
 
 

Delft University of Technology

ConE: A Concurrent Edit Detection Tool for Large Scale Software Development

Maddila, Chandra; Nagappan, Nachiappan; Bird, Christian; Gousios, Georgios; van Deursen, Arie

DOI
10.1145/3478019
Publication date
2022
Document Version
Final published version
Published in
ACM Transactions on Software Engineering and Methodology

Citation (APA)
Maddila, C., Nagappan, N., Bird, C., Gousios, G., & van Deursen, A. (2022). ConE: A Concurrent Edit
Detection Tool for Large Scale Software Development. ACM Transactions on Software Engineering and
Methodology, 31(2), Article 22. https://doi.org/10.1145/3478019

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3478019
https://doi.org/10.1145/3478019


22

ConE: A Concurrent Edit Detection Tool for Large-scale
Software Development

CHANDRA MADDILA, NACHIAPPAN NAGAPPAN, and CHRISTIAN BIRD,

Microsoft Research

GEORGIOS GOUSIOS, Facebook

ARIE van DEURSEN, Delft University of Technology

Modern, complex software systems are being continuously extended and adjusted. The developers responsible

for this may come from different teams or organizations, and may be distributed over the world. This may

make it difficult to keep track of what other developers are doing, which may result in multiple developers

concurrently editing the same code areas. This, in turn, may lead to hard-to-merge changes or even merge

conflicts, logical bugs that are difficult to detect, duplication of work, and wasted developer productivity. To

address this, we explore the extent of this problem in the pull-request-based software development model. We

study half a year of changes made to six large repositories in Microsoft in which at least 1,000 pull requests

are created each month. We find that files concurrently edited in different pull requests are more likely to

introduce bugs. Motivated by these findings, we design, implement, and deploy a service named Concurrent

Edit Detector (ConE) that proactively detects pull requests containing concurrent edits, to help mitigate the

problems caused by them. ConE has been designed to scale, and to minimize false alarms while still flagging

relevant concurrently edited files. Key concepts of ConE include the detection of the Extent of Overlap between

pull requests, and the identification of Rarely Concurrently Edited Files. To evaluate ConE, we report on its

operational deployment on 234 repositories inside Microsoft. ConE assessed 26,000 pull requests and made

775 recommendations about conflicting changes, which were rated as useful in over 70% (554) of the cases.

From interviews with 48 users, we learned that they believed ConE would save time in conflict resolution

and avoiding duplicate work, and that over 90% intend to keep using the service on a daily basis.

CCS Concepts: • Software and its engineering→ Integrated and visual development environments;

Software maintenance tools; Software configuration management and version control systems;

Additional Key Words and Phrases: Pull-based software development, pull request, merge conflict, distributed

software development
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1 INTRODUCTION

In a collaborative software development environment, developers, commonly, work on their indi-
vidual work items independently by forking a copy of the code base from the latest main branch
and editing the source code files locally. They then create pull requests to merge their local changes
into the main branch. With the rise of globally distributed and large software development teams,
this adds a layer of complexity due to the fact that developers working on overlapping parts of
the same codebase might be in different teams or geographies or both. While such collaborative
software development is essential for building complex software systems that meet the expected
quality thresholds and delivery deadlines, it may have unintended consequences or “side effects”
[1, 8, 30, 36]. The side effects can be as simple as syntactic merge conflicts, which can be handled
by version control systems [41] and various techniques/tools [20, 26, 29], to semantic conflicts
[23]. Such bugs can be very hard to detect and may cause substantial disruptions [29]. Primarily,
all of this happens due to lack of awareness and early communication among developers editing
the same source code file or area, at the same time, through active pull requests.

There is no substitute to resolving merge or semantic conflicts (or fixing logical bugs or refac-
toring duplicate code) when the issue is manifested. Studies show that pull requests getting into
merge conflicts is a prevalent problem [10, 12, 31]. Merge conflicts have a significant impact on
code quality and can disrupt the developer workflow [2, 19, 39]. Sometimes, the conflict becomes
so convoluted that one of the developers involved in the conflict has to abandon their change and
start afresh. Because of that, developers often defer resolving their conflicts [38], which makes the
conflict resolution even harder at a later point of time [6, 38]. Time spent in conflict resolution or
refactoring activities is going to take away valuable time and prohibits developers from fulfilling
their primary responsibility, which is to deliver value to the organization in the form of new func-
tionality, bug fixes and maintaining the service. In addition to loss of time and money, this causes
frustration [9, 42]. Studies have shown that these problems can be avoided by following strategies
such as effective communication within the team [28], and developing awareness about others’
changes that have a potential to incur conflicts [22].

Our goal is to design a method to help developers discover changes made on other branches
that might conflict with their own changes. This goal is particularly challenging for modern, large-
scale software development, involving thousands of developers working on a shared code base.
One of the design choices that we had to make was to minimize the false alarms by making it
more conservative. Studies have shown that, in large organizations, tools that generate many false
alarms are not used and eventually deprecated [46].

The direct source of inspiration for our research is complex, large-scale software development
as taking place at Microsoft. Microsoft employs ~166K employees worldwide and 58.6% of Mi-
crosoft’s employees are in engineering organizations. Microsoft employs ~69K employees outside
of the United States making it truly multinational [37]. Because of the scale and breadth of the
organization, tools and technologies used across the company, it is very common for Microsoft’s
developers to constantly work on overlapping parts of the source code, at the same time, and
encounter some of the problems explained above.

Over a period of 12 months, we studied pull requests, source control systems, code review tools,
conflict detection processes, and team and organizational structures, across Microsoft and across
different geographies. This greatly helped us assess the extent of the problem and practices fol-
lowed to mitigate the issues induced by the collaborative software development process. We make
three key observations:

(1) Discovering others’ changes is not trivial. There are several solutions offered by source control
systems like GitHub or Azure DevOps [5, 24] that enable developers to subscribe to email

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 22. Pub. date: December 2021.



ConE: A Concurrent Edit Detection Tool for Large-scale Software Development 22:3

notifications when new pull requests are created or existing ones are updated. In addition,
products like Microsoft Teams or Slack can show a feed of changes that are happening in
a repository a user is interested in. The notification feed becomes noisy over time and it
becomes very hard for developers to digest all of this information and locate pull requests
that might cause conflicts. This problem is aggravated when a developer works on multiple
repositories.

(2) Tools have to fit into developers’ workflows. Making developers install several client tools and
making them switch their focus between different tools and windows is a big obstacle for
adoption of any solution. There exists a plethora of tools [7, 13, 42] that aim to solve this
problem in bits and pieces. Despite this, usability is still a challenge, because none of them
fit naturally into developers’ workflows. Therefore, they cause more inconvenience than
the potential benefits they might yield.

(3) Suggestions about conflicting changes must be accurate and scalable. There exist solutions
that attempt to merge changes proactively between a developer’s local branch and the
latest version of main branch or two developer branches. These tools notify the developers
when they detect a merge conflict situation [13, 15, 42]. Such solutions are impractical to
implement in large development environments as the huge infrastructure costs incurred by
them may outweigh the gains realized in terms of saved developer productivity.

Keeping these observations in mind, we propose ConE, a novel technique to (i) calculate the
Extent of Overlap (EOO) between two pull requests that are active at the same time frame, and
(ii) determine the existence of Rarely Concurrently Edited (RCEs) files. We also derived thresh-
olds to filter out noise and implemented ranking techniques to prioritize conflicting changes.

