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Abstract
Compositional flow simulation is the best practise to model the complex enhanced oil recov-
ery process. This involves solving highly coupled and non linear flow, transport equations.
Interaction of components within different phases and the fluid interaction with rock prop-
erties makes it difficult to accurately predict the natural flow process in the reservoir. This
demands for resolution models and accurate representation of flow process with realistic as-
sumptions., which is quite challenging with conventional simulation.

The newly proposed Operator based linearization (OBL) approach handles the problem in a
different way. Governing equations are regrouped using state and space operators. The state
operators are computed at the nodes of uniform mesh in parameter space and multi- linear
interpolation is performed during simulation. Uniformly distributed supporting points ignore
the underlying physics leading to higher interpolation error around the phase boundary and
demanding higher resolution to achieve the desired accuracy.

The objective of “Tie simplex parameterization of Operator-Based Linearization for Isothermal
Multiphase Compositional flow in porous media” is to parameterize the compositional space
by accounting the underlying physics. A set of tie lines captures the phase boundary in
parameter space at given pressure and temperature. Tessellation is performed by extending
the tie lines to the entire compositional space. The supporting points are assigned along the
extended tie-lines according to manually designed heuristics. After that, the parameterized
space is tessellated further using Delaunay triangulation, and barycentric interpolation is
performed within each simplex.

The efficiency of the developed approach is demonstrated in comparison with the uniform
parameterization using 1D displacement of compositional two-phase fluid. The convergence
of non linear newton iterative solver is studied by applying the OBL framework with newly
proposed interpolation and existing Multi-Linear interpolation framework.

Geetha Krishna Choudary Konidala
Delft, October 2018
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1
Introduction

Oil and gas industry has evolved from the easy oil days to the fields which demand the com-
plex application of science and engineering. The art of reservoir engineering evolved over
the years, with the purpose of managing and producing hydrocarbons in the most effective
way possible. The classical reservoir engineering mostly dealt with the analytic approach for
solving the flow equations related to the reservoir. The age-old fields which involve complex
physical processes, demands numerical solvers to perform computations. Finite difference
methods laid the foundation for solving the equations governing a mathematical model of the
reservoir, which eventually transfigured into a separate entity called “Reservoir Simulation”.
Reservoir simulation deals with solving partial differential equations governing multiphase
multicomponent flow in porous media.This is the best available method to quantify the un-
certainty and risk associated with underground petroleum reservoirs (Aziz, 1979).

Two important characteristics of petroleum reservoirs are the nature of rock and of the fluids
filling it. Fluid modeling is classified as flow with or without mass transfer between phases
depending on undergoing recovery mechanisms. The complexity of fluid modeling is associ-
ated with the distribution of phase and composition across the chemical species present in
the fluid system. This arises during the Enhanced Oil Recovery (EOR) stage of field develop-
ment. An equation of state (EOS) compositional model was developed (Coats et al., 1980) for
analyzing the phase distribution and its behavior in the reservoir. Based on the fluid sam-
pling and PVT analysis (Nagarajan et al., 2006), different models like 𝑏𝑙𝑎𝑐𝑘 𝑜𝑖𝑙, 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑜𝑖𝑙,
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 models evolved for studying EOR,these models differ in the type of fluids they
constitute, density and viscosity. Out of all, the compositional model has gained a signifi-
cance because during EOR, the phase composition varies significantly within the reservoir
and the injected fluids are different from the fluids already present in the reservoir, which is
be effectively represented and modeled using compositional model.The guidelines for choos-
ing the type of fluid model for gas reservoirs is discussed in detail by Fevang et al. (2000)

1.1. Basic Motivation
More accurate reservoir models are needed to study the complex underlying physics and
uncertainties associated with the geology of reservoir. Conventional simulation faces chal-
lenges from multiple quarters, thereby making an accurate representation of the reservoir
model and the computational efficiency of the simulator mutually exclusive. The difficulties
arise in the form of accurate representation of physics, high-resolution models, the efficiency
of linear solvers etc. In addition, numerical schemes introduce nonlinearity to the system
of equations due to spatial and temporal approximations. Compositional models exhibit a
strong coupling between the flow and transport of compositional changes, thereby making it
expensive to execute the reservoir models with accurate representation.

Linearization is required to solve the nonlinear nature of the flow and transport problems

1



2 1. Introduction

in porous media. A new linearization approach called Operator-Based Linearization (OBL)
is proposed in pursuit of developing an efficient reservoir simulator by Voskov (2017). This
approach reduces the nonlinearity of the problem using piece-wise multi-linear interpola-
tion. The accuracy of the constructed approximation is driven by the density of supporting
points in a given domain. The advantages of this approach were demonstrated by modeling
the isothermal compositional transport for oil reservoirs with buoyancy (Khait et al., 2018b)
and for geothermal applications (Khait and Voskov, 2018), for low enthalpy processes (Khait
and Voskov, 2016). This method has an advantage of treating the physics terms separately
and modeling fluid flow through porous media by considering an approximate physical rep-
resentation with control over accuracy compromise.

1.2. Governing Equations
Isothermal multicomponent multiphase flow in porous media can be described using com-
ponent material balance, momentum, and phase equilibrium equations. The mathematical
description of fluid flow is based on the principle of mass conservation (mass balance), i.e.,
that the accumulation of mass in some domain is exactly balanced by the mass flowing
through the boundary of the domain. Here, presence of sources/sinks in the the domain is
neglected:

Rate of change of mass in a control volume = Accumulation of mass.

𝑑
𝑑𝑡(𝜙∑

=

𝑥 𝜌 𝑠 ) + ∇.∑
=

𝑥 𝜌 𝑢 = 0, 𝑐 = 1, ....𝑛 . (1.1)

The components are distributed in fluid phases, e.g., oil, gas and water phases. Actu-
ally, fluid flow is characterized by the flow of phases rather than the flow of the individual
components. In the above equation, Darcy’s law is the relation between the gradient of the
potential of a phase 𝑗 and the phase volumetric flow rate 𝑢 ,

𝑢 = −(𝐾
𝑘
𝜇 (∇𝑝 − 𝛾 ∇𝑑)), 𝑗 = 1, ..., 𝑛 , (1.2)

where 𝐾 is the permeability tensor, and 𝑘 , 𝜇 and 𝑝 are the relative permeability,
viscosity and pressure of phase 𝑗 respectively, 𝛾 represents the gravity term and 𝑑 indicates
the vector of depth.

1.2.1. Phase Equilibrium
The species in fluid system undergo mass transfer between phases, which is characterized
by the variation of mass distribution of each component in the oil and gas phase. These two
phases are assumed to be in a simultaneous phase equilibrium state. Under this assump-
tion, the compositions of phases formed at a particular location in the porous media are
determined by 𝑝, 𝑇 and overall composition 𝑧. A multiphase flash procedure is performed for
a given composition in each grid cell to solve the individual composition. Having completed
the flash calculation in a cell, components compositions 𝑥 and phase molar fractions 𝑣 are
found.

Thermodynamic equilibrium is mathematically represented by equating the fugacity (or
chemical potential) of components in the oil and gas phase.

𝑓 (𝑝, 𝑇, 𝑥 ) − 𝑓 (𝑝, 𝑇, 𝑥 ) = 0, (1.3)

Thermodynamic flash equilibrium calculation involves the set of thermodynamic local mass
balance and constraint equations as listed below.
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𝑧 −∑
=

𝜐 𝑥 = 0, 𝑖 = 1, 2, 3....., 𝑛 (1.4)

∑
=

(𝑥 − 𝑥 ) = 0, 𝑗 = 2, ...., 𝑛 (1.5)

∑
=

𝜐 − 1 = 0. (1.6)

𝐾𝑥 = 𝑥 = 0, 𝑖 = 1, ....𝑛 𝑎𝑛𝑑 𝑗 = 2, ...𝑛 (1.7)

The above 1.3 to 1.4 equations give component distribution over phases for a given overall
molar composition 𝑍 . And 1.7 mentions the relation between vapor and liquid compositions.

𝑔(𝑉 ) =∑
=

𝑧 (1 −𝐾 )
𝑉(𝐾 − 1) + 1 = 0. 𝑖 = 1, 2, ...𝑛 (1.8)

The phase fraction 𝜐 is obtained from phase saturation and densities:

𝜐 = 𝑆 𝜌
∑𝑆 𝜌 𝑖 = 1, 2, . .𝑛 (1.9)

Phase modelling is done by two methods i.e. Constant-K value method and Fully-EOS
method.

Constant K Values
Equilibrium ratios (K values) define the relation between the liquid and gas phase composition
of each component. The constant K values are dependent on pressure 𝑝 and temperature
𝑇 (Bolling et al., 1987), but weakly dependent on composition. The condition of equality in
fugacity is bypassed at equilibrium, which establishes a linear dependence between liquid
and vapor fractions. So the two-phase region is enclosed between a set of two straight lines,
rather than a closed enclosure. A critical point is never observed with constant K values.
The Rachford-Rice equation (Rachford Jr et al., 1952) is solved using K values for solving
thermodynamic equilibrium.
The above equation is solved using bi-section method to obtain 𝑉, which lies between the two

asymptotes defined by minimum and maximum K values
1

(1 −𝐾 )
< 𝑉 < 1

(1 −𝐾 )
. The

compositions of liquid and vapor are calculated as follows

𝑥 = 𝑧
1 + 𝑉(𝐾 − 1) (1.10)

𝑦 = 𝐾 𝑥 (1.11)

where 𝑉 is vapor fraction, 𝑧 is composition of each component, 𝑥 and 𝑦 represents mole
fraction of component 𝑖 in liquid and vapor phase respectively.
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Fully EOS
In EOS based flash, K values are strongly dependent on composition. Introduction of fugacity
in flash calculations induces the nonlinearity, thereby making it computationally expensive.
But the accuracy of phase distribution is better than constant K value case. Out of different
cubic equation of states, Peng Robinson Equation of State (Peng and Robinson, 1976) is used
in petroleum reservoir simulation due to applicability to the wide range of pressures. The
flash procedure is mentioned below:

1. Make an initial guess of K values. When the guess of K values are far from the equi-
librium solution, the procedure might not converge. When the guess of the K-values is
near the equilibrium solution, the procedure will converge rapidly. Wilson equation (an
empirical correlation) gives the good estimates of K values.

