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Approximating Eigenvectors
with Fixed-Point Arithmetic: A Step
Towards Secure Spectral Clustering

Lisa Steverink, Thijs Veugen, and Martin B. van Gijzen

Abstract We investigate the adaptation of the spectral clustering algorithm to the
privacy preserving domain. Spectral clustering is a data mining technique that
divides points according to a measure of connectivity in a data graph. When the
matrix data are privacy sensitive, cryptographic techniques can be applied to protect
the data. A pivotal part of spectral clustering is the partial eigendecomposition of the
graph Laplacian. The Lanczos algorithm is used to approximate the eigenvectors of
the Laplacian. Many cryptographic techniques are designed to work with positive
integers, whereas the numerical algorithms are generally applied in the real domain.
To overcome this problem, the Lanczos algorithm is adapted to be performed with
fixed-point arithmetic. Square roots are eliminated and floating-point computations
are transformed to fixed-point computations. The effects of these adaptations on
the accuracy and stability of the algorithm are investigated using standard datasets.
The performance of the original and the adapted algorithm is similar when few
eigenvectors are needed. For a large number of eigenvectors loss of orthogonality
affects the results.

1 Introduction

Computing eigenvectors of matrices has many important applications. One example
is principal component analysis, a technique that is used to study large data sets such
as those encountered in bioinformatics, data mining, chemical research, psychology,
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and in marketing. Another example is the characterisation of DNA sequences
[17] in bioinformatics. Large graphs have become an important data source for
applications from social networks, mobile and web applications to biomedical
research, providing great value in both business and scientific research. Particularly,
spectral analysis of graphs gives important results pertinent to community detection,
PageRank, and spectral clustering.

Especially when the matrix data are sensitive, security measures should be taken
to overcome undesired leakage of data during the computation of eigenvectors. The
data could be commercially sensitive, but also privacy sensitive, as is often the
case with medical data. As data may be collected from different sources, and data
processing is increasingly performed in the cloud or by external parties which are
not allowed to learn the contents, techniques like data perturbation, homomorphic
encryption [10], or secret sharing [1], are frequently used. Unfortunately, such
cryptographic techniques are designed to work with integers, whereas the numerical
algorithms that are used to compute eigenvectors are designed to work with
real numbers. This means that these floating-point based algorithms have to be
transformed to fixed-point based algorithms. This has a great influence on the
accuracy and stability of the existing, often iterative, approaches.

In this paper, we investigate the effect of approximating eigenvectors with fixed-
point arithmetic, and focus on the accuracy and stability of the adjusted numerical
algorithms. Although we do not design the complete cryptographic protocols for
computing eigenvectors in the encrypted domain, we pay attention to avoid complex
operations on encrypted (or secret-shared) numbers, such as square roots and integer
divisions [4, 15]. We perform spectral clustering, and compare the results of our
adapted numerical algorithms in ZN to the original algorithms in R on three
datasets.

The paper is organized as follows. First, related work and preliminaries will be
discussed. Then we present the adapted Lanczos algorithm that works on positive
integers. Subsequently, the accuracy analysis of secure spectral clustering that
makes use of both the original and adapted algorithm, is given. We end with the
conclusions.

This paper is based on the research described in [14], which contains many
additional algorithmic details and experimental results.

1.1 Related Work

Power methods are known in cryptography for computing square roots or dividing
integers [5]. Although they can also be used to find eigenvectors, there is not much
previous work done on the numerical analysis of finding eigenvectors in the integer
domain. Nikolaenko et al. presented a privacy preserving way of factorising a
matrix for recommendation purposes [8], by combining homomorphic encryption
and garbled circuits. Erkin et al. designed a secure method for performing k-
means clustering [2] by means of additively homomorphic encryption, but this
does not require computing eigenvectors. Sharma and Chen [12, 13] recently
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showed how spectral analysis could be securely done in the cloud, using additively
homomorphic encryption and differential privacy. The focus of all related work is
on the computational complexity, while we focus on accuracy, with complexity in
mind.

1.2 Preliminaries

Spectral Clustering

The spectral clustering algorithm is able to find k, not necessarily convex clusters
of similar points by mapping the data points to a k-dimensional space in which
the similar points form convex sets. These convex sets can be clustered with a k-
means algorithm. In spectral clustering, the dataset is represented as a graph G

with weighted edges [16]. We aim to maximize the weights within the clusters,
while the weights between clusters are low. A Laplacian matrix L is defined, which
contains information about the connected components of G. The first k eigenvectors
of Laplacian L approach indicator vectors of the connected components of G, and
form convex clusters. Therefore, we are interested in finding the k eigenvectors
of L that correspond to the k smallest eigenvalues. The complexity of computing
the entire eigendecomposition of L ∈ R

n×n is O(n3). Moreover, if the data set
needs to be clustered into k clusters, only k eigenvectors are required. Therefore,
we use numerical algorithms to approximate the k smallest eigenvalues and their
corresponding eigenvectors.

