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Abstract—This paper develops a channel estimation technique
for millimeter wave (mmWave) communication systems. Our
method exploits the sparse structure in mmWave channels for
low training overhead and accounts for the phase errors in
the channel measurements due to phase noise at the oscillator.
Specifically, in IEEE 802.11ad/ay-based mmWave systems, the
phase errors within a beam refinement protocol packet are
almost the same, while the errors across different packets are
substantially different. Consequently, standard sparsity-aware
algorithms, which ignore phase errors, fail when channel mea-
surements are acquired over multiple beam refinement protocol
packets. We present a novel algorithm called partially coherent
matching pursuit for sparse channel estimation under practical
phase noise perturbations. Our method iteratively detects the
support of sparse signal and employs alternating minimization to
jointly estimate the signal and the phase errors. We numerically
show that our algorithm can reconstruct the channel accurately
at a lower complexity than the benchmarks.

Index Terms—Compressed sensing, phase noise, phase errors,
matching pursuit, support detection, alternating minimization

I. INTRODUCTION

Millimeter wave (mmWave) systems, currently used in 5G
and IEEE 802.11ad/ay devices, are capable of achieving Gbps
data rates by beamforming over wide bandwidths. Unlike the
lower frequencies, the propagation characteristics at mmWave
result in high scattering [1]. So, the wireless channel between
the transmitter and the receiver is sparse in the angle domain
representation. This sparse structure allows the use of com-
pressed sensing (CS) algorithms for channel estimation from
fewer measurements compared to classical channel estimation,
thereby reducing the training overhead [2]. Unfortunately, the
phase of the compressed channel measurements acquired with
typical IEEE 802.11ad/ay hardware is perturbed. The phase
perturbations occur due to residual carrier frequency offset
as well as random phase noise at the oscillator [3], which is
more significant at mmWave than lower carrier frequencies
[4]. The phase errors induced by phase noise result in a
model mismatch between the standard CS model and the
observed measurement model. Due to this mismatch, standard
CS-based channel estimation methods [S5]-[7] that are agnostic
to such phase errors fail. Therefore, in this paper, we focus
on estimating sparse mmWave channels utilizing the sparse
structure while handling the phase errors in the measurements.

We now discuss existing sparse mmWave channel estima-
tion algorithms handling phase error. One of the early studies
combined a CS algorithm with a Kalman filter to track the

phase noise, but a large phase noise variance could invalidate
the method [8]. Several other works considered phaseless
measurements with independent random phase offset on each
training slot, forming a joint phase retrieval and sparse re-
covery problem. One such approach used gradient descent for
phase retrieval but required several measurements with known
phase errors for calibration [9]. Also, [10] jointly estimated the
phase errors and the channel by constructing high-dimensional
sparse tensors, resulting in high computational complexity.
To decrease the complexity, a sparse bipartite graph code-
based phaseless decoding scheme was introduced [11]. The
above algorithms in [9]-[11], however, do not exploit the
specific structure of phase errors in the measurements owing
to the short packet signaling used for beam training in IEEE
802.11ad/ay standards. To handle this structure, [12] developed
a partially coherent compressive phase retrieval (PC-CPR)
technique to solve for sparse vectors from a partially coherent
measurement model. Here, partially coherent indicates that the
phase errors fluctuate slightly during a short time slot, but
are relatively independent across packets. Finally, [13] devel-
oped a message passing-based algorithm for partially coherent
sparse recovery. Such an approach usually requires higher
computational complexity than greedy matching pursuit-based
algorithms.

We present a compressive greedy algorithm for sparse chan-
nel estimation with a partially coherent measurement model.
Such a model is motivated by the signaling structure used in
IEEE 802.11ad/ay standards, wherein a spatial channel mea-
surement is acquired using the training (TRN) subfield within
a beam refinement protocol (BRP) packet [14]. With a typical
phase noise process, phase coherence is preserved within a
packet, but lost across different packets. Our main contribution
is the development of a joint support detection rule across
packets, combining alternating minimization and matching
pursuit techniques to estimate both the channel and phase noise
for channel estimation. To assess our algorithm’s performance,
we also derive guarantees on partial support recovery. By
assuming that the phase noise remains constant within a BRP
packet but varies over packets, we substantially reduced the
number of parameters to be estimated. Also, matching pursuit
in our method results in a lower computational complexity than
other benchmarks. Finally, we show by simulations that our
algorithm outperforms orthogonal matching pursuit (OMP),
PC-CPR, and Sparse-Lift [10] in the presence of phase noise.
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II. CHANNEL MODEL AND FRAME STRUCTURE