𝐾 =
𝑥 ,
𝑥 ,
=
𝑝 ,
𝑝 𝑒𝑥𝑝[5.37(1 + 𝑤 (1 − 𝑇𝑇 )], ∀𝑖 = 1, ...., 𝑛 (1.12)

2. Once the K -values for each component are specified, the Rachford-Rice equation 1.8 is
used to estimate the phase mole fractions. A simple material balance on each compo-
nent 1.4 gives overall composition 𝑧 . Equation 1.8 is solved using the iterative proce-
dure, where the new value of the liquid mole fraction is determined when the conver-
gence criterion is met.

3. The EOS parameters for Peng-Robinson (e.g., am and bm) are determined. The critical
temperatures 𝑇 , pressures 𝑃 , and acentric factors 𝜔 for each component are needed
to calculate these parameters.

4. Fugacity of the components in different components is determined using the following
relation.

𝑙𝑜𝑔 𝑓
𝑥 𝑝 =

𝑏
𝑏 (𝑍 − 𝐵) −

𝐴
√
2𝐵
⎛
⎝

2∑𝑥 𝑎

𝑎 −
𝑏
𝑏
⎞
⎠
𝑙𝑜𝑔
⎛
⎝
𝑍 + (

√
2 + 1)𝐵

𝑍 − (
√
2 − 1)𝐵

⎞
⎠

(1.13)

5. K values for next iterations are updated with fugacity values of phases

𝐾 = 𝐾 − 𝑓 −
,

𝑓 −
,

(1.14)

where 𝑚 represents SSI iteration number.

1.3. Molar Formulation
For 𝑛 component two-phase isothermal system, there are 𝑛 equations expressing the con-
servation of mass of 𝑛 components in different phases and 𝑛 + 1 secondary equations cor-
responding to equality of fugacity between phases and saturation constraint. In total, this
system needs 2𝑛+1 equations (unknowns) to get solved at each grid block in the conventional
simulation. Because the 𝑛+1 constraint equations for a block involves unknowns only in the
given block, they can be used to eliminate 𝑛+1 secondary variables from block’s 𝑛 primary or
conservation equations. Thus, in each block, 𝑛 unknowns of primary equations are needed
to be considered in the discussion of model formulation. The primary variables for solving the
system is chosen from many available variables: phase composition, overall mole fraction,
saturation etc.

Different formulations are available for solving system of governing equations, out of which,
natural (phase-based) and molar (mass-based) formulation are widely used. They differ in the
choice of primary variables (Aziz and Wong, 1989) and phase behavior computations during
nonlinear convergence. In the natural formulation (Coats et al., 1980), pressure, saturation
and compositions of components in phases are considered as primary unknowns, whereas in
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the molar formulation (Acs et al., 1985), pressure and overall molar fractions of components
are primary unknowns. The number of unknowns for 𝑛 component 𝑛 phase system is given
in below table.

Table 1.1: Unknowns of nonlinear formulation
Formulation Unknowns Number of unknowns

Natural
p 1
𝑠 𝑛 − 1
𝑥 𝑛 (𝑛 − 1)

Natural
p 1
𝑧 𝑛 − 1

1.4. Operator Based Linearization
In the conventional simulation, discretized governing equations are solved using Newton it-
erative method at every time step, making phase equilibrium calculations mandatory in each
grid block for every nonlinear iteration. In the OBL approach, equation 1.1 are regrouped
using space and state-based operators, thereby facilitating us treat the physics of the prob-
lem separately. Space based operator is composed from heterogeneous reservoir properties,
such as porosity, permeability tensor etc, which do not depend on primary unknowns. State-
based operator describes the underlying physics, which are mainly the fluid properties, fully
defined by state in a given grid block. The coefficients of equations are defined as a function
of spatial coordinates 𝜉 and 𝜔.

• State operators are

– 𝑘 (𝜔) - Relative permeability,

– 𝜌 (𝜔) - Density,
– 𝑆 (𝜔) - Saturation,
– 𝑥 (𝜔) - Mole-fraction of component c in phase j,

– 𝜇 (𝜔) - Phase viscosity.

• Space operators are

– 𝐾(𝜉) - Permeability tensor,

– 𝜙(𝜉) - Porosity,
– 𝑢 (𝜔, 𝜉) - Phase velocity.

While regrouping, the conservation equations 1.1 are represented in algebraic form in
terms of the state and space operators as

𝑟 (𝜉, 𝜔) = 𝑎(𝜉)(𝛼 (𝜔) − 𝛼 (𝜔 )) −∑𝛽 (𝜔)𝑏 (𝜉, 𝜔) = 0 (1.15)

state variables
𝛼 (𝜔) = (1 + 𝑐 (𝑝 − 𝑝 ))∑𝑥 𝜌 𝑠 (1.16)

𝛽 (𝜔) =∑𝑥 𝜌
𝑘
𝜇 (1.17)

space variables
𝑎(𝜉) = 𝑉(𝜉)𝜙 (𝜉), (1.18)

𝑏(𝜉, 𝜔) = Δ𝑡𝑇 (𝜉)(𝑝 − 𝑝 ), (1.19)
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Here 𝑎 depends on the spatially distributed property (porosity 𝜙 and block volume) and
𝑏 depends on transmissibility (block geometry and permeability related). State operators 𝛼
and 𝛽 depend on rock and fluid property. Accuracy in the space variables 𝑎(𝜉), 𝑏(𝜉,𝜔) is
controlled by spatial and temporal resolution.

The parameter space domain is uniformly parameterized and state-based operators 𝛼
and 𝛽 are calculated at the nodes of the resulting grid. These calculations are stored in a
table form and are called supporting points.

During simulation, these operators at any arbitrary point in the domain are approximated by
performing multi-linear interpolation. So, the accuracy of 𝛼 and 𝛽 representation depends
on the number of supporting points in parameter space. These arbitrary points are referred
to as query points. The dimensionality of parameter space depends on the type of nonlin-
ear formulation used for solving the system. Since we are employing molar formulation, for
isothermal problem, the parameter space is constituted by pressure and 𝑛 − 1 overall molar
compositions, resulting in 𝑛 dimensions depending on the number of components. Based
on the dimension of parameter space, set of adjacent supporting points constitutes an in-
terpolation body e.g, square for three-dimensional parameter space, cube for 4D parameter
space.

Flash equilibrium computations are needed only during preprocessing stage, when support-
ing points are computed. For query points, this is replaced by interpolation scheme during
simulation making it iteration free procedure from flash calculations. By that, OBL enjoys
supreme computational efficiency than the conventional compositional simulator, as men-
tioned by Voskov (2017).

1.5. Iterative Solution Scheme
A time-dependent, nonlinear coupled system needs a stable and efficient numerical scheme
to solve the discretized equation. Several solution techniques like explicit, adaptive implicit
and fully implicit solvers are available. The classical explicit methods find its frequent usage
in reservoir simulation. But the solution is stable only at relatively short time steps dictated
by CFL number. Rapidly changing fluxes even in a single grid block will affect the stability of
the entire solution. So, enormous computations are needed to simulate a long time period in
field-scale model, and thus explicit methods are not used for this strong nonlinear problem.
The robust Implicit solver is preferred for this type of solutions.

The algebraic system of nonlinear equations 1.15 can be reduced to a linear form by con-
structing a Jacobian matrix with unknowns (𝑝, 𝑧1, ....𝑧 − ). A robust, fully implicit solution
technique usually based on Backward Euler scheme Butcher (2016) is used for solving the
equation 1.15 numerically. The overall composition in each grid-cell varies with time. This
is due to cell-to-cell fluxes which arise from to the pressure difference. The nonlinear system
is solved using the iterative Newton-Raphson method until a specified convergence criterion
is met. Each Newton iteration requires

• Linearizing of the discretized governing equations

• solving the algebraic equation until convergence.

• Updating nonlinear unknowns using linear solution.

𝐽 = 𝑑𝐹
𝑑𝜂 , 𝜂 = [𝑝, 𝑧1, 𝑧2, ...., 𝑧 − ] (1.20)

𝐽 .𝛿𝑦 = −𝑟 (1.21)

The correction is then added to solution vector 𝑦 as an update to nonlinear unknowns.

𝑦 = 𝑦 + 𝛿𝑦 (1.22)
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1.6. Interpolation Framework
The current OBL framework uses multi-linear interpolation proposed by ?, within a hyper-
cube (an 𝑛 dimensional analog of a square) in parameter space. In uniform parameterization,
the parameter space is a collection of hypercubes stacked together, each one comprising of
2 supporting points along the edges.

After discretizing the parameter space into N equal intervals i.e. pressure and composi-
tion into [𝑃 , 𝑃 , ......., 𝑃 ],[𝑍 , , ....., 𝑍 ], an interpolant function 𝑓 , = 𝑓(𝑃 ,𝑍 ) is created, where 𝑓
is 𝛼 , 𝛽 . For a given query point [p,z], where p ∈ [𝑃 ,𝑃+ ] and z ∈ [𝑍 ,𝑍 + ] linear
interpolation is performed as follows,

𝑝 = 𝑝 − 𝑃
𝑃+ − 𝑃

, 𝑧 =
𝑧 − 𝑍

𝑍 + − 𝑍
(1.23)

𝐹 = (1 − 𝑧 )[(1 − 𝑝 )𝑓 , + 𝑝 𝑓+ , ] + 𝑧 [(1 − 𝑝 )𝑓 , + + 𝑝 𝑓+ , + ] (1.24)

and the derivatives as follows

𝜕𝐹
𝜕𝑝 =

(1 − 𝑧 )[𝑓+ , − 𝑓+ , ] + 𝑧 [𝑓+ , + − 𝑓 , + ]
𝑃+ − 𝑃

(1.25)

𝜕𝐹
𝜕𝑧 =

(1 − 𝑝 )[𝑓 , + − 𝑓+ , ] + 𝑝 [𝑓+ , + − 𝑓+ , ]
𝑍 + − 𝑍

(1.26)

In the course of simulation, an update in nonlinear unknown is based on the solution from
linear system. There are different chopping procedures exist for non linear update. We use
Appleyard chop (GeoQuest, 2009), which corrects the update in saturation locally according
to the end points of relative-permeability function.

