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Abstract

Background: The rapid growth of international maritime trade has intensified operational
challenges at marine terminals due to increased interaction between vessels, trucks, and
trains. Key issues include berth congestion, inefficient truck arrivals, and underutilization of
terminal resources. Ensuring coordinated planning among transport modes and fostering
collaboration between stakeholders such as vessel operators, logistics providers, and
terminal managers is critical to mitigating these inefficiencies. Methods: This study proposes
a multi-agent, multi-objective coordination model that synchronizes vessel berth allocation
with truck appointment scheduling. A solution method combining prioritized planning
with a neighborhood search heuristic is introduced to explore Pareto-optimal trade-offs.
The performance of this approach is benchmarked against well-established multi-objective
evolutionary algorithms (MOEAs), including NSGA-II and SPEA2. Results: Numerical
experiments demonstrate that the proposed method generates a greater number of Pareto-
optimal solutions and achieves higher hypervolume indicators compared to MOEAs.
These results show improved balance among objectives such as minimizing vessel waiting
times, reducing truck congestion, and optimizing terminal resource usage. Conclusions:
By integrating berth allocation and truck scheduling through a transparent, multi-agent
approach, this work provides decision-makers with better tools to evaluate trade-offs in
port terminal operations. The proposed strategy supports more efficient, fair, and informed
coordination in complex multimodal environments.

Keywords: marine terminals; distributed scheduling; truck appointment systems; berth
allocation; multi-objective optimization

1. Introduction

The unprecedented growth of international maritime trade over the last three decades
has resulted in significantly increased cargo volumes, heavily affecting marine terminal
operations globally. Ports face daily issues such as congestion, air pollution, and delays
that hinder their effectiveness and competitiveness. During peak hours, irregular truck
arrivals and equipment shortages on the landside as well as increased vessel traffic on the
seaside exacerbate these problems and highlight operational inefficiencies. These problems
can create a domino effect on other port activities, further reducing productivity [1].

Port operations inherently involve a multimodal aspect because they serve as criti-
cal hubs where different transportation modes, such as maritime, road, rail, converge to
facilitate the movement of goods. Hence, the aforementioned issues can be addressed
by enabling terminals’ transition towards an advanced multimodal transport system that
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leverages digital technologies and cooperation across stakeholders. Achieving coordination
within multimodal systems requires streamlining administrative boundaries, fostering
flexible and polycentric forms of management across modes, and increasing system re-
silience as emphasized by the Strategic Transport Research and Innovation Agenda [2].
Effective coordination is crucial because of the diverse and often conflicting goals of differ-
ent stakeholders, varying private and public values, and differing preferences that must be
harmonized to optimize the overall system performance.

Coordination among stakeholders in a multimodal marine terminal can be achieved
across strategic, tactical, and operational levels. At the strategic level, stakeholders, includ-
ing shipping lines, terminal operators, and logistics companies, can engage in collaborative
planning to align long-term goals and investments. At the tactical level, coordination can
be enhanced through data sharing among stakeholders and collaborative decision support
systems that facilitate day-to-day operational decisions concerning interrelated activities,
such as berth allocation, truck scheduling, and cargo processing. Tactical planning assumes
some degree of information system integration and many ports already use systems such
as Port Community Systems (PCSs). Operational coordination further involves real-time
decisions and the interplay of various actors, including not only terminal operators and
carriers but also port authorities, tug services, pilots, truck companies, and shippers.

This study focuses on the coordination of multimodal terminal operations at a tactical
level, an area previously explored in works such as [3,4]. However, these studies often rely
on a fixed set of rules and centralize decision-making around a single actor. This overlooks
the inherently distributed nature of coordination in multimodal terminals, where numerous
independent stakeholders operate with distinct objectives, constraints, and procedures. Ad-
ditionally, terminal planning is typically multi-objective, further complicating coordination
and raising critical questions about how to ensure fairness and transparency in decision-
making processes, issues that remain insufficiently addressed in the literature [5]. These
observations highlight a clear gap, namely the lack of distributed modeling approaches that
reflect the autonomy of different actors while enabling fair, multi-objective coordination in
port terminal operations.

To address this, the paper sets as its main objective developing a novel approach
to model collaboration among terminal stakeholders in a distributed manner using a
Multi-Agent System (MAS) framework. This approach aims to tackle the challenge of
synchronizing vessel arrivals with truck scheduling in order to reduce delays and conges-
tion in a coordinated manner. In addition, the study seeks to support fair and transparent
multi-objective decision-making by applying Pareto optimality and to develop an effective
solution method that combines prioritized planning with neighborhood search to enhance
computational performance. This combination of distributed coordination, multi-objective
fairness, and optimization represents a novel and comprehensive approach not yet explored
in existing terminal operations literature.

The proposed system models stakeholder collaboration through an MAS approach,
integrating data (e.g., arrival schedules) from actors (e.g., logistics companies) and modes
(e.g., vessels, trucks) to facilitate distributed, multi-objective planning. Pareto optimal
solutions are sought to promote fairness among actors, with the terminal acting as an
external coordinator responsible for the orchestration of different agents. A novel algo-
rithm is developed based on prioritized planning in combination with a neighborhood
search heuristic algorithm to enhance solution quality. The algorithm’s performance is
benchmarked against established multi-objective optimization algorithms, demonstrating
its ability to produce more Pareto front contributions and increased hypervolume in a range
of simulated terminal scenarios.
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The rest of this paper is organized as follows. Section 2 provides an overview of the
problem setting and modeling choices to be employed for this supply-chain-related problem.
Sections 3 and 4 provide a formal description of the model and the solution methodologies
used to enhance the collaborative scheduling. Section 5 presents numerical results to
assess the added value of the proposed approach for a case study relating to medium-sized
terminals. Finally, Section 6 provides conclusions and future research avenues.

2. Problem Description and Modeling Approach
2.1. Problem Description

Scheduling operations for multimodal freight transport in a synchronized manner
involves effectively addressing the needs and objectives of multiple stakeholders with
contrasting agendas. In this study, the problem revolves around the interactions between
three distinct actors forming a multimodal chain, in an environment similar to the one
depicted in Figure 1.

:Trucks E Terminal J_:Viiils:
T Sy
e T -

=

Import Area
Export Area

=

Figure 1. Terminal layout for the examined supply chain.

The examined problem centers on synchronizing two interdependent processes: truck
scheduling through an appointment system and berth allocation for inbound vessels. These
processes share limited terminal resources and must be planned fairly and efficiently in a
distributed environment where actors have conflicting objectives. Within this problem, the
first actor is the vessels, which generate traffic from the seaside and expect quick access to
a compatible berth and timely exit from the port to continue to subsequent destinations.
The second actor is the logistics companies, which generate landside traffic by dispatching
trucks to the terminal to pick up or deliver cargo associated with the incoming vessels. The
decision making of logistics companies is centered around reducing their deviation cost
from their desired processing time-period arising from potential delays in vessel arrivals
and departures or truck congestion. Finally, the terminal is acting as an intermediate
point in the multimodal chain, orchestrating the transition between different transportation
modes and processing the demand. The terminal is also expected to ensure that certain
service levels are maintained by tracking Key Performance Indicators (KPIs). Such KPIs
include the maximum arrival rate of trucks per hour, cargo levels in the storage areas, as
well as limits related to resources such as internal vehicles to perform drayage operations.

The system’s actors are interconnected since they share resources such as berths, cargo
handling equipment, and arrival windows. The requirement to synchronize processes
among several stakeholders, who can have competing goals and little knowledge of one
another’s operations, further emphasizes the distributed aspect and need for distributed
modeling methodology for this problem. Building on this, we further segment the problem
setting it into two interrelated, distinct tasks: (1) truck scheduling at marine terminals,
which is relevant for logistics companies; and (2) berth allocation for inbound vessels,
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which directly impacts the vessels. Given the terminal’s pivotal role as a coordinator, its
own operations are affected by aspects of both tasks.

2.1.1. Truck Scheduling at Marine Terminals

Uncoordinated arrivals of trucks in marine terminals is a major problem caused by
the unpredictability and rising volume of truck arrivals. A widely adopted solution to this
problem in the literature is the implementation of a Truck Appointment System (TAS) [6].
Appointment systems are designed to reduce the impact of a concurrent influx of arrivals
by limiting the number of trucks admitted during each time period. A time period is the
temporal interval used to measure access rights in an appointment system (e.g., 1 h). TASs
are often considered mandatory [7] for all trucks entering the port. This study also assumes
a mandatory appointment system, where all logistics companies must request specific slots
for their trucks. A slot grants a truck the right to access the terminal within a designated
time period. The proposed system, however, does not operate on a simple First-Come, First-
Serve (FCFS) basis. Decentralization has been proposed as a way to enable collaborative
appointment scheduling between trucking companies and terminals [8]. Inspired by this
concept, our work adopts a similar philosophy. In line with [9], the proposed system
arbitrates between conflicting truck requests based on company preferences, with the
overall objective of minimizing the maximum deviation cost from the original requests for
all logistics companies. This objective introduces fairness in truck scheduling operations
among different logistics companies. Fairness is introduced through an arbitration process
that aims to reduce the incurred deviations per company.