We have implemented and deployed ConE on 234 repositories across different product lines
and large-scale cloud development environments within Microsoft. Since deployed, in March 2020,
ConE evaluated 26,000 pull requests and made 775 recommendations about conflicting changes.

This article describes ConE and makes the following contributions:

• We characterize empirically how concurrent edits and the probability of source code files
introducing bugs vary based on the fashion in which edits to them are made, i.e., concurrent
versus non-concurrent edits (Section 3).
• We introduce the ConE algorithm that leverages light-weight heuristics such as the extent

of overlap and the existence of rarely concurrently edited files, and ConE’s thresholding and
ranking algorithm that filters and prioritizes conflicting changes for notification (Section 4).
• We provide implementation and design details on how we built ConE as a scalable cloud

service that can process tens of thousands of pull requests across different product lines
every week (Section 5).
• We present results from our quantitative and qualitative evaluation of the ConE system

(Section 6).

To the best of our knowledge, this is the first study of an early conflict detection system that
is also deployed, in a large-scale, cloud-based, enterprise setting comprised of a diverse set of de-
velopers who work with multiple frameworks and programming languages, on multiple disparate
product lines and who are from multiple geographies and cultural contexts. We have observed
overwhelmingly positive response to this system with a 71.48% positive feedback provided by the
end users: A very good user interaction rate (2.5 clicks per recommendation that is surfaced by
ConE to learn more about conflicting changes) and 93.75% of the users indicating their intent to
use or keep using the tool on a daily basis.
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Our interactions and interviews with developers across the company made us realize that de-
velopers find it valuable to have a service that can facilitate better communication among them
about edits that are happening elsewhere (to the same files or functions that are being edited by
them) through simple and non-obtrusive notifications. This is reflected strongly in the qualitative
feedback that we have received (explained in detail in Section 6).

2 RELATED WORK

The software engineering community has extensively studied the impact of merge conflicts on
software quality [2, 10], investigated various methodologies and tools that can help developers
discover conflicting changes through interactive visualizations, and developed speculative analysis
tools [20, 26, 29]. While ConE draws inspiration from some of this prior work, it is more ambitious,
targeting a method that is effective while not resource intensive, can be easily scaled to work on
tens of thousands of repositories of all sizes, is easy to integrate, and fits naturally into existing
software development workflows and tools with very little to no disruption.

A conflict detection system that has to work for large organizations with disparate sets of pro-
gramming languages, tools, product portfolio and has thousands of developers that are also geo-
graphically distributed, has to satisfy the requirements listed below:

• Language-independent: The techniques and tooling built should be language-independent in
nature and support repositories that hosts code written in any programming language and
should support new languages with no or minimal customization.
• Non-intrusive: The recommendations passed by the tool should naturally fit into developer

workflows and environment.
• Scalable: Finally, the techniques proposed and the system should be performant and respon-

sive without consuming a lot of computing resources and demanding a lot of infrastructure
to scale them up.

We now explain some of the prior work that is relevant and explain why they do not
satisfy some or all of the requirements.

Tools based on edit activity. Manhattan [34] is a tool that generates visualizations about team
activity whenever a developer edits a class and notifies developers through a client program, in
real time. While this shows useful 3D visualizations about merge conflicts in the IDE itself (thus,
being non-intrusive and natural to use), it is not adaptive (it does not automatically reflect any
changes to the code in the visualization, unless the user decides to re-import the code base), not
generic (it works only for Java and Eclipse) and not scalable as it operates on the client side and
has to go through the cycle of import-analyze-present again and again for every change that is
made, inside the IDE environment. Similarly, FASTDash [7] is a tool that scans every single file
that is edited/opened in every developer local workspace and communicates about their changes
back and forth through a central server. This is impractical to implement across large development
teams. It requires tracking changes at the client side with the help of an agent program that runs
on each client. Furthermore it then keeps listening to every file edit activity in the workspace,
then communicating that information with a central server that mediates communication between
different workspaces. This is prone to failures and runs into scale issues even with a linear increase
in developers and pull requests in the system.

Tools based on early merging. Some tools were built upon the idea of attempting actual
merging and notifying the developers through a separate program that runs on the client [13,
15, 42]. These solutions are very resource intensive, because the system needs to perform the
actual source code merge for every pull request or developer branch with the latest version of
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the main branch (despite implementing optimization techniques like caching and tweaking the
algorithm to compute relationships between changes when there is a change to the history of
the repository). It is not possible to implement and scale this at a company like Microsoft where
tens of thousands of pull requests are created every week. Additionally, these solutions do not
attempt to merge between two different user branches or two different active pull requests but
attempt to merge a developer branch with the latest version of the main branch. This will not find
conflicting changes that exist in independent developer branches and thus cannot trigger early
intervention. Palantir [42] is a tool that addresses some of the performance issues by leveraging
a cache for doing dependency analysis. It is, however, still hard to scale due to the fact that there
is client-server communication involved between IDEs and centralized version control servers
to scan, detect, merge and update every workspace with information about remote conflicting
changes. Some solutions explore speculative merging [14, 27, 32] but the concerns with scalability,
non-obtrusiveness remain valid with all of them.

Predictive tools. Owhadi-Kareshk et al. explored the idea of building binary classifiers to pre-
dict conflicting changes [40]. Their model consists of nine features, of which the number of jointly
edited files is the dominant one. The model has been evaluated on a dataset of syntactic merge
conflicts reverse engineered from git histories. The model’s reported performance in terms of pre-
cision ranges from 0.48 to 0.63 (depending on the programming languages).

While one of our proposed metrics, our Extent of Overlap, is akin to the dominant feature in
Owhadi-Kareshk’s model, unfortunately their proposed approach cannot be applied in our context.
In particular, the reported precision is too low and would generate too many false alarms, which
would render our tool unused [46]. Furthermore, the reported precision and recall are measured
based on a gold standard of syntactic changes. Instead, we target an evaluation with actual devel-
opers, based on a service deployed on repositories they are working with on a daily basis. As we
will see in our evaluation, these developers not only value warnings about syntactic changes but
also semantic conflicts [23], or even cases of code/effort duplication (as explained in Section 6.3).

Empirical studies of merge conflicts and collaboration. There exists many studies that do
not propose tools, but study merge conflicts or present methods to predict conflicts or recommend
coordination. Zhang et al. [47] conducted an empirical study of the effect of file editing patterns on
software quality. They conducted their study on three open source software systems to investigate
the individual and the combined impact of the four patterns on software quality. To the best of our
knowledge ours is the first empirical study that is conducted at scale, on industry data. We perform
analysis on 67K bug reports, from 83K files (in comparison to the studies conducted by Zhange
et al., which looked at 98 bugs from 2,140 files).

Ashraf et al. presented reports from mining cross-task artifact dependencies from developer
interactions [3]. Dias et al. proposed methods to understanding predictive factors for merge con-
flicts [21], i.e., how conflict occurrence is affected by technical and organizational factors. Studies
conducted by Blincoe et al. and Cataldo et al. [3, 16] show the importance of timely and efficient
recommendations and the implications for the design of collaboration awareness tools. Studies
like this form a basis for building solutions that are scalable and responsive (the large-scale ConE
service that we deployed at Microsoft) and their importance in creating awareness of the potential
conflicts.

Costa et al. proposed methods to recommend experts for integrating changes across branches
[18] and characterized the problem of developers’ assignment for merging branches [17]. They
analyzed merge profiles of eight software projects and checked if the development history is an
appropriate source of information for identifying the key participants for collaborative merge.
They also presented a survey on developers about what actions they take when they need to
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merge branches, and especially when a conflict arises during the merge. Their studies report that
the majority of the developers (75%) prefer collaborative merging (as opposed to merging and
taking decisions alone). This reiterates the fact that tools that facilitate collaboration, by providing
early warnings, are important in handling merge conflict situations.

