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Distributed Nonlinear Trajectory Optimization
for Multi-Robot Motion Planning

Laura Ferranti , Lorenzo Lyons , Rudy R. Negenborn , Tamás Keviczky , Senior Member, IEEE,

and Javier Alonso-Mora , Senior Member, IEEE

Abstract— This work presents a method for multi-robot coor-
dination based on a novel distributed nonlinear model predictive
control (NMPC) formulation for trajectory optimization and its
modified version to mitigate the effects of packet losses and delays
in the communication among the robots. Our algorithms consider
that each robot is equipped with an onboard computation
unit to solve a local control problem and communicate with
neighboring autonomous robots via a wireless network. The
difference between the two proposed methods is in the way
the robots exchange information to coordinate. The information
exchange can occur in a following: 1) synchronous or 2) asyn-
chronous fashion. By relying on the theory of the nonconvex
alternating direction method of multipliers (ADMM), we show
that the proposed solutions converge to a (local) solution of the
centralized problem. For both algorithms, the communication
exchange preserves the safety of the robots; that is, collisions with
neighboring autonomous robots are prevented. The proposed
approaches can be applied to various multi-robot scenarios and
robot models. In this work, we assess our methods, both in
simulation and with experiments, for the coordination of a team
of autonomous vehicles in the following: 1) an unsupervised
intersection crossing and 2) the platooning scenarios.

Index Terms— Collision avoidance, fault-tolerant control,
multi-robot systems, optimal control, optimization.

I. INTRODUCTION

EVERY year, thousands of people are involved
in transportation-related accidents with fatal

consequences [1], [2]. A key component to address this
issue and reduce the amount of fatalities in the current
transportation and mobility network is the development of
connected and automated mobility solutions [3], [4]. These
autonomous vehicles will soon be part of our daily life,
transporting goods, or people to their destinations. One
of the main challenges is that of generating collision-free
trajectories that coordinate these traffic participants, to ensure
the safety of the vehicles and of the humans. Formally, this
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Fig. 1. Overview of the proposed approaches for multi-robot coordination
based on the use of distributed NMPC.

is a multi-robot coordination problem. Through the use of
a central coordinator or by relying on the communication
among neighboring robots, these algorithms should require
only a small amount of information (e.g., current pose and
speed of the neighbors) to decide on a safe navigation strategy.
In addition, while distributed algorithms are more resilient
to faults in the communication strategy (compared with the
centralized approaches that have one single point of failure),
these algorithms strongly rely on the communication among
the robots. Hence, they are still vulnerable to communication
faults (e.g., packet loss and delays) that can compromise the
overall safety of the coordination scheme.

This article presents two methods to solve a centralized
multi-robot coordination problem in a distributed fashion, that
is, without the need of a coordinator.

1) A synchronous algorithm, that is, a distributed non-
convex trajectory optimization method to coordinate
multiple robots with guarantees on the convergence to
the solution of the original centralized coordination
problem.

2) An asynchronous algorithm, that is, a modified version
of the aforementioned distributed algorithm to account
for a more realistic communication network. The algo-
rithm is able to deal with non-blocking exchanges of
information among the robots, communication delays,
and packet losses, while retaining guarantees on the
convergence to a suboptimal solution of the original
centralized problem.

Fig. 1 summarizes the approaches we propose, highlighting the
differences with the original centralized approach (in which a
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 06,2023 at 10:00:32 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3856-6221
https://orcid.org/0000-0003-2907-142X
https://orcid.org/0000-0003-0058-570X
https://orcid.org/0000-0001-9784-1225
https://orcid.org/0000-0002-2428-2300


810 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 2, MARCH 2023

central coordinator computes a feasible path for all the robots)
and in the way the robots communicate.

We evaluate our methods for the coordination of a team of
autonomous vehicles in different scenarios (that would usually
be treated with different tailored solutions), namely, an unsu-
pervised intersection crossing scenario and a platoon formation
scenario. Finally, we present a practical implementation of the
method using a team of small-scale autonomous cars.

Much research in mobile–robot motion planning focuses
on safety, that is, how to avoid collisions with other robots
and with the environment (e.g., road boundaries and lanes).
Classical methods for coordination in complex dynamic envi-
ronments use reactive strategies [5], [6], [7], [8], [9], [10],
assume a priority order [11], or rely on scheduling [12], [13],
[14], [15], [16] to coordinate robots. These methods do not
explicitly consider the interactions between robots and moving
obstacles. Learning-based methods [17], [18], [19], [20], [21]
can be used to consider these interactions at the cost of los-
ing interpretability. Constrained-optimization approaches [22],
[23], [24], [25] can be used to consider interactions without
losing interpretability, but at potentially high computational
cost. Our proposed framework for multi-robot coordination fits
in this last category, and it aims at reducing the computational
load using the decomposition methods.

Several authors proposed centralized optimization-based
approaches for multi-robot coordination and intersection nego-
tiation ([26], [27], [28], [29] to mention a few). In con-
trast, our algorithms do not require a central coordinator
and are distributed via a communication channel. Several
authors also provided distributed solutions. De Campos [30]
proposed a decentralized design in which the robots com-
pute their decisions sequentially. The approach is based on
scheduling, invariant sets, and optimization-based techniques.
Jiang et al. [31] proposed a parallelizable approach under
a given precedence order. Collisions among the robots are
avoided by sharing the arrival and departure times at the
intersection. In [32], an extension of [31] is provided to handle
rear-end collisions. Our design does not require a precedence
order and does not require a discretization of the environment,
operating directly in continuous space. Katriniok et al. [33]
proposed a distributed model predictive control (MPC) design
that relies on constraint prioritization and uses semidefinite
programming relaxations to deal with the nonconvexity of
the collision avoidance constraints. Borrelli et al. [34] and
Keviczky et al. [35] rely on a decentralized linear MPC formu-
lation for collision-free formation control. Zheng et al. [36],
[38], Chen et al. [37], and Rey et al. [39] proposed distributed
algorithms that rely on the alternating direction method of
multipliers (ADMM). Chen et al. [37] used distributed lin-
earized MPC to coordinate autonomous vessels in the presence
of environmental disturbances. In [38], the distributed MPC
problems are used for the cooperative multivessel system.
Compared with the aforementioned approaches, we rely on
nonlinear MPC (NMPC); that is, we do not linearize the
system dynamics or the collision avoidance constraints, but
we consider directly the nonlinear dynamics and nonconvex
constraints in the problem formulation to reduce the conser-
vatism in the behavior of the robots. Furthermore, we provide

asymptotic convergence guarantees by relying on the theory
of nonlinear ADMM (NADMM) [40]. The solver presented
in [40] cannot be trivially applied to our coordination problem.
NADMM only handles linear coupling constraints among the
robots, while our coordination problem introduces a nonlinear
coupling caused by the presence of nonconvex collision avoid-
ance constraints. We reformulate our coordination problem in
an appropriate form that both preserve the solution of the
original coordination problem, and are suitable for NADMM.
We achieve this goal by introducing the following: 1) a new
set of decision variables that act as shared variables among the
robots and 2) a new set of constraints that handle the consensus
among the robots. The resulting optimization problem is
the sum of smaller (one for each robot) linearly coupled
subproblems that can be solved using NADMM. We show
that the proposed synchronous algorithm converges to a locally
optimal solution (due to the nonconvex nature of the problem)
of the coordination problem (see Theorem 1).

