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SUMMARY

As a preparation to pushover analysis of a complefe fixed steel offshore
structure, failure of the foundation has been analyzed in a qualitative way.
Structure-foundation interaction is considered and some methods are

treated to describe load-deformation behaviour of piles loaded up to
failure. Main attention is paid to methods in conjunction with the computer
program INTRA.
Computational rules to achieve load settlement curves for pile groups
under extreme loads have been derived with the aid of modified t-z curves.
Alternatives are presented to model the foundation in both extensive and

more simplified ways.
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NOMENCLATURE

a constant

A area

Cu undrained shear strength

C, constant

C, constant

d pile diameter

D group centre diameter

D' group outer diameter

E Youngs modulus

F force

G shear modulus

k Darcy constant

M bending moment

Mpl plastic moment

n numpber of piles in a group

ngrit critical number of piles

n numpber of piles in a filled up circular group
P lateral pressure per unit pile length
pmax maximum lateral pressure per unit pile length
q point pressure

qmax unit bearing capacity

0 ultimate bearing capacity

0 charge per unit well length

r coordinate

r* radius (fixed value)

r, pile radius

ro "magical™ radius

R group centre radius

R! group outer radius

ij

centre spacing

coefficient stiffness matrix

(2]
[F/L°]

[L]
[L]
[L]
[F/L%]
[F]
[F/L%]
[L/T]
[FL]
[FL]

[F/L]
[F/L]
[F/1%]
[F/L%]
[F]

IL%]

(L]
[L]
(L]
(L]
(L]
(L]



vt

t shaft friction per unit pile length [F/L]
thax SOil shear strength times pile diameter [F/L]
t og TPesidual soil shear strength times pile diameter [F/L]
T moment [FL]
v superficial velocity [L/T]
X coordinate -
y coordinate -
y lateral displacement (L]
Y ax displacement according to Prax (L]
Z coordinate -
z axial displacement [L]
z, depth of plastic area (L]
2 ax displacement according to tmax’ Trax ©F Ynax [L]
Z oo displacement according to tres [L]
a reduction factor - -
aij interaction factor -
v shear -
) displacement (L]
n efficiency -
6 angle -
A constant -
v Poissons ratio -
b4 settlement ratio - -
Jol ratio of G modulus at depth 1/2 and at pile tip -
2 shear stress [F/LZ]
T, unit shaft friction [F/LZ]
2
Tooppr COrrected soil shear strength [F/L2]
Toax SOil shear strength [F/LZ]
req Feduced soil shear strength [F/L7]
rotation -
ground water head [L]

friction angle -

< 9 9 9O N

constant (L]
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subscripts:

a annulus

eq equivalent

g group

i initial
P pile

p point

S soil

sp single pile

u unit



1. INTRODUCTION

Schematizations of piles and pile groups as required for structural
analysis of offshore platforms can be realized in several ways: Refined
computer methods represent each pile and the surrounding soil with the aid
of numerous 'finite elements'. Simple techniques replace each pile or pile
group by a set of 'equivalent' springs. This report pays main attention to
methods of foundation modelling as required for pushover analysis using the
computer program INTRA. This program, originally developped for earthquake
analysis, requires modelling of the piles with the aid of beam-column

elements, representing the soil with the aid of nonlinear springs.

This report starts with a general description of structure-pile-soil
interaction in chapter 2.

Chapter 3 describes some existing techniques to generate the
characteristics of springs that represent the soil around a single pile.
Chapter 4 gives a short review of methods to describe pile group
behavior. It appears that no simple method exists to generate the spring
characteristics that represent the soil around pile groups loaded upto

failure.

Because of this reason some computational rules are developped in
chapter 5 to generate NOnlinear Group Affected (NOGA) spring
characteristics.

Finally, chapter 6 treats some different ways to schematize the
foundation in order to minimize the number of pile elements and soil

springs.



2. STRUCTURE-PILE-SOIL INTERACTION

Traditional jacket piled foundation consists of single piles driven
through the legs of the jacket. Piles and superstructure are connected above
the waterline, so the deck-loads are directly transmitted to the piles. The
wave forces are transmitted to the piles by the jacket space frame. More
recently designed platforms are supported by groups of piles arranged around
the corner legs. All loads are transmitted by the superstructure to the
piles through grouted connections just above the sea bottom, see figure 1.

Waves wind and current result in a horizontal force at the platform and
in an overturning moment, see figure 2. The overturning moment is mainly
transferred through axial pile forces, in a so-called push-pull mode, see
figure'2. Actual tension may occur. The overall horizontal force is mainly
transmitted as lateral loads to the pile heads. Important bending moments
are introduced in the pilés by imposed lateral displacements from the
superstructure. Similarly, rotation of the jacket round a vertical axis

introduces lateral forces and bending moments in the piles.

Consider the foundation of one leg detached from the superstructure: The
relationship between forces and deformations at the pile head is expressed
with the help of a stiffness matrix. In the case of a single pile, choosing

a coordinate system as in figure 3, the stiffness matrix may be written as:

i B . ~ r B
F S;; O 0 0 Sig 0 S
Fy 0 S,y O S,, O 0 ay
F, 0 0 Sy5 O 0 0 5,
T, _ 0 Sy5 O Sys O 0 ¢
Ty Sg; 0 0 0 Sge 0 ¢y

i T, | - 0 0 0 0 0 S6§ ‘ , |



The coefficients Sij are constants if soil and pile behave linear elastic.
However, their value is dependent at the momentary state of forces and
displacements in the actual case of nonlinear behaviour. Dependency occurs
betWeen.lateral displacement and rotation because an imposed lateral force
will not only produce lateral displacement but also rotation of the pile
head. The off-diagonal terms describing this dependency are symmetric in the
case of linear elastic behavior. An asymmetric matrix may occur in the

nonlinear elasto-plastic situation where Maxwell's law is not valid anymore.

Consider a group of piles. The rotational resistance of the group is
much larger then of a single pile because the piles, acting together, can
take up bending moments in a push-pull mode, see figure 4. Similarly,
torsional resistance increases. Besides, the stiffness matrix is more dense
because extra dependencies occur. For example, a lateral load applied at a
pile group with a non-symmetric configuration causes axial displacements and
axial torsion. And an additional dependency exists in each pile group,
because a moment at the group-head introduces an axial displacement of the
entire group, due to the nonlinear load-displacement relationship from
axially loaded piles. Note that the latter effect is caused by material
properties of the soil, while the former is a result of geometry of the
group.

Another form of geometric interaction may play a role for both single
piles and groups. Axial forces in a pile will increase the lateral
displacements and the bending moments, resulting in a geometric nonlinear

effect.

Axially overloaded offshore piles collapse due to failure of the soil
supporting the pile along shaft and tip. If an increasing lateral load is
applied to a pile, a zone of soil loaded up to failure will extend gradually
towards the tip. However collapse is a result of failure - plastic bending -
of the pile itself. Rotation of the entire pile through the ground as may
happen with short onshore piles does not happen with offshore piles due to
their larger length.

Interaction now occurs because the development of a plastic hinge is
influenced by the normal force in the pile.

Interactions also play a role in the soil itself. This phenomenon will

be treated in the next chapters.



Several authors (ref.[15],[34] and [39]) describe some of the mentioned
interaction effects but no indication is given about the relative importance
of those effects. However, it should be clear that overloading of a pile
group may result in a complicated pattern of collapsing piles, especially

when ultimate axial and lateral capacities are reached at about the same

time.



3. SINGLE PILES

This chapter treats some soil-mechanics aspects of single offshore
piles, especially those aspects that are useful for foundation modelling
with INTRA. Sometimes it will anticipate on the next chapter, that treats

pile groups. Only static loading will be considered.

Establishment of the axial load-displacement behavior of piles usually
consists of two parts:

— Determination of the ultimate bearing capacity (strength); traditionally
the most important quantity.

- Determination of displacements going with gradual loading (stiffness).
This results in a pile head load-settlement (Fz— SZ) curve.

The bearing capacity of a conventional closed ended foundation pile
consists of two contributions: shaft bearing‘and end bearing. However, the
bearing capacity of an offshore pile - an open ended steel tube - can be
developped in two different ways, either in a 'plugged' or in a 'non-
plugged' situation, see figure 5. If the inner shaft friction exceeds the
end bearing, the ultimate capacity is calculated from outer shaft friction
plus end bearing. On the contrary, if end bearing exceeds the inner shaft
friction, the ultimate capacity consists of the sum of inner and outer
friction. A large number of methods exists to calculate those quantities,
see e.g. ref.[37].