We consider a mmWave system with an analog antenna
array comprising N antennas at the transmitter (TX) and a
single antenna receiver (RX) as shown in Fig. 1. The focus
of this paper is on transmit beam alignment through channel
estimation. Although we assume a single antenna at the RX
for ease of exposition, our approach can be extended to multi-
antenna receivers using an appropriate array response vector.

Phase fn
Shifters

5@

Oscillator

Amplitude @

Controllers .
Oscillators

Fig. 1. An mmWave MISO system with an analog array at the TX and a
single antenna RX. Our goal is to estimate the channel h under phase noise.

We consider a narrowband system and model the multiple
input single output (MISO) channel between the TX and the
RX as a vector h € CV. Let K denote the number of
propagation paths in the environment. The path gain and the
direction of arrival associated with the k*" path are denoted
by hy and 6j. Then, the channel is

K
h= tha(ﬁk). (1)
k=1

Here, a(f) is the transmit array response vector given by

6j71'(N71) sin 6 T

a(a) — [l’ej'n'sine, .

) 2

for a half-wavelength spaced uniform linear array at the TX.
We use the discrete Fourier transform dictionary to obtain the
angle-domain representation of the channel,

x = Unh, 3)

7

where Uy is the N x N unitary discrete Fourier transform
matrix. The vector x in (3) is sparse due to high scattering at
mmWave carrier frequencies.

We next describe the frame structure used to obtain mea-
surements for channel estimation. To this end, we consider
the IEEE 802.11ad frame structure shown in Fig. 2. The TX
applies distinct beamformers over P different packets, for
the RX to acquire channel measurements, within the channel
coherence time. We define M as the number of beamformers
applied in each packet. With IEEE 802.11ad, M can be at
most 128 [15]; however, it can often be smaller (e.g. 16) to
acquire redundant measurements and enhance the spreading
gain. In that case, numerous beam refinement protocol (BRP)
packets can be used to acquire enough spatial measurements
for channel estimation.

packet 1 packet P
f, f, L fy fup-m -« fup-1  fup
Training Packets: | TRN | TRN | | TRN |//' . '//| TRN | | TRN | TRN |
Measurements: m y1 | - H_] o ‘
Phase error: eiP11 pid12 .. | elfragitra.
1 |
Approximation: elh: elor

Fig. 2. Partially coherent measurement model where the phase errors in the
channel measurements are assumed to be constant within each packet.

Let f,,, € CN denote the m'™ beamformer at the TX and
y[m] denote the m'" received channel measurement. This
measurement is perturbed by phase noise ¢, and additive
white Gaussian noise w[m] of variance o2, i.e.,

ylm] = ej‘;smf:;h +w[m] = ejd’mf;LU}‘vx +w[m], 4)

using (3). Note that £, is the conjugate transpose of f,,,. Here,
the phase noise ¢, can be modeled as a Wiener process, i.e.,
Smlom 1 ~ N(Ppm—1,7), where 7 is 27 fer/ (T, — Tn—1)
[4]. Here, f. is the carrier frequency, ¢ is an oscillator-
dependent constant, and 7, is the time stamp associated with
the m'™" measurement. Under these modeling assumptions, we
aim to estimate the sparse channel x using the measurements
from (4) with the knowledge of f,,, for m =1,2,... M.

III. SPARSE CHANNEL ESTIMATION ALGORITHM

In this section, we first reformulate the channel estimation
problem into a CS problem to exploit the sparsity in x and
then, develop a greedy algorithm for channel estimation.

