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A B S T R A C T

Current design methods for flexure (or compliant) mechanisms regard stress as a secondary, limiting factor. This
is remarkable because stress is also known as a useful design parameter. In this paper we propose the Stress
And Geometry (STAGE) method, to design the geometry of a flexure mechanism together with a desired stress
field. From this design, the stress-free to-be-fabricated geometry is computed using the inverse finite element
method. To demonstrate the potential of the method, the geometry of the well-known crossed-flexure pivot
is taken as example. We first show how this mechanism can be redesigned for the same functional geometry
with various internal stresses. This results for a specific choice of stress field in a design of a crossed-flexure
pivot with 23% lower peak stresses during motion as compared to the known designs, for a ±45◦ rotation.
We then present a second example, of a Folded Leaf Spring (FLS). With a parameter sweep the optimal stress
field is calculated, showing a peak stress reduction of 28% during motion. This result was validated with an
experiment, showing a normalized mean absolute error of 5.5% between experiment and theory. With a second
experiment it was verified that the functional geometry of the FLS with internal stresses was equal to the one
without internal stresses, with geometric deviations smaller than half the thickness of the flexures.
1. Introduction

Flexure mechanisms use elastic deformation of slender segments
to achieve motion, which results in highly repeatable behavior due
to the absence of friction and backlash. The design of these mecha-
nisms is not trivial and multiple design methods exist, either based
on degrees-of-freedom and constraints [1–3], rigid-body representa-
tions [4], the combination of simple building blocks to form more
complex mechanisms [5–7], or structural optimization techniques [8].

The mentioned design methods focus mainly on the geometry of
the mechanism and regard stress as a resulting, limiting factor. This
is remarkable since stress is also known as a useful design param-
eter. Examples in engineering are the reduction of tensile forces in
concrete by preloaded rods, avoidance of buckling by preloading bi-
cycle spokes [9], and the preloading of bolts to mitigate their load
cycle amplitude. Specific examples in the flexure mechanisms field are
the introduction of clamping forces and elimination of backlash by a
preloaded member [10], the introduction of multi-stable states using
snap-through elements [11,12], and the reduction of stiffness using
preloaded elements with negative stiffness [13,14].

✩ This paper was recommended by Associate editor Dr. Masonori Kunieda.
∗ Corresponding author.
E-mail address: j.rommers@tudelft.nl (J. Rommers).

A general method to design stresses in flexure mechanisms is not
available, but various strategies to manipulate stresses for a specific
geometric design are known. These strategies mainly aim to avoid
stress concentrations. A first strategy is to opt for distributed instead
of lumped compliance by using blade or wire flexures instead of notch
hinges [8]. The stresses can be further smoothened by gradually in-
creasing the thickness of the flexures at regions with stress concen-
trations [15,16], although this generally results in higher stresses in
other regions due to the increased stiffness. Another strategy is to
connect multiple flexures in series to reduce the required stroke of each
element [17]. Although these strategies are effective, a major disadvan-
tage they have is that the functional geometry originally intended by
the designer is changed, leading to significantly sub-optimal designs.

In this paper we propose the Stress And Geometry (STAGE) method,
to design the stresses and geometry of flexure mechanisms simultane-
ously. The functional geometry of the mechanism is designed together
with a desired stress field for a certain pose of the mechanism, from
which the stress-free, to-be-fabricated geometry is computed using the
inverse finite element method.
vailable online 6 June 2024
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Table 1
Properties of the CFP in Fig. 2.

Lx 100 mm
Ly 100 mm
w 30 mm
𝑡𝑓 0.5 mm
𝑡𝑟 10 mm
Young’s modulus 114 GPa
Poisson’s ratio 0.33

Fig. 1. Steps of the STAGE method to design the stresses and the functional geometry
of a flexure mechanism simultaneously.

In Section 2, the STAGE method is presented and explained in detail,
by applying it to the well-known crossed-flexure pivot (CFP) as an
example. In Section 3 we demonstrate the potential of the method for
designing a CFP with reduced peak stresses for large rotations, resulting
in a new stress-free fabrication geometry. In Section 4, we present a
second application example to reduce peak stresses, this time using a
parameter sweep to find the most optimal stress field for a folded leaf
spring. Two experimental tests have been conducted to validate the
outcomes. In Section 5 we reflect on the results of the paper and in
Section 6 we summarize the contributions of this work.

2. The STAGE method

The goal of the STAGE method is to simultaneously design the
stresses and the functional geometry of a flexure mechanism. The
method explicitly distinguishes between a functional geometry and a
fabrication geometry. The functional geometry is what is generally
regarded as the ‘design’ of a flexure mechanism. This geometry is in cur-
rent literature usually unstressed. However, in this article the functional
geometry usually exhibits stresses. If a functional geometry is allowed
to relax, it attains the fabrication geometry, which exhibits no stresses
and serves as drawing for production. Fig. 1 shows an overview of the
method with four steps. In step 1 the functional geometry is designed.
The focus in this step is on the kinematics of the mechanism, for which
currently available design methods can be used. In step 2 the stresses
in the mechanism are designed by determining the possible stress fields
and selecting one. In step 3, the inverse finite element method is used to
compute the stress-free fabrication geometry, required for production.
At step 4, the fabricated shape is assembled, after which it attains the
functional geometry while exhibiting the desired stresses. In between
steps 1 and 2 there can be iterations in order to obtain the optimal
functional geometry and internal stresses. The four steps will now be
explained in detail. A video explaining the method can be found at
https://doi.org/10.1016/j.precisioneng.2024.05.021.