1.7. Research Goals
The accuracy of OBL framework depends on resolution: piece-wise multi-linear approxima-
tion of state operators introduces an error. However, due to their nonlinearity, the spatial
distribution of the error is varying across the parameter space. Uniform parameterization
distributes the supporting points at equal distances in parameter space, without accounting
for the underlying physics requiring more supporting points to achieve certain accuracy. In
addition, for fluid systems with more than 2 components, uniform parameterization leads
to the necessity to compute values of space operators for supporting points lying outside of
physical domain.

Even though the latter problem can be addressed by accurate extrapolation of operator value,
as was shown in Chapter 2, there is more elegant solution addressing both problems.

Non-uniform parameterization of parameter space by considering the phase boundary
and positioning the supporting points along the boundary can reduce the maximum error
in the domain with the same amount of supporting points, while nonphysical supporting
points do not arise by definition. For adaptive parameterization, we make use of Composi-
tional Space Parameterization (CSP) idea proposed for flow simulation byVoskov and Tchelepi
(2009), which is applied to multi contact miscible system (Voskov et al., 2009b) and for immis-
cible miscible displacement problems (Voskov et al., 2009a). This method is demonstrated
by Zaydullin et al. (2013) ,in which the thermodynamic phase-behavior is represented in the
tie-simplex space as a function of pressure, composition, and phase fractions. The param-
eterized space is tessellated by Delaunay triangulation, thus all the operator values become
a piece-wise linear function in the tie-simplex space. Since the simplexes are nonuniform in
compositional space, barycentric interpolation framework is adopted in our research.

In a simplistic sense, this research is an incorporation of CSP strategy and the suitable in-
terpolation framework to OBL approach and validating the newly developed approach with
one-dimensional compositional transport solver.



2
Extrapolation of Non-Physical

Supporting Points
For compositional system with more than two components, only half of the points in parame-

ter space is valid due to composition constraint ∑
=
𝑧 = 1. This indicates the supporting points

used in multi-linear interpolation from non-physical space are invalid, so operator values
can not be computed there. In the existing OBL framework, operator values are computed at
the closest physical supporting point instead, and then simply assigned to the non-physical
point. However, this method introduces additional error. This chapter describes a more
accurate approach for computation of non-physical supporting points along the boundary
of physical space to minimize the approximation errors. This approach is tested for three
component system.

2.1. Problem Statement
Uniformly distributed supporting points form a set of hypercubes which are tessellated in
parameter space. The operator values at each query point are determined by multi-linear
interpolation. The interpolation bodies lying on non-physical space completely are not used
in interpolation, but the ones which share both physical and non-physical space can be em-
ployed. Interpolation strategy in existing OBL framework is designed in such a way that the
auxiliary function values at the midpoint of all the hypercube along the diagonal are assigned
to the vertices of the corresponding hypercube in the non-physical region. This is illustrated
in the figure 2.1.

The dots, highlighted in black, represent the supporting points in physical space, while
in orange color, non-physical supporting points are shown. Squares highlighted in red
shares both physical and non-physical part of the space. The operator values determined
at 𝐷 ,𝐷 , 𝐷 , 𝐷 are assigned to the points 𝑁𝑃 ,𝑁𝑃 ,𝑁𝑃 ,𝑁𝑃 . This induces error due to incon-
sistency between weights of the supporting points and its operator values in non-physical
points 𝑁𝑃 ,𝑁𝑃 ,𝑁𝑃 ,𝑁𝑃 .

2.2. Extrapolation Technique
An extrapolation technique is devised to have accurate interpolated operator values, when
query point matches with 𝐷 ,𝐷 , 𝐷 , 𝐷 points by construction. The operator values at non-
physical supporting points are found using extrapolation equation.

𝑓+ / , + / = (𝑓 , ∗ 𝑤 , ) + (𝑓+ , ∗ 𝑤 + , ) + (𝑓 , + ∗ 𝑤 , + ) + (𝑓+ , + ∗ 𝑤 + , + ), (2.1)

where 𝑓+ / , + / represents the operator values at the centre of interpolation body (𝐷 ,𝐷 , 𝐷
in fig: 2.1) , 𝑓+ , + corresponding to the auxiliary function at non-physical points, 𝑤 cor-

8



2.3. Results 9

Figure 2.1: Representation of supporting points (physical and non-physical) distributed uniformly in parameter space

responds weights of the auxiliary function 𝑓 with respect to midpoint of each interpolating
body along the diagonal.

For three component system with resolution 𝑁, extrapolation is performed for 𝑁 − 1 sup-
porting points 𝑁𝑃 ,𝑁𝑃 , ...𝑁𝑃 − . The effect due to incoherent operator values at non-physical
supporting points can be confirmed by performing error analysis between the interpolated
and accurately determined operator value conventionally. The effect of the extrapolation
scheme is quantitatively demonstrated by calculating the average error over the physical
space:

𝐸𝑟𝑟𝑜𝑟 = ∣𝑓(𝑡𝑟𝑢𝑒) − 𝑓(𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑) ∣𝑚𝑎𝑥(𝑓(𝑡𝑟𝑢𝑒) ) , (2.2)

where 𝑓 represents the accumulation and flux operator values.

2.3. Results
Three component fluid system 𝐶𝑂 , 𝑛𝐶 , 𝐶 is considered between 20 and 130 bars at 345 𝐾.
Parameter space [𝑝, 𝑧 , 𝑧 ] is uniformly parameterized into 𝑛 ∗ 𝑛 supporting points, 𝑛 being
the number of equal intervals for parameterization.

Error analysis is performed at pressure 56.6 bar for three different resolution 4,16,64 and
the error plots for resolution 4 is presented below. Since the pressure 56.6 bars corresponds
to the base pressure, the error plots presented below has no error due to the pressure in-
terpolation. The error is minimum in the area proximate to supporting points and shows
absolute zero for the supporting point at base pressure. Results for constant K values and
EOS cases are presented below.

2.3.1. Constant K-values representation
In the below figure 2.2, error is more concentrated close to the physical boundary. This is can
be explained by examining the operator 𝛼 for different cases in fig 2.3. A shape of concavity is
observed in plot 𝛼 (left top) without extrapolation when compared with the operator value after
extrapolation (top right). Extrapolation strategy restores the shape of 𝛼 operator plot after
extrapolation almost resembles the convex operator shape, which leads to the reduction of
maximum error in fig 2.2. The error is reduced substantially since the variation of operator
𝛼 is smooth and due to the absence of nonlinear/abrupt changes in the operator. After
extrapolation, the error associated is only due to spatial distribution and nonlinear variation
in operator, which can be controlled by resolution.
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Figure 2.2: Comparison of Euclidean error before (left) and after (right) extrapolation for , , at 56.6 bar with 4
resolution

Figure 2.3: Euclidean accumulation operator before extrapolation (top left), after extrapolation (top right) and true operator
(bottom centre) at 56.6 bar with 4 resolution

Unlike the error plot of 𝛼, operator 𝛽 has both the error associated with nonlinearity and
the error due to the mismatched shape of concavity close to the boundary. The difference
is clearly observed between left and right plots in fig 2.4. In order to exactly represent the
nonlinearity operators like 𝛽, this linearization approach needs high resolution.
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Figure 2.4: Comparison of Euclidean error before (left) and after (right) extrapolation for , , at 56.6 bar with 4
resolution

Figure 2.5: Euclidean accumulation operator before extrapolation (top left), after extrapolation (top right) and true operator
(bottom centre) at 56.6 bar with resolution 4

The error, averaged over entire physical space, is presented below.

Table 2.1: Average error before and after extrapolation for constant K value case

Operator Resolution Before Extrapolation After Extrapolation

𝛼
4 8.86 ∗ 10− 4.41 ∗ 10−
16 7.27 ∗ 10− 1.40 ∗ 10−
64 9.3 ∗ 10− 1.06 ∗ 10−

𝛽
4 0.049 0.037
16 0.019 0.013
64 4.20 ∗ 10− 3.26 ∗ 10−
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2.3.2. EOS-based representation
In the figure 2.6, the error concentrated close to the physical space is a combination of error
due to the nonlinearity of 𝛼 and due to inconsistency in operator value at the non-physical
supporting point. In the region corresponding to the high error in fig 2.6 (left), almost linear
trend is observed in the operator 𝛼 in without extrapolation strategy, compared to the true
operator value.

Figure 2.6: Comparison of error of Euclidean accumulation operator for , , before (left) and after (right) extrapolation
at 56.6 bar with resolution 4

Figure 2.7: Euclidean accumulation operator before extrapolation (top left), after extrapolation (top right) and true operator
(bottom centre) at 56.6 bar with 4 resolution

In operator 𝛽, the maximum error is due to inconsistency in operator value, but after
extrapolation the maximum errors in the plot corresponds to the nonlinearity in the operator.
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Figure 2.8: Number of Newton iterations for bi-linear and barycentric interpolation for Model 1(left) and Model 2(right)

Figure 2.9: Euclidean accumulation operator before extrapolation (top left), after extrapolation (top right) and true operator
(bottom centre) at 56.6 bar with 4 resolution

The average errors before and after extrapolation strategy is presented in below table. A
reduction of error is observed with with increase of resolution, as shown in the Table 2.2.

