
I M P L E M E N TAT I O N O F PA S S I V E A N D A C T I V E M AT E R I A L B E H AV I O U R
O F C A R D I A C T I S S U E I N TO T H E F I N I T E E L E M E N T S O F T W A R E

A B A Q U S V I A A U S E R S U B R O U T I N E

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Biomedical Engineering

by

Anna Kuiken

June 2022



Anna Kuiken: Implementation of Passive and Active Material Behaviour of Cardiac Tissue
Into the Finite Element Software ABAQUS via a User Subroutine (2022)

The work in this thesis was made in the:

Erasmus MC
Department of Biomedical Engineering and Cardiology
Faculty Mechanical, Maritime and Materials Engineering
Technical University of Delft

Supervisors: prof. dr. A.C. Akyildiz
dr. ir. M. Peirlinck
prof. dr. J. Dankelman



A B S T R A C T

Intro - The rapidly developing technology of cardiac finite element modelling aims
to improve heart failure treatment by quantifying stresses acting in the cardiac tis-
sue. Cardiac finite element modelling may improve heart failure treatment by pro-
viding more insight in the pathophysiology, enabling a patient-specific assessment
and improving the efficiency of clinical trials and medical devices. An essential
part of the cardiac finite element model is capturing the mechanical behaviour of
the heart, including its active behaviour (contraction). This mechanical behaviour is
captured by means of a material model. However, the active behaviour of the heart
is not readily available in material models provided by commercial finite element
software like Abaqus/CAE. Consequently, such active material model needs to be
added in a user subroutine manually. This is a time-consuming task, prone to er-
rors. Additionally, the availability of the documentation is limited, and in literature
the methodology of the implementation is oftentimes not disclosed.

Thesis goal - The goal of this master-thesis is to implement a combination of
the passive and active mathematical material models in a commercial finite element
platform. This was done by implementing the combined material models in user
subroutine UMAT that can be used in FEA-software Abaqus. Reproducibility of the
UMAT is ensured by a detailed documentation. Also, the UMAT is provided in the
supplementary material.

Methods - The UMAT consists of the Holzapfel Ogden constitutive law as pas-
sive component, and the Time Varying-Elastance contstitutive law as active compo-
nent, which are combined by means of the active stress approach. Additionally, the
UMAT requires computation of the elasticity tensor, which is computed by means
of a numerical formulation. The incorporation of the passive and active constitutive
laws in the UMAT was verified by means of multiple test-cases. The outcomes of the
UMAT were compared to an analytical solution and a benchmark user subroutine
in the form of UANISOHYPER_INV. Lastly, reality-check test-cases were carried
out by comparing the UMAT outcomes to the results from similar test-cases found
in literature.

Verification results - Verification of the implemented material models showed
good agreement with the analytical computed solution of equibiaxial extension,
equibiaxial compression and isometric contraction test-cases, as all cases showed
an MAPEmax or APEmax error lower than 1%. Shear test-case results of the UMAT
showed some bigger APEmax values (maximal 17%) with relation to the analytical
solution, possibly caused by numerical errors during the elasticity tensor compu-
tation. Results of the reality-check cases showed similar trends to the mechanical
experiments done on cardiac tissue on which these cases are based.

Conclusion - The public availability of the implemented passive and active ma-
terial models in the user subroutine UMAT, which is working reasonably well ac-
cording to conducted verification, forms a significant step forwards in the field of
cardiac finite element modelling. The current work can be further extended by
the incorporations of compressibility during contraction and viscoelasticity in the
material models. This thesis provides the basis for future projects in the field of
cardiac finite element modelling including an active material model. Also, the pro-
vided implementation of material models may aid in the implementation of other
mathematical material models in a user subroutine like UMAT.
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C O N V E N T I O N S

Lowercase greek lettres are used for scalars, lowercase bold-face Latin letters are
used for vectors, uppercase bold-face Latin letters are used for second-order tensors
(or matrices), double Latin letters are used for fourth-order tensors. E.g.:

a, b, c,...(1st-order tensors or vectors)

A, B, C,...(2nd-order tensors or matrices)

A,B,C,a,b, c,...(4th-order tensors)

Basic Continuum Mechanics

x0 and x are vectors related to material points of an undeformed (reference) and
deformed (current) form configuration of a continuum body, respectively.

F =
∂x
∂x0

= deformation gradient

J = det(F) = determinant

F = J−1/3F = isovolumetric part of the deformation gradient

C = FTF = right Cauchy-Green deformation tensor

C = FTF = isovolumetric part of C

B = FFT = left Cauchy-Green deformation tensor

B = FFT
= isovolumetric part of B

EG =
1
2
(C− I) = Green-Lagrangian strain tensor (2nd order tensor)

EN =
√

C− I = Nominal or Engineering strain tensor (2nd order tensor)

δij =

{
1 if i = j
0 if i 6= j

= the kronecker delta

vi
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Table 0.1: Symbols used in this thesis
Symbol Meaning
Deformation Gradients
FEE Deformation gradient defined in a global coordinate system.
FeE Deformation gradient defined in a co-rotational local coordinate system.
Fal Deformation gradient form that is given to the UMAT by Abaqus when

a local fibre direction is defined with the keyword *Orientation.
U The stretch matrix.
R The rotation matrix.
J The determinant of F.
Strain Energy Function
Ψ The (Holzapfel and Ogden (HO)) strain energy function.
ai, bi Material parameters, with i = 1, 4 f , 4s and 8 f s.
Ii Invariants of the strain energy function (SEF) with i = 1, 4 f , 4s and 8 f s.
ψi The first derivative of Ψ w.r.t. invariants Ii, with i = 1, 4 f , 4s and 8 f s.
ψ
′′
i The second derivative of Ψ w.r.t. invariants Ii, with i = 1, 4 f , 4s and 8 f s.

f0, s0 Vectors denoting the fibre and sheet orientation in reference configuration.
f, s Vectors denoting the fibre and sheet orientation in deformed configuration.
κ The bulk modulus.
Stress Measures
S The 2nd Piola-Kirchhoff stress.
S The fictitious 2nd Piola-Kirchhoff stress.
τ Kirchhoff stress.
σ Cauchy stress.
σpas/act Passive and active part of the cauchy stress.
σiso/vol Isovolumetric and volumetric part of the (passive) cauchy stress.
σa f /as Active cauchy stress in fibre or sheet direction.
n A scaling value.
σ The fictitious cauchy stress.
p Penalty parameter.
χ∗(•) Push forward operation.
Tangent Matrix
C Material form of the elasticity tensor.
c Spatial form of the elasticity tensor.
C Fictitious material form of the elasticity tensor.
c Fictitious spatial form of the elasticity tensor.
p̃ Scalar function of C .
P Fourth order projection tensor in reference configuration.
I Fourth order unit tensor.
Jaumann Rate
c̃τ Jaumann rate (dependent on τ).
c̃σ Jaumann rate (dependent on σ).
Perturbation Method
F̂(ij) Perturbed deformation gradient in only its (i,j) component.
J(ij)p The determinant of the perturbed deformation gradient in only its

(i,j) component.
θ A small perturbation parameter.



1 I N T R O D U C T I O N : M O D E L L I N G O F
C A R D I A C T I S S U E

1.1 thesis goal
Heart failure is a life-threatening disease, causing decrease in functionality, quality
of life and mortality, affecting more than 64 million people globally [1]. Heart fail-
ure is a syndrome characterised by decreased cardiac output caused by a structural
and/or functional cardiac abnormality [1]. Next to its medical burden, it also causes
socioeconomic burden, with a cost estimation of $30.7 billion dollar in the USA in
2012. Costs are predicted to increase further to $69.8 billion dollars in 2030 [2].

A rapidly developing technology aiming to improve treatment of heart failure
by quantifying stresses acting in the cardiac tissue, are cardiac finite element (FE)
models. Stress quantification by means of cardiac FE models may enable a more
patient-specific medical treatment, as they include the anatomy and physiology of
the individual patient in the treatment decision (e.g. [3], [4]). Also, cardiac FE mod-
els may improve the efficiency of clinical trials of medical devices (e.g. [4], [5]).
Lastly, more insight in the pathophysiology of cardiac diseases may be obtained by
the development of cardiac FE models.

An essential part of the cardiac FE model is the material model, as it describes
the stress-strain behaviour of the cardiac tissue. Ideally, the material model that
is implemented in a whole heart model, characterises both the passive component
and the active component (the cardiac contraction) of the cardiac tissue. Although
multiple pre-programmed material models exist that are compatible with biologi-
cal tissues (e.g. the Holzapfel-Gasser-Ogden model), material models that enable
contraction of the material are not readily available in commercial FE software like
Abaqus/CAE [6]. Consequently, for such applications biomedical engineers turn to
programming existing passive and active mathematical material models (constitu-
tive laws) into a user subroutine themselves. This is a time-consuming task, prone
to errors [7], of which limited documentation is available. Additionally, in literature
the methodology of the implementation is oftentimes omitted.

The goal of this master-thesis is to provide a detailed report and implementa-
tion of two combined mathematical material models in a commercial FE platform,
widely used by the computational biomechanics community. This was done by im-
plementing the combined material models in the user subroutine UMAT that can
be used in FEA-software Abaqus. The development of this specific user subroutine
is documented in detail and provided in the supplementary material to enable re-
production. Secondly, it can aid during the implementation of other mathematical
material models in a user subroutine.

The UMAT consists of the Holzapfel and Ogden (HO) constitutive law as passive
component [8], and the time-varying elastance (TVE) model as active component [9],
which are combined by means of the active stress approach. The elasticity tensor
is implemented by means of a numerical formulation. Subsequently to the imple-
mentation, the active and passive components were thoroughly verified by means
of multiple test-cases, which compared the outcomes of the user subroutine to an
analytical solution and a benchmark user subroutine in the form of UANISOHY-
PER_INV. Lastly, reality-check test-cases were carried out, comparing the outcomes
of the model to similar mechanical tests done in literature.

2



1.2 thesis outline 3

1.2 thesis outline
In Chapter 2 background information is given of the physiology and complemen-
tary mechanics of the cardiac tissue. The passive HO and active TVE constitutive
models are described in Chapter 3. The implementation of these constitutive mod-
els in the user subroutine UMAT is described in Chapter 4. The methods of the
verification and reality-check test-cases are described in Chapter 5. The correspond-
ing results are described and discussed in 6. Finally, the general discussion and
conclusions are presented in Chapter 7.



2 A N ATO M Y, P H Y S I O LO GY A N D
M E C H A N I C S O F T H E H E A R T

In the first part of this chapter the anatomy and physiology of the heart are briefly
touched upon on macro- and microscale. In the second part, the coupling between
the anatomical, physiological and mechanical characteristics of the cardiac tissue
are discussed. Knowledge of these characteristics is important for the development
and verification processes of the material model.

2.1 cardiac cycle
The cardiac cycle consists of a single heartbeat and can be divided in the relaxation
phase (diastole) and the contracting phase (systole). Both phases have two stages,
each stage ends with the opening or closing of either the atrioventricular valves
(AV), located between the atria and ventricles, or the semilunar valves (SL), located
downstream of the ventricles (Fig. 2.1).

Figure 2.1: Schematic picture of the heart showing the location of the SL* valves (pulmonary
and aortic valve) and the AV** valves (mitral and tricuspid valve). (Adapted from
website [10])

The diastole begins with the isovolumetric relaxation. During this stage all valves
are closed while the ventricles relax. This causes the ventricular volume to remain
constant while the ventricular pressure declines. Subsequently, as a result of the
atrial pressure exceeding the ventricular pressure the AV valves open, after which
the ventricular filling stage begins. The venal blood pressure and atrial contrac-
tion causes blood from the venous system to stream into the ventricles, while the
ventricles remain in a relaxed state. This ensures an increase in volume while the
ventricular pressures remain the same. At the next stage, the isovolumetric contrac-
tion, the ventricles contract, causing the intraventricular pressure to rise and the AV

valves to close. Because both the AV and SL valves are closed while the contraction
takes place, the intraventricular pressure rises further, until the SL valves open. This
marks the ending of the isovolumetric contraction and the beginning of the ventric-

4



2.1 cardiac cycle 5

ular ejection. Due to the pressure build-up from the isovolumetric ejection stage,
and the ongoing contraction, the blood flows into the pulmonary artery and aorta
causing the ventricular volumes to decrease. An overview of the four stages with
their corresponding pressure-volume relation are visualised in the left ventricular
pressure-volume (PV) loop in Fig. 2.2.