2.1. Step 1: Design the functional geometry

The STAGE method starts with designing the functional geometry of
the flexure mechanism. The focus in this step is on the kinematics of the
mechanism, for which the currently available design methods can be
used [1–8], for example to obtain a linear guide or rotational hinge with
different functional geometries. Instead of designing something new in
this paper, for explanation of the method we have chosen the well-
known crossed-flexure pivot (CFP) in Fig. 2 as an example of a desired
functional geometry. The CFP design dates back to at least 1948 and
initially served to replace knife-edge bearings [15,18–20]. It consists
of two thick plates connected by diagonal flexures. By bending of the
104
Fig. 2. The well-known crossed-flexure pivot (CFP) [15,18–20], which is chosen as
example for explanation of the STAGE method.

Fig. 3. The four steps of the STAGE method, explained with the crossed-flexure pivot.
The geometry in the last step is the same as in the first step and exhibits the desired
stresses.

flexures, the plates rotate with respect to each other. Table 1 shows
the chosen properties of the CFP for this example. The lower plate is
considered as the base.

Fig. 3 illustrates the four steps of the STAGE method, with the CFP
design as the resulting functional geometry in step 1, modeled using a
two-dimensional representation.

2.2. Step 2: Design the internal stresses

In step 2 of the STAGE method, the internal stresses of the flexure
mechanism are designed for a certain pose of the mechanism. In this
case the central pose is selected. To introduce the stresses, a ‘release
point’ is defined, where the mechanism is virtually cut open and where
a force and moment are modeled, as shown in Fig. 3(b). The force
and moment define the stresses in the mechanism and will also be the
input for step 3 in which the fabrication geometry is calculated. In this
section we present a graphical approach which helps to relate the stress
fields and the modeled force and moment. We start with a single blade

https://doi.org/10.1016/j.precisioneng.2024.05.021
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Fig. 4. The internal moment distribution (bottom) in the cantilever beam (top) can
be modified by the applied force and moment. For slender beams, this distribution is
proportional to the stress field.

flexure, then generalize the theory to a more complex flexure system
and finally apply the theory to the CFP.

In a two-dimensional representation, a blade flexure is essentially a
slender beam in which stresses are induced by moments and transverse
and axial forces. In general, the stresses in such a slender beam are
dominated by its internal moments [21], and can be computed as [21]:

𝜎 = 𝑀𝑖
𝑡𝑓
2𝐼

, (1)

where 𝜎 is the maximum stress in the cross section, 𝑀𝑖 is the internal
moment in point 𝑖 of the beam, 𝑡𝑓 is the thickness of the beam, and 𝐼 is
the area moment of inertia belonging to the bending direction. Eq. (1)
shows that the stress and internal moment have a proportional relation
which is solely dependent on the cross section of the beam. This means
that we can use internal moments to visualize the stresses in flexure
mechanisms if these are composed of slender flexures. An exception is
the case where axial forces are significantly higher than the transverse
forces, such that the pressure due to the axial force is in the same range
as the bending stresses from Eq. (1).

In Fig. 4, a slender cantilever is illustrated, representing a blade
flexure subjected to a force and moment. The graph shows its internal
moment, derived using static equilibrium as [21]:

𝑀𝑖(𝑠) = 𝑐𝑜𝑠(𝛼)𝐹 (𝐿 − 𝑠) −𝑀, (2)

where 𝑠 is the coordinate along the length axis, 𝐿 is the length of the
beam and 𝛼 is the angle of the force, as indicated in Fig. 4. The moment
graph is a linear function. Also, it is independent of the cross section
and stiffness of the beam because the system is statically determinate:
the internal moments can be derived using solely static equilibrium
equations.

Fig. 5 shows how this theory applies to a slender beam with arbi-
trary curvature. The beam is considered fixed at the bottom left corner
with a force 𝐹 and a moment 𝑀 acting in the right extremity of the
beam. Here the internal moments are represented by a linear field, with
colors depicting the values. For any point 𝑖 along the beam (and also
in any point within the rest of the field) the internal moment can be
calculated as:

𝑀𝑖(𝑟) = 𝐹𝑟 −𝑀, (3)

where 𝑟 is the moment arm between the point 𝑖 and the line of action
of the modeled force 𝐹 . The line of points where 𝑀 (𝑟) is zero is named
105

𝑖

Fig. 5. The internal moment field in an arbitrarily curved beam can be modified by
means of a force 𝐹 and a moment 𝑀 in a point of the beam. The moment field is
linear and can be visualized using the zero-moment line. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. (a) The desired stress field defined at four points, where the plus and minus
signs indicate tensile and compressive stresses at each side of the flexures; (b) Internal
moments calculated from the stress field, with corresponding zero-moment line from
which the modeled force and moment are derived.

the ‘‘zero-moment line’’ as illustrated in Fig. 5. This is a unique feature
in the visualization of the moment field.

