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Heart Watch: Dynamical Systems Based Real Time
Data Driven ECG Synthesis

Ashutosh Simha Suryansh Sharma Sujay Narayana R.R Venkatesh Prasad

Abstract—Electrocardiogram (ECG) is an important health
monitoring signal that is used in various medical diagnosis,
especially identifying potential possibility of heart attacks and
strokes. Moreover, many patients are in remote places and in
many countries the patients to doctors ration is very poor which
calls for a miniature hardware that remotely captures ECG and
transmits data to the doctors. However, the exact reproduction
of ECG requires high bit rate and thus requires transmitting a
compressed set of parameters. Further, sending large volumes of
annotated raw data to train diagnostic models also compromises
the patients privacy. We design and present a system that
generates synthetic ECG signals from clinical data in real-time
using a highly minimized set of parameters. The system comprises
a nonlinear dynamical model whose parameters are trained in
real-time to synthesize a signal which matches clinical data with
high accuracy. The parameters of the trained system are then
transmitted in each cycle of the ECG wave to reconstruct the
original signal using the same model at the medical practitioners’
location. The parameter learning problem is highly complicated
as one needs to solve a nonlinear, non-convex dynamic optimiza-
tion problem, which usually only converges to local optima. To
address this issue, we propose a novel two-stage algorithm that
automatically chooses an initial set of parameters in the vicinity
of the global optimum and then performs stochastic gradient
descent iterations. We perform experiments to demonstrate the
accuracy and real-time performance of the system. We show that
on average our system processes clinical data of one second in
0.68 s on a microcontroller, with an RMSE error of 0.0038 the
average, and 17 parameters per ECG cycle. Our system is also
easy to implement, requires minimal storage i.e. only one ECG
cycle at any given time, and does not depend on offline training,
unlike existing methods.

Index Terms—ECG, Non linear dynamics, biomedical signals

I. INTRODUCTION

Electrocardiogram (ECG) signals are a vital feature for
analysing cardiovascular activity and detecting heart disease
by recording the electrophysiological activity of the heart
through the chest cavity via electrodes placed on the skin
[1]. The electrodes measure cardiovascular activity that cor-
responds to a sequence of depolarization and repolarization of
the ventricles and atria [2]. Each cycle of the ECG signal con-
tains three main components i.e. the P wave, the QRS complex,
and the T wave. Early detection of cardiovascular diseases
necessitates long-term monitoring of ECG signals which are
wirelessly transmitted to point-of-care devices. However, the
difficulty in manually analysing and monitoring ECG data,
especially when the patient-to-doctor ratio is small calls for
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automated diagnosis [3] which requires large volumes of pa-
tient data to be transmitted. Further, patients in remote places
during emergency need to be monitored continuously and thus
large amounts of ECG data need to be transmitted which is
not recommended. However, transmitting large volumes of
annotated raw biomedical signals poses several challenges
in the form of communication bandwidth limitations of the
transmission channels for communication, storage on edge
devices and nodes, as well as compromises patients privacy
[4], [5], [6].

In order to address the issues stated above, a popular
solution has been to develop models that synthesize ECG
signals based on clinical data. These models are typically
governed by a minimal set of parameters, which correspond
to a particular ECG signal. Such a model is trained using
clinical data from a particular patient, and the parameters of
the trained model are then wirelessly transmitted in lieu of the
raw signal, to point-of-care devices, wherein a similar model is
used to reconstruct the original signal. Such models typically
employ machine learning (ML) methods such as support vector
machines [7], decision trees [8], random conditional fields [9],
and recently developed deep learning methods networks [10]–
[16], [17], [18]. However, existing methods suffer from the
following drawbacks:

• These methods usually require large volumes of annotated
data and extensive training prior to deployment.

• Training neural-network based models requires expen-
sive, resource stifling hardware such as GPUs, and is
unsuitable for devices with constrained computational
capabilities like those of edge based microcontrollers.

• Deep learning models are generic and usually lack a
direct correspondence with the physiological dynamics,
and are also susceptible to adversarial attacks [19].

Another approach to synthesizing ECG signals is to employ
mathematical models which have been derived directly from
the biophysical dynamics. A few examples of such models
are as follows. In [20] and [21], the authors proposed a set
of nonlinear ordinary differential equations which model the
generation of ECG signals whose features matched those of
the clinical signal with a high degree of accuracy. Further,
the number of parameters or coefficients of the differential
equations were appreciably small. In [22] the authors proposed
a dynamical model for generating 12 lead ECG signals,
on similar principles. An advantage of these models is that
the dynamics could be directly traced to the cardiovascular
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processes, which enhances their understandability. Further,
these models are computationally simple to simulate and
also implement in simple hardware in real-time. However,
these models required the morphological characteristics of
the P,QRS, and T waves and the heart rate to be clearly
specified in order to generate synthetic signals. This rendered
them, hitherto, ineffective for synthesizing ECG signals which
accurately matched the features of clinical obtained data from
patients. From the above discussion, it is clear that the fol-
lowing challenges remain open, and thereby form the primary
motivation for our system, in the context of IoT/edge devices.

