two OD matrices being compared
give the same index value regardless of their ordering; i.e., comparing the ref-
erence OD matrix to estimated OD matrix or estimated OD matrix to reference
OD matrix does not affect the resulting similarity measurement;

• Boundedness: −1≤ SSIM(x, x̂)≤ 1. This is a useful property for a metric since
an upper bound can serve as an indication of how close the two OD matrices
are to being perfectly identical. This is in contrast with most statistical types of
measurements, which are typically unbounded;

• Unique maximum: The maximum value SSIM(x, x̂) = 1 is achieved if and only
if two OD matrices are exactly the same, X = X̂. In other words, the SSIM
measure can quantify any variations that may exist between the two OD matri-
ces. For example, the value SSIM(x, x̂) = 0 represents that the estimated OD
matrix does not capture the spatial correlation between OD pairs as is given in
the reference OD matrix.

• Ordering: the order of origins in rows and destinations in columns needs to
reflect common properties between OD pairs to be evaluated. The order of OD
pairs in reference and estimated OD matrix must be the same. Otherwise, the
SSIM index will give a biased result.
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6.3 The sensitivity of the MSE error and SSIM index

To illustrate the properties and the advantages of the SSIM index over more traditional
statistical measures that are often used in sensitivity analysis of OD estimation methods
or in the optimization process, the following several scenarios that reflect the impor-
tance of assumptions that an engineer is making when she/he decides to use the mean
square error (MSE) are examined. For better visual examination of the structure in the
OD matrices, they are represented as images where the values of the OD flows are used
as indices into the color map that determine the color for each OD pair (see section 6.1).

((a)) Reference OD matrix

((b)) MSE=200, SSIM=0.9405 ((c)) MSE=200, SSIM=0.7932

Figure 6.5: Comparison of patterns in reference and generated OD matrices: a) ground
truth OD matrix; b and c): generated OD matrices that have the same MSE with respect
to the reference OD matrix, but different structural patterns

This example will show that use of the MSE error is not sufficient for researchers
and practitioners to pinpoint the strengths and weakness of different OD estimation
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methods. For example, the insensitivity of the statistical measure MSE to evaluate
the effect of the sign, i.e., the increase or decrease in OD demand over OD pairs is
demonstrated. In Figure 6.5, the first perturbed OD matrix (Figure 6.5(b)) was obtained
by adding a constant value to all cells in the ground truth OD matrix (Figure 6.5(a)).
The second perturbed OD matrix (Figure 6.5(c)) was generated by the same method,
except that the signs of the constant were randomly chosen to be positive or negative.
By means of visual inspection it is clear that the two generated OD matrices are clearly
different. The first perturbed matrix (Figure 6.5(b)) resembles the ground truth matrix
much more closely than the second one (Figure 6.5(c)). Yet, the MSE ignores the effect
of signs, and reports the same value for both perturbed OD matrices, while the SSIM
index captures the structural difference in the matrices. This result indicates that only
the MSE error had been chosen to assess the performance of the two OD estimation
methods,it would be possible to conclude that both methods perform similarly. In
contrast, if the SSIM index was chosen as a performance criteria, one might conclude
that the method with a higher SSIM index value performs better than the other.

Let us consider another example, where the OD matrices have different MSE val-
ues but very similar patterns. In the Figure 6.6, both perturbed OD matrices (Figure
6.6(b)) and (Figure 6.6(c)) were obtained by adding an independent Gaussian noise
to the ground truth OD matrix (Figure 6.6(a)). Apparently, the OD matrices that un-
dergo this small geometrical modification have very large MSE values relative to the
ground truth OD matrix, yet show a negligible loss of structural information. In case
that OD matrices (Figure 6.6(b)) and (Figure 6.6(c)) are outputs of two different OD
demand estimation methods, results indicate that the method with an estimated OD
matrix (Figure 6.6(b)) performs better than method with an estimated OD matrix (Fig-
ure 6.6(c)), which is consistent with the MSE value. Therefore, the SSIM index can be
used as additional criteria in performance assessments of OD estimation methods or as
a performance function. The examples presented in Figure 6.5 and Figure 6.6, indicate
that simplified OD estimation models with the associated assumptions about violated
or ignored structural correlation may fail to provide efficient and accurate estimates of
OD demand.

