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Preface

This thesis was meant to extensively cover the nonlinear control theory of motional feedback loudspeaker
systems. We realized how useful it would be to have a nonlinear model of the loudspeaker in question, to
demonstrate the effect of any controller. Creating such a model, however, took so much time that analyzing
nonlinear controllers was never endeavoured. Nevertheless, the measurement of a nonlinear system turned
out to be quite interesting in itself.

We would like to thank our supervisor, Dr. Janssen, for his interest and support throughout the course of
the project. We would also like to thank the Tellegen Hall personnel for their help and for providing most
of the measuring equipment. Finally, we want to thank the jury members for evaluating our resuls.

"I have found ten thousand ways that won’t work." - Thomas Edison

Aart-Peter Schipper & Alexandros Skourtis-Cabrera
Delft, June 2018
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Abstract

The aim of this research is to create a nonlinear model of a loudspeaker to analyze the open-loop distortion
as well as the closed loop performance with linear and nonlinear controllers. A method is proposed for
measuring the dominant nonlinear parameters of a loudspeakers. Furthermore, the loudspeaker distortion is
both measured experimentally and simulated using the nonlinear model. The method for nonlinear system
identification suffers from poor accuracy and takes into account neither the Eddy current losses, frequency
dependent compliance and damping nor visco-elastic effects of the loudspeaker surround material. The
simulations and measurements of distortion are not in agreement.
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1
Introduction

A loudspeaker, like any real electro-mechanical transducer, is a non-ideal device with physical properties
and limitations. At low signal amplitudes, where its behaviour can be approximated as linear, the speaker
manifests distortion of the input signal in the form of non-flat transfer. At high excursions of the cone and
especially when reproducing lower frequencies where high amplitudes are needed to generate the same
audio power, non-linearities in the electrical and mechanical properties of the speaker cause additional de-
formation of the sound in the form of audible harmonic and intermodulation distortion.

One way to reduce the detrimental effects of both the linear and non-linear behaviour of the speaker is by
using feedback to correct for this distortion. Some sources of feedback signals that have been used are the
back EMF of the speaker voice coil [20] and that of a secondary voice coil mounted on the diaphragm [7],
but these methods are not sufficient to produce the best possible results.

The concept of Motional Feedback will be studied and applied as our Bachelor’s Graduation Project. The
team working on this project consists of three sub-groups each working on a different implementation of
this concept, namely: the analogue, digital and theory group. It is meant that the digital group will try
to come up with a digital implementation of this motional feedback controller. The analogue group is
expected to design an analogue implementation of this system. The theory group will parameterize the
speaker in order to create a model of the non-linear loudspeaker and work towards designing an optimal
controller. This model as well as the measurement setup and code used to measure the performance of the
speaker will be used to validate the controller designed by the other two subgroups. This thesis will cover
the work done by the theory sub-group.

In 1968, a motional feedback system was proposed by Philips [13] to suppress linear and non-linear dis-
tortion in bass speakers. The system used a piezoelectric accelerometer mounted on the speaker cone to
measure its acceleration. The recorded signal was fed back to a control system which compensated for the
distortion and improved the performance of the speaker.

Advances in digital technology and methods in modeling and design have allowed for the design of more
advanced controllers, and a few implementations of motional feedback systems have been attempted [1]
[27]. As part of the Bachelor graduation project of Electrical engineering at TU-Delft, this thesis presents
the parameterisation and modelling of a black box non-linear loudspeaker for the purpose of designing an
optimal motional feedback system. A linear model can be used to design the feedback controller, but a
non-linear model of the system is needed to design an optimal non-linear system, as well as to investigate
the effects of a linear controller on a non-linear speaker.

Several successful attempts have been made in the parameterisation and modelling of a non-linear loud-
speaker [8] [14]. However, these methods rely on the precise knowledge of the excursion of the loud-
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2 1. Introduction

speaker at any time during measurement, which requires the use of specialized equipment such as a laser
interferometer. In the absence of such specialized equipment or the necessary budget therefor, a different
methodology is required for the parameterization of a non-specified, black box loudspeaker. To this end
and to facilitate the design and testing of a motional feedback system for bass loudspeakers by the two
other subgroups, a different methodology is proposed for the non-linear analysis of a loudspeaker. This
methodology relies on impedance measurements of the speaker using simple circuitry, a USB soundcard
and computational methods in MATLAB and Simulink.

First, the programme of requirements for the Motional Feedback System is listed. Then, the underlying
theory of the function of the ideal, linear and non-linear speakers is explained in chapter 2. The derivation
of the state space model and equivalent electrical circuit of the system is presented in chapter 3, followed
by a detailed description of the method used to parameterize the speaker in chapter 4. The results of the
impedance measurements are then listed and discussed and the model is validated.

The deliverables of the theory sub-group are (1) MATLAB code and a measurement setup to be used for
the evaluation of a loudspeaker system’s performance in terms of linear and non-linear distortion, (2) a
methodology and measurement setup that allows for the non-linear parameterization of a loudspeaker and
(3) a theoretical non-linear model of the loudspeaker implemented using MATLAB and Simulink. By the
end of the project, a theoretical controller implemented in MATLAB and Simulink may also be delivered.

1.1. Programme of Requirements
The products to be developed are an analogue and a digital implementation of a motional feedback sys-
tem for a bass loudspeaker using the feedback signal of a piezo-electric accelerometer mounted on the
speaker cone, as well a theoretical model of a loudspeaker and motional feedback controller. The system
is a low-cost, small format implementation which can easily be adjusted to be used for different speakers
with different characteristics. The system is aimed towards commercial loudspeaker manufacturers to be
included in active loudspeaker systems. The consumer good must meet or improve on the specifications
listed in section 1.1.1 when using motional feedback. It also has to be available for a lower price than other
motional feedback loudspeaker systems with similar specifications available on the market.

1.1.1. Requirement formulation
1. MR: mandatory requirements

• A woofer loudspeaker diaphragm is equipped with a piezo-electric accelerometer. The signal
thereof is to be included in a negative feedback loop; this principle is known as Motional
Feedback (MFB);

• The system should operate in a bandwidth from 10−300H z, however, a 1kH z bandwidth is
highly desirable. The highest attainable bandwidth is 2kH z due to sensor limitations;

• The cost of the system should be no more than C 100 .

• The volume of the controller should be 0.5 L maximum;

• The Total Harmonic Distortion (THD) should be reduced to 0.1%;

• The largest acceptable delay that is introduced as a result of the controller is 120 ms. This is
the delay that the user may experience when playing sound through the system;

• The power consumption of the controller should be 100 mW.

• The theoretical model of the loudspeaker must be accurate enough that the relative error in the
simulated and measured Total HD is not larger than 1% in the bandwidth stated above.

2. ToRs: Trade-off requirements

• The desired Signal to Noise Ratio (SNR) is at least 100 dB. Nevertheless, a 16 bit digital system
may offer some advantages due to faster communication possibilities and lower cost. The SNR
of a 16 bit system is at most 80 dB, but this acceptable also;
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• The system is optimised for the specific loudspeaker and amplifier that have been made avail-
able for this project. The system should ideally be also applicable to other configurations,
considering the typical amplifier gain is 20−30 dB.

• The system must be stable, which implies that both the gain and phase margins must be reason-
able. Precise minima were not given, but a phase margin of 45 degrees was proposed, alongside
a gain margin of 3 dB.

1.1.2. Study-case
1. Functional Requirements

(a) The MFB system must operate whenever the loudspeaker system is turned on without requiring
additional steps from the user.

(b) The loudspeaker system’s user interface may contain a switch to turn motional feedback on and
off.

2. System Requirements

(a) Utilisation features

i. The lifespan of the feedback controller and accelerometer must be at least as long as the
lifespan of the loudspeakers in which it is included.

ii. If support and/or maintenance is provided for the loudspeaker system, this must include
support for the MFB system.

(b) Production and putting into use features

i. Inclusion of the MFB system must take place during the development of the loudspeaker
system in cooperation between the loudspeaker manufacturer and the company implement-
ing motional feedback.

ii. The loudspeaker must undergo testing by the company before and after the inclusion of
the MFB system to ensure MFB meets performance specifications.

iii. The company implementing motional feedback will provide the piezo-electric accelerom-
eter and controller to the loudspeaker manufacturer. The manufacturer must install the
MFB hardware into the consumer product during assembly. Placement of the controller
inside the loudspeaker will be discussed with the manufacturer on a case by case basis.

(c) Discarding features

i. If the hardware of the MFB system is enclosed in a casing, the casing must be made from
recyclable materials.

ii. In case the MFB system’s lifespan exceeds that of the speaker itself, the manufacturer must
provide to the consumer the option of returning the MFB hardware for use in a refurbished
product

3. Development of manufacturing methodologies

(a) The digital version of the MFB controller will be implemented as an ASIC.

(b) The ASIC must be adjustable after manufacturing to meet specifications in any loudspeakers in
which it is included; Only one version of the ASIC will be developed and manufactured.

(c) The theoretical model of the loudspeaker and controller will be implemented in MATLAB and
Simulink.

(d) A protocol and measurement setup will be developed for quick testing and validation of the
loudspeaker system before and after the inclusion of MFB. Testing on a loudspeaker must not
take longer than 20 minutes.

4. Liquidation/recycling methodologies
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(a) At the end of the product’s lifespan, the discarding thereof must comply to the norms referring
to processing of small chemical waste.

5. Business strategies, marketing an sales opportunities

(a) The manufacturer of the loudspeaker must explicitly state the inclusion of the MFB feature on
the packaging and documentation of the final product

(b) the logo of the company implementing motional feedback must be included on the packaging
and casing of the final product by the manufacturer.



2
Theory

An extremely simplified model of a woofer loudspeaker is given in figure 2.1. The system is considered
mass-less, with the coil having infinite conductance. The coil is enveloped by a homogeneous, inward
pointing magnetic flux density B, that is orthogonal to the coil windings. Such a magnetic field cannot
be generated in practice, since ∇ ·B must vanish. Nevertheless, it is possible to create a field that has
properties similar to that of the ideal distribution, as will be discussed in section 2.2. The half spaces
that are separated by the piston extend to infinity and are filled with air with equilibrium density ρ0 and
equilibrium (hydrostatic) pressure P0. The present analysis is limited to one dimension, but following the
same principles, the equations for three dimensions can be derived as is done in section 2.1.11. Thus, the
velocity u and acoustic pressure p are assumed to be a function of x, the only spatial dimension, and time
t . The derivations in this chapter are based on [19] and [3].

Figure 2.1: Simplified model of a loudspeaker with one dimensional acoustic environment

2.1. Ideal Loudspeaker
Referring to figure 2.1, we will consider the infinitesimal static volume dV = Adx, where A is the surface
of the piston. If there is a flow of air molecules in the positive x direction, the mass balance of particles in

1A thorough derivation of the linearized wave equation, listing all assumptions can be found in [19].
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6 2. Theory

the volume can be evaluated; the result is given in equation 2.1.The mass increase is denoted by dm and
W is the volume displacement.

∂

∂t
m = ρ(x)

∂

∂t
W (x)−ρ(x +dx)

∂

∂t
W (x +dx) (2.1)

The mass increase can be related to the change in density: dm = Aρdx. Furthermore, the rate of change
of volume displacement can be related to the particle velocity u: ∂

∂t W = Au. Henceforth, the local rate of
change of density can be computed using equation 2.2.

∂

∂t
ρ =−ρ(x +dx)u(x +dx)−ρ(x)u(x)

dx
= ∂

∂x
(ρu) (2.2)

The expression of equation 2.2 can be simplified by assuming that the pressure can be written as ρ =
ρ0(1+ s). The variable s is the condensation, which is assumed to be very small, i.e. s ¿ 1. Furthermore,
ρ0 is assumed to be approximately constant in space and time. The resulting equation is given in 2.3 and is
known as the linear continuity equation (in one dimension).

∂

∂t
s + ∂

∂x
(0u) = 0 (2.3)

Referring back to figure 2.1, we will now considered the volume dV to move along with the airflow.
Equation 2.4 relates the force that is exerted on the volume to the pressure difference across the differential
volume. p is the acoustic pressure, which is related to the instantaneous pressure P by p = P −P0. The
effects of gravity are ignored.

dF = p(x)A−p(x +dx)A =− ∂

∂t
pdV (2.4)

The force dF of equation 2.4 can be related to the acceleration of the particles via Newton’s second law:
dF = adm. Using dm ≈ ρ0dV and a ≈ ∂

∂t u, we arrive at the linearized Euler’s equation, that is given in 2.5.
This equation is valid if spatial variations of u are much smaller than temporal variations of u and if the
condensation is small. These approximations are valid for acoustic excitations of low amplitude.

ρ0
∂

∂t
u =− ∂

∂x
p (2.5)

Acoustic processes are approximately adiabatic [19] [3], i.e. there is no heat transfer or work done on the
system. This assumption is valid if the temperature gradients that arise due to acoustic excitation are small.
Furthermore, the assumption implies that the dissipation of acoustic energy is small. For an adiabatic
process, the following relation holds, where Γ is a constant:

PV γ = Γ (2.6)

The exponent γ in equation 2.6 is the ratio of heat capacities: γ= CP
CV

. A fundamental derrivation of these
thermodynamic properties can be found in e.g. [24]. For an ideal, diatomic gas, γ = 7

5 . Considering a
system of fixed mass m, the pressure and density can be related to the equilibrium pressure and density:
P = P0

(
ρ
ρ0

)γ
. Linearizing this equation and substituting p = P −P0 yields the expression of 2.7.

p = ∂p

∂ρ
(ρ0)(ρ−ρ0) = ρ0c2

0 s (2.7)

Now we have related the pressure to the condensation s using the constants ρ0 and c0, which is the speed
of sound. The above equation can be combined with equations 2.3 and 2.5. Firstly, temporal differentiation
has to be applied to equation 2.3, and spatial differentiation to equation 2.5. The continuity equation
becomes: ∂2

∂t 2 s + ∂2

∂x∂t u = 0 and the Euler equation becomes: ρ0
∂2

∂x∂t u = − ∂2

∂x2 p. Now finally, the result of
equation 2.7 can be utilized to formulate the linearized wave equation:

c2
0
∂2

∂x2 p = ∂2

∂t 2 p (2.8)
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The solution to the wave equation can readily be found by means of separation of variables: p = X (x)T (t ).
Using −ω2 as integration constant2, and defining k = ω

c0
, the full solution is given by the expression in

equation 2.93.

p(x, t ) =
∫ ∞

−∞
Π(ω,k)e j (ωt−kx)dω (2.9)

The factor Π(ω) contains the spectral information of the pressure signal. The exact solution depends on the
boundary conditions that are imposed on the system. The boundary conditions of the system are created by
the simplified loudspeaker of figure 2.1. The current that flows through the voice coil will generate a force
that acts on the air via the piston. This force is known as the Lorentz force:

FL = q(E+υ×B) (2.10)

The electric field E = 0, for the simplified case of figure 2.1. The total force that acts upon the piston
can be found by applying 2.10 to charges inside the coil. We will assume that there is a homogeneous
charge distribution σl along the coil. Furthermore, as indicated at the beginning of this chapter, the particle
velocity υ is orthogonal to the magnetic flux density B. The total can now be found by integration along
the wire:

FL =
∫

l
σlυ×Bdl = Bl i (2.11)

Equation 2.11 indicates that the current through the voice coil is proportional to the force that is exerted on
the piston, with Bl being the factor of proportionality. The pressure at the piston surface is: p = FL

A = Bl i .
If it is assumed that the piston excursion is small compared to the wavelength of the acoustic signal4,
the piston may be assumed to be stationary in x = 0. The boundary condition may thus be expressed as:
p(0, t ) = Bl

A i (t ). Now if the current is a sinusoidal signal i = Ie jω0t , the solution to the boundary condition
problem can be found. Such a current signal is hardly arbitrary, since any signal can be decomposed into a
infinite sequence of complex exponentials via the Fourier transform.

Π(ω) = 1

2π

∫ ∞

−∞
p(0, t )e− j (ωt )dt = Bl I

A2π

∫ ∞

−∞
e j (ω0−ω)t dt = Bl I

A
δ(ω0 −ω) (2.12)

The result of equation 2.12 can be used to compute the pressure as a function of time by inserting the
expression for Π(ω) in equation 2.9. The resulting pressure is p(x, t ) = Bl I

A e j (ω0t−k0x), where k0 is defined
as k0 = ω0

c0
. The fact that this pressure wave is a complex valued expression is not surprising, since the

current was also complex valued. Obviously, it is not possible to create a complex valued current in
practice, but this assumption simplifies the mathematics. Taking the real part of the current: Re{i (t )} =
I cos(ω0t ) and and the pressure: Re{p(x, t )} = Bl I

A cos(ω0t +φ(x)), where φ(x) = k0x. It is clear now that
the current and pressure are proportional, except for a position dependent phase shift.

2.1.1. Extension to Three Dimensions
The wave equation in three dimensions is slightly more complicated than the one dimensional equation of
2.8. Using the Laplace operator ∇2, which can be expressed in Cartesian coordinates as: ∇2 = ∂

∂x + ∂
∂t + ∂

∂y ,
the linear 3D wave equation becomes:

c2
0∇2p = ∂

∂t
p (2.13)

The separation of variables technique can be applied once again by writing p(r, t ) = R(r)T (t ), where r =
x̂+ ŷ+ ẑ is the position vector and xx̂, y ŷ, zẑ are unit vectors in the x, y and z direction respectively.

2A negative integration constant is chosen in the present investigation, but this is not necessary. The integration constant can be any
complex number; a merit that can be used to describe lossy wave propagation.

3This solution comprises a wave travelling in the positive x direction. There exists a solution with a wave travelling in the opposite
direction also.

4This assumption may seem completely arbitrary, since Newton’s third law implies that the massless piston and coil move with the
same speed as the acoustic wave. A practical system, however, has a much larger mechanical impedance than the air, making the
approximation valid.
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The equations that remain are ordinary differential equations, with either spatial or temporal dependence.
Using the same integration constant as employed previously, the equation for T (t ) can be solved easily:
T (t ) = e jωt , where the constant has been absorbed into the other equation. The second equation is the
Helmholtz equation:

∇2R +k2R = 0 (2.14)

It is possible to solve the Helmholtz equation using separation of variables using separation of variables,
but it makes sense to assume spherical symmetry. The Laplace operator in spherical coordinates is: ∇2 =
1

r 2
∂
∂r

(
1

r 2
∂
∂r

)
+ 1

r 2 sinφ
∂
∂φ

(
si nφ ∂

∂φ

)
+ 1

r 2 sin2φ
∂2

∂θ2 , with r the distance to the origin, θ the polar angle and φ the
azimuthal angle. Fortunately, since we have assumed that the wave is spherically symmetrical, the partial
derivatives with respect to φ and θ vanish. The differential equation that is left only depends on r :

∂2

∂r 2 R + 2

r

∂

∂r
R +k2R (2.15)

The above equation may seem complicated to solve, but the solution is actually rather easy to guess. From
practical experience it is known that sound waves are attenuated over distance. Specifically, the sound
pressure level decreases with 1

r . A solution of the form R(r ) = 1
r e− j kr is therefore proposed. The first and

second order derivatives of this function are: ∂
∂r R =− j kR− 1

r R and ∂2

∂r 2 R =−k2R+ j 2k
r R+ 2

r 2 R. Clearly, this
is a solution to the Helmholtz equation, provided that the wave is spherically symmetrical. The complete
solution to the equation involves the superposition of all spectral components as indicated by equation 2.16.

p(r, t ) =
∫ ∞

−∞
Π(ω)

1

r
e j (ωt−kr )dω (2.16)

Note that this expression for p satisfies the wave equation in all points except in the origin, i.e. r = 0. This
is not quite so surprising, as it is expected that a pressure source is located in the origin. The expression
does, however, satisfy the inhomogeneous wave equation 5 that is given in equation 2.17.

c2
0∇2p = ∂

∂t
p −δ(r)S(ωt ) (2.17)

The Dirac delta function in equation 2.17 has been extended to three dimensions, such that
Ð

V δ(r)dV = 1
provided that the point r = 0 is part of V ; the integral is zero otherwise. S(ωt ) is an arbitrary input signal.
To demonstrate that the expression previously found for p is indeed consistent with the inhomogeneous
wave equation, both sides of the expression will be integrated over a volume that includes the origin:

c2
0

Ñ
V
∇2pdV =

Ñ
V

∂2

∂t 2 pdV − s(t ) (2.18)

The expression on the left can be simplified considerably by application of the divergence theorem and by
assuming that the volume is a sphere with radius R0:

Ð
V ∇2pdV = Ò

S ∇p ·dr̂ =, where r̂ is a unit vector
pointing in the positive r direction. The gradient can thus be reduced to: ∇p = ∂

∂r p r̂, since the angular
components are irrelevant for the chosen control volume. The resulting expression is given in equation
2.19.

c2
0

Ñ
V
∇2pdV =−4πc2

0

∫ ∞

−∞
Π(ω)(1+ j kR0)e j (ωt−kR0)dω (2.19)

The second integral is slightly more complicated. However, by bringing the differential operator ∂2

∂t 2 inside
all the integrals, it becomes a multiplication with a factor −ω2. Furthermore the order of the integrals can
be rearranged to give the expression of 2.20.Ñ

V

∂2

∂t 2 pdV =
∫ ∞

−∞
−2πω2Π(ω)

Ñ
V

1

r
e j (ωt−kr )dV dω (2.20)

5The inhomogeneity of the wave equation could imply that there is a source term in the linearized continuity equation or the linearized
Euler equation. The effects of gravity, viscosity and convection also result in source terms. A complete derivation was given by
Lighthill [21].
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The volumetric integral on the right hand side of equation 2.20 can readily be computed, which yields the
expression: 2

k2 e jωt
(
(1− j kR0)e j kR0 −1

)
. With the integrals gone, except for the integral over dω, the input

signal can be computed. The resulting equation for S(t ) is given below:

s(t ) = 4πc2
0

∫ ∞

−∞
Π(ω)e jωt dω (2.21)

Applying the Fourier theorem once more, the spectral components can be found, so that the pressure can
be calculated. Now let us assume that the input signal is given as s(t ) = Se jω0t :

Π(ω) = S

4πc2
0

∫ ∞

−∞
e j (ω0−ω)t dt = S

2c2
0

δ(ω0 −ω) (2.22)

Using the result of equation 2.22 and equation 2.16, the pressure can be found. The result is: p(r, t ) =
S

4πr c2
0

e j (ω0t−k0r ). This is not entirely dissimilar to the result of the one dimensional case, except for the 1
r

factor that causes attenuation. It also must be noted that acoustic waves are not so different from electro-
magnetic waves from a mathematical point of view, as will become clear in the next section.