3 CONCURRENT VERSUS NON-CONCURRENT EDITS IN PRACTICE

The differences in the fashion in which edits are made to source code files (concurrent versus non-
concurrent) can cause various unintended consequences (as explained in Section 1). We performed
large-scale empirical analysis of source code edits to understand the ability of concurrent edits
to cause bugs. We picked bugs as a candidate for our case study, because it is relatively easy to
mine and generate massive amounts of ground truth data about bugs and map them back to the
changes that induced the bugs, by leveraging some of the techniques proposed by Wang et al.
[44], at Microsoft’s scale. Understanding the extent of the problem, i.e., the side effects caused by
concurrent source code edits in a systematic way, is an essential first step toward making a case for
building an early intervention service like ConE. This allows us to quickly sign up customers inside
the company and deploy the ConE system on thousands of repositories, for tens of thousands of
developers, across Microsoft. To that extent, we formulate two research questions that we would
like to find answers for.

• RQ1: How do concurrent and non-concurrent edits to files compare in the number of bugs
introduced in these files?
• RQ2: To what extent are concurrent, non-concurrent, and all edits, correlated with subse-

quent bug fixes to these files?

Answering the questions above allows us to assess the urgency of the problem. The methods,
techniques and outcomes used can also be employed to inform decision makers, when investments
in the adoption of techniques like ConE need to be made.

We performed an empirical study on data that is collected from multiple, differently sized repos-
itories. For our study, we focused on one of the important side effects that is induced by collabo-
rative software development, i.e., the “number of bugs introduced by concurrent edits.” We chose
this scenario as we have an option to generate an extensive set of ground truth data, by leverag-
ing techniques proposed by Wang et al. [44], to tag pull requests as bug fixes. They employ two
simple heuristics to tag bug fixes: the commit message should contain the words “bug” or “fix” but
not “test case” or “unit test.” Tagging changes that introduce bugs is not a practice that is followed
very well in organizations. Studies have shown that files changed in bug fixes can be considered
as a good proxy to files that introduced the bugs in the first place [33, 45]. Combining both ideas,
we created a ground-truth data set that we used in our empirical analysis. We broadly classify our
empirical study into three main steps.

(1) Data collection: Collect data using the data ingestion framework that we have built, which
ingests metadata about pull requests (author, created/closed dates, commits, reviewers, etc.),
iterations/updates of pull requests, file changes in pull requests, and intent of the pull request
(feature work, bug fix, refactoring, etc.).

(2) Use the data collected in Step 1 to analyze the impact of concurrent edits on bugs or bug
fixes in comparison to non-concurrent edits.

(3) Explain the differences in correlations between concurrently versus non-concurrently edited
files to the number of bugs that they introduce.

For the purpose of the empirical analysis, we define concurrently and non-concurrently edited
files as follows:
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• Concurrently edited files: Files that have been edited in two or more pull requests, at the
same time, while the pull requests are active. A pull request is in an “active” state when it is
being reviewed but not completed or merged.
• Non-concurrently edited files: Files that have never been edited in two pull requests while

they both are in active state. So, we are sure that changes made to these files are always
made in the latest version and are merged before they are edited through another active pull
request.

3.1 Data Collection

We collected data about file edits (concurrent and non-concurrent) from the pull request data,
for six months, from six repositories. We picked repositories in which at least 1,000 pull requests
are created every month. After reducing the repositories to a subset, we randomly selected six
repositories for the purpose of the analysis. We made sure our data set is representative in various
dimensions like size (small (1), medium (2), large (3)), the nature of the product (on-prem product (2)
versus cloud service (4)), geographical distribution of the teams (U.S. only (2) versus split between
different countries and time zones (4)), and programming languages (as listed in Table 3). We
performed data cleansing by applying the filters listed below:

• Exclude pull requests (PRs) that are open for more than 30 days: the majority of these pull
requests are “Stale PRs,” which will be left open forever or abandoned at a later point of time.
Studies shows that 70% of the pull requests gets completed within a week after creation [25].
• Exclude PRs with more than 50 files (this is the 90th percentile for file counts in our pull

request data set). This is one of the proxies that we use to exclude PRs that are created by
non-human developers that do mass refactoring or styling changes, and so on.
• Exclude edits made to certain file types. We are primarily interested in understanding the

effects of concurrent edits on source code changes as opposed to files like configuration or
initialization files, which are edited by a lot of developers through a lot of concurrent pull
requests, all the time. For the purpose of this study, we consider only the following file types:
.cs, .c, .cpp, .ts, .py, .java, .js, .sql.
• Exclude files that are edited a lot: For example, files that contain global constants, key value

pairs, configuration values, or enums are usually seen in a lot of active pull requests at the
same time. We studied 200 pull requests to understand the concurrent edits to these files.
They typically are in the order of a few thousands of lines in size, which is well above the
median file size. In all cases the edits are localized to different areas of the files and surgical in
nature. Sometimes, the line numbers of the edits are far away (few thousands of lines away, at
least). Therefore, we impose a filter on the edit count of fewer than twenty times in a month
(90th percentile of edit counts for all source code files) and exclude any files that are edited
more than this. Without this filter, these frequently edited files would dominate the results of
the ConE recommendations thus yielding too many warnings for harmless concurrent edits.

We started with a data set of 208,556 pull requests. As bug fixes is our main concentration for
the empirical analysis, we removed all the pull requests that are not bug fixes. That reduced the
data set to 67,155 pull requests (32.2% of the pull requests are bug fixes). Then, we applied other
filters mentioned above, which further reduced the data set to 54,127 pull requests (25.95%). Table 1
shows the distribution of concurrently and non-concurrently edited files per repository.

3.2 RQ1: Concurrent Versus Non-concurrent Bug-inducing Edits

We take every (concurrently or non-concurrently) edited file, and check whether the nature of the
edit has any effect on the likelihood of that file appearing in bug fixes after the edit has been merged.
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Table 1. Distribution of Concurrently and Non-concurrently Edited Files Per Repository

Repo Distinct

number

of con-

currently

edited

files

Distinct

number of

non-

concurrently

edited files

Number

of bug fix

pull

requests

Percentage

of concur-

rently

edited files

Percentage of

non-

concurrently

edited files

Repo-1 3,500 4,875 4,781 41.7 58.2
Repo-2 10,470 16,879 15,678 38.2 61.8
Repo-3 2,907 4,119 5,467 41.3 58.7
Repo-4 5,560 7,550 8,972 42.4 57.6
Repo-5 4,110 7,569 9,786 35.2 64.8
Repo-6 5,987 9,541 9,443 38.5 61.5

Total 32,534 50,533 54,127 39.1 60.9

We compare how the percentage of edited files that are seen in bug fixes (within a day, a week,
two weeks, and a month), varies with the nature of the edit (concurrent versus non-concurrent).

Figure 1 shows the impact of concurrent versus non-concurrent edits on the number of bugs
being introduced. Across all six repositories, the percentage of bug-inducing edits is consistently
higher for concurrently edited files (blue bars) than for non-concurrently edited ones (orange bars).

3.3 RQ2: Edits in Files Versus Bug Fixes in Files

We use Spearman’s rank correlation to analyze how the total number of edits, concurrent edits,
and non-concurrent edits to files each correlate with the number of bug fixes seen in those files.