The above determination of axial capacity suggests that the maximum
values of skin friction and end bearing will be reached at the same moment.
However, in reality the ultimate skin friction is reached at a much smaller
displacement than the ultimate end bearing. In addition the ultimate skih
friction itself is not mobilized at the same moment at each point along the
shaft, because of difference in displacements caused by compressibility of
the pile. To predict those effects the load-displacement characteristics of
the soil along the shaft and under the tip should be known.

To that purpose several methods exist, as will be described in the next
paragraphs.

Poulos and Davis (ref.[29]) present a solution based on theory of
elasticity. The incompressible pile is divided into segments, and at each
boundary the vertical displacements are defined by means of "Mindlins

equation™ - an expression for displacements of a point in an infinite half



space. The pile head settlement is established with the aid of a numerical
technique based on this schematization. In ref.[30] Poulos and Davis extend
the theory by including the compressibility of the piles. This elastic
method will be useful for pile groups as will be shown in the next chapter.
However, a more simple elastic schematization for single piles is developped
by Randolph and Wroth, see also appendix A.

Randolph and Wroth (ref.[32]) state that under axial loads the
deformations of the soil along the shaft mainly consist of shear. The soil
can be represented as horizontal layers with different G modulus. Starting
from this assumption a simple expression can be derived for the settlement
in a soil layer around a pile, z, as a function of the shaft friction per
unit pile length, t: A so called t-z curve. Besides, an ultimate shear
strength can be described for each soil layer, and in this way bilinear
elasto-plastic t-z curves can be established, see figure 6a. In reality the
soil around a pile does not collapse suddenly, but gradually looses its
stiffness under increased loading. A better description of this actual soil
behaviour can be found in the following:

Kraft, Ray and Kagawa (ref.[14]) present a formulation starting from a
nonlinear stress dependent G-modulus. Figure 6b shows a typical shape of the
resulting nonlinear t-z curve. Up to point A the theory of Kraft et al. is
valid. After this point "softening"™ of the soil may occur. Only little

knowledge is available about this post failure behaviour. For offshore piles

zmax is of the order of 0.005 to 0.02 times the pile diameter. The value of
z may be 1 to 5 times as much, while t may be 70 % to 100 % of t .
res res max

To evaluate the settlement under axial loads not only t-z curves must
be known, but also the local load settlement relationship under the tip: the
so—called g-z curve. The displacement Zmax according to the maximum tip load
can be estimated with the aid of simple methods, see appendix B.

Several special nonlinear computer programs for pile foundations exist
that use t-z and g-z curves as input, and also with INTRA a pile can be

modelled in this way.

The analysis of piles under lateral loading is usually based on the work
of Matlock, (ref.[1] and [18]). It is supposed that horizontal soil layers
act independently at the pile and that they can be represented by springs.
The nonlinear spring coefficients are derived with the help of formulas

based on experiments combined with analytical methods. The relationship



between lateral soil pressure at the pile, p, and displacement, y, is
represented by a so-called p-y curve. Again special foundation programs
exist that use those curves as input. Similarly INTRA can calculate
laterally loaded piles. Standard formulas are available to define modified
"cyclic" p-y curves, based on cyclic loading experiments of Matlock, see
figure 7. '

Interactions between vertical and horizontal stresses in the soil are
not included. Little knowledge is available on this subject, and the effect
is not mentioned in the references dealing with pile group behaviour. It is
likely that cyclic loading has a dominant influence on axial and lateral
capacity. Remoulding of the soil may drastically reduce its ultimate
strength, while lateral movements reduce the horizontal soil pressure or
even may cause "gapping" between pile and soil. As mentioned before those

effects will not be considered.

To obtain some understanding of the failure mechanism of piles and to
obtain a feel for the importance of the parameters involved, some INTRA
analyses have been performed for a 1.22 m diameter pile. The soil profile
consisted of medium dense sand with a thin layer of medium stiff clay, see
figure 8. Ultimate skin and tip resistance were evaluated according to both
API rules and t-z curves based on the work of Kraft et al; the p-y data were
readily available. Figure 10 shows the results of some alternative
computational methods for t-z curves. It should be clear that the shape of a
t-z curve is not uniquely defined. Figure 1lla shows the pile head FZ—6Z
curve resulting from the INTRA analysis. If the pile is rather stiff in
axial direction and if the value of the quake zmaX does not change strongly
along the shaft it appears that the shape of the FZ— BZ curve is strongly
influenced by those of the local t-z curves, see Tideman (ref.[37]). Actual
piles are very stiff indeed and actual quake seems to be a rather constant
value for a certain type of soil, see Verruijt (ref.[41]). Consequently,
failure of the soil along the shaft can be observed almost at the same time
at top and toe, which is the reason for the mentioned influence. This means
that if local soil failure is abrupt also the axial collapse of the pile
will be abrupt.

Quite a different case is the development of the end bearing. Figure 11lb
shows that failure of the soil along the shaft occurs at a displacement of *

15 mm. End bearing is hardly of any importance at that moment. Although



different methods to the establishment of the g-z curves show a substantial
scatter (figure 12) it is clear that the maximum end bearing is mobilized at
a displacement of + 10 times the menﬁioned value for the shaft friction.
Consequently end bearing is often neglected.for calculation of the bearing
capacityvunder working loads. However, it may play an important role for
loads up to failure. Although the unit shaft friction will reduce to tres
under extreme loads, the total axial resistance may still increase to almost
two times the value at "first failure".

A totally different picture will exist when an offshore pile is loaded
up to failure in lateral direction: An area of yielding soil expands from
the top downwards until the pile collapses because of plastic bending of the
steel tube. Verruijt (ref.[41]) mentions the important influence at this
behaviour of the Prax values in the p-y curves (figure 7). To the contrary
the Y nax values are of very little influence. This is clearly illustrated in
figure 13, which shows the effect of doubled and halved values of pma and

b e
% at the shape of the pile head Fy— Sy curve. In addition figure 14 shows

tﬁ:xobvious change in shape of the pile head FZ - 62 curve to changes in the
local t-z values, an effect which is already mentioned. A possible reason
for the insensitivity of the lateral pile head load deflection curves to
changes in ymax is the relative bending flexibility of the pile, see

appendix G.



4. PILE GROUPS

This chapter considers the interaction between offshore piles placed in
a group.’As in the previous chapter it will concentrate on methods which can
be used in conjunction with the INTRA program. Because little literature is
available on groups loaded up to failure it was felt necessary to establish

some simple computational rules, which is the subject of the next chapter.

O' Neill (ref.[22]) gives an extensive review on pile group behaviour.

He distinguishes two kinds of interaction effects:

- Installation effects: During pile driving the soil around a pile is pushed
aside, and a substantial increase in density of the soil between the piles
may occur, which may result in a higher shear strength and a higher shear
modulus.

— Loading effects: Piles in a group "work together" because the interjacent
Ssoil transmits forces from one pile to the others. This "pile-soil-pile"
interaction may result in a bearing capacity of the group lower than the
sum of the individual values, while displacements may be drastically
larger.

Installation effects for a group are very difficult to predict, and

therefore presumably no computational methods exist that take this influence

into account. The techniques described hereafter only consider the loading

effects.

The group effect on the ultimate capacity is defined as efficiency 7 ,
(_ultimate load for the group )
(ult.load single pile) * (number of piles)

n:

To predict this effect for axial loads, Terzaghi and Peck (ref.[36]) suggest
the "equivalent pier concept"™ which assumes that the group behaves as one
solid unit. De Ruiter and Beringen (ref.[34]) give a variant for offshore
pile groups. In both cases the ultimate axial capacity is the lowest of two
values: Either the sum of the capacities of the individual piles (n = 1), or
the capacity of the equivalent pier (n < 1), see appendix C. Actual
efficiency may exceed unity (7 > 1) because of installation effects, but as
already mentioned no methods exist that include those effects, see Matlock

et al., ref.[19] and O'Neill, ref.[22] and [23].



The efficiency for laterally loaded pPile groups at failure is equal to one
Oor even more: The strength of a steel pile is not influenced by the
surrounding group, whereas the group can even take up an extra moment

because of the push-pull working of the piles.

Settlements of pile groups are conveniently expressed in terms of the

settlement ratio ¥, where

qroup settlement
settlement of a single pile under

average group pile load

E =

A similar expression exists for lateral deflections.

Generally, a pile in a group shows a weaker load-deformation behavior than a
single pile under the same load, both axial and lateral, (& > 1).

The most simple method to predict the settlement of pile groups is again the
equivalent pier concept. Although simple it can take in to account nonlinear
behaviour.