2.1.2. Acoustic Intensity
The time averaged sound intensity I , measured in [W/m2] is given in equation 2.23. The intensity is defined
here for a pure sinusoidal signal with period T = 2π

ω0
. For the velocity u we write u = uû, where û is a unit

vector in the direction of propagation.

I = 1

T0

∫ T0

0
pudt (2.23)

The velocity u can be found by solving the linear Euler equation in three dimensions. For a plane wave,
however, the relation between pressure and velocity is a fixed quantity: p = ρ0c0u. The factor of propor-
tionality is known as the acoustic impedance z. This is analogous for the electrical impedance, which is a
proportionality factor in the voltage-current relation. It turns out that both in case of a spherical or a plane
harmonic wave, the intensity can be written as:

I = Π2

2ρ0c0
(2.24)

Π is the amplitude of the pressure signal. If the pressure is a function of frequency, we can use Parseval’s
identity to compute the intensity. Π(ω) is the Fourier transform of p(x0, t ), where x0 is the position where
the intensity is measured.

I = 1

2ρ0c0

∫ ∞

−∞
|Π(ω)|2dω (2.25)

It is commonplace to express the intensity on the decibel scale, as expressed in equation 2.26. p f and
I f denote reference values. p is the RMS (Root Mean Square) pressure. The convention is to use
p f = 20 · 10−6 [Pa] as reference level. The corresponding reference intensity is I f = 10−12 [W/m2]. If
the aforementioned conventions are used, the intensity is referred to as the Sound Pressure Level (SPL).

SPL = 10log

(
I

I f

)
= 20log

(
p

p f

)
(2.26)

2.2. Linear Loudspeaker
In this section, a practical implementation of a moving coil loudspeaker will be discussed. A schematic
depiction of a loudspeaker diaphragm and voice coil motor is given in figure 2.2. The permanent magnets,
combined with the top plate and the pole piece, generate a nearly uniform magnetic field that is orthogonal
to the windings of the voice coil. The voice coil inside the magnetic field operates as a linear motor. This
is similar to the ideal loudspeaker that was described in section 2.1.
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Figure 2.2: Schematic representation of a loudspeaker diaphragm.[10]

2.2.1. Mass-Spring-Damper Subsystem
The means of transforming electric power into sound is provided by the mechanical system, consisting of
a spider, cone and surround. The system can be modelled as a combination of a mass, spring and damper.
The mass is the mass of the cone, voice coil and half the mass of the spider and the surround, as the latter
two are only partially in motion. The spring force is generated by the spider and the surround. The damping
is a result of mechanical friction, the acoustic load and electrical damping. In practice only a small amount
of the input power is converted into actual sound, which implies that the acoustic load is very small. The
reactive load that is imposed on the system by acoustics is also small, as the mass of the air that is affected
by the loudspeaker is small compared to the mass of the system. The effects of compression of air may
be noticeable if the loudspeaker is mounted inside a closed cabinet. However, if the cabinet is sufficiently
large and if the cone excursion is small, this parameter can be neglected.

The Thiele-Small Model, shown in figure 2.3, is often employed to represent the linear speaker by an
equivalent electrical circuit. The components RE and LE represent the resistance and inductance of the
voice coil, while RM , CM and LM represent the mechanical mass-spring damper system of the speaker
cone. The circuit depicted in figure 2.3 holds for a closed-box loudspeaker and it also includes the acoustic
load, represented by RA and C A

Figure 2.3: A simplified equivalent circuit of the loudspeaker, with acoustic load.[25]

2.3. Non-linear Loudspeaker
In section 2.2 the linear loudspeaker is discussed. This consideration is sufficient for modeling the be-
haviour of the loudspeaker when reproducing sound at low amplitudes. However, at higher amplitudes the
electro-mechanical properties of the speaker driver as well as the physical limitations of the suspension
and enclosure introduce non-linearities in the behaviour of the speaker, causing audible distortion of the
reproduced sound. This non-linearities have a more prominent effect at low frequencies where higher am-
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plitudes are required to produce sound.

2.3.1. Causes of Non-linearities in Loudpeakers
Klippel [18], Bai and Huang [22] give an overview of the main causes of non-linearities in loudspeaker
systems. Below, a number of these phenomena are discussed, concentrating mainly on those which have a
detrimental effect on the performance of low frequency actuators such as woofers.

Stiffness of Suspension Km

The stiffness of the suspension of a loudspeaker Km is related to the mechanical properties of the two
suspension components of the speaker cone: the spider and surround (figure 2.1). For small displacement
Km is constant and the suspension of the cone can be modelled as a ideal spring. The restoration force Fk

acting on the spring as a function of the displacement x of the cone from its equilibrium position is given
by:

Fk =−Km(x)x (2.27)

As x becomes large Km increases as a function of x. This introduces an additional x dependency in equa-
tion 2.27 which is multiplied with x making the Fk non-linear. The frequency dependency of the stiffness
is linear. A related parameter to Km is the compliance Cm , which is the inverse of the stiffness.

Figure 2.4: Nonlinear function with linearized graph through the origin. The nonlinear function is a primitive model for the restoration
force, which is related to the suspension stiffness Km (x).

Force Factor Bl

Figure 2.5 shows the cross-section of a loudspeaker driver. A magnetic flux density B is present in the pole
gap. According to the Lorentz force law, a current carrying wire will experience a force in the presence of
a magnetic field which is given by

FL = i L×B (2.28)

where i is the current in the coil, B the magnetic field density and l the length of wire which lies inside the
magnetic field. In the case of a loudspeaker, current flow is perpendicular to the direction of the magnetic
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Figure 2.5: cross-section of a typical configuration of a loudspeaker driver’s pole piece and voice coil

field. Furthermore, the effective wire length of the voice can be expressed as:

le f f = 2πr n = 2πr
we f f

dw
(2.29)

where r is the radius of the voice coil and n the number of coil windings inside the magnetic field. n is
equal to the effective width of the voice coil we f f (the width of the part of the coil which lies within the
magnetic field of the air gap) divided by dw , the thickness of the coil wire. The width of the voice coil is
typically equal to or larger than than the width of the air gap. As long as the displacement of the coil is
smaller than the difference between the widths ∆w = wcoi l −wg ap , FL is a linear function of i . When the
displacement is larger than ∆w , the voice coil partially leaves the gap and we f f (and consequently le f f and
Fl ) decreases. The change in le f f for displacements larger than x >∆w is

dle f f =
2πr

dw
d x (2.30)

Equation 2.30 holds if the magnetic field is homogeneous within the pole gap and vanishes outside it. In
the more general and realistic case where this assumption does not hold, the effect of the voice coil leaving
the pole gap is better described by the force factor Bl (x), which is given by

Bl (x) =
∫

B(x)dl (2.31)

The Lorentz force can also be expressed as

FL = Bl (x)i (2.32)

Because the force factor is a non-linear function of x, FL is also a non-linear function of x and i .

Another effect of the displacement dependency of Bl is the a non-linear back EMF generated by the move-
ment of the coil:

uem f = Bl (x)v (2.33)

where v is the velocity d x/d t of the coil and speaker cone.

Voice Coil Inductance Le

The magnetic flux generated by current-carrying coil is given by the Maxwell-Faraday equation (2.34) as
the surface integral of the magnetic induction.
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Φ=
∫
Σ

B(r, t ) ·dA (2.34)

The magnetic induction itself depends on the permeability of the material which the magnetic field pene-
trates:

B =µH (2.35)

where H is the magnetic field strength. the permeability of the air surrounding the magnetic core is the free
space permeability µ0 while the permeability of the metal core is µc > µ0. The inductance of the coil is a
function of Φ:

Le = N

I
Φ (2.36)

For positive displacement the coil moves away from the magnetic core and the magnetic field penetrates
mainly the surrounding air, decreasing the flux and therefore also decreasing Le. For negative displace-
ment the magnetic field penetrates the steel surrounding the magnet (as well as the magnet) which has
much higher permeability. This causes the Φ and Le to increase. This makes Le a non-linear function of
the displacement.

The inductance also dependents on the voice coil current. The total magnetic field strength Htot consists
of the magnetic field produced by the permanent magnet Hm and the field produced by the current in the
coil Hc . A high positive current increases Htot beyond the saturation point of the core and the permeability
µ is decreased. A negative current decreases Htot and µ is increased. This phenomenon introduces a
non-linearity in the magnetic flux density:

B =µ(i , x)Htot (2.37)

Other Causes of Non-Linearities
Other sources of non-linearities in loudspeakers include the Doppler effect, which is caused by the vibra-
tion of the loudspeaker box driven by low frequency speakers. The sound source has a constantly changing
position with respect to the listener as result of this vibration, and for higher frequencies with a short wave-
length, this can cause significant modulation in the perceived frequency. Additional nonlinear distortion
can be introduced if the geometry of the speaker enclosure varies too much with respect to its dimensions as
a result of varying air pressure within the enclosure. Defects in a speaker system such as loose components
can also introduce parasitic, nonlinear oscillations.

2.3.2. Effects of Non-linearities in Loudspeakers
As detailed in the previous section, there are numerous contributing factors to the non-linear behaviour of
a loudspeaker. According to [12], the most dominant nonlinear parameters of the lumped-parameter model
presented in Section 2.3 are the compliance Cm , related to the nonlinear stiffness of the suspension Km , the
force factor Bl and the voice coil inductance Le . All of the aforementioned nonlinear parameters depend
on the cone excursion x while Le additionally depends on the loudspeaker current i . The non-linearity
of the parameters affects the loudspeaker’s behaviour at different frequencies. It is implied in [12] that
Cm is the dominant non-linear parameter at f < fs , where fs is the resonance frequency. Furthermore, at
f = fs , the force factor Bl is the dominant non-linearity, which is translated in strongly nonlinear RM in
Figure 2.3. Well above the resonance frequency, f À fs , the dominant nonlinear parameter becomes Le .
In [18], a method is described that aims to quantify the sources of the nonlinear behaviour via a series of
measurements. However, the (audible) result is similar in the above cases of distortion, as will be detailed
in the subsequent sections.
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Harmonic and Interharmonic Distortion

In order to illustrate the effect of non-linearities, the non-linear function of Figure 2.4 can be expanded
using Taylor expansion. The resulting expression is given in Equation 2.38. The number of coefficients
is in practice limited, because of the computational complexity. A third order polynomial is used by [1]
for the suspension stiffness. It is stated by [14] that a Gaussian sum may be the preferred choice over
polynomial expansion, because it is more accurate outside the initial range.

F (x) = a0 +a1x +a2x2 +a3x3 +a4x4 +a5x5 . . . (2.38)

The offset term a0 in the above equation is not of major concern, since it does not produce an audible
frequency. Nevertheless, all terms except the a1 term contribute to distortion. In order to understand the
consequence of the higher order term, it is assumed that the nonlinear stiffness is an important contributor
to distortion. As mentioned previously, this is the case below the resonance frequency. Thus, the output y
of the system may be written as in Equation 2.39 as a function of the input current i .

y = y0 +α1i +α2i 2 +α3i 3 +α4i 4 +α5i 5 + . . . (2.39)

It may be assumed that the input is asinusoidal signal, e.g. i = cosω0t . This assumption is very reasonable,
since the input signal can be decomposed into an infinite set of sinusoids by the Fourier transform. The
higher order terms αn with n ≥ 2 in equation 2.39 will now generate harmonic distortion (HD). This can
be understood by the notion that i 2 = cos2 (ω0t ) = 1

2 + 1
2 cos(2ω0t ). The second order term therefore yields

a spectral component with twice the frequency of the input signal. Table 2.1 gives an explicit expression
for the powers of the input signal for i = cos(ω0t ) and the spectral components that are introduced.

Table 2.1: Explicit expression for i n for i = cos(ω0t ). The spectral components that are generated by the higher order terms are
listed. The frequency is given as f = ω

2π and DC corresponds to a frequency f = 0

n i n spectral components
1 cos(ω0t ) f0

2 1
2 cos(2ω0t )+ 1

2 DC, 2 f0

3 1
4 cos(3ω0t )+ 3

4 cos(ω0t ) f0, 3 f0

4 1
8 cos(4ω0t )+ 1

2 cos(2ω0t )+ 3
8 DC, 2 f0, 4 f0

5 1
16 cos(5ω0t )+ 5

16 cos(3ω0t )+ 5
8 cos(ω0t ) f0, 3 f0, 5 f0

As indicated in Table 2.1, the higher order terms introduce frequencies that are an integer multiple of the
original frequency. These frequencies are commonly referred to as harmonics, hence the name harmonic
distortion. It is suggested by [14] that harmonic distortion does not sound so bad. Unfortunately, the
nonlinear system introduces another type of distortion known as intermodulation distortion (IMD) when
two or more frequencies are played simultaneously. Supposing the input now consists of two sinusoids
with the same amplitude, but different frequency: i = cos(ω0t )+ cos(ω1t ). The second order term now
yields: i 2 = cos((ω0 +ω1)t )+cos((ω0 −ω1)t )+cos2 (ω0t )+cos2 (ω1t ). The cosine squared terms produce
harmonic distortion as seen before. However, additional spectral components with frequencies f0 + f1 and
f0 − f1 are created also. These are the intermodulation frequencies, which may be perceived as unpleasant
according to [14]. Table 2.2 lists the additional spectral components that are introduced for all nonzero
order terms.
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Table 2.2: Inter harmonic spectral components that are introduced by the i n term of the nonlinear transfer function, if the input is
defined as: i = cos(ω0t )+cos(ω1t ).

n spectral components
1 f0, f1

2 f0 + f1, f0 − f1

3 2 f0 + f1, 2 f0 − f1, 2 f1 + f0, 2 f1 − f0

4 2 f0 +2 f1, 2 f0 −2 f1, 3 f0 + f1, 3 f0 − f1,
3 f1 + f0, 3 f1 − f0, f0 + f1, f0 − f1

5 4 f0 + f1, 4 f0 − f1, 4 f1 + f0, 4 f1 − f0,
3 f0 +2 f1, 3 f0 −2 f1, 3 f1 +2 f0, 3 f1 −2 f0,

2 f0 + f1, 2 f0 − f1, 2 f1 + f0, 2 f1 − f0

Sixth or higher order terms in the nonlinear transfer function may generate additional spectral components,
but usually these components are negligibly small. In [27], the higher order spectral components can be
seen, but they are below the measurement uncertainty and may therefore be neglected. In the measurements
of e.g. [12], the third harmonic component is the most dominant. This implies that the odd terms of
Equation 2.39 contribute significantly to the non-linearity. Intuitively, this means that the nonlinear function
is more or less odd symmetric. It is stated in [18] that asymmetrical non-linearities generate primarily even-
order distortion. The graph in Figure 2.6 shows the frequency spectrum when distortion is introduced.

Figure 2.6: Frequency domain visualisation of harmonic (HD) and intermodulation distortion (IMD). Note that the frequency axis is
linear. Additional spectral components may arise at higher frequencies, e.g. around 600 Hz but these are not indicated here.

Measure of Performance

As discussed in the previous section, the non-linear behaviour of a loudspeaker introduces additional spec-
tral components to the reproduced signal, which is expressed as harmonic distortion. A quantitative mea-
sure of the amount of distortion is the Total Harmonic Distortion (THD). The expression for the THD is
given by Equation 2.40, where An is the amplitude of the nth harmonic [2].

T HD =

√
∞∑

n=2
A2

n

A1
(2.40)

The above definition for the THD is used by e.g. [18], but unfortunately it is not the only definition around
in the field. A different definition used by e.g. [12] is given in Equation 2.41. In [1], both definitions are
used and the definition of Equation 2.40 is considered favourable.
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T HDR =

√
∞∑

n=2
A2

n√
∞∑

n=1
A2

n

(2.41)

Besides the harmonic distortion, there is intermodulation distortion. The Total Intermodulation Distortion
(TIMD) is a measure of the performance of the system in this regard, similar to the THD. Equation 2.42
gives the expression for the TIMD as found in [18], where Y ( f ) is the output signal.

T I MD =

√
−1∑

n=−∞
|Y (n f0 + f1)|2 +

∞∑
n=1

|Y (n f0 + f1)|2

Y ( f1)
(2.42)

Referring back to figure 2.6, the TIMD is regarded as the ratio of the signal in the IMD difference and
sum components (red and green graphs) and the fundamental component (300 Hz component). Note that
not all distortion components are addressed in the TIMD quantification; components as Y (2 f0 +2 f1) are
neglected. Unfortunately, there are again two slightly different definitions of the TIMD. The definition as
used in e.g. [12] is given in Equation 2.43.

T I MDR =

√
−1∑

n=−∞
|Y (n f0 + f1)|2 +

∞∑
n=1

|Y (n f0 + f1)|2√ ∞∑
n=−∞

|Y (n f0 + f1)|2
(2.43)

In the latter case, the TIMDR is the ratio between the intermodulation components adjacent to the funda-
mental frequency and the sum of the fundamental and the intermodulation components. It common practice
to express the distortion as a percentage.
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Non-linear Modelling of the Loudspeaker

In order to simulate the performance of the speaker, a non-linear state space model is derived and im-
plemented in Simulink. The differential equations describing the derived speaker model are then solved
numerically. The non-linear model is restricted to the three most prominent non-linearities: the force factor
Bl (x), the stiffness of the suspension Km(x) and the voice coil inductance Le (x). The non-linearities are
determined empirically using a method described in chapter 4 and their fitted Taylor expansion approxima-
tions are implemented in the model.

3.1. Free-Body Analysis
In figure 3.1 a mechanical model of the loudspeaker is represented with a mass, spring and damper and
representing the mass of the cone m, stiffness of the surround Km and the acoustic and frictional losses b
respectively.