While Figure 1 shows that more concurrently edited files are seen in bug fix pull requests (com-
pared to non-concurrently edited ones), this might also be because these files are frequently edited
and seen in bug fix pull requests naturally. To validate this, we performed Spearman rank correla-
tion analysis for each file that is ever edited with respect to how many times it is seen in bug fixes
(the numbers of data points from the six repositories are listed in Table 1):

• The total number of times a file is seen in all completed pull requests versus the number of
bug fixes in which it is seen
• The total number of times a file is seen in concurrent pull requests versus the number of bug

fixes in which it is seen
• The total number of times a file is seen in non-concurrent pull requests versus the number

of bug fixes in which it is seen

The results are in Table 2. We observe that concurrent edits (third column) consistently are
correlated with bug fixes, more so than non-concurrent edits (column 4) and all edits (column 2).
For all repositories except Repo-4, there exists almost no correlation between non-concurrent edits
(column 4) and bug fixes.

For Repo-4, frequently edited files are not necessarily the ones seen in more bug fixes: there
exists a negative correlation between total edits (column 2) and the number of bug fixes. However,
files that are concurrently edited (column 3) do have a positive correlation with the number of
bug fixes.

The variety in the correlations can be explained by the fact that concurrent editing is just one
of many factors related to the need for bug fixing. Other factors might include the level of modu-
larization, developer skills, the test adequacy, engineering system efficiency, and so on.
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Fig. 1. Graphs showing how the percentage of files seen in bug fixes (within a day, a week, two weeks,

and a month) is changing Blue and orange bars represent concurrently and non-concurrently edited files,

respectively.

4 SYSTEM DESIGN

Backed by the correlation analysis suggesting that concurrent edits may be prone to causing issues.
Also, there exists a huge demand from engineering organizations, inside Microsoft, for a better tool
that can detect conflicting changes early on and facilitate better communication among developers,
we moved forward to materialize the idea of ConE into reality. We then performed large-scale
testing and validation by deploying ConE on 234 repositories. Details about the implementation,
deployment, and scale-out are provided in Section 5.

In this section, we describe ConE’s conflict change detection methodology, algorithm and system
design in detail. We will use the following terminology:

• Reference pull request is a pull request in which a new commit/update is pushed thus trigger-
ing the ConE algorithm to be run on that pull request.
• Active pull request is a pull request whose state is “active” when the ConE algorithm is trig-

gered to be run on a reference pull request.
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Table 2. Spearman Rank Correlation Analysis for Total Edits, Concurrent Edits,

Non-concurrent Edits Versus Bug Fixes

Repo
Total Edits to

Bug Fixes
Concurrent Edits to

Bug Fixes
Non-concurrent Edits

to Bug Fixes

Repo-1 0.145∗∗∗ 0.298∗∗∗ 0.034∗∗

Repo-2 0.072∗∗∗ 0.140∗∗∗ 0.057∗∗

Repo-3 0.140∗ 0.330∗ 0.120∗

Repo-4 −0.077∗∗∗ 0.451∗∗∗ −0.461∗∗∗

Repo-5 0.164∗∗∗ 0.472∗∗∗ 0.091∗∗∗

Repo-6 0.084∗∗ 0.196∗∗∗ 0.005∗

***p < 0.001, **p < 0.01, *p < 0.05.

A key design consideration is that we want to avoid false alarms. In the current state of the
practice developers never receive warnings about potentially harmful concurrent edits. Based on
this, we believe it is acceptable to miss a few warnings. However, giving false warnings will likely
lead to rejection of a tool like ConE. For that reason, ConE has several built-in heuristics that are
aimed at reducing such false alarms.

Due to the nature of the problem, the domain we are operating in, and the algorithm we have
in-place, it is possible to see notifications that are false alarms. One of the design choices that we
had to make was to minimize the false alarms by making it more conservative. A side effect of this
is our coverage (number of pull requests for which we send a notification) will be lower. Studies
have shown that, in large organizations, tools that generate many false alarms are not used and
eventually deprecated [46]. However, recent techniques proposed by Brindescu et al. [11], can
potentially aid in facilitating a decision by determining the merge conflict situations to flag, based
on the complexity of the merge conflict.

4.1 Core Concepts

ConE constantly listens to events that happen in an Azure DevOps environment [5]. When any
new activity is recorded (e.g., pushing a new update or commit) in a pull request, the ConE algo-
rithm is run against that pull request. Based on the outcome, ConE notifies the author of the pull
request about conflicting changes. We describe two novel constructs that we came up with for de-
tecting conflicting changes and determining candidates for notifications: EOO and the existence of
RCEs. Next, we provide a detailed description of ConE’s conflict change detection algorithm and
the parameters we have in place to tune ConE’s algorithm.

4.1.1 Extent of Overlap (EOO). ConE scans all the active pull requests that meet our filtering
criteria (explained in Section 3.1) and for each such pull request (reference pull request) calculates
the percentage of files edited in the reference pull request that overlap with each of the active pull
requests:

Extent of Overlap =
| Fr ∩ Fa − Fe |

| Fr |
∗ 100,

where Fr = Files edited in reference pull request, Fa = Files edited in a given active pull request,
Fe = Files excluded, i.e., files that are not of types listed in the paragraph below. The idea is to
find the percentage of items that are commonly edited in multiple active pull requests and create
a pairwise overlap score for each of the active and reference pull request pairs. Intuitively, if the
overlap between two active pull requests is high, then the probability of them doing duplicate work
or causing merge conflicts when they are merged is also going to be high. We use this technique to
calculate the overlap in terms of number of overlapping files for now. This can be easily extended
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Table 3. Distribution of File Types Seen in Bug Fixes

File type Percentage On ConE allow list?

.cs 44.32 yes

.cpp 18.55 yes

.c 11.27 yes

.sql 6.20 yes

.java 5.36 yes

.js 3.98 yes

.ts 3.79 yes

.ini 0.20 no

.csproj 0.04 no
others 6.29 no

Table 4. Number of Bug Fixes with RCEs and No RCEs

Edit type Count Percentage

Bug fix PRs with no RCEs 1,617 78.3
Bug fix PRs with at least one RCE 446 21.7

to calculate the overlap between two active pull requests in terms of number of classes or methods
or stubs if that data is available.

A milder version of EOO is used by the model proposed by Owhadi-Kareshk et al. [40], which
looks at the number of files that are commonly edited in two pull requests when determining
conflicting changes. While calculating extent of overlap it is important to exclude edits to certain
file types whose probability of inducing conflicts is minimal. This helps in reducing false alarms
in our notifications significantly. Based on a manual inspection of 500 randomly selected bug fix
pull requests, by the first three authors, we concluded that concurrent edits to initialization or
configuration files are relatively safe, but that concurrent edits to source code files are more likely
to lead to problems. Therefore, we created an allow list based on file types as shown in Table 3. As
can be seen, this eliminates around 6.4% of the files. Note that such an allow list is programming
language-specific. When ConE is to be applied in different contexts, different allow lists are likely
needed.

4.1.2 Rarely Concurrently Edited files (RCEs). These are the files that typically are not edited
concurrently, recently. Usually all the updates or edits to them are performed, in a controlled fash-
ion, by a single person or small set of people. Seeing RCEs in multiple active pull requests is an
anomalous phenomenon. For example, a file foo.cs is always edited by a given developer, through
one active pull request at any point. The ConE system keeps a track of such files and tags them as
RCEs. In the future, if multiple active pull requests are seen editing this file simultaneously, ConE
flags them. Our intuition is that if a lot of RCEs are seen in multiple active pull requests, which is
unusual, then changes to these files should be reviewed carefully and everyone involved in editing
them should be aware of others’ changes.