A. Partially Coherent CS model

To formulate the CS model, we note that the time dif-
ference between successive measurements in a BRP packet,
ie., T, — Ty—1, i1s 128ns in IEEE 802.11ad. In contrast,
the difference between the successive packets can range from
3us to 44 us [16]. Therefore, a high variance phase offset
is introduced in the measurements when switching to a new
packet. Fig. 3 shows a realization of ¢,, when M = 16
measurements are acquired in each of the P = 4 packets. To
develop a tractable algorithm, we ignore the phase variations
within each packet and only consider phase offsets across dif-
ferent packets. In Sec. IV, however, we evaluate our algorithm
by also considering phase variations within the packets.

Under the above simplifying assumption, the measurements
can be expressed as a partially coherent CS model [12]. We
define ¢, as the phase error in the measurements acquired
within the p'" packet. The vector of M P channel measure-
ments, acquired over P packets, can be expressed in terms of
the CS matrix A € CMP*N and the phase errors {¢,}]_ ;.
Based on (4), we define the m'" row of the CS matrix as

A(m,:) =1£ Uy, (5)
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Fig. 3. A realization of the phase noise process with the measurement index.
Our model assumes that the phase error within each packet is the same.

and a diagonal matrix containing the phase errors as ® =
diag {€1?11y,...,e?P 1)}, where 1,/ is a row vector com-
prising M ones. The vector version of (4) is then

y = PAx +w, (6)

where ® and x are unknown. We observe from (6) that x
can only be estimated up to a global phase. This is because
(®1e799 x1€?) is a solution to (6) whenever (®1,x;) is a
solution. Hence, the goal of partially coherent CS is to estimate
X, up to a global phase, from the measurements in (6).

We can split the measurement model in (6) on a packet-
by-packet basis. The measurements from the p‘" packet cor-
respond to rows (p — 1)M + 1 to pM of (6). We define the
measurements acquired in the p*® packet as ¥p, and the CS
measurement matrix associated with the p'" packet as A,.
Specifically, A, = A((p—1)M +1: Mp,:) and

yp = P A x + Wy, (7)

where w,, is additive noise. Now, our channel estimation
problem is equivalent to estimating x from the phase perturbed
measurements {y,})_; acquired using CS matrices {A,}F_,

B. Partially coherent matching pursuit (PC-MP)

Our PC-MP algorithm is a greedy approach that adds one
element to the estimated support set in each iteration. Then,
the algorithm estimates the phase errors and the sparse signal
over the estimated support through alternating minimization.
This procedure is carried out until the stopping criterion is met.
In this paper, we use the assumption in [12] that the number
of non-zero coefficients in x is known.

We first discuss our support detection rule in PC-MP. Our
algorithm is initialized by setting A to an empty set and X to
a zero vector. Here, we use A; to denote the estimated support
set of the sparse vector, X; as the estimate of x, and ép,t as
the phase error estimated for packet p, after ¢ iterations. The
vector of estimated phase errors is denoted by é&t. For the

h packet, we denote r,; as the residual error between the
observed measurements and the prediction in the tth jteration,

rpr =Yy, — Pt A K, (8)

In the ' iteration, matching pursuit algorithms in standard
CS identify the column of A, that results in the largest | A, (:
Jk)*r (t 1)| i.e., the absolute value of the correlation with the
re51due. In our problem, however, we have P different residues
derived from P packets. As the measurements across the P
packets are non-coherent, our algorithm sums up the absolute
values of the correlations and selects the index that maximizes
this summation. The new element added to the support set is

ki = argmax |A,(:
KEINT\A¢— 1;1

) rp,t—l|7 (9)

and the augmented support set is Ay = Ay U k;. For the
special case when P = 1, we observe that the objective in (9)
becomes identical to that used in matching pursuit algorithms
for standard CS. In the #" iteration, our approach explicitly
excludes support elements in A;_; while the OMP inherently
avoids selecting such elements. This is because the residue in
our approach may not be orthogonal to the selected columns
of the CS matrix, unlike the OMP.

After the support estimation step, we use an alternating
minimization approach to estimate the non-zero entries of x
over the identified support, and the phase errors {¢, }5:1. Our
method minimizes the sum of the squared errors across all the
P packets to estimate these quantities,

P
)A(Ata gbt = argminz Hyp - 6j6pAp,AtZAt H2 )

ZAy» p=1

(10)

where A, A, is a submatrix of A, obtained by retaining only
those columns with indices in A;. We observe that (10) is a
non-convex problem. It is, however, a standard least squares
problem in z,, for a fixed 4. Furthermore, a closed form
solution for d can be obtained for a fixed z,,. Our alternating
minimization procedure leverages both of these properties.