Our approach relies on MPC. In recent years, MPC has
gained attention in applications with fast dynamics, such as
automotive [26], [41], [42], [43], waterborne transport [23],
[44], [45], and aeronautics [46], [47], because of great
improvements in terms of solvers used for online optimization
[48], [49], [50], [51], [52]. MPC is also a promising technique
for fault-tolerant control. Several authors showed the ability of
MPC to deal with actuator faults [47], [53], [54], [55]. Less
attention has been given to the potential of MPC to deal with
communication faults. Izadi et al. [56] proposed a decentral-
ized convex MPC design to deal with delays for a leader–
follower formation control problem. Izadi et al. [57] proposed
a distributed path following control strategy to explicitly
account for time-varying communication delays based on
event-triggered communications. Pena and Christofides [58]
proposed a distributed strategy for the regulation problem
of nonlinear systems subject to data losses-based using a
Lyapunov-based MPC formulation. Compared with the pre-
vious approaches, our coordination strategies strongly rely on
the NADMM framework to shape the interactions among the
robots. In addition, we tailored the distributed coordination
strategy to mitigate packet losses and delays by leverag-
ing the MPC ability of generating predictions over a finite
time horizon. Within the ADMM literature, some strategies
have been proposed to deal with delays and packet losses
(e.g., [59], [60]). Compared with these approaches, we exploit
the features of the MPC design to provide predictions, and we
use predictive optimization techniques to compensate for the
packet loss and delays in the ADMM framework. In addition,
we rely on the NADMM [40] strategy able to deal with the
sum of nonconvex functions. The solver proposed in [40]
and our synchronous algorithm, however, require the robots
to exchange information at given synchronization points. This
assumption can be unrealistic for practical robotics applica-
tions, in which the communication among the robots can be
affected by delays or packet loss. This article proposes a
tailored version of the NADMM solver (our asynchronous
algorithm) that leverages the ability of NMPC to provide
predictions to compensate for imperfect behavior of the solver
due to communication faults.
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We build on [42], which relies on the model predictive con-
touring control (MPCC) formulation proposed in [61] and [62],
to design the local trajectory generation strategies. Compared
with [42], we look at the distributed multiagent planning and
coordination problem. We focus on the algorithms required
to find a solution for such a problem using NMPC combined
with NADMM to distribute the problem.

We presented a preliminary version of the synchronous
algorithm in the conference paper [23]. Compared with [23],
we completely revise the NADMM strategy and provide theo-
retical guarantees for the synchronous algorithm. Furthermore,
we design the asynchronous algorithm to deal with a more
realistic communication framework among the robots. Finally,
we extend and update our simulation results with a comparison
with the centralized version of the local motion planner applied
to the control of a team of autonomous vehicles.

This article is structured as follows. Section II provides pre-
liminary information to make the article self-contained, includ-
ing the NADMM strategy presented in [40] and the centralized
NMPC problem formulation. Sections III and IV describe
the synchronous and asynchronous designs, respectively.
Section V presents an evaluation of the proposed methods.
Finally, Section VI concludes this article.

II. PRELIMINARIES

A. Nonlinear ADMM

Given that our approach relies on the NADMM presented
in [40], this section provides some useful definitions and a
short overview of NADMM. The functions introduced in this
section are meant to explain the generic version of NADMM.

In this article, all the vectors are indicated with a bold
symbol. The two norm of a vector u is �u�. Let R̄ =
R ∪ {∞} and Range(A) indicate the extended-real line and
the range (column space) of a matrix A ∈ R

m×n, respectively.
Furthermore, let eigmin(A) indicate the minimum eigenvalue
of a matrix A ∈ R

n×n. Finally, let dom f be the domain of
a function f : R

n → R̄. The following definitions are also
useful.

Definition 1 [40]: Given f : R
n → R̄ and a linear operator

A ∈ R
m×m , the image function (A f ) : R

m → [−∞,+∞] is
defined as (A f )(σ ) := infx∈Rn { f (x)|Ax = σ }.

Definition 2 [63]: A function f (x) is lower semicontinuous
at x̄ if lim infx→x̄ f (x) = f (x̄).

Consider the generic problem below

min
ξ∈R

nξ ,y∈R
ny

Jξ (ξ ) + Jy(y) (1a)

s.t. Aξ + By = b (1b)

where Jξ (ξ ) : R
nξ → R and Jy(y) : R

ny → R̄ are the proper
and lower semicontinuous functions of ξ and y, respectively.
These cost functions can be nonconvex. A ∈ R

nb×nξ , B ∈
R

nb×ny , and b ∈ Rnb define the linear coupling constraints (1b).
The augmented Lagrangian associated with Problem (1) is

defined as follows:
Lρ(ξ , y,λ) := Jξ (ξ ) + Jy(y) + �λ, Aξ + By − b� (2a)

+ ρ

2
�Aξ + By − b�2 (2b)

where ρ > 0 is a penalty parameter, and λ ∈ R
nb is the

Lagrange multiplier associated with constraint (1b).
To solve Problem (1), the NADMM algorithm iteratively

solves the following steps [40]:⎧⎨⎨⎨⎨
⎨⎨⎨⎩

λ+/2 = λ − ρ(1 − β)(Aξ + By − b)

ξ+ ∈ argminLρ

�·, y,λ+/2
�

λ+ = λ+/2 + ρ(Aξ+ + By − b)

z+ ∈ argminLρ(ξ
+, ·,λ+)

where β ∈ (0, 2) is a tuning parameter. NADMM is an iter-
ative algorithm that converges to a (locally) optimal solution
of Problem (1) only asymptotically.

Section III details how to reformulate the multi-robot
coordination problem to fit in the structure of Problem (1)
[see Problem (13)] and solve it in a distributed fashion (see
Algorithms 1 and 2).

B. Model of the Robots

We consider autonomous robots whose dynamics can be
represented by the following nonlinear discrete-time model:

xi(t + 1) = fi (xi(t), ui (t)), i ∈ IV (3)

where xi(t) ∈ R
ni represents the state of Robot i , ui (t) ∈ R

mi

represents the associated control command, fi : R
ni × R

mi →
R

ni represents the (possibly) nonlinear dynamics of Robot i ,
V is the number of robots, and IV := {1, . . . , V }.

The following assumptions hold throughout this article.
Assumption 1: The robots communicate only within a com-

munication radius cr ; that is, there exists a communication
link between Robots i and j if and only if Robot i is in the
communication radius of Robot j . In practice, the robots will
use the information concerning the neighboring robots only
when they are within the planning horizon of the local motion
planner.

Assumption 2: All the robots within the communication
radius are fully autonomous and communicate with the neigh-
boring robots (i.e., we do not consider mixed traffic scenarios,
in which we have noncommunicating robots).

The model description above is general and can be
employed in different multi-robot applications (e.g., for the
coordination of autonomous cars, ships, drones, and aircraft).
In case of continuous-time systems, the model above can be
obtained by discretization of the continuous-time dynamics,
as illustrated in Section V.