We performed an empirical analysis, from our shadow mode deployment data (as explained in
Section 5.2), to understand how pervasive RCEs really are. As explained in Table 4, 21.7% of bug
fixes contains at least one RCE in them while the total number of RCEs in these repositories is
just 2%. Based on this data and anecdotal feedback from developers, we realized that concurrent
edits to RCEs is an unusual activity that should not be seen a lot. But, if observed, then it should
be notified to all the developers involved.
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For building the ConE system, we ran the RCE detection algorithm that looks at the pull requests
that are created in a repository within the last three months from when the algorithm runs. The
duration can be increased or decreased based on how big or how active the system is. This process,
after each run, creates a list of RCEs. Once the initial bootstrapping is done and a list of RCEs is
prepared, that list is used by the ConE algorithm when checking for the existence of the RCEs in
a pair of pull requests. The RCE list is updated and refreshed once every week, through a separate
process. The process of detecting and updating RCEs is resource intensive. So, we need to strike a
balance between how quickly we would like to update the RCE list versus how many resources we
need to throw at the system, without compromising the quality of the suggestions. We picked one
week as the refresh interval through multiple iterations of experiments. This process guarantees
that the ConE system reacts to the changes in the rarity of concurrent edits, especially the cases
where an RCE becomes a non-RCE due to the concurrent edits it experiences. The steps involved
in creating and updating RCEs are listed below.

Creating the RCE list:

(1) Get all the pull requests created in the last three months from when the algorithm is run. Cre-
ate a list of all the files that are edited in these pull requests by applying the filters explained
in the paragraph above on file types.

(2) Prepare sets of pull requests that overlap with others. Prepare a list of files edited in the over-
lapping pull requests by applying the filters explained in the paragraph above on file types.

(3) The list of files created in step-1 minus the list of files created in step-2 constitutes the list
of RCEs.

Updating the RCE list:

(4) Remove files from the RCE list if they are seen in overlapping pull requests when the algo-
rithm is run the next time. Because, if they are seen in overlapping pull requests, they will
not be qualified to be RCEs anymore.

(5) Refresh the list by adding the new RCEs discovered in the latest edits, when the algorithm
is run again.

4.2 The ConE Algorithm

ConE’s algorithm to select candidate pull requests that developers need to be notified about pri-
marily leverages the techniques explained above: EOO and existence of RCEs. Together these serve
to reduce the total number of active pull requests under consideration, to pick the pull requests
that need to be notified about. The ConE algorithm consists of seven steps listed below:

Step 1: Check if the reference pull request’s age is more than 30 days. Studies have shown that
pull requests that are active for so long may not even be completed [25]. Exclude all such pull
requests.

Step 2: Construct a list of files that are being edited in the reference pull request. While con-
structing this set, we exclude any files of types that are not in the allow list from Table 3.

Step 3: Construct a set of files that are being edited in each of the active pull requests, using
the methodology mentioned in Steps 1 and 2. One extra filter that we apply here is to exclude PRs
that are being interacted by the author of the reference pull request. If the author of the reference
pull request is already aware of this pull request, then there is no need to notify them.

Step 4: Calculate the extent of overlap using the formula described in Section 4.1. For every
pair of reference pull request PRr and active pull request PRa1, calculate the tuple Tea1 = ⟨PRr, PRa1,
E1⟩, where E1 is the extent of overlap between the two pull requests. Do this for all the active pull
requests with respect to a reference pull request. At the end of this step, we have a list of tuples,
Tea = [⟨PR1, PR7, 55⟩, ⟨PR1, PR12, 95⟩, ⟨PR1, PR34, 35⟩. . . .].
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Table 5. Distribution of Extent of Overlap

Percentage of overlap Number
(range) of PRs

0–10 309
11–20 223
21–30 137
31–40 87
41–50 25
51–60 359
61–70 92
71–80 21
81–90 23
91–100 378

Step 5: Check for the existence of RCEs and the number of RCEs between each pair of reference
and active pull request. Create a tuple Tr = ⟨PRr, PRa1, R1⟩ where PRr is the reference pull request,
PRa1 is active pull request and R1 is the number of RCEs in the overlap of reference and active pull
requests. Do this for all reference and active pull request combinations. At the end of this step, we
have a list of tuples, Tra = [⟨PR1, PR7, 2⟩, ⟨PR1, PR12, 2⟩, ⟨PR1, PR34, 9⟩. . . .]

Step 6: Apply thresholds on the values for extent of overlap and the number of RCEs, as ex-
plained in Section 4.3. For example, we can apply a threshold that we select the pull requests
whose extent of overlap is greater than 50% OR there should be at least two RCEs. We go through
the list of tuples that we have generated in Steps 4 and 5 above and apply the thresholding criteria.

Step 7: Apply a ranking algorithm to prioritize the pull requests that need to be looked at first
if multiple pull requests are selected by the algorithm. We rank candidate pull requests based on
the number of RCEs present and then by the extent of overlap. This is because RCEs being edited
through multiple active pull requests is an anomalous phenomenon that needs to be prioritized.

4.3 Default Thresholds and Parameter Tuning

In this section, we describe the thresholding criteria, and the rationale that needs to be applied
while choosing parameter values for large-scale deployment. The parameters that we have in place
are: the EOO, the number of RCEs, the window of time period (i.e., the number of months to
consider for determining RCEs), and the total number of file edits in the reference PR.

In line with our objectives, we are searching for parameter settings that find actual conflicts, yet
minimize false alarms. Furthermore, we target settings that are easy to explain (e.g., “this PR was
flagged, because half of the files changed it are also touched in another PR”).

Threshold for EOO. For Extent of Overlap, we explored what would happen if we put the thresh-
old at 50%: if at least half of the files edited in another pull request, then consider it for notification.
To assess the consequences of this, we randomly selected 1,654 pull requests, which have at least
one file overlapped with another pull request. This data set is a subset of the data collected to per-
form empirical analysis on concurrent edits (see Section 3). We manually inspected each of these
1,654 pull requests to make sure the overlap we observe is indeed correct. Our empirical analysis
(see Table 5), shows that 50% of the pull requests have an overlap of 50% or less. Thus, this sim-
ple heuristic eliminates half of the candidate pull requests for notification, substantially reducing
potential false alarms, and keeping the candidates that are more likely to be in conflict.
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Fig. 2. Distribution of the number of PRs with a

given number of RCEs.

Fig. 3. Distribution of the number of PRs with a

given number of overlapping files.

Threshold for RCEs: For RCEs, we again followed a simple rule: If the active-reference pull re-
quest pair contains at least two files that are modified in them, which are always edited in isolation,
then select the active pull request as a candidate. As shown in Figure 2, the majority of the pull re-
quests contains fewer than two RCEs. To be conservative, we imposed a threshold on RCE ≥ 2, i.e.,
to select a PR as a candidate, that pull request needs to have at least two RCEs that are commonly
edited between the reference and active pull requests.

Number of overlapping files: Assume a developer creates a pull request by editing two files and
one of them is also edited in another active pull request. Here EOO is 50%. This means this pull
request qualifies to be picked as a candidate for notification. Editing just one file in two active
pull requests might not be enough to reasonably make an assumption about the potential of con-
flicts arising. Therefore, we impose a threshold on the “number of files” that needs to be edited,
simultaneously, in both pull requests. As a starting point, we imposed a threshold of two, i.e., ev-
ery candidate pull request should have more than two overlapping files (in addition to satisfying
the EOO condition of >= 50%). We plotted the distribution of the number of overlapping files in
Figure 3. As shown in Figure 3, the number of PRs (on the Y-axis) drops sharply after the number
of overlapping file edits is two. Therefore, we picked two as the default threshold.