Table 2.2: Average error before and after extrapolation for EOS case

Operator Resolution Before Extrapolation After Extrapolation

𝛼
4 0.0231 0.0195
16 3.89 ∗ 10− 3.77 ∗ 10−
64 4.50 ∗ 10− 3.42 ∗ 10−

𝛽
4 0.0468 0.0373
16 7.17 ∗ 10− 6.82 ∗ 10−
64 5.86 ∗ 10− 4.20 ∗ 10−



3
Interpolation Framework for

Non-Uniform Mesh
The existing OBL framework employs piece-wise multi-linear interpolation, which is only
applicable for uniform parameterization. In this chapter, we propose an alternative method
of interpolation for dealing with arbitrary, non-uniform parameterization, represented with
scattered data set of supporting points. It is performed in two steps:

1. the parameter space is tessellated into simplexes using Delaunay triangulation in an
adaptive manner, based on scattered data set;

2. interpolation is performed within each simplex using barycentric coordinates of vertices
with respect to the query point.

3.1. Delaunay triangulation
The Delaunay triangulation, introduced by (Delaunay et al., 1934) in 1934, is a method of
triangulating the discrete set of points 𝑉 into simplexes, a generalized notation of 𝑛 dimen-
sional triangle. For the triangulation, the set of simplexes formed from discrete points 𝑉
should guarantee the empty circle property: circum-circle of each triangle surrounds only
the vertices of that triangle but not any other point, as is shown in fig 3.1. This property
makes the Delaunay triangulation unique in terms of mesh quality control, such as avoiding
the presence of badly shaped simplexes with small angles, by maximizing the minimum angle
of all simplexes.

Figure 3.1: Triangles satisfying empty circle criterion

The boundary, within which Delaunay triangulation is performed, is called a 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙.
Constructing the convex hull ensures that tessellation is performed only in the physical do-

14
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main of the problem. In this study, the convex hull corresponds to the physical domain of
parameter space, which is shown by a red line in fig 3.2.

Figure 3.2: Convex hull representing the physical domain for triangulation space for three component system

3.1.1. Parameterization in Pressure and Composition
Parameterization in pressure and composition is performed differently: parameterization in
pressure is performed in a uniformmanner, while all other dimensions form subspace, where
Delaunay triangulation is performed. Considering the parameter space for 𝑛 components,
the dimensions are [𝑝, 𝑧 , ..., 𝑧 − ]. The parameterization can be seen as 𝑛 − 1 dimensional
compositional subspaces are stacked together 𝑛 times along the pressure axis [𝑝 , 𝑝 , ..𝑝 ],
where 𝑛 represents the accuracy of uniform parameterization in pressure. The compositional
subspaces are parameterized independently using Delaunay triangulation for each support-
ing point in pressure interval. The representation for three-component system is shown in
fig 3.3.

Figure 3.3: Representation of compositional planes along the pressure axis

3.2. Interpolation Framework
The combination of Delaunay tessellation and interpolation by finding barycentric coordi-
nates is independent of shape/length of the geometric object (simplex) in the sub-domain.
This facilitates for the treatment of a non-uniform mesh in physical parameter space. A de-
tailed description on finding barycentric coordinates for 3-D and 4-D space is mentioned in
Skala (2008). Barycentric interpolation for 𝑛 dimensional convex hull is by Warren et al.
(2007)
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3.2.1. Estimating Operators
For a simplex of 𝑛 vertices located at 𝑅 ,𝑅 ..., 𝑅 , the weight of vertices 𝛾 corresponding
to a query point 𝑅 becomes barycentres of the vertices of simplex around 𝑅. Barycentric
coordinates of each simplex are determined by solving the set of following linear equations
where the sum of all the barycentric coordinates of simplex vertices is equated to 1:

∑
=

𝛾 = 1. (3.1)

For interpolating the query point 𝑅 within the simplex, this can be written as a combination
of the product of the barycentric coordinates and the corresponding vertices

𝑅 =∑
=

𝑅 𝛾 , (3.2)

where R represents the query point to be interpolated (within simplex), and 𝑅 represents the
vertices and 𝛾 indicates the barycentric coordinate corresponding to the vertex 𝑅 .

Figure 3.4: Schematic representation of a simplex with query point R and barycentres of each vertex

The system of linear equations 3.1 and 3.2 are expressed into a matrix form and can be
linearly solved in barycentric coordinates:

[ R𝑒 ] Γ = [
𝑅
1 ], (3.3)

where R represents the query point to be interpolated, R represents the coordinates of the
simplex within which query point lies, 𝑒 represents the unit vector arising from equation 3.1
and Γ = {𝛾 , 𝛾 , . . , 𝛾 } denotes barycentric coordinates vertices around a query point in sim-
plex of n dimensions.

3.2.2. Finding Derivatives
For studying compositional transport represented by governing equation 1.1, the derivatives
of operators with respect to the nonlinear unknowns need to be computed. The derivatives
of operators with respect to the composition of 𝑛 −1 components and pressure are described
below.

Derivatives with Respect to Composition
Since barycentric coordinates linearly dependent on query point 𝑅, the derivatives with re-
spect to composition will be constant within the simplex. Barycentric coordinates are de-
pendent on the query points [𝑧 𝑡𝑜𝑧 − ]. So, 𝛾 should be differentiated with respect to each
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composition of the query point as shown below:

𝑑𝛾
𝑑𝑧 = [

Γ
𝑒 ]

−

�̂�, (3.4)

𝑑𝑅
𝑑𝑧 =∑

=

𝑅 𝑑𝛾
𝑑𝑧 . (3.5)

Here, 𝑗 = {1, 2, . . . , 𝑛 − 1}, 𝑖 = {1, 2, . . . , 𝑛 }, �̂� denotes the unit vector with unit value in 𝑗 posi-

tion,
𝑑𝑅
𝑑𝑧 represents the derivative of operator w.r.t. to composition and

𝑑𝛾
𝑑𝑧 is the derivative

of barycentric coordinate w.r.t. composition, which is now only dependent on the vertices of
a simplex.

The derivative of operators resembles piece-wise linear constants within each simplex,
making them discontinuous on the boundary of each simplex.To provide a smooth variation
of derivatives, this method of computation needs more resolution to capture the continuity
(smoothness) of the derivative.

Derivatives with Respect to Pressure

The derivatives of operators with respect to pressure are computed using linear interpolation
of the operator values, obtained by barycentric interpolation in each of the two 𝑛 − 1 di-
mensional compositional subspaces, build for pressures 𝑃 and 𝑃 + . This is described below
as

𝑑𝑅
𝑑𝑃 =

𝑅 + − 𝑅
𝑃 + − 𝑃

, (3.6)

where, 𝑑𝑅 /𝑑𝑃 represents the derivative of operator about pressure at query point 𝑅 for each
component 𝑖.

3.2.3. Derivative Plots
Derivatives plots of operators 𝛼 and 𝛽 about {𝑧 , 𝑧 } computed from the newly proposed
interpolation and multi-linear interpolation approaches are compared for three component
[𝐶𝑂 ,𝑛𝐶 , 𝐶 ] fluid system at 60 bar pressure. The coarse uniform parameterization mesh is
used for comparison.

A difference is observed in derivatives computed from multi-linear interpolation approach,
and considerable variation is around the phase boundary. The derivatives within a simplex
are constants as expected. The difference in derivatives between two approaches are shown
in fig 3.7 and 3.8. It can be observed in error plots that the derivative from both the methods
matches in the center of simplex, and the discrepancy is observed close to the edges. This
difference is reduced with the addition of supporting points for a higher resolution.
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Figure 3.5: Derivatives of accumulation term about { , } on top and bottom respectively, using barycentric interpolation (left)
and multi-linear interpolation (right) at 60 bar

Figure 3.6: Derivatives of flux term about { , } on top and bottom respectively, using barycentric interpolation (left) and multi-
linear interpolation (right) at 60 bar
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Figure 3.7: Error in derivatives of to (left) and (right) with the two interpolation schemes at 60 bar pressure

Figure 3.8: Error of derivatives to (left) and (right) with the two interpolation schemes at 60 bar pressure

A higher error exists along the boundary 𝐶𝑂 − 𝑁𝐶 in the plots 3.7 and 3.8. This is
because the multi-linear interpolation shares the supporting points from physical and non-
physical space while performing interpolation close to physical boundary 𝑧 - 𝑧 in fig 3.2.
This causes an inconsistent interpolation in operators which transcends into the derivatives,
which is discussed earlier in Chapter 2

With an increase in resolution, the size of interpolation body decreases, so it accurately
resolves the variation of operators in terms of its derivatives to unknown, which is observed
in fig C.3 and C.4.



4
Adaptive Parameterization by Tie-Line

Approach

OBL is a linearization technique which helps to simplify the problems associated with highly-
nonlinear fully-coupled flow simulations. Since the existing OBL framework adopts multi-
linear interpolation, the supporting points have to be uniformly distributed in parameter
space, hence the parameterization does not honor the physics involved in governing eqn
(1.1). The accuracy of the solution is influenced by the extent to which OBL can capture
the nonlinearity involved. OBL constructs the operator approximations in a piece-wise linear
manner, so at a lower resolution, it might not capture the nonlinear nature of the operator,
thereby demanding higher density of supporting points.

In this study, we make use of two-phase tie-lines to accurately track the phase boundary
and perform non-uniform parameterization. The motivation behind this adaptive construc-
tion is to reduce the maximum error in parameter space.This research idea is inspired from
CSP approach by Voskov et al. (2007) and tessellating the compositional space into simplexes
using tie-lines as demonstrated by Zaydullin et al. (2012), and Iranshahr et al. (2010). In this
chapter, we adaptively parameterize the compositional space using tie-lines and demonstrate
this parametrization for both constant K-values and EOS-based operators calculation.

4.1. Parameterization Scheme
Parameter set for molar formulation is {𝑝, 𝑧 } and the variation of accumulation and flux
operator is influenced by bubble point, dew point, and phase boundary. The phase behavior
of a fluid system is represented in the bi-nodal curve, for a set of thermodynamic inputs of 𝑝
bar and 𝑇 K. For a given pressure, compositional space is a sub-domain of parameter space.