Figure 2.2: Physiological PV loop of the left ventricle (LV). The two stages of the diastole are
depicted, i.e. (F-A) isovolumetric relaxation and (A-C) ventricular filling. Also,
the two stages of systole are depicted i.e., (C-D) isovolumetric contraction and
(D-F) ventricular ejection. B depicts the point with the lowest pressure, E depicts
systolic peak pressure. Obtained from [11].

Frank-Starling Relation

The stroke volume (SV) is dependent on multiple parameters, i.e. venous return
(preload), vascular resistance (afterload) and contractility (inotropy). The Frank-
Starling (FS)-mechanism is the ability of the heart to adjust its contractility as re-
sponse of changes in venous return in a beat-to-beat manner [12]. This can be
visualised by the FS-curve (Fig. 2.3). This shows that the preload influences the
force of the stroke volume. However, there is no single FS-curve, but a family of FS-
curves. The FS-curves can be seen as a measure of the contractile cardiac state. For
example, one has a ’higher’ FS-curve when one is sporting, or a ’lower’ FS-curve if
one has heart failure. Additionally, the effect of an increase of the afterload will on
short term result in less stroke-volume. However, after a short while (1-2 min), the
contractility of the heart will increase, causing the SV to return to its initial value
[12].

The mechanism behind the FS-relation can be explained as follows. Due to in-
creased venous return, the ventricular volume increases as well, resulting in an
increased initial length of the cardiac muscle fibre (especially the sarcomeres) be-
fore the contraction. With increasing sarcomere lenght, the sarcomeres become
more sensitive to [Ca2+], as a result they can contract with more force [12]. The
increased force generation enables the heart to eject the additional venous return,
consequently increasing the stroke volume.
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(a) (b)

Figure 2.3: (a) A family of FS-curves, describing the contractile cardiac function. The blue
line, depicting a physiological, resting state contractile cardiac state, describes
the influence of the pre-load on the contractility of the heart in a beat-to-beat
manner (the latter measured by the stroke volume). Under higher demand, e.g.
sporting, the FS-curve moves up and left on the graph. With certain diseases,
e.g. heart-failure, the FS-curve moves down and right. (Adjusted from [13]).
(b) Direct influence of the venous return on the PV loop, assuming there is no
inotropic or afterload reaction on the increase in venous return. SV = stroke
volume. (Obtained from website [14]).

2.2 cardiac tissue biomechanics
In a material model the behaviour of the material is defined by a constitutive law.
This law describes the relation between stress and strain within the model, usually
as a response on an applied load or displacement. In-vivo this response is defined
by the micro-architecture of the cardiac tissue. In this thesis, the cardiac tissue
is assumed to have nonlinear, hyperelastic, orthotropic, incompressible behaviour.
This section gives a brief overview of the current knowledge of the in-vivo working
mechanisms behind these material characteristics.

2.2.1 Passive Component: The Tissue Micro-Architecture

The mechanics of the cardiac tissue are mainly dependent on its micro-structure.
The heart wall consists of three distinct tissue layers. The external layer called
the epicardium, and the internal layer called the endocardium, consist of mainly
epimysial collagen and elastin. Additionally, the inside of the endocarium is cov-
ered with endothelial cells to form a barrier between the cardiac tissue and the
blood within the heart. The middle layer, called the myocardium, is the muscle
layer and consists volumetricly of 70% of cardiac muscle cells (cardiomyocytes),
forming an important structural component of the cardiac tissue. The other 30%
consists of multiple extracellular components, of which 2-5% is composed of colla-
gen [8]. Cardiomyocytes are attached to each other in series via intercalated disks,
forming muscle fibres. Multiple muscle fibres in parallel form layers (or sheets) of 4

cells thick, with extensive cleavage planes in between sheets. Due to the branching
nature of the cardiomyocytes the cardiac tissue has a local preferred fibre direction,
rather than a strict single fibre direction. The cardiomyocytes are kept together by
means of collagen, which despite its small volume has an important structural func-
tion in the extracellular matrix. It has been classified into three components [15].
The epimysial collagen (or epimysium) surrounds the entire muscle, as it forms the
biggest part of the epi- and endocardium. Secondly, the perimysial collagen (or
perimysium) enables a loose connection between adjacent muscle sheets and span-
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ning cleavage planes. The loose form of connection enables a substantial amount
of sliding between adjacent muscle sheets [16]. Lastly, the endomysial collagen
(or endomysium) surrounds and connects individual cardiomyocytes. A schematic
overview of the muscle and collagen fibres is shown in Fig. 2.4. Other components
of the cardiac tissue are the capillary network, fibroblasts and polyglycosaminogly-
cans [17].

Figure 2.4: Schematic drawing of the collagen network of the cardiac tissue. The epimysial
collagen surrounds the entire muscle, the perimysial collagen enables loose con-
nection in between cleavage planes and between adjacent muscle sheets (in the
figure depicted as the ’muscle bundle’) and cleavage planes and the endomysium
surrounds individual cardiomyocytes. Also arteries are shown. (Obtained from
[18]).

Hyperelastic and Orthotropic Behaviour

The cardiac tissue has shown hyperelastic and orthotropic behaviour [8]. The mech-
anism behind the hyperelastic behaviour can be explained looking at the schematic
figure of muscle and collagen fibres (Fig. 2.5), where the depicted collagen fibres
represent endo- and perimysial collagen. In the case of tension, both muscle and
collagen fibres are under tension. As the cardiac tissue is more under tension, the
collagen fibres undergo stress stiffening, causing nonlinear behaviour. Myocardial
fibres cannot withhold compression and consequently show buckling behaviour.
This causes lateral stretching of the collagen fibres. It is suggested that this mecha-
nism justifies the relatively high compression stiffness which is observed in cardiac
tissue [8].

The mechanism of the orthotropic behaviour of the cardiac tissue is visible in
Fig. 2.5, where three main directions can be distinguished. Definition of the three
orthotropic directions is done in Fig. 2.6 (d) and (e). The first axis coincides with
the main muscle fibre direction ( f0). The second axis (s0) is orthogonal to f0 within
the muscle sheet plane, taking into account the mechanical properties of the peri-
and endomysial collagen. The last axis is taken normal to the f0 − s0 plane (n0).
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Figure 2.5: Schematic description of the muscle fibres, collagen fibres and extracellular ma-
trix. The collagen fibres in this figure represent endo- and perimysial collagen.
(a) Unloaded cardiac tissue. (b) During stretch of the cardiac tissue, muscle fibres
give resistance as well as the collagen fibres. The stress-stiffening is caused by
the recruitment of the collagen fibres, causing the nonlinear behaviour of the car-
diac tissue. (c) Muscle fibres cannot resist compression loading (buckling occurs),
while the collagen fibres are visibly stretched. (Obtained from [8]).

Local Fibre Orientation

The muscle fibres are not in a parallel position relative to the heart wall. Rather, the
orientation of the muscle fibres varies transmurally between +50 and +70 degrees
in the epicardium region, 0 degrees in the mid-wall region and -50 to -70 degrees
in the endocardium region [8] (Fig. 2.6 (b)). This results in varying mechanical
properties in different depths of the cardiac tissue. Thus, the orthogonal material
behaviour applies to the myocardium when used with a local coordinate system.

Compressibility

The first cardiac tissue models assumed incompressibility of the cardiac tissue. This
assumption was made because the components of the cardiac tissue (e.g. collagen
fibre, muscle fibre, ground substance) were mainly consisting of water. Although
the water could move in and out of the tissue, this movement was assumed to
be so slow that its volumetric effects were assumed negligible [19]. In the 1990’s,
experiments on perfused passive myocardium of rats showed that passive cardiac
tissue is compressible [19]. In 2002, in-vivo experiments on ovine hearts showed that
the cardiac tissue shows incompressibility during the diastole and compressibility
during the systole [20]. Additionally, a recent study with similar methods of the
2002 study showed that the volume change varied in different regions of the heart,
as well as the volume-change was transient throughout the cardiac cycle [21] (Fig.
2.7). Additionally, [22] presented that a model with a compressibility-condition
during systole accounted for a reduction in peak-stresses of 50% as compared to
a model with a incompressible-condition. However, because of simplicity reasons,
incompressibility is still assumed in the current model.
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Figure 2.6: (a) Simplified left ventricle. (b) Muscle fibre structure, which varies in differ-
ent layers of the heart ventricle. (c) Muscle fibre direction in circumferential-
longitudinal planes of 5 different depths of the wall thickness. (d) The local
coordinate system is coupled to the cardiac tissue structure, with the muscle fi-
bre axis (f0), the collagen fibre axis (s0) and the normal axis (n0) to these two
fibres. (e) single element model (SEM) of cardiac tissue with local coordinate
system. (Obtained from [8]).

Figure 2.7: In vivo measured volume change of cardiac tissue (J) during the whole heart
cycle in a healthy ovine heart. (Obtained from [21]).

Viscosity

During mechanical experimental tests the cardiac tissue show hysteresis (e.g. [23],
[24]), and therefore the tissue can be described as viscoelastic. The exact mechanism
of viscoelasticity is still under discussion, but it is believed that the viscoelastic be-
haviour can be attributed to a combination of proteins occurring in the cardiac cells
and extracellular matrix [25], [26]. Generally in the cardiac FE modelling commu-
nity the viscosity in cardiac tissue is assumed negligible. However, there exist com-
putational cardiac applications that include viscosity. The most recent viscoelastic
orthotropic model is developed by [27] and repeated by [28]. However, there was
not yet found a good material parameter fit. As it is not considered within the scope
of this master thesis to improve on this model, the viscosity is not included in the
material model discussed in this thesis.
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2.2.2 Active Component: The Cross-Bridge Cycle

Cardiac tissue is part of a living being, meaning that next to the passive behaviour
the tissue can change over time. These active changes can be divided into two mech-
anism types. On the one hand, the reference configuration can change for a short
period of time (few seconds to minutes), e.g. the contraction of a muscle fibre. On
the other hand, the reference configuration can change permanently over a longer
period of time, e.g. regrowth and remodelling of the tissue. In this thesis the active
component is defined as the reversible type of active change over a short period of
time, specifically the contraction of the cardiac tissue.

In section 2.2.1 the microstructure of the cardiac tissue is mentioned to consist
of muscle fibres and collagen fibres, forming sheets of which the cardiac muscle
is composed. The mentioned muscle fibre is contractile, and consists of multiple
cardiac muscle cells connected via intercalated discs. The cardiac muscle cells are
striated, branching, and generally have just one nucleus (Fig. 2.8). Striation in a
muscle cell is the outing of the highly structured thick and thin filaments, which
are the driving force behind the muscle contraction. A sarcomere is the smallest
functional entity of the cardiomyocyte, consisting of a thick and a thin filament.
During a contraction, the thin filaments are forced to slide over the thick filaments
causing a shortening. Because the neurons coordinate the contraction of all the
sarcomeres, they shorten roughly at the same time, causing the contraction of the
whole muscle [11]. A single shortening of the sarcomere is called a cross-bridge
cycle, and is explained in more detail below.

Figure 2.8: Microstructure of the cardiomyocyte, showing the branching nature of the car-
diomyocytes. It also shows the strands of sarcomeres, which arranged in parallel
form the structural basis of the cardiomyocytes. (Adapted from [29]).