C. Collision Avoidance Constraints

This section introduces the strategy used to represent each
robot and formulate the collision avoidance constraints in the
coordination problem. We use a strategy similar to the one
proposed in [42] for autonomous cars.

Without loss of generality, we explain the representation
for two robots, namely, Robots i and j .1 Fig. 2 depicts the

1We note that the method applies in a straightforward way to the case of
V ≥ 2 robots by including additional constraints for each of the other robots
analogously to the case for Robot j (as depicted in Fig. 2, where we added
a third robot, namely, Robot k, to represent a more general scenario).
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Fig. 2. Robots’ representation for collision avoidance from the perspective of
Robot i: the circles represent Robot i , while the ellipses describe its neighbors.

proposed approach from the perspective of Robot i . Robot i
is represented as ndisk disks of radius r centered in ph

i (where
we used p to indicate the position on the (x, y) plane in
the body frame, h ∈ Idisk := {1, 2, . . . , ndisk}, and ndisk is
the number of disks used to describe the robot). From the
perspective of Robot i , Robot j is represented as an ellipse
with semimajor axis aM (longitudinal direction) and am (lateral
direction), respectively.

Collision avoidance is achieved when the disks used to
represent Robot i and the ellipses representing the neighboring
robots do not intersect. As proposed in [42], using an approxi-
mation of the Minkowski sum2 between each disk representing
Robot i and the ellipse representing the neighboring robot,
the collision avoidance constraints between Robot i and the
neighbor j have the following analytical representation:

�
R(η j )

�
ph

i −p j
��T

⎡
⎢⎢⎣

1

(aM +r)2
0

0
1

(am +r)2

⎤
⎥⎥⎦R(η j )

�
ph

i −p j
�

� �� �
ch

i, j

>1

(4)

where R(η j ) is the rotation matrix of Robot j (η j is the
orientation of Robot j according to the reference frame
indicated in Fig. 2). The constraints above require the pose
of Robot j , that is, p j and η j . In the following, we assume
a homogeneous team of robots (i.e., the same am, aM , and r )
to simplify the notation. Nevertheless, the approach can be
easily extended to a heterogeneous team of robots, by adding
as additional shared information aM j , am j , and ri .

D. Problem Formulation

Our approach relies on MPC. The MPC controller repeat-
edly solves an optimization problem based on the available
plant measurements to compute the optimal sequence of con-
trol commands over a finite time window, called the prediction
horizon. Only the first control command of this sequence
is applied to the plant in closed loop in a receding-horizon
fashion [64].

2An over-approximation can be achieved following the approach proposed
in [25].

Following [42] and extending it to the context of multi-robot
coordination, we formulate a trajectory-generation problem in
which the controller aims to minimize the error with respect
to a path dependent on the path parameter φ, rather than a
time-dependent reference signal. This formulation allows the
controller flexibility in the definition of the state variables (they
are not constrained to follow a time-dependent trajectory).
Furthermore, this formulation allows the controller to select
a desired reference velocity without compromising the choice
of the reference path.

The goal of the proposed coordination algorithm is to
minimize the sum of the following costs3:

Ji := qvx

��v ref
i −vxi

��2 + eT
i Qeei (5)

where vxi is the velocity in the longitudinal direction, v ref
i is

the desired speed, qvx and Qe are tuning parameters, and the
error ei ∈ R

2 for Robot i is defined as follows:
ei := �

el
i ec

i

�T
. (6)

The quantities el
i and ec

i are the longitudinal error (i.e., the
error in the path’s tangential direction) and the contour-
ing error (i.e., the error in the path’s normal direction),
respectively. At time step t , the longitudinal error is defined
as follows:

el
i := −[cos ηi(φi ) sin ηi (φi )]

�
pi − pref

i

�
(7)

where ηi (φi), pi , and pref
i are the heading of the path, the

position on the (x, y)-plane of Robot i , and the reference path
on the (x, y)-plane, respectively. Similarly, at time step t , the
contouring error is defined as follows:

ec
i := [sin ηi (φi) − cos ηi (φi)]

�
pi − pref

i

�
. (8)

More details on the derivation of the longitudinal and
contouring errors can be found in [42].

At time t , our goal is to solve the following trajectory
optimization problem:

min
xi ,ui ,φi ,i∈IV

V�
i=1

� N−1�
k=0

Ji(xi(t+k),ui (t+k))

+ Ji(xi(t+ N))

�
(9a)

s. t. : xi(t + k + 1) = fi (xi(t + k), ui (t + k)) (9b)

xi(t) = xinit
i (9c)

Gi(xi (t + k), ui (t + k)) ≤ gi (9d)

ch
i, j (t + k) > 1, j �= i, h ∈ Idisk (9e)

where constraints (9b)–(9e) are for i = 1, . . . , V and k =
1, . . . , Ni . In Problem (9), xi and ui represent the predicted
evolution of the state and control command of Robot i ,
respectively, over the prediction horizon N . The vector xinit

i ∈
R

ni represents the current measured state of the robot. Fur-
thermore, (9d) indicates the constraints on the states and
actuators of the robots (with Gi and gi constant matrices
of appropriate dimensions). In addition, (9e) represents the
collision avoidance constraints (4) between Robots i and j
( j �= i ) along the prediction horizon N . These constraints

3To simplify the notation, we omit the time and robot dependency when it
is clear from the context.
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are present only if the neighboring robots are within the
communication radius cr .

The goal of each robot is to minimize the local Ji (9a). The
navigation must comply with the following: 1) the dynamics
of each robot [expressed by the dynamic constraints (9b)] and
2) the physical constraints on the state and control command
of each robot [expressed by constraint (9d)]. Furthermore,
the navigation must comply with safety requirements of col-
lision avoidance with the other robots moving in the same
area (expressed by the nonconvex constraints (9e) detailed in
Section II-C).

Assumption 3: We assume that the coordination prob-
lem (9) has a feasible solution.

Problem (9) requires a central coordinator to compute the
appropriate control command for all the robots in the network
(this processing unit can be required, for example, to handle
an intersection). First, the central coordinator has to solve the
predictive control problem online (i.e., within the sampling
time of the fastest robot). This can cause problems for the scal-
ability of the proposed approach, when the number of robots
increases. Second, having a central coordinator means that all
the robots must be willing to share information concerning
their dynamics, constraints, and objectives with the central
node. This might be problematic for vehicle manufacturers,
which may not be open to share information concerning their
products. To efficiently solve Problem (9), we need to remove
the requirement of having a central coordinator by allowing the
robots to communicate in a tailored manner with each other.

III. SYNCHRONOUS DISTRIBUTED NMPC

In the following, Section III-A describes our proposed
reformulation of Problem (9). Then, Section III-B shows how
to decompose the problem to solve it using NADMM. Finally,
Section III-C provides convergence guarantees when using the
proposed decomposition to coordinate the robots.