The line connecting liquid and vapor curve in phase envelope is called 𝑡𝑖𝑒 − 𝑙𝑖𝑛𝑒, along which
phase compositions for liquid and vapor phases remains constant. The phase envelope is
constructed as a set of tie-lines from the longest one to the critical point, where the length of
tie-line becomes zero. So the tie-lines, which can follow the path of the phase boundary, is
considered as a basis for parameterization.

The generalized idea of tie-simplex-based mathematical framework for an arbitrary num-
ber of phases was proposed by (Voskov and Tchelepi, 2009). The dimensionality of com-
positional space depends on the number of components and equals to (𝑛 − 1). Since we
are dealing with three component system the compositional space is a two-dimensional
ternary diagram. Tie-line, corresponding to critical point, divides the compositional space
into 𝑠𝑢𝑏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and 𝑠𝑢𝑝𝑒𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 space, as shown in Fig. 4.8. The adaptive parameterization
approach is demonstrated for a non-isothermal compositional system of three components
by (Khait et al., 2018a)

20
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4.1.1. Constant K-values parameterization
As mentioned earlier, the critical point cannot be achieved for constant-K value. Since the
attainment of the critical region is unimaginable, the parameterization is only restricted to
the subcritical region in this case. The ternary representation of constant K is shown in fig
4.1 below. Two-phase region indicated by the liquid curve of 𝐵 −𝐵 −𝐵 −𝐵 −𝐵 and vapor
curve of 𝐷 − 𝐷 − 𝐷 − 𝐷 − 𝐷 .

The choice of injection and initial composition controls the extent of compositional space
which should be parameterized. In order to cover the entire compositional space, 𝑧 and
𝑧 are taken along the vertices 𝑍 − 𝑍 and 𝑍 − 𝑍 of the ternary diagram 4.1. Initial and
injection compositions are [0.5−𝜖, 𝜖, 0.5−𝜖] and [0.5−𝜖, 0.5−𝜖, 𝜖] respectively, where 𝜖 is of
the order of 10− .

Figure 4.1: Ternary representation of parameterization scheme for constant K

For a given overall initial 𝑧 and injection compositions 𝑧 , liquid 𝑥 , and vapor fractions
𝑦 , are determined from two phase flash computations. Tie lines which connects between the
between vapor and liquid fractions of 𝑧 , 𝑧 are drawn i.e. 𝐷 − 𝐵 and 𝐷 − 𝐵 . For
a well-behaved system hydrocarbon system, it can be assumed that tie-lines never inter-
sect with each other inside the compositional space (Orr et al., 2007). Each tie-line can be
uniquely represented by its midpoint 𝛾 in eqn. 4.1 (Entov et al., 2002).

The intermediate tie-lines between initial and injection tie-lines are determined by linearly
interpolating 𝛾 and 𝛾 at a distance Δ𝑥 between tie-lie centers. Flash computations for
all the set of intermediate 𝛾 help to trace the phase boundary between injection and initial
compositions and parameterize the compositional space along two-phase boundaries.

In order to parameterize the single-phase region, ends of tie-lines are extrapolated. The tie-
line which is extended on to the single-phase region is referred to as 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑖𝑛𝑔 𝑙𝑖𝑛𝑒.
Supporting points are added at the ends of the parameterizing line and on the phase bound-
ary, complementing the physics involved. The parameterizing line is divided into segments
by phase boundaries, and supporting points are added at a distance Δ𝑥 in each segment.

𝛾 =
𝑥 , + 𝑦 ,

2 𝑖 = {1, 2, . . , 𝑛 }, 𝑗 = {1, 2, . . , 𝑛 } (4.1)

4.1.2. EOS-based parameterization
EOS-based flash calculation brings a great deal of nonlinearity to the ternary diagram. The
EOS-based calculations are responsible for the existence of closed phase boundary with a
critical point separating the bubble and dew point curves. Now the entire compositional
space is divided into the subcritical and supercritical region, which should be parameterized
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separately.

The injection and initial compositions are taken from the previous section. The parameter-
izing lines are constructed for initial and injection composition from phase equilibrium com-
putations, as mentioned above. Unlike in constant K value case, the compositional space is
vertically parameterized along themidpoint of parameterizing lines, shown as𝑀 −𝑀 −𝑀 −𝑀
in fig 4.8. This minimizes the space (without parameterization) between tie-lines, as it goes
from injection to initial composition. The problem aggregates when critical point shifts from
the center of the phase envelope, giving rise to the dissimilar length of bubble and dew point
curve. This might cause predominant interpolation error especially while modelling lean gas
condensate reservoirs where critical point shifts towards the corner.

Figure 4.2: Ternary representation of parameterization scheme for EOS case

The entire procedure is demonstrated using the schematic representation in fig. 4.8. The
two-phase region is indicated by the closure envelope 𝐵 to 𝐷 through 𝑍 . Extension of
critical tie-line on to edges of ternary diagram partitions the compositional space into the
subcritical and supercritical region. Compositional space below and above 𝑅 -𝑀 -𝐿 is
classified as subcritical and supercritical region.

Representation of Subcritical Region
The number of tie-lines between the longest (𝐵 𝐷 ) and critical tie-line is decided based on
the midpoints of the parameterizing lines of 𝑧 and 𝑧 separated by the distance Δ𝑥.

𝑁 =
∣ 𝑀 𝑀 ∣

Δ𝑥 (4.2)

Intermediate tie-lines are constructed by performing flash computations for a set of compo-
sitions between 𝑀 −𝑀 , separated by Δ𝑥. Parameterizing line, which is an assembly of line
segments 𝐿 𝐵 - 𝐵 𝐷 - 𝐷 𝑅 , is developed. Finally, each line segment of single- and two-phase
regions is parameterized by the distance Δ𝑥. This scheme is flexible enough to parameterize
the single-phase and two-phase region with different Δ𝑥.

Representation of Super-critical Region
If the critical point does not exist for a given 𝑝 bar and 𝑇 K, then entire compositional space
is parameterized as above. Here, the phase envelope shrinks with an increase in pressure,
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giving rise to the supercritical region, as shown in fig 4.8. Length of the tie-line approaches
zero at a critical point, making tie-lines irrelevant for parameterizing the super-critical space.

Supercritical region is parameterized along the line joining apex 𝑍 and 𝑀 . Similar to the
subcritical region, the number of lines 𝐿 ∗𝑅 ∗ between 𝑀 𝑍 is determined as follows. The
line segments 𝐿 𝑍 and 𝑅 𝑍 is equally divided into 𝑁 , by distance Δ𝑋. Finally, each line
segment 𝐿 ∗𝑅 ∗ is partitioned by Δ𝑥,

𝑁 =
∣ 𝑀 𝑍 ∣

Δ𝑥 , (4.3)

where ∣ 𝑀 𝑍 ∣ represents distance between 𝑍 and 𝑀 .

4.2. Spatial Distribution of Errors
The supporting points in the adaptive mesh are scattered unevenly in compositional space.
The tessellation is done by Delaunay triangulation, while interpolation is performed using
barycentric coordinates. The effectiveness of adaptive construction in reducing error is an-
alyzed by determining the spatial distribution of errors in compositional space at different
pressures and comparing against uniform parameterization. The primary objective of adap-
tive construction is to reduce themaximum error in the parameter space rather than reducing
the average error since the maximum error is caused by the virtue of underlying physics in-
volved.

The quality of interpolation is defined by an absolute difference between true value and in-
terpolated value at any point in parameter space. For simplicity, the Euclidean norm is used
to combine the errors of 𝑛 operators of each type i.e accumulation and flux operators. For
unanimous representation, the error is normalized to the maximum value of the operator,
which is mathematically described as

∣∣𝐸 ∣∣ =

¿
ÁÁÀ∑ = (𝛼 (𝜔 ) − 𝛼 (𝜔 ))

𝑚𝑎𝑥 , ∣ 𝛼 (𝜔 )∣
. (4.4)

Here 𝜔 indicates the distribution of supporting points in compositional space, 𝛼 and 𝛼
represent interpolated and true operator value for a component 𝑖 respectively.
For a fair comparison, nearly the same number of supporting points are taken between uni-
form and adaptive mesh. For a given Δ𝑥, the number of supporting points in uniform mesh
remains constant throughout the pressure interval. For adaptive mesh, on the other hand,
this number is susceptible to the size of phase boundary, thereby making it difficult to choose
exactly the same number of points. So, acceptable range of ±5% of points is considered as
an acceptable limit for comparison. Based on the adaptive mesh, the equal number of points
in the uniform mesh is determined.

In a three component system at a given pressure, for uniform parameterization with 𝑛 seg-

ments along each axis, there are in total 𝑛 supporting points. Out of which,
𝑛(𝑛 + 1)

2 number

of supporting points lie in physical space and
𝑛(𝑛 − 1)

2 belonging to non-physical space. The
number of physical points in both cases is equated to know the discretization intervals for
getting a similar number of supporting points in the uniform mesh

𝑛(𝑛 + 1)
2 = 𝑁 , (4.5)

where 𝑁 indicates the number of supporting points in adaptive mesh.
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4.3. Results
We adaptively parameterize the ternary representation of three component fluid system [𝐶𝑂 , 𝑛𝐶 , 𝐶 ]
at three different pressures and a fixed temperature of 345 K.

4.3.1. Constant K-values parametrization
The ternary representation at 75 bar pressure is shown in fig 4.3. High nonlinearity is ob-
served in flux operator 𝛽, which is due to nonlinearity induced by density and Brooks-Corey
relation in calculating of relative permeability. The two-phase region is not clearly observed
in accumulation operators, but to a certain extent, the phase boundary is identified in flux
term by observing the variation of the operator in fig. 4.6.