Threshold Customization: In addition to the empirical analysis, we collected initial feedback
from developers working with the production systems through our shadow mode deployment
(Section 5.2). One of the prominent requests from the developers was to enable the repository
administrators to change the values of the parameters explained above based on the developer
feedback. Therefore, we provided customization provisions to make ConE system suit each reposi-
tory’s needs. Based on the pull request patterns and needs of the repository, system administrators
can tune the thresholds to optimize the efficacy of the ConE system for particular reporsitories.

5 IMPLEMENTATION AND DEPLOYMENT

5.1 Core Components and Implementation

The core ConE components are displayed in Figure 4. ConE is implemented on Azure DevOps

(ADO), the DevOps platform provided by Microsoft. We chose to develop ConE on ADO due to
its extensibility that allows third-party services to interact with pull requests through various
collaboration points, such as adding comments in pull requests, a rich set of APIs provided by
ADO to read metadata about pull requests, and service hooks that allow a third-party application
to listen to events, such as updates that happen inside the pull request environment.

Within Azure DevOps, as shown in the left box of Figure 4, ConE listens to events triggered
by pull requests, and has the ability to decorate pull requests with notifications about potentially
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Fig. 4. ConE System design: Pull requests from Azure DevOps are listened to by the ConE change scanner,

suggestion generator, notification engine, and decorator.

conflicting other pull requests. The ConE service itself, shown at the right in Figure 4, runs within
the Azure Cloud. The ConE change scanner listens to pull request events, and dispatches them
to workers in the ConE suggestion generator. Furthermore, the scanner monitors telemetry data
from interactions with ConE notifications. The core ConE algorithm is offered as a scalable service
in the Suggestion Generator, with parameters tunable as explained in Section 4.3.

The ConE Service is implemented using C# and .NET 4.7. It has been built on top of Microsoft
Azure cloud services: Azure Batch [4] for compute, Azure DevOps service hooks for event notifi-
cation, Azure worker roles and its service bus for processing events, Azure SQL for data storage,
Azure Active Directory for authentication and Application Insights for telemetry and alerting.

5.2 ConE Deployment

We selected 234 repositories to pilot ConE in the first phase. Some of the key attributes based on
which the repository selection process has taken place are listed below:

• Prioritize repositories where we have developers and managers who volunteered to try
ConE, since we expect them to be willing to provide meaningful feedback.
• Include repositories that are of different sizes (based on the number of files present in them):

very large, large, medium, and small.
• Include repositories that host source code for diverse set of products and services. That

includes client side products, mobile apps, enterprise services, cloud services, and gaming
services.
• Consider repositories that have cross-geography and cross-timezone collaborators, as well

as repositories that have most of the collaborators from a single country.
• Consider repositories that host source code written in multiple programming languages in-

cluding combinations of Java, C#, C++, Objective C, Swift, Javascript, React, SQL, and so on.
• Include repositories that contain a mix of developers with different levels of experience

(based on their job titles): Senior, mid-level, and junior.

We enabled ConE in shadow mode on 60 repositories for two months (with a more liberal set of
parameters to maximize the number of suggestions we generate). In this mode, we actively listen
to pull requests, run the ConE algorithm, generate suggestions, and save all the suggestions in
our SQL data store for further analysis, without sending the notifications to the developers. We
generated and saved 1,200 suggestions by enabling ConE in this mode for two months. We then
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Fig. 5. ConE notification that a pull request has significant overlap with another pull request.

went through the suggestions and the telemetry collected to optimize the system before a large-
scale roll out.

The primary purpose of shadow mode deployment is to validate whether operationalizing a
service like ConE is even possible at the scale of Microsoft. Furthermore, it allowed us to check
whether we indeed can flag meaningful conflicting pull requests, and what developers would think
of the corresponding notifications. The telemetry we collected includes the time it takes to run the
ConE algorithm, resource utilization, the number of suggestions the ConE system would have
made, and so on. We experimented with tuning our parameters (explained in Section 4.3) and their
impact on the processing time and system utilization. This helped us in understanding the scale
and infrastructure requirements and overall feasibility.

We collected feedback from the developers by reaching out to them directly. We have shown
them the suggestions we would have made if the ConE system was enabled on their pull requests,
format of the suggestions and the mode of notifications. We iterated over the design of the
notification based on the user feedback before settling on the version of the notification as shown
in Figure 5.

After multiple iterations of user studies and feedback collection, on the design, frequency, and
the quality of the ConE suggestions as validated by the developers participated in our shadow
mode deployment program, we turned on the notifications on 234 repositories.

5.3 Notification Mechanism

We leveraged Azure DevOps’s collaboration points to send notifications to developers. A notifica-
tion is a comment placed by our system in Azure DevOps pull requests. Figure 5 shows a screen-
shot of a comment placed by ConE on an actual pull request. It displays the key elements of a
ConE notification: a comment text that provides a brief description of the notification, the id of
the conflicting pull request, the name(s) of the author(s) of the conflicting pull request, files that are
commonly edited in the pull requests, a provision to provide feedback by resolving or not fixing
a comment (marked as “Resolved” in the example), and the option to reply to the comment inline
to provide explicit written feedback.

While ConE actively monitors every commit that is being pushed to a pull request, it will only
add a second comment on the same pull request again if the state of the active or the reference
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pull request is significantly changed in subsequent updates and ConE finds a different set of pull
requests as candidates for notification.

In a ConE comment, elements like pull request id, file names, author name are actually hyper-
links. The pull request id hyperlink points to the respective pull request’s page in Azure DevOps.
The file name hyperlink points to a page that shows the diff between the versions of the file in
the current and conflicting pull requests. The author name element, upon clicking, spins up a chat
window with the author of the conflicting pull request instantly. When people interact with these
elements by clicking them, we track those telemetry events (which is consented by the users of
the Azure DevOps system, in Microsoft) to better understand the level of interaction developers
are having with the ConE system.

5.4 Scale

The ConE system has been deployed on 234 repositories in Microsoft. The repositories have been
picked based on maximizing the diversity and variety of the repositories in various dimensions
as explained in Section 5.2. Since enabled in March 2020, until September 2020 (when we pulled
the telemetry data) ConE evaluated 26,000 pull requests that were created in all the repositories
on which ConE has been enabled. Within these 26,000 pull requests, an additional 156,000 update
events (commits on the same branch, possibly affecting new files) occurred. Thus, ConE had to
react to and process a total of 182,000 events that were generated, within Azure DevOps, in those
six months. For every update, ConE has to compare the reference pull request with all active pull
requests that match ConE’s filtering criteria. In total ConE made a total of approximately two
million comparisons.

The scale of operations and processing is expected to grow as we onboard new and large reposi-
tories. The simple and lightweight nature of the ConE algorithm combined with the scalable archi-
tecture and efficient design, and its engineering on Azure cloud has given us the ability to process
events at this scale with a response rate of less than four seconds per event. The time it takes to
process an event end to end, i.e., receiving the pull request creation or update event, running the
ConE algorithm and passing the recommendations back (if any) has never taken more than four
seconds. ConE employed a single service bus queue and four worker roles in Azure to handle the
current scale. As per our monitoring and telemetry (resource utilization on Azure infrastructure,
processing latency, etc.) ConE still had bandwidth left to serve the next hundred repositories of
similar scale with the current infrastructure setup.