We now provide closed-form expressions for phase recovery
and signal estimation in the /*® iteration of alternating mini-
mization in (10). For a fixed z([ Y in (10), We observe that
the minimization problem is separable in {(5 »}p—1- The phase
recovery problem for the p*® packet is then

2L . i £—1
Oy = argmin]ly, — & Ay 27Vl

= argmax Re{e’dpypAp AZ (é 1)}

(e-1)

= —phase (yZAnAtzAt ) (11)

After estimating gb for each p, the signal in (10) is estimated
by solving a least squares problem. The solution is obtained
by setting the gradient of the objective to 0 and is given by

—1
P
A(Z —id® o
(ZAM ) S Ay
p=1

After the alternating minimization procedure converges in L
iterations, our method sets Xp, = fcx) and ¢, = ¢ L) The
subsequent PC-MP step updates the residue accordmg to (8)

1899

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 12:09:34 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE International Conference on Communications (ICC): Wireless Communications Symposium

and then identifies the next element of the support. A summary
of our PC-MP technique is provided in Algorithm 1.

Algorithm 1 Proposed PC-MP algorithm for sparse recovery

Input: Partially coherent measurements {y,};_;, CS ma-
trices {A,}]_,, sparsity level K
Initilize: r, o = y,, %0 =0,A¢ =0
1. fort=1,2,...,K do
#Support detectzon
2: k, = argmax Zp 1A k) rp 1]
kEIN\A+—1
3: A=A 1 U k‘t
4 #Signal estimation:
5. while ||§<(l) A“:”HQ >ecor <L do
6: ¢>p = —ZyH A, AR vp
T
7 XAt |:Zp 1A A vati| {25:167@; ‘A AQ’p}
8: end while )
9 Ty =yp— Pt A, A %a, W
10: end for

11: Output: x

Now, we derive a coherence-based guarantee to successfully
identify one element of the true support set of x using PC-MP,
for real-valued CS matrices.

Proposition 1. Consider the channel estimation problem in (7)

using measurements from P packets. Assume that A, is real-

valued with normalized columns, i.e., ||A,(:,1)||2 = 1 for each

p. For a constant 3 > 0, the support element identified in the

first iteration of PC-MP is correct with probability exceeding
1

NBPB\/7(1+ B)log(NP)’

under the condition

P
|Zmax| (1 - @ Zup) > 20/2(1 + 8) log(NP),

(13)
where |Tpmaz| = maK({|xi|,xi € X}, up is the coherence of
K3
A, [17], o is the standard deviation of Gaussian additive
noise w, and K is the sparsity level of x.

12)

Proof. See the appendix. O

Intuitively, the result shows that support detection can only
be successful under the assumption that the maximum absolute
entry of x is “larger” than the additive noise level as described
by (13). Further, it also shows that a sufficient condition for
successful identification of one element of the support in PC-
MP’s first iteration is 2521 wp/P < 1/(2K —1). Also, a
good choice for the CS matrices for PC-MP is one with the
lowest average coherence, i.e., 25:1 pp/P.

IV. SIMULATIONS

In this section, we compare the performance of our proposed
method with OMP, self-calibration-based CS called Sparse-
Lift [10], and partially coherent CS (PC-CPR) [12], consider-
ing the system model described in section II.