Figure 4.3: Ternary representation of phase diagram for constant K values at 75 bar and K

The compositional space is finely discretized into small intervals, referring each point as a
𝑞𝑢𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 and the operators are interpolated using the supporting points in the adaptively
constructed mesh. The normalized interpolation error of operators are plotted for uniform
and adaptive parameterization in fig 4.5, 4.7. Adaptive construction generates 42 supporting
points and the corresponding closest number of supporting points in the uniform mesh is
45. It is observed that adaptive mesh resolves the nonlinearity around phase interface better
than uniform mesh even with a slightly lower number of supporting points, which is reflected
in the reduction of maximum error.

Figure 4.4: Euclidean operator plots of accumulation term at 75 bar and K
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Figure 4.5: Euclidean error in accumulation operator at 75 bar for uniform mesh (left) adaptive(right) with 45 and 42 supporting
points respectively

Figure 4.6: Euclidean operator plots of accumulation term at 75 bar and K

Figure 4.7: Euclidean error in flux operator at 75 bar for uniform (left) adaptive(right) mesh with 45 and 42 supporting points
respectively

4.3.2. EOS-based parametrization
The ternary representation of the fluid system at three different pressures 30, 65 and 100
bar is shown in fig 4.8. It can be seen that the two-phase region is sensitive to pressure and
shrinks with the increase in pressure. At higher pressures above 100 bar, the two-phase
region within compositional space is relatively small so we considered 100 as the upper
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pressure limit. At 30 and 65 bar pressures, subcritical parameterization can parameterize
the entire compositional space, but at higher pressures when the fluid has critical point at
the combination of 𝑝 and 𝑇, super-critical representation is needed.

Figure 4.8: Ternary representation of phase diagrams at pressures 30, 65, 100 bar at K for fully EOS case

The Euclidean norm of operators 𝛼 and 𝛽 are shown in fig. 4.9 and fig. 4.12. Unlike con-
stant K, there exists a strong coupling between thermodynamic behavior and composition.
This can be seen in operator plots, which accurately captures the phase interface i.e. bound-
ary separating single and two-phase region. A clear contrast can be seen along the boundary,
this can be due to nonlinearity associated with endpoint relative permeability effect.

Adaptive parameterization accurately captures the two-phase region using tie-lines, as shown
in the figures 4.10 and 4.13. Here, the number of supporting points is susceptible to the sub-
critical and supercritical region and it is difficult to control compared to uniform mesh. The
number of adaptive and uniform points at three pressures are shown in Table 4.1.

Table 4.1: Number of supporting points in uniform and adaptive mesh for EOS case

p (bar) 𝑁 𝑁
30 45 44
65 45 47
100 78 76

As observed in fig. 4.10 and fig. 4.14, the maximum errors are concentrated along the two-
phase interface due to the drastic change in operator and inability of interpolation to follow
the nonlinearity. Using tie-lines, the two-phase boundary is complemented with supporting
points. However, the region close to the critical point is highly nonlinear, an additional tie-
lines are added between the final and penultimate tie-line to handle this region.

Figure 4.9: Euclidean operator plots of accumulation term at 30, 65, 100 bar and K
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Figure 4.10: Error in accumulation operator using adaptive parameterization at 30, 65, 100 bar for composition , ,

Figure 4.11: Error in accumulation operator using uniform parameterization at 30, 65, 100 bar for composition , ,

Figure 4.12: Euclidean operator plots of flux term at 30, 65, 100 bar and K

Figure 4.13: Error in flux operator using adaptive parameterization at 30, 65, 100 bar for composition , ,
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Figure 4.14: Error in flux operator using uniform parameterization at 30, 65, 100 bar for composition , ,

4.3.3. Sensitivity Analysis
The maximum error in the compositional space is considered for performing sensitivity analy-
sis. Variation of maximum error and the number of supporting points are plotted on semi-log
plot on the x-axis for five intervals between Δ𝑥 0.1 and 0.01.

Constant K-values parametrization
The sensitivity analysis for this case is performed at three different pressures of 30,75 and 120
bars. The effectiveness of adaptive mesh can be seen in fig. 4.15 and fig. 4.16. An irregular
behavior of error is observed at lower pressure. This happened due to the fixed geometric
constraint associated with Delaunay triangulation. Due to the larger distance between the
ends of tie-lines shown in fig. C.2, the triangles become pointy, causing large interpolation
errors. This geometric constraint usually disappears with an increase in pressure.

Figure 4.15: Variation of maximum error in accumulation term for uniform and adaptive mesh at 30, 75, 120 bar respectively
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Figure 4.16: Variation of maximum error in flux term for uniform and adaptive mesh, at 30, 75, 120 bar respectively

EOS-based parametrization
With high resolutions at small Δ𝑥, the supporting points are densely populated in parameter
space. The uniform mesh can resolve the nonlinearity of operator, thereby reducing the dif-
ference in maximum error between uniform and adaptive mesh. At times uniform mesh gets
lucky enough to find few of its supporting points exactly on the nonlinear region, making it
better than adaptive mesh. This is observed in sensitivity plot of 𝛼 and 𝛽 at 30 bar in fig 4.17
and 4.16.

A non-monotonic trend is observed with sensitivity plots 100 bar in 𝛼 and 𝛽. A high nonlin-
earity is observed close to the critical region in operator plots at 100 bar, making the error
highly sensitive to small perturbations of distance 𝛿𝑥. However, still, the adaptive construc-
tion performs better than uniform mesh. Non-monotonic change in error of flux term is due
to the highly nonlinear variation of the two-phase interphase close to the critical region. But
adaptive mesh manages to keep lower maximum error.

Figure 4.17: Variation of maximum error with refinement in accumulation operator for uniform and adaptive mesh at 30, 75,
120 bar respectively

At 65 bar, the difference in error between uniform and adaptive mesh decreases with
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higher resolution, which is a normally expected trend, because both get closer to the refer-
ence solution.

Figure 4.18: Variation of maximum error with refinement in flux operator for uniform and adaptive mesh, at 30, 75, 120 bar
respectively



5
Validation of Tie-Simplex

Parameterization
In this chapter, the newly proposed tie-simplex framework is validated for one-dimensional
simulation of the governing transport equation (1.1) for three component system. The accu-
racy of tie-simplex parameterization is compared with uniform parameterization and nonlin-
ear Newton convergence study is carried out by comparing the two methods. Extension of
the framework to the multicomponent system is discussed by considering a four component
fluid system.

5.1. Transport Solver
The practical applicability of tie-simplex parameterization is assessed by testing it with a
robust, fully implicit one-dimensional transport solver. This 1D solver represents a homo-
geneous reservoir model which studies the interaction of different components locally and
transport of these individual species over the length of the reservoir. The reservoir is dis-
cretized into grid blocks and constant Bottom Hole Pressure (BHP) controls at 100 bar and
60 bar are applied at injector and producer, which are present in the first and last grid block
respectively. The fluxes between grid blocks are caused by the pressure difference. For the
simplicity of the solution, capillary and gravity effects are neglected, making the pressure
potential solely responsible for the transport of components. We model the production of
intermediate 𝑛𝐶 and heavier 𝐶 hydrocarbons by injecting of 𝐶𝑂 at the injector.

5.1.1. Scheme of Solver
As mentioned earlier, nonlinear Newton’s solver is used to solve the linear system of equation
1.15. The convergence of this nonlinear solver is based on the following criterion:

∣∣𝑟∣∣ < 10− ,

where 𝑟 is a residual vector of length equal to number of grid blocks.

A constant multiplication factor 𝑡 is used in timestepping criterion. If the nonlinear
solver converges for the current timestep (Δ𝑡 ), next timestep is defined as Δ𝑡 + = Δ𝑡 ∗ 𝑡 ,
until the maximum size of the timestep (Δ𝑡 ) is reached; if the nonlinear solver fails to
converge, then we repeat the attempt with new timestep Δ𝑡 + = Δ𝑡 /𝑡 . If the nonlinear
solver consecutively fails to converge and when the timestep reaches below minimum tol-
erance value, the simulation is aborted. Physical properties of this homogeneous reservoir
model and input parameters used in the simulation are mentioned in 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 2.

The Jacobian system is solved at every nonlinear iteration. The nonlinear update is ap-
plied to the set of unknown variables (𝑝, 𝑧 , 𝑧 ). Since the governing equation is hyperbolic in
nature, there is a high chance for solution exceeding the physical bounds, the composition
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in particular. So, before updating the solution, the following correction check is performed at
the end of every successful Newton convergence to ensure the solution is in physical bounds:

• The first stage is a local chopping of the update, such that the absolute value of the
update is smaller than a predefined value of 0.1;

• All the compositions are corrected such that their values remain in the physical range
of [0 to 1].

5.2. Validation
The lower and upper bounds of pressure and composition constitute parameter space i.e.
i.e. [20, 130] bar x [0, 1] − . We run simulations with OBL framework using barycentric and
multi-linear interpolation at different resolutions.

Transport equation is time-dependent hyperbolic, the shocks and rarefaction are observed in
the displacement profile. The solution at time when the leading shock reaches the producer
is shown in 5.1. Two simulation models were considered: one with 100 (Model 1) and more
refined model with 500 grid blocks (Model 2). For different resolution, the displacement
profiles at the end of simulation using barycentric interpolation for uniform mesh are shown
below. It is evident that the shape of the solution is accurately captured at resolution with
16 points only.

Figure 5.1: Displacement profile of 1D simulation for Model 1 on left and Model 2 on right at resolutions 2,4,8,16 for uniform
mesh using barycentric interpolation

5.3. Accuracy of Solution
The accuracy of tie-simplex parameterization is compared with multi-linear interpolation.
The spatial error induced by the interpolation is determined by the Euclidean norm of differ-
ence averaged over each grid block. The normalized average errors in pressure and composi-
tion are plotted for three different resolutions. The error induced in each grid block depends
on the size of the interpolation body and proximity between the supporting points and the
solution path followed by each grid block over the course of the simulation. The error is accu-
mulated in every Newton’s iteration for all the timesteps. With a finer resolution, supporting
points are densely populated in parameter space, thereby increasing the closeness between
the solution path followed and supporting points, which in turn increases the accuracy and
exactness of interpolation.
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∣∣𝐸 ∣∣ =

¿
ÁÁÀ∑ = (Υ − Υ )

𝑚𝑎𝑥 ∣ Υ ∣ ∗ 𝑁𝐵 , Υ = [𝑝, 𝑧 , 𝑧 , ...., 𝑧 − ] (5.1)

Where, NB indicates the number of grid blocks, 𝐼 , 𝑇 represents multi-linear and barycen-
tric interpolation respectively and max (Υ ) indicates the maximum of unknowns computed
with multi-linear interpolation during simulation.This depends on initial and injection pa-
rameters.