6.4 The sensitivity of the SSIM index on OD pairs or-
dering

Potential limitation of SSIM index in equation (6.5) to evaluate similarity between two
images is that the ordering of the image samples carries important perceptual struc-
tural information. Such implicit underling assumption is a critical issue behind the
philosophy of the SSIM index approach, which attempts to distinguish structural and
non-structural deviations between closely related pixels. For example, any one pixel
in an image is likely to be closely related to the six pixels that surround it, but that
pixel is unlikely to be related to one which is a long distance away. Clearly, this cri-
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((a)) Reference OD matrix

((b)) MSE=157, SSIM=0.904 ((c)) MSE=326, SSIM=0.904

Figure 6.6: Comparison of patterns in reference and estimated OD matrices: a)
”ground truth” OD matrix; b and c): estimated OD matrices that have the same SSIM
with respect to the reference OD matrix, but different MSE values.

teria substantially differs from criteria used to represent OD demand per time interval
in a matrix form whose rows and columns represent origin and destination nodes and
elements on diagonal are equal to zero (i.e., xi, j = 0, for i = j). In this case, the one
OD pair is not correlated only with OD pairs that surround it, but with other OD pairs
in a whole OD matrix.

To illustrate the sensitivity of the SSIM index on OD pairs ordering in OD matrix, the
following several scenarios that reflect sensitivity of the SSIM index on ordering of OD
pairs and size of the sliding window N×N are examined. In this case, the OD matrices
are represented as images for better visual examination as described in Section 6.1.

In Figure 6.7, the bottom-left prior OD matrix was generated by adding structural and
random perturbations to the ground truth OD matrix (Figure 6.7(a)) as described in
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Section 3.3.2. In the top-right image (Figure 6.7(b)), the spatial ordering of the OD
pairs in ground truth OD matrix was changed by sorting OD pairs flow volume in
descending order. This rational is also complementary with findings in Chapter 4,
where OD pairs with high volume are dominated by structural temporal trends. As
the OD demand volume per OD pair tends to decrease, the contribution of stochastic
temporal trend increase. In this way, OD pairs that are closely related share similar
properties (e.g. attraction, production, travel costs, distance) reflected in OD flow
volume. The bottom-right image (Figure 6.7(d)) was obtained by applying the same
reordering procedure to the prior OD matrix (bottom-left).

((a)) Reference OD matrix ((b)) Reordered reference OD matrx

((c)) MSE=638, SSIM6×6=0.8981 ((d)) MSE=638, SSIM6×6=0.8615

Figure 6.7: Sensitivity of SSIM index on OD pairs ordering: a) ”ground truth” OD
matrix; b) reordered ”ground truth” OD matrix; c) prior OD matrix and d) reordered
prior OD matrix

As presented in previous section, the MSE error fails to take into account the spatial
dependences between OD pairs. Clearly, in this example, the MSE error between
two left OD matrices and two right OD matrices is same. However, the SSIM index
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value obtained for window size 6×6 between two left OD matrices and two right OD
matrices is slightly different (see Figure 6.7). This result indicates sensitivity of SSIM
index on OD pairs ordering in OD matrix and potential shortcoming for its application
as a quality measure. However, potential shortcoming of SSIM index may be overcome
by the choice of the N×N sliding window size or by ordering of OD pairs such that
closely related OD pairs in OD matrix share common properties as presented above.