Poulos (ref.[26] and [30]) proposes a method that establishes pile-soil-
Pile interaction based on the theory of elasticity, see also appendix D. As
for single piles (chapter 4) the settlement of a pile in a group has been
evaluated from the 'Mindlin' expressions for the settlement of points along
the shaft, see ref.[26]. Such a calculation is too complicated to serve as
an engineering tool, and therefore Poulos presents his results in a more
usable way: The amplification of the settlement of a pile due to the
influences of the neighbouring piles is represented with the aid of so
called interaction factors a, see appendix D. Poulos prepared charts and
formulas to compute values of a for different soil stiffness, pile
geometries and spacings, (ref.[30] and [31]). However these factors obscure
several effects like local scatter in elasticity modulus of the soil, or the
influence of end bearing.

Reference [27] presents a comparable way of evaluation of group action for
laterally loaded piles. For this case results will be of an even more
approximate nature due to the complex rotational and lateral behaviour of
groups, see appendix D.

Focht and Koch (ref.[8]) suggest to combine the use of elastic
interaction factors with nonlinear elasto-plastic single pile solutions. To

justify this hybrid approach they assume that because of the distance
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between neighbouring piles only elastic interaction occurs. Although this
seems a questionable statement ang Superposition is applied illegitimate,
acceptable results are reported, see O'Neill (ref.[24]). At present this
"hybrid" interaction factor method is probably the most widely used

technique to analyse offshore Pile groups.

The above interaction factor methods use Mindlins equation in an
indirect way because of the computational effort. Indeed extensive computer
programs exist that perform this kind of calculations directly, i.e. they
apply Mindlins equation at several points along the shaft of each pile (see
ref.[6]).

However, direct computation of displacements along the shaft of a single
pile can be performed comparatively easy by means of t-z, g-z and p-y
curves, see chapter 4. This approach is also useful to describe group
behaviour. The problem is how to modify the curves to take the pile-soil-
pPile interaction into account.

The use of such "group affected" curves can give several advantages,
especially if they are established using nonlinear analyses:

- Avoidance of the use of the rather inaccurate, elastic interaction
factors.

- No hybrid linear / nonlinear calculations.

- The possibility of analysing complex configurations under combined axial

and lateral extreme loads.

Randolph and Wroth (ref. [33]) present a description of bilinear group
affected t-z curves, which is a logic extension of their single pile theory,
based on superposition, see appendix A. They give similar rules for q-z
curves, also for a bilinear elasto-plastic soil behaviour, see appendix B.
Bilinear group affected b~y curves are derived by Hariharan and Kumarasamy,
in accordance with the single pile approach of Matlock, see ref.[9].

All those superposition techniques use a constant Youngs or shear modulus,
whereas in reality a gradual loss of stiffness of the soil can be observed
during increased loading. Because of this simplification the above
techniques do not give sufficiently accurate results for displacements near
ultimate loading. Ref.[74] suggests to solve this problem with the help of
an incremental procedure applying a subsequent updating of the stiffness

parameters.
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However, an alternative approach is possible, making use of an
additional datum: It Seems reasonable to assume that a totally "filled up”
circular group behaves as one equivalent pile, see figure 17. The equivalent
pile diqmeter may be somewhere between D and D'. Furthermore it seems likely
that the displacements of an actual, not totally filled up, circular group
lay somewhere between the following two extremes: they will exceed those of
a single pile, but they will be smaller than those of the equivalent pile.
The two extremes can be easily evaluated with the aid of the nonlinear t-z,
and p-y techniques described in the previous chapter.

Bogard and Matlock (ref.[2]) start from this idea to compute lateral
deflections. Eventually they present a somewhat misty computational trick,
see chapter 5, but they report good agreement with test results.

A more straightforward way of interpolation is possible and yields
tractable formulas. Chapter 5 extensively describes the derivation of those

NOnlinear Group Affected (NOGA) curves.

Figure 15 and 16 show the results of some INTRA computations performed
at a 6 pile test group. The data of the individual piles are equal to those
of the single test pile from Chapter 4, (figure 8). The group has a diameter
D = 6,10 m, hence the piles have a centre spacing of 3.05 m = 2.5 4.

Curve I in figure 15 depicts the single pPile solution achieved from bilinear
Randolph and Wroth (ref.[32]) t-z curves, and curve II depicts the single
pile settlement derived with the aid of a chart of Poulos (ref.[30]). cCurve
IIT in Figure 15 shows the result for a pile in a group under the same load
as the single Pile, derived with the Poulos interaction factor method. It
appears that the group settlement is almost twice the single pile value,
i.e. the settlement ratio ¢ is about equal to two. An alternative way of
establishing interaction factors (ref.[31]) results in a settlement ratio 3
= 1.5 and consequently a Steeper curve is obtained, see curve IV.
Superposition according to Randolph and Wroth (ref.[33]) also yields a
somewhat steeper curve, see curve V, and the same applies for the use of
"group affected" t-gz curves (chapter 5) resulting in curve VI.

In Figure 16 the single pile curve is achieved with the help of nonlinear t-
Z curves from Kraft et al. (ref.[14]). Use of interaction factors now
results in "hybrig® calculation of curves VII and VIII, with ¢ =2ang ¢t =

1.5 respectively (ref.[8]). Superposition is not allowed because of the
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nonlinear nature of the t-z curves. NOnlinear Group Affected (NOGA) curves
(chapter 5) result in curve IX, which shows an apparently weaker behavior in
the upper region. Indeed, methods to predict group behaviour are usually

valid for loads up to half the failure load.

Note that in this example:
= Soil is fairly homogenous
- Installation effects are neglected

- Point bearing is not taken into account

Several authors on group behaviour are not mentioned in this chapter
because their work can not directly be applied to collapse analyses with
INTRA. Frequently quoted are the following authors.

Butterfield and Banerjee (ref.[5]) present a refined version of the elastic
Mindlin approach.

Meyerhof (ref.[21]) did a lot of research on eccentric loaded pile groups,
much shorter than offshore piles.

In a recent article Nogami (ref.[25]) presents a simple elastic
computational method that may be useful to predict settlements under working

loads.
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5. NOGA CURVES

NOnlinear Group Affected curves are variants on single pile t-z and p-y
curves. If the latter describe the load-deformation behavior of the soil
near a single pile, NOGA curves do the same for the soil around a pile in a
group.

The following shows the derivation for circular (offshore) groups:

The sequence of thoughts is as follows: As stated in the previous
chapter it seems reasonable to assume that deformations from a group lay
somewhere between two extremes: they will exceed those of a single pile, but
they will be smaller than those of a totally "filled up" circle, see figure
17. The values for the two extremes can easily be established with the aid
of the usual single pile t-z or p-y techniques. To this purpose the filled
up group is treated as one equivalent pile with a diameter equal to the
group diameter. Intermediate values for an actual, not completely filled up
group, can be achieved by an interpolation between the two extremes.

The next paragraphs treat the derivation of a suitable interpolation rule
for axially loaded groups. Thereafter some attention will be paid to

laterally loaded groups.

5.1 NOGA t-z curves

A brief summary of this paragraph reads as follows:

a) To achieve an interpolation formula for axially loaded groups, it is not
sufficient to consider only the two extremes (single pile and filled up
group) because not-completely filled up circles may also behave as one
equivalent pile. Therefore it will be necessary to determine the

"critical" number of piles, n that separates groups with individual

crit’
behaving piles from groups with piles acting together.

b) Once this nc has been achieved an interpolation rule for an n-pile

rit
group (1 < n < ncrit) can be derived, and with this rule "group
affected" t-z curves can be constructed both for bilinear and for more

complicated nonlinear representations of the soil.



c) A difficulty occurs when the soil immediately near the pile shaft has a
strength different from the soil at a distance from the pile. However,

an approximate value of n can be established in this case.

crit
d) Subsequently the t-z curves obtained by interpolation will be compared

with the results from a different computational method.

e) Finally some conclusions will be presented.

a) critical numbers

Consider a widely spaced circular pile group of n piles, see Figure 18.
The efficiency n can be calculated with the aid of efficiency formulas based
on failure mechanisms, see appendix C. According to those formulas the
bearing capacity of the group is the lowest of two values, either the sum of
the individual capacities, or the capacity of an equivalent pier with a
diameter equal to the group diameter. This assumption results in a sharply

defined critical number of piles. From this nC the piles behave as a

s
solid unit and their displacement can be predi£§2d with an equivalent pier
approach. However it is doubtful whether such an nCrit actually occurs.