Trucks are anticipated to enter the marine terminal to fulfill specific tasks. These tasks
can be categorized into pickup tasks, involving the retrieval of cargo from the terminal, and
delivery tasks, which entail transporting cargo to be exported through the terminal. The
complexities of truck drayage within a marine terminal vary with the type of task [10]. In
this study, all scheduled tasks are assumed to be related to a vessel’s arrival at the terminal.
This operational framework aligns with the principles outlined in [11], wherein the concept
of vessel-dependent time-windows is introduced. A Vessel-Dependent Time-Window
(VDTW) is defined as a set of time periods during which specific trucks, based on their
tasks, are granted terminal access. Separate time-windows are designated for pickups
and deliveries: delivery jobs are expected to be scheduled near the vessel’s arrival, while
pickup jobs occur after the vessel has unloaded its cargo. This study omits any interactions
between trucks performing different jobs, similar to [12], with aspects such as minimizing
empty runs [9,13] not being considered.

2.1.2. Berth Allocation for Inbound Vessels

The Berth Allocation Problem (BAP) is a well-established topic in operations research.
It involves optimizing the assignment of berthing locations and time slots to arriving
vessels at the quay, taking into account relevant constraints [14]. A crucial objective is
often the minimization of vessel waiting and exit times through optimal berth assignments.
Approaches to BAPs can be classified as proactive, reactive, or hybrid [15]. Our approach
is classified as proactive, as it is fully embedded in the planning phase. For the purposes
of this study, the vessel arrival schedule is assumed to be deterministic and fixed and is
examined over a full week in a tactical planning context, following a similar setup to [16].
The occurrence of delays and any other disruptions is not studied. In contrast to previous
studies on VDTWs [17], a bidirectional impact between VDTWs and berth planning is
assumed, indicating mutual influence between the two. This suggests that immediate
access to the terminal from the seaside is not guaranteed, as congestion may occur due to
vessels occupying berths with active VDTWs, which can make mooring impossible during
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specific time periods and incur waiting times. Immediate access may also be hindered if it
leads to high deviation costs for logistics companies. Berth size and vessel compatibility
are also considered, implying that not all vessels can use all berths. Finally, vessel exit
times depend on factors such as berth productivity, which is influenced by the number of
quay cranes, available internal vehicles, and the drayage time costs within the terminal. To
model the intricacies of cargo handling by the terminal and its effect on vessel departure,
a macroscopic approach is used to determine productivity rates, as previously proposed
by [18]. This approach computes the processing time for loading and unloading vessels based
on terminal resources and cargo levels, while also measuring the conditions of import and
export areas and the demand for internal vehicles. This study does not incorporate vessel-
specific weights or priority levels to differentiate between vessel types such as motherships
and feeders. Additionally, transshipment activities and multimodal transport connections,
which can significantly influence vessel turnaround times, are not explicitly modeled. These
simplifications were made to focus on the core coordination mechanisms under controlled
assumptions. Extending the problem to account for vessel heterogeneity and broader port
operations, however, does not contrast with the selected approach to model the problem.

2.2. Modeling Approach

To the best of the authors” knowledge, the defined problem setting has not been pre-
viously studied. An important difference with existing literature is that vessels may be
delayed to reduce truck congestion at the landside. Therefore, to select an appropriate
solution methodology, inspiration was drawn from problems in the literature that share
similar features. The MAS modeling paradigm is considered highly suitable for this prob-
lem because of the involvement of multiple autonomous yet interdependent stakeholders,
each with distinct goals and incomplete information about others. Previous approaches to
modeling container terminal operations using MAS are well-documented in the literature.
For example, ref. [19] introduces a micro-level MAS framework for container terminals,
while ref. [20] examines MAS-based coordination of barge and terminals to improve hinter-
land transport planning. Likewise, ref. [18] focuses on the coordination of internal trucks
to manage cargo unloading operations. However, the previous models have a more limited
scope, as agents only represent internal terminal functions without addressing stakeholder
coordination and multimodal collaboration.

A closely related problem from MAS that inspires our modeling approach is the Multi-
Agent Pickup and Delivery Problem (MAPD), which shares several design similarities.
Multi-agent pickup and delivery is the problem of allocating tasks for agents and finding
the shortest paths without collisions. Both involve multiple interrelated agents, each with
its own objectives and limited knowledge of others’ plans, creating potential conflicts
in decision-making. Additionally, both problems take into account dynamic scheduling
and time constraints, which can disrupt planned operations. Finally, resource sharing and
coordination are critical in both cases, as agents must efficiently allocate and manage shared
resources to optimize overall system performance while balancing individual priorities.
Solving MAPD problems often involves prioritization techniques and heuristics to enhance
optimization. For instance, ref. [21] applies prioritized planning to develop efficient paths,
combined with Large Neighborhood Search (LNS) for iterative solution improvement. Sim-
ilarly, ref. [22] integrates task deadlines into a priority-based framework, using bounding
and pruning techniques to maximize task assignments. Ref. [23] also leverages prioriti-
zation to ensure collision-free routes when assigning multiple goals to agents, striking a
balance between managing conflicting objectives and task completion, with LNS aiding the
search process. A key difference between the examined problem and MAPD problems is
the less apparent presence of a unified optimization goal in the latter case. While MAPD
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studies typically involve independent agents working toward system-wide optimization,
the examined problem lacks a clear, single optimization goal due to the varying, sometimes
conflicting, objectives of different stakeholders. This complexity necessitates balancing
these competing interests rather than pursuing a single objective, often addressed in the
literature through multi-objective representations.

Multi-objective optimization is a common approach in scheduling operations with mul-
tiple, possibly conflicting goals, which is a key characteristic of the examined problem. Ex-
amples include job shop scheduling [24], timetabling [25], and machine scheduling [26]. In
supply chain-related problems with multiple objectives, examples include truck scheduling
in cross-docking centers, where the focus is on maximizing reliability against breakdowns
while minimizing outbound truck tardiness [27], ship scheduling in congested marine
terminals, balancing environmental, economic, and social objectives [28], and integrated
terminal management, minimizing ship service times and yard crane operational costs [29].
The standard methodology for solving these problems are multi-objective evolutionary
algorithms (MOEAs), like NSGA-II [30] and SPEA2 [31].

This paper introduces an approach inspired by both MOEAs and MAS to facilitate
collaborative scheduling in multimodal terminal operations by utilizing distributed agents
to enable multi-actor decision-making to tackle the issues outlined in Section 2.1. The
use of priorities is also exploited to guide the optimization of the system based on KPIs.
Each agent is guided by its own decision making model. Identification of conflicts and
compromise solutions for the interacting agents is performed through terminal coordination
and optimization with either existing MOEAs or a novel solution methodology inspired
from prioritized search.

3. Model Formulation

The problem statement involves three distinct actor groups, each with specific require-
ments and objectives, which are modeled as decision-making agents within an MAS. The
first group, consisting of vessels, is represented by the berth allocation agent, which seeks
to minimize both waiting times and processing times for the vessels, by ensuring a berth
allocation for timely mooring and cargo handling. The second group, comprising logistics
companies, is represented by the truck arrival management agent, aiming to incur reduced
deviation costs by aligning truck arrivals with their preferred time periods and optimizing
pickup and delivery schedules. Lastly, we define the terminal processes agent that acts
as an independent coordinating agent, responsible for overseeing the system processes
and verifying the feasibility of all solutions by balancing the needs of the vessels and logistics
companies, while maintaining smooth terminal operations. While the framework features a
terminal coordinator, its function is not to dictate actions but to facilitate information exchange
and conflict resolution between agents. The coordinator acts as a neutral intermediary, iden-
tifying conflicts over shared resources and enabling agents to adjust their plans in order to
identify mutual beneficial solutions. This design ensures that the decentralized nature of the
MAS is preserved, with coordination achieved through adaptation rather than central control.

The proposed approach assumes that agents collaborate by exchanging solutions, rep-
resented by their associated costs, in order to converge on a mutually acceptable outcome.
While this assumption facilitates the exploration of coordinated decision-making, it may
not fully reflect the current business priorities or operational constraints faced by terminal
stakeholders. In particular, the model does not explicitly account for the asymmetry of
power among actors, such as the disproportionate influence of shipping lines compared
to smaller logistics providers or trucking companies. Although this imbalance is partially
captured by the sequential structure of the multi-agent system, where vessels act first,
the broader institutional and governance issues surrounding stakeholder inequality and
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trust remain beyond the scope of this study. Instead, the primary objective is to assess
the viability and effects of different coordination and prioritization mechanisms in cargo
handling. Demonstrating the value of such mechanisms is a necessary first step toward
future work that may address practical barriers to collaboration, including data sharing,
trust, and power imbalances.

The overall goal of the MAS is to determine Pareto optimal solutions by deploying
search algorithms that take into account all requirements set by the involved agents. In
Section 3.1, the berth allocation agent is described, followed by the truck arrival manage-
ment agent in Section 3.2, and by the terminal processes agent in Section 3.3. Given the
involved agents are interrelated, many parameters and variables are shared across them.
For conciseness, these parameters and variables will be introduced only when they first ap-
pear in the tables within this section. In Figure 2, a schematic representation illustrates the
interactions among variables, parameters and processes (to be introduced in the following
sections) within the proposed MAS.

Pareto Search

+ vessel arrival schedule

+ preferred slots per company
+ terminal layout

+ termination criteria

+ updateObservations()
+ deployAlgorithm()
+ endLoop()

Berth All tion Agent Truck Arrival Management Terminal Processes Agent
+ allocation (x) Agent + kpis (f.l.a.z)
+ priority (y) + vessel windows (wP.wP) + bounds (Vmax, Kmax, Lmax)
) R . o + max arrival rates (Tmax) + kpiVerification()
+ der!veWmdows(x,y) — wWhLwW + acceptSolutions()
+ deriveKPlIs(xy) — + adjustArivals(w” wP) — uP,uP
1. vessel mooring time (m) + denveKP\s(wP WD) .
2. vessel processing cost (p) I
3. internal vehicles needed (f) ; gii\cg‘“%?ei?:; fe)

3. queue lenghts (1)
4. storage capacity (a,z)

Figure 2. Representation of agent interactions.