The Lanczos Algorithm in R

The Lanczos algorithm is used to reduce the Laplacian matrix L to a tridiagonal
matrix T (the Ritz matrix) of which the eigenvalues (the Ritz values) approximate
the eigenvalues of L. The Lanczos algorithm is shown in Algorithm 1 [3]. The inner
product is indicated by a · between two vectors.

Algorithm 1: The Lanczos algorithm
1 Set v0 = 0 and β1 = 1.
2 Generate a random vector v1 ∈ (0, 1)n ⊂ R

n.
3 for j = 1, 2, . . . , m − 1 do
4 αj ← (Lvj · vj )/(vj · vj )

5 rj ← Lvj − αj vj − βj vj−1
6 βj+1 ← ‖rj‖2
7 vj+1 ← rj /βj+1

8 end
9 αm ← (Lvm · vm)/(vm · vm)
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After m iterations, Algorithm 1 yields Ritz matrix T :

T =

⎛
⎜⎜⎜⎜⎜⎝

α1 β2 0
β2 α2 β3

. . .
. . .

. . .

βm−1 αm−1 βm

0 βm αm

⎞
⎟⎟⎟⎟⎟⎠

. (1)

In exact arithmetic, the vectors v1, . . . vm form an orthonormal basis for the so-
called Krylov subspaceKm(L, v1) of dimension m, which is defined as

Km(L, v1) = span{v1, Lv1, · · · , Lm−1v1}.

The eigenvalues of T are increasingly better estimates of the eigenvalues of L as its
size grows. The extremal Ritz values are the first to converge in the spectrum of T .

Computing in the Integer Domain

Cryptographic techniques are designed to work on positive integers. Therefore, we
translate the Lanczos algorithm to ZN , which is the set {0, 1, . . . , N − 1} with
modular arithmetic. Because of security requirements,N is an odd 2048-bit number.
The domain ZN forms the message space of messages that can be encrypted.
Modular arithmetic is used on ZN . Integer division is defined as follows:

Definition 1 Let a, b ∈ Z. The integer division a ÷ b is defined as the integer q

such that a = qb + r with remainder r ∈ Z, where 0 ≤ r < b.

Fixed-point arithmetic is used to represent fractions as signed integers [4]. By
multiplying fractions with 10d , a signed integer is obtained, where d is the scaling
parameter that determines the number of decimals that will be stored. Scaling
fractions with 10d has implications for the operations in the integer domain. To
preserve the scaling parameter 10d when dividing two numbers, the numerator is
first multiplied by 10d . We assume that each integer division on numbers in fixed-
point arithmetic has this implicit additional multiplication. Moreover, we define the
fixed-point arithmetic multiplication operations as follows:

Definition 2 Let a and b be fixed-point integers. The fixed-point integer multipli-
cation ∗ is defined as

a ∗ b = ab10−d.

Indeed, multiplying a10−d and b10−d gives ab10−2d = (a ∗ b)10−d , so a ∗ b is
the scaled version of the product. The operator ∗ is also used to denote fixed-point
matrix multiplications. Finally, 〈vj , vj 〉 denotes the inner product or a matrix-vector
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product that makes use of the fixed-point integer multiplication. The following
map ψ can encode signed integers (with absolute value less than N/2) as positive
integers (less than N):

ψ : {−(N − 1)/2, . . . , 0, . . . , (N − 1)/2} −→ ZN, (2)

x �−→ x mod N. (3)

Informally stated, the upper half of the domain ZN is used to represent the negative
integers of maximum bit length 2047. Using these definitions, we adapt the Lanczos
algorithm to the integer domain. All computations in this algorithm are performed
modulo N . In the algorithm, “mod N” will be omitted.

2 Lanczos Algorithm on Integers

The standard Lanczos algorithm in Algorithm 1 incorporates a normalization of the
Lanczos vectors (see line 7). However, the square root operation (within line 6) is
expensive in a finite field [7]. Therefore, we propose to perform an unnormalized
version of the Lanczos algorithm [9] in the integer domain. Due to this lack of
normalization, the entries of vj tend to grow as the algorithm progresses. Thus,
there is a danger of overflow of message space ZN . The unnormalized Lanczos
algorithm in ZN is given in Algorithm 2. The entries of starting vector v1 are chosen
randomly from (0, 1) and scaled by 10d to integers. The Laplacian matrixL contains
integer values and is unscaled. Note that this alternative Lanczos algorithm yields
an unsymmetric matrix T , because the βj from Algorithm 1 are now constants:

T =

⎛
⎜⎜⎜⎝

α1 γ2 0
10d α2 γ3

10d α3 γ4

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ . (4)

The above algorithm computes basis vectors v1 · · · vm for the Krylov subspace,
and a matrix Tm whose eigenvalues (called Ritzvalues) converge to the eigenvalues
of L. Additionally, [14] explains how to use this information to compute the Ritz
values and corresponding Ritz vectors (approximating the eigenvectors) in the
integer domain.
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Algorithm 2: Unnormalized fixed-point Lanczos algorithm in ZN