To obtain an answer to this question, first consider the settlement
around a single pile computed with the linear r-z formula from Randolph and

Wroth (ref.[32]), see appendix A:

T, I ro
z(r) = g 1in (;‘) (1)
Z = settlement
r = radius (coordinate)
r,= pile radius
T,= Shear stress at shaft, r = r,
G = shear modulus
r = "magical" radius at which shear stress is negligible

(Instead of shaft friction per unit pile length t in kN/m, as applied in t-z
curves, the formula uses unit shaft friction T, in kN/m2 equal to t divided

by the pile circumference.)



Figure 20 shows the resulting logarithmic lines that represent the
settlement around a single pile. Figure 23b shows the settlement around two
identically loaded piles according to the superposition variant of (1),

(ref.[33]):

Ty Ty rm rm
z(r.,r.) = { 1n — + — } (2)
172 G r
1 2
rl, r2 = distances from pile centres
It is clear that in between the piles the slope of the settlement line, gf,
is more flat than at the outside. This means, while gf = 7, that shear

stresses tend to concentrate at the outside.

(Formula (2) abusively suggests a constant T, around the circumference of
each pile. However one can write 7 ,r = %;, thus avoiding the abusive
character without violating the superposition result.)

Appendix E treats an analogy between the settlement around a pile and the
groundwater head around a sink in a confined aquifer. Figure 22 shows a flow
net of a group of sinks. The net of squares consists of stream lines and
potential lines. Considering the analogue situation of a group of axially
loaded piles, the lines represent stress trajectories and lines of equal
settlements respectively.

In fact the relatively very high shear moduli of the piles disturb this
pattern: settlements at the circumference of a pile are almost equal.
However this does not change the tendency that shear stresses concentrate at
the outside of the pile, and that the major part of the forces is
transmitted in that area, (little distance between the "stream lines").

For an increasing load plastic deformations will develop first at spots with
the highest stress concentrations. A further increase in loading makes the
'stream line' pattern change, and new plastic deformations will occur at
those places where the distance between the lines becomes too small.
Subsequently, plastic zones will extend until they meet and form either an
annulus around each pile, or one circular area around the whole group.
Consequently, indeed a critical number of piles exists that separates
individual from block failure. Theory of plasticity learns that such a

failure mechanism will take place that yields the lowest collapse load.
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Returning to efficiency formulas, consider the widely spaced pile group
of n piles again, (Figure 18). Terzaghi and Peck (ref.[36]) compute n with
an equivalent pier expression, see also appendix C. It reads (considering

only shaft friction):

=1 if n < !
n i 2 mr, T hax 2 1R T nax
(3)
< i > '
n 1 if n 2 7w r, T hax 2 R T hax
T = s0il shear strength
max
r, = single pile radius
R' = outer radius of the group, (see Figure 18 and Figure 19a)
For n__.. follows:
crit R'
n = =
crit r, (4)
Note that Nrit is not necessarily an integer.
For groups with n S hcrit‘the linear t-z or 7-z curves can be estimated with

the aid of formula (1), using r = Req’ where Req = radius of the group.
Some questions may arise about Req' which may probably lay somewhere between

R and R', see figure 18. In the following it is assumed that Req = R'.

b) Interpolation

In order to illustrate the derivation of the interpolation rule, a soil
layer around an arbitrary test pile group is considered. Figure 23 shows the
soil and group data.

Expression (4) gives n and with the aid of formula (1) the bilinear 7-z

rit’
curves of the single pil;tand the equivalent pile are established for an
ideal elasto-plastic soil behaviour, see figure 25. The demanded group
affected 7-z curves will lay somewhere in between those two extremes. Note
that only the maximum settlements of the piles differ, whereas the maximum
shear stresses around the pile remain unchanged, i.e. remain equal to the
soil shear strength.

Figure 24 shows the calculated maximum elastic settlements, z as a

max
function of the number of piles in the group. Point A represents the



settlement for n = 1, i.e. the single pile settlement Zsi' Defining n* as
the number of piles in a completely filled up circular group, the line
between the points B and C represents the settlementAfor n = nCrit upto n =
* .
n, i.e. the equivalent pile settlement Zeq' A linear interpolation between
A and B yields:
n -1

= 4 -
z=2g; v n 1t (Zeq Zgy) (6)
crit

With the aid of this formula the bilinear group affected 7-z curves from
figure 26a are derived for the above mentioned soil layer around an
arbitrary test group. Figure 26b shows t-z curves for the same
Configurations; the values of t now are divided by the number of piles
relating to the curve. Both in figure 26a and in figure 26b the efficiency
decrease can be recognized for groups with more than the critical number of
piles.

Finally, NOnlinear Group Affected (NOGA) 7-z curves can be established
in the same fashion as the above derived bilinear curves. If the "extreme"
T—-2Z curves from the singie and equivalent piles are established in a
nonlinear way, e.g. with Kraft et al. (ref.[14]), instead of bilinear with
(1), the same interpolation formula (5) yields the z-values of the NOGA

curves in between the nonlinear extreme 7-z curves, see figure 31.

A volume of strongly inhomogenous soil around the piles in a pile group
may result from pile driving, due to remoulding or compression.
In that case the efficiency formula of de Ruiter and Beringen (ref.[40]) may
be useful (figure 19b), see also appendix C. It is assumed that the shear
strength of the disturbed soil can be expressed as a constant fraction of

the shear strength of the undisturbed soil at some distance from the pile:

T = reduced soil shear strength
red

T = s0il shear strength
max

a = reduction factor



The efficiency formula now reads:

n=1 if n2rr, 7 < nwmr, 7 + (27 R-n2r,) T

max ° ‘red ax

(7)

n<l if n2wrr, 7 > nwr, T + (27T R-n2 r,) T

max 0 red max

Which yields:

(8)

n_. .=
crit anmr, +2r

More refined failure mechanisms may result in slightly lower values of
ncrit' but this refinement would introduce only seeming accuracy.

d) Comparision with superposition

In the above section b) the derivation of NOGA curves was introduced
with the description of an interpolation rule for bilinear r-z curves. The
results of this interpolation rule can be compared with the results of the
superposition formuia from Randolph and Wroth for bilinear r-z curves. The

formula reads for n piles:

§,= centre spacing between pile 1 and pile i+l

Figure 27 presents values of z established with (8), using Ty = Tmax' The
values are calculated for several numbers of piles in the above mentioned
arbitrary test group. In the same figure the interpolation results of figure
24 are repeated. Note that the points derived with (8) are not necessarily
on a straight line.

It appears that the interpolation results agree reasonably well with the

up to n" the results

superposition values up to n. . From n,

rit rit
essentially differ because the superposition does not automatically reckon

with efficiency decrease.



e)

5.

A
qm

Th
ocC
Ho
th

_.20_.

conclusions
A t-z curve for a pile in a group can be obtained by interpolation between
single pile and equivalent pile t-z curves

For each circular pile group a critical number of piles, n can be

crit’

defined. If the group contains less piles than nC , the piles

rit
individually reach their ultimate capacity. If the group contains more
piles, the piles act together in such a way that block failure occurs.

For groups with less piles than nc group affected t—-z curves obtained

rit’
by interpolation, starting from (bi)linear soil behaviour, show a good
agreement with t-z curves derived by means of superposition according to

Randolph and Wroth. For groups with more piles than nC t-z curves can

b
be obtained with an equivalent pile approach; superposziion now gives
incorrect results.

Group affected t-z curves, obtained by interpolation, starting from
nonlinear soil behaviour, (NOGA curves) are not necessarily well
predicted. However their values do not exceed those of the extreme
situations (i.e. single pile behavior and equivalent pile behavior).

NOGA curves can be derived in a simple but consistent way, avoiding hybrid
combinations of elastic and elasto-plastic theories as appear in existing

analysis methods for nonlinear pile group behavior.

2 NOGA g-z curves

Ultimate point bearing capacity Qp is usually defined as:

A
p p “max

p= gross end area (plugged pile)

ax= unit bearing capacity

is expression seems to indicate that block failure of a group will never
cur, but that the piles punch individually.

wever equivalent pile behaviour as described for side friction contradicts

is statement.
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It must be emphasized that the description of single pile -z behaviour
is subject to a large number of uncertainties.

For the moment no further attempt is made to derive NOGA g-z curves.

5.3 NOGA p-y curves

Bogard and Matlock (ref.[2]) derive NOGA p-y curves starting from the
usual Matlock p-y method.
To a single pile p-y curve an influence part is added. The latter is derived
from the p-y curve of an equivalent pile. The p-values are divided by the
number of piles in the group, n. The y-values are divided by the centre
spacing of the piles in the group, s. Adding the two components of
deflection y at each value of soil pressure p yields the eventual NOGA
curve, see figure 32.
Apart from this they state that the maximum value of p is given by the

highest value of either the single pile or the equivalent pile.