The thick and thin filaments of the sarcomere consist of myosin and actin pro-
teins, respectively. During a cross-bridge cycle (Fig. 2.9) the myosin head binds
to the actin filament forming a cross-bridge. Hydrolysis of ATP causes the myosin
head to contract, causing the thin filament to slide past the thick filament. This is
called the power-stroke. Finally, the myosin head detaches from the actin filament.
The whole cross-bridge process is initiated and maintained by the transient increase
of the intracellular [Ca2+] caused by an action potential delivered by the neural net-
work. A decrease in the intracellular [Ca2+] causes relaxation of the sarcomere [11].
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Figure 2.9: Schematic of the sarcomere cross-bridge cycle. Left: marks the relaxed myosin
head. Above: marks the attachment of the myosin to the actin filament. Right: the
ATP that is attached to the myosin head undergoes a hydrolysis reaction, causing
the power stroke of the sarcomere. Below: a new ATP molecule attaches to the
myosin head causing the myosin head to detach of the actin filament. (Adapted
from website [30]).

Opposing actin filaments can have overlap. At the locations of overlap, there is no
place for the myosin heads to bind to the actin filaments. On the other hand, if the
sarcomere is stretched very much, the myosin heads will also have less attachment
points of the actin filament available. Consequently, the optimal sarcomere length
working range at which the sarcomere performs optimally is between 1.8 and 2.3
µm (Fig. 2.10) [31].

Figure 2.10: The optimal sarcomere length working range is between 1.8 and 2.3 µm. The
borders of this optimal working range are located at the points that the amount
of bare zone, or the amount of double overlap cause the myosin heads to have
less area to attach themselves to the actin filaments. (Adapted from [31]).



3 C O N S T I T U T I V E M O D E L L I N G

The hyperelastic, orthotropic, incompressible behaviour of the myocardium as de-
scribed in Chapter 2, is represented by a constitutive law. Mechanically, the ma-
terial properties of the myocardium can be decomposed in a passive component
corresponding to the mechanical properties of the myocardium in relaxation, and
an active component corresponding to the contractile properties of the myocardium.
Following an active stress approach [17], the active stress component is added to
the passive stress component resulting in

σ = σpas + σact. (3.1)

In this thesis the passive constitutive law was defined by the HO model [8]. Fur-
thermore, the active constitutive law was defined by the TVE model [9], [32]. Both
are discussed in more detail in sections 3.1 and 3.2, respectively.

3.1 passive component: holzapfel and ogden model
In the past decades, multiple material models are developed to approximate the
passive mechanical behaviour of cardiac tissue. This paragraph provides a brief
overview of the development of passive cardiac material models. Initially, passive
cardiac material behaviour was modelled in an isotropic manner, e.g. [33]. Subse-
quently, to account for anisotropy of the myocardium, transverse isotropic material
models have been developed e.g. [34], [35], [36], [37]. At a certain point in time, car-
diac tissue was found to have orthotropic properties, mainly due to the work of [38].
Consequently, orthotropic models have been developed. Initially, this was done in
the ‘pole-zero’ model by [39]. Following, orthotropic models based on Fung-type
constitutive equations were developed by [40] and [41]. A currently much-used ma-
terial model for passive cardiac tissue is the invariant-based HO model. This model
considers orthotropic, hyperelastic, incompressible behaviour and includes eight
parameters correlating to the structure of the cardiac tissue. However, viscoelastic-
ity is not taken into account. For a more detailed review of existing passive cardiac
material models, the interested reader is referred to [8] and [17].

In this thesis the HO model was used as passive material model because of the
following reasons. First, the HO model is a phenomenologically informed model
(based on experimental data). Additionally, it includes information of the macro-
scopic morphological structure of the cardiac tissue, e.g. the invariants representing
the extracellular matrix (I1) and the fibre- and collagen-mechanics (I4 f , I4s, I8 f s) [8].
As it does not include microscopic morphological information, it cannot be defined
as a structurally informed model (as defined by [17]). However, it may be consid-
ered being in between a phenomenological and a structural model, as it forms a
balance between the micro-structurally informative but complicated and hard to
work with structural models, and the less micro-structurally informative but easier
to work with phenomenological models. Second, Holzapfel et al. [8] show that
when material parameters are positive, the strain energy function (SEF) is convex.
Also, the model is consistent with inequalities required for strong ellipticity. Con-
vexity and ellipticity are important factors for material model stability. Lastly, the
HO model is orthotropic, as it is introduced on the basis of fibre-directions f0, s0, n0,

12
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which is important to represent the in-plane nonisotropic behaviour perpendicular
to the fibre-direction and the possible mechanical interaction between fibre- and
sheet-direction.

3.1.1 HO Constitutive Law

The constitutive law of HO is defined by the hyperelastic strain energy function (SEF)
Ψ in the paper, of which the first component embodies the volumetric behaviour
and the last three components the isovolumetric behaviour. It is defined by [8] as
follows

Ψ(C) =
κ

2
(J − 1)2︸ ︷︷ ︸

Ψvol

+

a
2b

exp[b(I1 − 3)] + ∑
i= f ,s

ai
2bi

(exp[bi(I4i − 1)2]− 1) +
a f s

2b f s
(exp[b f s(I8 f s)

2]− 1)︸ ︷︷ ︸
Ψisovol

,

(3.2)

where a, a f , as and a f s are stress-like material parameters, b, b f , bs and b f s are
dimensionless material parameters, κ represents the bulk modulus and J the deter-
minant of the deformation gradient (det(C)). The invariants are defined as

I1 = tr(C), I4 f = f0Cf0, I4s = s0Cs0, I8 f s = f0Cs0, (3.3)

where f0 and s0 are the fibres in fibre- and sheet-direction, denoted as

f0 =
[
1 0 0

]T
= fibre direction in reference configuration, (3.4)

s0 =
[
0 1 0

]T
= sheet direction in reference configuration. (3.5)

In the SEF of HO the isotropic invariant I1 is related to the mechanical behaviour
of the non-collagenous and non-muscular interstitial matrix of the cardiac tissue,
including the fluids. The muscular and collagen mechanical behaviours in fibre-
and sheet-directions are represented by invariants I4 f and I4s, respectively. Lastly,
I8 f s represents the interaction between the mechanics in fibre- and sheet-directions
[8]. Similarly, the local orientation used in this thesis was based on the tissue archi-
tecture of the myocardium (Figure 2.6). The first axis coincided with the myofibres
(f0). The second axis (s0) was taken orthogonal to f0 in the direction of the plane
layer, also called sheet, which took into account the mechanical properties of the
endo- and perimysium. The last axis was taken normal to the f0 − s0 plane (n0).

3.1.2 HO Material Parameters

Material parameters used in Holzapfel et al. [8] are based on porcine experimental
triaxial shear data (n = 6) by Dokos et al. [23]. A more recent publication of Sommer
et al. [24] presents data of biaxial tensile and triaxial shear tests on human cardiac
tissue (n = 18). Material parameters based on the latter shear data are determined
by Sack et al. [42]. When comparing behaviour of the two sets of material parame-
ters, Sack et al. [42] found that the material parameters based on the porcine data
results in much stiffer material behaviour, particularly in the fibre direction. Sack
et al. [42] consider the data of human specimens more reliable, because in Sommer
et al. [24] more advanced methods are used to prevent muscle contraction. The ma-
terial parameters of Sack et al. [42] based on cardiac experimental data of human
specimens were used in this thesis.
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Table 3.1: Material parameters derived from human experimental data (n=18) [24] by [42]
and porcine (n=6) experimental data [23].

tissue a (MPa) b (-) a f (MPa) b f (-) as (MPa) bs (-) a f s (MPa) b f s (-)

Porcine 0.000261 10.767 0.019539 13.615 0.003406 5.6523 0.000313 14.068

Human 0.001051 7.542 0.003465 14.472 0.000481 12.548 0.000283 3.088

3.1.3 HO Stress Tensor

The Cauchy stress tensor of the HO model is defined explicitly by [8]. In this article
the Cauchy stress tensor of the HO model, which can be decomposed in a volumetric
σvol and isovolumetric σisovol part, is defined explicitly as

σ = −pI︸︷︷︸
σvol

+ 2ψ1B + 2ψ4 f (f⊗ f) + 2ψ4s(s⊗ s) + ψ8 f s(f⊗ s + s⊗ f)︸ ︷︷ ︸
σisovol

. (3.6)

The definition of the HO Cauchy stress tensor includes ψ1, ψ4 f , ψ4s and ψ8, which
are the first derivatives of the SEF Ψ with relation to the isochoric invariants (explic-
itly written out in Appendix A). The Cauchy stress tensor also includes the penalty
parameter, defined as [43]

p =
∂Ψvol

∂J
= κ(J − 1), (3.7)

where κ denotes the bulk modulus. Additionally, the isovolumetric deformation
gradients in fibre and sheet directions in current configuration are defined as

f = Ff0 = fibre direction in current configuration, (3.8)

s = Fs0 = sheet direction in current configuration. (3.9)
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3.2 active component: time-varying elastance model
The active part of the cardiac tissue behaviour in this thesis was defined by the TVE

model of [9]. This choice was made based on the following considerations. The
TVE model includes the FS-effect, describing the increase of contraction force as a
result of increased blood inflow. Similarly, it takes into account biophysical events
within the cell membrane, i.e. free calcium transient, Ca+2-troponin interaction and
cross-bridge cycling. Also, cell-deactivation is included, of which the importance
for modelling was emphasised by [44]. Additionally, experiments of [9] showed
that the model can accurately predict tension development of isometric and iso-
tonic experiments. Lastly, by optimising the maximal contraction stress and the
active fibre-sheet interaction, patient-specific modelling is possible [32]. Limitations
of the model need to be discussed as well. The force-velocity relationship of the
cardiac cell contraction [9] is absent. Despite the absence of the force-velocity rela-
tionship, [9] stated that the TVE model could accurately model the mechanisms of
the ventricular contraction at end-systole. Also, the model parameters are mainly
based on experiments done on rat cardiac tissue, as no human based experimental
data of active cardiac tissue behaviour is available [9].

3.2.1 TVE Stress Tensor

Following Guccione et al. [9] and Sack et al. [32], the active stress of the material
law is defined by the TVE model. In this model the stress production of an action
potential is dependent on the time, t initial sarcomere length l(EG

f f ) and the peak
intracellular calcium concentration Ca0max (the latter is taken as a constant), resulting
in the following equation of the active Cauchy stress tensor

σa f (t, EG
f f ) =

Tmax

2
Ca2

0

Ca2
0 + ECa2

50(EG
f f )

(1− cos(ω(t, EG
f f ))). (3.10)

The active Cauchy stress tensor includes the length-dependent calcium sensitivity
(ECa50) and step-function ω, which are defined by

ECa50 =
Ca0max√

exp[B(l(EG
f f )− l0)− 1]

, (3.11)

and

ω(t, EG
f f ) =


π t

t0
when 0 ≤ t ≤ t0,

π
t−t0+tr(l(EG

f f ))

tr
when t0 ≤ t ≤ t0 + tr(l(EG

f f )),
0 when t ≥ t0 + tr(l(EG

f f )),

(3.12)

where t0 is the time-to-peak tension and tr is a function dependent on the sar-
comere length (l) defined as follows

tr(l(EG
f f )) = ml(EG

f f ) + b, (3.13)

of which m and b are constants. The sarcomere length (l) is defined as a function
dependent on the initial sarcomere length (lr), given by the Green-Lagrangian strain
tensor in fibre direction EG

f f .

l(EG
f f ) = lr

√
2EG

f f + 1 . (3.14)

The active tension in sheet-direction (σas) is related to the active tension in fibre-
direction (σa f ) by a scaling value ns, as shown in the following equation

σas = nsσa f . (3.15)
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The ns parameter has a value between 0.0 and 1.0 and represents the interaction
with the neighbouring muscle fibres. When implemented in a whole heart model,
this value will affect both the contractility and the degree of twist developed in the
chamber during the contraction of the heart.