3.1. Berth Allocation Agent

The berth allocation agent is responsible for vessel-related operations. All sets, pa-
rameters and variables necessary to describe this agent are listed in Table 1. Allocation of
berths to each vessel v is defined by variable x,, while priority of vessels per berth y; is
an ordered set consisting of all vessel indices assigned to that berth, from higher to lower
priority. A vessel v is granted access for mooring at time unit m1,, and based on allocated
berth x,, the processing time p, for loading/unloading operations can be defined. Within
the interval [m,, m, + po], the berth is considered occupied, with m, + p, representing the
exit time of the vessel from the berth. The processing and mooring times for each vessel are
measured in time-units (e.g., one minute) within the considered planning period.

With respect to the berth compatibility, each vessel v is characterized by a vessel length
L,. Similarly, each berth b is assigned a maximum vessel length M, that it can service.
Smaller vessels can use berths designed for larger vessels, but the reverse is not possible.
Assignment of a larger vessel to an incompatible berth will result in an arbitrarily large
processing time p,. Finally, the existence of priorities as established by y; asserts that no
vessel with higher priority for the same berth should experience delays due to a vessel with
lower priority. Let y4 = [vg, v1, ..., s be the ordered list of vessels assigned to berth A,
where n = |y4| — 1. For each i € {0,...,n — 1}, the following condition must hold:

myi < my%ﬂ V myi > myi;rl + Pyi/;rl (1)

where My denotes the mooring (start) time of vessel v/ wwand p v, is its processing time.
This essentlally ensures that a vessel with higher priority will never be delayed by a lower-
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priority vessel, although a lower-priority vessel may still be served earlier if it does not
interfere with the higher-priority vessel’s schedule (as shown on the right hand side of
Condition (1)). The relationship between priority y and mooring time m is further explained
with an example in Figure 3.

Table 1. Sets, parameters and variables used by the berth allocation agent.

Sets

B Set of berths, indexed by b

T Set of time-periods, indexed by i

1% Set of vessels, indexed by v

Parameters

Ay Expected arrival time of vessel v, measured in time-units

Cp Number of quay cranes in berth b

E, Amount of export cargo for vessel v, measured in TEUs

Iy Amount of import cargo for vessel v, measured in TEUs

Ly Length of vessel v, measured in meters

M, Maximum vessel length a berth b can service, measured in meters

SB Amount of processed cargo by a crane in double mode during a single time-unit,
measured in TEUs per time-unit

% Amount of processed cargo by a crane in single mode during a single time-unit,
measured in TEUs per time-unit

W Number of time-units in a single time-period

Variables

d;"; Amount of processed cargo in single mode for vessel v, measured in TEUs

dB Amount of processed cargo in double mode for vessel v, measured in TEUs

My Mooring time of vessel v, measured in time-units

Po Processing time of vessel v, measured in time-units

pB Processing time of vessel v in double mode, measured in time-units

3 Processing time of vessel v in single mode, measured in time-units

wb Set of time-periods i € Z during which cargo deliveries for vessel v can occur

w? Set of time-periods i € Z during which cargo pickups for vessel v can occur

Xp Assigned berth for vessel v, taking values b € B

Y Ordered set designating vessel priority for berth b, taking values v € V

Vi
Arrival (Ay) | 5:00
Enter (my) 5:00
Exit (my + po) | 7:00

V1
Arrival (Ay) | 5:00
Enter (my) 5:00
Exit (my + po) | 7:00

V2

Arrival (Ay) | 4:30
Enter (my) 7:00
Exit (my + py) | 8:00

V2

Arrival (Ay) | 4:00
Enter (my) 4:00
Exit (my + po) | 5:00

Figure 3. Two cases of execution of vessel schedules approaching the same berth with V1 having
priority over V2. V1 has a 2-hour processing time, while V2 has a 1-hour processing time. In Case 1,
V2 arrives 30 min before V1 but must wait due to V1’s priority. In Case 2, V2 arrives an hour earlier
and can be served by 5:00, when V1 arrives, despite the lower priority.

Processing time of cargo is the main determinant of the vessels” exit time from the
terminal. For this particular problem, a vessel is considered to carry only cargo in the form
of Twenty-foot Equivalent Units (TEUs). Cargo is either designated for exports (E,) and
must be loaded onto vessel v, or it is designated for imports (I,) and must be unloaded
from vessel v. The amount of TEUs to be processed evidently affects the processing time
but so does the productivity of the assigned berth, as each berth has a specific number of
available quay cranes Cp, and TEUs that can be processed per time-period based on mode
S5 and SB. When in single mode (S°), cranes will exclusively load or unload cargo with
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no overlap. When in double mode (S By, loading of containers can take place in parallel
to unloading and vice-versa. Derivation of processing times for vessels follows a process
similar to [18] as follows:

d% = min(I,, E,) YoeV )

ds = |I, — Ey| YocV 3)

po = p5+p5 Yo eV 4)

P = i YocV (5)
gS. Cy,

pB = SBZ-dixv Yo ey (6)

where d3 is the amount of TEUs to be processed in single mode and d2 the amount of cargo
to be processed in double mode. Processed cargo in a specific mode is calculated in
Equations (2) and (3), asserting that as many TEUs as possible will be processed in
double mode and the rest in single mode. Then, the processing time is defined in
Equation (4), contingent on the individual processing times per crane mode as defined in
Equations (5) and (6).

Depending on whether a vessel has more TEUs to load than unload, double mode
processing will occur before or prior to single mode. When there are more TEUs to be
loaded to the vessel than unloaded, the vessel will first be processed in double mode. This
ensures that unloading will finish before loading, leaving more time for the truck-pickup-
related windows. Conversely, when there are more TEUs to be unloaded than loaded, the
vessel will first be processed in single mode. This ensures loading does not start earlier
than needed, thus allowing more time for deliveries to arrive later.

The processing mode also impacts the time-windows w2 and w! for each vessel,
which take values i € Z. A time-period i represents a set of time-units within the examined
working week (e.g., all minutes in a single hour). The time-unit indicating the start of cargo
loading is associated with the last possible time-period for delivery jobs, establishing the
upper bound of wD. In contrast, the time-unit marking the completion of cargo unloading
designates the first possible period of w). Deliveries are assumed to occur at any time
before the upper bound of w}), and pickups after the lower bound of w!, although they are
generally expected to take place within 12 h of the respective bounds.

Overall, the decision-making agent responsible for berth allocation aims to mini-
mize the waiting and processing times for all vessels. Its objective function (termed the
vessel_process function), subject to the requirements outlined earlier, is defined as:

vessel_process(x,y) = Z (my — Ay + po) @)
vey

3.2. Truck Arrival Management Agent

The truck arrival management agent is responsible for operations related to logistics
companies and trucks. All sets, parameters and variables necessary to describe this agent
are listed in Table 2. Each truck that accesses the terminal is considered to be dependent on
avessel v € V and owned by a Logistics Company [ € £. Additionally, each truck has a
distinct job type as either a pickup or a delivery. A single truck is assumed to carry one TEU
within the terminal and each truck has its own preferred arrival time-period i € Z. The
sum of preferred arrival time-periods define Tll,Dv,i as the number of trucks that company
I prefers to send for delivery jobs related to vessel v during time-period i. Similarly, TZI,D v
represents the preferred number of trucks for pickup jobs. The stated preferred arrival
periods for trucks simulate the appointment process in the proposed model.
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Table 2. Sets, parameters and variables used by the truck arrival management agent.

Sets
L Set of logistics companies, indexed by [
Parameters
le ; Number of preferred trucks arrivals for deliveries by company ! for vessel v in
period i
lp i Number of preferred trucks arrivals for pickups by company ! for vessel v in period
i
Tiax Maximum arrival rate for trucks per time-period
A Deviation cost factor per company [
Variables
C Deviation cost incurred to logistics company I/, measured in monetary units
7 Number of cumulative truck arrivals in period i
riD Number of cumulative truck arrivals in period i, related to delivery jobs
rf Number of cumulative truck arrivals in period i, related to pickup jobs
qu ; Number of truck arrivals by company [ for vessel v in period i, related to delivery
jobs
u}j i Number of truck arrivals by company [ for vessel v in period i, related to pickup
jobs

Each company is assumed to be characterized by a deviation factor A;. This deviation
factor represents how averse a company is to deviations from their preferred schedule.
When the preferred arrival schedule is deemed infeasible, a cost ¢; is calculated as described
in Equation (8).

=) ni-exp (A xd;) (8)

i€l

where #; denotes the amount of trucks that need to be deviated at a specific time period
for a logistics company and d; is the time-period difference between period i and the first
feasible time period. The exponential factor is selected to discourage assignments that
differ to a large extent from a truck’s preferred arrival period. A preferred arrival schedule
may be deemed infeasible in two particular cases. The first cases relate to the timing of
truck arrivals not aligning with the vessel’s arrival and handling processes. We denote this
form of infeasibility as hard. In this case, the preferred arrival schedule can be accepted by
the truck arrival management agent, given the berth allocation agent’s solution w?, wD, if
the following conditions hold:

Th;=0 Vi¢w ©)
TP =0 Vigwh

Lov,i

Such infeasibility requires correction by incurring costs to logistics companies and
rescheduling the trucks to the next feasible period. For instance, if trucks are planned for
pickup in time-period 5 but the vessel moors in time-period 6 and finishes unloading by
time-period 8, the trucks must be rescheduled to time-period 9, i.e., the earliest time-period
when pickup can occur. Hard deviations are calculated using Algorithm 1.