Figure 3.1: Electrical model of the motor (left) and mechanical model of speaker spring-mass-damper system (right)

Three forces are acting on the mass, the damping force Fb = bv , the restoration force Fk = Km x, and the
Lorentz force generated by the electric motor. The force balance of the system is given below:

ma(t ) = FL −Fk −Fb = Bl (x)i (t )−Km(x)x(t )−bv(t ) (3.1)

The electric motor, shown on the left in figure 3.1 consists of a voltage source e(t) and the coil resistance
Re and Inductance Le (x). The back EMF generated by the movement of the the coil is represented by a
voltage source. Simple circuit analysis shows that:

17
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e(t ) = Re i (t )+Le
dx(t )

dt
(3.2)

Bl(x) describes the coupling between the electrical and mechanical components of the system. FL is pro-
portional to the current through the voice coil and uem f is proportional to its velocity. This functionality
can be modelled by a gyrator. The bond graph of the loudspeaker motor and spring-mass-damper system
is given by causality in figure 3.2. The whole system can be modelled with the electrical equivalent circuit
in figure 3.3.

Figure 3.2: Bond Graph representation of the loudspeaker

3.2. State Space Model
For the state space model of the loudspeaker the equivalent electrical circuit in figure 3.3 is considered.
This model is based on a model proposed by Klippel[18]. It has several advantages over the Thiele-Small
model (figure 2.3):

• The electrical and mechanical forces and flows are clearly separated. On the electrical side (left) the
driving force is the input voltage e and the flow is the input current i . On the mechanical side (right),
the driving force is the Lorentz force FL and the flow is the velocity of the moving speaker cone
v = d x/d t

• Electrical components map directly to the mechanical properties of the driver; the mass m, damping
factor b and Stiffness Km(x) = 1/Cm(x). The force factor Bl (x) is represented by a Gyrator.

Figure 3.3: Electrical equivalent circuit of loudspeaker driver



3.3. Possibilities in non-linear control 19

Here, the acoustic load of the speaker is not modelled. This is because it is negligible, as explained in
section 2.2.1, and because when using motional feedback the acceleration of the speaker cone will be mea-
sured and the acoustic load will not be taken into account. Other effects which are sometimes considered
when modelling the speaker, like eddy currents losses of the magnet, have not been included for simplicity
and because they have a more prominent effect at higher frequencies.

From the equivalent circuit in figure 3.3, several useful parameters can be extracted. The Lorentz Force
FL = Bl (x)i (t ) is given as a voltage induced on the mechanical side of the Gyrator. The back EMF generated
by the moving coil uem f = Bl (x)v(t ) is the voltage induced on the electrical side of the circuit. The
acceleration a(t ) of the speaker cone, which as explained in section 2.2 is related to the acoustic pressure
generated by the moving cone, is the derivative of the velocity of the cone. It is also equivalent and equal
to the voltage across the inductor Vm divided by the the mass m. This follows from Newton’s second
Law and the electro-mechanical equivalence of force and voltage and of mass and inductance [11]. The
displacement x of the speaker cone is the integral of the velocity of the cone. The velocity and acceleration
of the speaker cone will henceforth be referred to in terms of the displacement x as follows:

v(t ) ≡ dx

dt
≡ ẋ (3.3)

a(t ) ≡ d2x

dt 2 ≡ ẍ (3.4)

The equations that describe the electrical and mechanical functionality of the speaker are:

e = Re i +Le (x)
di

dt
+Bl (x)

dx

dt
(3.5)

Bl (x)i = m
d2x

dt 2 +b
dx

dt
+Km(x)x (3.6)

Taking ẋ, x and i as state variables, the system is given in state space representation:ẍ
ẋ
i̇

=

 − b
m −Km (x)

m
Bl (x)

m
1 0 0

−Bl (x)
Le (x) 0 − Re

Le (x)


ẋ

x
i

+
 0

0
1

Le (x)

e (3.7)

The non-linear parameters Bl (x), Km(x) and Le (x) can be represented by their polynomial series expan-
sions. This is a convenient way of dealing with them, as will become clear is chapter 5.

Bl (x) =
∞∑

n=0
bn xn (3.8)

Km(x) =
∞∑

n=0
kn xn (3.9)

Le (x) =
∞∑

n=0
ln xn (3.10)

To validate the model above, it is implemented in Simulink and solved numerically. The Simulink imple-
mentation of the model and the current results of model verification are discussed in chapter 5.

3.3. Possibilities in non-linear control
The possession of a non-linear model of the loudspeaker using the methods described in chapters 3 and 4
opens the possibility for improvement on the linear feedback controller designed by the digital and analog
subgroups, making the system more stable and robust and potentially improving overall performance an
suppression of linear and non-linear distortion.
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As discussed in the thesis of the "digital" sub-group[4], the use of feed-forward when only a linear model
of the loudspeaker is available does not offer any advantages over using feedback. This is because a con-
troller based on a linear model cannot predict non-linear distortion. Having a non-linear model of the
system allows for the use of pre-distortion to compensate for non-linearities. Using pure feed-forward
when a non-linear model is available is however also likely to result in a worse controller since, in addition
to lack of the inherent suppression of distortion offered by a feedback system, the limited accuracy of the
model and its insensitivity to parameter variation can easily make the system unstable.

Other methods which do implement feedback and have been used in the literature include adaptive feed-
forward[23] and observer based feedback[5][26]. This methods incorporate some sort of feedback, which
improves the performance of the controller.

Depending on the complexity of the model, a delay due to the pre-processing of the input signal might be
introduced in the system. Since delay in the reproduction of sound is typically not a big problem, especially
for the reproduction of music in a home audio system, this is for most applications a desirable trade-off
against the possibility of an unstable system. In some applications however, like in music production or
the monitoring of a live music performance, a low latency is required. Therefore, the latency of the system
must be kept as low as possible while not sacrificing on robustness and stability.
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Impedance Measurement

As indicated in chapter 2, the loudspeaker is a non-linear device, which results in audible distortion. The
motional feedback controller will be designed with the requirements regarding distortion in mind, i.e. the
THD should not exceed 0.1% in the closed loop system. Therefore, the effect of the controller on the THD
should be determined. The THD can be measured experimentally, but this means that many controllers
should be made and tested. A more practical approach is to create a non-linear model of the loudspeaker
and determine that effectiveness of various controllers via computer simulations. Note that it is not possible
to determine the THD analytically, due to the nonlinear character of the system. The most common way to
investigate the nonlinearities of a loudspeaker is by means of a Doppler laser system [27] [18] [6]. Such
a system can measure position, velocity and acceleration of the diaphragm at various frequencies. The
resulting data is sufficient to measure the distortion and the causes of the distortion in detail. However, even
with highly precise equipment, it is difficult to accurately determine the nonlinearities [28]. In addition, the
setup is limited by the poor signal to noise ratio. The method employed here is a variation on the commonly
used small signal identification method, that is based on the impedance measurement. By measuring the
impedance as a function of frequency, it is possible to identify the linear parameters related to the voice coil
and the loudspeaker suspension and cone. This measurement can be repeated at various cone equilibrium
positions to find the parameters as a function of position. The method for measuring the impedance as a
function of the position is explained in section 4.1. The results are discussed in section 4.2 and section 4.3
contains a discussion of the results, including the downsides that are related to this method of nonlinear
system identification.

4.1. Method for Impedance Measurement
The impedance of the loudspeaker was measured using the setup that is schematically depicted in figure
4.1, with the offset voltage source set to zero. The signal that is generated by the computer is passed on via
the USB sound card to a series network of the loudspeaker and a resistor. The voltage at the loudspeaker
terminals and the input voltage are both measured via the stereo input of the sound card. The unknown
impedance Zl can be computed using equation 4.1. The input voltage is Vi and the loudspeaker voltage is
denoted by Vl . R f is the series resistor, which is assumed to be accurately known.

Zl = R f
Vl

Vi −Vl
(4.1)

The measurements were initially carried out using software that was used during the EPO-1 course of the
Electric Engineering Bachelor [15]. The program in question is called LS_Measure and can be run using
Matlab. The software was used with permission from the author. The test signals that are used by the
software are pseudo-noise sequences. These are pseudo-random signals with a nearly flat spectrum, except
for a DC error. Since the software was slightly limited in the capability of processing the data, a new
Matlab program was written, which can be found in the appendix A.2. This code was used for the majority
of the measurement data that is given in section 4.2.

21
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4.1.1. Mass Measurement
The moving mass of the loudspeaker can be measured by measuring the impedance. At low frequencies,
the effect of the voice coil self inductance is negligible and the loudspeaker is approximately a second
order system. Furthermore, if the impedance is measured with a relatively low cone excursion, the system
is approximately linear. The linearized phasor equation for this low frequency approximation is given by
equation 4.2.

e = Re Km

Bl
x + jω

(
Bl + Re b

Bl

)
x + ( jω)2 Re m

Bl
x (4.2)

Assuming that the system is underdamped, i.e. ζ< 1, the homogeneous solution to this differential equation
is: x(t ) = X e−ζωn t sin

(
ωR

√
1−ζ2t +χ

)
. The damping ratio can be computed by: ζ= b

2
p

mKm
+ Bl 2

2Re
p

mKm
.

The first term is caused by the mechanical damping and the second term is caused by electrical damping.
The resonance frequency can be computed by equation 4.3.

ωR =
√

Km

m
(4.3)

In the impedance measurements, the resonance peak is clearly visible both in the amplitude and phase
spectra. The resonance peak occurs when the ratio between voltage and current reaches a local maximum.
This is the case when the ratio between the Lorentz force FL and the velocity d

dt x is at an absolute minimum.
And so, in the low frequency approximation, the impedance maximum can be found dividing both sides of
equation 4.2 by jωx. The right hand side of the resulting expression can be differentiated with respect to
ω. The roots of the final expression are ±ωR , with ωR the resonance frequency that is given in equation 4.3.
It is clear that the resonance peak can be shifted by varying the mass or the stiffness. If the stiffness is kept
constant, which is the case if the small signal assumption is valid, the mass of the cone can be measured by
adding a small mass ∆m. The original mass can now be expressed as a function of the added mass and the
ratio of the resonance frequencies, as is the case in equation 4.4. The original resonance frequency is ωR

and with the inclusion of additional mass, the (shifted) resonance frequency is ω∆.

m = ∆m(
ωR
ω∆

)2 −1
(4.4)

4.1.2. Measurements with Offset
In order to obtain a nonlinear characterization of the loudspeaker, the small-signal model was established
at various cone excursion positions. As described in section 2.3, the parameters that cause the strongest
non-linear distortion are the force factor Bl , the suspension stiffness Km and the voice coil self inductance
Le . The model that is employed is the same model as given in chapter 3. An offset is generated with respect
to the position by applying an offset voltage to the loudspeaker terminals. On top of that, a small AC-signal
is superimposed on the offset signal, which is used to measure the impedance. The setup that was used to
measure the impedance with offset is given in figure 4.1.
The voltage signal can be written as e = V0 + ṽ , where V0 is the voltage offset and ṽ is the small signal
voltage. It is assumed that ṽ is of sufficiently low amplitude that the system can be considered locally
linear. Consequently, the current can be written as: i = I0 + ĩ and the position: x = X0 + x̃. The position
offset X0 was measured with a caliper ruler. Obviously, the small signal position x̃ cannot be measured
without specialist equipment such as a Doppler laser. The differential equations 3.5 and 3.6 have been
restated below with the aforementioned signals.

V0 + ṽ = Re I0 +Re ĩ +Le (x)
d

dt
ĩ +Bl (x)

d

dt
x̃ (4.5)

Bl (x)I0 +Bl (x)(̃i ) = Km(x)X0 +Km(x)x̃ +b
d

dt
x̃ +m

d2

dt 2 x̃ (4.6)

A typical mistake would be to replace the x-dependent variables, such as Le (x) by Le (X0). This may be
justified sometimes, but unless care is taken, it can give to the wrong answers. In our case, routinely filling
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Figure 4.1: Diagram showing the setup used to for the impedance measurements with offset

in Bl (X0) and Km(X0) actually leads to a faulty model, because the linearization is not correct and the
Fourier transform (which will be used later) cannot be applied. A more rigorous approach is to linearize
the nonlinear parameters in the point X0. The linearized functions are given below.

Le (x̃) = Le (X0)+ dLe

dx
(X0)x̃ (4.7)

Bl (x̃) = Bl (X0)+ dBl

dx
(X0)x̃ (4.8)

Km(x̃) = Km(X0)+ dKm

dx
(X0)x̃ (4.9)

At this point, it will be assumed that the small signals ṽ , ĩ and x̃ can be written as ṽ = V e jωt , ĩ =
I (ω)e j (ωt+ι(ω)) and x̃ = X (ω)e j (ωt+χ(ω)) respectively. The amplitude V , I and X are assumed to be small.
Consequently, any term which contains the product ĩ x̃ or x̃ x̃ can be safely neglected1. The differential
equations can now be fully linearized:

V0 + ṽ = I0Re +Re ĩ +Le (X0)
d

dt
ĩ +Bl (X0)

d

dt
x̃ (4.10)

Bl (X0)I0 + I0
dBl

dx
(X0)x̃ +Bl (X0)ĩ = Km(X0)X0 +X0

dKm

dx
x̃ +Km(X0)x̃ +b

d

dt
x̃ +m

d2

dt 2 x̃ (4.11)

The equations 4.10 and 4.11 can be separated into the time dependent and time independent components.
Supposing that the small signals ṽ , ĩ and x̃ are set to zero initially, the remaining terms can be equated.
The resulting expressions are given below:

V0 = I0Re (4.12)

Bl (X0)I0 = Km(X0)X0 (4.13)

Neither of the above equations should come as a surprise; the former merely represents Ohm’s law and
the latter equates the time independent Lorentz force to the time independent spring force. The time
independent terms will now be removed from the differential equations, which will be further analyzed in

1The terms that would contain the product of x̃ and ĩ or x̃ are also nonlinear
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the phasor domain. For convenience, we write: Λ(X0, I0) = X0
dKm

dx +Km(X0)+ I0
dBl
dx (X0). The remaining

equations are given in 4.14 and 4.15.

ṽ = Re ĩ + jωLe (X0)ĩ + jωBl (X0)x̃ (4.14)

Bl (X0)ĩ =Λ(X0, I0)x̃ jωbx̃ +m( jω)2x̃ (4.15)

The final equations are very similar to the linear differential equations, with the exception of the factor
Λ(X0, I0). The small signal impedance z̃ will now be defined as z̃ = ṽ

ĩ
. Since both the small signal voltage

and current can be measured, the small signal impedance can be computed also. The parameters Re and
Le (X0) can be readily found by means of a least squares fit or by inspection of the data. Since the damping
factor b is not considered one of the main nonlinearities, a single measurement is sufficient to find this
parameter, e.g. using a least squares fit. For the remaining parameters, the case is, unfortunately, a bit more
difficult. Application of a least squares algorithm is possible, but may be difficult due to the large number
of parameters. There is, however, another method to determine Bl and Km . In the low frequency range, the
effect of Le is very small, so it can be assumed that Le = 0. This reduced system is just of second order, for
which the resonance frequency is defined as:

ωR (X0, I0) =
√
Λ(X0, I0)

m
(4.16)

Since the mass can be measured rather accurately, this means that Λ(X0, I0) can be measured as a function
of the resonance frequency. As discussed in section 4.1.1, the resonance frequency can be found very
easily in the measurement data. Solving for Λ(X0, I0) gives: Λ(X0, I0) = mω2

R (X0, I0), so there arises a new
differential equation:

mω2
R (X0, I0) = X0

dKm

dx
+Km(X0)+ I0

dBl

dx
(X0) (4.17)

The equations 4.13 and 4.17 form a set of coupled differential equations. The solutions for Km(X0) and
Bl (X0) are: Bl (X0) = mω2

R
dX0
dI0

and Km(X0) = mω2
R

I0
X0

dX0
dI0

. The mass m and the offset currents and posi-
tions I0 and X0 can be measured and the resonance frequencies ωR (X0) can be found by inspection of the
impedance curves. Consequently, all information that is necessary to find the nonlinear force factor and
stiffness can be readily found.

4.2. Results
The first impedance measurements were conducted using the LS_Measure Matlab tool. The results are
given in figure 4.2a. It has to be noted, however, that the software filters the data so as to suppress ir-
regularities is the data. This notwithstanding, the results are adequate for identifying the basics of the
system.
The impedance curve that is shown in figure 4.2a is characteristic of a loudspeaker that is mounted in a
bass reflex cabinet. Such a cabinet is not sealed, as is usually the case, but there is a vent at the back. The
goal of this modification is to allow the acoustic radiation from the back of the cone to be added in phase
with the primary source at the front. As such, there is better impedance matching between the mechanical
domain and the acoustic domain. Kinsler [19] states that a bass-reflex system is more difficult to design, but
capable of producing higher quality audio. The system can be modeled as an equivalent electrical circuit
by the network in figure 4.3 [19].
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(a) (b)

Figure 4.2: Impedance measurement with LS_Measure. (a) shows the initial data, revealing that the loudspeaker is mounted in a
bass-reflex cabinet. The impedance measurement with closed vent is given in (b).

Figure 4.3: Electric equivalent circuit of a bass reflex loudspeaker system. The components Lv and Rv model the inertance and
resistance of the loudspeaker vent and Cv models the compliance of the cabinet [19].

Upon sealing the vent of a bass reflex system, the inertance Lv becomes very large and the loudspeaker
model reduces to the familiar closed cabinet model that is presented in chapter 3. The bass reflex model
is a fifth order model, whereas the closed cabinet model represents a more manageable third order system.
On top of that, the motion of the air inside the vent is difficult to measure and control, which means that
motional feedback is more suitable for closed cabinet system. Hence, we decided to seal the vent and
treat the system as a closed cabinet loudspeaker. The impedance of the closed system has been measured
also and the result is given in figure 4.2b. The graph is very similar to the impedance of a closed cabinet
loudspeaker, except for a small increase in impedance at 30 [Hz]. Apparently, there is still some radiation
"leaking" via the vent, even though is was sealed. The impedance peak at 30 [Hz] is not a major concern,
but would have been easier to apply a least squares fit to the data, if an actual sealed enclosure had been
used in the first place. It might be possible to use the model of figure 4.3, but in practice it was difficult to
apply a least squares fit to the data with seven or more variables. This is partially caused by the fact that
there is a relatively small amount of data available at low frequencies and the high frequency data is a bit
noisy. Therefore, the software may not find a local minimum near the physically sensible parameter values.
Considering that bass reflex systems are not within the scope of this report anyway, the small resonance
peak at 30 [Hz] will be ignored.

4.2.1. Mass Measurement Results
As discussed in section 4.1.1, the moving mass of the loudspeaker can be conveniently identified by mea-
suring the impedance. The advantage of measuring the mass in this way is that the loudspeaker does not
need to be disassembled. Furthermore, not all of the mass of the spider and surround is moving with the
same velocity as the cone, so only a fraction of the respective masses should be added to the effective mov-
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ing mass. This fraction should be approximately 1
2 , assuming that the average velocity of the suspension is

half the velocity of the cone. However, if velocity of the suspension is not uniformly distributed, this rule
of thumb does not apply. Fortunately an analysis of this problem is not necessary if the mass is analyzed
using the impedance measurement. The masses that were added were either small batteries or permanent
magnets. The permanent magnets were arranged such that the influence on the magnetic flux density of
the loudspeaker itself is assumed to be negligibly small. It is recommended to use a non-magnetic mass to
avoid complications altogether, but the mass needs to be accurately known and in our case, the mass of the
magnets was nearly five times as precise as the mass of the batteries.

Mass Measurement with Batteries
Initially, the mass was measured with batteries of 2.8 [g] a piece. The accuracy of the mass was 0.2 [g]. The
tape that was used to attach the mass to the cone of the loudspeaker was 0.4 [g] with 0.1 [g] accuracy. Thus,
the total mass of one battery with tape is 3.2 [g] with an accuracy of 0.3 [g]. The mass of the loudspeaker
cone can be computed using equation 4.4. Using this equation, the accuracy of the loudspeaker can be
determined. Letting um and u∆m denote the errors of the cone mass m and the added (battery) mass ∆m,
the accuracy of the mass is given by equation 4.18, where it is assumed that the errors with respect to the
resonance frequencies ωR and ω∆ is small.

um = ∂∆m

∂m
u∆m = 1(

ωR
ω∆

)2 −1
u∆m (4.18)

Equation 4.18 reveals that the accuracy of the mass of the cone will be poor, unless the ratio of the two
resonance frequencies is large. However, in order to achieve a high value for the ratio ωR

ω∆
, the added mass

should be large, which introduces additional uncertainty with respect to ∆m. This illustrates the need for
accurately defined mass elements, which is why the measurement was repeated with small magnets with
a much more accurately defined mass. The results of the impedance measurements with the batteries is
shown in figure 4.4.