A. Reformulation of Problem (9)

In Problem (9), the only coupling among the different robots
is represented by the collision avoidance constraints (9e).
Each robot needs a local copy of the predicted position and
orientation along the prediction horizon of its neighboring
robots to solve its local optimization problem. A simple strat-
egy could be that each robot computes its control command
using the predicted position and orientation that its neighbors
computed at the previous time instant (i.e., no ADMM). This
strategy can be suitable when the robots’ global paths are
not in conflict (e.g., independent highway lanes). When the
robots need to reach consensus on a safe path (e.g., to cross
an intersection or change multiple lanes), relying only on
previously computed paths can be unsafe. In these scenarios,
tailored information exchanges can guarantee collision-free
trajectories (if a feasible solution of the centralized problem
exists), as discussed later in the section.

We propose the following reformulation in which each
Robot i (i = 1, . . . , V ) solves the following problem:

min
zi ,ph

i

N�
k=0

Ji(zi(t + k)) (10a)

s. t. : (9b)–(9d) (10b)

p j |i(t + k)=ph
i (t + k)−�ph

i, j(t+k), j �= i, h ∈Idisk

(10c)

pi (t + k)= p̄h
j (t + k)−�ph

j,i(t+k), j �= i, h ∈Idisk

(10d)

ηi (t + k) − ηi| j (t + k) = 0 (10e)

ph
i (t + k) = Rh(zi (t + k))zi(t + k), h ∈ Idisk (10f)

ch
(i, j)|i(t + k) > 1, j �= i, h ∈ Idisk (10g)

ch
( j,i)|i(t + k) > 1, j �= i, h ∈ Idisk (10h)

where constraints (10c)–(10h) are for k = 1, . . . , N and
zi := [xT

i , uT
i ]T (to simplify the notation, we omit the fact that

the input is applied from 0 to N −1). Note that in the problem
formulation above, zi and ph

i are local variables (i.e., variables
whose values are computed on board of Robot i ), p j |i is the
local information that Robot i has of Robot j ’s position, and
pi| j is the local information that Robot j has of Robot i ’s
position. Similarly, ηi| j is the local information that Robot j
has concerning the orientation of Robot i . In addition, the
values of �ph

i,j are newly introduced consensus variables
that carry the information of the distance between each disk
representing Robot i and Robot j . Similarly, the values of
�ph

j, i are consensus variables carrying the information of the
distance between each disk representing Robot j and Robot i .
Furthermore, we modify the notation (ch

(i, j)|i instead of ch
i, j )

for the collision avoidance constraints in (4) to indicate that
ch
(i, j)|i uses p j |i instead of p j (η j |i instead of η j ), and that

ch
( j,i)|i uses p j |i instead of p j . In the remainder of this article,

we use

ξ i :=
�
zT

i

�
p1

i

�T
, . . . ,

�
ph

i

�T
�T ∈ R

nξ

as the vector of local variables.
Compared with Problem (9), the local problems above

contain additional constraints, namely, constraints (10c)–(10e).
In these constraints, the newly introduced vectors �ph

i,j , �ph
j, i ,

and η j |i are used to break up the coupling between Robot i and
its neighbors caused by the collision avoidance constraints.
The introduction of these variables (and of the associated
constraints) is fundamental to create a linear coupling among
the robots and reformulate the trajectory optimization problem
in the standard NADMM form (1). Finally, constraint (10f)
indicates the nonlinear relationship [highlighted by the matrix
Rh(zi(t + k))] between the center of the disks describing each
robot and the center of the robot itself.

Fig. 3 highlights the local decision variables, copies, and
collision avoidance constraints of each robot (Robots i and j ).
Furthermore, the figure highlights the global variables that our
design uses to ensure consensus among the robots.

The introduction of the nonlinear local equality con-
straints (10f) and a new set of local variables might seem
redundant. Their introduction, however, is fundamental for
NADMM, which requires linear coupling constraints [40].
Without them, the constraints in (11) would be nonlinear in
the decision variables, and the convergence results proposed
in [40] would not hold. Recently, promising ADMM versions
with nonconvex coupling constraints have been proposed
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Fig. 3. Summary of the local and shared information after the introduction
of the consensus constraints.

(e.g., [65]), but the convergence results are still limited and
cannot be employed for our application.

We rewrite in a more compact notation constraints
(10c)–(10d) as follows:

Aiξ i (t + k) + Bi yi(t + k) = bi(t+k), k = 1, . . . , N (11)

where

yi : =
�
�p1T

i,j , . . . ,�phT

i,j �p1T

j, i , . . . ,�phT

j, i

�T ∈ R
ny (12a)

Ai : = �
ET

i , . . . , ET
h F, . . . , F

�T ∈ R
n A×nξ (12b)

Bi : = [−I, . . . ,−I I, . . . , I ]T ∈ R
n A×ny (12c)

bT
i : = �

(p j |i)T , . . . , (p j |i)T (p1
j |i)

T, . . . , (ph
j |i)

T
� ∈ R

n A (12d)

where Ei selects the components of ph
i from the vector of

local variables ξ i , and F selects the components of pi from ξ i .
We can rewrite Problem (10) in a more compact notation as
follows:

min
ξ i ,yi

N�
k=1

Ji (ξ i (t+k)) (13a)

s. t. : ξ i ∈ Fi (13b)

Aiξ i (t + k) + Bi yi(t + k) = bi (t+k) (13c)

where Fi := {zi | (9b)–(9d), (10f)–(10h) are satisfied} is the
feasible region of Robot i .

By taking the sum of Problem (13) for all the neighboring
robots, we recover the original MPC formulation (9). For
example, if we consider (10c) for two neighboring robots
(namely, robots i and j ), the following hold:

(i) : �ph
i, j(t+k) = ph

i (t + k)−p j |i(t+k), j �= i, h ∈Idisk

(14a)

( j) : �ph
i, j(t+k) = ph

i| j(t+k)−p j(t+k), j �= i, h ∈Idisk.

(14b)

If both (14a) and (14b) are satisfied, it means that pi| j =
pi and p j |i = p j . Hence, Problem (13) [and, consequently,
Problem (10)] is a reformulation of Problem (9).

The fundamental difference between the two problems
[i.e., Problems (9) and (13)] is that the sum of the local
problems (13) can be solved in a distributed fashion by relying
on the NADMM solver [40].

B. Problem Decomposition Using NADMM

Algorithm 1 shows the proposed control strategy that relies
on NADMM (Steps 5–17) [40]. Neighboring robots have to

Algorithm 1 Synchronous Distributed NMPC

communicate to evaluate and exchange the locally computed
values4 of �ph

i, j (Steps 11 and 15). Furthermore, compared
with the strategy proposed in [40], we have to deal with
constraints in the inner problems solved by the local robots
(Step 9). Each robot needs an optimizer able to solve the local
constrained nonconvex problems (such as FORCES Pro [51]).
In this respect, the augmented Lagrangian associated with
Problem (13) for all the robots is defined as follows:
L(ξ , y,λ) := J (ξ)+�λ, Aξ +By − b�+(ρ/2)�Aξ+By − b�2

where J := �V
i=0 Ji , ξ := [ξT

0 , . . . , ξT
V ]T ∈ R

nξ (V ), y :=
[yT

0 , . . . , yT
N ]T ∈ R

ny(V ), b := [bT
0 , . . . , bT

V ]T ∈ R
n A(V ), and A

and B are defined accordingly from (11). Notice the similarity
with (2). The update of the global variables is performed in
Step 14 of Algorithm 1 as follows:

�ph
i, j := (ph

i − p j |i) + (ph
i| j − p j )

2
, η j |i := η j . (15)

Their values are obtained by taking the values of �ph
i, j com-

puted according to the mean of the measurements available to
Robots i and j , respectively, at iteration s of the solver for
all h. Note that to perform the update above, it is sufficient
for Robot j to communicate the difference ph

i| j − p j and η j

along the prediction horizon for all h ∈ Idisk values.
At time 0, each robot will need to initialize y0

i . We assume
that the first time a robot enters in the communication radius
of another robot, it will communicate the required current
information to initialize the first element of the vector (which
is a parameter in the local optimization problems). Then, the
ADMM steps will be used to optimize the consensus variables
online.