The choice of the N×N sliding window size provides a balance between SSIM’s abil-
ity to adapt to local image statistics and its ability to accurately compute the statistics
within an image patch (Brooks et al. (2008)). Since the aim is to evaluate the corre-
lation between all OD pairs, one can choose sliding window size such that N = I to
evaluate structural similarity between two OD matrices. Results presented in Table
6.1 indicate that window size defined by the size of the OD matrix allows accurate
statistical estimation at the cost of being less sensitive to fine correlation distortions
in OD matrices captured by SSIM6×6. Thus, with SSIM index one can, for example,
determine the size of the sliding window as N = I or consider the ordering of OD pairs
in matrix such that closely related OD pairs share common properties. Since struc-
ture term s(x, x̂) defines similarity between OD matrices and holds same properties
as correlation measure, the performance of SSIM index is compared with normalized
correlation between reference OD matrix and prior OD matrix. Clearly, results given
in Table 6.1 indicate potential application of this measure in evaluation of correlation
between OD pairs.

Table 6.1: Sensitivity of SSIM index on OD pairs ordering in OD matrix

MSE SSIM6×6 SSIM16×16 NormCorrelation
Reference OD vs prior OD 638 0.8981 0.9074 1.1128
Reordered reference OD vs
prior OD 638 0.8615 0.9074 1.1128

The next section presents the application perspectives of the SSIM index as a per-
formance indicator in addition to statistical measures for performance assessment of
dynamic OD demand estimation methods. The second part of the section provides
insight into how the conventional dynamic OD demand estimation methods can be fur-
ther extended and enhanced by applying normalized correlation measure formulated
in SSIM index equation (6.5).

6.5 Towards a new research directions

In this section, SSIM index directions for application and research are outlined, with a
particular focus on SSIM as a performance indicator, while also incorporate the index
into proposals for new measures of error.
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6.5.1 SSIM index as a performance indicator

An important and often-overlooked aspect in the benchmarking of different OD esti-
mation methods is the selection of an appropriate performance indicator or set of cri-
teria that can be used to evaluate the quality of estimated OD matrices. The choice of
performance criteria plays an important role in benchmarking of dynamic OD demand
estimation methods under input data uncertainty. Few studies have focused on evalu-
ation of the reliability and accuracy of the estimated OD matrices in the absence of a
ground truth OD matrix (Bierlaire (2002), Yang et al. (1992)), and with an available
ground truth OD matrix (Marzano et al. (2009), Djukic et al. (2011)).

A number of statistical measures have been proposed and used in literature to evalu-
ate the quality of an OD estimator, such as root mean square error, normalized root
mean square error and mean percentage error. These statistical measures are widely
used because they are simple to calculate and have clear meanings. However, the basic
foundation of these performance indicators is that they are based on pointwise devia-
tions in terms of OD demand or traffic counts in respect to available ground truth data.
Although the underlying rationale makes sense intuitively, the actual statistical mea-
sures in literature do not capture the important aspect of the structural similarity of the
estimated and reference OD matrix. This sensitivity of statistical measures may fail to
provide effective and accurate quality measures.

Therefore, the key idea underpinning the present approach is to define a quality metric,
in such way that the spatial correlation in the estimated OD matrix is quantified ade-
quately. The previous section showed that the SSIM index can be used to quantify how
well the estimated OD matrices capture the pattern structure of the true OD matrix. To
illustrate, if we assume that any prior OD matrix or available true OD matrix contains
the best pattern information that we can think of, then the SSIM index can be viewed
as an indication of the quality of the estimated OD matrix compared to the prior OD
matrix or true OD matrix, respectively. Using the SSIM index as a new performance
indicator for performance assessment of dynamic OD estimation methods is proposed.
When applying the SSIM index one needs, for example, to determine the size of the
sliding window as N = I or to consider the ordering of OD pairs in matrix such that
closely related OD pairs share common properties. The new metric would provide
researchers and practitioners with better insight into how to assess the quality of the
estimated OD matrix, and how to draw strict conclusions about the quality and effi-
ciency of OD estimation methods. More specifically, it is argued that traffic engineers
must rethink whether statistical measures such as MSE or RMSE are the most useful
criteria of choice in their comparative studies and applications.