Figure 4.4: Impedance measurement of loudspeaker with added mass elements (small batteries). The impedance amplitude |Z | is
plotted on the left, with the phase ∠Z on the right.

Upon closer inspection of the graphs in figure 4.4, it becomes apparent that there are two ways to determine
the resonance frequency. Firstly, the peak of the amplitude spectrum occurs at the resonance frequency.
Secondly, the phase of the impedance is zero at the resonance frequency, because the combination of the
mass and compliance act like a "short circuit" at this frequency. In practice, however, these two meth-
ods give a slightly different result, due to the fact that in reality the voice coil reactance also affects the
impedance. Since the phase is more affected by a small reactive component at the resonance frequency
than the amplitude, it is more accurate to look at the peak in the amplitude spectrum, rather than the phase
characteristics. The results are summarized in table 4.1.
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Table 4.1: Resonance frequencies and corresponding original mass m as calculated with equation 4.4. The resonance frequency ωR
that corresponds to the situation where no mass is added, is 91 [Hz].

∆m [g] ω∆ [Hz] m [g]
3.2 80 11
6.4 72 11
9.5 66 11
13 62 11

The measurements indicate that the moving mass of the loudspeaker is 11 [g]. As mentioned previously, the
accuracy of this measurement is rather low, with an error of 1 [g] in the final value. If the error with respect
to the frequency is also included the accuracy would be even lower, but this is not necessary since the
accuracy with respect to the frequency can be increased easily by the use of longer pseudo-noise sequences,
and by the use of a larger reference resister. This will be discussed in more detail in section 4.3.

Mass Measurement with Magnets
A key limitation that was encountered when the mass of the loudspeaker was investigated was the poor
accuracy of the reference mass. Fortunately, a more accurate reference mass was available to us: small
magnets with a mass of 0.50 [g] each with an uncertainty of 0.02 [g]. As a result, the uncertainty of the
mass is now primarily due to the uncertainty of the mass of the tape that was used to attach the masses.
The same tape was used as in section 4.2.1. The results of the measurements are shown in figure 4.5.

Figure 4.5: Impedance measurement of loudspeaker with added mass elements (small magnets). The impedance amplitude |Z | is
plotted on the left, with the phase ∠Z on the right.

A potential downside that is related to the use of magnets as weight elements, is the fact that the magnets
may disturb the magnetic field inside the loudspeaker. The magnets were arranged such that the effects
were expected to be small. Nevertheless, for future work it is recommended to use accurately defined
non-magnetic mass elements. The results are summarized in table 4.2.

Table 4.2: Resonance frequencies and corresponding original mass m as calculated with equation 4.4. The resonance frequency ωR
that corresponds to the situation where no mass is added, is 91.7 [Hz].

∆m [g] ω∆ [Hz] m [g]
3.4 79.3 10.5
6.3 73.3 11.1
9.1 68.3 11.4
12 63.6 11.4

The measurements confirm the data from the previous section. However, the mass appears to be larger
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when the added mass is increased. Since the lowest uncertainty was achieved in the measurement with
3.4 [g] extra mass, the adopted value for the loudspeaker mass is 10.5±0.2 [g].

4.2.2. Results of Impedance Measurements with Offsets

In this section, the results of the measurements described in section 4.1.2 will be presented. A schematic
depiction of the the setup is given in figure 4.1. The reference resistor has a resistance of R f = 1.09 [Ω].
Table 4.3 lists the offset voltage V0 that is added to the pseudo-noise sequence. The offset voltage that is
measured across the loudspeaker terminals Vl s is also given, as well as the voltage across the reference
resistor V f .

Table 4.3: Input offset voltage V0 with the corresponding loudspeaker offset voltage Vl s and the reference resistor offset V f . The
amplifier gain is roughly 20 [dBW].

V0 [mV] Vl s [V] V f [mV]
-1000 -9.7 -1290
-900 -8.6 -1250
-800 -7.6 -1120
-700 -6.6 -1000
-600 -5.7 -907
-500 -4.7 -706
-400 3.7 -635
-300 -2.8 -456
-200 -1.8 -345
-100 -0.89 -180

0 0 0
100 0.92 175
200 1.8 323
300 2.6 426
400 3.8 542
500 4.8 676
600 5.6 882

Measurements with more than 600 [mV] were performed, but did not result in meaningful data, most likely
because the system is not stable with such a large positive offset. There were stability issues with the
measurement with −1000 [mV] as well. The results of the measurements with −1000 [mV] and 600 [mV]
offset, as well as the measurement with no offset are given in figure 4.6.
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Figure 4.6: Impedance measurement of loudspeaker with several input offset voltages. The left-hand graph is the raw data. The
right-hand graph shows the same data, but noise reduction has been applied.

Both of the graphs in figure 4.6 that were created when an offset voltage was applied, exhibit peculiar
behaviour at low frequencies. For the −1000 [mV] measurement this seems to be caused by low-frequency
instability of the measurement setup, because this type of behaviour occurs in all measurements with large
negative offset. As for the 600 [mV] measurement, the high DC impedance cannot be explained. Obviously,
the voice coil will heat up as a consequence of the power that is dissipated in the voice coil resistance. This
will increase the voice coil resistance, but this alone cannot explain the data. Potentially, the system is not
locally stable at this offset. For the −1000 [mV] measurement, the limit of stability seemed to be reached
as well, since the amplifier was not able to sustain the offset voltage for a long enough time to complete
the measurement. Another observation related to the −1000 [mV] data is that the impedance is increasing
rather sharply in the 200− 500 [Hz] range, whereas the impedance curve without offset remains flat for
much longer. This is not surprising, since the inductance is expected to increase for a negative offset as
explained in section 2.3.1. However, at high frequencies, the inductance seems to decrease again. This is
caused by the effects of Eddy currents [18]. Eddy currents are induced by a time varying magnetic fields
in conductors. In this case the time varying magnetic field is generated by the AC-current in the voice
coil and the conductor is the iron inside the loudspeaker. The flux that is generated by the Eddy currents
opposes the incoming flux from the voice coil. It is demonstrated in [9] that this phenomenon results in an
(nonlinear) impedance that depends on the square root of the frequency. Fortunately, according to Klippel
[18], it is adequate to model the Eddy current losses by the circuit shown in figure 4.7.

Figure 4.7: Electrical equivalent model of the loudspeaker which takes eddy current losses into account.
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The components L2 and R2 do not have a physical meaning, and their values depend on the frequency
range wherein the impedance is measured or fitted. These components are commonly assumed to be linear
[18] [12]. In order to make this assumption valid for our loudspeaker, the practical operation range of the
loudspeaker has to be limited, as will be discussed shortly. The graphs of the remaining measurements are
given in figure 4.8.

Figure 4.8: Measurements with offset that provide useful data. The left-hand graph is the raw data. The right-hand graph shows the
same data, but noise reduction has been applied.

The graphs of figure 4.8 indicate that the effect of Eddy currents is very limited for offset voltages of
500 [mV] or less. The low frequency stability is also good if the offset is limited to 500 [mV] or less. It
seems, therefore, that the practical operation range is limited to the cone excursions that are related to these
voltages. It turns out that the operation range is −2.5 [mm to 2.0 [mm] if the effects of Eddy currents are
neglected. The most important information that is used from the graphs of the impedance in figure 4.8 is
the resonance frequency. A least squares fit has been performed also to find the value of Le as function of
the position. The offset voltage results in an offset in position, that was measured with a caliper ruler. Also,
the current can be determined with the data from table 4.3. The data is given in table 4.4. This is the data
that will be used in chapter 5 for establishing a nonlinear model of the loudspeaker.
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Table 4.4: Measurements of offset position, current and resonance frequency fR . The voice coil inductance Le was measured using a
least squares fit.

X0 [mm] I0 [mA] fR [Hz] Le [µH]
-3.6 -1150 102.9 453
-3.4 -1030 102.7 445
-3.2 -919 101.8 431
-2.9 -833 100 356
-2.5 -648 98.5 323
-2.1 -583 96.5 315
-1.8 -419 95.3 305
-1.3 -317 92.8 291
-0.6 -165 91.0 275

0 0 90.9 260
0.8 161 92.6 250
1.3 297 93.7 243
1.6 392 95.2 237
1.7 498 96.9 234
2.0 621 97.8 232

4.3. Discussion of Impedance Measurements
The concept of identifying the nonlinearities of a loudspeaker by means of impedance measurements with
offsets is never mentioned in literature. Having used this concept ourselves, it becomes clear that this
method has a number of intrinsic limitations. Firstly, the surround of a loudspeaker cone is often made of
material with visco-elastic properties [16]. One of the consequences of this is that when a DC voltage is
applied, the cone will quickly assume an offset position, but then "creep" a little further. This is known
as the creep effect, which is completely ignored by the method employed in this report. Other effects of
the visco-elasticity of the material include frequency dependent damping and compliance [17]. Secondly,
the position measurement is rather inaccurate. We used a caliper ruler that can measure the position up to
0.1 [mm] accuracy, which is quite poor considering that the diaphragm excursion is only a few millimeters.
Thirdly, the linearization of the nonlinear model turned out to be more complicated than expected and
there are still (nonlinear) differential equations that have to be solved if the large signal parameters are to
be recovered. This also means that extending the model is difficult, since the linearization process needs to
be repeated and a new set of differential equations results. Fourthly, the voice coil resistance will dissipate
power if there is a large DC voltage across the loudspeaker terminals. The heat that is generated will
increase the voice coil resistance. This increase can be by as much as 15%. The current will therefore drop
and the offset position will move slightly towards the equilibrium. The heat development is a key limitation
to identifying the loudspeaker parameters. Normally, the loudspeaker is driven by a time-varying signal,
which means that maximum cone excursion can be higher for the same amount of power that is dissipated
compared to the case with a DC offset signal. And finally, the current, voice coil inductance and resonance
frequency need to be characterized as function of position in order to identify the main nonlinear parameters
that were discussed in section 2.3. It is desirable that these parameters are expressed as a polynomial of
reasonably high order, because a low order polynomial can only produce the low order distortion. As
mentioned in section 2.3, fifth order harmonics are often measurable in the output, which means that the
current and resonance frequency need to be identified as a sixth order polynomial. In order for this to
be possible, there need to be much more data points than currently available, otherwise that results from
fitting the model is very large. The measurements already take rather long, so in order for this method to
be plausible, the measurements alone could take several days. Nevertheless, the method can be applied to
a loudspeaker with low creep effect. For future work however, it is recommended that for the impedance
measurement, the loudspeaker will be driven by a current rather than a voltage. In this way, the heat that
may be developing will not reduce the current and the position will be more stable. Furthermore, it is
recommended that a larger reference resistor is used. The resistor needs to be able to dissipate the extra
power and the same applies to the amplifier. The voltage across the resistor will, however, be higher, which
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results in a better signal-to-noise ratio. Increasing the total voltage has the same effect, but this means the
the loudspeaker voltage is higher and therefore, the small signal approximation is not valid.



5
Model Verification

The results of the impedance measurements as summarized in table 4.4 can be used to establish a model of
the loudspeaker with nonlinear force factor, voice coil inductance and compliance. A least squares fit can
be applied to the data to find I0(X0), ω2

R (X0) and Le (X0). The latter function represents one of the three
dominant nonlinearities in loudspeakers. The other functions will be used to find Bl and Km . In section
5.1, a method will be presented to find the parameters of interest based on the known functions I0(X0) and
ω2

R (X0). Section 5.2 describes the method and results of the simulation of distortion with the nonlinear
model. It must be noted, however, that the model that was used for the simulations was not correct. The
linearization of the equations 4.5 and 4.6 had not been explicitly linearized. The resulting model considers
the small signal behaviour at various positions, but cannot accurately predict the large signal behaviour
of Bl and Km . At the time of writing, the proper method for determining the nonlinearities has not been
applied to the data yet. The distortion of the loudspeaker has also been measured experimentally. The
results from the distortion simulation using the model and the measurements will be compared.

5.1. Solving for Km(x) and Bl (x)
For convenience, the offset positions and currents X0 and I0, will be replaced by the regular position x and
current i , now that we are dealing with the large signal domain only. Furthermore, it is assumed that for
every I0, there is a well defined X0, which implies that the current can be written as a function of position:
i = i (x). The two equations that were found for Km(x) and Bl (x) in the previous chapter are repeated in
equations 5.1 and 5.2.

Bl (x)i = K m(x)x (5.1)

mω2
R (x) = x

dKm

dx
+Km(x)+ i

dBl

dx
(x) (5.2)

Fortunately the coupled equations can be solved quite easily, resulting in: Bl (x) = mω2
R

dx
di and Km(x) =

mω2
R

i
x

dx
di . The functions i (x), mω2

R (x) and mi (x)ωR (x) are not stated explicitly, but we can use Taylor’s
theorem to express these functions as polynomials. For the current, we find thus: i (x) = i0+ i1x+ i2x2+ . . .
and for the derivative of the current: di

ds = i1 +2i2x +3i3x2 + . . . . For the function mω2
R (x) we will write

mω2
R (x) =λ0 +λ1x +λ2x2 + . . . and for the product of i and mω2

R we have i mω2
R =φ0 +φ1x +φ2x2 + . . . .

Bl (x) and Km(x) can be solved directly, if they are also expanded as polynomials. For Bl (x) we have
Bl (x) = Bl0 +Bl1x +Bl2x2 + . . . and in similar fashion we obtain Km(x) = K0 +K1x + k2x2 + . . . . The
solutions for the coefficients is given in equations 5.3 and 5.4.

Bln = 1

i1

(
λn −

n+1∑
ν=2

νKn−ν+1iν

)
(5.3)
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Kn = 1

i1

(
φn+1 −

n+1∑
ν=2

νKn−ν+1iν

)
(5.4)

Actually, for K0 and Bl0 the above expressions are not valid, since the summation expression cannot be
computed, but these coefficients can be computed by: K0 = φ1

i1
and Bl0 = λ0

i1
. Since Le (x) can be measured

directly, as explained in section 4.1.2, the coefficients for a polynomial of Le can be directly evaluated with
a least squares fit.

5.2. Simulating Large Signal Behaviour of the Loudspeaker
The block diagram of the state-space model above is given in figure 5.1, as implemented in Simulink.
The nonlinearities are implemented using lookup tables of the fitted polynomial series expansions. The
constant parameters are given as gains. The parameters (shown in red) are determined using the method
explained in chapter 4. The MATLAB code used to generate the values for these parameters can be found
in appendix A.3 . Using Simulink, the non-linear behaviour of the speaker for a given input signal is solved
numerically and simulated and the input current i (t ), acceleration a(t ), velocity v(t ) and displacement x(t )
are monitored. The simulation runs with a fixed step size of 1/48000s.

Figure 5.1: State space model of loudspeaker implemented in Simulink

To validate the model, THD measurements are simulated at different amplitudes of the input signal and
compared to the measurements using the physical speaker. The simulated measurements must comply
with the requirements given in section 1.1. The THD measurement code can be found in Appendix A.1.
MATLAB code to measure TIMD has also been developed but not used.

5.3. Discussion of Simulation Results
Figure 5.2 shows the characteristic curves of the non-linearities Le(x), Bl (x) and Km(x) as calculated ini-
tially. At first consideration, they seem plausible. The form of the curves is consistent with the literature[18][8]
and so is the order of magnitude of the calculated values with Le(0) = 260µH , Bl (0) = 3.16 N

A and Km(0) =
3.59 N

mm . Klippel [18] explains that this form of the force factor curve suggests an equal-length configura-
tion of the voice coil. This means that the width of the voice coil (wcoi l in figure 2.5) is the same as that of
the pole gap, making the Bl (x) non-linear even at small displacements.
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Figure 5.2: The calculated characteristic curves of the non-linearities Le(x), Bl (x) and Km (x). The blue circles represent the values
found at he corresponding x-offset and the red line represent their 5-th order polynomial fit.

However, these values are not correct. The values of the non-linearities at each x-offset are acquired
from impedance measurements using the small signal identification method and are, as discussed in 4,
not suitable for predicting large signal behaviour of the speaker. This can also be seen when comparing
the Total Harmonic Distortion measured with the physical speaker with the simulated Total Harmonic
Distortion measurement using the model (figure 5.3). The figure shows that for all frequencies between 20-
180 Hz, the simulated THD is much lower than in the speaker measurements. The inaccuracy of the results
is also likely due to the simplicity of the model. Effects like eddy currents losses have much more influence
on the behaviour of the loudspeaker than what was initially expected (see section 4.3), and including them
in the model would significantly improve the accuracy of the model.

Figure 5.3: Comparison of THD measurement from the speaker using a microphone and the simulated THD using the Simulink
model an input signal amplitude of 5V . The measurements where made using the matlab codes ’plotTHD.m’ and ’simTHD.m’ (see
Appendix A.1)

At the time of submission of this thesis, validation of the model has not given good results. This is due to
a mistake in the methodology used for the interpretation of the impedance measurement results, resulting
in characteristics for the non-linearities Le (x), Km(x) and Bl (x) which seem plausible but are incorrect.
This leads to an underestimation of the THD in the model compared with THD on the physical speaker
for the same input amplitude. A new methodology for the extraction of non-linearity characteristics from
impedance measurements is currently being investigated. This methodology is explained in detail in section
4.1.2.





6
Conclusion

Non-linear behaviour of a loudspeaker was investigated and a non-linear model was derived and solved nu-
merically in Simulink. MATLAB code used for the parameterization and validation of the the loudspeakers
and MFB system’s performance was provided. Initial validation of the model showed underestimation of
the Total Harmonic Distortion generated by the speaker, caused by an error in the methodology used for the
extraction of speaker parameters from impedance measurements. The nonlinear system identification based
on impedance measurement suffers from poor accuracy. The proposed measurement technique is also very
time-consuming. A new methodology was proposed for the estimation of the non-linear parameters. A
lack of time has, however, prevented the application and validation of this method.