6 EVALUATION: DEVELOPERS PERCEPTIONS ABOUT CONE’S USEFULNESS

Of the 26,000 pull requests under analysis during ConE’s six month deployment (Section 5.4),
ConE’s filtering algorithm (Section 4.2) excluded 2,735 pull requests. In the remaining 23,265 pull
requests, ConE identified 775 pull requests to send notifications to (3.33%). In this section, we eval-
uate the usefulness of these 775 notifications.

All repositories were analyzed with the standard configuration; No adjustments were made to
the parameters. Though the service is enabled to send notifications in 234 repositories, during
the six-month observation period, ConE raised alerts on just 44 distinct repositories. As shown in
Figure 6, the notification volume varies between repositories.

6.1 Comment Resolution Percentage

ConE offers an option for users to provide explicit feedback on every comment it placed, within
their pull requests. Users can select the “Resolved” option if they like or agree with the notification,
and the “Won’t fix” option if they think it is not useful. A subset of users were given instructions
and training on how to use these options. The notification itself also contains instructions, as
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Fig. 6. Distribution of notifications per repository.

Fig. 7. Number of positive (Resolved), negative (Won’t Fix), and neutral (Active) responses to ConE

notifications.

shown in Figure 5. A user can choose not to provide any feedback by just leaving the comment as
is, in the “Active” state. Through this, we collect direct feedback from the users of the ConE system.

Figure 7 shows the distribution of the feedback received. The vast majority (554 of 775, for
71.48%) of notifications was flagged as “Resolved.” For 147 (18.96%) of the notifications, no feedback
was provided. Various studies have shown that users tend to provide explicit negative feedback
when they do not like or agree with a recommendation, while tend not be so explicit about positive
feedback [35, 43]. Therefore, we cautiously interpret this as neutral to positive.

We manually analyzed all 74 (9.5%) cases where the developers provided negative feedback. For
the majority of them, the developer was already aware of the other conflicting pull request. In
some cases the developers thought that ConE is raising a false alarm as they expect no one else
to be making changes to the same files as the ones they are editing. When we show them other
overlapping pull requests that were active while they were working on their pull request, to their
surprise, the notification were not false alarms. We list some of the anecdotes in Section 6.4.

6.2 Extent of Interaction

As discussed in Section 5.3, a typical ConE notification/comment has multiple elements that a de-
veloper can interact with: For each conflicting pull request, the pull request id, files with conflicting
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Fig. 8. Number of notifications (orange), and number of interactions (blue) with those notfications, per

month. As developers become more familiar with ConE, they increasingly interact with its notifications.

changes, and the author name are shown. These are deep links. Developers can just take a look
at the comment and ignore it or interact with it by clicking on one of the “clickable elements” in
the ConE notification. If the user decides to pursue further clicking on one of these elements, then
that action is also logged as telemetry (in Azure AppInsights).

From March to September of 2020, we logged 2,170 interactions on 775 comments that ConE
has placed, which amounts to 2.8 clicks per notification on average. Measured over time, as shown
in Figure 8, the number of interactions and the “clicks per notification” are clearly increasing as
more and more people are getting used to ConE comments, and are using it to learn more about
conflicting pull requests recommended by ConE.

Note that the extent of interaction does not include additional actions developers can take to
contact authors of conflicting pull requests once ConE has made them aware of the conflicts, such
as reaching out by phone, walking into each other’s office, or a simple talk at the water cooler.

6.3 User Interviews

The quantitative feedback discussed so far captures both direct (comment resolution percentage)
and indirect (extent of interaction) feedback. To better understand the usefulness we directly
reached out (via Microsoft Teams, asynchronously) to authors of 100 randomly selected pull re-
quests for which ConE placed comments. The user feedback for these 100 pull requests is 45%
positively resolved, 35% won’t fix, and 20% no response. The interviewers did not know these au-
thors, nor had worked with them before, also because the teams working on the systems under
study are organizationally far away from the interviewers.

The interview format is semi-structured where users are free to bring up their own ideas and
free to express their opinions about the ConE system. We posed the following questions:

(1) Is it useful to know about these other PRs that change the same file as yours?
(2) If yes, then roughly how much effort do you estimate was saved as a result of finding out

about the overlapping PRs? If not, then is there other information about overlapping PRs
that could be useful to you?

(3) Does knowing about the overlapping PRs help you to avoid or mitigate a future merge
conflict?

(4) What action (if any) will you likely take now that you know about the overlapping PRs?
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Table 6. Distribution of Qualitative Feedback Responses

Category # of responses

Favorable
I’d love to use ConE 25 (52.08%)

I will use ConE 20 (41.67%)

Unfavorable I don’t want to use ConE 3 (6.25%)

(5) Would you be interested in keeping using ConE that notifies you about overlapping PRs in
the future? (Note that we aim to avoid being too noisy by not alerting if the overlapping files
are frequently edited by many people, if they are not source code files, etc.)

We did not receive the responses in a uniform format directly based on the structure of the
questions. We used Microsoft Teams to reach out to the developers and the questions are open
ended. Therefore, we could not enforce a strict policy on the number of questions the respondents
should answer and on the length of the answers. Some of the participants answered all questions,
while some answered only one or two. Some respondents were detailed in their response, while
some were succinct with “yes” or “no” answers. Some of the respondents provided a free-form
response, with an average word count of just 47 words per response. So, we could not calculate
the distribution of responses for all questions. However, we see that for question 5, there were
responses. We coded and categorized the responses we received for question 5 as explained below.

The first three authors, together, grouped the responses that we received (48 of 100), until con-
sensus was reached, into two categories: Favorable (if the users would like to continue using ConE,
i.e., the answer to question 5 is along the lines of “I will use ConE” or a “I’d love to use/keep using
ConE”) and Unfavorable (users do not find the ConE system to be useful and do not want to con-
tinue using it). Table 6 shows the distribution of the feedback: 93.75% of the respondents indicated
their interest and willingness to use ConE.

6.4 Representative Quotes

To offer an impression, we list some typical quotes (positive and negative) that we received from
the developers. In one of the pull requests where we sent a ConE notification notifying about
potential conflicting changes, a developer said:

“I wasn’t aware about the other two conflicting PRs that are notified by ConE. I believe
that would be very helpful to have a tool that could provide information about existence
of other PRs and let you know if they perform duplicate work or conflicting change!!”

It turned out that the other two developers (the authors of the conflicting pull requests flagged by
ConE) are from entirely different organizations and geographies. Their common denominator is
the CEO of the company. It would be very difficult for the author of the reference pull request to
know about the existence of the other two pull requests without ConE bringing it to their notice.

Several remarks are clear indicators of the usefulness of the ConE system:

“Yes, I would be really interested in a tool that would notify overlapping PRs.”

“Looking forward to use it! Very promising!”

“ConE is such a neat tool! Very simple but super effective!”

“ConE is a great tool, looking forward to seeing more recommendations from ConE.”

“This is an awesome tool, Thank you so much for working to improve our engineering!”

“It is a nice feature and when altering files that are critical or very complex, it is great to
know.”
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Some developers mentioned that ConE helped them saving time and/or effort significantly by
providing early intervention:

“ConE is very useful. It saved at least two hours to resolve the conflicts and smoke again.”

“This would save a couple of hours of dev investigation time a month.”

“ConE would have saved probably an hour or so for PR <XYZ>.”

We also received feedback from some developers who expressed a feeling that a tool like ConE
may not necessarily be useful for their scenarios:

“For me no, I generally have context on all other ongoing PRs and work that might cause
merge issues. No, thank you!”