6.5.2 SSIM index as the error measure

In conventional dynamic OD demand estimation methods, the common approach is
to select the optimal OD matrix from multiple solution candidates in terms of certain
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selection of error measures; thus, final estimation and predictions are then based on
the selected error measure. As indicated in the literature review in Chapter 2, these
measures of error depend on a particular estimation framework, such as maximum
likelihood, generalized least square, Bayesian inference, etc. For example, the gener-
alized least square function (Bell (1991), Cascetta et al. (1993), Antoniou et al. (2006))
is equal to the Mahanalobis distance measure. This is in turn often transformed into a
Euclidean distance measure under common simplifying assumptions, such as the as-
sumption that the variance covariance matrix is equal or diagonal tothe identity matrix.
The models that aim to minimize the Euclidean distance between the prior OD and
estimated OD matrix can provide unrealistic estimation results because too little in-
formation is taken from the prior OD matrix. Simplified models with the associated
assumptions about violated or ignored spatial correlation between different OD pairs
may fail to provide effective and accurate estimates of OD demand. Ashok et al. (1993)
first addressed the structural information problem in their research, and proposed the
use of deviations from OD flows instead of the actual OD flows as the state variables.

Figures 6.6 and Figure 6.5 demonstrate that an Euclidean distance measure as a per-
formance function is only designed to find the distances between a pair of attributes
in a data set, or overall distance among all data. These measures are unable to find
and distinguish different correlation structures in data, and cannot provide an in-depth
explanation of the patterns in OD demand.

In this subsection we are particularly interested in formulating a concept for a new
performance function to estimate dynamic OD matrices, which would ensure that the
amount of structural information in the prior OD matrix is preserved in the estimated
OD matrix. One possible solution approach is to use a performance function that
incorporates the spatial correlation between OD pairs within one time interval, and
that allows the modeler to control the trade-off between simplicity of the model and
the level of realism. The potential application in forming a background to the present
derivation is the generic formulation of an dynamic OD demand estimation problem
that incorporates the spatial correlation in a performance function as a penalty factor.
For example, if an dynamic OD demand estimation method given by equation (2.5)
it is assumed to exist, the workings of which are not explicitly considered, the new
performance function can be interpreted as consisting of two elements:

x̂k = argmin
x≥0

g(σx̃k ,σxk)[α f (xk, x̃k)+(1−α) f (Âk
hxk,yk)] (6.7)

where the key feature is the function g(σx̃k ,σxk) added in front of equation (2.5). This
function should serve the propose of identifying and distinguishing the spatial correla-
tions between vectors of prior and estimated OD demand, so as to scale the objective
function f in a way that spatial correlation distortions are penalized more. Motivated
by the normalized correlation formulation in SSIM index equation (6.5), the function
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g(σx̃k ,σxk) can be formulated as

g(σx̃k ,σxk) =
(σ2

x̃k
+σ2

xk
+C)

(2σx̃kxk +C)
(6.8)

where σx̃kxk represents correlation between the normalized OD demand vectors x̃k and
xk, and the constant C is included to avoid instability when correlation index is close
to 0. This function is lower-bounded by 1, when σx̃k and σxk are fully correlated, or
in other words, when correlation between OD pairs in estimated OD demand is same
as in prior OD demand. The estimated OD matrix that has a significantly different
structure than the prior OD matrix has a higher g(σx̃k ,σxk) and therefore gives more
penalty to performance function in equation (6.7).

The formulation of the new performance function for the estimation of dynamic OD
demand given in equation (6.7) has several advantages over existing dynamic OD esti-
mation and prediction methods: (1) most importantly, it introduces additional informa-
tion in the estimation process on the basis of structural patterns in the OD matrix. This
allows the selection of the most likely best estimated OD matrix, taking into account
both the estimation error as well as the structural similarity between OD matrices; (2)
information on the spatial correlation between OD pairs is included when estimating
the OD demand to rule out unrealistic estimation results caused by too little infor-
mation being incorporated from prior OD demand; (3) the approach can be used in
combination with a weighted performance function, where the weighting value is de-
termined by the analyst’s relative confidence in quality of prior OD demand or other
traffic data.

Note that the purpose of this section is to demonstrate the potential application of SSIM
index properties as an error measure and describe the main features of the novel per-
formance function in estimation of dynamic OD matrices. The presented framework
remains academic in nature and must be interpreted as presentation of a concept. The
possibility of accomplishing dynamic OD demand estimation defined in equation (6.7)
exposes important further research questions.