The second case of schedule infeasibility concerns the maximum arrival quota per
time-period (Tinay). In this scenario, deviations are required to reduce arrivals to Ty,
ensuring compliance with constraints set by the terminal processes agent. This type of
infeasibility is classified as soft, as it does not imply an infeasible schedule but instead affects
terminal productivity. To address soft deviations, Algorithm 2 is applied, as illustrated
through a graphical example in Figure 4.
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Algorithm 1: hard(TD JTP A, wP, wP )

1 uf « TP

2 uP « TP

3 forl € L do

4 forveVdo

5 fori € 7 do

6 ifi ¢ wzl;7 A Tll,Dv,i > (0 then
7 d + i — max(w})

8 UD i g & Upi F U i

=]

c1 < ¢+ up, xexp (A *d)

10 “Ey,i 0

1 elseifi ¢ wg A va’i > (0 then
12 d < min(wh) —i

13 Ui € Uit Uiy ari

14 cp cl—l—ufv,i*exp (A xd)
15 ”fv,i 0

16 fori € 7 do

P D
17 T Yier Yoey Uy p T U

18 return up, uD,r,c

The algorithm begins by identifying congested periods and sorting them from the
most to the least congested. In Figure 4, we consider an example where the maximum
arrival quota per time-period is set at 100 trucks and only one time-period needs correction.
In this context, time-period 2 exceeds this limit by having 30 more truck arrivals than the
set limit, indicating a soft violation. For each period i with a soft violation, if traffic is higher
in the prior period i — 1 over the subsequent 7 + 1, pickup jobs are selected for deviation to
time-period i 4 1, as slightly delaying a pickup is allowed by our strategy. If traffic is higher
in the subsequent period i + 1 over the prior i — 1, delivery jobs are selected for deviation
to time-period i — 1, as slightly anticipating delivery jobs is allowed by our strategy as well.
If adjacent periods have equal traffic, deviations alternate between pickups and deliveries.
In the given example, time-period 3 initially has a lower arrival rate than time-period 1,
prompting the rescheduling of five pickups from time-period 2 to time-period 3. After the
initial five shifted trucks, the arrival rate of time-period 3 matches that of time-period 1,
prompting the rescheduling to alternate between periods 1 and 3. As a result, 10 deliveries
are shifted to time-period 1, and 10 more pickups are moved to time-period 3 leading to a
total of 15 pickups delayed to time-period 3, bringing both periods to the T;;:x quota. As
indicated by Algorithm 2, if both neighboring periods reach T}y, the adjustment window
is extended by one additional period to time-periods i — 2 and i + 2. In this example, the
remaining five trucks needing rescheduling from time-period 2 are shifted to time-period 4,
after extending the adjustment window by one additional period.

This process ensures that deliveries are never shifted to later periods, nor pickups to
earlier ones, as such changes may cause hard violations. The algorithm thus maintains
schedule feasibility while optimizing terminal productivity by managing soft deviations
efficiently. Hard deviations are addressed first, followed by soft deviations. To reduce the
arrival rates, the minmax rule is used to minimize the maximum deviation cost per logistic
company, including the deviation cost already incurred by hard deviations. Deviations
are selected in a way that the company that incurred the least cumulative cost is selected
for each truck deviation. The algorithm computing the soft deviation costs is provided in
Algorithm 2.
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Figure 4. Transformation of arrival rates after Algorithm 2.

Opverall, the truck arrival management agent aims to minimize the amount of incurred

deviation costs towards the logistics companies. Its objective function, subject to the

requirements outlined by Algorithms 1 and 2 is defined as:

incur_deviations(wD Jwb, Tax) = min Z o

lel

(10)

Algorithm 2: soft(u?, uP,r,c, \)

1 I = argsort(r;)

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

fori € 7 do

if 7; > Tyay then
nd<—7’i—Tmax,‘D<—1
while n; > 0 do
ifri_p > riyp then
y«<{l,vVieLlve V|u{fw' > 0}
choice < argmin({c;, VI € y})

D+ D+1

Cchoice *— Cchoice + exp (Al * D)
P P

ul,v,i A ul,v,i -1

P P
ul,v,iJrD = ul,v,i+D +1
titp < tizp +1

else

y<«{LVieLoeVuP >0}
choice < argmin({c;, VI € y})

if ,_p = Tyax then

D+ D-+1
Cchoice < Cchoice T €XP (Al * D)

D

ul,v,i —u

D
Upyi

P

D _
Lou,i 1

D¢ Upyipt1
ri_p < ti_p+1

v < 1 -1

ng < ng—1

return u*, uD, r,C




Logistics 2025, 9, 110

13 of 30

3.3. Terminal Processes Agent

The terminal processes agent is responsible for operations related to the terminal
and overall coordination of the system. All parameters and variables associated with the
terminal are listed in Table 3.

Table 3. Parameters and variables used in the model used by the terminal processes agent.

Parameters

GB Amount of processed cargo by an internal vehicle when a crane is in double mode
in one period, measured in TEUs

G} Amount of processed cargo by an internal vehicle when a crane is in single mode
and heading to import area in one period, measured in TEUs

Gf: Amount of processed cargo by an internal vehicle when a crane is in single mode
and heading to export area in one period, measured in TEUs

Kinax Maximum cargo that can be stored in import/export areas, measured in TEUs

Liax Maximum queue length in the gate area

Vinax Maximum number of internal vehicles that can be used to process cargo

Variables

a; Processed cargo in export area in time-period i, measured in TEUs

es Amount of internal vehicles to process cargo in single mode for vessel v

eB Amount of internal vehicles to process cargo in double mode for vessel v

fi Amount of internal vehicles needed to process cargo in time-period i

hg/i Processed cargo in single mode in time-period i related to vessel v, measured
in TEUs

hf,i Processed cargo in double mode in time-period i related to vessel v, measured
in TEUs

I; Queue length formed in time-period i

zZi Processed cargo in import area in time-period i, measured in TEUs

The terminal’s decision-making is centered around managing requirements related to
congestion, space, and available equipment. Four key metrics are considered: arrival rates,
constrained by the maximum limit T},x (addressed in the previous section); queue length
at the gate, limited by L;4y; cargo space in import and export areas, constrained by Ky;ay;
and internal vehicles used, limited by V.

To model truck arrivals at the gate, a non-homogeneous Poisson distribution for the
derived arrival rates r by the truck arrival management agent is used. Service times are
treated as independent and identically distributed, consistent with the M/G/k queuing
model, for k lanes as in existing literature [32,33]. To handle cases when arrival rates exceed
service rates, the stationary backlog-carryover method is used [34,35], which allows queues
to build up in overloaded periods, and waiting jobs can be transferred to a subsequent pe-
riod. The queues effectively serve as constraints by determining the feasibility of a solution.
If the queues become too long, the agent rejects the solution altogether. The derivation of
equations to determine the queuing approximation for I can be found in Appendix A.

Cargo quantities in the yard are updated based on the actual pickup and delivery rates
P and rP, as provided by the truck arrival management agent, and are also contingent in
the processing modes followed as explained in Section 3.1. For clarity of the formulations in
Table 4, subsets relating to specific moments in the cargo handling process are formulated
and measured in time periods. Essentially, the time-periods that a vessel will process
cargo in, either in single or double mode, are isolated based on the mooring time and
processing time derived by the berth-allocation agent. As previously discussed, based
on whether there are more imports or exports, a different sequencing of cargo processing
is performed. The total TEUs in import (z) and export areas () can then be computed
based on Equations (11)—(18). For a specific vessel, cargo processing may begin after an
associated time-period has started and conclude before a period ends. Equations (11)—(14)
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define the actual amount of cargo processed for each period within the subsets outlined
in Table 4 based on the mooring and processing times of the vessel. Three cases are thus
possible: cargo processing starting partway through an involved period, cargo processed
throughout the entirety of a period, and cargo processing concluding before a period ends.
The use of arrival rates in Equations (16) and (18) is appropriate for measuring TEUS, as it
is assumed that each arriving truck carries a single TEU. Storage capacity at the import and
export areas is considered finite for a maximum Ky, TEU.

min(W i — mq, my + p5 — W(i —1),W) - dj

;= : , Viesl,voeV (11)
' p3
in(W-i— S, ~W(@i—1),W)-dB
pp. — min(Wi = + pg Mo I Po (i=1),W) -dy VieS2VoeV (12)
, o
g min(W-i—my,my+p8 —W(3i—1),W)-dl .
hyi = 3 , VieS3,YoeV (13)
, o
s, = T i mo ¥ poBymo tpo = WU D)) W) dy ViesiVoeV (14)
, S
zZp = 0 (15)
zi=zia—r+ Y B+ Y S+ Y Wi+ Y o, Vie I (16)
veVlies] veVl]ies? veV|ies? veVlies?
ag =0 (17)
gj=aiq+rP— Y, h,— Y W,— Y wh- Y n, VieI* (18)
veV|ies] veV|ieSs? veV|ieSs? veVlieSs

Finally, a maximum number of internal vehicles V},,y is considered available. The
amount of TEUs a vehicle can process within a single period is defined as G® for double
mode, G for single mode moves towards the import area and G for the export area.
Building on that, Equations (19)-(21) define the amount of vehicles needed per processing
mode and vessel for the processing times of vessels as defined by the berth allocation
agent. These equations establish the amount of vehicles needed to match the productivity
of the used mode and cranes. Then, the total number of internal vehicles f; needed can be
computed from Equation (22).