1) Can we develop white-box (explainable), trustable math-
ematical models for generating ECG signals which are
purely data driven (i.e. no requirement of morphological
characteristics)?

2) Can the models be trained in real-time using only online
clinical data, without the need of any offline training?

3) Can such models depend on highly minimal data storage,
and use a minimal set of parameters to represent ECG
signals with high fidelity feature matching?

4) Can such a model improve computational time and
signal error (RMSE) simultaneously, over existing meth-
ods?

In order to address the above challenges, we propose a
dynamical system model based on a Gaussian mixture vector
field as in. This model is based on 15 coefficients which
encode the morphology of the PQRST wave, and has been
shown to accurately represent ECG signals [20]. Using these
dynamics, we design an algorithm to update the parameters
such that the model learns from real-time clinical data obtained
from the patient, without any offline training. The parame-
ters are updated in each cycle of the ECG signal and are
transmitted via a wireless communication channel to point-of-
care devices. In order to achieve real-time learning, one needs
to solve a global optimization problem, online. This poses
severe challenges since the cost function is non-convex and
nonlinear, and needs to be minimized in real-time. We propose
a novel two-stage optimization algorithm in order to converge
to the global optimum. We demonstrate our contributions via
extensive experiments that:

1) Our system does not rely on any training data, and
uses only one ECG cycle at any given time, thereby
minimizing storage and enabling real-time operation.

2) The learning algorithm takes sufficiently less time than
the ECG signal rate, which allows enough buffer time
for implementing wireless communication protocols for
real-time transmission.

3) We show a clear improvement of the learning error
(RMSE) over existing methods, while simultaneously
minimizing the algorithmic complexity.

4) We also propose a hardware system called heart watch
which comprises data-acquisition, processing, and wire-
less communication subsystems.

Fig. 1: Gaussian mixture ODE on a unit cylinder describes the
PQRST ECG wave

II. NONLINEAR MODEL FOR ECG SYNTHESIS

We now describe a nonlinear ordinary differential equations
model for generating synthetic ECG signals [20]. The model
may be understood as the flow of a Gaussian mixture vector
field, on an infinite unit cylinder as shown in Fig. 1. We denote
the 3-dimensional state space with Euclidean coordinates
(x, y, z) such that (x, y) are constrained to lie on the unit-
circle S1 and z ∈ R. The mathematical model is given as

ẋ = (1−
√
x2 + y2)x− ωy

ẏ = (1−
√
x2 + y2)y + ωy

ż = −
∑

i∈{P,Q,R,S,T}

ai∆θi

(
− θ2i

2b2i

)
− (z − z0), (1)

where ∆θi = (θ − θi) mod 2π, θ = arctan 2(y, x) and ω is
the angular velocity of the limit cycle around the unit circle.
(Note that the first two equations guarantee that (x, y) stay
on the unit circle as long as they are initialized on it). The
P,Q,R,S,T waves are described by positive/negative attractors
in the z direction which are indicated by the Gaussians within
the sum. The trajectory is pushed upwards or downwards
towards the stable limit cycle as it approaches the mean of any
of these Gaussians. The parameters θi encode the location of
the waves while ai and bi indicate the amplitude and width
morphology. The parameter ω corresponds to the RR-interval
or ECG cycle length,a and describes its inter-beat variation. In
order to capture the baseline wander due to respiratory cycles
with frequency f2, the limit cycle is perturbed from S1 via the
sinusoid

z0 = A sin(2πf2t). (2)

Fig. 1 illustrates the evolution of the trajectories of the model
(1) on the unit cylinder, with a fixed set of parameters. It can be
seen that the ECG morphology is quite faithfully represented
by this model. In one cycle of the ECG we transmit 15
parameters ai, bi, θi and the initial phase θ(0) and frequency
ω, using which the clinical ECG is accurately reconstructed.



Fig. 2: Real-time parameter learning based data driven ECG
synthesis

III. LEARNING ECG DYNAMICS

In order to achieve real-time learning, the 17 parameters
M =

{
ai, bi, θi, θ(0), ω | i ∈ {P,Q,R, S, T}

}
are updated

with every incoming ECG wave measurement from the pa-
tient as illustrated in Fig. 2. The parameters of the model
are iteratively updated by minimizing the error between the
corresponding synthetic ECG wave and the true signal, in
each cycle. We achieve this via a global optimization method
described as follows.