Three design rules can be defined, relating the moment field to the
modeled force and moment:

Rule 1. The zero-moment line is always parallel to the direction of the
modeled force.

Two points in the field will experience the same internal moment
if they have the same moment arm 𝑟 with respect to the direction of
the modeled force, as can be derived from Eq. (3). This also relates the
points with zero moment.

Rule 2. The distance between the zero-moment line and the line of action
of the modeled force is 𝑟𝑧𝑚 = 𝑀∕𝐹 .

For points with moment arm 𝑟 = 𝑟𝑧𝑚 in Eq. (3), the moment applied
at the end of the beam is in equilibrium with the moment due to the
force at the end of the beam. Therefore the internal moment (and the
bending stress) is zero at these points.

Rule 3. The gradient of the moment field in the direction perpendicular to
the zero-moment line is equal to the magnitude of the modeled force.

Eq. (3) shows that the moment field is linear with a gradient of
𝜕𝑀𝑖∕𝜕𝑟 = 𝐹 .

We will now demonstrate the theory by designing the stresses in
the CFP. First, a desired stress field is converted to a moment field,
which is then used to calculate the required force and moment in a
chosen release point. Suppose that we want the CFP to exhibit the



Precision Engineering 89 (2024) 103–112J. Rommers et al.
stress field shown in Fig. 6(a) (in Section 3 we will show that this
particular stress field results in decreased peak stress during motion,
compared to the traditional CFP design). A stress of ±57 MPa is defined
in the four extremities of the flexures and between these points the
field is assumed to be linear. The plus and minus signs indicate tensile
and compressive stresses at the sides of the flexures, respectively. We
convert these desired stresses into internal moments using Eq. (1) and
the parameter values in Table 1, which yields the moment field shown
in Fig. 6(b). A release point is chosen at the bottom right corner since
this is a practical place to intersect the mechanism and assemble it
after production of the fabrication geometry. Theoretically, however,
any point in the mechanism could be chosen as a release point. The
zero-moment line shows to be horizontal, laying in the middle of the
four extremities as indicated. The distance between the zero-moment
line and the release point therefore is 𝑟𝑧𝑚 = 𝐿𝑦∕2 = 50 mm. Then,
following design rule 1, the modeled force in the release point should
be parallel to the zero-moment line, which means that it should be
horizontal in this case. The magnitude of the modeled force is equal to
the gradient of the moment field according to rule 3, which yields 𝐹 =
71 N mm∕50 mm = 1.42 N. The modeled moment is calculated using
the relation 𝑟𝑧𝑚 = 𝑀∕𝐹 from design rule 2, resulting in 𝑀 = −71 N
mm, which is correct because it is the opposite of the internal moment
in that point.

2.3. Step 3: Calculate the stress-free fabrication geometry

In step 3 of the STAGE method, the stress-free fabrication geom-
etry is computed. This is an inverse problem since from the stressed
functional geometry with the modeled forces and moments acting on
it, the stress-free geometry has to be obtained. If the deflections are
sufficiently small, the stress-free geometry can be calculated using
linear beam theory. However, if the deflections are large and no
analytical solution is available, nonlinear inverse FEM can be used.
Originally proposed in [22], inverse FEM was introduced to the flexure
mechanisms community by [23]. The authors use finite beam elements,
which are specifically suited for flexure mechanisms. In this section
we start by explaining regular nonlinear FEM, and then show the
difference with inverse FEM. Because the solution method is somewhat
counter-intuitive, an illustrative example for a rigid-body mechanism is
provided in Appendix A.

In FEM, the investigated geometry is first discretized and repre-
sented with (beam) finite elements connected by nodes. The goal is
to solve a residual equation containing a force imbalance, which is
described as

𝐑(𝐔) = 𝐅𝑖𝑛𝑡(𝐔) − 𝐅𝑒𝑥𝑡 = 𝟎, (4)

where 𝐔 is the displacement vector containing nodal translations and
rotations. For large deflections, 𝐅𝑖𝑛𝑡(𝐔), and therefore 𝐑(𝐔), is in general
nonlinear. The solution to the residual equation can be found iteratively
using Newton–Raphson with the gradient

𝐊 =
𝜕𝐑(𝐔)
𝜕𝐔

. (5)

The residual equation in Eq. (4) is written in terms of the displacement
vector 𝐔. To explain the difference between forward and inverse FEM,
it is useful to write the residual equation in terms of the unstressed
and stressed geometries instead. This can be done using the fact that
the displacements are the difference between the stressed and the
unstressed geometries. This means that:

𝐔 = 𝐗𝑠 − 𝐗0, (6)

where 𝐗0 and 𝐗𝑠 are vectors containing the nodal coordinates and
rotations of the stress-free and stressed geometry, respectively. We can
now rewrite the residual equation as:

𝐑(𝐗 ,𝐗 ) = 𝐅 (𝐗 ,𝐗 ) − 𝐅 = 𝟎. (7)
106

0 𝑠 𝑖𝑛𝑡 0 𝑠 𝑒𝑥𝑡
For regular, forward FEM, 𝐗0 is known and 𝐗𝑠 can be found using the
gradient of the residual equation

𝐊𝑓𝑤𝑑 =
𝜕𝐑(𝐗0,𝐗𝑠)

𝜕𝐗𝑠
. (8)

For inverse FEM, on the contrary, 𝐗𝑠 is known and 𝐗0 has to be found.
We again use the gradient of the residual with respect to its unknowns,
which is in this case

𝐊𝑖𝑛𝑣 =
𝜕𝐑(𝐗0,𝐗𝑠)

𝜕𝐗0
. (9)

The residual equations of the forward and inverse analysis are the same,
but different variables in the equation are unknown. Because of this, a
different gradient needs to be computed to find the solution, while the
rest of the calculations are similar for both analyses.

Instead of inverse FEM analysis, also regular nonlinear optimization
methods for compliant mechanisms could be used to compute the
stress-free geometry. However, in comparison the inverse FEM has
a significantly lower computational cost since the nonlinear residual
equations have to be solved only once [23].

2.3.1. Matlab model
Using the method described in Section 2.3, a FEM code was written

in Matlab for the computations in this article. We will refer to this as the
‘‘Matlab model’’. The computations are checked using the commercially
available software package Ansys and by experiments, in Sections 3 and
4.

2.4. Step 4: Assemble the fabricated part

In step 4 of the STAGE method the stress-free fabricated mechanism
is assembled. As shown in Fig. 3(d), it attains the functional geometry
of step 1, and exhibits the desired stresses of step 2. The reactions on
the lower right attachment point are equal to the force and moment
modeled in the release point in step 2. We have now obtained a flex-
ure mechanism with both a designed geometry and designed internal
stresses.

2.5. Discussion on the STAGE method

Instead of using the STAGE method, direct prestress could be used
to introduce stresses in a flexure mechanism. However, this will change
its designed, functional geometry. For example, a flexure which is
designed and fabricated as a straight member will become curved after
pre-stress, which severely decreases its off-axis stiffness (stiffness in
the supporting directions). Using the STAGE method, the functional
geometry is unchanged after assembly.

The moment field in step 2 is independent of the functional geom-
etry if the mechanism is statically determinate, because in that case
the moments are fully determined by static equilibrium equations. For
example, the stiff bar in the CFP does not change the moment field.
The same holds if its flexures would have different cross sections.
Note however that in that case, a different proportionality between
stress and moments has to be taken into account, according to Eq. (1):
thicker flexures subjected to the same moment will experience a lower
stress. The independency of the moment field also allows to reconsider
the functional geometry in step 2. If a flexure is drawn in a certain
moment field, it will attain the moment values of that field. This way,
regions which are sensitive to fatigue failure could be designed such
that they are close to the zero-moment line, and therefore experience
lower bending moments.

The method to design the stresses in step 2 can be used directly
if the mechanism is statically determinate, such as for the CFP. For
statically indeterminate mechanisms, an approach can be to isolate a
part of the mechanism such that a statically determined sub-mechanism
is obtained. Alternatively, theory on statically indeterminate beam
structures could provide a solution [21]. These approaches rely on
stiffness and compatibility equations. If these approaches also do not
suffice, a parameter sweep could be used. We will demonstrate this in

Section 4.
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Fig. 7. FEM simulations show the peak stresses of 210 MPa in the traditional CFP for
large rotations.

Fig. 8. FEM simulations of the redesigned CFP showing peak stresses of 161 MPa,
which is a reduction of 23% compared to the traditional design. The fabrication
geometry is shown in Fig. 3(c).

3. Application example: CFP with reduced peak stress

In this section we use the STAGE method to decrease peak stresses in
the traditional CFP design during motion. The goal is to demonstrate
one of the possible applications of the method. We first analyze the
peak stresses of the traditional CFP at large rotations. From this, we
determine a desired stress field which the CFP should exhibit in its
central position. This stress field is introduced using the STAGE method.
We then compare the stress peaks during motion of the traditional and
the redesigned CFP. The outcomes are validated using the commercially
available FEM software Ansys.

For large rotations, the flexures of the traditional CFP experience
stress peaks close to their extremities, as shown in the FEM simulations
in Fig. 7. The plus and minus signs indicate the tensile and compressive
stresses at the sides of the flexures, respectively. The stress in point A
ranges from −209.7 MPa to +96.05 MPa throughout the rotation. The
peak stress can be reduced by introducing half of the difference, +56.83
MPa, at point A when the CFP is in its central position. This desired
stress is shown in Fig. 6(a). The desired stresses in points B, C and D
have been determined using the same reasoning. Following Sections
2.2, 2.3 and Fig. 3, the required stress-free fabrication geometry is
obtained. After assembly, the redesigned CFP exhibits the stresses
shown in Fig. 3(d) in its central position. At ±45◦ rotation, it exhibits
the stresses shown in Fig. 8. As compared to the traditional CFP, the
stress field is significantly smoother and the peak stresses are 161 MPa,
which is a reduction of 23%.