6.1. Recommendations
For future work we recommend that a nonlinear model is created using the Klippel method [18], with
a doppler laser. The effects of Eddy currents were visible in the measurement, but were not taken into
consideration in the data processing in this report. It is recommended that this phenomenon is also assessed.
Further research is needed to identify the benefits of various types of controllers. It is also recommended
that the possibility of a current driven system is investigated.
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A
MATLAB code

A.1. Model Validation
A.1.1. plotTHD.m
breaklines

1 %==========================================================================
2 % plotTHD .m : P e r f o r m s n o n l i n e a r d i s t o r t i o n measurements on l o u d s p e a k e r
3 % u s i n g USB s o u n d c a r d . Uses t h e pawavplayw f i l e from a u t h o r
4 % Gerard J a n s s e n .
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % Author : Aar t−P e t e r S c h i p p e r & A l e x a n d r o s S k o u r t i s −C a b r e r a
7 % Date : 1 7 / 6 / 2 0 1 8
8 %==========================================================================
9 f u n c t i o n plotTHD ( )

10 % s e t b a s i c measurement p a r a m t e r s
11 Fs = 48000 ;
12 N = 5* Fs ;
13 df = 1 0 ;
14 fMin = 2 0 ;
15 fMax = 200 ;
16 margin = 5 0 ;
17 d u r a t i o n _ s e c = N/ Fs ;
18 M = 5 ;
19

20 % o b t a i n i m p u l s e r e s p o n s e H
21

22

23 % e x e c u t e t h e THD f u n c t i o n t o f i n d t h e THD
24 A = 1 . 0 ;
25 [ f0 , THDa , THD] = fnTHD ( Fs , N, df , fMin , fMax , A, margin ) ;
26

27 % use t h e plotTHD f u n c t i o n t o g e n e r a t e a p l o t o f t h e r e s u l t
28 THDa = 100*THDa ;
29 THD = 100*THD;
30 plotTHD ( f0 , THDa , THD ) ;
31

32 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 % l i s t o f n e s t e d f u n c t i o n s :
34 %======================================================================
35 % f u n c t i o n THD computes t h e THD s p e c t r u m wi th r e s o l u t i o n d f
36 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |

39
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37 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
38 % | Fs | | sample f r e q u e n c y |
39 % | N | | number o f samples |
40 % | df | | THD r e s o l u t i o n |
41 % | fMin | | l ower bound of f r e q u e n c y sweep |
42 % | fMax | | uppe r bound of f r e q u e n c y sweep |
43 % | A | | a m p l i t u d e o f i n p u t s i g n a l |
44 % | H | | i m p u l s e r e s p o n s e o f l o u d s p e a k e r |
45 % | margin | | l ook f o r maximum between +− margin |
46 %
47 % | l i s t o f o u t p u t s | | d e f i n i t i o n : |
48 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
49 % | f0 | | d i s t o r t e d f r e q u e n c i e s |
50 % | THD | | T o t a l Harmonic D i s t o r t i o n |
51 % | THDa | | a c c o u s t i c THD |
52 %======================================================================
53 f u n c t i o n [ f0 , THDa , THD] = fnTHD ( Fs , N, df , fMin , fMax , A, margin )
54 % f i n d number o f loop i t e r a t i o n s
55 K = f l o o r ( ( fMax −fMin ) / d f ) ;
56

57 % p r e a l l o c a t e f o r speed
58 f0 = z e r o s (K, 1 ) ;
59 THDa = z e r o s (K, 1 ) ;
60 THD = z e r o s (K, 1 ) ;
61

62 f o r k =0:K−1
63 f0 ( k +1) = fMin + k * df ;
64 x = g e n _ f r e q ( f0 ( k +1 ) , A, Fs , d u r a t i o n _ s e c , N ) ; % p l a y f0
65 y = r e c o r d _ f r e q ( x , Fs ) ;% o b t a i n d a t a o f r e c o r d i n g and f o u r i e r t r a n s f o r m
66

67 s p e c t r u m = f f t s h i f t ( f f t ( y ( : , 2 ) ' ) ) ;
68 % % s p e c t r u m = s p e c t r u m /H;
69

70 % s o r t o u t t h e f r e q u e n c y a x i s
71 i f c e i l (N/ 2 ) > N/ 2
72 f = 1 / ( 2 *N) *[0 : 2 : N−1 ] ;
73 s p e c t r u m = s p e c t r u m (N/ 2 : end ) ;
74 e l s e
75 f = 1 / ( 2 *N) *[0 : 2 : N−1 ] ;
76 s p e c t r u m = s p e c t r u m ( (N/ 2 + 1 ) : end ) ;
77 end
78

79 F = f * Fs ;
80 % f i g u r e
81 % p l o t ( F , abs ( s p e c t r u m ) )
82 % xl im ( [ 0 5 0 0 ] )
83 % hold on ;
84

85

86 % s e l e c t d a t a p o i n t where d i s t o r t i o n i s e x p e c t e d
87 f D i s t o r t e d = z e r o s (M, 1 ) ;
88 n D i s t o r t e d = z e r o s (M, 1 ) ;
89 peak = z e r o s (M, 1 ) ;
90

91 % f i n d t h e a m p l i t u d e o f t h e maximum d i s t o r t i o n component
92 f o r m = 1 :M
93 f D i s t o r t e d (m) = m * f0 ( k + 1 ) ;
94 n D i s t o r t e d (m) = f l o o r ( (N/ Fs ) * f D i s t o r t e d (m) ) ;
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95

96 %p l o t ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin , s p e c t r u m ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin ) )
97

98 s e l e c t i o n = abs ( s p e c t r u m ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin ) ) ;
99 %p l o t ( ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin ) . / ( N/ Fs ) , s e l e c t i o n )

100 peak (m) = max ( s e l e c t i o n ) ;
101 %d i s p ( peak (m) )
102 end
103

104 % stem ( f D i s t o r t e d , peak ) ;
105

106 d i s t o r t i o n = sum ( peak ( 2 :M) . ^ 2 ) ;
107 THDa( k +1) = s q r t ( d i s t o r t i o n / ( d i s t o r t i o n +peak ( 1 ) ^ 2 ) ) ;
108 THD( k +1) = s q r t ( d i s t o r t i o n ) / peak ( 1 ) ;
109

110 end
111 end
112

113 %=====================================================================
114 % f u n c t i o n plotTHD p l o t s t h e THD i n p e r c e n t a s f u n c t i o n o f f r e q u e n c y
115 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |
116 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
117 % | f0 | | d i s t o r t e d f r e q u e n c i e s |
118 % | THDa | | a c c o u s t i c THD |
119 % | THD | | s t a n d a r d THD |
120 %
121 % | l i s t o f o u t p u t s :
122 % |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
123 % | graph of THDa and THD v e r s u s f0
124 %======================================================================
125 f u n c t i o n plotTHD ( f0 , THDa , THD)
126 f i g u r e
127 p l o t ( f0 , THDa , ' o ' )
128 ho ld on
129 p l o t ( f0 , THD, ' o ' )
130 ho ld o f f
131 t i t l e ( 'THD s p e c t r a ' )
132 x l a b e l ( ' f [ Hz ] ' )
133 y l a b e l ( ' D i s t o r t i o n [%] ' )
134 g r i d on
135 l e g e n d ( 'THDa ' , 'THD ' )
136 end
137 end

A.1.2. simTHD.m
breaklines

1 %==========================================================================
2 % simTHD .m : Measures THD by n u m e r i c a l l y s o l v i n g t h e t h e o r e t i c a l model
3 % of t h e l o u d s p e a k e r i n S i m u l i n k . Works s i m i l a r l y t o plotTHD .
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % Author : Aar t−P e t e r S c h i p p e r & A l e x a n d r o s S k o u r t i s −C a b r e r a
6 % Date : 1 7 / 6 / 2 0 1 8
7 %==========================================================================
8

9

10

11 % s e t b a s i c measurement p a r a m t e r s
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12 Fs = 48000 ;
13 N = 5* Fs ;
14 df = 2 0 ;
15 fMin = 2 0 ;
16 fMax = 200 ;
17 margin = 5 0 ;
18 d u r a t i o n _ s e c = N/ Fs ;
19 M = 5 ;
20 s o u r c e = 1 ; % 0 f o r soundcard , 1 f o r S i m u l in k model
21

22

23

24

25 % o b t a i n i m p u l s e r e s p o n s e H
26

27

28 % e x e c u t e t h e THD f u n c t i o n t o f i n d t h e THD
29 A = 5 . 0 ; % Ampl i tude o f s inewave ( i n V o l t s i f s i m u l a t i n g )
30

31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 % l i s t o f n e s t e d f u n c t i o n s :
33 %======================================================================
34 % f u n c t i o n THD computes t h e THD s p e c t r u m wi th r e s o l u t i o n d f
35 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |
36 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
37 % | Fs | | sample f r e q u e n c y |
38 % | N | | number o f samples |
39 % | df | | THD r e s o l u t i o n |
40 % | fMin | | l ower bound of f r e q u e n c y sweep |
41 % | fMax | | uppe r bound of f r e q u e n c y sweep |
42 % | A | | a m p l i t u d e o f i n p u t s i g n a l |
43 % | H | | i m p u l s e r e s p o n s e o f l o u d s p e a k e r |
44 % | margin | | l ook f o r maximum between +− margin |
45 % | s o u r c e | | 0 f o r soundcard , 1 f o r S i m u l i n k model |
46 %
47 % | l i s t o f o u t p u t s | | d e f i n i t i o n : |
48 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
49 % | f0 | | d i s t o r t e d f r e q u e n c i e s |
50 % | THD | | T o t a l Harmonic D i s t o r t i o n |
51 % | THDa | | a c c o u s t i c THD |
52 %======================================================================
53

54 % f i n d number o f loop i t e r a t i o n s
55 K = f l o o r ( ( fMax −fMin ) / d f ) ;
56

57 % p r e a l l o c a t e f o r speed
58 f0 = z e r o s (K, 1 ) ;
59 THDa = z e r o s (K, 1 ) ;
60 THD = z e r o s (K, 1 ) ;
61

62 f o r k =0:K−1
63 f0 ( k +1) = fMin + k * df ;
64 f r e q = f0 ( k + 1 ) ;
65 model = ' s p e a k e r _ n o n l i n _ s s ' ;
66

67 l o a d _ s y s t e m ( model )
68 cs = g e t A c t i v e C o n f i g S e t ( model ) ;
69 model_cs = cs . copy ;
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70 s t a r t _ t i m e = 0 ;
71 s t o p _ t i m e = N/ Fs ;
72 Ts = 1 / Fs ;
73 s e t _ p a r a m ( model_cs , ' F i x e d S t e p ' , num2s t r ( Ts ) ) ;
74 % ' S t a r t T i m e ' , num2s t r ( s t a r t _ t i m e ) , . . .
75 % ' StopTime ' , num2s t r ( s t o p _ t i m e ) , . . .
76

77 % c r e a t e t i m e s e r i e s o b j from s e q u e n c e
78 % Freq = [ 0 : l e n g t h ( Seq ) − 1 ] . / Fs ;
79 % g l o b a l s i m_ in ;
80 % sim _in = t i m e s e r i e s ( Seq ' , Freq ' ) ;
81 % % b u s S i g n a l . busElement_1 = s e q _ t s ; % l o a d t o i n p o r t 1
82

83 % Run s i m u l a t i o n and e x t r a c t o u t p u t
84 s im_ou t = sim ( model , model_cs ) ;
85 y_ou t = s im_ou t . s im_a . d a t a ( 1 :N ) ;
86

87 s p e c t r u m = f f t s h i f t ( f f t ( y_out ' ) ) ;
88 % % s p e c t r u m = s p e c t r u m /H;
89

90 % s o r t o u t t h e f r e q u e n c y a x i s
91 i f c e i l (N/ 2 ) > N/ 2
92 f = 1 / ( 2 *N) *[0 : 2 : N−1 ] ;
93 s p e c t r u m = s p e c t r u m (N/ 2 : end ) ;
94 e l s e
95 f = 1 / ( 2 *N) *[0 : 2 : N−1 ] ;
96 s p e c t r u m = s p e c t r u m ( (N/ 2 + 1 ) : end ) ;
97 end
98

99 F = f * Fs ;
100 % f i g u r e
101 % p l o t ( F , abs ( s p e c t r u m ) )
102 % xl im ( [ 0 5 0 0 ] )
103 % hold on ;
104 %
105

106 % s e l e c t d a t a p o i n t where d i s t o r t i o n i s e x p e c t e d
107 f D i s t o r t e d = z e r o s (M, 1 ) ;
108 n D i s t o r t e d = z e r o s (M, 1 ) ;
109 peak = z e r o s (M, 1 ) ;
110

111 % f i n d t h e a m p l i t u d e o f t h e maximum d i s t o r t i o n component
112 f o r m = 1 :M
113 f D i s t o r t e d (m) = m * f0 ( k + 1 ) ;
114 n D i s t o r t e d (m) = f l o o r ( (N/ Fs ) * f D i s t o r t e d (m) ) ;
115

116 % p l o t ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin , s p e c t r u m ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin ) )
117

118 s e l e c t i o n = abs ( s p e c t r u m ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin ) ) ;
119 % p l o t ( ( n D i s t o r t e d (m)−margin : n D i s t o r t e d (m)+ margin ) . / ( N/ Fs ) , s e l e c t i o n )
120 peak (m) = max ( s e l e c t i o n ) ;
121 % d i s p ( peak (m) )
122 end
123

124 % stem ( f D i s t o r t e d , peak ) ;
125

126 d i s t o r t i o n = sum ( peak ( 2 :M) . ^ 2 ) ;
127 THDa( k +1) = s q r t ( d i s t o r t i o n / ( d i s t o r t i o n +peak ( 1 ) ^ 2 ) ) ;
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128 THD( k +1) = s q r t ( d i s t o r t i o n ) / peak ( 1 ) ;
129 end
130 %=====================================================================
131 % f u n c t i o n plotTHD p l o t s t h e THD i n p e r c e n t a s f u n c t i o n o f f r e q u e n c y
132 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |
133 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
134 % | f0 | | d i s t o r t e d f r e q u e n c i e s |
135 % | THDa | | a c c o u s t i c THD |
136 % | THD | | s t a n d a r d THD |
137 %
138 % | l i s t o f o u t p u t s :
139 % |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
140 % | graph of THDa and THD v e r s u s f0
141 %======================================================================
142 % use t h e plotTHD f u n c t i o n t o g e n e r a t e a p l o t o f t h e r e s u l t
143 THDa = 100*THDa ;
144 THD = 100*THD;
145 plotTHD ( f0 , THDa , THD ) ;
146

147 f u n c t i o n plotTHD ( f0 , THDa , THD)
148 f i g u r e
149 p l o t ( f0 , 100*THDa , ' o ' )
150 ho ld on
151 p l o t ( f0 , 100*THD, ' o ' )
152 ho ld o f f
153 t i t l e ( 'THD s p e c t r a ' )
154 x l a b e l ( ' f [ Hz ] ' )
155 y l a b e l ( ' D i s t o r t i o n [%] ' )
156 g r i d on
157 l e g e n d ( 'THDa ' , 'THD ' )
158 end
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A.2. Impedance Measurement
A.2.1. nl_imp_meas.m

breaklines
1 %==========================================================================
2 % nl_ imp_measure : s c r i p t used t o g e n e r a t e impedance c u r v e s from
3 % s p e a k e r measurements . Based on ' LS_measure ' program
4 % w r i t t e n by Gera rd J a n s s e n
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % Author : A l e x a n d r o s S k o u r t i s −C a b r e r a
7 % Date : 1 7 / 6 / 2 0 1 8
8 %==========================================================================
9

10 %−−−−−VARIABLES−−−−−%
11

12 Rre f = 1 . 0 8 8 ; % v a l u e o f r e f e r e n c e r e s i s t o r i n Ohm
13 R_dc = 5 . 6 ; % r e s t ( f = 0 ) r e s i s t a n c e o f s p e a k e r i n Ohm
14 Ri = 1 6 . 2 e3 ; % i n p u t w h a t e v e r
15

16 L = 1 8 ; % g e n e r a t o r l e n g t h
17

18 Amin = 0 . 5 ; % minimum Ampl i tude
19 Amax = 2 ; % maximum Ampl i tude
20 dA = 0 . 2 ; % Ampl i tude i n c r e m e n t
21

22 Fs = 48000 ; % Sampl ing f r e q u e n c y i n Hz
23

24 n r e p s = 1 5 ; % number o f p l a y b a c k r e p e t i t i o n s
25 %−−−−−−−−−−−−−−−−−−−%
26

27 %−−−−−−PLAYBACK AND RECORD−−−−−−%
28 % S e t t i n g s f o r p lay − r e c o r d d e v i c e
29 p l a y d e v i c e =3;
30 r e c d e v i c e =1;
31 s a m p l e r a t e =Fs ;
32 r e c n s a m p l e s =0;
33 r e c f i r s t c h a n n e l =1;
34 r e c l a s t c h a n n e l =2 ;
35 d e v i c e t y p e = ' win ' ;
36 %−−−−−−−−−−−−−−−−−−−%
37

38

39 df = Fs / ( 2 ^ L ) ; % f r e q u e n c y i n c r e m e n t p e r sample
40

41 Z2_f = z e r o s ( 1 , 2 ^ L ) ;
42

43 Seq = c h o o s e _ m l _ l e n g t h ( L ) ; % l o a d w h i t e n o i s e s n i p p e t t o use
44 l e n _ s e q = s i z e ( Seq , 2 ) ; % l e n g t h o f s e q u e n c e
45

46 r a w d a t a o u t = z e r o s ( l e n _ s e q , 2 , n r e p s ) ;
47

48 f o r i d x = 1 : n r e p s
49

50 %Q = c e i l ( l e n _ s e q * rand ( 1 ) ) ;
51 %Seq = −[ ml_seq ( 1 ,Q: l e n _ s e q ) ml_seq ( 1 , 1 :Q−1 ) ] ; % Randomize Sequence
52 %Seq = −2* ml_seq +1;
53 p l a y b u f f e r =[ Seq ' , Seq ' ] ;
54
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55

56 % p l a y and r e c o r d
57 RX = p a _ w a v p l a y r e c o r d ( p l a y b u f f e r , [ p l a y d e v i c e ] , [ s a m p l e r a t e ] , [ r e c n s a m p l e s ] , [ r e c f i r s t c h a n n e l ] , [ r e c l a s t c h a n n e l ] , [ r e c d e v i c e ] , [ d e v i c e t y p e ] ) ;
58

59 r a w d a t a o u t ( : , : , i d x ) = RX;
60

61 RX = RX ' ;
62

63

64

65 % F i l t e r R e f e r e n c e and Measured s i g n a l t o BW
66 Ref = ( rcos_window ( 0 . 0 1 , s i z e (RX, 2 ) ) ) . * RX ( 1 , : ) ;
67 Meas =( rcos_window ( 0 . 0 1 , s i z e (RX, 2 ) ) ) . * RX ( 2 , : ) ;
68

69 % Get f r e q domain R e f e r e n c e and Measured S i g n a l
70 Ref_f = f f t ( Ref ) ;
71 Meas_f = f f t ( Meas ) ;
72 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
73

74 % Measurement c a b l e r e s i s t a n c e
75 R_k = 0 . 0 5 ;
76 R_m = 0 . 0 5 ;
77 R_g = R_k + R_m;
78

79 % Dete rmine t h e impedance
80 Z_f = Rre f * Meas_f . / ( Ref_f−Meas_f ) ;
81 %Z_f = Z_f . * Ri . / ( Ri−Z_f ) ;
82 %Z_f = Z_f − R_g ;
83

84 % P l o t each measurement
85

86 % Freq = df * [ 1 : s i z e ( Z_f , 2 ) ] ; % D ef in e f r e q u e n c y a x i s
87 % f i g u r e
88 % t i t l e ( ' Complex Speake r impedance ' )
89 %
90 % s u b p l o t ( 2 , 2 , 1 ) % Impedance Ampl i tude
91 % s e m i l o g x ( Freq , abs ( Z_f ) ) % , ' LineWidth ' , 2 ) ;
92 % t i t l e ( ' Ampli tude ' ) ;
93 % x l a b e l ( ' F requency ( Hz ) ' ) ;
94 % y l a b e l ( ' | Z | [Ohm ] ' ) ;
95 % g r i d on
96 % a x i s ( [ 1 0 20000 0 5 0 ] )
97 %
98 % s u b p l o t ( 2 , 2 , 2 ) % Impedance Phase
99 % s e m i l o g x ( Freq , 180* unwrap ( a n g l e ( Z_f ) ) / p i )% , ' LineWidth ' , 2 ) ;

100 % t i t l e ( ' Phase ' ) ;
101 % x l a b e l ( ' F requency ( Hz ) ' ) ;
102 % y l a b e l ( ' Phase s h i f t [ deg r ] ' ) ;
103 % g r i d on
104 %
105 % s u b p l o t ( 2 , 2 , 3 ) % Real and I m a g i n a r y impedance
106 % s e m i l o g x ( Freq , r e a l ( Z_f ) , Freq , imag ( Z_f ) ) % , ' LineWidth ' , 2 ) ;
107 % t i t l e ( ' Real− and I m a g i n a r y p a r t ' ) ;
108 % x l a b e l ( ' F requency ( Hz ) ' ) ;
109 % y l a b e l ( ' r e a l ( Z ) , imag ( Z ) [Ohm ] ' ) ;
110 % g r i d on
111

112 i f i d x == 1
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113 Z2_f = Z_f ;
114 e l s e
115 %Z2_f = 0 .75* Z2_f +0 .25* Z_f ;
116 Z2_f = ( idx −1)* Z2_f / i d x + Z_f / i d x ;
117 end
118

119 end
120

121 [B ,A] = b u t t e r ( 1 , 0 . 0 5 ) ;
122 [ Z2_f ] = f i l t f i l t (B , A, Z_f ) ;
123

124

125 Freq = df * [ 1 : s i z e ( Z2_f , 2 ) ] ; % D ef in e f r e q u e n c y a x i s
126

127

128

129

130 %−−−−PLOTS−−−−%
131

132

133 f i g u r e
134 t i t l e ( ' Complex Speake r impedance ' )
135

136 s u b p l o t ( 2 , 2 , 1 ) % Impedance Ampl i tude
137 s e m i lo g x ( Freq , abs ( Z2_f ) )% , ' LineWidth ' , 2 ) ;
138 t i t l e ( ' Ampl i tude ' ) ;
139 x l a b e l ( ' F requency ( Hz ) ' ) ;
140 y l a b e l ( ' | Z | [Ohm] ' ) ;
141 g r i d on
142 a x i s ( [ 1 0 20000 0 5 0 ] )
143