ds-w

e =—2—, YoeV|E, >, (19)
ps - Gg
ds-w

S v

e, = ———-, YoeV|I, >E 20

v PgG]S | v [ ( )
ds.w

B v

- B’ YoeV 21

° pE-GP v 1)

fi= Y e+ Y B+ Y od+ Y e, VieTl (22
veV|ies) veV|icS? veV|iesd veV|iest

Overall, the terminal processes agent has no explicit optimization goal; thus, its
decision-making is represented by a constraint satisfaction function termed
terminal_constraints(r), which checks whether variables f, z, a4, that are directly related to
r remain below upper bounds, returning False if any are violated.
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Table 4. Subsets used in the model, specific to the terminal.
Subsets
S
sl = { | 5. [LI;’“-‘ } Time periods associated with the start of the mooring until the

end of first processing in single mode for vessels v with I, > E,.
IfI, <E,, SL=@
S
S2 = { {m%p o J , ["'"VJ\;’” "-‘ } Time periods associated with end of first processing in single
mode to exit time for vessels v with I, > E,. If I, < E,, S% =@

$3 = { | 7], [m‘};p 1 } Time periods associated with start of mooring until the end of
first processing in double mode for vessels v with I, < E,. If
Iy > Ey, S5 =0

St = { {LVWJ , [L‘;pﬂ } Time periods associated with the end of the first processing in
double mode to exit time for vessels v with I, < E,. I, > E,,
SE=0

* =T\ {Zv} Time periods excluding first period

4. Solution Methodology

Searching for Pareto optimal solutions that improve and satisfy the individual ob-
jectives of all agents depends on an efficient search algorithm as previously signaled in
Figure 2. Due to the problem’s complexity, nonlinearity, and large solution space, meta-
heuristic methods are used. We consider multi-objective evolutionary optimization al-
gorithms and a novel technique that combines prioritized planning with neighborhood
search for developing the search algorithm. These methods balance conflicting objectives
and refine solutions locally based on the requirements and functions defined in Section
3. Specifically, the vessel_process and incur_deviation must be minimized, while the
terminal_constraints functions must be satisfied during the solution process.

4.1. Multi-Objective Evolutionary Algorithms

A common approach to solving multi-objective optimization problems involves pop-
ulation based algorithms that utilize evolutionary computation. Multi-Objective Evolu-
tionary Algorithms (MOEAs) can efficiently generate a diverse set of trade-off solutions,
focusing on convergence, diversity, and coverage of the examined solution space. These
algorithms form the foundation of multi-objective optimization problems and have been
extensively studied in the literature. To solve the problem presented in this study using
MOEAs, the employed methodology, detailed in Figure 5, employs the following steps:

Step 2:
o~ Generate a Step3: Step 4: szelp 5t 3
e 8 i . i elec g
Initil:lize ra:tliaos;dset Encode mzif(l)r(;eof mutation BS&SY
problem ] of T evaluation — and ] selected
. with Real
parameters observations numbers for crossover MOEA
based on observations operators
FCFS

Figure 5. Methodology employed for use of multi-objective evolutionary algorithms.

Step 1: Initialize Problem Parameters— This includes determining the number of vessels,
available berths, logistics companies involved, and specific requirements such as vessel-to-
berth compatibility.

Step 2: Generate Initial Set of Solutions—An initial set of solutions for berth allocation
x and priority of vessels y per berth is generated and evaluated by assigning a simple
FCFS priority based on the chronological arrival times of vessels, and then a random
assignment of berths for each vessel, provided that the allocation is feasible with respect
to vessel-to-berth compatibility. The generated x and y are defined as observations of the
search algorithm.
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Step 3: Encoding of Observations—To facilitate the search process, observations of x and y
must be encoded in a form that makes it easy to apply operators. To that end, we utilize
real-encoding. For each vessel, a real number is generated randomly within the range
from 0 to the total number of berths |B — 1|. The integer part of this number indicates
the assigned berth for the vessel, while the fractional part represents the vessel’s priority
among those allocated to the same berth. Vessels with the same integer part are sorted
based on their fractional values to establish priority order. The chromosome structure is
further illustrated in Figure 6.

Vi V2 V3 V4 V5  «— Vessel Index

0.15]1.12 ] 0.04 | 1.04 | 1.06 | +— Generated Real

A B A B B <«— Berth Allocation

2 3 1 1 2 | «— Vessel Priority

Figure 6. Encoded chromosome with reals.

Step 4: Define evaluation method—The model defined in Section 3 must satisfy con-
straints during fitness evaluation. To handle constraint violations, hard constraints are
transformed into soft constraints by adding high penalties to the objective value when
violations occur. To compute the costs across agents, the vessel_process, incur_deviation
and terminal_constraints(r) functions are deployed.

Step 5: Select crossover and mutation operators—Generating diverse observations is crucial
for the effectiveness of MOEAs as it helps explore a broader solution space and avoid
premature convergence. To achieve this diversity, crossover and mutation operators are
employed. For real-valued representations, a common crossover method is Simulated
Binary Crossover (SBX). The SBX operator mimics the behavior of binary crossover for
integers and is defined mathematically as follows:

1
xl(l) =5 {(xi(1> + x}z)) -B- (xl-(z) - xfl))} (23)
1
xl@ 5 {(xi(1> + xl-(z)) +B- (xl-(z) — xfl))} (24)
(2u)1/ (n+1), ifu <05
p= 1/(p+1 (25)
(7i557) i 05

where u ~ U(0,1) and B > 0. Variable B is drawn from a beta distribution with an #;
index of user-defined distribution to introduce variability in the crossover process. For
mutation, polynomial mutation is commonly used. This method introduces small changes
to individuals by altering their values with a polynomial distribution. The mutation
operation is defined as:

x; =x;+0- (xi,upper - xi,lower) (26)

where ¢ is a polynomially distributed random variable and 7, is a distribution index that
controls the mutation magnitude:

1
U (0, .
(%) ), if 4(0,1) < 0.5 o)

1
2-(1-U(0,1 .
1- (%ﬂg))) 2T 14(0,1) > 0.5
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For all MOEAs these two operators were utilized with 77; = 15 and #, = 20 for SBX and
polynomial mutation, respectively.

Step 6: Deploy Selected MOEAs—As previously established in Section 2.2, the common
benchmark algorithms NSGA-II [30] and SPEA2 [31] are used.

4.2. Prioritized Search

MOEAs are relatively straightforward to implement and can effectively yield a satis-
factory set of solutions for multi-objective optimization problems. However, achieving the
set of all Pareto efficient solutions can be challenging due to the problem’s complexity and
high dimensionality. A significant drawback is the excessive generation of redundant obser-
vations, as the operators used to create new solutions focus on diversity but lack a robust
mechanism to incorporate local knowledge into the search process. For example, certain
berths may be incompatible with specific vessels, yet the search algorithm evaluates these
infeasible solutions, which, despite incurring minimal computational cost, detracts from
overall optimization efficiency. To address these limitations, we propose a novel algorithm
based on prioritized planning, which utilizes local knowledge to minimize redundancy and
improve solution quality. The berth allocation variable x is assigned sequentially for each
vessel according to y, leveraging priority trees, and outlined in Section 4.2.1. Subsequently,
our approach employs a search algorithm, as described in Section 4.2.2, to determine the
priority list .

4.2.1. Priority Trees

In constructing a priority tree, we begin with a given priority list y and try to define
the berth allocation x, Vo € V. To define x, we assume that each vessel consistently selects
a berth using a greedy approach, i.e., the one that minimizes any of the associated costs,
always considering local conditions such as berth occupancy caused by other vessels. Each
vessel is associated with a processing cost py, and an incurred deviation cost for companies,
Cy, based on the selected berth. Given that the problem has two distinct objectives to
minimize, different berth allocations may optimize different criteria. To address this, the
algorithm may consider multiple berth allocations. When two different berths perform
better for one objective but worse for the other, a branch occurs as no solution dominates
the other.

In Figure 7, an example of the formation of priority trees is illustrated with three
vessels and priorities V1 > V2 > V3. For vessel V1, berth B is selected since it is the
greedy solution compared to the infeasible solution of berth A, which yields an infinite
cost. For vessel V2, both berths yield minimum values for different costs, with berth A
minimizing the total sum of p, and berth B minimizing the total sum of ¢, resulting in
new branches. For vessel V3, two branches and four allocations must be evaluated, and
only greedy solutions must be kept. Allocation B — B — B is disregarded because, for
V3, allocation B — B — A performs better in both objectives, thereby dominating solution
B — B — B. Allocations B— A — A, B— A — B, and B — B — A are part of the final output of
this process, but it is noted that allocation B — A — A is dominated by allocation B — B — A.
This branch is dominated across all solutions, but not within solutions stemming from its
root, and thus is discarded at a later stage, as indicated by Figure 7.

We generally aim to retain non-dominated solutions originating from the same root,
as they may lead to better final outcomes under the current priority constraints when
examining vessels further down the priority list. However, this approach introduces
significant redundancy, which can negatively affect performance as the number of vessels
increases. To mitigate this, we apply a simple rule: we always keep at most the top k
solutions. These are selected based on minimizing the sum of the two cost components. If,
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at any point, the number of branches from a root exceeds k, the least favorable solutions
are discarded.
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Figure 7. Schematic representation of the branching process to create priorities.