The FEM results in this section are obtained using the FEM code
written in Matlab in order to do the inverse computations, as described
in Section 2.3. The results were verified using Ansys as follows. First
the fabrication geometry (shown in Fig. 3(c)) was imported in Ansys,
virtually assembled and rotated 45◦ back and forth. The peak stresses,
occurring anywhere in the mechanism and anywhere in the motion
range, were recorded. Beam elements of type ‘‘Beam 188’’ have been
used, and the nonlinear analysis option was enabled. The stresses of
the traditional CFP were also computed in Ansys. In both simulations,
107
Fig. 9. A folded leaf spring (FLS) with a fixed base.

Table 2
Check of the peak stresses with the Ansys model.

Rotation
angle [deg]

Peak stress
Matlab [MPa]

Peak stress
Ansys [MPa]

Error [%]

Traditional CFP +45 209.742 209.517 0.107
−45 209.742 209.517 0.107

Redesigned CFP +45 161.295 161.123 0.107
−45 161.296 161.308 0.007

100 beam elements per flexure were used. Such a large number is not
necessary for accuracy but allows to discretize the curved fabrication
geometry of the redesigned CFP. The results are shown in Table 2.
The maximum error is 0.107%, which can be considered small com-
pared to the stress reduction. Programming scripts containing the two
full simulations can be found online using https://doi.org/10.1016/
j.precisioneng.2024.05.021. The scripts can be run directly by copy-
pasting them in Ansys, providing an easy check of the stress reduction
in the CFP.

As a second test, we simulated in Ansys how well the redesigned
CFP attains the functional geometry after assembly. In this phase,
the flexures should be straight, because the functional geometry has
straight flexures. The maximum error in 𝑥 and 𝑦 directions of all nodal
coordinates (101 per flexure) is 7.577e−4 mm, which can be considered
significantly small as compared to the size of the total mechanism.

4. Application example: folded leaf spring with reduced peak
stress

In this section we demonstrate the application of the STAGE method
for reducing peak stresses in a folded leaf spring (FLS), by using a
parameter sweep instead of the graphical approach in step 2 in order to
find the optimal force and moment in the release point. This alternative
approach can be useful if a desired stress field cannot be determined,
or if the mechanism is too complex to use the graphical approach. The
outcomes are then verified by two experimental tests and by Ansys
simulations.

4.1. The folded leaf spring

Fig. 9 shows the folded leaf spring (FLS) [24–26]. The FLS can
be used to replace a wire flexure [24] and five or six FLS-elements
can form a linear guide [24,25]. In such a linear guide, a single
FLS performs the up and down motions shown in Fig. 10. The FEM
simulations, based on the properties shown in Table 3, show significant
peak stresses in the flexure. The highest peak stress in the motion range
of ±30 mm of the traditional FLS is 482.6 MPa.

4.2. Redesign with the STAGE method and a parameter sweep

The goal here is to reduce peak stresses in the FLS while keeping its
functional geometry unchanged. Therefore, we define the FLS design
in Fig. 9 as the functional geometry in step 1 of the STAGE method.
Step 2 is the design of a stress field and modeling of this field by a

https://doi.org/10.1016/j.precisioneng.2024.05.021
https://doi.org/10.1016/j.precisioneng.2024.05.021
https://doi.org/10.1016/j.precisioneng.2024.05.021
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Table 3
Properties of the folded leaf spring in Fig. 9, used for analysis.

Lx 100 mm
Ly 50 mm
w 20 mm
𝑡𝑓 0.5 mm
Young’s modulus 114 GPa
Poisson’s ratio 0.33

Fig. 10. FEM simulations showing high peak stresses (482.6 MPa) in the traditional
FLS at large displacements.

force and moment in a release point. We choose point C in Fig. 10 as
a release point. We could have chosen any point in the flexure, but
point C is a practical choice for assembling the produced geometry.
We will use a parameter sweep to find the optimal force and moment
in the release point. The parameter sweep is carried out as follows.
Different variable sets are defined, each containing different choices
for the modeled force, its angle and the modeled moment. For each
set, steps 2 to 4 of the STAGE method are carried out, and the peak
stresses of the assembled mechanism are analyzed by moving it up and
down ±30 mm, as shown in Fig. 10. The variable set resulting in the
lowest peak stress is selected as a final result. Note that each set results
in a different stress field, but in the same functional geometry.