3.2.2 TVE Material Parameters

The TVE model describes a quick increase of active tension until peak tension is
reached at time-point t0. After this point a slower decrease back to zero active ten-
sion is defined, representing the relaxation time of the action potential. The used
parameters for the active tension in fibre direction, given by Eq. 3.10 - 3.14 are
shown in Table 3.2. The parameters were obtained by [9] by optimising the TVE

model to agree as closely as possible to active tension development observed in
right ventricular rat trabeculae of which most data were obtained from the group of
Ter Keurs: [45], [46], [47], [48] and [49]. Parameters regarding the isotonic tension-
sarcomere shortening velocity relation were derived from an article of [50], which
showed the results of experiments done on right ventricle trabeculae from rat hearts.
Note that the Tmax value denotes the maximal contractility. This value can be opti-
mised to achieve realistic contractility, as was done in [32]. However, this was not
yet done in this thesis, considering the stage of the development of the material
model.

Table 3.2: Active material parameters as in Guccione et al. [9].

Parameter Value Unit Description

Tmax 0.1357 MPa Isometric tension under max. activation
Ca0 0.004350 mm Peak intracellular calcium concentration
Ca0,max 0.004350 mm Maximum Ca0
B 4750 mm−1 Parameter governing shape of peak isometric tension-

sarcomere length relation
l0 0.00158 mm Sarcomere length at which no active tension develops
lr 0.00191 mm Stress-free sarcomere length
m 1048.9 s/mm Slope of linear relaxation duration - sarcomere length

relation
b −1.429 s Time-intercept of linear relaxation duration - sarcomere

length relation
t0 0.1 s Time-to-peak tension
ns 0.4 (-) Scale, describing relation of stress in sheet direction

relative to the fibre direction



4 M O D E L I N T E G R AT I O N I N A B A Q U S

In the previous chapter, the HO and the TVE material models were outlined. These
material models are not readily available in Abaqus. Therefore, the constitutive
equations were incorporated through the user-defined material subroutine UMAT,
which will be discussed further in this chapter.

A user subroutine allows the user to customise a wide variety of abaqus capa-
bilities, e.g. the user can define a material’s mechanical behaviour. Multiple user
subroutines are available that can be used in combination with Abaqus. As the
stress is the measure we want to compute, either UANISOHYPER_INV or UMAT
would be a suitable choice. In this thesis the subroutine UMAT is chosen above the
use of the simpler UANISOHYPER_INV because the UMAT provides more freedom
to customise the material model, e.g. enabling the addition of the active properties
(TVE model).

The compatibility of the UMAT within the computations of Abaqus is visualised
in Fig. 4.1. Every iteration of the UMAT requires a deformation gradient from
Abaqus, which returns the corresponding stress tensor and stiffness matrix (Fig.
4.2). However, when using a global or local coordinate system, a different defor-
mation is given to the UMAT. Mitigation of this difference is discussed in section
4.1.1. Incorporation of the stress vector and elasticity tensor computation are subse-
quently discussed in section 4.1.2 and 4.1.3. Lastly, in section 4.2, a brief overview
of the tips and tricks for working with UMAT acquired during this thesis will be
given. This will hopefully be beneficial for future scientists as starting point to get
more acquainted with the user subroutine UMAT defined in the computer language
Fortran.

Figure 4.1: Compatibility of UMAT in an Abaqus step.

Figure 4.2: Input and return tensors of UMAT.

17
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4.1 umat requirements

4.1.1 Local Co-Rotational Coordinate System

As explained in section 2.2, the muscle fibre direction within the cardiac tissue
varies transmurally. To incorporate such differences in muscle fibre direction in a
whole heart model, a local coordinate system was used. Such a local coordinate
system was defined by adding the *Orientation keyword to the Abaqus input file.
The form of the deformation gradient passed to a user subroutine depends on the
choice of coordinate system, i.e. local or global and the element type, e.g. shell
or solid. When using a local coordinate system in combination with continuum
elements in Abaqus/Standard the deformation gradient (DFGRD1) passed to the user
subroutine has a ’Abaqus local deformation gradient’ form, or Fal [51].

Fal = RT · FEE · R = Abaqus local form (4.1)

For a detailed step-by-step guide for the handling of this Abaqus local deforma-
tion gradient, the interested reader is referred to the paper of [52]. A short overview
of this paper is given below.

Figure 4.3: (a) The local coordinate system consists of a reference (Ei) and current (ei) or-
thogonal coordinate system. These coordinate systems are dependent on the
corresponding material orientation. (b) The global coordinate system is the same
in all material points, as well as in reference and current configuration. (Obtained
from [52]).

In continuum mechanics, one often refers to three orthogonal coordinate systems
(Fig. 4.3): global (Gi), reference local (Ei) and current local (ei). The global coordi-
nate system has the same orientation in all material points, while the local coordi-
nate system co-rotates with the material point to which it is assigned to, resulting
in a reference and current configuration. Deformation gradients corresponding to
these coordinate systems can be defined as below ([52]).

FEE = R ·U = global form (4.2)

FeE = U = co-rotational local form (4.3)

These deformation gradients can be seen as the classical deformation gradients.
However, when the keyword *Orientation is added to the Abaqus input file, the
deformation gradient passed from Abaqus to the UMAT is in the Fal form (Eq. 4.1).
The constitutive laws of HO and TVE are defined following the classical definition of
the coordinate systems, and therefore the stresses should be derived using the co-
rotational local deformation gradient Eq. 4.3. To do this with the given deformation
gradient in Fal form, the steps below were followed.
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1. Obtain rotation matrix (R) via the polar decomposition of Fal .

2. Compute the deformation gradient in local coordinate system: FeE = Fal · RT .

3. Compute σ(FeE).

4.1.2 Stress Tensor Computation

Section 3.1.1 describes the decomposition of the SEF in a volumetric and isovolumet-
ric part (Eq. 3.2). The isovolumetric part must be incorporated analytically, as the
SEF of HO is not readily available in Abaqus. Considering the (near) incompressibil-
ity assumption, the volumetric part can either be incorporated analytically or it can
be computed by Abaqus. Incorporation of the volumetric and isovolumetric stress
tensors in the user subroutine UMAT will be discussed in the paragraph below.

Analytical Incorporation of the (Iso)Volumetric Stress Tensor

The isovolumetric stress tensor was incorporated by including Eq. 3.6 and Eq.
3.10 in the Fortran script (provided in the supplementary material in Appendix
A: "CARD-MAT /_for /sigma..."). The incompressibility assumption is embodied by
the volumetric component of the stress tensor. Analytically (near) incompressibility
can be enforced by assigning a value for the bulk modulus (κ in Eq. 3.2) with a
value much higher than the shear modulus. In the Abaqus documentation the bulk
modulus is advised to be taken 1E4 - 1E6 times as high as the shear modulus [53].
In the article of Prot et al. [54] a bulk modulus of κ = 1E5 MPa was suggested.
However, a relative high bulk modulus is not beneficial for the numerical stability,
often causing difficulties with the solution of the discretized equilibrium equations
[55]. For this reason, in this thesis the isovolumetric part of the stress tensor and
consequently the elasticity tensor were computed numerically by Abaqus.

Numerical Incorporation of the Volumetric Stress Tensor

For the incorporation of incompressible or nearly incompressible materials, Abaqus
provides hybrid elements [53]. When a hybrid element is used in combination with
user subroutine UMAT, Abaqus is programmed to compute the volumetric part of
the stress tensor, and correspondingly adjust the elasticity tensor. There are three
user material formulations defined that can be used in correspondance to hybrid
elements. The default is the incremental formulation. This is suitable for material
models that use an incremental Lagrange multiplier-based formulation of the SEF.
In addition, the incompressible and total user subroutine formulations are available.
The incompressible formulation is suitable for fully incompressible materials, and
requires definition of only the isovolumetric component of the stress and elastic-
ity tensor. The total formulation is suitable for nearly incompressible hyperelastic
materials and for this the isovolumetric and volumetric response of the material
needs to be defined separately and the volumetric response has to be derived from
a SEF. Because the HO model is not a Lagrange multiplier-based formulation, and
incompressibility was assumed (as specified in section 2.2), the incompressible user
subroutine formulation was used.

To incorporate the incompressible user subroutine formulation, the Abaqus input
file contained "HYBRID FORMULATION=TOTAL" behind the ∗Material keyword (.inp
files are available in the supplementary material in Appendix A: "CARD-MAT/_inp/...").
Input files including this code were run directly by appointing the .inp file in the job,
as the incompressible user subroutine formulation is not available in Abaqus/CAE.
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4.1.3 Isovolumetric Elasticity Tensor

The elasticity tensor also needed to be defined in the user subroutine UMAT. It
can be computed by either the analytical method, or numerically via the approx-
imation method. Advantages of the approximation as compared to the analytical
method, are the ease of incorporation and the lower risk of numerical instability.
Theoretical advantages of the analytical method are the higher accuracy, and the
lower computational cost. However, Liu et al. [56] found that computational cost
of the approximation method can be higher or lower as compared to the analytical
method, depending on the scale of the simulation and complexity of the SEF. Ad-
ditionally, Liu et al. [56] found that the accuracy of both methods was comparable.
In this thesis the elasticity tensor was computed by means of the approximation
method. For completeness, both methods are described below.

Analytical Formulation

To implement the HO model analytically in the UMAT, the elasticity tensor was
explicitly derived. The derivation of the elasticity tensor was mainly based on the
work of [43]. The elasticity tensor is a fourth order tensor, which was defined by
[43] as the second derivative of the SEF w.r.t. the right Cauchy-Green deformation
tensor (C), written as below

C = 4
δ2ψ(C)

(δC)2 = 2
δS(C)

δC
. (4.4)

The first step of deriving the elasticity tensor analytically was the derivation of the
second Piola-Kirchhoff stress tensor. This was defined by [43] as the first derivative
of the SEF Ψ w.r.t. the right Cauchy-Green deformation tensor (C), and could be
written as follows

S = 2
∂Ψ(C)

∂C
. (4.5)

Although with help of equations of [43] it is possible to derive this equation ex-
plicitly, there was found a more straight forward way. As the Cauchy stress derived
from the HO SEF was known (Eq. 3.6), one could come by the second Piola-Kirchhoff
stress by doing a pull-back operation (χ−1

∗ [•] = F−1[•]F−T) on the Cauchy stress
and multiplying with the jacobian of the deformation gradient, which resulted in
the following equation

S = JF−1σF−T , (4.6)

which could be decomposed in a volumetric and isovolumetric part as follows

S = Svol + Sisovol

= J(F−1σvolF
−T + F−1σisovolF

−T).
(4.7)

The elasticity tensor can be defined relating to the reference and current configu-
ration. The reference configuration was obtained from Eq. 4.4, which was explicitly
derived by [43] as

C = J( p̃C−1 ⊗ C−1 − 2pC−1 � C−1)︸ ︷︷ ︸
Cvol

+

P : C : PT +
2
3

J−2/3(Tr(S)P̃− (C−1 ⊗ Sisovol + Sisovol ⊗ C−1
))︸ ︷︷ ︸

Cisovol

.
(4.8)
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In Eq. 4.8 the fictitious reference form of the elasticity tensor C was defined by
[43] as

C =4
∂2Ψiso

(∂C)2
, (4.9)

the fictitious second Piola-Kirchhoff tensor was defined by [43] as

S = 2
∂Ψisovol(C)

∂C
, (4.10)

and ψ
′′
i are the second derivatives of the SEF w.r.t. invariants Ii (with i = 1, 4 f , 4s, 8),

which were explicitly written out in Appendix A. Also included in the elasticity ten-
sor was scalar function p̃ [43], defined as

p̃ = p + Jdp/dJ = κ(2J − 1), (4.11)

a modified projection tensor P̃ of fourth-order defined by [43] as

P̃ = C−1 � C−1 − 1
3

C−1 ⊗ C−1, (4.12)

and a fourth order projection tensor w.r.t. reference configuration [43], defined as

P = I− 1
3

C−1 ⊗ C, (4.13)

containing the fourth order unit tensor I, which was written by [43] as

I = δikδjlei ⊗ ej ⊗ ek ⊗ el = I⊗I = I� I. (4.14)

Lastly, the tensor products (:, ⊗, ⊗, ⊗ and �) were defined in Appendix A. There-
after, the reference and current configurations of the elasticity tensor were related
via multiplication with the inverse jacobian (J−1) and a push-forward operation.
Following [57], the current configuration of the elasticity tensor was found as fol-
lows

c = J−1χ∗(C) = J−1(F⊗F) : C : (FT⊗FT). (4.15)