Removing dominated solutions

Algorithm 3 describes the process of creating priority-based trees, as visualized in
Figure 7, for a given ordered priority y. We also introduce the concept of an archive swap,
used to store indices of vessels where the greedy decision for berth allocation results in a
branch, as shown in Figure 7. Information related to costs for the Berth Allocation Agent,
Truck Arrival Management Agent, and occupancy constraints for the associated berths
are stored in the ROOT dictionary (Algorithm 3, Line 2) and are updated for any given
priority. Proceeding iteratively for every vessel v € y, the processing time of each vessel
and its impact on the vessel schedule is first computed (Algorithm 3, Line 12) using the
vessel_process function. All possible berth allocations are evaluated iteratively, provided they
are compatible with the vessel size (Algorithm 3, Line 11). Current best berth allocation for
vessel processing and incurred deviation are stored in variables by, bc,. Vessel processing
costs are calculated for a single vessel, and conflicts with vessels of subsequent priorities
are checked by updating the “curr” dictionary. Then, the hard deviation cost to the logistics
companies caused by this vessel (cy) and any effect to the current arrival rates applied to
logistics companies is computed by Algorithm 1 (Algorithm 3, Line 13).

Based on the cumulative c, and py, all potential branches relating to a greedy allocation
are stored as previously explained (Algorithm 3, Line 14-22). When multiple branches
are created, the vessel causing the split updates the archive (swap) (Algorithm 3, Line 24).
The archive is used to guide exploration of different priorities around this vessel later in
the search process. Subsequently, occupancy constraints and current costs per agent are
updated for all branches (Algorithm 3, Line 27-31). Finally, after processing all vessels,
the derived branches are added to the found solutions after being updated to account for
soft violations as per Algorithm 2 if they do not violate any terminal-related constraints
(Algorithm 3, Line 32-37) such as maximum queue list and storage capacities.
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Algorithm 3: priority_tree(y,swap)

1 sols, OPEN + @, @

2 ROOT «+ {

BA®: 0, TAMC: 0,
C:H{b:0|beB},x: 0

3 insert OPEN in ROOT
4 forveydo

28

children <+ @
while OPEN do
curr < state from OPEN with index 0
remove OPEN from curr
bp,, be,, trees < 00,00,
forb € B do
if L, < M, then
Po, My <— vessel_process(curr, b)
Cp, t < hard(curr, my)
if py < bp, and ¢, < b, then
bpy/ bcv < Pov,Co
trees <— [po, Cv, My, 7, )]
else if p, < by, then
bp, < Po
add [py, ¢y, My, 7, b] in trees
else if ¢, < b, then
be, < ¢
add [py, ¢y, My, 7, b] in trees
if length(trees) > 1 then
update v in swap by 1
if length(trees) > k then
keep k trees with lowest total cost
for br € trees do

BAC : curr[BAC] + br[p,],
child <~ ¢ TAMC : curr[TAMC] + br(c,],
C : curr[C], x : curr[x], A : br[r]

add br[m,] in child[C][br[b]]
add br[b] in child[x]
add child in children
for child € children do
insert child in OPEN
for child € children do
update child with soft(child)

if terminal_constraints(child[A]) then

insert child in sols

38 return sols, swap

4.2.2. Search Algorithm

A search strategy is proposed that takes elements from neighborhood search to ef-

ficiently explore the solution space for different applied vessel priorities. Algorithm 4 is

employed to search for non-dominated priorities by systematically refining the solution

space through a combination of exploration and exploitation strategies. Below are the key

steps of the search algorithm:
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Algorithm 4: priority_search(y,end,pb,pt)

1 ledger « {

BA:{s:Q, b: oo},
TAM: {s: @D, b: oo}

2 swap < [1 | Vie V]
3 front,candidates < @, @
4 while True do

© e NN G

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

sols, swap < priority_tree(y, swap)
non_dominated < @
add sols in candidates
n < |candidates|
for i € candidates \ {candidates[n]} do
dominated < False
for j € candidates \ {candidates[0]} do
if i # j and is_dominated(i, j) then
dominated < True
break
if not dominated then
add(i) in non_dominated
add non_dominated — front
for f € front do
if ledger[BA][b] > f{[BA‘] then
ledger[BA] < {s: f, b: f[BA°]}
if ledger[TAM][b] > f[TAM®] then
ledger[TAM] < {s: f, b: f[TAM‘]}
Define u ~ Uniform(0, 1)
if u < pb then
select y from ledger[BA][sol]
apply destroy operator on y
update y with a repair operator
else if u < pt then
select y from ledger[TAM][sol]
apply destroy operator on y
update y with a repair operator
else
select y from current front
update y with a random operator
if end then
break

37 return front

Initialization: The algorithm begins with an intuitively promising priority strategy.
We utilize FCFS for the examined vessels and create the priority trees as previously
explained in (Algorithm 3). Two termination criteria, collectively denoted as end,
are considered:

* A pre-specified maximum number of iterations.
e Convergence to a certain Pareto front satisfying solution quality thresholds.

Updating the Pareto Front: At each iteration, dominated solutions derived from
the priority trees are discarded to create the current best Pareto front (Algorithm 4,
Lines 6-17).

Exploration and Exploitation: The algorithm uses exploration and exploitation to
refine and diversify the solution space (Algorithm 4, Lines 18-34):

e Exploitation: A ledger maintains the best feasible priorities and allocations for
each decision-making agent (Algorithm 4, Lines 18-22). To intensify the search
near high-quality solutions, we apply a destroy-and-repair strategy: part of a
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solution is perturbed and then heuristically reconstructed (Algorithm 4, Lines
23-33). The process is applied to the current best solution of either the TAM or
BA agent, chosen at random from the ledger. A destroy operator is followed by a
repair operator, both selected randomly. The available operators are:

Destroy operators apply targeted changes:

-  random_subsequence_removal: removes a contiguous block of n elements
and then applies local reordering.

- random_position_removal: removes k elements from random positions for
broader variation.

Repair operators restore priority structure:

- random_reinsertion: reinserts removed elements at random positions to
promote diversity.

-  greedy_reinsertion: reinserts each element in a weighted manner influ-
enced by the swap archive.

e  Exploration: To diversify the search space and avoid local optima, we apply a set
of local operators that modify candidate solutions. One operator is selected at
random in each iteration. The following operators are used:

(a) insert—Inserts a random vessel into a different position in the sequence.
To guide the exploration, we use the swap archive as a weight for vessel
selection.

(b) shuffle—Randomly shuffles a small segment of consecutive vessels.

(c) reverse—Reverses the order of a selected segment in the sequence.

(d) relocate—Moves a segment of vessels to a different position.

(e) two_opt—Swaps two non-overlapping segments.

4. Sampling Strategy: A specific sampling strategy is employed to balance exploration
and exploitation throughout the iterations in our experiments:

*  When exploiting, the decision to select a priority for a specific decision-making
agent is made uniformly, with probabilities for berth allocation and truck arrival
management set equally (p, = p:).

*  During the first 80% of iterations, the algorithm allocates 20% of iterations to
exploitation and 80% to exploration (p, = p; = 0.1).

e  For the final 20% of iterations, the balance shifts, with 80% of iterations focused
on exploitation and 20% on exploration (p, = p; = 0.4).

Ultimately, the best observed Pareto front is returned as the output of Algorithm 4.

4.2.3. Scalability and Parallelization

The prioritized search algorithm, while reducing the solution space, can increase
computational costs due to the need to form trees and perform computationally expensive
operations, such as those in Algorithm 1, for each vessel individually. This computational
cost grows with the number of vessels and berths, making single priority evaluations
significantly more expensive. This issue is partially addressed by reducing the redundancy
of examined branches (Algorithm 3, Lines 25-26), where only the top k priority vectors
per branch are retained. In our experiments, we used k = 10 to balance performance with
computational efficiency. Scalability concerns related to increased vessel and berth numbers
are further addressed through the evaluation in Section 5.2.

Another way to speed up computation, unlike MOEAs, which rely on iterative learn-
ing across generations, is through the parallelizable nature of Algorithm 4, which offers a
practical advantage in large-scale problem settings. We propose a simple parallelization
approach where multiple processes start from different priority strategies close to FCFS
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and independently follow the steps outlined in the previous section related to the search
algorithm. This allows multiple processes to concurrently evaluate different priorities, sig-
nificantly increasing the search capacity of the algorithm. However, without guidance some
processes may get stuck in suboptimal solutions while others progress more effectively.
To address this, we ensure that the best current observation from any individual process,
with respect to a specific agent, is used to update the ledger (as defined in Algorithm 4)
across all processes. The ledger helps guide processes stuck in poor regions of the solution
space back toward the current optimum by recording and exploiting promising solutions.
Since the ledger serves as the minimal form of communication across processes and can
be updated asynchronously, the communication overhead remains negligible. The search
process terminates once all processes complete their final iterations, ensuring that the
prioritized search strategy maintains a comparable number of iterations across processes to
MOEAs, even as the number of vessels or berths increases.

5. Case Study
5.1. Generation of Test Instances

The developed model and solution methodologies were tested for a medium-sized
terminal in Norway over one week, with time-units measured in minutes and aggregated
into hourly time-periods. A medium-sized terminal typically processes approximately
500,000 to 1,000,000 TEUs per year, which corresponds to around 10,000 to 20,000 TEUs per
week [36]. The instances in this study are characterized by three distinct factors.

1.  The number of vessels approaching the terminal during the examined working period.
2. The number of available berths for these ships.
3. The level of incoming truck traffic to the terminal.

We report the values used for these three factors in all numerical experiments, together
with other important parameters, in Table 5.

Table 5. Summary of test data.