1 v0 ← 0 and β1 ← 0
2 γ1 ← 0
3 Generate a random vector v1 ∈ {1, . . . , 10d }n
4 for j = 1, 2, . . . , m − 1 do
5 Lj ← 〈L, vj 〉
6 αj ← 〈vj , Lj 〉 ÷ 〈vj , vj 〉
7 βj+1 ← 1
8 vj+1 ← Lj − αj ∗ vj − γj ∗ vj−1
9 γj+1 ← βj+1〈vj+1, vj+1〉 ÷ 〈vj , vj 〉

10 end
11 Lm ← 〈L, vm〉
12 αm ← 〈vm,Lm〉 ÷ 〈vm, vm〉

3 Accuracy Analysis

In order to investigate the influence of adapting the Lanczos algorithm to the
integer domain, the performance of the algorithm in R and ZN is compared. The
performance is measured by computing the accuracy of the Ritz values and Ritz
vectors, the clustering accuracy and a measure of compactness. The value of N

is chosen to comprise 2048 bits. Therefore, we say that overflow occurs when a
number becomes larger than 2047 bits, since we need one bit to represent negative
numbers. The algorithms were implemented in Python 3.6 and tested on three real
datasets. Three datasets from the UCI Machine Learning Repository were used to
assess the spectral clustering algorithm in ZN : theWisconsin Breast Cancer Dataset,
the Yeast5 Dataset and the Yeast10 Dataset [6]. These datasets were chosen for their
variety in size and number of clusters. Moreover, a suitable Laplacian could be
constructed in the integer domain for these datasets. The Wisconsin Breast Cancer
Dataset has size 699 × 9 and should be clustered into two clusters. The Yeast5
Dataset has size 384 × 17 and contains five clusters. Finally, the Yeast10 Dataset is
a 1484 × 8 dataset in which ten clusters can be distinguished. Below, we only give
the numerical results for the Wisconsin Breast Cancer Dataset. We refer to [14] for
a complete description of the numerical results for the other two data sets.

The accuracy of the Ritz value θi to eigenvalue λi of L is assessed with the
absolute error:

|θi − λi |. (5)

The accuracy of the corresponding Ritz vector ũi to an eigenvector ui of L is
measured with the absolute cosine of the angle α between the vectors:

| cos(α)| = |ũi · ui |
‖ũi‖ · ‖ui‖ . (6)



Approximating Eigenvectors with Fixed-Point Arithmetic 1135

The silhouette value is a measure of the compactness and separation of clusters
[11]. The distance of the data point to other data points in the same cluster is
compared to the distance to data points in other clusters. Formally, the silhouette
value of data point i is defined as

s(i) = b(i) − a(i)

max{a(i), b(i)}, (7)

where a(i) is the average distance from point i to other points in the same cluster,
and b(i) is the minimum average distance from point i to points in a different cluster.
The squared Euclidean distance is used in the computation of the silhouette value.
From the above definition it follows that

−1 ≤ s(i) ≤ 1 (8)

for each data point i. A positive silhouette value indicates that the data point is
clustered well. From a negative silhouette value we conclude that a data point has
been misclassified.

3.1 Wisconsin Breast Cancer Dataset

A scaling parameter d = 6 is required to obtain sufficient accuracy in ZN . Table 1
shows the relative accuracy of the first two Ritz values. Both in R and in ZN the
eigenvalues are approximated well. The accuracy is higher in R. Furthermore, the
cosine of the angle between the Ritz vectors and the exact eigenvectors is shown.
The values show that the eigenvectors are approximated with high accuracy. Table 2
shows the cluster quality. Both in R and in ZN , the first two eigenvectors are
approximated well enough to form the correct convex clusters. The maximum entry
bit length is 51 in matrix T and 76 in matrix V .

Table 1 The absolute error of the two smallest Ritz values (λ1 = 2.92700358 and λ2 =
9.03710093e4) and the accuracy of the corresponding Ritz vectors for the Wisconsin Breast
Cancer dataset. Parameters: d = 6, m = 6

i |θi − λi | R |θi − λi | ZN | cos α| R | cos α| ZN

1 1.3157e−11 1.1549e−4 1.00000000 1.00000000

2 1.5449e−6 2.9566e−5 1.00000000 1.00000000

Table 2 Cluster quality of
the Wisconsin Breast Cancer
dataset. Parameters: k = 2,
d = 6, m = 6

Lanczos R Lanczos ZN

Cluster accuracy 95.85% 95.85%

Silhouette value 0.9118 0.9118
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4 Conclusions

We conclude that a few of the smallest eigenvalues of the Laplacian could be
approximated well in the integer domain. The accuracy of the algorithm in R and
ZN is similar, and the eigenvectors that correspond to the computed eigenvalues
are approximated with high accuracy. For a small number of clusters, a good
performance of the spectral clustering algorithm is achieved. As a higher number of
clusters requires more iterations of the Lanczos algorithm, the loss of orthogonality
may affect the accuracy of the spectral clustering algorithm in both domains, see
[14].
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