6.6 Discussion

In this chapter, an emerging alternative performance measure, SSIM index, has been
proposed and reviewed, and its potential application to a wide variety of problems in
OD demand estimation and prediction has been discussed.

The chapter includes a discussion of the potential of using the SSIM index as a quality
measure that quantifies the similarity between two OD matrices such as between an
OD matrix estimate and a reference OD (e.g., the prior OD matrix, or ground truth
OD matrix). The most important feature of the new metric is that it includes additional
information regarding structural patterns of OD matrices, both in a spatial and temporal
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sense. This quality metric has been shown to have several advantages over existing
statistical measures that measure pointwise deviations between two OD matrices. As
an example, SSIM appears to be more sensitive in capturing the structural correlation
between OD pairs; it ignores the effect of the signs of the error in estimated OD matrix.
Further, the SSIM index has been proposed as a performance indicator, in addition to
existing statistical measures, in benchmarking studies.

Since the final objective of this section of the research was to demonstrate the potential
application of SSIM index as a new performance function, a new framework for the
estimation of dynamic OD demand was presented. This allows the optimal OD matrix
to be determined, taking into account both the estimation error as well as the structural
similarity between the OD matrix to be estimated and prior OD matrix. The presented
framework is still theoretical in nature and must be interpreted as such. In particular,
the mathematical characteristics of the measure calls for further investigation (e.g.,
non-convexity) and its implications for estimation need to be formulated and possibly
modified. New results in more realistic settings will be obtained in future research to
ascertain that the method performs well in practice.



Chapter 7

Conclusions and future work
directions

The motivation for the research conducted in this thesis is twofold. First, in order to
obtain more efficient dynamic OD demand estimation and prediction in real time, a
lower-dimensionality of the OD demand should be taken into account without signifi-
cant loss of accuracy. Secondly, policy makers and ITS operators are interested in the
effects of dynamic traffic management measures, e.g., to achieve more efficient large-
scale transport networks at a within-day level, through better individualized travel ad-
vice. They like to know what will happen to the performance of the transport network
if efficient OD demand tools are used in traffic management, and what the confidence
bounds are around estimated and predicted OD demand. For this purpose, this the-
sis presents a real-time dynamic OD demand estimation and prediction method for
dynamic traffic management applications.

This chapter begins with an assessment of the contributions of this research to the dy-
namic OD demand modeling approaches outlined in Section 7.1.1. Conclusions result-
ing from this research concerning its practical implications are presented in Section
7.1.2. Section 7.2 outlines some interesting topics and suggestions for further research.
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7.1 Conclusions

This summary of the main results of the research established in the previous chapters
distinguishes findings and contributions achieved in the field of OD demand estimation
and prediction as well as implications for the field of traffic management.

7.1.1 Contributions achieved for dynamic OD demand modeling

In this section, the focus is on the main contributions of the research to dynamic OD
demand estimation and prediction. Specifically,

• The new categorization approach based on modeling-steps with which, dynamic
OD demand estimation and prediction methods are described, has been pro-
posed. A rich variety of these methods developed so far and in use today has
been reviewed. The proposed categorization approach provides better insight
how various challenges within each modeling step have been tackled and how
different methods relate to each other.

• The proposed dimensionality reduction method can effectively reveal structure in
the underlying temporal variability patterns in dynamic OD matrices, i.e. struc-
tural, structural deviation and stochastic trends. In addition, this method of-
fers valuable opportunities to identify how these trends contribute to each OD
pair, and to significantly reduce the dimensionality of dynamic OD matrices.
This method provides an effective mechanism to linearly transform the high-
dimensional OD demand data into a lower-dimensional space, without signifi-
cant loss of accuracy.

• The developed real-time OD estimation and prediction method provides key ca-
pability to utilize representation of OD demand in lower dimensional space, and
produces a state space representation for modeling reduced OD demand flows
without a complex solution approach. The proposed method represents a sig-
nificant advantage over existing OD estimation and prediction methods where
the size of the state vector is defined by number of OD pairs, and thus depen-
dent on the network scale. This state vector reduction formulation significantly
decreases computational complexity in both time and space dimensions and pro-
vides an efficient solution for large-scale networks.