Factors Levels

Level of truck traffic Low, Medium, High

Number of berths available 2,3,4

Number of quay cranes per berth 1,2,3

Number of logistics companies 50

Number of vessels approaching the terminal 20, 25, 30, 35, 40, 45, 50

Number of TEUs per time-period per mode (S B g8y 50 (double), 31 (single)

Terminal Parameters: (Kmax, Tmax, Lmax, Vmax) 2000 TEUs, 250 trucks, 20 trucks, 50 vehicles
Vessel Categories (based on length) <100 m, 100 m-200 m, >200 m

For the generated vessels, the expected arrival time A, is considered deterministic
and known, while the length L, follows a uniform distribution within their respective
vessel categories. The cargo amounts I, and E; are correlated with the size of the vessel.
They are also proportional to incoming traffic obtained from loop detector data for heavy
vehicles that were gathered in a road axis adjacent to the examined terminal. These were
transformed to preferred pickup T* and delivery slots TP.

Truck traffic is distributed among 50 logistics companies, each with a deviation cost
factor A; drawn from ¢/ (0,1). Trucks are assigned randomly to vessels based with a
constraint ensuring trucks are within 12 time-periods of the vessel’s arrival. The assignment
to I, and E, depends on whether the sampled window is before or after the vessel’s arrival.
Overall, traffic volumes varied from 3773 to 4449 trucks in low-traffic instances, 10,661 to
14,705 in medium traffic, and 17,275 to 21,748 in high-traffic scenarios.
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Regarding the terminal geometry, the terminal features between two and four berths.
With two berths, one is dedicated to vessels smaller than 100 m, while the other accommo-
dates vessels of all sizes. When three or four berths are available, additional berths serve
vessels up to 200 m in length. The berth for vessels under 100 m is equipped with a single
quay crane, whereas the larger berths each have two or three quay cranes. Travel time from
any berth to the import area is five minutes, while travel time from the berth to the export area
is four minutes. The travel time between the import and export areas is set at one minute.

Regarding terminal productivity parameters, the crane throughput is set to 50 TEUs
per period in double mode (S®) and 31 TEUs per period in single mode (S%). Loading and
unloading times for internal trucks are each set to one minute. Gate terminal productivity
is 50 trucks per lane per period, with a total of two lanes available, both of which can be
used for pickup and deliveries. Finally, regarding terminal operational parameters, the
maximum truck arrival rate per period (Tmax) is set to 125 trucks per lane. The maximum
storage capacity in both the import and export areas (Kmax) is 2000 TEUs. The maximum
allowable queue length at any time (Lmax) is 20 trucks, and the maximum number of
internal trucks in use at any time (Vax) is 50.

5.2. Results and Discussion

The numerical campaign revolved around six core instances. Each instance is char-
acterized by an identifier in the form & — 8 — <, where & represents the number of vessels
approaching the terminal, § represents the number of berths available, and 7y represents the
level of truck traffic. For example, instance 25-2-low represents an instance with 25 vessels,
2 berths, and low traffic. All numerical results were generated on an Intel Xeon Gold 6226R
with 48 CPU cores and 192 GB of RAM. Both algorithms were implemented in Python,
with the MOEAs employed using the existing pymoo package [37]. Each instance was
executed for 5000 iterations, consisting of 25 generations with a population of 200 for
the evolutionary algorithms, and 20 processes each with 250 iterations for the prioritized
search. The parameters for exploration, crossover, and mutation for both algorithms have
been previously described in Section 4. To assess the robustness of the algorithms against
stochastic variations, each instance was solved five times for each algorithm, which was
achieved by changing the random seed each time.

In Table 6, a comprehensive set of metrics evaluating the performance of each algo-
rithm is presented. Specifically, the table includes Pareto front contributions (PF), hypervol-
umes (HVs), algorithm runtime in seconds, and iterations to the best Pareto front (ITB). The
hypervolume measures the volume of the objective space that is dominated by the obtained
set of non-dominated solutions and bounded by a predefined reference point. The reference
point is selected just beyond the worst performance observed across all examined algorithms.
Specifically, for each instance, it is defined by the maximum values of the Berth Allocation
and Truck Arrival Management objectives observed in the proposed fronts across all solution
methods. An algorithm with a larger hypervolume over the other indicates a better spread
and convergence of the Pareto front approximation toward the true Pareto front.

For these metrics, the average, minimum, and maximum values across the five runs
are presented. The selection of five runs was made after confirming that the coefficient of
variation related to hypervolumes had stabilized after five runs. It is important to note that
the true Pareto front is unknown; therefore, the solutions are assessed based on the best
results obtained across all solution algorithms. Finally, the combined performance of each
algorithm, aggregated from all runs, is reported in the “Comb.” row for each instance.
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Table 6. Comparison of algorithms.

Algorithms NSGA-II SPEA2 Prioritized Search
Instance Stats PF HV Runtime ITB PF HV Runtime ITB PF HV Runtime ITB
20-2-low Avg. 61 3.8 x 10° 1315 3178 58 3.8 x10° 1318 2933 5 38x10° 872 2604

Max 7 3.8x10° 2012 4800 7 3.8 x10° 2045 3800 7  3.8x10° 1068 3540
Min 4 3.7 x10° 894 2200 3 3.6 x 10° 929 2000 3 3.6x10° 734 500

Comb. 7 3.8x10° - - 7 38x10° - - 7 38x10° - -
25-2-low Avg. 2 25x10* 1750 3933 2 25x10% 1483 4489 3 22x10° 1252 1780
Max 2 25x10* 2517 5000 2 2.5 x10* 2480 5000 5 2.5 x10* 1439 4080
Min 0 24x10* 1219 2200 1 24 x10* 1108 3400 0 1.8 x10* 1113 320

Comb. 2 25x10* - - 2 25x10* - - 6 25x10* - -
30-2-low Avg. 2 14x10* 1902 4889 1 1.5x10* 1856 4778 3 1.8 x 10* 1387 3581
Max 7 1.7x10* 2945 5000 4 1.7 x 10* 2959 5000 5 1.9 x 10* 1518 4880
Min 0 1.1 x 10* 1326 4400 0 1.4 x 10* 1346 4000 1 1.7 x 10* 1209 1240

Comb. 12 1.7 x 10* - - 6 17 x10* - - 13 2.0 x 10 - -
25-3-medium  Avg. 0 0.9 x 10 2110 4960 0 0.9 x 10 2069 5000 4  12x 108 974 4368
Max 0 1.0x108 2120 5000 0 1.0 x 108 2091 5000 6  1.2x 108 1186 4840
Min 0 0.8 x10° 2099 4800 0 0.9 x 108 2036 5000 1  1.1x 108 815 4080

Comb. 0 1.1x108 - - 0 1.0x108 - - 16 12 x108 - -
30-3-medium  Avg. 0 0.1 x 107 2664 4840 0 0.1 x 107 2635 4866 3.8 0.2 x 107 1393 4020
Max 0 0.1 x107 2772 5000 0 0.1 x 107 2660 5000 7 0.2 x 107 1845 4900
Min 0 09 x10° 2617 4600 0 0.9 x 10° 2609 4800 1 0.1 x 107 1087 2440

Comb. 0 0.1 x107 - - 0 01x107 - - 10 02 x107 - -
35-3-medium  Avg. 0 0.8 x 108 3156 4933 0 1.5x10° 3101 4933 42 23 x 108 2602 4756
Max 0 15x108 3209 5000 0 1.7 x 108 3164 5000 11 2.4 x 108 2920 4940
Min 0 08x107 3065 4800 0 1.3 x 108 3015 4800 1 23 x108 2281 4400

Comb. 0 1.5x 108 - - 0 17x108 - - 17 24 x108 - -
40-4-high Avg. 0 13 x10° 2820 5000 0 1.4 x 108 2840 5000 143 3.2 x 108 6949 4933
Max 0 15x108 2850 5000 0 1.6 x 10° 3091 5000 20 3.3 x 108 7075 4980
Min 0 11x108 2669 5000 0 1.1 x 108 2669 5000 10 3.2 x 10® 6798 4860

Comb. 0 1.6 x 108 - - 0 17x108 - - 43 33 x108 - -
45-4-high Avg. 0 4.0 x10° 4123 5000 0 3.9 x 10° 3809 5000 133 1.1 x 10 9138 4920
Max 0 5.0x10° 4643 5000 0 4.8 x 10° 4596 5000 21 1.2 x10%° 9339 4980
Min 0 34x10° 3539 5000 0 2.8 x10° 3312 5000 6 1.1 x10%° 8881 4820

Comb. 0 5.0 x 10° - - 0 48x10° - - 40 12 x 10" - -
50-4-high Avg. 0 16x102 4586 5000 0 1.5x10 3421 5000 930 1.7x 10> 11777 4953
Max 0 1.6 x 10?2 5497 5000 0 1.6 x 10'2 3877 5000 24 1.7 x10 12554 4980
Min 0 15x10? 3839 5000 0 1.5 x 10'2 3136 5000 0 1.7x10'2 11031 4940

Comb. 0 1.6 x 10?2 - - 0 1.6x10? - - 28 1.7 x 1012 - -

The instances are further analyzed based on the traffic level used, beginning with the
low-traffic scenarios. For these cases, the performance of the Prioritized Search algorithm
was found to be comparable to, or better than that of NSGA-II and SPEA2. For the 20-2-low
instance, NSGA-II showed slightly better consistency in identifying the best observed front,
reflected in a higher average of Pareto front contributions. However, variability in both
Pareto front contributions and hypervolumes remained marginal across all methods. In
the 25-2-low instance, none of the algorithms identified the complete best observed Pareto
front in a single run. Nonetheless, Prioritized Search achieved the highest number of Pareto
front contributions across all runs. Interestingly, its average hypervolume performance was
slightly lower than that of SPEA2 and NSGA-II. In the more complex 30-2-low instance,
Prioritized Search further solidified its advantage. It consistently delivered more Pareto
front contributions, higher hypervolumes, and faster convergence to the best observed front.
While NSGA-II and SPEA2 each contributed only six solutions to the front, Prioritized
Search contributed twelve, helping to uncover a front of 21 distinct solutions, underscoring
the need for arbitration in such a multi-objective context. It is important to notice that the
Prioritized Search algorithm exhibited a clear runtime advantage, being approximately
20-50% faster in runtime, and significantly better convergence to the best solution than the
evolutionary algorithms. In Figure 8, the Pareto fronts identified by the solution algorithms
and their overall convergence behavior are illustrated.
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Figure 8. Comparison of Pareto fronts and convergence across algorithms for instances of low traffic.