A. Benchmarking Algorithms

1) Reconstruction using Sparse-Lift: The idea in Sparse-
Lift is to jointly estimate the calibration errors and the sparse
vector by solving for a high-dimensional lifted matrix, which
is an outer product of the error vector and the sparse vector.
To apply Sparse-Lift, we define the calibration error vector
as p = (611, e2 ... €l?P) and the sparse vector is x. The
measurement vector y in (6) is then

y = diag(Bp)Ax +w (14)
where B=1Ip ® 1}/[. The m'™" entry of y is given by
ylm] = bj,px" &, + wlm], (15)

where b] is the m'" row of B and a,, is the transpose of

the m™ row of A. We define X = px' as the lifted matrix,
which is sparse as x is sparse. Using the identity b"Xa =
(aT ® b)vec(X), we can rewrite (15) as

ylm] = (&, ® b}, )vec(X) + w[m], (16)

which is a linear measurement of the lifted vector vec(X).
With Sparse-Lift, M P measurements of this form are used
to solve for the sparse matrix X = px'. Then, the singular
value decomposition of the estimate X = UI'V*is computed.
The estimate of the sparse channel, up to a global scaling, is
then X = Vv, where Vv is the conjugate of the singular vector
corresponding to the largest singular value.

2) Partially Coherent Compressive Phase Retrieval (PC-
CPR) : The partially coherent CS model in [12] assumes
that the coherent measurements are acquired using different
radio frequency chains. Although we consider a single radio
frequency chain, our mathematical model is identical to the
one in [12]. The algorithm in [12] is a two-stage method. In
the first stage, the support set of the sparse vector is found
by taking indices corresponding to the K largest values of
z, where z[k] = Zle |A,(:, k) yp|?/M. Then, the sparse
estimate X is initialized using the eigen-decomposition-based
method in [18]. In the second stage, the algorithm iteratively
estimates the phase errors and the sparse signal. A hard
thresholding algorithm is used to estimate the sparse signal.

B. Results and Discussion

We consider a uniform linear array of size N = 256 at the
TX. The standard deviation of phase noise, conditioned on
the previous sample, is given as 7 = 27 f./cTs, with f. = 60
GHz as the carrier frequency, ¢ = 4.7x 10~ '® (rad - Hz)71 [4],
and T = 128 ns as the time duration of a single measurement
in a packet. When computing the variance associated with the
first sample of each packet, we use T = 44 us. In our simu-
lations, x is exactly sparse with K = 4 non-zero components
drawn from a Gaussian distribution. We use random circularly
shifted Zadoff-Chu sequences for the beamformers {f,, }_,
[7]. With this setup, M = 16 spatial channel measurements
are acquired in each of the P packets.

For the performance evaluation, we use the achievable
rate as a metric and analyze how it varies with the
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Fig. 4. Simulation results that compare PC-MP against the benchmarks for N = 256 antennas at the TX and K = 4 sparse channels. (a) Achievable rate
with the total number of measurements (M P) at SNR = 15 dB. (b) Achievable rates with SNR for M P = 128. (c) NMSE in the channel estimate with SNR
for M P = 128. We consider M = 16 measurements per packet in all the plots. The number of iterations used for PC-CPR is same as that used for PC-MP,
while x10 PC-CPR uses 10x more iterations than PC-MP. We observe that PC-MP outperforms the benchmarks for a fixed computational complexity.

SNR and the number of measurements. We define the
SNR as 10log;, (1 / 02) and the achievable rate as R =
log, (1 + |£Z.h|?/5?), where f is set to a unit-norm conju-
gate beamformer, i.e., fust = Degt /|| hest||2- As the algorithms
can estimate the channel only upto a global phase, we define
the normalized mean squared error as E[argming||e®heg; —
h||2]/E[||h||3]. Our results are summarized in Fig. 4.

From the plots in Fig. 4(a), 4(b), and 4(c), we observe
that standard OMP that works well with known phase errors
(genie phase) breaks down under unknown practical phase
noise. Next, we notice that the proposed PC-MP algorithm
outperforms Sparse-Lift in terms of NMSE and the rate. This
is because our algorithm exploits the constant magnitude struc-
ture in the calibration vector, unlike Sparse-Lift. Furthermore,
we also observed that Sparse-Lift required substantially higher
computation time than our approach, as it solves for a high
dimensional lifted vector with NP variables. Our approach
only solves for NV 4+ P variables and has a complexity of
O(PNM + PK?M + K?). Finally, we observe that the
proposed PC-MP algorithm outperforms PC-CPR for the same
K iterations. This is likely due to the nature of the algorithms,
i.e., PC-CPR is based on hard thresholding while our approach
is based on matching pursuit. Both these algorithms assume a
known sparsity level of K. We would like to mention that the
performance of PC-CPR for a large number of iterations (x 10
PC-CPR) is close to our PC-MP method for K iterations. On
our desktop computer, PC-CPR required about 10K iterations
(25.4ms) to achieve comparable performance as PC-MP for
K iterations (5.4 ms). In summary, PC-MP can provide good
channel estimates at a lower complexity than the benchmarks.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a greedy algorithm called PC-
MP for mmWave channel estimation under phase noise. Our
approach makes use of the partially coherent structure in the
phase perturbed measurements to estimate the sparse channel
and the phase errors. PC-MP performs support detection by
considering measurements from different packets, and itera-