The vector bi varies along the prediction horizon, but it
is not a decision variable. We can precompute its values as
follows. Robot i receives/updates iteratively the values of

4The values of �ph
i, j are shared among the robots, but for their computation,

we can use the computation units onboard of each dedicated robot.
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�ph
i, j , �ph

j,i , ηi , and pi . Hence, bi can be derived from (11)
based on the values of zi(t + k) computed at the previous
problem instant, but using the updated values of �ph

i, j ,�ph
i, j .

We could proceed differently using the values of p j and ph
j

computed by the neighboring robots. This will lead to an
ADMM strategy with more than two sets of variables to update
and requires each robot to wait for all the neighboring robots
to update their decision variables in a sequential fashion.
Our strategy allows all the robots to proceed in parallel with
their local computations. Furthermore, the direct use of p j

and ph
j means that the ADMM strategy operates directly on

the collision avoidance constraints (that can be converted to
equality constraints using nonconvex indicator functions in the
cost). This leads to nonlinear equality constraints that might
compromise the convergence of the ADMM algorithm.

Algorithm 1 requires the robots to exchange information at
given synchronization points (Steps 11 and 15). At Step 11,
each robot sends its own predicted position and orientation;
that is, it sends to its neighbors a vector of size 3N × 1.
At Step 15, each robot sends to its neighbors a vector of size
2h N × 1 according to the definition of �ph

i, j .

C. Convergence of Algorithm 1

Given the similarity of Algorithm 1 with the nonconvex
ADMM proposed in [40], we can rely on the theoretical analy-
sis of [40] to provide convergence guarantees for Algorithm 1.

Theorem 1: Let β ∈ (0, 2) and ρ > 2L/ eigmin(BT B),
L > 0. Assume that a feasible solution of the centralized
coordination problem (9) exists. Then, Algorithm 1 converges
asymptotically to a (locally) optimal solution of the coordina-
tion problem.

Proof: To prove the theorem, we show that the problem
we want to solve [i.e., Problem (13)] satisfies the assumptions
needed to use the convergence analysis of NADMM provided
by [40]. Then, we prove the theorem using the fact that
Problem (13) is equivalent (by construction) to Problem (9)
when the constraints (15) are satisfied at equality.

We proceed as follows. First, we show that J : R
nξ → R̄,

and matrices A, B, b [in (13c)] are as follows.
1) (AJ ) is a Lower Semicontinuous Function: Note that

in our problem, compared with the framework of [40],
we have to consider that ξ ∈ F . We can reformulate
the inner problem associated with ξ using the indicator
function δF , which is 0 if ξ ∈ F and ∞ otherwise.
In particular, define F := {ξ ∈ R

nξ | f (ξ ) ≤ 0},
with f (ξ ) deriving from the definition of constraints
(9b)–(9d) and (10f)–(10h). Then, the image function
(AJ ) will be (AJ )(σ ) = infξ {J (ξ) + δF ( f (ξ ))|Aξ =
σ }. Given that F is closed, δF is lower semicontinuous.
Consequently, the sum of lower semicontinuous func-
tions is still lower semicontinuous [66], and the above
holds.

2) A domJ ⊆ b + Range(B): This holds given that our B
matrix in (12c) has full column rank.

The above shows that our problem satisfies the assumptions
in [40] for the convergence of NADMM.

Algorithm 2 Asynchronous Distributed NMPC

Second, for ρ large enough, under the (nonrestrictive)
assumption that the subproblems in Algorithm 1 admit a
feasible (not necessarily unique) solution, we can establish
the convergence of our algorithm. Using [41, Th. 5.6] in our
framework, the following holds for the iterates generated by
Algorithm 1.

1) The residual (Aξ k + Byk − b)k∈N vanishes with
mini≤k �Axi + Byi − b� = O(1/(k)1/2).

2) All accumulation points (ξ , y,λ) of (ξ k, yk,λk)k∈N sat-
isfy the KKT conditions 0 ∈ ∂(ξ )+ ATy, 0 ∈ BTy, Aξ +
By = b and attain the same cost J (ξ , y), this being the
limit sequence (Lρ(ξ k, yk,λk))k∈N.

Hence, our synchronous algorithm converges asymptotically
to a locally optimal solution.

IV. ASYNCHRONOUS DISTRIBUTED NMPC

Algorithm 1 proposes a strategy to solve the coordination
of multiple robots in a distributed way. The main limitation
of this algorithm is related to the amount of information
exchanged and idle time at every iteration of the solver. Step 9
of Algorithm 1 requires the solution of a constrained nonlinear
optimization problem. Its solution might take a different
amount of time for each robot (depending on the number of
neighbors) for every iteration of the solver. In addition, in a
real setting, it might be problematic to ensure that the robots
are synchronized due to packet loss. To overcome these issues,
we propose a modified version of Algorithm 1 that allows
asynchronous communications among the robots and mitigates
the effects of packet loss. The key insight for this algorithm is
to rely on the NMPC feature of providing predictions to help
the robots achieve consensus.
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A. Proposed Design

Algorithm 2 details our proposed asynchronous strategy.
The asynchronous NADMM strategy (Steps 7–24) differs from
the one used in Algorithm 1 (Steps 5–17) in the way the robots
exchange information. The synchronization Steps 11 and 15 of
Algorithm 1 are modified as described in the remainder of
the section (Steps 8–11 and Steps 18–21 of Algorithm 2,
respectively). The other steps of the algorithm are the same
as in the synchronous case. Loosely speaking, the idea is the
following. At every si iteration of the NADMM scheme, each
robot is responsible to broadcast its updated information to
its neighbors, but each robot does not have to wait for its
neighbors to send data (we highlight this using a subscript i in
the NADMM iteration counter). Every time the robot reaches a
synchronization point (Steps 6, 8, and 17), it checks whether
new information from the neighbors is available. If not, the
robot speculates that a packet might be lost and initialize the
mitigation procedure. The mitigation procedure consists of two
main steps, that are, the choice of a safety parameter 	i and
the update of the neighbors’ trajectories.

1) Selection of the Safety Parameter 	: Each robot inflates
the collision region by a quantity 	i proportional to the possible
error robot-i ’s neighbors might have on the current position of
robot i to preserve safety. Specifically, 	 is defined as follows
(we neglect the subscript i to indicate the robot):

	 = ns(tOPTvx) (16)

where tOPT is the time the robot spent to solve its local
subproblem, vx is the local longitudinal speed of the robot,
and ns is the total number of missed synchronization points
in one NADMM iteration.