To prevent the *Orientation command to affect the outcomes, the elasticity ten-
sor needed to be defined via the Jaumann rate [58]. According to [54] and [59] the
Jaumann rate was defined as follows

c̃
τ = c

τ + C̃
τ , (4.16)

where c̃τ was the spatial form of the elasticity tensor, dependent on the Kirchhoff
stress τ, and C̃τ = 1

2 (δikτjl + δjlτik + δilτjk + δjkτil). Note that the stress tensor of
Abaqus was defined with the Cauchy stress. Consequently, by using the equation
τ = J · σ, one could rewrite the Jaumann stress rate to be dependent on the Cauchy
stress [54]

c̃
σ = J−1

c̃
τ ,

= c+
1
2
(δikσjl + δjlσik + δilσjk + δjkσil),

(4.17)

which could be used in the user subroutine. The elasticity tensor was defined
as a fourth order tensor. Because the matrix contains major and minor symmetries,
the fourth order tensor could be written in Voigt notation. The resulting 6x6 matrix
below was returned as the DDSDDE [60].

c̃σ
1111 c̃σ

1122 c̃σ
1133 c̃σ

1112 c̃σ
1113 c̃σ

1123
c̃σ

2211 c̃σ
2222 c̃σ

2233 c̃σ
2212 c̃σ

2213 c̃σ
2223

c̃σ
3311 c̃σ

3322 c̃σ
3333 c̃σ

3312 c̃σ
3313 c̃σ

3323
c̃σ

1211 c̃σ
1222 c̃σ

1233 c̃σ
1212 c̃σ

1213 c̃σ
1223

c̃σ
1311 c̃σ

1322 c̃σ
1333 c̃σ

1312 c̃σ
1313 c̃σ

1323
c̃σ

2311 c̃σ
2322 c̃σ

2333 c̃σ
2312 c̃σ

2313 c̃σ
2323

 (4.18)
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Note that because in this thesis hybrid elements were used in combination with
the incompressible user subroutine formulation, only the anisotropic part of the
stress and elasticity tensor needed to be computed for the implementation in the
user subroutine UMAT.

Numerical Formulation

Another way of computing the elasticity tensor, as opposed to the analytical method
explained above, is to approximate it numerically via the approximation method.
This method is found to simplify the incorporation of complex constitutive models
with comparable accuracy and computational efficiency, as compared to a closed
form analytical solution [56]. The approximation method uses small perturbations
in all directions of the deformation gradient, to compute the resulting change in
stress with which the elasticity tensor can be approximated. For a more in detail
explanation the reader is referred to the article of [7]. The approximation method
was also used in [59], [61].

While obtaining the perturbed deformation gradient, perturbations in six inde-
pendent directions were done. To this end, the (11), (22), (33), (12), (13) and (23)
directions were used, which resulted in the following definition of the perturbed
deformation gradient [61]

F̂(ij) = F + ∆F(ij), (4.19)

where ∆F(ij) = θ
2 (ei ⊗ ejF + ej ⊗ eiF). The numerically derived elasticity tensor

was then defined by [61] as

cijkl =
I
Jθ
[J(ij)p σ(F̂(ij))− Jσ(F)]kl , (4.20)

where θ is the perturbation parameter, with a small value of 2 · 10−8, J = det(F),
J(ij)p = det(F̂(ij)) and σ is the full Cauchy stress.

The incorporation of the numerical calculation of the elasticity tensor by means
of the approximation method in the user subroutine UMAT can be found in the
supplementary material in Appendix A: "CARD-MAT/_for/C_...".

4.2 debugging
UMAT is predominantly written with Fortran language. While working with the
earliest fixed form of this language, minor mistakes (missing a space, having a ’tab’
in stead of 6 spaces, etc.) can cause abortion of the job in Abaqus, while by modern
standards it is not straightforward to debug. During this thesis three methods to
debug the UMAT code were found to be useful. As a reference a short overview of
these methods is given below. Another option is to use the free form of Fortran as
opposed to the fixed form. The free form rules are less strict, making the process
of coding less mistake-prone. However, it cannot be used in combination with the
older fixed format of Fortran. To enable abaqus to read free source form Fortran, the
code must start with the following text: !dec$ freeform. For additional tips and
tricks for writing a user subroutine compatible with Abaqus, the interested reader
is referred to [62].
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State Variables, "STATEV"

UMAT has an array with solution-dependent state variables. These state variables
are defined by the user by including the statev(#) command to the fortran script
(where # can be any number). The state variables are computed every increment.
When the number of solution-dependent state variables in the material definition
matches the number of indices of the statev-array, all values of the state variables
can be called by SDV (solution dependent state variables) in the field output of
Abaqus.

".log" File

With certain mistakes in your UMAT, Abaqus will give an error. The location and
nature of the error will appear in the ".log" file of your model. Additionally, with
the write(*,*) command, UMAT returns the variable that is written behind this
command to the .log file of your model at each iteration.

f2py

Lastly, the fortran file can be debugged via the ’Fortran to Python interface genera-
tor’ abbreviated to f2py, which is a part of the Numpy package. With this utility, For-
tran subroutines can be converted to python modules via e.g. the Anaconda prompt
(command interface). These modules subsequently can be called in a python envi-
ronment e.g. Spyder. Although the UMAT needs some small modifications to be
used by f2py, the debugging with this utility is more sensitive then via the .log
file provided by Abaqus, as it reacts to all the mistakes made in the Fortran file.
Therefore, this was found to be the most effective way of debugging.



5 V E R I F I C AT I O N M E T H O D S

Verification of a material model assesses whether the theoretical constitutive law as
discussed in Chapter 3 is accurately implemented. To verify the passive and active
material model, the theory indicates to compare relevant outcomes computed by the
model to either an analytical solution or a valid and verified benchmark solution.
Accordingly, the verification of the passive material model consisted of comparing
the stress and strain outcomes of defined test-cases to a benchmark solution com-
prising of the in-house developed UANISOHYPER_INV of the HO material model
[63], as well as to the analytical solution. Stress results of the test-cases including
both passive and active material properties were compared to an analytical solu-
tion.
To put the verification in practice, a verification single element model (SEM) (dis-
cussed in Section 5.1) underwent loads and boundary conditions of multiple test-
cases (discussed in Section 5.2).

Additionally, during the development of a (FE) model it is customary to do a vali-
dation assessment. The validation of a (material) model functions as a reality-check,
assessing whether the behaviour of the model is within the range occurring in-vivo.
Ideally, such a validation would consist of a whole heart model, including the ma-
terial model, and the comparison measures would consist of functional measures
used in clinic, e.g. ejection fraction, end diastolic volume, stroke volume etc. As the
scope of this thesis includes a SEM only, such validation was not possible. However,
alternative reality-check cases were carried out by comparing computed results of
the material model to results from mechanical tests done on cardiac tissue. Methods
for the corresponding cases are discussed in Section 5.3.

5.1 model details
The verification SEM that was used for all verification cases consisted of a simple
cube with a length measure of 1x1x1 mm. Assigned node sets and surface defini-
tions are depicted in Fig. 5.1. The verification model consisted of a 8-node linear
hybrid brick single element (C3D8H). A local material orientation was assigned via
the *Orientation keyword in the Abaqus .inp file. The local reference orientation
was the same as the global orientation system. Either passive only or both passive
and active material models were assigned to the model.

5.2 verification test-cases
Two kinds of test-cases were used to verify the passive and active components of
the material model. Firstly, it was important to evoke the intended range of realistic
operating conditions during the verification. For the passive component this was
done with shear and equibiaxial test-cases, which were expected to show all char-
acteristics of the material. The expected passive material characteristics were hyper-
elasticity, orthotropic behaviour during extension, isotropic behaviour under com-
pression and incompressibility. For the active component an isometric contraction
was carried out, where the FS-mechanism was expected to be seen. Computed out-
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Surface Corresponding
definition nodes

S1 1, 2, 3, 4

S2 5, 6, 7, 8

S3 1, 2, 5, 6

S4 2, 3, 6, 7

S5 3, 4, 7, 8

S6 1, 4, 5, 8

Figure 5.1: Node and surface sets of the single element model used in all verification cases.

comes were compared to both a benchmark model (UANISOHYPER_INV, [63]) and
the analytical solution. The difference between the UMAT versus the UANISOHY-
PER_INV and analytical solution were computed and assessed following require-
ments which are defined in Section 5.4.
Secondly, as mentioned in Chapter 4, implementation of a co-rotational coordinate
system was challanging because in this case Abaqus passes a the abaqus local defor-
mation gradient, instead of the classical co-rotational local form of the deformation
gradient. To ensure correct implementation of the deformation gradient, a test-case
consisting of a deformation in combination with a rigid body rotation [52] was car-
ried out. Outcomes of the test-case done with a global coordinate system were
compared to outcomes of the same test-case in local coordinate system. The stress-
and strain-outcomes were expected to remain constant during rigid body rotation
in the case where the local coordinate system was implemented. On the other hand,
for the global case, the stress- and strain outcomes were expected to change during
rigid body rotation. When both expectations were met, the deformation gradient
was assumed to be well implemented in the UMAT. All test-cases are explained in
detail in the following paragraphs.

5.2.1 Comparison of UMAT to Analytical and UANI Solutions

For the comparison of UMAT to the analytical solution and benchmark material
model, a equibiaxial extension, equibiaxial compression, shear and isometric-contraction
test-cases were carried out. The UMAT and benchmark UANI computation were
done in Abaqus [6]. The analytical solutions were computed in Matlab [64]. The
equibiaxial and shear test-cases were based on the paper of [8], which proposes an
analytical solution for stresses and strains of the biaxial and simple-shear test-cases.
These test-cases were done with only the passive component of the material model.
The isometric-contraction test-case was based on [65], and included both passive
and active material model components. In this section the computation of analyti-
cal solutions and the boundary conditions of mentioned test-cases are discussed.

Equibiaxial Extension and Compression Test-Cases

The equibiaxial extension test-case consisted of an extension deformation ue = 1.1 of
one plane, one plane with zero-displacement in its plane-normal direction and one
plane that could move freely. For the equibiaxial compression test-case, two planes
were assigned compression deformation uc = 0.9, and one plane could move freely.
The deformation gradient of the equibiaxial extension and compression test-cases
had the form of Eq. 5.1, where corresponding λ f , λs and λn values are defined in
Table 5.2.
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F =

λ f 0 0
0 λs 0
0 0 λn

 (5.1)

Table 5.2: Boundary conditions of the equibiaxial extension and compression test-cases.

λ f λs λn

Extension C1 FMe ue ue
Extension C2 ue FMe ue
Extension C3 ue ue FMe

Compression C1 FMc uc uc
Compression C2 uc FMc uc
Compression C3 uc uc FMc

ue = 1.1 and uc = 0.9. FM is a plane with
free movement.