144 s u b p l o t ( 2 , 2 , 2 ) % Impedance Phase
145 s e m i lo g x ( Freq , 180* unwrap ( a n g l e ( Z2_f ) ) / p i )% , ' LineWidth ' , 2 ) ;
146 t i t l e ( ' Phase ' ) ;
147 x l a b e l ( ' F requency ( Hz ) ' ) ;
148 y l a b e l ( ' Phase s h i f t [ deg r ] ' ) ;
149 g r i d on
150

151 s u b p l o t ( 2 , 2 , 3 ) % Real and I m a g i n a r y impedance
152 s e m i lo g x ( Freq , r e a l ( Z2_f ) , Freq , imag ( Z2_f ) )% , ' LineWidth ' , 2 ) ;
153 t i t l e ( ' Real− and I m a g i n a r y p a r t ' ) ;
154 x l a b e l ( ' F requency ( Hz ) ' ) ;
155 y l a b e l ( ' r e a l ( Z ) , imag ( Z ) [Ohm] ' ) ;
156 g r i d on
157

158

159

160 % FOR LEAST SQUARES FIT
161 % l s q c u r v e f i t

A.2.2. nl_imp_extract.m
breaklines

1 %==========================================================================
2 % n l _ i m p _ e x t r a c t : s c r i p t t h a t e x t r a c t impedance d a t a from f i g u r e and
3 % c r o p s i t t o c e r t a i n f r e q u e n c y r a n g e
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % i n : f i g = f i g u r e t o e x t r a c t from
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6 %
7 % o u t : Z = impedance v e c t o r
8 % f = cropped f r e q u e n c y a x i s v e c t o r
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % Author : A l e x a n d r o s S k o u r t i s −C a b r e r a
11 % Date : 1 7 / 6 / 2 0 1 8
12 %==========================================================================
13 f u n c t i o n [ Z , f ] = n l _ i m p _ e x t r a c t ( f i g )
14 %−VARS−%
15

16 fmin = 1 0 ; % min f r e q t o CROP
17 fmax = 20000 ; % max f r e q t o CROP
18

19

20 %−EXTRACT−%
21 open ( f i g ) ;
22

23 h = g c f ; %c u r r e n t f i g u r e h a n d l e
24 % . . ( 1 ) f o r | Z | , . . ( 2 ) f o r a n g l e ( Z ) , . . ( 3 ) f o r Im ( Z ) & Re ( Z )
25 a x e s O b j s = g e t ( h ( 1 ) , ' C h i l d r e n ' ) ; %axes h a n d l e s
26 d a t a O b j s = g e t ( a x e s O b j s ( 1 ) , ' C h i l d r e n ' ) ; %h a n d l e s t o low− l e v e l g r a p h i c s o b j e c t s i n axes
27 % objTypes = g e t ( da t aOb j s , ' Type ' ) ; %t y p e of low− l e v e l g r a p h i c s o b j e c t
28

29 f = c e l l 2 m a t ( g e t ( da t aOb j s , ' XData ' ) ) ; % d a t a from low− l e v e l g r a h i c s o b j e c t s
30 Z = c e l l 2 m a t ( g e t ( da t aOb j s , ' YData ' ) ) ;
31

32 f = f ( 2 , : ) ; % choose c o r r e c t row f o r | Z |
33 Z = Z ( 2 , : ) ; % choose c o r r e c t row f o r | Z |
34

35 c l o s e ;
36 % % p l o t
37 % f i g u r e ;
38 % s e m i l o g x ( f ( 1 , : ) , Z ( 1 , : ) )
39 % hold on ;
40 % s e m i l o g x ( f ( 2 , : ) , Z ( 2 , : ) )
41 % g r i d on ;
42 % a x i s ( [ 1 0 20000 0 5 0 ] )
43

44 %−CROP−%
45 N = l e n g t h ( f ) ; % number o f samples
46 n_min = round (N* fmin . / f ( end ) ) ; % 1 s t sample o f c ropped d a t a
47 n_max = round (N*fmax . / f ( end ) ) ; % l a s t sample o f c ropped d a t a
48

49 f = f ( n_min : n_max ) ; % crop f
50 Z = Z ( n_min : n_max ) ; % crop Z
51

52 s e m i lo g x ( f , Z ) ;
53 %−SAVE−%
54 end

A.2.3. nl_imp_analysis.m
breaklines

1 %==========================================================================
2 % n l _ i m p _ a n a l y s i s .m : S c r i p t t h a t ( 1 ) u s e s t h e L e a s t S q u a r e s method t o f i t
3 % impedance measurement d a t a and a p p r o x i m a t e v a l u e o f
4 % of t h e L i n e a r model components and ( 2 ) T r i e s t o f i t
5 % model f o r n o n l i n e a r component v a l u e s . Based on t h e
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6 % ' LS_measure ' program w r i t t e n by Gera rd J a n s s e n
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % i n : Z_f
9 % o u t : p a r = [ Re , Le , Cp , Lp , Rp ]

10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 % Author : A l e x a n d r o s S k o u r t i s −C a b r e r a
12 % Date : 1 7 / 6 / 2 0 1 8
13 %==========================================================================
14 f u n c t i o n p a r = n l _ i m p _ a n a l y s i s ( Z_f )
15

16

17 %%%%%%%%%%%%%
18 % V a r i a b l e s %
19 %%%%%%%%%%%%%
20 j = s q r t ( −1 ) ;
21

22 Fs = 48000 ;
23 L = 1 8 ;
24 df = Fs / ( 2 ^ L ) ; % f r e q u e n c y i n c r e m e n t p e r sample
25

26 Freq = df * [ 1 : s i z e ( Z_f , 2 ) ] ;
27

28 % o f f s e t _ u n i t s = n l _ i m p _ o f f s e t s ; % m a t r i x wi th c o n v e r s i o n s v a l u e s
29 % V o f f _ i n (mV) | V o f f _ s p e a k e r (V) | x ( cm )
30 % disp_mm = 10* o f f s e t _ u n i t s ( : , 3 ) ; % Speake r d i s p l a c e m e n t i n mm
31

32 p l o t ( abs ( Z_f ) )
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 % P a r a m e t e r C a l c u l a t i o n & F i t t i n g %
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36

37 Re = 5 . 6 ; % C o i l r e s i s t a n c e ( s h o u l d be c o n s t a n t )
38

39 [ peaks , n_r ] = f i n d p e a k s ( abs ( Z_f ( round ( 5 0 / d f ) : round ( 1 5 0 / d f ) ) ) ) ;
40 [ R_res , idx_n ] = max ( peaks ) ; % Impedance v a l u e a t r e s o n a n c e peak
41 n _ r e s = n_r ( idx_n ) + round ( 5 0 / d f ) ;
42 Rp = R_res − Re ; % R_res = Re + Rp
43 w_0 = 2* p i * Freq ( n _ r e s ) ; % r e s o n a n c e f r e q u e n c y
44

45 % C a l c u l a t e peak bandwid th
46 bw_err = 0 . 1 ; % a c c e p t a b l e e r r o r margin f o r l o c a l i z a t i o n
47 i = 1 ; % sample i n d e x
48 w h i l e 1 % l e f t f r e q
49 i f abs ( abs ( Z_f ( n _ r e s − i ) ) − ( R_res / s q r t ( 2 ) ) ) < bw_err ; % check i f imp a t sample w i t h i n a c c e p t a b l e bound of R_res / s r t ( 2 )
50 n _ l f = i ; % d i f f e r e n c e between peak and l e f t bound i n # samples
51 b r e a k
52 end
53 i = i +1 ;
54 end ;
55 i = 1 ;
56 w h i l e 1 % r i g h t f r e q
57 i f abs ( abs ( Z_f ( n _ r e s − i ) ) − ( R_res / s q r t ( 2 ) ) ) < bw_err ; % check i f imp a t sample w i t h i n a c c e p t a b l e bound of R_res / s r t ( 2 )
58 n_rg = i ; % d i f f e r e n c e between peak and r i g h t bound i n # sample s
59 b r e a k
60 end
61 i = i +1 ;
62 end
63
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64 Bw = 2* p i * d f * ( n_rg + n _ l f + 1 ) ; % peak bandwid th i n r a d / s
65

66 Cp = 1 / ( Rp*Bw ) ;
67

68 Lp = 1 / ( w_0^2 * Cp ) ;
69

70 Le = 0 ;
71 f o r i d x = round ( 2 0 0 0 / d f ) : round ( 1 8 0 0 0 / d f )
72 Le_temp = s q r t ( abs ( Z_f ( i d x ) ) ^ 2 − Re ^ 2 ) / ( 2 * p i * Freq ( i d x ) ) ;
73 Le = ( idx −1)* Le / i d x + Le_temp / i d x ;
74

75 end
76

77 % p a r [ ] = [ Re , Le , Cp , Lp , Rp ]
78 % Z_abs_model = @( par , omegadata ) abs ( ( p a r ( 1 ) + 1 . / ( 1 / p a r ( 5 ) + p a r ( 5 ) * ( omegadata * p a r ( 3 ) − 1 . / ( omegadata * p a r ( 4 ) ) ) . ^ 2 ) ) + j * ( omegadata * p a r ( 2 ) +( omegadata * p a r ( 3 ) + ( 1 . / ( omegadata *Lp ) − omegadata * p a r ( 3 ) ) ) / ( 1 / p a r ( 5 ) ^ 2 + ( omegadata *Cp − 1 . / ( omegadata *Lp ) ) . ^ 2 ) ) ) ;
79 % par0 = [ 5 . 6 149 e−6 1 . 1 e−3 2 . 5 e−3 8 . 7 ] ; %[10 149 e−6 0 . 4 e−3 8e−3 1 5 ] ; % zero −d i s p l a c e m e n t p a r a m e t e r s
80 %
81 % [ par , resnorm , ~ , e x i t f l a g , o u t p u t ] = l s q c u r v e f i t ( Z_abs_model , par0 , 2 * p i * f _ d i s p ( 1 , : ) , Z a b s _ d i s p ( 1 , : ) ) ; % , [0 0 0 0 0 ] , [0 0 0 0 0 ] ) ;
82

83 Z_model = abs ( ( Re + 1 . / ( 1 / Rp + Rp * ( ( 2 * p i * Freq )* Cp − 1 . / ( ( 2 * p i * Freq )* Lp ) ) . ^ 2 ) ) + j * ( ( 2 * p i * Freq )* Le + ( ( 2 * p i * Freq )* Cp + ( 1 . / ( ( 2 * p i * Freq )* Lp ) − (2* p i * Freq )* Cp ) ) / ( 1 / Rp^2 + ( ( 2 * p i * Freq )* Cp − 1 . / ( ( 2 * p i * Freq )* Lp ) ) . ^ 2 ) ) ) ;
84

85 s e m i lo g x ( Freq , abs ( Z_f ) , Freq , Z_model ) ;
86 a x i s ( [ 1 0 20000 0 5 0 ] )
87

88 p a r = [ Re , Le , Cp , Lp , Rp ] ;

A.2.4. imp_datatoimp.m
breaklines

1 f u n c t i o n Z2_f = imp_da t a to imp ( rx )
2 %==========================================================================
3 % imp_da t a to imp .m : S c r i p t t h a t c a l c u l a t e s impedance Z ( f ) o f s p e a k e r
4 % u s i n g raw d a t a g e n e r a t e d by " nl_imp_meas .m" . Based
5 % on ' LS_measure ' program w r i t t e n by Gera rd J a n s s e n
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % i n : rx = raw r e c o r d i n g da ta −> dim 1 = s e q u e n c e l e n g t h
8 % dim 2 = c h a n n e l
9 % dim 3 = r e p e t i t i o n number

10 %
11 % o u t : Z2_f= impedance as a f u c t i o n o f f r e q u e n c y a v e r a g e d from a l l
12 % measurements .
13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 % Author : A l e x a n d r o s S k o u r t i s −C a b r e r a
15 % Date : 1 7 / 6 / 2 0 1 8
16 %==========================================================================
17

18

19 %−−−−−VARIABLES−−−−−%
20

21 Rre f = 1 . 0 8 8 ; % v a l u e o f r e f e r e n c e r e s i s t o r i n Ohm
22 R_dc = 5 . 6 ; % r e s t ( f = 0 ) r e s i s t a n c e o f s p e a k e r i n Ohm
23

24 Fs = 48000 ; % Sampl ing f r e q u e n c y i n Hz
25

26 L = log2 ( s i z e ( rx , 1 ) ) ;
27 df = Fs / ( 2 ^ L ) ; % f r e q u e n c y i n c r e m e n t p e r sample
28 %−−−−−−−−−−−−−−−−−−−%
29
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30 Z2_f = z e r o s ( 1 , 2 ^ L ) ;
31

32 f o r i d x = 1 : s i z e ( rx , 3 )
33 RX = rx ( : , : , i d x ) ' ;
34

35

36

37 % F i l t e r R e f e r e n c e and Measured s i g n a l t o BW
38 Ref = ( rcos_window ( 0 . 0 1 , s i z e (RX, 2 ) ) ) . * RX ( 1 , : ) ;
39 Meas =( rcos_window ( 0 . 0 1 , s i z e (RX, 2 ) ) ) . * RX ( 2 , : ) ;
40

41 % Get f r e q domain R e f e r e n c e and Measured S i g n a l
42 Ref_f = f f t ( Ref ) ;
43 Meas_f = f f t ( Meas ) ;
44 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
45

46 % Measurement c a b l e r e s i s t a n c e
47 R_k = 0 . 0 5 ;
48 R_m = 0 . 0 5 ;
49 R_g = R_k + R_m;
50

51 % Dete rmine t h e impedance
52 Z_f = Rre f * Meas_f . / ( Ref_f−Meas_f ) ;
53 %Z_f = Z_f . * Ri . / ( Ri−Z_f ) ;
54 %Z_f = Z_f − R_g ;
55

56 % P l o t each measurement
57

58 % Freq = df * [ 1 : s i z e ( Z_f , 2 ) ] ; % D ef in e f r e q u e n c y a x i s
59 % f i g u r e
60 % t i t l e ( ' Complex Speake r impedance ' )
61 %
62 % s u b p l o t ( 2 , 2 , 1 ) % Impedance Ampl i tude
63 % s e m i l o g x ( Freq , abs ( Z_f ) ) % , ' LineWidth ' , 2 ) ;
64 % t i t l e ( ' Ampli tude ' ) ;
65 % x l a b e l ( ' F requency ( Hz ) ' ) ;
66 % y l a b e l ( ' | Z | [Ohm ] ' ) ;
67 % g r i d on
68 % a x i s ( [ 1 0 20000 0 5 0 ] )
69 %
70 % s u b p l o t ( 2 , 2 , 2 ) % Impedance Phase
71 % s e m i l o g x ( Freq , 180* unwrap ( a n g l e ( Z_f ) ) / p i )% , ' LineWidth ' , 2 ) ;
72 % t i t l e ( ' Phase ' ) ;
73 % x l a b e l ( ' F requency ( Hz ) ' ) ;
74 % y l a b e l ( ' Phase s h i f t [ deg r ] ' ) ;
75 % g r i d on
76 %
77 % s u b p l o t ( 2 , 2 , 3 ) % Real and I m a g i n a r y impedance
78 % s e m i l o g x ( Freq , r e a l ( Z_f ) , Freq , imag ( Z_f ) ) % , ' LineWidth ' , 2 ) ;
79 % t i t l e ( ' Real− and I m a g i n a r y p a r t ' ) ;
80 % x l a b e l ( ' F requency ( Hz ) ' ) ;
81 % y l a b e l ( ' r e a l ( Z ) , imag ( Z ) [Ohm ] ' ) ;
82 % g r i d on
83

84 i f i d x == 1
85 Z2_f = Z_f ;
86 e l s e
87 %Z2_f = 0 .75* Z2_f +0 .25* Z_f ;
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88 Z2_f = ( idx −1)* Z2_f / i d x + Z_f / i d x ;
89 end
90

91 end
92

93 [B ,A] = b u t t e r ( 1 , 0 . 0 5 ) ;
94 [ Z2_f ] = f i l t f i l t (B , A, Z_f ) ;
95 Z2_f = Z2_f ' ;
96

97 Freq = df * [ 1 : s i z e ( Z2_f , 2 ) ] ; % D ef in e f r e q u e n c y a x i s
98

99

100

101

102 %−−−−PLOTS−−−−%
103

104

105 % f i g u r e
106 % t i t l e ( ' Complex Speake r impedance ' )
107 %
108 % s u b p l o t ( 2 , 2 , 1 ) % Impedance Ampl i tude
109 % s e m i l o g x ( Freq , abs ( Z2_f ) ) % , ' LineWidth ' , 2 ) ;
110 % t i t l e ( ' Ampli tude ' ) ;
111 % x l a b e l ( ' F requency ( Hz ) ' ) ;
112 % y l a b e l ( ' | Z | [Ohm ] ' ) ;
113 % g r i d on
114 % a x i s ( [ 1 0 20000 0 5 0 ] )
115 %
116 % s u b p l o t ( 2 , 2 , 2 ) % Impedance Phase
117 % s e m i l o g x ( Freq , 180* unwrap ( a n g l e ( Z2_f ) ) / p i )% , ' LineWidth ' , 2 ) ;
118 % t i t l e ( ' Phase ' ) ;
119 % x l a b e l ( ' F requency ( Hz ) ' ) ;
120 % y l a b e l ( ' Phase s h i f t [ deg r ] ' ) ;
121 % g r i d on
122 %
123 % s u b p l o t ( 2 , 2 , 3 ) % Real and I m a g i n a r y impedance
124 % s e m i l o g x ( Freq , r e a l ( Z2_f ) , Freq , imag ( Z2_f ) ) % , ' LineWidth ' , 2 ) ;
125 % t i t l e ( ' Real− and I m a g i n a r y p a r t ' ) ;
126 % x l a b e l ( ' F requency ( Hz ) ' ) ;
127 % y l a b e l ( ' r e a l ( Z ) , imag ( Z ) [Ohm ] ' ) ;
128 % g r i d on
129

130

131

132 % FOR LEAST SQUARES FIT
133 % l s q c u r v e f i t
134

135

136 end
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A.3. Parameter Estimation
A.3.1. pars_nl.m

breaklines
1 %==========================================================================
2 % p a r s _ n l .m : Code used t o c a l c u l a t e c h a r a c t e r i s t i c c u r v e s o f Km( x ) ,
3 % Bl ( x ) and Le ( x ) u s i n g method d e s c r i b e d i n c h a p t e r 4 o f
4 % t h e t h e s i s . t h i s s c r i p t i s NOT COMPLETE and i s
5 % c u r r e n t l y b e i n g d e v e l o p e d .
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % Author : Aar t−P e t e r S c h i p p e r & A l e x a n d r o s S k o u r t i s −C a b r e r a
8 % Date : 1 7 / 6 / 2 0 1 8
9 %==========================================================================

10

11 l o a d p a r s . mat
12 l o a d o f f s e t . mat
13 l o a d V r e f _ o f f s e t . mat
14 %o f f s e t ( : , 3 ) = f l i p u d ( o f f s e t ( : , 3 ) ) ;
15

16 m = 0 . 0 1 1 0 2 5 ; % mass o f moving p a r t s
17 n_po l = 5 ; % o r d e r o f p o l y n o m i a l a p p r o x i m a t i o n s
18 x P l o t = l i n s p a c e ( −3.6 e −3 , 2e −3 , 1 0 0 ) ; % x a x i s used f o r p o l y n o m i a l a p p r o x i m a t i o n s
19 d f P l o t = (2 e−3 + 3 . 6 e −3 ) / 1 0 0 ;
20

21

22 Rre f = 1 . 0 8 8 ;
23

24 %
25 Rp_0 = p a r s ( 6 , 3 ) ; %8 . 3 ; % 0 o f f s e t Rp f o r d e t e r m i n a t i o n o f c o n s t a n t p a r s
26 Cp_0 = p a r s ( 6 , 5 ) ; %7 . 5 e −4; % 0 o f f s e t Cp f o r d e t e r m i n a t i o n o f c o n s t a n t p a r s
27 Bl_0 = s q r t (m/ Cp_0 ) ; % 0 o f f s e t Rp f o r d e t e r m i n a t i o n o f c o n s t a n t p a r s
28 % " c o n s t . " components ( approx )
29 b = Bl_0 ^ 2 / Rp_0 ;
30 Re = 5 . 6 ;
31