2) Update of the Neighbors Trajectories: Robot i continues
its local NADMM iterates using the latest available predictions
of the neighbors. These predictions are shifted by the required
amount of steps to compensate for the asynchronous commu-
nications/packet losses (interpolating the end of the horizon
based on their predicted speed).

B. Convergence of Algorithm 2

In the following, we will show that despite the lack of
synchronous communication, Algorithm 2 converges to a (sub-
optimal) local solution of Problem (9).

Theorem 2: Under the same assumptions of Theorem 1,
assuming no plant-prediction model mismatch, and under the
following boundedness assumptions:

1) tOPT < ts N (i.e., the solving time of the local optimiza-
tion problems is smaller that the length of the horizon);

2) ns < N (i.e., the number of consecutive packet losses is
smaller that the number of NMPC stages).

Algorithm 2 converges to a (locally) suboptimal solution of
Problem 9.

Proof: Trivially, if no packet loss or synchronization
delay occurs, Algorithm 2 converges to the same solution of
Algorithm 1.

Suppose that we have two robots, namely, Robots i and j .
The asynchronous behavior is caused by different local solving
times and packet losses. Under the assumptions of the theorem,

the local solving times are bounded, as well as the packet
losses. In addition, the open-loop predictions will match the
closed-loop ones.

Suppose that at time instant t , Robot i is faster than robot j
to solve its local problem, that is, t i

OPT < t j
OPT. When robot i

reaches the coordination checkpoint with robot j , it will not
find any updated information from Robot j (note that, from
the perspective of Robot i , it does not matter whether there
was a packet loss or a smaller computation time). To proceed,
Robot i accounts for the additional distance it will cover due
to the smaller computation time by enlarging its collision
avoidance region by 	i according to (16). In addition, using
the latest information from Robot j (i.e., the information
received at time t − 1) shifted in time, Robot i optimizes
by speculating on the behavior of robot j . Using robot- j
predictions, Robot i is virtually synchronizing with Robot j
on a more conservative problem formulation that accounts
for different computation times and delayed information (due
to the packet loss). Similarly, when Robot j will reach the
synchronization point with Robot i , it will find the updated
information from Robot i (which already moved forward in
the optimization process). Given that robot i is not aware of
t j
OPT, robot j enlarges its feasible region by 	 j to anticipate

possible collisions due to the mismatch. In addition, given that
Robot i already moved forward, Robot j will anticipate for its
local delay using the shifted prediction of Robot i . Under the
boundedness assumptions of the theorem, because of the use
of the NMPC predictions to virtually synchronize the robots,
Algorithm 2 can be casted in a synchronous one. Compared
with the synchronous algorithm, however, Algorithm 2 solves
the modified local-NMPC problems (with a more conservative
feasible region), whose level of suboptimality is proportional
to the computation time of the local subproblem and to the
number of packet losses.

C. Discussion

The proposed asynchronous strategy is tailored to the
NMPC framework. Without the use of the predictions to
virtually synchronize the robots, it would not be possible
to provide any guarantee related to the convergence of the
algorithm. In addition, we will show that the boundedness
assumptions required by Algorithm 2 are reasonable based on
the simulation results provided in Section V.

The strongest assumption we made is related to the no-
model-mismatch assumption. We will show in the simulation
and experimental results how the proposed algorithm performs
if this assumption does not hold (e.g., Fig. 6(c) or results
presented in Section V-D). In general, the plant-prediction
model mismatches could be compensated by adding more
complexity to the NMPC prediction model to improve the
quality of the predictions and using a more conservative choice
of the safety parameter based on the expected deviation of
the plant by the predicted trajectories. In addition, recall that
the proposed strategy operates at planning level. A low-level
controller can help to mitigate the effect of the plant-prediction
model mismatch.

Compared with an approach that only computes local paths
based on the previously computed neighbors’ predictions, our
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asynchronous approach still allows the individual robots to
reach consensus based on the neighbors expected behavior.
In addition, by allowing multiple exchanges of information
within a sampling Instant, our algorithm is more resilient
to packet losses that can occur when exchanging a single
individual trajectory. That is, suppose that Robot i reaches
the first coordination checkpoint before the other robots.
With no ADMM exchanges, Robot i will miss updates from
the neighbors that might arrive just a few millisecond later.
Because of the multiple ADMM iterates, within the same
sampling instant, Robot i can go back to the checkpoint and
check again for available information.

The asynchronous approach allows the individual robots to
mitigate packet losses and to use non-blocking information
exchanges. Compared with the synchronous implementation,
however, this approach leads to more conservative behaviors
due to the preventive enlargement of the collision-free region
of the individual robots by 	. The proposed mitigation strategy
is currently based on the local information the robot has
and by relying on communication. This is to show and
discuss the behavior of the proposed algorithm in the worst-
case scenario of minimal sensor information. Alternatively,
we could combine the information received from the other
robots with local onboard sensor information (e.g., camera
and lidar) to refine our estimate and further improve the
resilience to communication faults. Otherwise, an additional
detection module or a model of the packet loss for the selected
communication network might help reduce the conservatism
in the solution. Finally, the local solvers will always introduce
a delay due to different tOPT values. Using a solver with
real-time computation guarantees (e.g., for convex distributed
MPC formulation, there are variations of gradient descent
that can provide these guarantees [46], [67]), we could better
anticipate this delays.

V. NUMERICAL RESULTS

This section shows the performance of our algorithms to
control a team of autonomous vehicles, both in simulation
and with real-life experiments.

To describe the vehicle dynamics in the local MPC formu-
lations, we used the following kinematic bicycle model [68]:

ẋ = vx cos(η), ẏ = vx sin(η), η̇ = vx tan(ω)

L
(17a)

v̇x = ax, ȧy = (2axω + vxδ)
vx

L
, ω̇ = δ (17b)

where the states are the position of the vehicle p := [x y]T,
the orientation η, the velocity in the longitudinal direction vx ,
the lateral acceleration ay, and the angular velocity ω. The
commands are the longitudinal acceleration ax and the steering
change rate δ, respectively. L is the length of the vehicle.
Based on these quantities, we derived am, aM , and r .

The commands and the states are subject to the following
constraints: ax ∈ [ax , āx ], δ ∈ [δ, δ̄], vx ∈ [v x , v̄x ], ay ∈
[ay, āy], η ∈ [η, η̄], and ω ∈ [ω, ω̄]. The values of bounds are
reported in Table I for both the simulation environment and
the experimental platform. In the reminder of the section,
we compare the performance of Algorithms 1 and 2 with the

TABLE I

CONSTRAINT BOUNDS AND RELEVANT QUANTITIES USED FOR
THE SIMULATIONS AND FOR THE EXPERIMENTS

one of the centralized approach. For the comparison, we made
the following assumptions.

1) The communication radius is sufficiently large that each
vehicle is aware of the position of the neighbors from
the beginning of the experiment.

2) There is no model mismatch between the MPC predic-
tion model and the plant model; that is, we assume that
both models are discretized at 0.1 s, and the planned
input is applied to the plant instantaneously (only for
the simulations).