Considering the incompressible assumption (λ f · λs · λn = 1), the extension ratio
of the free movement planes could be computed analytically by use of the following
relation

FMi =
1

(ui)2 , where i = e, c. (5.2)

As for the computation of the stresses in the three orthogonal directions, the
following equations applied [8]

σ f = 2ψ1(λ f )
2 + 2ψ4 f (λ f )

2 − p, (5.3)

σs = 2ψ1(λs)
2 + 2ψ4s(λs)

2 − p, (5.4)

σn = 2ψ1(λn)
2 − p, (5.5)

where the Lagrange multiplier p accounts for the incompressibility of the mate-
rial. Considering the equibiaxial boundary conditions, there was one plane with
free movement (i.e. no reaction force), therefore containing a stress value of zero.
Because one of the three stress-values was taken as zero, there could be solved for
p, shown by the following example where σn = 0

σn = 2ψ1(λn)
2 − p = 0, (5.6)

−p = −2ψ1(λn)
2. (5.7)

After substitution of p in the other equations, stresses in fibre and sheet direction
were calculated by the following equations

σ f = 2ψ1 · ((λ f )
2 − (λn)

2) + 2ψ4 f (λ f )
2, (5.8)

σs = 2ψ1 · ((λs)
2 − (λn)

2) + 2ψ4s(λs)
2. (5.9)

Similarly, the same procedure was done for σ f = 0, which resulted in the follow-
ing equations for the stresses in sheet- and normal-direction

σs = 2ψ1((λs)
2 − (λ f )

2) + 2ψ4s(λs)
2 − 2ψ4 f (λ f )

2, (5.10)

σn = 2ψ1((λn)
2 − (λ f )

2)− 2ψ4 f (λ f )
2. (5.11)

Lastly, it was done for σs = 0, resulting in the following equations

σ f = 2ψ1((λ f )
2 − (λs)

2) + 2ψ4 f (λ f )
2 − 2ψ4s(λs)

2, (5.12)

σn = 2ψ1((λn)
2 − (λs)

2)− 2ψ4s(λs)
2. (5.13)
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The equibiaxial extension and contraction cases were implemented in the SEM

described above using the passive UMAT and the UANISOHYPER_INV in a local
coordinate system. During all equibiaxial test-cases, three planes were assigned a
zero-displacement in their plane-normal direction (Fig. 5.2). On the residual three
planes, equibiaxial displacements following the deformation gradient Eq. 5.1 and
Table 5.2 were applied. The planes indicated by FM had free movement (i.e. no
deformation applied) in the Abaqus input file.

Figure 5.2: Basis boundary conditions of the equibiaxial test-cases showing the three planes
which were assigned a zero-displacement boundary in their plane-normal direc-
tion.

Shear test-cases

For the shear test-cases, six simple-shear cases were considered with a shear of
γ = 0.5. The deformation gradients of the shear in fs plane in f0 and s0 direction
were taken as follows.

[
F
]
=

1 γ 0
0 1 0
0 0 1

 and
[
F
]
=

1 0 0
γ 1 0
0 0 1

 . (5.14)

For shear in sn plane, in s0 and n0 direction deformation gradients were taken as
below.

[
F
]
=

1 0 0
0 1 γ
0 0 1

 and
[
F
]
=

1 0 0
0 1 0
0 γ 1

 . (5.15)

Similarly, for shear in fn plane, in f0 and n0 direction

[
F
]
=

1 0 γ
0 1 0
0 0 1

 and
[
F
]
=

1 0 0
0 1 0
γ 0 1

 . (5.16)

When applying these deformation gradients to Eq. 3.6, the analytical shear stress
equations could be obtained. These can be written as follows

σ f s = 2γ(ψ1 + ψ4 f ) + ψ8 f s, (5.17)

σ f n = 2γ(ψ1 + ψ4 f ), (5.18)

σs f = 2γ(ψ1 + ψ4s) + ψ8 f s, (5.19)

σsn = 2γ(ψ1 + ψ4s), (5.20)

σn f = σns = 2γψ1. (5.21)
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The boundary conditions corresponding to the shear deformation gradients for
the use in the Abaqus input file are shown in Table 5.3. These were applied on the
SEM described at the beginning of this section.

Table 5.3: Boundary conditions of the shear test-cases.

Fix Deformation Figure

SF S6 in X and Y
S4 in Y
S5 in Z

S4 in X

FS S1 in X and Y
S2 in X
S5 in Z

S2 in Y

SN S6 in Y and Z
S4 in Y
S2 in X

S4 in Z

NS S3 in Y and Z
S2 in X
S5 in Z

S5 in Y

FN S1 in X and Z
S2 in X
S6 in Y

S2 in Z

NF S3 in X and Z
S5 in Z
S6 in Y

S5 in X

A shear of γ = 0.5 was implemented
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Isometric-Contraction Test-Case

During the isometric-contraction test-case, the SEM was assigned a displacement
corresponding to an extension ratio in fibre- and sheet-direction during a single
contraction. Extensions of 0 to 40 % with increments of 10% were tested. The
remaining planes were assigned zero displacement in their plane-normal direction.
The active component of the stress in fibre and sheet direction were compared to
the analytical solution.

5.2.2 Rotation Test-Cases

The rotation test-case consisted of four steps, where two steps contained solely
passive behaviour, and two steps contained additional active behaviour (Table 5.4).
The rotation test-case was carried out in a local coordinate system and a global
coordinate system. For the global case the polar decomposition in the UMAT
was removed resulting in a UMAT compatible to a global coordinate system. The
global UMAT can be found in the supplementary material in Appendix A: "CARD-
MAT/_for/UMAT_HO_TVE _GLOBAL.for". During the first two steps, the boundary
conditions of the rotation test-case were based on deformation gradient F1

F1 =

1.10 0.00 0.00
0.00 1.20 0.00
0.00 0.00 0.75758

 . (5.22)

For the last two steps, the SEM underwent a rigid body rotation based on rotation
matrix R, which resulted in deformation gradient F2

R =

cos(90) −sin(90) 0
sin(90) cos(90) 0

0 0 1

 , (5.23)

F2 = R · F1 . (5.24)

All uneven steps were transition steps, consisting of 1 increment, while all even
steps contained a contraction and consisted of 100 increments. To implement ma-
trices F1 and F2, the coordinates of all nodes were defined. This was incompatible
with the hybrid element and incompressibility user subroutine formulation that
was used in the designed material model, as it creates an over-constraint. Therefore,
for this test-case only, a C3D8 element was used without incompressibility defini-
tion. This decision is considered reasonable, as this test-case does not verify the
incompressibility of the material model.

Table 5.4: An overview of the steps of the rotation test-cases.

Step 1 Step 2 Step 3 Step 4

Boundary conditions F0 → F1 F1* F1 → F2 F2*
* In this step a contraction takes place.

F0 depicting the undeformed state of the SEM.
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5.3 reality-check test-cases
A reality-check would ideally compare the computed data to in-vivo measured data.
However, for passive and active myocardial mechanical behaviour, this data is not
available in the literature to my best knowledge. Comparing the computed data to
in-vitro experiments is a good alternative, and is discussed further in section 5.3.1.
The used models and test-cases were designed to be similar to the experiments done
to obtain the experimental data, which are discussed in section 5.3.1.

5.3.1 Experimental Datasets

Related work on the subject of mechanical tests done on myocardium has a rela-
tively short history. Early data consists of uniaxial testing on papillary muscles,
e.g. [66], [67]. When evidence was found that the myocardium was anisotropic, the
more complex biaxial and shear tests on ventricular myocardium specimens were
carried out. Earlier contributions were biaxial tests, documented by Demer et al.
[68] and Yin et al. [69] which use similar experimental testing apparatus. However,
the specimen preparation did not ensure total deactivation of myocardium contrac-
tion. Novak et al. [70] used the same experimental setup but contrary to Demer et
al. [68] and Yin et al. [69] used an oxygenated cardioplegic solution to ensure total
passive behaviour of the samples. Smaill et al. [71] came up with a new apparatus
claiming that the specimens could be mounted more quickly, and relatively small
samples could be tested. Additionally, they perfused the specimen in a cardioplegic
solution to ensure passivity of the myocardium. Dokos et al. [23] were the first who
did shear tests on cubic pig heart samples. Most recent data comes from Sommer
et al. [24], who were the first to do mechanical tests – biaxial and shear – on human
cardiac specimens.

From available experimental data, results of biaxial tensile tests of Sommer et al.
[24] and triaxial shear tests of Dokos et al. [23] shall be included as reference for
the passive cases. Note that the shear data of Sommer et al. [24] is used to optimize
the material parameters of the Holzapfel Ogden material model. Finally, for the
assessment of the active material model, results of the isotonic contraction tests of
Holubarsch et al. [72] were used.

Reality-Check Model Details

All Abaqus models used for the reality-check cases were similar to the verification
SEM. The only differences were the dimensions, which are shown in Table 5.5.

Reality-Check Test-Cases

As mentioned in the section 5.3.1, test-cases were based on mechanical experiments
done on cardiac tissue. The first set of reality-check test-cases consisted of ‘true’
planar biaxial test-cases. These test-cases were done by assigning planar biaxial
stretches with different extension ratios (F:S = 1:0.5, 0.5:1). The test-cases assessed
the occurrence of direction-dependent nonlinear material response. The second set
of reality-check test-cases consisted of the shear test-cases. These involved six types
of shear displacements (SF, NF, FS, NS, FN and SN), where a maximal shear dis-
placement of 50% was assigned to a cube SEM with a length measure of 3 x 3 x 3

mm.

Experimental isotonic contraction test-cases of Holubarsch et al. [72] were done
on 8 healthy human heart specimens (left ventricle), and 48 specimens of explanted
hearts (end stage chronic heart-failure). For the SEM in this test-case, a length mea-
sure of 4.9x0.24x0.24 mm was used. In the first step an extension was carried out



5.4 verification requirements 31

by putting negative pressure of 0.0068 MPa in f-dir, and 0.00068 MPa in s- and n-
dir. The extension step was followed by a step containing a contraction. The Tmax
was optimised to have a similar peak as was presented in the experimental data of
Holubarsch et al. [72].

Table 5.5: Methods of the different validation test-cases done on a SEM.
Mat. model Modelling features Validation

A/P Geometry Max. extension [%] Ref. Species and
or max. load [MPa] sample size

Biaxial tensile P 5 x 5 x 2.3 mm 20 % [24] human (n = 26)
Triaxial shear P 3 x 3 x 3 mm 50 % [23] porcine (n = 6)
Isotonic contraction P+A 4.92 x 0.24 x 0.24 mm 0.0068 MPa [72] human (n = 48)

+ contraction*

P = passive, A = Active. *Contraction with Tmax = 0.0096 MPa.

5.4 verification requirements
For all verification test-cases a maximum error of 1% of the relevant output param-
eter was adhered to as requirement. Additionally, the reality-check test-cases were
compared in a qualitative manner i.e. looking at occurring phenomenon and value
trends.

A measure derived from the mean absolute percentage error (MAPE) was used
for the error calculation. MAPE is a much used measure of prediction. However, a
down-side of this measure occurs when the actual value gets zero or close to zero.
In this situation the error becomes unrealistically high, or even infinite. To mitigate
this problem, the error was normalised w.r.t. the maximal actual value instead of
normalising over the actual value at the corresponding time-point. This results in
the MAPEmax, which was used in this thesis for error calculation. MAPE and MAPEmax
were defined as follows

MAPE =
100
N · I

N

∑
n=1

I

∑
i=1

∣∣∣∣An,i − Fn,i

An,i

∣∣∣∣ , (5.25)

MAPEmax =
100
N · I

N

∑
n=1

I

∑
i=1

∣∣∣∣ Fn,i − An,i

Amax

∣∣∣∣ , (5.26)

where F is the forecast value, A is the actual value, N is the number of nodes and
I is the number of increments. In some cases it was considered interesting to present
the error as a function of e.g. the time. In these cases, the absolute percentage error
normalised w.r.t. the maximal actual value (APEmax) value was used, defined as

APEmax =
100
N

N

∑
n=1

∣∣∣∣ Fn − An

Amax

∣∣∣∣ . (5.27)



6 V E R I F I C AT I O N R E S U LT S A N D
D I S C U S S I O N

6.1 comparison of umat to analytical and uani
solutions

6.1.1 Equibiaxial Test-Cases

Fig. 6.1 and 6.2 show graphs of the analytical solution and the Cauchy stress values
computed by UMAT and UANI as a function of the nominal strains (EN

ii =
√

Cii− 1,
where ii = 11, 22, 33). From the graphs showing an orientation where an extension
was applied (Fig. 6.1 b, c, d, f, g, h), it is visible that the same strain value in all three
orthotropic directions results in different peak-stresses. This observation shows that
the material behaved in an orthotropic manner when it was extended. On the other
hand, when looking at the individual equibiaxial compression test-cases, the graphs
that show compression of the SEM (Fig. 6.2 b, c, d, f, g, h) show similar peak-stress
results for the same strain-value. This is evidence of the isotropic behaviour in
compression. Also, hyperelasticity is clearly visible in the graphs showing extension
and compression.