“For my team and the repositories that I work in, I don’t think the benefit would be that
great. I can see where it could be useful in some cases though.”

“It’s not helpful for my specific change, but don’t let that discourage you. I can see how
something like ConE be definitely useful for repositories like <XYZ>, which has a lot of
common code.”

Another interesting case we noticed is, ConE’s ability to help in detecting duplication of work.
ConE notified a developer (D1) about an active pull request authored by another developer (D2).
After the ConE notification was sent to D1, they realized that D2’s pull request is already solving
the same problem and D2 made more progress. D1 ended up abandoning their pull request and
pushed several code changes in D2’s pull request, which was eventually completed and merged.
When we reached out to D1, they said:

“Due to poor communication/project planning D2 and I ended up working on the same
work item. Even if I was not notified about this situation, I would have eventually learned
about it, but that would have costed me so much time. This is great!”

Though we do not observe scenarios like this frequently, this case demonstrates an example of
the kind of potential conflicts ConE can surface, in addition to flagging syntactic conflicts.

6.5 Factors Affecting ConE Appreciation

After analyzing all the responses from our interviews, analyzing the pull requests on which we
received “Won’t Fix” and interviewing respective pull request authors, we identified the following
main factors as to what makes a developer incline toward using a system like ConE.

Developers who found the ConE notifications useful: These are the developers who typically work
on large services with distributed development teams across multiple organizations, geographies
and time zones. They also tend to work on core platforms or common infrastructure (as opposed to
the ones who make changes to the specific components of the product or service). To corroborate
this, the first author classified the repositories into large and small manually, based on the size
and the activity volume in those repositories. We then, programmatically, categorized the 628
responses based on their repository sizes. The results, in Table 7), show that for large repositories
developers are positive for 77.69% (404/520) of the cases, whereas for small repositories this is
58.82% (150/255).

Developers who found ConE not so useful: These developers are the ones who work on small
micro services or small scale products and typically work in smaller teams. These developers, and
their teams, tend to have delineated responsibilities. They usually have more control over who
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Table 7. Distribution of Quantitative Feedback Based on Size of the Repository

Feedback Large repositories Small repositories Total

Positively resolved 404 (77.69%) 150 (58.82%) 554 (71.48%)
Won’t fix 33 (6.34%) 41 (16.08%) 74 (9.54%)
No response 83 (15.96%) 64 (25.10%) 147 (18.96%)

Total 520 (67.09%) 255 (32.90%) 775 (100.0%)

makes changes to their code base. Interestingly, there were cases where some of these developers
were surprised to see another active pull request, created by a different developer, from a different
team sometimes, which was editing the same area of the source code as their pull request. This
could be a result of underestimating the pace with which service dependencies are introduced,
product road maps change, and codebases are re-purposed in large-scale organizations.

7 DISCUSSION

In this section, we describe the outlook and future work. We also explain some of the limitations
of the ConE system and how we plan to address them.

7.1 Outlook

One of the immediate goals of the ConE system is to expand its reach beyond the initial 234 on
which it is enabled, and eventually on every source code repository in Microsoft. Furthermore, in
the long run, Microsoft may consider offering ConE as part of its Azure DevOps pipeline, making
it available to its customers across the world. Likewise, GitHub may consider to develop a free
version of ConE as an extension on the GitHub marketplace for the broader developer community
to benefit from this work.

As explained, ConE is expected to generate false alarms because of the fact that it is a heuristics-
based system. To improve the system and reduce the number of false alarms at this point, ConE
checks for very simple but effective heuristics (see Section 4.2) and conditions to flag conflicting
changes that causes unintended consequences. We offer three configuration parameters (see Sec-
tion 4.3), that help us make the solution effective by striking a suitable balance between the rate
of false alarms and coverage, and customize the solution based on individual repository needs.

To further improve precision, we would like to investigate the options that let us go one level
deeper from file level to, e.g., analyze actual code diffs. Understanding code diffs and performing
semantic analysis on them is a natural next a step for a system like ConE. Providing diff information
across every developer branch is fundamentally expensive, so it is not offered by Azure DevOps,
the source control system on which ConE is operationalized, nor by other commercial or free
source control systems like GitLab or GitHub. A possible remedy is to bring the diff information
into the ConE system. This involves checking out two versions of the same file, within ConE, and
finding differences. This has to happen in real-time, in a scalable and language agnostic fashion.

Once we have the diff information, another idea is to apply deep learning and code embeddings
to develop better contextual understanding of code changes. We can use the semantic understand-
ing in combination with the historical data about concurrent and non-concurrent edits to develop
better prediction models and raise alarms when concurrent edits are problematic.

ConE was found to be useful by facilitating early intervention about the potential conflicting
change. However, this does not fully solve the problem, i.e., fixing the merge conflicts or merging
the duplicate code. Exploring auto-fixing of conflicts or code duplication as a natural extension to
ConE’s conflict detection algorithm will help in alleviating the problems caused by the conflicts
and fixing them in an automated fashion.
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7.2 Threats to Validity

Concerning internal validity, our qualitative analysis was conducted by reaching out to the devel-
opers via Microsoft Teams, asynchronously. None of the interviewers know the people that were
reached out neither worked with them before. We purposefully avoided deploying ConE on repos-
itories that are under the same organization as any of the researchers involved in this work. As
Microsoft is a huge company and most of the users of the ConE service are organizationally distant
from the interviewers, the risk of response bias is very minimal. However, there is a small chance
that respondents may be positive about the system, because they want to make the interviewers,
who are from the same company, happy.

Concerning external validity, the empirical analysis, design and deployment, evaluation and
feedback collection are done specifically in the context of Microsoft. The correlations we reported
in Table 2 can vary based on the setting of the organization in which the analysis is performed. As
Microsoft is one of the world’s largest concentration of developers, and developers at Microsoft
uses very diverse set of tools, frameworks, programming languages, our research and the ConE
system will have a broader applicability. However, at this point the results are not verified in the
context of other organizations.

8 CONCLUSION AND FUTURE WORK

In this article, we seek to address problems originating from concurrent edits to overlapping files in
different pull requests. We start out by exploring the extent of the problem, establishing a statistical
relationship between concurrent edits and the need for bug fixes in six active industrial repositories
from Microsoft.

Inspired by these findings, we set out to design ConE, an approach to detect concurrently edited
files in pull requests at scale. It is based on heuristics like the extent of overlap and the presence of
rarely concurrently edited files between pairs of pull requests. To make sure the precision of the
system is sufficiently high, we deploy various filters and parameters that help in controlling the
behavior of the ConE system.

ConE has been deployed on 234 repositories inside Microsoft. During a period of six months,
ConE generated 775 notifications, from which 71.48% received positive feedback. Interviews with
48 developers showed 93% favorable feedback, and applicability in avoiding merge conflicts as well
as duplicate work.

In the future, we anticipate ConE will be employed at substantially more systems within Mi-
crosoft. As ConE has been deployed and found to be useful by the developers in a large and diverse
(in terms of programming languages used, tools, engineering systems, geographical presence, etc.)
organization like Microsoft, we believe the techniques and the system has applicability beyond
Microsoft. Furthermore, we see opportunities for implementing a ConE service for systems like
GitHub or GitLab. Future research surrounding ConE might entail improving its precision by learn-
ing from past user feedback or by leveraging diffs without sacrificing scalability. Beyond warnings,
future research could also target automating actions to be taken to address the pull request con-
flicts detected by ConE.
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