These assumptions are needed to have a fair comparison with
the centralized approach, whose computation time will be
too large for a more realistic implementation. Later, in the
section, we will relax these assumptions (also in simulation)
for the asynchronous design to show how it performs in
the presence of model mismatch and smaller communication
radius.

We tuned the centralized algorithm to ensure that the
coordination has a feasible solution (to satisfy the assumptions
of the theorems). Then, we kept the same tuning for both
the synchronous and asynchronous algorithms (see Table I).
In addition, we set the ADMM iterations of the synchronous
algorithm to ten to show how it can reach the accuracy of the
centralized one with a sufficiently large number of iterations
(recall that the ADMM ensure convergence only asymptoti-
cally), and we set the ADMM iterations of the asynchronous
one to two to work with performance close to real time.
We could reduce the number of iterations of the synchronous
algorithm by enlarging its feasible region to account for the
early termination of the ADMM solver. However, we want to
show first how the synchronous algorithm solves the original
problem in practice. Then, later, to evaluate the computation
time of the synchronous algorithm, we set the number of
iterations to two to compare with the asynchronous one, and
we enlarged the feasible region by tsv ref m to compensate for
the early termination of the solver.

We relied on FORCES Pro [51] to solve the local nonconvex
optimization problems. For the simulations, the algorithms are
implemented in MATLAB R2017b running on a Windows OS
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Fig. 4. Performance of Algorithms 1 and 2 (third row) compared with the centralized formulation in an intersection crossing scenario (Scenario 1). The figure
compares the behavior of the three methods at critical time instances of the coordination. (a) Centralized algorithm (baseline). (b) Synchronous algorithm (see
Algorithm 1). (c) Asynchronous algorithm (see Algorithm 2).

with an Intel5 Xeon5 CPU @ 3.60 GHz. Each vehicle runs on
an independent MATLAB worker and communicates with the
other vehicles using the message passing algorithm supported
by MATLAB. For the synchronous algorithm, we enforced
the synchronization with barrier functions. For the asynchro-
nous implementation, we allowed each worker to broadcast
its information with a time stamp to have non-blocking
interactions. Both the unpredictable optimization times and
the communication strategy will introduce random packet
losses/asynchronicity. We do not explicitly model packet loss.
Each time a robot reaches a synchronization point, if no infor-
mation is available, we assume that the information is lost, and
the robot moves forward according to the strategy proposed in
Algorithm 2. In the remainder of the section, we will depict
the vehicles as colored rectangles. In addition, the global path
that the vehicles are following will be represented in dashed
lines, whose color matches the ones of the associated vehicle.
Furthermore, we will represent the trajectory that each vehicle
will follow along the horizon at time t with solid lines, whose
color matches the one of the associated vehicles. A video
accompanies the paper [69].

A. Uncontrolled Intersection Crossing With Four Vehicles

1) Comparison Without Model Mismatch: Fig. 4 com-
pares the centralized design with the distributed approaches.
All the three approaches are able to cross the intersection.

5Registered trademark.

Fig. 5. Safety parameter 	i (i = 1, . . . , 4) in Scenario 1. The colors match
the ones of the vehicles in Fig. 4.

The asynchronous implementation, however, converges to a
slightly different solution compared with the synchronous and
centralized ones. This is caused by the limited number of
iterations we used for the ADMM strategy of the asynchronous
algorithm to reduce the computational overhead. In addition,
the synchronous algorithm is able to recover the solution of the
centralized approach despite the distributed implementation.
Both the synchronous (second row of Fig. 4) and asynchronous
(bottom row of Fig. 4) approaches are able to preserve safety
(no collision during the coordination) because of the local hard
collision avoidance constraints and the regularization term in
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Fig. 6. Performance of Algorithm 2 (a) without model mismatch and without safety parameter 	i = 0, (b) without model mismatch, and (c) with model
mismatch and limited communication range (Scenario 1).

the augmented Lagrangian that enforces consistency between
the local subproblems. For the asynchronous implementation,
we run multiple (≈100) instances of the proposed scenario to
test the robustness of the approach to asynchronous commu-
nications and packet losses. Because of the adaptive selection
of the safety parameter 	, the algorithm preserved safety in all
the experiments.

Fig. 5 shows the changes in the safety parameter 	 during
the simulation depicted in Fig. 4. Note that around 30 s,
the 	 values of the blue and green vehicles have a small
increase. This is because the computation time of the local
solutions sharply increases due to the increase in the number of
active constraints along the prediction horizon (the robots are
approaching the intersection, and the coordination should be
much tighter). Afterward, the values slightly decrease, because
the robots decrease their speed to cross the intersection,
reducing the predicted distance they plan to cover between
two time steps.

2) Comparison With and Without Safety Parameter 	i :
Fig. 6(a) and (b) shows the importance of the safety para-
meter 	 required by the asynchronous algorithm according
to Theorem 2. As Fig. 6(a) shows, without 	, due to the
presence of delays and packet losses, the algorithm is not able
to guarantee collision-free trajectories (as the third and fourth
columns show).

3) Comparison With Model Mismatch: Fig. 6(c) shows
the performance of Algorithm 2 in a more realistic setting.
In particular, we consider a model mismatch between the
plant and the prediction model; that is, the plant is discretized

Fig. 7. Safety parameter 	i in Scenario 1 with model mismatch.

at 0.01 s, while the prediction model is discretized at 0.1 s.
This means that while the planner is computing a feasible
trajectory, the vehicles keeps using the previously computed
commands to compensate for the lack of new information.
In addition, we considered that the vehicles can only communi-
cate within a communication radius of 100 m (we selected this
range according to a recent study on vehicular ad hoc network
(VANET) communication technologies [70]). Note that despite
the model mismatch and the limited communication range,
Algorithm 2 is still able to find a suitable crossing strategy.
Note that the safety parameter 	 also adapts compared with
the behavior of 	 without model mismatch (as Figs. 5 and 7
depict).
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TABLE II

TABLE COMPARED THE PERFORMANCE IN TERMS OF OVERALL TIME (SYNCHRONIZATION PLUS ONLINE OPTIMIZATION TIMES) OF THE PROPOSED
DISTRIBUTED ALGORITHMS WITH THE CENTRALIZED ONE IN THE INTERSECTION CROSSING SCENARIO (SCENARIO 1).

THE TIMES ARE CALCULATED FOR EACH VEHICLE AND OVER 11 SIMULATIONS

Fig. 8. Performance of Algorithms 1 and 2 compared with the centralized formulation in Scenario 2. Due to significant packet losses and delays, the
asynchronous algorithm becomes more conservative compared with the synchronous and centralized ones. (a) Centralized algorithm (baseline). (b) Synchronous
algorithm (see Algorithm 1). (c) Asynchronous algorithm (see Algorithm 2).

4) Coordination Time: Table II provides a comparison of
the coordination time of the three algorithms over 11 runs
of Scenario 1. Note that the proposed asynchronous strategy
outperforms the synchronous and the centralized approach
in terms of computation time. The 90 percentile metrics
shows that the asynchronous planner returns a solution within
0.05 s, almost an order of magnitude smaller than the syn-
chronous and the centralized methods that need 0.6 and 0.3 s,
respectively. Note that the large coordination times of the
synchronous algorithm are mostly due to the synchronization
overhead. If no synchronization overhead is present, the syn-
chronous algorithm will perform similar to the asynchronous
one in terms of coordination times.