4.3. Optimal redesigned FLS

Fig. 11 shows the optimal FLS design resulting from the parameter
sweep with a peak stress of 347.1 MPa during motion, which is a re-
duction of 28% as compared to the traditional FLS in Fig. 10. Fig. 11(a)
shows its stress-free fabrication geometry and Fig. 11(b) shows the FLS
after assembly. The peak stress of 347.1 MPa is reached in the extreme
positions of ±30 mm shown in Figs. 11(c) and 11(d). The modeled
force, force angle and moment in the release point corresponding to
this design are respectively 6.76 N, 90.5◦ (approximately horizontal as
shown in Fig. 11(a)), and 97.72 N mm.

It is noted that a similar stress reduction cannot be achieved by
simply shifting the motion range of the traditional FLS. The traditional
FLS experiences the same peak stress in both the up and down positions
due to its symmetry along the vertical axis. Shifting the motion range
will result in a lower peak stress in one direction, but in a higher peak
stress in the other direction.

4.4. Experimental validation of the peak stress reduction

The peak stress reduction in the FLS was validated by measuring
the reaction forces and reaction moment in the attachment point A
in Fig. 12 during motion, and comparing these to the FEM simulation
data. This indirect approach is possible since the stresses throughout the
entire FLS are determined by the reaction forces and reaction moment
because the FLS is a statically determinate structure, as was explained
in Section 2.2.

Both the traditional and redesigned FLS were fabricated from Tita-
nium grade 5 using Wire Electrical Discharge Machining (WEDM). The
properties of the traditional FLS are shown in Table 3. The redesigned
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Fig. 11. The redesigned folded leaf spring, showing a reduced peak stress of 28% as
compared to the traditional FLS. This peak stress reduction cannot be achieved by
shifting the motion range.

Fig. 12. Experimental setup used to validate the stress reduction by measuring the
reaction forces and the reaction moment of the traditional and the redesigned FLS.

FLS has the same width 𝑤 and thickness 𝑡𝑓 , but has a curved fabrication
geometry shown in Fig. 11(a), of which the data of the detailed shape
is made available online. Fig. 12 shows the setup used to measure the
reaction forces and reaction moments of the FLS during motion. Point
A of the FLS is attached to the base via a six degrees-of-freedom force
and moment sensor (ATI MINI40-SI-40-2). Point B of the FLS is attached
to a slider. The slider allows a rotation along its motion axis, which is
needed to avoid forces due to misalignments. The displacement of the
slider in the 𝑦-direction is measured by an optical triangulation sensor
(optoNCDT 1420). Both sensors are connected to a data acquisition unit
(NI USB-6008) and a laptop for recording. In the experiments the slider
was moved up and down four times slowly, to eliminate the influence
of dynamic effects.
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Fig. 13. Experimental results of the traditional FLS compared to the two FEM models,
howing a maximum NMAE of 6.0%.

The mean of the measured reactions is taken as outcome. A Normal-
zed Mean Absolute Error (NMAE) between model and experiment was
omputed, which is a regular MAE normalized by the maximum force:

MAE =
1
𝑁

∑𝑁
𝑛=1

|

|

|

𝜁𝑛 − 𝜁𝑛
|

|

|

max |𝜁 |
, (10)

n which 𝑁 is the number of measured data points (at least 1500 in
ll measurements), 𝜁 the measured force and moment values and 𝜁 the
alues predicted by the FEM model written in Matlab. Fig. 13 shows
he experimental results of the traditional FLS design. The moment is
ivided by a characteristic length of 100 mm (the dimension of the
LS in 𝑥-direction) to make it compatible with the reaction forces.
he NMAE between the FEM model in Matlab and the measurements
f 𝐹𝑥, 𝐹𝑦, and 𝑀/100 mm are 4.4%, 6.0% and 4.4%, respectively.
ig. 14 shows the results of the redesigned FLS, together with the
EM data. Here, the NMAE between the FEM model in Matlab and
he measurements of 𝐹𝑥, 𝐹𝑦 and 𝑀/100 mm are 4.0%, 3.7% and
.5%, respectively. The deviations between the experiments and the
EM models could be due to fabrication errors: a thickness variation
n the flexures of 16 μm on the nominal thickness of 0.5 mm results
n an error in the reaction force or reaction moment of 10%, due
o the cubic relation between bending stiffness and flexure thickness.
he stresses in the FLS scale proportionally to the reaction forces and
eaction moments because bending stresses dominate and these scale
roportional to force and moment. We conclude that the experiments
alidate the FEM models and thereby validate the peak stress reduction.

The errors between the Ansys model and the Matlab model are in
he same order of magnitude of the round-off error (1e−3 mm), which
ccurs when exporting the data.

.5. Experimental validation of the functional geometry

The goal of the second experiment is to measure how well the re-
esigned FLS obtains its functional geometry after assembly. Fig. 15(a)
hows the fabricated geometry of the redesigned FLS, while Fig. 15(b)
hows the geometry after assembly, where it has obtained its functional
109

eometry. In this evaluation, we will measure the straightness of the
Fig. 14. Experimental results of the redesigned FLS, compared to the two FEM models,
showing a maximum NMAE of 5.5%.

flexures from the images for both the redesigned and the traditional
FLS as a reference case. The images are processed as follows: first,
two straight, connected line segments are drawn through the points
A, B and C in Fig. 15(b). The line segments are fitted such that a
maximum straightness results. Then, the deviations of the flexure edges
with respect to these lines are plotted. The high-resolution pictures will
be published online. Fig. 16 shows the results for both the traditional
and the redesigned FLS. Both plots show that the straightness deviation
is smaller than half the thickness of the flexure. This can be considered
significantly small as compared to the deflections of the flexures during
motion.