32

33 % % % non l i n e a r g y r a t o r model ( INCORRECT
34 % % Bl_meas = s q r t (m . / p a r s ( : , 5 ) ) ;
35 % % Le_meas = p a r s ( : , 2 ) ;
36 % % Cm_meas = p a r s ( : , 4 ) . / ( ( Bl_meas ) . ^ 2 ) ;
37

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39 % P o l y n o m i a l A p p r o x i m a t i o n s %
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41

42 %c u r r e n t i ( x ) = i ( 1 ) * x + i ( 2 ) * x ^2 + . . . + i ( n )* x^n
43 i_meas = V r e f _ o f f s e t / R re f ;
44

45 [ pI , ~ , muI ] = p o l y f i t ( o f f s e t ( : , 3 ) , i_meas , n_po l ) ;
46 %pI ( end ) = 0 ;
47 I P l o t = p o l y v a l ( pI , x P l o t , [ ] , muI ) ;
48 d i d x P l o t = d i f f ( I P l o t ) . / d f P l o t ;
49

50 p l o t ( o f f s e t ( : , 3 ) , i_meas , ' o ' )
51 p l o t ( x P l o t , I P l o t )
52 t i t l e ( ' i ( x ) ' ) ;
53 g r i d on
54
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55 f i g u r e ;
56 p l o t ( x P l o t ( 1 : end −1) , d i d x P l o t ) ;
57 t i t l e ( ' d i / dx ' ) ;
58 g r i d on
59

60

61 % Q and Q* i
62 omega_0 = s q r t ( 1 . / ( p a r s ( : , 4 ) . * p a r s ( : , 5 ) ) ) ; % Resonance f r e q u e n c y omega_0 = s q r t ( 1 / ( LpCp ) )
63 Q_meas = ( omega_0 . ^ 2 ) *m;
64 [ pQ , ~ , muQ] = p o l y f i t ( o f f s e t ( : , 3 ) , Q_meas , n_po l ) ;
65 QPlot = p o l y v a l ( pQ , x P l o t , [ ] , muQ ) ;
66 f i g u r e ;
67 p l o t ( o f f s e t ( : , 3 ) , Q_meas , ' o ' )
68 ho ld on
69 p l o t ( x P l o t , QPlo t )
70 t i t l e ( 'Q ' )
71 g r i d on
72

73 Qi_meas = Q_meas . * i_meas ;
74 [ pQi , ~ , muQi ] = p o l y f i t ( o f f s e t ( : , 3 ) , Qi_meas , n_po l ) ;
75 Q i P l o t = p o l y v a l ( pQi , x P l o t , [ ] , muQi ) ;
76 f i g u r e ;
77 p l o t ( o f f s e t ( : , 3 ) , Qi_meas , ' o ' )
78 ho ld on
79 p l o t ( x P l o t , Q i P l o t )
80 t i t l e ( 'Q* i ' )
81 g r i d on
82

83

84 % Bl = Q*dx / d i
85 B l P l o t = QPlot ( 1 : end − 1 ) . / d i d x P l o t ;
86

87 f i g u r e
88 p l o t ( x P l o t ( 1 : end −1) , B l P l o t )
89 t i t l e ( ' Bl ( x ) ' )
90 g r i d on
91

92

93 % K*x = (Q* i ) / ( d i / dx )
94 F k P l o t = Q i P l o t ( 1 : end − 1 ) . / d i d x P l o t ;
95 f i g u r e
96 p l o t ( x P l o t ( 1 : end −1) , FkPlo t , x P l o t ( 1 : end −1) , B l P l o t . * I P l o t ( 1 : end −1 ) ) ;
97 t i t l e ( ' Fk & Bl ' )
98 g r i d on
99

100 KmPlot = F k P l o t . / x P l o t ( 1 : end −1 ) ;
101 f i g u r e
102 p l o t ( x P l o t ( 1 : end −1) , KmPlot ) ;
103 t i t l e ( 'Km( x ) ' )
104 g r i d on
105

106 % % P o l y n o m i a l a p p r o x i m a t i o n o f Km = 1 /Cm
107 % Q_meas = m . / ( p a r s ( : , 4 ) . * p a r s ( : , 5 ) ) ; % Q( x ) = m/ Lp ( x ) Cp ( x ) f a c t o r f o r d i f f eq . o f Km
108 % pQ = p o l y f i t ( o f f s e t ( : , 3 ) , Q_meas , n_po l ) ; % f i t p o l y n o m i a l t o Q
109 % pKm = z e r o s ( 1 , n_po l ) ;
110 % f o r N = 0 : n_po l % k_N = q_N / ( N+1)
111 % pKm( n_po l +1−N) = pQ ( n_po l +1−N ) / ( N+ 1 ) ;
112 % end
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113 % KmPlot = p o l y v a l (pKm, x P l o t ) ;
114

115

116 % % p l o t t h e l a r g e s i g n a l p a r a m e t e r s f o r g r e e n l i g h t twopage
117 % l o a d p a r s
118 % l o a d o f f s e t s
119 %
120 % p a r s = abs ( p a r s ) ;
121 %
122 % x = [ −3 . 6 ; −3 .4 ; −3 .2 ; −2 .9 ; −2 .5 ; −2 .1 ; −1 .8 ; −1 .3 ; − . 6 ; 0 ; . 8 ; 1 . 3 ; . . .
123 % 1 . 6 ; 1 . 7 ; 2 ] ;
124 % x = f l i p u d ( x ) ;
125 %
126 % % d e r r i v e s m a l l s i g n a l e q u i v a l e n t m e c h a n i c a l v a l u e s
127 % Bl2 = 1 . / p a r s ( : , 5 ) ;
128 % Cm = p a r s ( : , 4 ) . / Bl2 ;
129 % Bl = s q r t ( Bl2 ) ;
130 % Le = p a r s ( : , 2 ) ;
131 %
132 % % do a p o l y n o m i a l a p p r o x i m a t i o n o f t h e d a t a
133 % pLe = p o l y f i t ( o f f s e t ( : , 3 ) , Le_meas , n_po l ) ;
134 % pBl = p o l y f i t ( o f f s e t ( : , 3 ) , Bl_meas , n_po l ) ;
135 % pCm = p o l y f i t ( o f f s e t ( : , 3 ) , Cm_meas , n_po l ) ;
136

137 % pLp = p o l y f i t ( o f f s e t ( : , 3 ) , Lp_meas , 5 ) ;
138

139

140 % % c r e a t e d a t a f o r p l o t t i n g a c u r v e
141 % L e P l o t = p o l y v a l ( pLe , x P l o t ) ;
142 % B l P l o t = p o l y v a l ( pBl , x P l o t ) ;
143 % CmPlot = p o l y v a l (pCm, x P l o t ) ;
144

145

146 % f i n d t h e s p r i n g f o r c e
147 % Fk = 1e−5*x . / Cm_meas ;
148 % F k P l o t = 1e−5* x P l o t . / CmPlot ;
149 %
150 % % p l o t t h e g r a p h s o f t h e v a l u e s
151 % f i g u r e
152 % s u b p l o t ( 1 3 1 )
153 % p l o t ( x , Le_meas *1 e6 , ' o ' )
154 % hold on
155 % p l o t ( x P l o t , L e P l o t *1 e6 )
156 % hold o f f
157 % t i t l e ( ' Voice C o i l I n d u c t a n c e ' )
158 % x l a b e l ( ' x [mm] ' )
159 % xl im ([ −4 4 ] )
160 % y = y l a b e l ( ' $L_e \ ; \ l b r a c k \ mu H \ r b r a c k $ ' ) ;
161 % s e t ( y , ' i n t e r p r e t e r ' , ' Latex ' , ' Fon tS i ze ' , 14 )
162 % g r i d on
163 %
164 % s u b p l o t ( 1 3 2 )
165 % p l o t ( x , Bl_meas , ' o ' )
166 % hold on
167 % p l o t ( x P l o t , B l P l o t )
168 % hold o f f
169 % t i t l e ( ' Fo rce F a c t o r ' )
170 % x l a b e l ( ' x [mm] ' )
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171 % xl im ([ −4 4 ] )
172 % y l a b e l ( ' Bl ' )
173 % g r i d on
174 %
175 % s u b p l o t ( 1 3 3 )
176 % p l o t ( x , Cm_meas , ' o ' )
177 % hold on
178 % p l o t ( x P l o t , CmPlot )
179 % hold o f f
180 % t i t l e ( ' S p i d e r Force ' )
181 % x l a b e l ( ' x [mm] ' )
182 % xl im ([ −4 4 ] )
183 % y l a b e l ( ' F ' )
184 % g r i d on

A.3.2. pars_nl_old.m
breaklines

1 %==========================================================================
2 % p a r s _ n l _ o l d .m : Code used f o r t h e i n i t i a l c a l c u l a t i o n o f t h e cha ra −
3 % c t e r i s t i c c u r v e s o f Km( x ) , Bl ( x ) and Le ( x ) . The
4 % method used i n t h i s code i s INCORRECT and has been
5 % r e p l a c e d by ' p a r s _ n l .m'
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % Author : Aar t−P e t e r S c h i p p e r & A l e x a n d r o s S k o u r t i s −C a b r e r a
8 % Date : 1 7 / 6 / 2 0 1 8
9 %==========================================================================

10

11 % measure model p a r a m e t e r s u s i n g s m a l l
12 %
13 l o a d p a r s . mat
14 l o a d o f f s e t . mat
15 l o a d V r e f _ o f f s e t . mat
16 %o f f s e t ( : , 3 ) = f l i p u d ( o f f s e t ( : , 3 ) ) ;
17

18 m = 0 . 0 1 1 0 2 5 ; % mass o f moving p a r t s
19 n_po l = 5 ; % o r d e r o f p o l y n o m i a l a p p r o x i m a t i o n s
20 x P l o t = l i n s p a c e ( −3.6 e −3 , 2e −3 , 1 0 0 ) ; % x a x i s used f o r p o l y n o m i a l a p p r o x i m a t i o n s
21 d f P l o t = (2 e−3 + 3 . 6 e −3 ) / 1 0 0 ;
22

23

24 Rre f = 1 . 0 8 8 ;
25

26 %
27 Rp_0 = p a r s ( 6 , 3 ) ; %8 . 3 ; % 0 o f f s e t Rp f o r d e t e r m i n a t i o n o f c o n s t a n t p a r s
28 Cp_0 = p a r s ( 6 , 5 ) ; %7 . 5 e −4; % 0 o f f s e t Cp f o r d e t e r m i n a t i o n o f c o n s t a n t p a r s
29 Bl_0 = s q r t (m/ Cp_0 ) ; % 0 o f f s e t Rp f o r d e t e r m i n a t i o n o f c o n s t a n t p a r s
30 % " c o n s t . " components ( approx )
31 b = Bl_0 ^ 2 / Rp_0 ;
32 Re = 5 . 6 ;
33

34

35 % non l i n e a r g y r a t o r model ( INCORRECT ! )
36 Bl_meas = s q r t (m . / p a r s ( : , 5 ) ) ;
37 Le_meas = p a r s ( : , 2 ) ;
38 Cm_meas = p a r s ( : , 4 ) . / ( ( Bl_meas ) . ^ 2 ) ;
39

40
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41 % p l o t t h e l a r g e s i g n a l p a r a m e t e r s f o r g r e e n l i g h t twopage
42 p a r s = abs ( p a r s ) ;
43

44 % % d e r r i v e s m a l l s i g n a l e q u i v a l e n t m e c h a n i c a l v a l u e s
45 % Bl2 = 1 . / p a r s ( : , 5 ) ;
46 % Cm = p a r s ( : , 4 ) . / Bl2 ;
47 % Bl = s q r t ( Bl2 ) ;
48 % Le = p a r s ( : , 2 ) ;
49

50 % do a p o l y n o m i a l a p p r o x i m a t i o n o f t h e d a t a
51 [ pLe , ~ , muLe ] = p o l y f i t ( o f f s e t ( : , 3 ) , Le_meas , n_po l ) ;
52 [ pBl , ~ , muBl ] = p o l y f i t ( o f f s e t ( : , 3 ) , Bl_meas , n_po l ) ;
53 [pCm, ~ , muCm]= p o l y f i t ( o f f s e t ( : , 3 ) , Cm_meas , n_po l ) ;
54

55 % pLp = p o l y f i t ( o f f s e t ( : , 3 ) , Lp_meas , 5 ) ;
56

57

58 % c r e a t e d a t a f o r p l o t t i n g a c u r v e
59 L e P l o t = p o l y v a l ( pLe , x P l o t , [ ] , muLe ) ;
60 B l P l o t = p o l y v a l ( pBl , x P l o t , [ ] , muBl ) ;
61 CmPlot = p o l y v a l (pCm, x P l o t , [ ] , muCm ) ;
62

63

64 % f i n d t h e s p r i n g f o r c e
65 % Fk = o f f s e t ( : , 3 ) . / Cm_meas ;
66 % F k P l o t = x P l o t . / CmPlot ;
67

68 % p l o t t h e g r a p h s o f t h e v a l u e s
69 f i g u r e
70 s u b p l o t ( 1 3 1 )
71 p l o t ( o f f s e t ( : , 3 ) , Le_meas , ' o ' )
72 ho ld on
73 p l o t ( x P l o t , L e P l o t )
74 ho ld o f f
75 t i t l e ( ' Voice C o i l I n d u c t a n c e Le ( x ) ' )
76 x l a b e l ( ' x [m] ' )
77 xl im ([ −4 4]*10 e −4)
78 y = y l a b e l ( ' Le [H] ' ) ;
79 s e t ( y , ' i n t e r p r e t e r ' , ' La t ex ' , ' F o n t S i z e ' , 14)
80 g r i d on
81

82 s u b p l o t ( 1 3 2 )
83 p l o t ( o f f s e t ( : , 3 ) , Bl_meas , ' o ' )
84 ho ld on
85 p l o t ( x P l o t , B l P l o t )
86 ho ld o f f
87 t i t l e ( ' Fo rce F a c t o r Bl ( x ) ' )
88 x l a b e l ( ' x [m] ' )
89 xl im ([ −4 4]*10 e −4)
90 y l a b e l ( ' Bl [N/A] ' )
91 g r i d on
92

93 s u b p l o t ( 1 3 3 )
94 p l o t ( o f f s e t ( : , 3 ) , 1 . / Cm_meas , ' o ' )
95 ho ld on
96 p l o t ( x P l o t , 1 . / CmPlot )
97 ho ld o f f
98 t i t l e ( ' S t i f n e s s Km( x ) ' )
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99 x l a b e l ( ' x [m] ' )
100 xl im ([ −4 4]*10 e −4)
101 y l a b e l ( 'Km [N/m] ' )
102 g r i d on
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A.4. Other
A.4.1. fourier.m
breaklines

1 %==========================================================================
2 % f u n c t i o n f o u r i e r g e n e r a t e s a s h i f t e d f o u r i e r t r a n s f o r m
3 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |
4 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
5 % | x | | s i g n a l t o be c o n v e r t e d ( column v e c t o r ) |
6 % | Fs | | sample f r e q u e n c y |
7 % | N | | number o f sample s |
8 %
9 % | l i s t o f o u t p u t s : | | d e f i n i t i o n : |

10 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
11 % | X | | f o u r i e r t r a n s f o r m e d s i g n a l |
12 % | dBX | | X i n dB |
13 % | f | | f r e q u e n c y a x i s |
14 % | M | | number o f sample s i n t r a n s f o r m e d s i g n a l |
15 %
16 % d a t e : 1 1 / 5 / 2 0 1 8
17 % a u t h o r : Aar t−P e t e r S c h i p p e r
18 %==========================================================================
19 f u n c t i o n [X, dBX , f , M] = f o u r i e r ( x , Fs , N)
20 % f i n d number o f samples i f N i s n o t s p e c i f i e d
21 i f N < 1
22 N = s i z e ( x , 1 ) ;
23 end
24

25 % s o r t o u t t h e f r e q u e n c y a x i s
26 i f c e i l (N/ 2 ) > N/ 2
27 M = 0 . 5 +N/ 2 ;
28 f = 1 / ( 2 *N) *[0 : 2 : N−1 ] ;
29 e l s e
30 M = N/ 2 ;
31 f = 1 / ( 2 *N) *[0 : 2 : N−1 ] ;
32 end
33

34 % a p p l y t h e d i g i t a l f o u r i e r t r a n s f o r m and c o n v e r t do d e c i b e l
35 %window = hamming (N ) ;
36 %X = f f t ( x . * window ) ;
37 X = f f t ( x ) ;
38 X = X( 1 :M, : ) ;
39 dBX = 10 * log10 ( abs (X ) ) ;
40

41 % c o n v e r t n o r m a l i z e d f r e q u e n c y t o a c t u a l f r e q u e n c y
42 i f Fs > 0
43 f = t r a n s p o s e ( Fs * f ) ;
44 end
45 end

A.4.2. playRec.m
breaklines

1 %==========================================================================
2 % f u n c t i o n p layRec p l a y s f r e q u e n c y f0 and r e t u r n s t h e r e c o r d e d s i g n a l
3 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |
4 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
5 % | f0 | | i n p u t f r e q u e n c y 1 |



60 A. MATLAB code

6 % | f1 | | i n p u t f r e q u e n c y 2 |
7 % | Fs | | sample f r e q u e n c y |
8 % | N | | number o f sample s |
9 % | A0 | | a m p l i t u d e o f t h e f i r s t f r e q u e n c y |

10 % | A1 | | s e c o n d a r y a m p l i t u d e , i f A1 = 0 , A1 = A0 |
11 %
12 % | l i s t o f o u t p u t s :
13 % |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 % | x : s i g n a l t h a t i s p l a y e d t h r o u g h t h e s p e a k e r
15 % | y : ( Nx2 ) v e c t o r c o n t a i n i n g t h e r e c o r d e d s i g n a l
16 %
17 % t h i s f u n c t i o n u s e s t h e pawavplayw f i l e from a u t h o r Gera rd J a n s s e n .
18 %
19 % d a t e : 1 1 / 5 / 2 0 1 8
20 % a u t h o r : Aar t−P e t e r S c h i p p e r
21 %==========================================================================
22 f u n c t i o n [ x , y ] = p layRec ( f0 , f1 , Fs , N, A0 , A1 , x )
23 % f i n d o u t what s i g n a l t o p l a y
24 i f x ~= 0 % x a l r e a d y d e f i n e d
25 e l s e i f ( f0 <= 0) && ( f1 <= 0) % c r e a t e w h i t e n o i s e
26 f l a t S p e c t r u m ( ) ;
27 e l s e i f f0 <= 0 % p l a y one f r e q u e n c y
28 g e t F r e q u e n c y 1 ( f1 ) ;
29 e l s e i f f1 <= 0 % p l a y one f r e q u e n c y
30 g e t F r e q u e n c y 1 ( f0 ) ;
31 e l s e % p l a y two f r e q u e n c i e s
32 g e t F r e q u e n c y 2 ( ) ;
33 end
34

35 % s e t d e v i c e p a r a m e t e r s
36 buf = [ x , x ] ; % d u a l c h a n n e l s i g n a l
37 playDev = 3 ; % use pawavplayw i n Command Window t o l i s t a u d i o
38 recDev = 1 ; % d e v i c e s
39 n = 0 ; % number o f samples f o r r e c o r d i n g , i f n = 0 , n = N
40 recChan = [ 1 , 2 ] ; % f i r s t and l a s t c h a n n e l f o r r e c o r d i n g
41

42 % p l a y and r e c o r d u s i n g pawavplayw and c o n v e r t t o d ou b l e
43 % y = pawavplaya ( buf , playDev , Fs , recChan ( 1 ) , recChan ( 2 ) , n , recDev ) ;
44 % y = pawavplayx ( buf , playDev , Fs , recChan ( 1 ) , recChan ( 2 ) , n , recDev ) ;
45 y = pawavplayw ( buf , playDev , Fs , recChan ( 1 ) , recChan ( 2 ) , n , recDev ) ;
46 y = d ou b l e ( y ) ;
47