B. Platooning With Four Vehicles

1) No Model Mismatch: Fig. 8 compares the centralized
design with the distributed approaches in the platoon formation
scenario, that is, Scenario 2.6 We compared the algorithms

6We only report the simulation results with no model mismatch for this
scenario, given that the results do not add additional information compared
with the previous ones.

Fig. 9. Values of 	i (i = 1, . . . , 4) used to inflate the collision-free region
to protect the vehicles from collisions due to packet losses in Scenario 2.

with no model mismatch and with an infinite communication
radius. We selected this experiment to show how the asyn-
chronous algorithm can some time be over conservative if a
large number of packet losses occur or the vehicles go heavily
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TABLE III

TABLE COMPARED THE PERFORMANCE IN TERMS OF OVERALL TIME (SYNCHRONIZATION PLUS ONLINE OPTIMIZATION TIMES) OF THE PROPOSED
DISTRIBUTED ALGORITHMS WITH THE CENTRALIZED ONE IN THE PLATOON FORMATION SCENARIO (SCENARIO 2).

THE TIMES ARE CALCULATED FOR EACH VEHICLE AND OVER 11 SIMULATIONS

Fig. 10. Performance of Algorithm 2 in an intersection crossing scenario with eight vehicles involved.

TABLE IV

TABLE REPORTS THE OPTIMIZATION TIMES OF THE PROPOSED DISTRIBUTED COORDINATION STRATEGY (USING ALGORITHM 2) IN AN INTERSECTION
CROSSING SCENARIO WITH EIGHT VEHICLES. THE TIMES ARE CALCULATED FOR EACH VEHICLE AND OVER 11 SIMULATIONS

out of sync (we lowered the worker process priority to worsen
the performance of the algorithm). Note that for this scenario,
the synchronous algorithm shows again similar performance
to the centralized one. The distributed algorithms are able to
coordinate the vehicles to merge into a platoon formation and
later split to proceed on different lanes. Concerning the asyn-
chronous algorithm, the obtained solution is more conservative
than the synchronous one. The conservatism can be explained
by looking at the safety parameter of the red vehicle (which
is in front of the green and the blue ones) depicted in Fig. 9.
The spikes are associated with the substantial delay in the
computation time of the red vehicle that increases its safety
region to protect the neighboring vehicles from collision.

2) Coordination Time: Table III provides a comparison of
the coordination time of the three algorithms over 11 runs
of Scenario 2. Similar to the previous scenario, the pro-
posed asynchronous strategy outperforms the synchronous and
the centralized approach in terms of computation time. The
90 percentile metrics shows that the asynchronous planner
returns a solution within 0.04 s, an order of magnitude
smaller than the synchronous and the centralized methods that
need 0.4 and 0.3 s, respectively.

C. Intersection Crossing With Eight Vehicles

Fig. 10 shows a scenario in which eight vehicles coordinate
at an intersection crossing scenario. As the figure shows,

the vehicles are able to successfully cross the intersection
without collisions by exchanging information according to
Algorithm 2. The tuning of the algorithm (e.g., the values of N
and ρ) is the same compared with the one used in the previous
simulations. However, due to the increasing number of neigh-
bors for each individual robot, the computation time of the
method increases (as Table IV shows), and it is approximately
three times slower than the same crossing scenario with just
four vehicles. Notice, however, that the computation time is
still close to the sampling time of the system according to the
mean and 90 percentile results. In addition, we expect further
speedup when running each of the vehicles on independent
machines (the computer used for the experiments has only
four independent cores).

D. Experimental Results

We tested Algorithm 2 using a team of three small-scale
autonomous vehicles. The vehicles are based on the Waveshare
JetRacer Pro AI5 kit, a platform suited to replicate the behavior
of full scale vehicles. The vehicles use RC380 carbon brushed
motors for locomotion. The steering is controlled by an E6001
servo motor. Wi-Fi connectivity is provided by a 2.4/5-GHz
Dual-band Wireless AC8265 module. An electronic speed
controller (ESC) is used to interface the Jetson Nano board
with the driving motor and steering servomotor. For our exper-
iments, we used a Motive OptiTrack5 external motion capture
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Fig. 11. Experimental results of both the unsupervised intersection crossing and lane merging scenarios. (a) Unsupervised intersection crossing.
(b) Unsupervised lane merging.

TABLE V

TABLE PROVIDES THE COMPUTATION TIMES OF ALGORITHM 2 OBTAINED DURING THE EXPERIMENTS

Fig. 12. Values of 	i (i = 1, . . . , 3) used to inflate the collision-free region
of each vehicle due to asynchronous communications during the experiments.
(a) Unsupervised intersection crossing. (b) Unsupervised lane merging.

system to analyze the performance of the motion planning
algorithm alone. The algorithm runs on a computational unit
with a AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz
and Ubuntu 20.04. The commands are sent to the robots using
a dedicated ROS network.

The dimension of the map has been adapted to match the
laboratory space availability and the size of the mobile robots.
The weights used in the algorithm have been consequently
adjusted. Fig. 11 shows the predicted trajectories (solid lines)
and the position of the robots (colored boxed) measured by
the motion tracking system for the following: 1) a crossing
scenario and 2) a merging scenario at given time instances.
The dashed lines highlight the high-level reference path.
The vehicles in both scenarios are able to safely complete the
maneuvers without collisions. The computation time of the
algorithm is comparable to the results obtained in simulation,
as Table V shows. In addition, the effects of the asynchronous
communications are compensated by the activation of the
safety parameter during the maneuver, as shown in Fig. 12.

A full video of the experiments is provided in [69]. These
experiments show the potential of the proposed scenario for
real-life applications and to deal with realistic communication
networks.

VI. CONCLUSION AND FUTURE WORK

We proposed two distributed local motion planners based
on the NMPC for the coordination of autonomous robots.
The proposed algorithms allow the robots to communicate
and agree on a common safe navigation strategy without the
need of a central coordinator. The two algorithms differ in
the way the communication among the robots is handled.
In particular, the synchronous distributed NMPC design allows
for a synchronous exchange of information among the robots
and ensures convergence to a (locally) optimal solution of the
coordination problem. The asynchronous distributed NMPC
design allows for an asynchronous exchange of information
among the robots and ensures convergence to a (locally)
suboptimal solution of the coordination problem.

We compared the proposed designs for the control of
autonomous vehicles at a crossing and in a platoon formation
scenario, both in simulation and with experiments. The asyn-
chronous algorithm was able to safely accomplish the planning
goals, while dealing with packet losses (caused by the robots
going out of synch during the coordination). In addition, the
asynchronous algorithm drastically reduced the local optimiza-
tion times and the communication overhead by an order of
magnitude, compared with a centralized implementation of the
coordination strategy and the synchronous algorithm.

The proposed algorithms are general and could be applied
for the distributed coordination of vessels, drones, or other
types of mobile robots. This is part of our future research.
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