• The benchmark task formulation provides a generic framework to account for
the inherent diversity in dynamic OD demand estimation methods, where the OD
estimator is considered a black box, providing a certain outcome given certain
input. The simulation-based benchmark framework with the efficient sampling
method can account for a wide range of different circumstances related to input
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data availability and quality, and network layout. It provides valuable opportuni-
ties to pinpoint the strengths and weaknesses of existing OD demand estimation
and prediction methods, and to trace a path for further improvements.

• This research provides a performance indicator to evaluate structural similari-
ties between OD matrices. This measure quantifies dependencies between OD
pairs that carry important information about the structures in OD matrices, un-
like more commonly used measures of performance such as mean square error.
The application of performance measure is twofold. It can be applied as an
additional performance measure for performance assessment of dynamic OD es-
timation and prediction methods, or as a new measure of error in OD demand
problem formulation.

7.1.2 Implications for dynamic traffic management

The focus of the discussion in this section are the main contributions to dynamic traffic
management. Specifically,

• The modeling approach enables the consideration of different network scales, al-
though it was developed for specific applications on large-scale networks. Given
the large size of most real transport networks, computation time plays an impor-
tant role in any practical implementation. In general, the computational costs of
implementing dynamic OD demand estimation and prediction method proposed
in this thesis seem to be a function primarily of the following parameters: a)
number of state variables and traffic data observations, b) spatial distribution of
the network and c) congestion level and degree of autoregressive process. The
number of measurements dictate the size of the assignment matrix to be inverted
in the estimation process. The spatial distribution of network and congestion
level requires augmented state vector, due to the effect of travel times between
OD pairs on the network. The higher degree of autoregressive process has the
same effect, and implies an augmented state of higher dimension. Thus, the
main advantage of the proposed method for improving computational efficiency
is achieved by reduction of the state vector, i.e. state variables are defined as
projections of OD demand in low-dimensional space.

• The elements of assignment matrix are obtained through iterative application
of the OD estimation and prediction method and simulation-based DTA model.
We note that in the event of an iterative solution technique, though convergence
cannot be guaranteed, empirical study indicates that the estimation procedure
is fairly robust with respect to the quality of assignment matrices obtained from
simulation-based DTA model. Also, whenever more reach traffic data can be ob-
served (e.g., travel times) or computational resources permit, one of the stochas-
tic assignment matrix-based methods proposed by Ashok & Ben-Akiva (2002)
should be used to avoid iterative process.
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• The choice of length of estimation interval is defined by the domain of appli-
cation (e.g., dynamic traffic management) that makes use of proposed dynamic
OD estimation and prediction method.

• The insights into the performance of dynamic OD demand estimation methods
resulting from qualitative assessment are of great benefit for practitioners. The
benchmark tool provides and supports comparison in a variety of settings and
conditions in order to help determine the particular situations and conditions
under which one dynamic OD estimation method might behave more favorably
than another. This will be very helpful in calibrating and validating simulation
models using OD demand estimations.

The principal objective of a method solving a large-scale real-time problem for dy-
namic traffic management is to be able to compute a reliable solution in a small given
time interval, i.e. within computational burdens. In this thesis several new methods
have been proposed representing progress towards this overreaching goal. The pro-
posed methods offer important theoretical and practical advances, as listed above, and
it is envisaged that both practitioners and researchers will benefit from the results pre-
sented in this thesis.

Besides these benefits, there remain, however, unresolved issues to be addressed in
the future. These problems provide topics for further research, discussed in the next
section.