In the medium traffic instances 25-3, 30-3, and 35-3, the Prioritized Search algorithm
consistently outperformed both NSGA-II and SPEA?2 across all evaluated metrics. In the
25-3 instance, it was the only algorithm to contribute to the Pareto front, providing 16 non-
dominated solutions and achieving the highest average hypervolume about 33% higher
than the best-performing evolutionary algorithm. The 30-3 instance showed similar trends,
with Prioritized Search contributing 10 solutions, compared to none by the evolutionary
algorithms, and achieving an average hypervolume approximately 100% higher. In the
35-3 instance, Prioritized Search again dominated, contributing 17 solutions and reaching
an average hypervolume that was over 50% higher than NSGA-II and SPEA2. Runtime
analysis indicates that in the most complex case, Prioritized Search required about 10%
more computation time on average, but reached its best solutions in 25% fewer iterations,
suggesting better efficiency per iteration. In contrast, NSGA-II and SPEA2 not only failed
to find high-quality trade-offs but also consumed comparable or greater computational
resources. This inefficiency is compounded by their zero contributions to the combined
Pareto fronts across all instances. Overall, it demonstrates clear advantages in conver-
gence speed, solution quality, and computational efficiency in medium traffic scenarios, as

illustrated in Figure 9.

In the high traffic instances 40-4, 45-4, and 50-4, Prioritized Search again showed
a significant advantage over NSGA-II and SPEA2. In all three cases, the evolutionary
algorithms failed to contribute any solutions to the combined Pareto fronts, while Prior-
itized Search contributed 43, 40, and 28 solutions, respectively. This dominance is again
reflected in its consistently superior hypervolume values, indicating both better spread and
convergence toward the optimal front. Although the complexity of the problem increased
substantially, Prioritized Search remained effective, continuing to identify well-balanced
solutions near the knee of the Pareto front. However, the increase in complexity came with
a computational cost, as Prioritized Search exhibited longer runtimes than both NSGA-II
and SPEA?2 in all three high-traffic instances. These findings are visually summarized in

Figure 10, which highlights the superior performance and robustness of Prioritized Search
in demanding high-traffic scenarios.
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Figure 9. Comparison of Pareto fronts and convergence across algorithms for instances of medium
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Figure 10. Comparison of Pareto fronts and convergence across algorithms for instances of high
traffic.

6. Conclusions

This paper introduces a novel approach to enhancing stakeholder coordination by
synchronizing truck scheduling and berth allocation in a marine terminal. It presents an
appointment system for trucks, building on the existing concept of vessel-dependent time-
windows but allowing more flexibility for schedule deviations of vessels. A comprehensive
model is proposed to facilitate terminal decision-making through orchestration of all
interacting actor groups. Through effective terminal coordination, this model generates
solutions that benefit all parties involved. Decision-making is achieved by distributed
agents, focusing on representing the requirements imposed by different actors related to
berth allocation, truck arrival processing and terminal operations. Additionally, the paper
presents a new multi-agent, multi-objective solution methodology based on Prioritized
Search for the proposed model, tested against common benchmark algorithms to validate
its applicability and effectiveness.

The Prioritized Search method demonstrates increased performance by generating
more Pareto front contributions and overall better convergence. Across all traffic scenar-
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ios, the Prioritized Search algorithm contributed a total of 180 Pareto-optimal solutions,
compared to 21 by NSGA-II and 15 by SPEA2, highlighting a substantial advantage in
solution discovery. Moreover, it consistently achieved higher hypervolume reaching up to
100% in medium traffic cases and maintained superior convergence efficiency, reaching the
best solutions in 25-50% fewer iterations on average. The average runtime per iteration
for medium-traffic instances was approximately 0.5 s for NSGA-II and SPEA2, and 0.3 s
for the Prioritized Search. However, in higher-traffic instances, this increased to around
0.8 s for NSGA-IT and SPEA2, and 2 s for the Prioritized Search. This indicates that while
the Prioritized Search is more efficient in less congested scenarios, its runtime scales less
favorably under heavier traffic conditions due to the increased complexity of coordinated
decision-making. Nonetheless, even at half the number of iterations, the performance of the
Prioritized Search in high-traffic instances remained superior, highlighting its effectiveness
despite the increased computational cost. The solution algorithm is particularly effective at
identifying solutions near the knee of the Pareto front across a range of traffic scenarios,
consistently outperforming or matching NSGA-II and SPEA2. Although it incurs higher
computational costs, especially in larger instances, this method delivers significantly supe-
rior solution quality due to its more focused and efficient exploration of the search space.
Notably, it achieves these results while requiring fewer iterations on average, highlighting
its ability to converge more quickly to high-quality trade-offs. In a more qualitative manner,
the proposed approach highlights the potential of different prioritization techniques in ves-
sel rotation and terminal cargo management through enhanced stakeholder collaboration
and coordination.

Although the proposed coordination model yields promising results for medium-sized
terminals, its applicability to larger ports merits further exploration. Power asymmetry
warrants further investigation, as ports, particularly larger terminals, often have established
relationships with specific stakeholders. These dynamics could be captured in the model
through negotiation protocols or power-sensitive utility functions that reflect varying
levels of influence. The model’s modular design facilitates such extensions. Validating the
approach in a larger terminal would be a valuable direction for future research but may
introduce challenges tied to a broader and more diverse stakeholder base, including data-
sharing barriers and conflicting interests, issues more likely in the competitive environment
of a major port. Real-world implementation should also address stakeholder reluctance
toward oversight by clearly defining operational prerequisites and integration pathways
for deploying the system within Port Community Systems. In terms of scalability, the
computational cost of the Prioritized Search method, while capable of producing high-
quality Pareto solutions, may limit its practicality in real-time or large-scale settings with
constrained processing resources. Nevertheless, research avenues exist for improving
the scalability of the approach. Another limitation of the current model is its reliance on
deterministic vessel arrivals and fixed planning horizons. This reduces its responsiveness to
real-world disruptions, such as delays or equipment failures. Furthermore, the model does
not yet incorporate real-time data or reflect specific terminal technologies. For instance, in
ports where Automated Guided Vehicles (AGVs) are deployed, the framework could be
extended to represent AGV-based drayage operations.

Building on these limitations, possible extensions would focus on the further refining
of the Prioritized Search algorithm. Enhancing the search strategy by incorporating more
operators could potentially yield better outcomes through smarter exploration. Addi-
tionally, exploring alternative tree formation methods, such as depth-first search, might
reduce computational costs associated with priority-based tree operations. An additional
consideration would be to treat the terminal as an independent agent with its own objective
value, taking into account other optimization criteria such as the minimization of empty



Logistics 2025, 9, 110

28 of 30

runs. Applying this approach to a multi-terminal environment, where vessels and trucks
may have to rotate between terminals could also introduce new complexities, enhancing
our understanding of inter-terminal dynamics. Finally, the impact of dynamic schedul-
ing, introduction of uncertainty in arrivals, and real-time data integration to enhance the
adaptability of the proposed approach in disruptions could also be explored as well as the
applicability to other domains, such as airport logistics or urban freight systems.
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Appendix A. Stationary Backlog Carryover Queuing Approximation

For an expected arrival rate r :

1’;;1 =rtpy1+ b, Viel (Al)
rn=n (A2)
by=r -Pb), VieT (A3)

where b; represents the expected trucks to be shifted to the next time-period based on

the current arrival rate and service time of the gate and r* is the updated arrival rate. To

compute the probability P;(b) of traffic spilling over to the next-time-window, Erlang’s loss

formula is applied. Parameter u relates to Avg. gate service time.

()

Pi(b) = # Viel (A4)
1

kYo —h

To account for the modified arrival rate of trucks ARZMAR that are expected to be processed
in a single time-period, the expected utilization rate of the gate E;[U] is computed as
follows:

EU] = r;;( .:”, Viel (A5)

AR = k- - Ei[U], vpP (A6)
FMAR

pi:;’k,ViGI (A7)

l; = MAR B Wy onl, VieT (A8)

For the computation of the expected queue length within each time window, the Cosmetatos
approximation [38] is leveraged.

EilWpm/c/el = CV2 - EiWan myel + (1= CV)2 - Ei[Wampyel, Vi€ T (A9)
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This approximation relies on the calculation of the waiting time E;[W,,/ M/ k]| for the
M/ M/k queue (service times are exponentially distributed) and the expected waiting time
E;[Wy,/D/k] for the M /D /k queue (job service times are deterministic). Precise analytical
derivations of queue performance metrics for these two queues are well-documented

in [39].

M/M/k queue
B = N (72 I o
oo = g i Tka-py| € (A10)

FMAR k
0, ' T ) Pi

EilWn/m/xl = KL= pi)2 - VAR Viel (A11)

M/D/k queue

-1
He, = <1+ (1_"1')(]‘_1)(“5")0'5_2) VieT (A12)
! 16p1' -k
EiWhaypp) = EIMOMA i ¢ 7 (A13)
2-ng,
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