As mentioned in chapter 5, y-values are of little importance to pile
head load-deflection behaviour, compared with the p-values.
This suggests that these values can be derived in a more simple way, €.9. by
linear interpolation between single pile and equivalent pile y-values. This
would result in a correct description of the two limiting values which is

not the case for the Bogard and Matlock method.



_22_

6. SCHEMATIZATION

The standard schematization of piled foundations in the computer program
INTRA, as used in earthquake analysis, consists of beam-column elements
representing the piles, and of nonlinear springs representing the
surrounding soil, see figure 33.

The following treats several alternatives to schematize the foundation,
in order to minimize the number of pile elements and soil springs.

A description of the available INTRA spring elements can be found in

appendix F.

A standard extensive modeling of a single pile is shown in figure 33.
(For simplicity a plane frame is considered.) The soil is schematized by
horizontal layers, acting independently at the pile, represented by axial
and lateral nonlinear springs. The pile is modeled by beam-column elements,
which can simulate both material and geometrical nonlinearity, see appendix
F.

The length of the pile ‘elements, i.e. the thickness of the soil layers,
depends on factors such as homogenity of the soil and required precision of
the analysis. Lateral and axial behaviour ask for a different division of
the pile in elements, because lateral displacements are almost completely
governed by the soil around the upper part of the pile, while axial
displacements depend on the properties of the soil along the entire pile.
Consequently the latter require a regular element length while the former
ask for a more dense element division at the upper part of the pile and only
few elements at the lower part.

In the following paragraphs a different approach will be adopted. It is
tried to replace either the whole pile or a part of it by "equivalent"
springs.

Figure 34 depicts some variants of an eguivalent modeling of a single
pile. Neglecting the dependency between lateral displacements and rotations
(see chapter 2), the schematization is as shown in figure 34a, whereas
taking into account this dependency yields figure 34b, 34c or 34d.

To determine the characteristics of the equivalent springs an
extensively modeled pile isolated from the superstructure has to be

analysed. In an elastic situation, unit displacements directly give spring
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coefficients. However for the nonlinear situation every combination of an
increasing moment and an increasing lateral force imposed at the pile head
would yield two new load displacement curves for the representing springs,
because 'superposition is not valid. Therefore the nonlinear axial load-
deformation curve can be obtained without much difficulty. As for the
lateral and rotational springs, their curves can only be established exactly
for a known combination of imposed forces and/or displacements at the pile
head.

An intermediate modeling of a single pile may combine the advantages

from the extended and the equivalent model. As mentioned above, lateral
behavior is almost completely governed by the soil around the upper part of
the pile. Also failure of the pile occurs near the pile top. Figure 35 now
shows a solution that allows application of any desired loading combination.
Nevertheless, it has much less elements compared with the extensive
modeling. Appendix G gives some suggestions to determine the length of the

upper part of the pile that still needs to be modeled extensively.

Schematization of a group of piles can be carried out in more than the
three above mentioned ways:

An extensive modeling of a group of n piles consists of n single pile
schematizations. The characteristics of the so0il can be represented by NOGA
curves, see chapter 5. All the following group problems are included:
Excentricities, increased rotational "push-pull" resistance, geometrical and
physical interaction under extreme loads, etc. Only interactions in the soil
itself are not taken into account.

In a more simple schematization the n-pile group is replaced by one

"equivalent pile", which should not be confused with the equivalent

modeling. The soil can again be modelled with NOGA curves, (the force values
multiplied by n, the displacement values unchanged). To approximate the
increased rotational resistance an additional spring may be added to the
pile head. Accurate simulation of collapse under eccentric loading can not
be expected. The same applies for simultaneous axial and lateral failure.

An intermediate modeling of a group is possible in the same way as
described for the single pile. This also applies for an equivalent pile.

The equivalent representation of a group is almost identical to that of

a single pile model, see figure 36. Not all the subtle interactions are
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included, but probably the effect of this shortcoming may be neglected
compared with the uncertainties in the spring curves.

As in the case of a single pile the nonlinear dependencies require previous
knowledge of the pattern of forces and/or displacements at the pile head.
However, at collapse of the superstructure those values are difficult to
predict. Nevertheless, an equivalent model may be useful for preliminary
computations if several assumptions are introduced. The spring
characteristics have to be derived from more or less extensive modeled

groups under a given load or displacement.

Litterature: [15], [16].
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7. CONCLUSIONS

Considering offshore piles loaded up to failure (both axial and lateral)

the following can be concluded:

- Prediction of the load-deformation behaviour (quantitative):
— S0il mechanics knowledge and experience are required: Values of
parameters describing strength and stiffness of the soil strongly

influence the results.

- Full scale loading tests are lacking. Consequently poor knowledge about

behavior around failure is available, especially about the
mobilization of end bearing.
— Cyclic loading effects are not considered but may play an important

role.

— Description of load-deformation behaviour (qualitative):

- A good description of is possible with nonlinear t-z and pP-y curves.
Single pile curves can be obtained from: Kraft, Ray and Kagawa
(ref.[14]) for t-z, and Matlock (ref.[1]) for p-y curves.

- Group collapse may be complicated if ultimate axial and lateral
capacities are reached at the same time.

- This complicated behaviour can be analyzed with the aid of of the
NOnlinear Group Affected (NOGA) t-z and p-y curves derived in this
paper.

- A different approximate description of group behaviour can be derived

with a "hybrid" interaction factor method.

- Modelling of the foundation with INTRA is possible in several ways:

- The rate of admissible simplification will depend on the sensitivity of

the superstructure to its foundation behavior under extreme loads.
- Preliminary pushover analysis can be performed with a simple
"equivalent"” modelling, consisting of one axial and two lateral

nonlinear springs at each jacket leg.

- If only axial collapse can be expected, also extensive pushover analysis

is possible with an 'equivalent' schematization. However when lateral

collapse plays a role, a more refined modelling is required.



_26_.

REFERENCES

[1]

[2]

[4]

[5]

[e]

[7]

[8]

[9]

[10]

[11]

[13]

[14]

[15]

A.Eﬁl. Planning, designing, and constructing fixed offshore platforms
15 edition, october 1984

D.Bogard and H.Matlock

Procedures for analysis of laterally loaded pile groups in soft clay
Proc. of the conf. on Geotechnical practice in offshore engineering
ed. S.G.Wright, Austin, Texas, 1983

L.M.Bryant and H.Matlock

Three-dimensional analysis of framed structures with nonlinear pile
foundations

Offshore Technology Conference, Houston, OTC 2955, 1977

R.Butterfield and P.K.Banerjee
The elastic analysis of compressible piles and pilegroups
Geotechnique 21, no.1l, 1971

C.J.F.Clausen, P.M.Ras and I.B.Almeland

Analysis of the pile foundation system for a North Sea drilling
platform

Behaviour of Offshore Structures, BOSS '82, Cambridge, USA, 1982

B.McClelland and W.R.Cox
Performance of pile foundations for fixed offshore structures
Behaviour of Offshore Structures, BOSS '76, Trondheim, 1976

J.A.Focht and K.J.Koch
Rational analysis of the lateral performance of offshore pile groups
Offshore Technology Conference, Houston, OTC 1896, 1973

M.Hariharan and K.Kumarasamy
Analysis of pile groups subjected to lateral loads
Behaviour of Offshore Structures, B0OSS '82, Cambridge, USA, 1982

C.0.Hays and H.Matlock
A nonlinear analysis of a soil supported frame
Offshore Technology Conference, Houston, OTC 1699, 1972

INTRA Input Specifications (Users manual)
Revision D, 1980 + additions

J.G.M.Kerstens
Ultimate strength analysis of a three-dimensional offshore structure
KSEPL, Rijswijk, 1983

L.M.Kraft, R.P.Ray and T.Kagawa
Theoretical t-z curves
J. of the Geotechnical Engineering Division, ASCE, GT1l1l, 1981

G.A.Kriger
Modeling of piled foundations
Offshore technology conference, Houston, OTC 3748, 1980



[16]

[18]

[19]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

_27_

M.B.Leung

Equivalent nonlinear foundation method for pile-founded structures
Preprint, Offshore Technology Conference, Houston, 1984

Behaviour of Offshore Structures, BOSS '76, Trondheim, 1976

H.Matlock
Correlations for design of laterally loaded piles in soft clay
Offshore Technology Conference, Houston, OTC 1204, 1970

H.Matlock, D.Bogard and L.Cheang

A laboratory study of axially loaded piles and pile groups including
pore pressure measurements