7.2 Future research directions

There are multiple interesting issues that require further research. Follow-up research
regarding desired extensions of the proposed methods to increase their general appli-
cability and lead to their producing more realistic outcomes, come together in one set
of research directions. A second direction of research may lead to the integration of
the proposed methods with new fundamental insights from advanced traffic data and
theoretical advances on travel behavior. Here are some recommendations for further
research:

Prediction of OD demand: As has been shown in this thesis, PCA provides tools
for identification and selection of the variables (OD pairs) that explain most of the
deterministic pattern in historical OD demand. The prediction of OD flows can be fur-
ther extended through the application of PCA to pre-process available (e.g., estimated,
historical, observed) OD demand data in following steps:

1. Identification step: first, the temporal variability pat-terns in historical OD de-
mand matrices are examined and they are classified into three trend classes: a
structural trend that captures the regular pattern, a large structural deviation trend
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that captures the short occasional fluctuations, and a stochastic trend that capture
the random fluctuations, as described in the previous section. In this manner, the
principal demand components that capture the structural trend, or even OD pairs
that are dominated by structural trend may be identified. For example, when the
principal components with the growth trend are selected, one can identify the
OD pairs that may generate a bigger demand on a network.

2. Reduction step: in this step, selection criteria of principal demand components
or OD pairs are proposed, based on the trend that dominated them. For exam-
ple, only the OD pairs or principal components having a structural trend and
structural deviations trend will be selected.

3. Prediction step: finally, prediction methods are applied on the decreased sub-
set of principal demand components as independent variables or on the chosen
subset of OD pairs to predict OD demand for future time intervals.

In this way, a reduction of computational load in the OD demand prediction is accom-
plished. Further development of OD prediction models on these independent variables
is recommended.

The mapping between OD flows and traffic data: The properties of the DTA sim-
ulation model used to compute the elements of assignment matrix could contribute to
bias OD demand estimates and predictions, increasing computational costs. Additional
forms should be investigated for the mapping of relationship between OD flows and
observed traffic data that describe the temporal evolution of assignment fractions. It
might also be possible to use information from traffic condition data observations in
estimating, for example, assignment fractions and route-choice fractions. Integration
of the theoretical and modeling advances in DTA should be incorporated into further
OD demand estimation advancements.

Evaluation of the existing dynamic OD demand estimation methods: Another
important set of further research directions to be addressed relate to comprehensive
benchmark study of different dynamic OD demand estimation and prediction meth-
ods. Given the generic benchmark methodology presented in this thesis, one way of
evaluating the accuracy and performance of the OD demand estimation methods is
a joint test of their performance, i.e. comparing the estimates and predictions of link
flows, travel times, etc., from the OD methods with those observed by surveillance sys-
tem or generated by simulation method. A promising approach to evaluating different
dynamic OD demand estimation and prediction methods jointly with traffic simulator
is the use of a simulation benchmark platform. Antoniou et al. (2014) developed a
benchmark platform that use the mesoscopic version of the Aimsun simulation model
TSS (2013) as the common traffic model. The benchmarking platform is designed to
ensure equal testing conditions for various dynamic OD demand estimation methods
and in doing so supports fair comparison and an understanding of their relative merits.
Such a benchmark framework can be directly applied to indicate the sensitivity of the
performance of dynamic OD demand estimation and prediction methods.
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Appendix A

The Latin hypercube sampling method

To explain the method, the same rationale is followed as in (McKay et al. (1979)). As-
suming there is a multivariate nonlinear model (e.g. a computer model), that calculates
output Y = h(X) as a function of M stochastic input variables X = (X1,X2, ...,XM) with
known distributions. In this case, h denotes the OD estimation approach described by
equation (3.1).

The LHC method uses the following steps to approximate the posterior distribution
p(Y | X) of the output Y :

1. First the assigned distribution of each input is partitioned into N equal probability
intervals, where N represents the desired number of generated input datasets
(simulation runs). For example, if one chooses N=10, each input distribution
will be subdivided into 10 bins according to P(Xi ≤ 0.1), P(Xi > 0.1

⋂
Xi ≤

0.2), . . . ,P(Xi > 0.9). Typically N is in the order of 10-50 (resulting in a large
reduction in the number of simulation runs compared to random Monte Carlo
sampling, in which the number of runs is 1 or 2 orders larger).