Some differences between the UMAT results and the analytical solutions were
visible, predominantly in the orientations where free movement was allowed. How-
ever, relative to the maximal stress and strain value of that case, these difference
were considerably small. The mentioned differences are quantified in Table 6.1 and
Table 6.2. For the equibiaxial extension and compression tests the UMAT complied
with the set verification requirement, as the tables show no values bigger than 1%.

Table 6.1: Quantification of the error (MAPEmax[%]) of UMAT relative to either the analytical
solution or the UANI results of equibiaxial extension test-cases.

Extension C1 Extension C2 Extension C3

vs. analytical MM(σ) MM(E) MM(σ) MM(E) MM(σ) MM(E)
F-dir 3.916E-05 1.115E-07 1.742E-04 1.923E-05 1.329E-05 1.923E-05

S-dir 4.030E-05 1.923E-05 1.742E-04 1.115E-07 1.389E-05 1.923E-05

N-dir 3.972E-05 1.923E-05 1.743E-04 1.923E-05 1.396E-05 1.115E-07

vs. UANI
F-dir 1.738E-05 9.148E-06 1.798E-05 1.896E-05 1.767E-05 1.896E-05

S-dir 1.711E-04 1.896E-05 1.717E-04 9.327E-06 1.715E-04 1.896E-05

N-dir 1.050E-05 1.896E-05 9.336E-06 1.896E-05 9.255E-06 9.327E-06

MAPEmax stress and strain error values are abbreviated to MM(σ) and MM(E).

32
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Table 6.2: Quantification of the error (MAPEmax[%]) of UMAT relative to either the analytical
solution or the UANI results of equibiaxial compression test-cases.

Compression C1 Compression C2 Compression C3

vs. analytical MM(σ) MM(E) MM(σ) MM(E) MM(σ) MM(E)
F-dir 1.405E-04 1.006E-05 1.653E-04 6.825E-06 1.834E-04 6.825E-06

S-dir 1.409E-04 6.825E-06 1.688E-04 1.006E-05 1.835E-04 6.825E-06

N-dir 1.409E-04 6.825E-06 1.653E-04 6.825E-06 1.836E-04 1.006E-05

vs. UANI
F-dir 2.790E-04 9.888E-06 2.792E-04 6.923E-06 2.792E-04 6.920E-06

S-dir 2.756E-04 6.920E-06 2.788E-04 9.888E-06 2.756E-04 6.920E-06

N-dir 2.756E-04 6.920E-06 2.788E-04 9.888E-06 2.756E-04 6.920E-06

MAPEmax stress and strain error values are abbreviated to MM(σ) and MM(E).

6.1.2 Shear Test-Cases

Fig. 6.3 shows graphs of the analytical solution and the Cauchy shear stress values
computed by UMAT and UANI as a function of the shear strain. Firstly, orthotropic
material behaviour could be established by considering the peak-shear-stress values,
which all showed different values. Note that the peak-shear-stresses all occurred at
the same strains. Strain-stiffening was visible, which is an indication of hyperelas-
ticity.

Fig. 6.4 shows the difference in shear stress results computed by the UMAT
compared to results computed by the UANI and the analytical solution. This is
quantified by the absolute percentage error (APE)max value, which was shown as
a function of the shear strain. The APEmax values compared to the UANI results
showed much similarity, with a maximal APEmax of 1.16E-5 % (Table 6.3). However,
the APEmax compared to the analytical solution showed more discrepancies with a
maximal APEmax error of 16.97% in the FN direction. Only the NF and NS cases com-
plied with the set verification requirement of 1%, all other cases displayed higher
error values (Table 6.3).

The higher errors occurring when comparing the UMAT results with the analyt-
ical solution could have multiple causes. The first (most obvious) reason could be
the incorrect application of the HO model in the UMAT. However, this was deemed
unlikely as the UANI and UMAT showed very similar results as shown by the low
APEmax error values. Secondly, and more likely, the discrepancy could be caused
by one of multiple numerical formulations used, i.e. the Newton-Rhapson method,
used by Abaqus, or the numerical method used for computing the elasticity tensor.

Table 6.3: Maximal APEmax[%] values of Fig. 6.4, comparing computed UMAT values with
the analytical or UANI computed solution.

max. APEmax[%] SF FS SN FN NF, NS
UMAT vs. Analytical 2.278 15.52 3.368 16.97 0.2557

UMAT vs. UANI 9.61E-06 6.94E-06 1.16E-05 3.07E-06 8.71E-06
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6.1.3 Isometric Contraction Test-Cases

In Fig. 6.5 the active part of the stresses of the isometric contraction test-cases with
strains of 0 to 0.4, with increments of 0.1, are displayed as a function of time from the
beginning of the action potential. Note that the higher the applied strain, the higher
the resulting peak-stress value, which implies occurrence of the FS-mechanism in
the UMAT. For the isometric contraction test-cases, the UMAT complied with the
set verification requirement, as the MAPEmax error values shown in Table 6.4 were
all smaller than 1%.

Table 6.4: MAPEmax [%] errors of the isometric contraction test-cases, under various stretches.
Stretch 0.0 Stretch 0.1 Stretch 0.2 Stretch 0.3 Stretch 0.4

UMAT vs. analytical 3.66E-07 5.10E-07 5.98E-07 6.43E-07 8.18E-07
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6.2 rotation test-cases
The verification of the application of deformation gradient in UMAT was done by
the rotation test-cases, where a biaxial extension was performed in combination
with a rigid body rotation in both a global and co-rotational local coordinate system.
Fig. 6.6 shows the SEM including a global coordinate system compatible UMAT and
a local coordinate system compatible UMAT (the latter including an *Orientation

keyword in the Abaqus .inp file). Note that for the stretch step, the global, local
reference and local current basis systems were all the same. However, after rotation,
the local current basis system has rotated with the SEM, while the other two basis
systems remains in their initial position. Consequently, the σ11 stress value in the
global coordinate system changed value, while this value remained constant in the
local coordinate system as the basis system co-rotated with the rigid body deforma-
tion.

Figure 6.6: Passive stresses in fibre direction (σ11) at timepoint t1 (biaxially extended configu-
ration) and t3 (biaxially extended and rotated configuration) of Fig. 6.7 projected
on the SEM in various configurations. The upper SEMs include the global UMAT,
while the lower SEMs include the local UMAT. Global, local reference and local
current basis systems are visualised by Gi, Ei and ei, respectively, where i = 1, 2, 3.

Fig. 6.7 shows the transient stresses of the UMAT in global and local configura-
tion during all four steps of the test-case. In Fig. 6.7 (a) and (c) the passive stresses
are presented (these graphs correspond to Fig. 6.6). The stresses computed with
the UMAT in global configuration changed after the rigid body rotation, while in
the local configuration the stresses remained constant. Similarly, the active stresses
presented in Fig. 6.7 (b) and (d), show changes in the peak force of the contraction
after rigid body rotation in the global configuration, while the peak force remained
constant in the local configuration. This verifies the correct application of the defor-
mation tensor in both active and passive material models in the UMAT.
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6.3 reality-check test-cases

6.3.1 Biaxial Extension Test-Case

In Fig. 6.8, the Cauchy stress values of the biaxial extension test-cases with FS-
extension ratios of 0.5:1 and 1:0.5 are shown as a function of the strain. Both
computed values of the UMAT and experimental data ([24]) are shown. Firstly,
the stress-strain curve of the computed UMAT and experimental data in F-direction
were quite similar. However, in the S-direction the computed UMAT results showed
gradually more difference w.r.t. the experimental data as the strain increased.
Secondly, in both the experimentally obtained and UMAT computed stress-strain
curves, strain-stiffening was visible, indicating hyperelasticity. Also, considering
that the maximal strain values are the same in all test-cases, the peak-stress values
showed variable magnitudes. As this test-case consists of biaxial extension, no in-
formation about the normal-direction was provided by the experimental data and
the results of the UMAT. Therefore, this data can not show orthogonality of the
material, but it does show transversely-isotropic behaviour. Lastly, the hysteresis
behaviour of the experimental data stands out, possibly indicating viscoelasticity.
Viscoelasticity was not included in the UMAT material model.

6.3.2 Shear Test-Case

In Fig. 6.9, stress-strain curves resulting from shear tests of Dokos et al. [23] and
Sommer et al. [24] and the computed UMAT results are shown. When looking
at the qualitative aspect of the stress-strain curves, the UMAT was in the range of
the experimental data as all curves are showing strain-stiffening and orthotropic
behaviour. Only the hysteresis behaviour of the experimental data, possibly indi-
cating viscoelasticity, was not represented by the computed UMAT results. When
assessing the peak-stresses in general, the UMAT results and the experimental data
showed the same trend. However, when looking in more detail, during the FS and
FN cases the computed stress-peak results of the UMAT and experimental data of
Sommer et al. [24] were lower than the experimental data of [23]. On the other
hand, during the NF and NS cases the peak-stress results of the UMAT were higher
than all experimental data results. Note that the shear data of [24] was used for
optimisation of the parameters, which were applied in the passive HO model.
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6.3.3 Isotonic-Contraction Test-Case

In Fig. 6.10 the transient length of a (single-element) specimen during isotonic con-
traction is plotted against the time from the beginning of the contraction. Both re-
sults of the UMAT and results of the experiments of [72] are shown. The behaviour
of the UMAT and the experimental data showed a similar trend. However, some
differences occured. Firstly, the peak-deformation of the contraction computed by
the UMAT was earlier than the experimental data. Secondly, the relaxation of the
UMAT was slower than that of the experimental data.

Figure 6.10: Results of the isotonic contraction test-case computed by the UMAT and exper-
imental data based on isotonic tests done on LV rat papillary muscles. Data
presented here is extracted from Fig. 1B of [72]. A Tmax of 0.0096 is used.



7 G E N E R A L D I S C U S S I O N A N D
C O N C L U S I O N S

7.1 comparison to the field
Current trends in cardiac FE modelling aim to develop patient-specific medical treat-
ment, improve efficiency of clinical trials of medical devices and give more insight
in the physiology and pathology of cardiac diseases. Computational material mod-
els are essential for cardiac FE modelling. However, no material model suited for
active heart tissue modelling is available in commercial available FE software. Con-
sequently, researchers are forced to implement the material models by themselves
via e.g. a user subroutine. Implementation of a user subroutine is complex as it ne-
cessitates thorough knowledge of continuum mechanics and tensor algebra. Addi-
tionally, available FE software manuals, research papers and books provide informa-
tion containing only limited details. Therefore, it is a time-consuming undertaking,
which is prone to errors. This thesis provides a detailed description of the imple-
mentation of a material model approximating the passive and active behaviour of
cardiac tissue using the user-defined material subroutine UMAT in commercially
available FE software Abaqus. Passive cardiac tissue behaviour was modelled by
the nonlinear, hyperelastic, orthotropic, incompressible, invariant-based [8] model.
Active cardiac tissue behaviour was implemented by the Time-Varying Elastance
(TVE) model [9]. The models were combined via the active stress approach and
were implemented in Abaqus via the user subroutine UMAT in a local coordinate
system with a numerically computed elasticity tensor.

Verification of the implemented material models showed good agreement with
the analytical solution of equibiaxial extension and equibiaxial compression test-
cases, as all test-cases showed an MAPEmax or APEmax error lower than 1%. Shear
test-case results of the UMAT showed some bigger APEmax values w.r.t. the analyti-
cal solution (maximal 16%), possibly caused by numerical errors during the elastic-
ity tensor computation. Results of the reality-check cases showed similar trends to
the mechanical experiments done on cardiac tissue on which these cases are based.

This thesis extends the knowledge provided in the articles of [52], [61] and ‘The
Hitchhikers Guide to ABAQUS’ of [62]. These articles provide a basis-knowledge
for the implementation of a SEF in the user subroutine UMAT that is used in a lo-
cal coordinate system, of which [61] describe the implementation of the Holzapfel-
Gasser-Ogden material model in the user subroutines UANISOHYPER_INV and
UMAT. Additionally, [52] provides a step-by-step description of the different forms
of the deformation gradient as used by Abaqus, especially when implementing ei-
ther a local or global coordinate system. Lastly, the paper of [62] provides practical
tips and tricks for the development of a user subroutine. This thesis combines and
extends this information by applying it to the case of the combined passive HO and
active TVE model. Although used before in e.g. [32], [65], this is the first time that
the combined HO and TVE model implemented in a UMAT is reproducible by mak-
ing it publicly available.