5.4. Nonlinear Convergence Study
This study provides a conclusive evidence on the effectiveness of the tie-simplex method in
handling the nonlinear Newton’s iterations and its rate of convergence. We refer the itera-
tions of current timestep in which the nonlinear solver fails to meet residual tolerance as
𝑤𝑎𝑠𝑡𝑒𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. For a fair comparison, the smallest timestep is considered to which all
the three resolutions we considered converge with no wasted iterations. Lower the initial
timestep, better will be the convergence during the start of the simulation. A maximum
timestep (Δ𝑡 ) of 0.2 days is taken for three component system and 0.9 days for 4 compo-
nent system.

5.5. Results
Error between unknowns at the end of simulation is plotted on a semi-log plot of error on y-
axis and resolution on the x-axis. Error plots are shown with absolute error to its maximum of
each unknown. Newton’s iterations are presented on bar graph on the y-axis, the resolution
on the x-axis.

5.5.1. Three Component System
Three component fluid system of [𝐶𝑂 ,𝑛𝐶 , 𝐶 ] is considered with initial and injection condi-
tions as

Table 5.1: Injection and production conditions for 3 component fluid system

p (bar) 𝐶𝑂 𝑛𝐶 𝐶

Injection 100 0.79 0.2 0.01
Production 60 0.01 0.65 0.34

Constant K-values parameterization
The solution from multi-linear interpolation is taken as reference. It can be seen in fig. 5.3
that the first simulation model with 100 blocks has less error compared to model 2 consisting
500 blocks and the error is decreasing logarithmically with resolution. Errors are mainly due
to slight changes in the shape of rarefaction part and around the shock front of the solution,
as seen in fig. 5.2.
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Table 5.2: Error of unknowns in tie-simplex parameterization in comparison with multi-linear interpolation for constant-K

Model Resolution 𝐸𝑟𝑟𝑜𝑟 𝐸𝑟𝑟𝑜𝑟 𝐸𝑟𝑟𝑜𝑟

Model 1
16 3.96 ∗ 10− 3.69 ∗ 10− 2.31 ∗ 10−
64 8 ∗ 10− 1.37 ∗ 10− 6.54 ∗ 10−
128 2.34 ∗ 10− 5.15 ∗ 10− 4.15 ∗ 10−

Model 2
16 6.57 ∗ 10− 8.26 ∗ 10− 9.63 ∗ 10−
64 1.29 ∗ 10− 1.75 ∗ 10− 1.26 ∗ 10−
128 4.41 ∗ 10− 7.72 ∗ 10− 6.87 ∗ 10−

Figure 5.2: Error of unknowns at every grid block in the reservoir model 1 (on left) and solution from tie-simplex
parameterization (on right) for resolution 16

Figure 5.3: Average error in pressure and composition for each grid block for longer and shorter models at resolution 16, 64,
128
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As discussed earlier, the Jacobian assembly with respect to nonlinear unknowns influ-
ences the rate of convergence. In tie-simplex case, the derivatives are constant inside the
simplex where it changes slightly within hypercube of the multi-linear interpolation. This
can be observed in fig 3.5, and 3.6. But with an increase in resolution, the size of simplex
reduces and a smooth trend in variation of derivatives is observed, thereby reducing the dif-
ference in derivatives between the two interpolation schemes as can be seen in fig. C.3 and
fig. C.4.

This theory implies that difference in the number of Newton’s iterations between these two
interpolation schemes is expected to decrease with an increase in resolution, which can be
observed in the fig. 5.4. Sometimes, the above-mentioned theory cannot be established with
shorter models because of the behavior of Newton’s solver, the rate of convergence and the
due to convergence criterion taken. So it is advisable to consider the longer models.

Figure 5.4: Number of Newton’s iterations of barycentric interpolation and multi-linear interpolation with uniform mesh for Model
1 (on left) and Model 2 (on right) for three component system with constant K values

Figure 5.5: Number of Newton’s iterations of barycentric interpolation with uniform mesh and adaptive mesh for Model 1 (on left)
and Model 2 (on right) for three component system with constant K values

It’s challenging to consider an equal number of supporting points in adaptive mesh com-
pared to uniform mesh, the closest number of supporting points is taken. The average num-
ber of supporting points for all the pressures in parameter space is given below, but the
number varies with each pressure in the adaptive mesh.



36 5. Validation of Tie-Simplex Parameterization

Table 5.3: Average number of supporting points for uniform and adaptive mesh for constant K values

Resolution Uniform Mesh Adaptive Mesh
16 136 132
64 2080 2064
128 8256 8252

In general, adaptive mesh consumes more iterations compared to uniform mesh. This is
attributed to the variation in the size of a simplex in parameter space. During simulation with
the adaptive mesh, the solution can change through several simplexes with very different size.
Since the nonlinearity around the phase boundary is captured, it gives better accuracy than
uniform mesh. However, it can be seen from fig 5.5 that the difference in Newton iterations
are less between uniform and the adaptive mesh.

EOS-based parameterization
Similar trend in error is observed for Fully EOS.

Table 5.4: Error of unknowns in tie-simplex parameterization in comparison with multi-linear interpolation for fully EOS case

Model Resolution 𝐸𝑟𝑟𝑜𝑟 𝐸𝑟𝑟𝑜𝑟 𝐸𝑟𝑟𝑜𝑟

Model 1
16 1.07 ∗ 10− 4.86 ∗ 10− 3.94 ∗ 10−
64 6.45 ∗ 10− 1.42 ∗ 10− 4.29 ∗ 10−
128 7.32 ∗ 10− 4.85 ∗ 10− 2.14 ∗ 10−

Model 2
16 6.57 ∗ 10− 8.26 ∗ 10− 9.63 ∗ 10−
64 1.29 ∗ 10− 1.75 ∗ 10− 1.26 ∗ 10−
128 4.41 ∗ 10− 7.72 ∗ 10− 6.87 ∗ 10−

Figure 5.6: Average error in pressure and composition for each grid block for longer and shorter models at resolution 16,64,128
for three component fully EOS case
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The difference in Newton’s iterations is increasing with resolution in the first model. This
is because nonlinear solver converges with great difficulty with multi-linear interpolation. In
order to confirm this, the same model is run for a different maximum timestep of (Δ𝑡 )
of 1 day, where a normal trend is observed as shown in fig. 5.8. This confirms that tie-
simplex approach shows better convergence rate for Newton’s solver whereas multi-linear
case struggles at different timesteps. Since the derivative is constant within simplex, the
unique derivative values in the Jacobian assembly are less when constructed with the tie-
simplex approach, which helps “nonlinear solver to converge faster”.

Figure 5.7: Number of Newton’s iterations for barycentric and multi-linear interpolation for Model 1 (left) and Model 2 (right) for
three component fully EOS case

Figure 5.8: Number of Newton’s iterations of barycentric interpolation with uniform mesh and multi-linear interpolation for Model
1 at of 1 day

In the second model, a significant difference in iterations is observed at lower resolution.
The difference in iterations between two methods is expected to grow when the simulation is
performed with smaller timesteps.

5.5.2. Four Component System
With an increase in the number of components in the fluid system, higher resolutions are
needed to model the compositional interaction between different components. The algorithm
is flexible enough to accommodate a multicomponent system. The four component fluid
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system of 𝐶𝑂 , 𝐶 , 𝑛𝐶 , 𝐶 considered. Pure 𝐶𝑂 is injected at injector and mixture of light to
intermediate hydrocarbons are produced at the producer. Maximum (Δ𝑡 ) of 0.9 days is
taken for simulation.

Table 5.5: Injection and production conditions for 4 component fluid system

p (bar) 𝐶𝑂 𝐶 𝑛𝐶 𝐶

Injection 100 0.97 0.01 0.01 0.01
Production 60 0.01 0.325 0.325 0.34

The results of 4 component system evidently prove that tie-simplex framework performs
slightly better with multi-linear interpolation.

Constant K-values parametrization

Figure 5.9: Number of Newton’s iterations for multi-linear and tie-simplex parameterization for model 1(left) and model 2(right)
for four component constant K values

EOS-based parametrization

Figure 5.10: Number of Newton’s iterations for barycentric interpolation and multi-linear interpolation for Model 1 (on left) and
Model 2 (on right) for four component fully EOS case
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5.6. Performance of Tie-Simplex Parameterization
Tie-simplex parameterization framework needs searching for a simplex corresponding to a
query point from the tessellated space. This is computationally expensive with an increased
number of components (dimensions), additionally, derivatives are calculated for every New-
ton’s iteration until the end of the simulation. This increases interpolation time in tie-simplex
framework considerably.

Instead, the constant derivative property is used to improve the interpolation speed. The
derivatives of each simplex are determined during the initialization stage and stored in the
form of objects at each pressure. During simulation, the unknowns [𝑝, 𝑧 ] obtained after every
Newton’s update gives query points. All the query points within each simplex are uniquely
indexed and derivatives are extracted by accessing the objects stored earlier, without com-
puting them during every iteration.

The comparison of interpolation time is mentioned below.