2. Next, a uniformly random sequence of N values Ui1,...,Uin,...,UiN is generated
for each considered input variable i. Then, the probability values Pin for each
input i = 1,2, ...,M; and interval n = 1,2, ...,N are computed by

Pin = (Uin +n−1)/N (A.1)

This procedure ensures that exactly one probability Pin will fall within each of
the N intervals.

3. The next step in obtaining the Latin hypercube samples is to generate the se-
quence of sampled values for each input Xi using the probabilities Pin and an
inverse distribution function F−1

n , which may be different for each input:

Xin = F−1
i (Pin) ∀i = 1,2, ...,M ∀n = 1,2, ...,N (A.2)
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4. Finally, the selected values of each input Xin are randomly permutated to form the
N required M-dimensional input sets so that each ”probability stratum” n is used
only once in every input sample. This implies that a set of N Latin hypercube
sample points in M-dimensional Euclidean space contains one point in each of
the intervals for each of the M variables;

5. By simulating and evaluating Yn = h(Xn), n = 1,2, ...,N for all N generated input
sets, the posterior distribution in equation (3.1) can be approximated.



Notation

The main abbreviations and symbols that are used in this thesis are presented as fol-
lows:
List of abbreviations

IT S Intelligent transportation systems
DT MS Dynamic traffic management systems

OD Origin-destination
DTA Dynamic traffic assignment
DNL Dynamic network loading model

RC Route choice model
DUE Dynamic user equilibrium
SUE Stochastic user equilibrium

ARIMA Auto Regressive Integrated Moving Averages
PCA Principal component analysis
MSE Mean square error
SSIM Structural similarity index
LHC Latin Hypercube method
AV I Automatic vehicle identification data
AV L Automatic vehicle location data

FCD Floating car data
FIFO First-in-first-out

GLS Generalized Least Square
KF Kalman filter

List of symbols
G = (U,L) Directed graph with set of nodes N and links L

L Directed links indexed by l ∈ L
L̂ Directed links equipped with detectors L̂⊆ L

U Set of nodes indexed by u ∈U
O Origin nodes indexed by o ∈ O
D Destination nodes indexed by d ∈ D
n Set of all OD pairs Ω ⊆U×U
L̂ Set of r links with detectors L̂⊆ L
K Departure time intervals indexed by k ∈ K
H Set of time-depended link travel times

Ḡ(U×H, L̄) time-space extension of G based on H
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xi,k Demand volume for OD pair i ∈ Rn for departure time in-
terval k

x̃i,k Prior demand volume for OD pair i ∈Rn for departure time
interval k

x̂i,k Estimated demand volume for OD pair i for departure time
interval k

yL̂,k Observed traffic counts on links linRr at the observation
time interval k

ŷL̂,h Simulated traffic counts on link linRr at the observation
time interval h

Al,k
i,h Traffic assignment matrix, that is proportion of vehicles on

link l at observation time interval k, coming from OD pair i
departed during the time intervals h

ei,k Eigenvector indexed by i ∈ Rn for departure time interval k
λi,k Eigenvalue indexed by i ∈ Rn for departure time interval k
ci,k Principal demand component, represent the OD demand xi,k

projected to the orthonormal basis matrix of eigenvectors, ei

m Reduced number of variables in state vector, m < n
x̂i,k Approximated demand volume for OD pair i during the de-

parture time interval k
H l,k

i,h Traffic observation matrix, that is transform of the traffic
assignment matrix Al,k

i,h to the orthonormal basis matrix of
eigenvectors, ei

t Prediction departure time intervals
p′ Maximum number of time intervals needed to travel be-

tween any OD pair
q′ Degree of autoregressive process
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Summary

Dynamic origin-destination (OD) demand is important input to many 

simulation models applied within dynamic traffic management systems 

(DTMS) for predicting traffic states on the network. The inability to 

provide high-quality dynamic OD demand estimates makes prediction 

with simulation models simply impossible, irrespective of how well 

these models have been calibrated.  This thesis presents methods 

regarding the provision of efficient and reliable dynamic OD demand 

information for DTMS applications. 
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