Behaviour of Offshore Structures, BOSS '82, Cambridge, USA, 1982

G.G.Meyerhof and A.S.Yalcin
Pile capacity for eccentric inclined load in clay
Canadian Geotechnical Journal, vol.2l1, no.3, 1984

M.W.0O'Neill

Group action in offshore piles

Proc. of the conf. on Geotechnical practice in offshore engineering
ed. S.G.Wright, Austin, Texas, 1983

M.W.0O'Neill, R.A.Hawkins and L.J.Mahar
Load transfer mechanisms in piles and pilegroups
J. of the Geotechn.. Eng. Div., ASCE, vol.108, GT12, 1982

M.W.0O'Neill, I.Osman and U.Ghazzaly

Analysis of three-dimensional pile groups with nonlinear soil response
and pile-soil-pile interaction

Offshore Technology Conference, Houston, OTC 2838, 1977

T.Nogami and H.L.Chen
Simplified approach for axial pile group response analysis
J. of Geotechnical Engineering, ASCE, vol.1l10, no.9, 1984

H.G.Poulos
Analysis of the settlement of pile groups
Geotechnique, 18, p.449, 1968

H.G.Poulos
Behavior of laterally loaded piles: II - pile groups
J. of the Soil Mechanics and Foundation Division, ASCE, SM 5, 1971

H.G.Poulos

An approach for the analysis of offshore pile groups

Proc. of the conf. on Numerical methods in offshore piling,
Institution of Civil Engineers, London, 1980

H.G.Poulos and E.H.Davis

The settlement behaviour of single axially loaded incompressible piles
and piers

Geotechnique, 18, p.351, 1968

H.G.Poulos and E.H.Davis



_28_

Elastic solutions for soil and rock mechanics
Wiley, 1974

[31] M.F.Randolph and H.G.Poulos
Estimating %ge flexibility of offshore pilegroups
Preprint, 2 International conference on Numerical methods in offshore
piling
Institution of Civil Engineers, 1982

[32] M.F.Randolph and C.P.Wroth
Analysis of deformation of vertically loaded piles
J. of the Geotechnical Engineering Division, ASCE, GT1l2, 1978

[33] M.F.Randolph and C.P.Wroth
An analysis of the vertical deformation of pile groups
Geotechnique, 29, no.4, 1979

[34] J.de Ruiter and F.L.Beringen
Pile foundations for large North Sea structures
Marine Geotechnology, vol.3, nr.3, 1979

[35] R.F.Scott
Foundation analysis
Prentice-Hall, 1981

[36] K.Terzaghi and R.B.Peck
Sgél mechanics in engineering practice
2 ed., Wiley, New York, 1967

[37] D.D.Tideman ,
Behavior of offshore foundation piles
Final thesis, TH Delft/KSEPL, 1985

[38] S.P.Timoshenko and J.N.Gqodier
Theory of elasticity, 3 edition
McGraw-Hill, New York, 1970

[39] F.E.Toolan and M.R.Horsnell
The analysis of load-deflection behaviour of offshore piles and pile
groups.
International conference on Numerical methods in offshore piling,
ICE, London, 1980

[40] A.Verruisjt
Theory of groundwater flow
MacMillan, London, 1970

[41] A.Verruiijt
The influence of soil properties on the behaviour of offshore
structures
Preprint, Behaviour of Offshore Structures, BOSS '85, Delft, 1985

[42] v.N.Vijavergia
Load movement characteristics of piles
Ports 77 Conference, Long Beach, California, 1977



WIND

RESULTANT |

un]“ =

IRIE

WAVE

Figure 2

Forces at a jacket structure

|

‘////////‘bottom level

sea level

.QPMW.WH«'A' Aﬂ‘\~ B Mwyf
XL =2 S
T IS /N
IELLOLN e e
2 vercd ANA AN AN %/
XL \.-.,\..\.N.i \oﬁ i - < =]
~ & »%..r. Y

with single piles and pilegroups

Fixed offshore structure

Figure 1



Figure 3

Coordinate syste

7 .
A 2\
120 191

Z
19N 11
10 10

Z
%M”r\
10 11

7
4%»4/»
45»44»
170 171
198 140
d
4%»4 p
4 f"l/?‘

N
170 101

f {

Figure 5

m

1
OPEN ENDED //4’

PIPE PILE

SOIL PLUG

%

Figure 4

Adaption of a bending moment

on a pile group, by normal forces

in a push-pull mode

1
1

AN

1
1
1

f§\

I Im T T Ej

N\

O . . . . .

FN&&S&& N
AT

vlugged: 0 =gq

non plugged: Q

A + Z7 A
max p max o

1]

q (a+ A,)

maan * z:Tmax
ultimate pile bearing capacity
unit soil bearing capacity
so0il shear strength

gross end area

annulus area

outside shaft area

inside shaft area

'Plugged' and 'non-plugged’ open ended tubular pile (ref.[34])



tlN /]

L.
Figure 6a
Bi-linear t-z curve
ey =2 [w\]
ETkNA]
"’-w.\a N
., -

Figure 6b

Nonlinear t-2z curve
L]
2 —an z[wf_l

Zven

p LN 4]

Figure 7

General shape of a p-y curve

Y]



Y —_— [v«]
sStowny
/ S—— sowmd =
C_\b..\.‘ Cu."- \e o \g\)/w\L
FE——— -X‘s‘
5w d ¢ s »7°
- ‘>\~Me\ (r = 300
—_— -2
gﬁ.wA ? = ->S-°
Figure 8 — -y

Soil profile

pwulmro. \(\DL\'bf»e.v\ . 0} N\ (\N_\'.‘ L”‘fj\

—_—
l Q,\o).u._s-n.m\ p\us‘ V\\‘wu.\ b

kw1, ’
’: _ —
i ~
! LTy
“Q\W\t\u‘\ﬁ'\'. ! q
Mk\\hﬁ_\a ,ll /
(Vt\'[ﬁ}l) \00 = ',' / wa\\. \ D\k\‘ N \Ak\gm [ k«fﬂ.\ . tAHl\
.'/
. 'l
i/
i
/
\‘o '0.'. ";Q : [\“\ N}

i

Figure 10
Different results of t-z curve predictions



Fz [kN] Fz [kN] with endbearing wit~out endbecring

12000 i - 25000
i
|
12000 -4
! 20000
|
8000 -
! 15000 -
6000 4
! 10000
4000 H
5000 +
2000 -
0 0 - ;
0 5 10 15 0 50 ’ 100 150
delta z [mm] delta z [mm]
Figure 1lla Figure 11b

Pile head F-& curve Pile head Ffé curve

no end bearing

alMy/~2) L | |

- APL Wi . - ——,’_r! - z— ‘
"’ De 9\\.\'\\-\.4' \E-Lv\v-\tm kvt.\.t"«:\\

{

Lo be 260 2 T )

Figure 12

Different results of g—-z predictions



at the shape of the pile head F-§ curves

max dousle p max ) sl L SR double y max
5000 kN] helf prmox Fy [kN] hlf ymox
4000
Yo, vw«.\s-wu\ul P wmehawged
-
Cd
_-" 3500 ~- -
-
4000 - -7 ==
pad 3000 G <
I'd
¢ ’ V7404
’ —_- 2500 Y/
3000 | ’ - ’
I} - I/
-~ ’
’ Ve 2000 ’
| //' I,
20004 1
4 1500 I:'
tf/ 1
1f/ 1000 -{
1000 4 1/
500
0 - T 0 : . T T
0 50 100 150 200 250 300 0 50 100 150 200 250
delta y [mm] delta y [mm]
Figure 13
Influence of the local p and y values
i max max
at the shape of the pile head F-6 curves
t max double t max Z max double z max
25000 7 kN] holf fmox Fz [kN] folf Zmax
12000
Z M\b\\kw%'.:x kw\\& mmt.\,o.v\asv.cx
4
/ -7
,° 10000 / .
20000 A , / P
4 ’
4 / &
P 8000 - / e
15000 4 / ’
v 4
v 4 / 4
! 6000 - / e
' Vs
10000 ,' // ,
’ 4000 A ’
¢ l/ .
¢ ’
5000 ! - /l ’
S - 2000 - ¢f,*
4 P I i
4 g 4
1/
0 0 - -
0 5 10 15 20 25 0 5 10 15 20 25
delta z [mm] delta z [mm]
Figure 14
Influence of the local t and z values
max max



T single pile RE&W
I 3ingle Rile ROUIQS

N 2ouiqs sum alpha = 1.5
T auperpegilion REM . .