Table 5.6: Comparison of interpolation time of tie-simplex parameterization before and after initializing derivatives

Model Resolution Before Initialization After Initialization
( sec ) ( sec )

Model 1
16 5.24 1.52
64 9.9 2.80
128 22.58 4.42

Model 2
16 136.2 83.6
64 258.9 104.5
128 408.7 129.2

This improves the computational efficiency of tie-simplex approach and thereby reducing
the interpolation time by multifold. But due to searching criterion, multi-linear interpolation
is still computationally effective since it bypasses the search for hypercube. But the true
performance of interpolation has to be tested by integrating this framework into DARTS (Delft
Advanced Research Terra Simulator).
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Conclusions and Discussion

The main research objectives aimed to improve parameterization framework within Operator-
Based Linearization approach is successively achieved. In chapter 2, a more accurate method
of dealing with non-physical points within existing uniform parameterization is shown. Chap-
ter 3 describes entirely new non-uniform parameterization framework. Delaunay method
triangulates the non-uniformly scattered supporting points into simplexes and then these
simplexes are tessellated as described in chapter. Operators are interpolated within each
simplex by finding the barycentric coordinates of each vertex with respect to a query point.
Interpolating query point is expressed as a linear combination of the vertex and its corre-
sponding barycentric coordinate. The derivatives of operators to nonlinear unknowns are
also determined through interpolation. Since the derivatives of interpolated operators does
not change within a simplex, this inherent property helps to avoid calculation of derivatives
at every query point in compositional space.

In chapter 4, it was shown how non-uniform parameterization can be built adaptively hon-
oring underlying physics. A limited number of tie-lines are needed to fully parameterize
the compositional space. The efficiency of the tie-simplex parameterization approach is also
demonstrated successfully. This is done by finding the spatial distribution of errors in phys-
ical compositional space at different pressures. The operator values determined by multi-
linear interpolation are taken as a reference for comparison. A maximum Euclidean error of
accumulation and flux operator between adaptive parameterization and uniform parameter-
ization validates the accuracy with tie-simplex approach.

Newly developed tie-simplex parameterization framework is then tested for a one-dimensional
homogeneous transport solver (chapter 5). Here, the supporting points surrounding the so-
lution path in parameter space take part in interpolation providing operator values along with
derivatives to aid Jacobian assembly. The interpolation error accumulated over the simula-
tion run compared for the two interpolation schemes for uniform and adaptive mesh. The
applicability and efficiency of tie-simplex parameterization to the multicomponent system is
demonstrated by comparison against uniform parameterization.

The key observations from this research are articulated below.

• For uniform parameterization of multicomponent system, the accuracy of interpolation
performed close to non-physical domain of compositional space can be significantly
improved by applying extrapolation technique.

• The computational cost of piece-wise multi-linear interpolation doubles with each new
degree of freedom, making it difficult to apply to fluid systems with large number of com-
ponents. Barycentric interpolation is more promising for such problems, because its
performance drops much slower with growth of dimensionality, while values of deriva-
tives remain constant for any query point within given simplex.
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• Barycentric interpolation can be beneficial even if applied to uniform parameterization.
First, it does not require parameterization of non-physical domain of compositional
space. Second, the accuracy of barycentric interpolation is better than multi-linear
interpolation simply because the size of interpolation body in barycentric interpolation
is half of the one in multi-linear interpolation.

• The derivative of operators with respect to composition is constant within the simplex.
So, there exists a discontinuity in derivative across every simplex, whereas a continuity
in derivative is observed within a hypercube.

• Tie-lines are used as a basic reference for adaptive parameterization of compositional
space. This approach allows to capture the phase boundary and minimize the error
associated due to the nonlinear variation of the operator. Better accuracy is achieved
at lower resolutions with adaptive mesh.

• Nonlinear Newton’s solver experiences a faster convergence rate with barycentric inter-
polation, which performs better with the increase in dimensions, in comparison with
multi-linear interpolation.

• Searching for the simplex corresponding to a query point is computationally demanding
from 𝑛 dimensional tessellation and this becomes more expensive with an increase in
the degrees of freedom.

Recommendations
Tie-simplex parameterization framework has scope for improvement and further develop-
ment. Possible research directions are briefly discussed below.

• Generalizing the adaptive parameterization developed for three component system to
the multicomponent system.

• In the current parameterization approach, the variation of the operator along the tie-line
is not considered. Operators vary along the tie-line and the change is significant close to
phase boundary, this is due to the endpoint permeability induces the nonlinear behavior
in operator close to the phase boundary, as shown in fig 4.12. While parameterizing,
considering this variation along the tie-line will bring robustness to this approach by
further increases the accuracy and reducing the error around phase boundary.

• The robustness and efficiency of tie-simplex parameterization framework should be
tested by including buoyancy forces and capillary pressure effects.

• In order to assess the effect of adaptive mesh on nonlinear Newton’s solver, test cases of
immiscible and miscible displacement should be considered and a convergence study
on this will provide more insights on the behavior of Newton solver.

• Integrating and testing the performance of interpolation in DARTS (Delft Advanced Re-
search Terra Simulator). If the performance is affected due to search criterion in 𝑛-
dimensional tessellation, then optimization simplex strategy proposed by Nelder and
Mead (1965) should be tried as a search criterion.

• Due to the hyperbolic nature of the problem, the solution path covers only a small
portion of parameter space, leaving a certain portion of parameter space unused. This
unused parameter space grows exponentially with an increase in the degrees of freedom.
Using tie-simplex approach, only a subset of entire parameter space between injection
and production condition is parameterized. This can help to make a pre-processing
stage faster and facilitates running higher resolution at the same computational ex-
pense.
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Appendix 1

Algorithm
A brief overview of the algorithm for Tie-simplex interpolation is mentioned below.

1. Step 1 - Pre Processing Stage

• Parameterizing the space uniformly (or) using tie-simplex approach.
• The Supporting points obtained from parameterization are used to calculate the
operator values 𝛼 and 𝛽. The results are stored inmulti-dimensional tables.Number
of tables generated depends on the composition. Each operator needs 𝑛 number
of tables corresponding to each composition.

2. Step 2 - Initialization Stage

• Reading the tables which contain the supporting points with the operator values.
• Tessellating the compositional space for every pressure using delaunay triangula-
tion.

• Extracting the vertices of simplex and corresponding composition for finding deriva-
tives within each simplex.

• Saving the interpolant function and the derivatives of each simplex in terms of
objects for further accessing during simulation.

3. Step 3- Interpolating operators

• Extracting the query points [𝑝, 𝑧1, ...𝑧 − ] which lies between every successive pres-
sure interval along the pressure axis.

• Finding out the interpolant function corresponding to lower and upper pressure
from previously saved objects.

• Interpolating the operator in the composition planes belonging to lower and upper
bound pressure,and finding the weights of the query point located between two
pressure planes [𝑃 ,𝑃+ ]

𝑤 = 𝑝 − 𝑃
𝑃+ − 𝑃

4. Step 4- Finding derivatives

• Locating the simplex within which the query point lies in the composition plane of
upper and lower bound pressure.

• Picking the derivative of operator of that particular simplex in both the composition
planes

• Interpolating the derivative
𝑑𝑓
𝑑𝑧 of the query point by finding the weights as men-

tioned above.
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Appendix 2

B.1. Rock and fluid properties for OBL
Below are the input reservoir properties considered for running OBL framework.

Table B.1: Rock and fluid properties considered for OBL framework

Property Notation Value Units

Porosity Φ 0.2 -
Permeability K 100 mD

Rock Compressibility 𝑐 10− 1/bar
Residual saturation 𝑆 0 -
Corey exponent n 2 -

Lower pressure limit 𝑝 20 bar
Upper pressure limit 𝑝 130 bar

B.2. Inputs of 1D reservoir simulation model
1D transport solver is used for validating the tie-simplex and comparing newton convergence
criterion with multi-linear interpolation. The input parameters for the results presented in
??.

Table B.2: Inputs parameters for 1D system for three and four component system

Property Value Units

Model 1 100 blocks -
Model 2 500 blocks -

Initial time step Δ𝑡 /16 days
Maximum newton iterations 40 -

Injection Pressure 100 bar
Initial Pressure 60 bar
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Table B.3: Input parameters for 1D simulation

components Inputs Model 1 Model 2
Constant K EOS Constant K EOS

3 Components Resolution 16,64,128 16,64,128 16,64,128 16,64,128
Maximum Time step (Δ𝑡 ) 0.2 days 0.2 days 0.2 days 0.2 days

Total simulation time 4.5 days 4.5 days 120 days 120 days

4 Components Resolution 16,32,48 16,32,48 16,32,48 16,32,48
Maximum Time step (Δ𝑡 ) 0.9 days 0.9 days 0.9 days 0.9 days

Total simulation time 2.5 days 2.5 days 90 days 80 days

Table B.4: K values for three and four component system

Number of components Components K values

3 𝐶0 , 𝑛𝐶 , 𝐶 [3, 1.5, 0.05]
4 𝐶0 , 𝐶 , 𝑛𝐶 , 𝐶 [1.5, 2.5, 0.5, 0.05]
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C.1. Geometric Constraint at Low Pressures
The ternary representation with parameterization is shown in the image below. Blue dots are
the supporting points resulted from the adaptive construction.

Figure C.1: Ternary representation of parameterization scheme for 20 bar pressure

As we see, the distance between 𝑃 , 𝑃 is more compared to the distance between the re-
maining any two successive tie lines. The constructed mesh from Delaunay triangulation is
bigger in this region, which can be seen in the error plot of 𝛼 at the same pressure, below.
The error due to this constraint is visible in accumulation term because at low pressure be-
cause of 𝛼 is relative less nonlinear compared to flux which is highly nonlinear around phase
boundary.
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Figure C.2: Ternary representation of parameterization scheme for 20 bar pressure

C.2. Derivatives Plots at Higher Resolution
For three component fluid system, at 60 bar pressure, the derivative plots of 𝛼 and 𝛽 w.r.t
unknowns are presented below, at high resolution (100 x 100).

Figure C.3: Derivatives of about (on top) and about (bottom) using tie-simplex (left) and multi-linear (right) interpolation
for Fully EOS case at resolution 100
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Figure C.4: Derivatives of about (on top) and about (bottom) using tie-simplex (left) and multi-linear (right) interpolation
for fully EOS case at resolution 100
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