Additionally, the functional geometry is checked using Ansys. The
fabrication geometry of the redesigned FLS is imported and virtually
assembled. Using ‘‘Beam 188’’ elements and the nonlinear analysis
option enabled, the resulting maximum geometric error is 1e−3 mm,
which is of the same order of magnitude as the round-off error due to
exporting the data.

5. Discussion

The main idea behind the STAGE method is to consider the func-
tional geometry and the fabrication geometry of a flexure mechanism
as separate things. In current literature, the ‘‘design of a flexure mech-
anism’’ refers to the functional geometry and also serves directly as the
drawing for fabrication. This leads to the implicit assumption that the
flexure mechanism on the drawing board is always stress-free, which is
unnecessary and limits the solution space, as shown in this article by
the redesigns of the CFP and the FLS.

Current CFP and FLS elements in machines could be directly re-
placed by the redesigned versions in this article because their attach-
ment points remain unchanged. In fact, the replacement will not be
visible to the naked eye because the only difference is that stresses
are introduced. The WEDM fabrication technique used in this paper is
commonly used for the production of flexure mechanisms in industry.
This means that the curved geometries can also be produced using
current production techniques.

This article showed the application of the STAGE method for peak
stress reduction, but it could be used for other purposes. For example,

actuation forces or eigenfrequencies could be reduced by designing
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Fig. 15. The redesigned FLS in stress-free (as-fabricated) state (a) and after assembly
in its central position (b).

the optimal stress fields, or deformations due to gravity could be
mitigated. Furthermore, the functional geometry of the flexure does not
necessarily have to be designed in its central position. For example, the
functional geometry of the CFP could be designed at a 45◦ rotation.
If the flexures are designed as straight members in this configuration,
the flexure will have a high support stiffness at this 45◦ rotation.
The STAGE method can be used to design the geometry of a flexure
mechanism anywhere in its motion range.

The designed stresses can only be controlled exactly for a single pose
of the mechanism using the STAGE method. In Section 3 we show that
despite this, we can decrease the stresses in the full range of motion.
The STAGE method does not formally guarantee that this works in all
cases.

The STAGE method does not guarantee that each functional geome-
try with designed internal stresses has a valid corresponding stress-free
fabrication geometry. This is because segments of this geometry could
intersect, or bifurcations in the displacement path could occur.

The amount of the peak stress reduction which can be achieved
using the STAGE method is generally larger when the displacements
of the flexures are large. For small displacements, the stress in each
point is approximately equal in magnitude in both motion directions,
meaning that the STAGE method will be less effective.

The flexures redesigned using the STAGE method are permanently
stressed. Therefore a suitable material has to be selected for the mech-
anism to limit stress relaxation, similar to the design of springs used for
permanent pre-stress.

6. Conclusions

In this work we proposed the Stress And Geometry (STAGE) method,
to design the geometry and stress of flexure mechanisms simultane-
ously.
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Fig. 16. Straightness of the traditional (a) and redesigned (b) FLS after assembly,
showing that the redesigned FLS attains the functional geometry well after assembly,
with a straightness error smaller than half the thickness of the flexures. The mid line
shows the straightness, compared to the indicated flexure thickness.

We have demonstrated the method by redesigning the stresses in
the well-known crossed-flexure pivot, without changing its functional
geometry, which resulted in a peak stress reduction of 23% for ±45◦

rotation.
Additionally, we showed how peak stresses in a folded leaf spring

(FLS) can be reduced by 28%, using a parameter sweep to find the most
optimal stress field. This alternative approach can be applied when it
is not clear which stress field is most optimal, or if the mechanism is
too complex.

The peak stress reduction in the FLS was validated by measuring its
reaction forces during motion, showing a maximum normalized mean
absolute error between model and experiment of 5.5%.

A second experiment showed that the functional geometry of the
FLS is well attained after assembly, with a maximum straightness error
of half the flexure thickness.
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Appendix A. Concrete example of the inverse FEM solution method

In this appendix, we provide a concrete example to help to under-
stand the solution method used in the inverse FEM in an intuitive way.
First, the example problem is solved analytically. We then use Newton–
Raphson to find a solution, similar to the way in which nonlinear FEM
problems are often solved. We start with the conventional (forward)
case and then show the difference with the inverse case.