12000 Fz [kN] T Poulos sumalpha =2, L groyp alfesled SH'."."'E
X
Y4 .
: e
10000 - ot L
31)‘0“/}. P
8000 - ::/ ’
""(" /
6000 - / e
4000
2000
0 T T I T
15 20 25 30 ~35
delta z [mm]
Figure 15
Axial pile head F-§ curves (linear G modulus)
sfnsle Ef'e Kraft et al. prang f&ubo_;sumalm'\o E_I.S
Fz [kN %ﬁi{fﬁ?ﬁ}?‘ K N0 A W e m m
12000 2N Eate e
g =
10000 - ¢ e
j ”, & o“/ I
, ® /‘
BOOO - P /"‘
v 7
v o®
’ ./
GOOO ] ,/‘
?
&
4000 - ) ‘(,/
2000 - /’
0 - } T T : T 1 T T
0 5 10 15 20 25 30 35 40 45
delta z [mm]
Figure 16

Axial pile head F-§ curves (nonlinear G modulus)



h .

_ )

R K
)
> >
_...__.7£

A
Figure 17 Figure 18
Filled up circular group Widely spaced group
Figure 19a

Figure 19b

Failure mechanism Failure mecchanism

Terzaghi and Peck (ref.[36]) De Ruiter and Beringen (ref.[34])

Figure 20

Settlement of soil layers around an axially loaded pile
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Settlement of soil layers around two equally axially loaded piles
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Schematic flow net around a group of sinks
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and for an equivalent pile
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Figures 26a and 26b
Bi-linear 7-z and t-z curves for several

numbers of piles in a circular group
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Figure 27

Maximum elastic settlement versus number of piles
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Figure 31

Schematic construction of NOGA 7-z curve
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Figure 32
Schematic construction of NOGA p-y curve

according to Bogard and Matlock (ref.[2])



Figure 33
Extensive modelling,

with the aid of nonlinear

springs

Figure 34a
Equivalent modelling,
neglecting dependency between

lateral displacements and rotations
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Figures 34b, 34c and 34d

Equivalent modelling, taking into account dependency between

lateral displacements and rotations

Figure 36
Equivalent modelling of a group
including increased rotational resistance

Figure 35

Intermediate modelling
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APPENDIX A
T-Z CURVES

Randolph and Wroth (ref.[32]) present a way to compute settlements

around a pile, partly quoting previous publications. The deformation of the
soil around a pile shaft is idealised as shearing of concentric circles, see
Figure Al. Consider small horizontal layers, see Figure A2. Ignoring

horizontal displacements the kinematic equation reads:

9z _
or 7
z = settlement
r = radius (coordinate)
Yy = shear
The constitutive equation:
_ T
T g

7 = shear stress

) G = shear modulus .

The geometry of concentric circles yields a simple equilibrium relationship:

TD ro
1' =
r
r, = pile radius
T, = stress at shaft, r = r,
Substitution and integration yields:
To ro l
z(r) = G / - dar

Integration from r, to «, results in a value of z equal to infinity. To
avoid this unacceptable solution, a "magical radius" r.is introduced at

which the shear stress becomes neglectible. Now one finds:

. T, T r T, Ty ro
z(r) = z(r ) = S dr = in ( =, )

r
r r

This yields a pile settlement of :



An expression for rm reads:
' r. = 2.5 1p(1-v)
1 = pile length
r = radius (coordinate)
r = radius (fixed value)
p = ratio of G modulus at depth 1/2 and pile tip
v

= Poissons ratio of soil.

Kraft, Ray and Kagawa (ref.[l4]) introduce a nonlinear G modulus in the

t-z formula:

_ 7 A
6 =0, {1-( . )}

max

initial G modulus at small strains

stress-strain curve fitting constant, usually taken as 0.9

With
T, A
Vo=
max
follows:
r dr To Ty Irm ar
T, Iy r*I Gi {1- (% A )} r Gl e r-r,y
max
T, Ty (r_ = r,¥)
= 1n
Gy (r - r,¥)
With r* = r, this becomes:
T T rm
z =~ in { ;: v }



Superposition is possible using the expression with a linear G modulus.

Randolph and Wroth in reference [33] present a formula for two piles. Each

pile has the same load and shows the same settlement:

Toro rm rm
zZ = —_— + ——
G {1n(r°) In ()3

S = centre spacing of the two piles

Extension to a group of n piles yields:

To Ty rm n-1 rm
z = {In(—)+ £ 1n(—/)} =
G r, L s,
i=1 i
T T r
[ o m
=T n { n-1 }
r.- Il s
o .
i=1 *

s.= centre spacing between pile 1 and pile i+l



Figure Al

Shear of concentric circles

Figure A2

Horizontal layers around a pile
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APPENDIX B
0-Z CURVES

Little literature on g-z behaviour is available. -
A linear curve can be derived with the help of Timoshenko and Goodier,
(ref.[38]). Their solution for a rigid cylinder pressed against the plane
boundary of an elastic half space reads:
2

_ F (1-v7)

2% 2r, E

z = settlement
F = load
r .= radius of cylinder

Poissons ratio of soil

<
1]

E = elastic modulus of soil

Randolph and Wroth, (ref.[32]) mention some modifications for this
expression to take in account the depth below the surface of the pile point.

At the same time they use the shear modulus G instead of E:

z = c with 0.5 < C, < 0.85

For failure loads holds C, equal to 0.85.

Kraft, Ray and Kagawa, (ref.[14]) give the equivalent, using E again:

2qr, (l—vz)

z = - c, with 0.39 < C, < 0.67

g = point pressure

By expressing F in g, they suggest a uniformly distributed pressure under
the pile point which is not valid for loads up to failure. Besides, sand and
clay show totally different patterns. For collapse however the formula in
this way agrees with the usual ultimate end bearing as defined by e.q.

Terzaghi and Peck, (ref.[36]) or the API recommendations, (ref.[1]):
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Qp= ultimate point bearing capacity

Ap= gross end area (plugged pile)

qmax: unit bearing capacity

The value of qmax is a function of soil properties and depth.

To obtain nonlinear g-z curves the formulas mentioned should be modified
with the aid of nonlinear E or G modulus, or they should be used in an

incremental fashion with continually updated values.

Apart from those rigid punch formulas, empirical load-deformation
relationships exist for end bearing, e.g. relating settlement to pile
diameter: De Ruiter and Beringen (ref.[34]) present a curve that shows a
settlement at failure of about 0.12 times the pile diameter.

Several ways exXist to describe a g-z curve up to failure. E.g. an exXpression

from Vijavergia (ref.[42]) reads:

In reference [33] Randolph and Wroth introduce superposition of end
bearing:
At some distance of the pile base the deformations will be almost equivalent
to deformations caused by an imaginary point load in the centre of the pile

base.

F (1-v

z(r) = 2nmr G

Superposition of settlements caused by n equally loaded piles yields for

every pile:

Si= centre spacing



APPENDIX C

EFFICIENCY FORMULAS

Terzaghi and Peck (ref.[36]) state that the bearing capacity of a group

is the lowest of two values. Either the sum of the individual capacities or
the capacity of the group behaving as equivalent pier, see Figure C1l.

The latter value is computed from:

Q =7D'1r +
g max

F A
N
w)
Q

Qg= ultimate bearing capacity of the group
D'= outer diameter of the group

1 = pile length

T = so0il shear strength

max

duax - unit bearing capacity

De Ruiter and Beringen (ref.[34]) use a slightly different failure

mechanism, see Figure C2. The expression according to this variant reads:

nn7d 1 2
= — + —_— + - ?
Qg 1 2 Tred n (s-1) Tmax} ;7D qmax
nnd 1 2
= = + - + - '
1 { 2 Tred (7 D n 4) Tmax} s ™D qmax

n = number of piles in the group
d = pile diameter
T =arT = reduced soil shear strength
red max
= Pile spacing (expressed in pile diameters)
D = centre diameter of the group
a = reduction factor
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Figure C1
Failure mechanism

Terzaghi and Peck (ref.[36])

_—%T

Figure 2
Failure mechanism

De Ruiter and Beringen (ref.[34])



APPENDIX D

INTERACTION FACTOR METHODS

Poulos (ref.[26],[28],[30],[31]) defines group settlement Sg as

6g = settlement pile i (group solution)
i
6sp = settlement pile i (single pile solution)
i
Su = unit settlement single pile (single pile solution for unit load)
ig = interaction factor (influence pile j at pile i)

load at pile j

A definition for the interaction factors aij reads:

a _ additional settlement due to adjacent pile |
ij settlement of pile i under its own load

Poulos used a computer program that calculates pile settlements out of the
local displacements and the local influence of a neighbouring pile at
several points along the shaft. On the basis of this, charts with
interaction factors for different soil stiffness and pile spacings can be
established, see references [30] and [31]. Although the factors are derived
for two-pile groups, they can also be used for groups with more than two
piles because the linear elastic soil representation allows superposition of
the two-pile group results.