48 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 % l i s t o f n e s t e d f u n c t i o n s :
50 %======================================================================
51 % f u n c t i o n w h i t e N o i s e g e n e r a t e s a random s i g n a l w i th z e r o o f f s e t
52 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |
53 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
54 % | N | | number o f samples |
55 % | A | | a m p l i t u d e o f t h e i n p u t s i g n a l |
56 %
57 % | l i s t o f o u t p u t s :
58 % |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 % | x : ( a p p r o x i m a t e l y ) w h i t e n o i s e s i g n a l
60 %======================================================================
61 f u n c t i o n f l a t S p e c t r u m ( )
62 % f i n d t h e number o f s h i f t r e g i s t e r s
63 m = log2 (N + 1 ) ;
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64 d i s p ( ' use ML s e q u e n c e ' )
65

66 i f m == c e i l ( l og2 (N + 1 ) ) % use maximum l e n g t h s e q u e n c e
67 s w i t c h m % f i n d t h e p o s i t i o n o f t h e t a p s
68 c a s e 3
69 g = [ 1 ; 0 ; 1 ] ;
70 c a s e 4
71 g = [ 1 ; 0 ; 0 ; 1 ] ;
72 c a s e 5
73 g = [ 0 ; 1 ; 0 ; 0 ; 1 ] ;
74 c a s e 6
75 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
76 c a s e 7
77 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
78 c a s e 8
79 g = [ 0 ; 1 ; 1 ; 1 ; 0 ; 0 ; 0 ; 1 ] ;
80 c a s e 9
81 g = [ 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
82 c a s e 10
83 g = [ 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
84 c a s e 11
85 g = [ 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
86 c a s e 12
87 g = [ 1 ; 0 ; 0 ; 1 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
88 c a s e 13
89 g = [ 1 ; 0 ; 1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
90 c a s e 14
91 g = [ 1 ; 0 ; 1 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
92 c a s e 15
93 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
94 c a s e 16
95 g = [ 0 ; 1 ; 1 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
96 c a s e 17
97 g = [ 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
98 c a s e 18
99 g = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;

100 c a s e 19
101 g = [ 1 ; 1 ; 0 ; 0 ; 5 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
102 c a s e 20
103 g = [ 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
104 c a s e 21
105 g = [ 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
106 c a s e 22
107 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
108 c a s e 23
109 g = [ 0 ; 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
110 c a s e 24
111 g = [ 1 ; 0 ; 1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
112 c a s e 25
113 g = [ 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
114 0 ; 0 ; 1 ] ;
115 c a s e 26
116 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
117 0 ; 0 ; 0 ; 1 ] ;
118 c a s e 27
119 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
120 0 ; 0 ; 0 ; 0 ; 1 ] ;
121 c a s e 28
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122 g = [ 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
123 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
124 c a s e 29
125 g = [ 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
126 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
127 c a s e 30
128 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
129 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
130 c a s e 31
131 g = [ 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
132 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ;
133 c a s e 32
134 g = [ 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; . . .
135 0 ; 0 ; 0 ; 0 ; 1 ; 1 ; 0 ; 0 ; 0 ; 1 ] ;
136 o t h e r w i s e
137 e r r o r ( ' s i g n a l s i z e n o t s u p p o r t e d ' )
138 end
139

140 a = ones ( 1 ,m) ;
141 x = z e r o s (N , 1 ) ;
142

143 % c r e a t e pseudo random s i g n a l
144 f o r k = 1 :N
145 tmp = mod ( sum ( a *g ) , 2 ) ; % f i n d new l e a s t s i g n i f i c a n t b i t
146 a ( 2 :m) = a ( 1 :m−1 ) ; % s h i f t l e f t
147 a ( 1 ) = tmp ; % s h i f t new b i t i n
148 x ( k ) = a ( 1 ) ; % s e t pseudo n o i s e s i g n a l
149 end
150 e l s e % use w h i t e n o i s e o t h e r w i s e
151 x = round ( r and (N , 1 ) ) ;
152 end
153

154 % c o n d i t i o n i n g of t h e s e q u e n c e
155 x = −2*x +1;
156 x = A0*x ;
157 end
158

159 %======================================================================
160 % f u n c t i o n g e t F r e q u e n c y 1 g e n e r a t e s a s i g n a l a t one f r e q u e n c y
161 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |
162 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
163 % | f2 | | d e s i r e d f r e q u e n c y |
164 % | Fs | | sample f r e q u e n c y |
165 % | N | | number o f sample s |
166 % | A | | a m p l i t u d e o f t h e i n p u t s i g n a l |
167 %
168 % | l i s t o f o u t p u t s :
169 % |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
170 % | x : s i g n a l w i th f r e q u e n c y f2
171 %======================================================================
172 f u n c t i o n g e t F r e q u e n c y 1 ( f2 )
173 d t = t r a n s p o s e ( 0 : N−1 ) ;
174 x = A0* s i n (2* p i * f2 / Fs . * d t ) ;
175 end
176

177 %======================================================================
178 % f u n c t i o n g e t F r e q u e n c y 1 g e n e r a t e s a s i g n a l a t one f r e q u e n c y
179 % | l i s t o f i n p u t s : | | d e f i n i t i o n : |



A.4. Other 63

180 % |−−−−−−−−−−−−−−−−−−−−−||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
181 % | Fs | | sample f r e q u e n c y |
182 % | N | | number o f samples |
183 % | A | | a m p l i t u d e o f t h e i n p u t s i g n a l |
184 %
185 % | l i s t o f o u t p u t s :
186 % |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
187 % | x : s i g n a l w i th f r e q u e n c i e s f0 and f1
188 %======================================================================
189 f u n c t i o n g e t F r e q u e n c y 2
190 % f i n d o u t i f a m p l i t u d e A1 i s s e t , i f not , s e t i t e q u a l t o A0
191 i f A1 == 0
192 A1 = A0 ;
193 end
194

195 d t = t r a n s p o s e ( 0 : N−1 ) ;
196 x = A0* s i n (2* p i * f0 / Fs . * d t ) +A1* s i n (2* p i * f1 / Fs . * d t ) ;
197 end
198 end

A.4.3. gen_freq.m
breaklines

1 %==========================================================================
2 % g e n _ f r e q .m : S h o r t s c r i p t t h a t g e n e r a t e s a s i n e wave Sequence ' seq '
3 % of f r e q u e n c y ' f r e q ' , a m p l i t u d e ' a m p l i t u d e , s am p l i n g
4 % r a t e ' Fs ' and sample c o u n t 'N ' .
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % Author : A l e x a n d r o s S k o u r t i s −C a b r e r a
7 % Date : 1 7 / 6 / 2 0 1 8
8 %==========================================================================
9 f u n c t i o n seq = g e n _ f r e q ( f r e q , a m p l i t u d e , Fs , d u r a t i o n _ s e c o n d s , N)

10 % w a v e l e n g t h i n # of samples
11

12 t _ s i n g l e = ( 0 : 1 : N−1 ) / Fs ;
13 seq = a m p l i t u d e . * s i n ( ( 2 * p i * f r e q ) . * t _ s i n g l e ) ; % g e n e r a t e s i g l e w a v e l e g t h s i n e wave
14

15 % lambda_nsamples = Fs / f r e q ; % w a v e l e n g t h i n # of sample s
16 %
17 % t _ s i n g l e = 0 : 1 : lambda_nsamples −1;
18 % s e q _ s i n g l e = a m p l i t u d e . * s i n ( ( 2 * p i / l ambda_nsamples ) . * t _ s i n g l e ) ; % g e n e r a t e s i g l e w a v e l e g t h s i n e wave
19 %
20 % n r e p e t i t i o n s = d u r a t i o n _ s e c o n d s * f r e q ; % numberof r e p e t i t i o n s i n i n p u t s i g n a l
21 % seq = repmat ( s e q _ s i n g l e , 1 , n r e p e t i t i o n s ) ; % r e p l i c a t e s i n g l e t o n e 2^ m l _ l e n g t h t i m e s
22

23

24 % Length o f s i g n a l i n samples
25

26 %PLOT x_ in
27 %p l o t ( t , Seq ) ;

A.4.4. record_freq.m
breaklines

1 %==========================================================================
2 % r e c o r d _ f r e q .m : S h o r t s c r i p t t h a t r e c o r d s t h e p l a y b a c k of a Sequence
3 % ' Seq ' on t h e l o u d s p e a k e r wi th a s a mp l i n g r a t e o f ' Fs '
4 % u s i n g USB s o u n d c a r d . Uses t h e pawavplayw f i l e from
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5 % a u t h o r Gera rd J a n s s e n .
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % Author : A l e x a n d r o s S k o u r t i s −C a b r e r a
8 % Date : 1 7 / 6 / 2 0 1 8
9 %==========================================================================

10 f u n c t i o n y_ou t = r e c o r d _ f r e q ( Seq , Fs ) % NOTE: a m p l i t u d e has t o be non− i n t e g e r
11 % g e n e r a t e one t o n e s i g n a l
12

13

14 % % % REPLACED BY g e n _ f r e q
15 % % lambda_nsamples = Fs / f r e q ; % w a v e l e n g t h i n # o f sample s
16 % %
17 % % t _ s i n g l e = 0 : 1 : lambda_nsamples −1;
18 % % s e q _ s i n g l e = a m p l i t u d e . * s i n ( ( 2 * p i / l ambda_nsamples ) . * t _ s i n g l e ) ; % g e n e r a t e s i g l e w a v e l e g t h s i n e wave
19 % %
20 % % n r e p e t i t i o n s = Fs * d u r a t i o n _ s e c o n d s / f r e q ;

% numberof r e p e t i t i o n s i n i n p u t s i g n a l
21 % % Seq = repmat ( s e q _ s i n g l e , 1 , n r e p e t i t i o n s ) ; % r e p l i c a t e s i n g l e t o n e 2^ m l _ l e n g t h t i m e s
22 % % x_in = [ Seq ' , Seq ' ] ;
23 %PLOT x_ in
24 % % p l o t ( t , Seq ) ;
25 % %[x_in , s e q _ l e n g t h ] = g e n _ f r e q ( f r e q , a m p l i t u d e , Fs , d u r a t i o n _ s e c o n d s ) ; % g e n e r a t e r e p e a t e d s i n g l e t o n e s i g n a l
26

27 % time a x i s
28

29 %PLOT x_ in
30 %p l o t ( t , x_ in ( : , 1 ) ) ;
31

32

33 %S e t t i n g s f o r p lay − r e c o r d d e v i c e
34 p l a y b u f f e r = [ Seq ' , Seq ' ] ;
35 p l a y d e v i c e = 4 ;
36 r e c d e v i c e = 1 ;
37 s a m p l e r a t e = Fs ;
38 r e c n s a m p l e s = l e n g t h ( Seq ) ;
39 r e c n s a m p l e s = 0 ;
40 r e c f i r s t c h a n n e l =1;
41 r e c l a s t c h a n n e l = 2 ;
42 d e v i c e t y p e = ' win ' ;
43

44

45

46 %Play and r e c o r d
47 y_ou t = p a _ w a v p l a y r e c o r d ( p l a y b u f f e r , p l a y d e v i c e , s a m p l e r a t e , r e c n s a m p l e s , r e c f i r s t c h a n n e l , r e c l a s t c h a n n e l , r e c d e v i c e , d e v i c e t y p e ) ;
48

49 % PLOT
50 % p l o t ( Seq ) ;
51 % hold o f f ;
52 % p l o t ( y_ou t ( : , 2 ) ) ;

A.4.5. sim_freq.m
breaklines

1 %==========================================================================
2 % s i m _ f r e q .m : S c r i p t t h a t s i m u l a t e s t h e p l a y b a c k of a s i n e wave
3 % of S p e c i f i e d f r e q u e n c y ' f r e q ' , a m p l i t u d e 'A ' , sample
4 % r a t e Fs and sample c o u n t . P a r a m e t e r s a r e i n t o S i m u l in k
5 % l o u d s p e a k e r model .
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6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % Author : A l e x a n d r o s S k o u r t i s −C a b r e r a
8 % Date : 1 7 / 6 / 2 0 1 8
9 %==========================================================================

10 f u n c t i o n y_ou t = s i m _ f r e q ( f r e q , A, Fs , N)
11 % S e t S i m u l i n k p a r a m e t e r s
12 model = ' s p e a k e r _ n o n l i n _ s s ' ;
13 l o a d _ s y s t e m ( model )
14 cs = g e t A c t i v e C o n f i g S e t ( model ) ;
15 model_cs = cs . copy ;
16 s t a r t _ t i m e = 0 ;
17 s t o p _ t i m e = N;
18 Ts = 1 / Fs ;
19 s e t _ p a r a m ( model_cs , . . .
20 ' S t a r t T i m e ' , num2s t r ( s t a r t _ t i m e ) , . . .
21 ' StopTime ' , num2s t r ( s t o p _ t i m e ) ) ;
22

23 % c r e a t e t i m e s e r i e s o b j from s e q u e n c e
24 % Freq = [ 0 : l e n g t h ( Seq ) − 1 ] . / Fs ;
25 % g l o b a l s i m_ in ;
26 % sim _in = t i m e s e r i e s ( Seq ' , Freq ' ) ;
27 % % b u s S i g n a l . busElement_1 = s e q _ t s ; % l o a d t o i n p o r t 1
28

29 % Run s i m u l a t i o n and e x t r a c t o u t p u t
30 s im_ou t = sim ( model , model_cs ) ;
31 y_ou t = s im_ou t . you t { 1 } . Va lues . Data ;
32 end





B
Measurement Equipment

The speaker being modelled is the JAMO D115 passive loudspeaker system. The measurement setup used
consists of the following equipment :

• Behringer ECM8000 measurement microphone

• AudioBox iTwo USB Audio interface

67





Bibliography

[1] Khalid Mohammad Al-Ali. Loudspeakers: Modeling and Control. PhD thesis, University of Califor-
nia at Berkeley, 1999.

[2] W. Merwe B. Ferreira. Electronic and Electromechanic Power Conversion. Wiley-IEEE Press, 2014.

[3] R.T. Beyer. Nonlinear Acoustics. Naval Ship Systems Command, 1974.

[4] Sybold Hijlkema Bishwas Regmi. Motional feedback in a bass loudspeaker, digital implementation.
Technical report, TU Delft, 2018.

[5] Pascal Brunet. Nonlinear System Modeling and Identification of Loudspeakers. PhD thesis, North-
eastern University Boston, Massachusetts, apr 2014.

[6] Y.C. Shiah J.H. Huang C. Chang, C. Wang. Numerical and experimental analysis of harmonic distor-
tion in a moving-coil loudspeaker. Communications in Nonlinear Science and Numerical Simulation,
18:1902–1915, 2013.

[7] Chiu George Cheng Chi-Cheng Peng Huei Chen, C-Y. Passive voice coil feedback control of closed-
box subwoofer systems. Journal of Acoustical Society of AmericProceedings of The Institution of
Mechanical Engineers Part C-journal of Mechanical Engineering Science, 214(7):995–1005, July
2000.

[8] Y.C. Shiah-Jin H.Huang Chun Chang, Chi-Chang Wang. Numerical and experimental analysis of har-
monic distortion in a moving-coil loudspeaker. Communications in Nonlinear Science and Numerical
Simulation, 19(7):1902–1915, Jul 2013.

[9] J.J. Feeley. A simple dynamic model for eddy currents in a magnetic actuator. IEEE Transactions on
Magnetics, 32(2):453–458, March 1996.

[10] Iain Forgusson. Loudspeaker corss section, May 2010. URL http://en.wikipedia.org/
wiki/File:Speaker-cross-section.svg.

[11] Emami-Naeni Franklin, Powell. Feedback Control of Dynamic Systems. Pearson, seventh edition,
2014.

[12] R. Hilmisson. Feedback linearisation of low frequency loudspeakers. Master’s thesis, Technical
University of Denmark, sep 2009.

[13] S.H. de Koning J.A. Klaassen. Motional feedback with loudspeakers. Phillips Technical Review, 29
(5):148–157, 1968.

[14] M. Jakobsson, D. Larsson. Modelling and compensation of nonlinear loudspeakers,. Master’s thesis,
Chalmers University of Technology, 2010.

[15] Dr.ir. G.J.M. Janssen, Dr.ir. J.F. Creemer, Dr.ir. D. Djairam, Dr.ir. M. Gibescu, Dr.ing. I.E. Lager,
Dr.ir. N.P. van der Meijs, Dr.ir. S. Vollebregt, Dr.ing. B. Roodenburg, Dr. J. Hoekstra, and Ing. X. van
Rijnsoever. Lab Courses EE Semester 1, Student Manual. TU Delft, 2017-2018.

[16] F.T. Agerkvist K. Thorborg, C. Tinggaard. Frequency dependence of damping and compliance in
loudspeaker suspensions. Journal of the Audio Engineering Society, 58(6):472–486, 2010.

69

http://en.wikipedia.org/wiki/File:Speaker-cross-section.svg
http://en.wikipedia.org/wiki/File:Speaker-cross-section.svg


70 Bibliography

[17] W. Klippel. Extended creep modeling. https://www.klippel.de/fileadmin/
_migrated/content_uploads/AN_49_Extended_Creep_Modeling.pdf, 2018. Ac-
cessed: 18/6/2018.

[18] Wolfgang Klippel. Loudspeaker nonlinearities - causes, parameters, symptoms. Journal of Audio
Engineering Society, 54(10):907–939, October 2006.

[19] A.B. Coppens J.V. Sanders L.E. Kinsler, A.R. Frey. Fundamentals of Acoustics. John Wiley and
Sons, fourth edition, 2000.

[20] Yaoyu Li and G. T. C. Chiu. Control of loudspeakers using disturbance-observer-type velocity esti-
mation. IEEE/ASME Transactions on Mechatronics, 10(1):111–117, February 2005.

[21] M.J. Lighthill. On sound generated aerodynamically. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 211(1107):564–587, March 1952.

[22] Chau-Min Huang Mingsian R. Bai. Expert diagnostic system for moving-coil loudspeakers using
nonlinear modeling. Journal of Acoustical Society of America, 125(2):819–830, February 2009.

[23] Robert-H Munnig Schmidt. Motional feedback theory in a nutshell. Technical report, RMS Acoustics
& Mechatronics, 2017.

[24] D.V. Schroeder. An Introduction to Thermal Physics. Pearson, fist edition, 2014.

[25] C. Sean. A direct pwm loudspeaker feedback system. Master’s thesis, Massachusetts Institute of
Technlogy, 1996.

[26] Paolo La Torraca. Feedback control of a dynamic loudspeaker with embedded sensor coil. Master’s
thesis, Politecnico di Milano, 2015.

[27] R. Valk. Control of voicecoil transducers. Master’s thesis, Delft University of Technology, 2013.

[28] J.H. Huang Y. Tsai, C. Wang. Inverse determination of the nonlinear force factor of moving-coil
loudspeaker motor systems. Noise Control: Theory, Application and Optimization in Engineering,
pp. 167-188, 2014.

https://www.klippel.de/fileadmin/_migrated/content_uploads/AN_49_Extended_Creep_Modeling.pdf
https://www.klippel.de/fileadmin/_migrated/content_uploads/AN_49_Extended_Creep_Modeling.pdf

	Introduction
	Programme of Requirements
	Requirement formulation
	Study-case


	Theory
	Ideal Loudspeaker
	Extension to Three Dimensions
	Acoustic Intensity

	Linear Loudspeaker
	Mass-Spring-Damper Subsystem

	Non-linear Loudspeaker
	Causes of Non-linearities in Loudpeakers
	Effects of Non-linearities in Loudspeakers


	Non-linear Modelling of the Loudspeaker
	Free-Body Analysis
	State Space Model
	Possibilities in non-linear control

	Impedance Measurement
	Method for Impedance Measurement
	Mass Measurement
	Measurements with Offset

	Results
	Mass Measurement Results
	Results of Impedance Measurements with Offsets

	Discussion of Impedance Measurements

	Model Verification
	Solving for Km(x) and Bl(x)
	Simulating Large Signal Behaviour of the Loudspeaker
	Discussion of Simulation Results

	Conclusion
	Recommendations

	MATLAB code
	Model Validation
	plotTHD.m
	simTHD.m

	Impedance Measurement
	nl_imp_meas.m
	nl_imp_extract.m
	nl_imp_analysis.m
	imp_datatoimp.m

	Parameter Estimation
	pars_nl.m
	pars_nl_old.m

	Other
	fourier.m
	playRec.m
	gen_freq.m
	record_freq.m
	sim_freq.m


	Measurement Equipment
	Bibliography