Fig. A.17 shows a spring-slider mechanism. The spring with stiffness
k is drawn in its stress-free (dashed) and stressed states. We assume
that the height ℎ is fixed and the stress-free and stressed geometries
of the spring are fully described by 𝑥𝑜 and 𝑥𝑠, respectively. We choose
ℎ = 50 mm, 𝑘 = 2 N/mm, 𝐹𝑒𝑥𝑡 = 15 N and 𝑥𝑜 = 25 mm. The internal force
𝐹𝑖𝑛𝑡 is the horizontal component of the spring force, which is equal to
𝐹𝑒𝑥𝑡 at static equilibrium. We write this equilibrium by equating the
residual 𝑅 (the force imbalance) to zero:

𝑅(𝑥𝑜, 𝑥𝑠) = 𝐹𝑖𝑛𝑡(𝑥𝑜, 𝑥𝑠) − 𝐹𝑒𝑥𝑡 = 0. (A.1)

For this example, the following equation can be derived:

𝑅(𝑥𝑜, 𝑥𝑠) = 𝑘𝑥𝑠
⎡

⎢

⎢

⎣

1 −

√

ℎ2 + 𝑥2𝑜
ℎ2 + 𝑥2𝑠

⎤

⎥

⎥

⎦

− 𝐹𝑒𝑥𝑡 = 0. (A.2)

Note that 𝑥𝑠 = 𝑥𝑜 + 𝑢, where 𝑢 is the displacement from the stress-
free configuration. Eq. (A.2) is written in terms of 𝑥𝑜 and 𝑥𝑠, while
conventionally 𝑥𝑜 and 𝑢 would be used. This choice will show to be
more convenient for inverse FEM. Eqs. (A.1) and (A.2) already give
some insight into the difference between the forward and inverse
problem. In the forward case, 𝑥𝑜 is known and 𝑥𝑠 has to be found,
whereas in the inverse case, 𝑥𝑠 is known and 𝑥𝑜 has to be found.

We now proceed to solve the example problem using the Newton–
Raphson solution method, starting with the conventional forward case.
We assume that similar to a FEM problem, the analytical equation (A.2)
cannot be solved explicitly but its residual can be evaluated sequen-
tially for a certain input 𝑥𝑠. The nonlinear problem can be solved using
an iterative gradient-based approach, such as Newton–Raphson. The
gradient of the residual equation is computed as:

𝐾𝑓𝑤𝑑 =
𝜕𝑅(𝑥𝑜, 𝑥𝑠)

𝜕𝑥𝑠
= 𝑘

[

1 −
ℎ2

√

ℎ2 + 𝑥𝑜
(ℎ2 + 𝑥2𝑠 )3∕2

]

, (A.3)

where 𝐾𝑓𝑤𝑑 is the stiffness of the system. Fig. A.18 shows how this
gradient can be used to iteratively find the solution. We start with
the (arbitrary) initial guess of 𝑥𝑠 = 30 mm. The residual is calculated
and using 𝐾𝑓𝑤𝑑 a new guess for 𝑥𝑠 is computed. At the intersection of
the dashed line with the horizontal axis, this updated value for 𝑥𝑠 is
obtained and the residual is re-evaluated. This process is repeated until
the residual is sufficiently small to consider the problem to be solved.
This results in a 𝑥𝑠 of around 44.8 mm as the solution to the problem.
If we substitute 𝑥𝑜 = 25 and 𝑥𝑠 = 44.8 in Eq. (A.2), this indeed results
in a residual close to zero.

In the inverse problem, the stressed geometry 𝑥𝑠 is known and the
stress-free geometry 𝑥𝑜 has to be found. We choose 𝑥𝑠 = 44.8 mm. Using
Newton–Raphson, 𝑥𝑜 should be found to be close to 25 mm, in order to
satisfy the residual equation (A.2). The residual equation is the same as
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Fig. A.17. Example used to explain the inverse FEM solution method.

Fig. A.18. Newton–Raphson iterations of the conventional (forward) analysis, in which
𝑥𝑜 is known and 𝑥𝑠 is to be found. Note that in this case, Eq. (A.2) is a function of 𝑥𝑠.

Fig. A.19. Newton–Raphson iterations of the inverse analysis, in which 𝑥𝑠 is known
and 𝑥𝑜 is to be found. Note that in this case, Eq. (A.2) is a function of 𝑥𝑜.

in the forward case. However, the gradient used to solve the problem
is different because the residual equation is now a function of 𝑥𝑜:

𝐾𝑖𝑛𝑣 =
𝜕𝑅(𝑥𝑜, 𝑥𝑠)

𝜕𝑥𝑜
=

−𝑘𝑥𝑠𝑥𝑜
√

ℎ2 + 𝑥2
√

ℎ2 + 𝑥
. (A.4)
𝑠 𝑜
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Fig. A.19 shows how this gradient can be used to iteratively arrive at
the correct solution of 𝑥𝑜 around 25 mm, starting from an arbitrary
initial guess of 𝑥𝑜 = 5 mm.

Crucially, we can now also start at 44.8 mm, change 𝐹𝑒𝑥𝑡 as desired,
nd find the new unstressed geometry 𝑥𝑜. This is analog to the STAGE
ethod in the article: we change the unstressed geometry by modeling

n external force and/or moment on the stressed geometry.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.precisioneng.2024.05.021.
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