tively estimates the sparse vector through alternating mini-
mization. A comprehensive comparison revealed that PC-MP
outperforms benchmark algorithms, yielding higher achievable
rates and lower NMSE. We also derived guarantees on PC-
MP’s performance in identifying one element from the true
support. In future, we will extend our algorithm to account
for off-grid effects and also analyze how well PC-MP can
identify the entire support of the sparse vector.

APPENDIX: PROOF OF PROPOSITION 1

We extend the support identification guarantee in [19] to
the partially coherent case. Let A be the true support of the
sparse vector x. Our proof verifies that when (13) holds,

P P

N AT

max > A, (1) yp| > Hgfz AL Ty, A
p=1 p=1

which matches PC-MP’s detection rule to successfully identify

one element of the support in its first iteration. To this end,

we show that (17) holds under the event D defined as

max  max |[A,(:,i) wy| < Q}, (18)

D =
1<i<N 1<p<P

where ¢ = 04/2(1 4+ ) log N controls the success probability

of event D. As {A,(:,i)"w}, , is jointly Gaussian, we get
Pr{D}="Pr {maxAp(:,i)Twp| < C}
i\p

N P ¢ NP
> [P {14 i <) =120 (£
i=1p=1
where Q(z) = (1/V2r) [© e~ /2dz is the Gaussian tail
probability and the last step uses [20, theorem 1] for jointly
Gaussian random variables. Further, since the Gaussian tail

probability is bounded by Q(z) < ﬁe‘””z/ 2 we obtain

NP
2 _ 2 2 _ 2
Pr{D} > <1— ,/”ezf2> >1-NPy/=2Zewm.
¢ ¢
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Substituting ¢ = o+/2(1 + 3) log(NP) in the above relation
shows that the event D occurs with probability exceeding (12).

Once the event D holds forp = 1,2, ..., P, we can simplify
the left-hand side of (17) as

P

.AT
rzr}gpil\Ap(-ﬂ) vl

A p=1 keA
P

<D AT

P .
+ maxz Z |eJ¢PAp( i) TA( ,k‘)xk|
A p=1keA
P

< PCHK Y fip | Tmaxl (19)

p=1

where the last step follows from (18) and the definition of 1,
and xy,.x. For a sparsity level K > 1, using (7) and column
normalization assumption on A, we can bound the right-hand
side of (17) as

P
r?ea/zcz |Ap( ) YP’
p=1
P .
- rznea/f(Z A )T (DAL k) + w
p=1 keA
P
=) ol
p=1
=1 > AL D)TALG k)T + Ay ) Tw | (20)
keA\{i}
Here, from the definition of .y and p,, we get
P P
. AT
rgleanZ’Ap(.,z) ¥p| > P|#max| —Z Z op| Trmaz | + €
p=1 p=1|keA/i

P
> P|Tmax|—PC— (K_l)z fp|Tmax|-
p=1

(2D

In the first iteration of PC-MP, support identification is suc-

cessful when (17) holds. We observe that the condition in (17)

holds if the lower bound in (21) exceeds the upper bound in
(19), which is equivalent to

P
Plomax| = 2PC — (2K = 1)) iy |[Tmax] > 0,
p=1
which is the condition stated in (13).

Our guarantees are to identify only one element of the sup-
port set and not the entire support. This limitation is because

(22)

of the residual errors arising due to joint phase recovery and
signal estimation. These errors may not be orthogonal to the
columns already selected, which prevents us from applying the
induction argument discussed for the coherent case in [19].
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