Another expression for ég reads:
i

In the case of a pile group with a fixed head the individual settlements are

all the same and thus equal to the group settlement 69.

6§ =26 for = 1...n
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Unknown are the n forces Fj and the group settlement 6g. Known are n
equations for 69 . Together with the knowledge that the total force acting

i
n

at the group, Fg, is equal to the sum of the n pile forces (Fg = Z Fj) the
j=1
n+l1 unknowns can be solved. One of the results is that the piles in the

centre of the group are less loaded than the piles at the outside.

Poulos (ref.[27]) formulates an equivalent way of computation of group
action for laterally loaded piles. In this case the interaction factors are
dependent on the angle between the line of connection of two piles and the
direction of the applied force. Also the connection of the pile heads to the
superstructure, fixed or pinned, now plays a role.

As in the case of interaction factors for axial behaviour, Poulos
derived the factors for laterally loaded groups only for two-pile groups.
However, application of those factors to groups with more than two piles
does not provide a good representation of the increased rotational
resistance that occurs because of push-pull working. Hence an approximate
approach to describe the moment-rotation response of large groups is
required, see reference [31].

For laterally loaded piles, on the contrary to the case of axial
loading, it is not sufficient to achieve only the forces at the pile head as
a result, because the lateral ultimate capacity depends on the bending
moments in the pile. An approximate curve of the bending moments of a pile
in a group is obtained as follows.

Consider a hypothetical single pile with the same pile head conditions as a
pile in a group, i.e. with the same degree of fixity and the same lateral
load. With the aid of a trick also the lateral pile head deflection is set
equal to that of the pile in the group. This is achieved by multiplying the
deflection scales of the p-y curves by so-called y-modifiers, thus
generating a softer soil response. It is now assumed that the moment
distribution and the deflection line of the hypothetical single pile are the

same as for the pile in the group, see ref.[34].

Focht and Koch (ref.[8]). To understand their ‘hybrid' approach,

consider again the Poulos definition of 6g :



The expression can be modified by replacing the understood value of unity
preceding the "single pile deflection" 55 by a relative stiffness factor
i
R, defined as R = 6ép / 6Sp with 6ép = "single pile settlement" derived
i i i
from a nonlinear pile head t-z curve. This factor R however is changing with

increasing 65 . Therefore an iterative procedure for the solution of the

set of n=j equations is required. Fortunately offshore pile groups are often
placed in a circle. Because of symmetry now yields for the axial case that
all Fj are equal: F, = F / n for j = 1...n. This means that only one
equation has to be solved iteratively, which can be done by hand. For non-
symmetrical pile configurations or for eccentric loads numerical solutions
are needed. An imposed rotation at the pile group head which in the elastic
case can be taken into account without difficulty, will lead here to more
extensive calculation.

Although it does not follow from symmetry, the lateral loading case for a
circular configuration will also yield equal forces for the different piles.

See Bogard and Matlock, reference [2].
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APPENDIX E
GROUND WATER FLOW ANALOGY

Settlement around a pile in a Groundwater head around a sink in a
circular area (Figure E1) circular island (Figure E2)
See Randolph and Wroth (ref.[32]) See Verruijt (ref.[40])
Consider a layer with unit Idem
thickness
. . . dz
kinematic equation: vy = ar (1)
constitutive eq.: 7 = Gy (2)
dz dé
-+ = - b4 = -
(1) + (2) =G 4, (3) Darcy: v K ar (4)
equilibrium eq.: 7 « 27r = t (5) continuity eq.: v - 27r = -Q (6)
(3) + (5) + integratioﬁ - (4) + (6) + integration =
1t 1 _1_ 0 1
z(r) = G 27 I r 9r ¢(r) = k 27 I r &
boundary value: z(rm) =0 9 boundary value: ¢(rm) =0 =
r r
_ 1 _t _n _1_0 _m
z(r) = G 2q 1M ( r ) ¢p(r) = X oq 1D ( C )

r = radius (coordinate)

z = settlement ¢ = groundwater head

y¥ = shear

T = shear stress v = superficial velocity

G = shear modulus = Darcy constant

t = shaft friction per unit Q = charge per unit well length

pile length
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APPENDIX F
MODELLING WITH INTRA

The finite component program "INelastic Tower Response Analysis" has
been developped to simulate earthquake loadings on piled offshore
structures.

From the set of twelve available elements (components), there are two
elements suitable for describing soil behaviour: The "Free Field Soils
Element" is only to be used in dynamic analyses. The "Near Field Soils

Element" is suitable for the static case. See ref.[ll].

Extensive modelling: Consider Figure Fl. The piles itself are

represented by beam-column elements. At each node a NEAR element is
connected, describing:

- a bi-linear axial t-z curve

- a multi-linear (up to 9 steps) lateral p-y curve.

It is supposed that the soil behaves isotropically in lateral direction,
therefore only one p-y curve has to be used. A third curve can be prescribed
at the tip, to model g-z behaviour (bi-linear).

A more refined shape of t-z curves can be achieved by "misusing”™ the NEAR
elements by a 90-degrees turn which can be realized by changing the position
of reference nodes A and B. Even combination from "turneg" and standard NEAR
elements in one node is possible to describe both t-z and p-y curves

exactly. However output now becomes rather disorganized.

Equivalent modelling is possible by means of combination of two NEAR

elements as described above.

Leung (ref.[16]) mentioned another way: parallel use of bi-linear elements
yields a multi-linear load-deformation curve, see Figure F2.

Probably several other combinations of INTRA elements are possible, e.g.
using column-buckling elements (such as the STRT element) to represent

softening behaviour.

NOTE: Recently a new INTRA soil element, PSAS, has been devellopped. The
main difference with the NEAR element is the possibility to generate default
values for t-z and p-y curves based on experimental data. Both t-z and p-y

relationships can be described with multi-linear curves.
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Settlement around a pile

in a circular area
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Figure E2
Groundwater head around a sink

in a circular island
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APPENDIX G

CRITICAL LENGTH FOR INTERMEDIATE MODELING

An offshore pile under a small lateral loading behaves like a beam on
elastic foundation. As the loading increases, plastic deformations will
occur in the soil around at the top region of the pile, after which an area
of yielding soil extends downwards until the foundation collapses because of
the devellopment of a plastic hinge in the pile itself.

In order to perform a numerical analysis of the foundation up to
failure, it is nescessary to model at least the region where plastic
deformation of the soil can be expected. To determine this minimum length
consider the following: If soil yields in a certain region, from pile top up
to z, the resulting horizontal forces are known, see Figure Gl.

Scott (ref.[35]) computes pile head deflections by combining this knowledge
with an elastic approach for the lower part. However, in this way it is not
possible to achieve an explicit value of z,.

Verruijt (ref.[41]) mentions that the elastic soil properties are of
little importance to the establishment of pile head load-deflection curves.

- He presents an approximate method to compute such curves for a pinned head
pile, starting from only plastic behaviour of the soil: The pile below z, is
neglected. As boundary conditions in that point he suggests zero
displacement and zero rotation. At the same time he assumes a bending moment
equal to zero. Figure G2 shows the moment distribution according to this
assumption. (The yield strength of the soil increases proportional with the
depth.)

Verruijt states that the lower part of the pile - a beam on elastic
foundation - is stiff with respect to deflection but relatively weak with
respect to bending. This means that it attracts few moments, so the assumed
boundary values seem reasonable. In addition the support from numerical
calculations is mentioned.

Equilibrium now requires:

z,= depth of plastic area

F = lateral load at pile head
a

= parameter describing increase of soil strength with depth

The maximum of z 6 is found at time of collapse of the pile:
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az

= bending moment in pile

Mpl plastic moment of pile
A comparable computation for the fixed head situation, see Figure G3, yields

a slightly lower value for Z,:

g —_
z, = //12 o1
a

However this value is Certainly too low because an actual pile head is never

absolutely fixed.

Actual offshore soil profiles are dften rather inhomogenous and
therefore the soil strength can not be represented by a simple triangular
shaped graph.

In this case the minimum length that has to be modelled to achieve
acceptable results has to be determined by trial and error.
De Ruiter and Beringen (ref.[34]) state that only the upper ten pile

diameters of soil are significant.
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Figure G1
a) Deformation of pile under lateral load

b) Known horizontal forces from top upto zO

Figure G2

Moment distribution
according to assumed
boundary conditions

(pinned head pile) "%e
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Figure G3

Moment distribution
according to assumed
boundary conditions

(fixed head pile)