Although commercially available FE software do not contain built-in active ma-
terial models, they do contain built-in passive material models that are suited for
modelling biological tissues, e.g. the Holzapfel-Gasser-Ogden model available in

46
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Abaqus/CAE as the Holzapfel model [73]. With only a passive material model it
is possible to model the end-systolic and end-diastolic volumes, as well as the pres-
sure during the ventricular filling phase (Fig. 2.2). Addition of the active material
model enables the computation of transient pressures during the complete systole
and isovolumetric relaxation.

7.2 limitations and assumptions
The limitations of the proposed UMAT including the combined HO and TVE model
need to be discussed. First of all, the proposed UMAT assumes incompressibility.
This assumption is frequently made for biological tissues, because the amount of
water in biological tissue is high [19]. However, [21] shows that in particular during
the systole, significant volume changes occur in cardiac tissue. Therefore, the in-
compressibility assumption is be outdated. However, because of simplicity reasons,
incompressibility is still used in this thesis. A second limitation is the omission of
viscoelasticity. During experimental tests, cardiac tissue shows hysteresis, for exam-
ple the experimental data of Dokos et al. [23] and Sommer et al. [24] presented in
Fig. 6.8 and Fig. 6.9. The hysteresis can be most probably attributed to viscosity.
However, as currently no appropriate viscoelastic orthotropic material model exists,
it was outside the scope of this thesis to add viscosity to the current model. Lastly,
the current model is based on material parameters taken from literature, while the
model is meant to be patient-specific. Although it is not done during this thesis, it is
possible to optimise the model with patient-specific data. This can be done with for
example minimal square optimisation based on clinical parameters like ventricular
pressure and volume, as is done for both the HO and TVE material parameters in
[42] on a whole heart FE-model.

Concerning the material model implementation in the UMAT, limitations include
the following. Firstly, currently the model can only produce one contraction per
job (computer-run). Additionally, to ensure an accurate timing of the contraction,
UMAT material parameter dt must correspond to the fixed increment size of the
step in which the contraction takes place. Consequently, automatic time incremen-
tation cannot be used during this step.

The results of the reality-check cases give insight into the realism of the model.
However, due to heterogeneity between experimental setups of different papers,
direct comparison between the UMAT and experimental data was not possible, only
result-trends could be compared. An example of this is presented in Fig. 6.9 where
the results of experiments done by Dokos et al. [23] and Sommer et al. [24] showed
different values. While the loading strain values of the two experiments were the
same, some important differences were found (Table 7.1). Although it was not tested
in this thesis, differences in experimental setup like variable species and different
(patient specific) material parameters were probable to have caused the differences
in stress and strain results of the mechanical cardiac tests done by Dokos et al. [23]
and Sommer et al. [24]. Therefore, when comparing the UMAT to experimental
data different from the data for which the material parameters are optimised, it is
likely that parts of the occuring errors are caused by differences in experimental
setups. Nonetheless, the trends of the UMAT results and the experimental data
were assumed to be similar, and therefore these were compared to each other.
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Dokos et al. [23] Sommer et al. [24] units
Specimen geometry 3x3x3 4x4x4 mm
Specimen species porcine human -
Experiment temp. 4 37 deg
Loading speed 0.6 - 3 1 mm/min

Table 7.1: Differences in experimental setup may have caused the differences in stress and
strain results of [23] and [24] in Fig. 6.9.

7.3 conclusions and future directions
This thesis has established a user subroutine UMAT that incorporates the combined
HO and TVE material model. The user subroutine is designed to be used in person-
alised whole-heart FE-models. The passive- and active components can be optimised
to personalise cardiac tissue properties to approximate both healthy and diseased
hearts. Personalised components consist of patient-specific heart geometry, passive
material properties and maximal active tension parameter and a scale factor provid-
ing the relation between the contraction in fibre- and sheet-direction. In the foreseen
future the user subroutine may be included in a whole heart FE-model, in which the
material model can be validated. Consecutively, this whole heart FE-model incor-
porating the proposed user subroutine can be combined with computational fluid
dynamics resulting in a fluid-solid interaction model. Lastly, the aim of this thesis
was to define a model representing the mechanical component of the cardiac func-
tionality. In future, electric and chemical phenomena occurring in cardiac tissue, i.e.
polarisation, excitation and propagation may be added.

The passive HO and active TVE model incorporated in the user subroutine UMAT,
which is fully available in the supplementary material, will accommodate projects
in need of an active material model, as well as provide for a starting point to develop
a new UMAT. All in all, this thesis forms a significant step forward in the cardiac
FE modelling field.
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A A P P E N D I C E S

appendix: supplementary material
The material supplementary to this thesis is available on request by contacting
mplab-3me@tudelft.nl and a.c.akyildiz@tudelft.nl.

appendix: tensor products
In this thesis the following definitions of tensor products are used, defined by [43].

Double dot product: For two second-order tensors A and B, the result is a scalar.

A : B = AijBij (A.1)

For two fourth-order tensors A and B, the result is a second order tensor.

(A : B)ijkl = AijmnBmnkl (A.2)

For a fourth-order tensors A and a second order tensor C, the result is a second
order tensor.

(A : C)ij = AijklCkl (A.3)

Dyadic products: For two second-order tensors A and B

(A⊗ B)ijkl = AijBkl (A.4)

=


A1,1 · B ” A1,2 · B ”

” ” ” ”
A2,1 · B ” A2,2 · B ”

” ” ” ”

 (A.5)

(A⊗B)ijkl = AikBjl (A.6)

=


A · B1,1 ” A · B1,2 ”

” ” ” ”
A · B2,1 ” A · B2,2 ”

” ” ” ”

 (A.7)

(A� B)ijkl = (A⊗B)ijkl

=
1
2
(AikBjl + Ail Bjk) =

1
2
(A⊗B + A⊗ B)

(A.8)

Therefore, the tensor product C−1 is defined as below.

−(C−1 � C−1)ijkl = −
1
2
(C−1

ik C−1
jl + C−1

il C−1
jk ) =

∂C−1
ij

∂C−1
kl

(A.9)
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appendix: derivatives of the holzapfel-ogden strain
energy function written out
The first derivatives of the HO SEF with relation to the invariants can be written out
as follows

ψ1 =
∂Ψ
∂I1

=
a
2

exp[b(I1 − 3)], (A.10)

ψ4 f =
∂Ψ

∂I4 f
= a f (I4 f − 1)exp[b f (I4 f − 1)2], (A.11)

ψ4s =
∂Ψ
∂I4s

= as(I4s − 1)exp[bs(I4s − 1)2], (A.12)

ψ8 f s =
∂Ψ
∂I8

= a f s(I8 f s)exp[b f s(I8 f s)
2]. (A.13)

Similarly, the second derivatives of the HO SEF with relation to the invariants can
be written as follows

ψ
′′
1 =

∂2Ψ
(∂I1)2

=
ab
2

exp[b(I1 − 3]), (A.14)

ψ
′′
4 f =

∂2Ψ
(∂I4 f )2

= (a f exp[b f (I4 f − 1)2])(2b f (I4 f − 1)2 + 1), (A.15)

ψ
′′
4s =

∂2Ψ
(∂I4s)2

= (asexp[bs(I4s − 1)2])(2bs(I4s − 1)2 + 1), (A.16)

ψ
′′
8 f s =

∂2Ψ
(∂I8 f s)2

= (a f sexp[b f s(I8 f s)
2])(2b f s(I8 f s)

2 + 1). (A.17)
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Reflection

Looking back at the beginning of this thesis project, Covid had spread over the
world more than half a year. The ’thuiswerkadvies’ (working at home advice) from
Prime Minister Mark Rutte was applicable for everyone in the Netherlands. I just
finished the first year of my master. Due to the course Computational Mechanics
of Tissues and Cells that sparked my interest, the choice for this project about mod-
elling hearts was quickly made.

Most of this thesis is produced in my student-room in Rotterdam. Working from
home had its challenges, as collaborating and asking for help had a higher thresh-
old, causing the amount of trial-and-error work to increase significantly. On the
other hand, it has given me a boost in my personal development and the sense of
responsibility for this. As knowledge worker, I believe that focus is one of the most
important tools you have. Reading about this brought me to clichés like ’aanraken
is afmaken’ [74], which became my device for periods of time, learning healthy
working habits. Working on my thesis during Covid has increased my ability of
working independently and improved my problem-solving skills.

Now, close to the end of my master thesis, a lot has changed. My knowledge of
continuum mechanics and ability to work with Abaqus and Matlab, and program-
ming languages Python and Fortran have increased greatly. Also, we are slowly
going back to the ’old normal’, going to the EMC again for the majority of the week,
and getting to know everyone in the department in person.

Acknowledgements

My master end project as well as the personal learning curve that I went through
were not possible without Ali, my supervisor, whom I would like to thank for the
insights I experienced during our discussions, and giving me trust and time to grow
within the project. I also want to thank Mathias Peirlinck for your knowledge and
advice which often came on just the right moment. I am grateful for Savine Minder-
houd, for initiating this project and answering all my clinical related questions. I
would like to thank all my coworkers at the Biomedical Engineering and Cardiology
Department of the Erasmus MC, for joining me for lunches outside in the sun and
hangboard competitions! Lastly, I want to thank my dad for reading my thesis and
insightful discussions about science in general.

According to Tigchelaar [74], zooming out now and then is essential for the brain
in order to fully focus later, time where the brain ’does mainly nothing’ (DMN). To
this end I want to thank my friends and family for their support and the needed
DMN-time outside working hours. Especially Loes and Hector, for welcoming me
at your home for the last 2 months of my thesis. Also, the rest of the dalmutties,
Marta, Marlene, Yenthe, for emotional support and coaching. My climbing buddies,
for training with me and going on weekends outside. Last but not least, thank you
Menno for being so patient, I will join you in France soon!

57


	1 Introduction: Modelling of cardiac tissue
	1.1 Thesis Goal
	1.2 Thesis Outline

	2 Anatomy, Physiology And Mechanics Of The Heart
	2.1 Cardiac Cycle
	2.2 Cardiac Tissue Biomechanics
	2.2.1 Passive Component: The Tissue Micro-Architecture
	2.2.2 Active Component: The Cross-Bridge Cycle


	3 Constitutive Modelling
	3.1 Passive Component: Holzapfel and Ogden Model
	3.1.1 HO Constitutive Law
	3.1.2 HO Material Parameters
	3.1.3 HO Stress Tensor

	3.2 Active Component: Time-Varying Elastance Model
	3.2.1 TVE Stress Tensor
	3.2.2 TVE Material Parameters


	4 Model Integration in Abaqus
	4.1 UMAT Requirements
	4.1.1 Local Co-Rotational Coordinate System
	4.1.2 Stress Tensor Computation
	4.1.3 Isovolumetric Elasticity Tensor

	4.2 Debugging

	5 Verification Methods
	5.1 Model Details
	5.2 Verification Test-Cases
	5.2.1 Comparison of UMAT to Analytical and UANI Solutions
	5.2.2 Rotation Test-Cases

	5.3 Reality-Check Test-Cases
	5.3.1 Experimental Datasets

	5.4 Verification Requirements

	6 Verification Results and Discussion
	6.1 Comparison of UMAT to Analytical and UANI Solutions
	6.1.1 Equibiaxial Test-Cases
	6.1.2 Shear Test-Cases
	6.1.3 Isometric Contraction Test-Cases

	6.2 Rotation Test-Cases
	6.3 Reality-Check Test-Cases
	6.3.1 Biaxial Extension Test-Case
	6.3.2 Shear Test-Case
	6.3.3 Isotonic-Contraction Test-Case


	7 General Discussion and Conclusions
	7.1 Comparison to the Field
	7.2 Limitations and Assumptions
	7.3 Conclusions and Future Directions

	A Appendices
	B Postface