A. Cost function
Denote za(tk) as the actual ECG amplitude measurement

and zM (tk) as the z−coordinate signal generated by (1) with
the parameters M . Here tk varies over the set of sampling
times N . The optimization problem is formulated as

min
M

∑
k∈N

|(za(tk)− zM (tk))| =: J(M). (3)

Note that here we have chosen the L1 error. One may alter-
natively use the L2 error instead, however the above choice
is motivated by the fact that low amplitude variations are
more accurately captured, as will be shown later. Since the
dynamics are nonlinear, it is clear that the cost function is
also highly nonlinear and definitely non-convex. Due to this,
achieving global optimality is indeed a formidable problem
since iterative optimization methods are highly sensitive to
initial conditions and may indeed converge to local optima.

B. Parameter Optimization

In order to address the above problem we propose a two-
stage algorithm. In the first stage, the initial phase θ(0)
for each new ECG cycle is initialized (and correspondingly
x(0), y(0)) such that the location of the R−peak of the
synthetic ECG matches that of the actual signal. Note that
though θ is a continuous variable, at the end of each cycle there
could be a slight discrepancy in the synthetic signal, which
though not clinically significant, can cause large errors in the
trajectories of the following cycle. Therefore it is necessary

Fig. 3: Illustrations of the iterations in θ(0) as in step 4

Fig. 4: Comparison between true and synthetic ECG with
randomly and optimally initialized θ(0)

Fig. 5: Effect of L1 and L2 optimization for generating
synthetic ECG

to reinitialize this variable in each cycle, along with ω. The
parameter learning algorithm is described as follows.

In Fig. 3 the first part of the algorithm i.e. steps 1-4 to
find θ∗(0) is illustrated. It can be seen that the R-peak of the
synthetic signal with initially chosen parameters is displaced
from that of the true signal. The iterations of θ(0) move the
synthetic R-peak to the left until its location converges to that
of the true R-peak. The need for the two-step algorithm is
illustrated in Fig. 4 where it can be seen that without properly
initializing θ(0), the parameters of the synthetic signal may



Algorithm 1: Global parameter optimization algorithm
Result: Determine: Mopt such that J(Mopt) is

minimal.
1 Set the initial parameters M0 such that ω is set by

measuring the RR peak length (i.e. heart beat),
ai, bi, θi are chosen randomly and θ(0) = −π

2 Compute the synthetic signal zM0 .
3 Determine location of R−peak tsynth in zM0 and

ttrue in the measured ECG wave z.
4 Update θ(0) ∈ [−π, π) iteratively as follows, until it

converges to θ∗(0).

θ(0)i+1 = θ(0)i + λ(tisynth − ttrue), (4)

where λ is a chosen learning rate and tisynth
corresponds to the signal genrated using θ(0)i instead
of θ(0) in M0.

5 Update the subset of parameters M̄ = {ai, bi, θi}
iteratively as follows, via stochastic gradient descent
until it converges to M̄∞.

6

M̄ i+1 = M̄ i−γ ∂J(M̄i, θ
∗(0), ω)

∂M̄
+σJ(M̄i, θ

∗(0), ω)dW,

(5)
where γ is a iteration step size, dW is a unit normal

random variable and σ is a constant. Denote
Mopt = {M̄∞, θ∗(0), ω}.

7 end

settle at local optima where the resulting signal has large
error, in fact completely misses the R-peak. Though it is
possible occasionally that randomly initialized parameters can
converge to global optima, this may not always be true. The
effect of using L1 norm over L2 norm is illustrated in Fig. 5.
Here it can be seen that L2 optimization performs better
near high amplitudes (i.e. R wave) but can cause erroneous
artefacts at low amplitudes. Heuristically it can be seen that L1

optimization performs better in terms of faithfully reproducing
the clinical features of the measured ECG signal.

IV. SYSTEM DESIGN AND COMMUNICATION

The previous sections explained the process including the
modelling and algorithmic design of the data driven ECG
synthesis block shown in Fig. 2. This block relates to the
individual patient level and forms the basis of a network of
patients all under the same clinical pathway often monitored
and managed by a hospital or healthcare facility. Multiple
such patients together form a veritable patient network where
wearable medical sensing nodes together communicate the
patient data over wireless links (WiFi, cellular or bluetooth)
to data aggregators and database servers. It is needless to say
that these links raise further questions about privacy and safety
and need to be secured. The cardiac information is ultimately
retrieved by the medical facility monitoring these patients to
provide a care pathway in nursing homes, hospitals, cardiac

Fig. 6: ECG Synthesis and Wireless Transmission

and heart clinics, etc. This system and its blocks are show in
Fig. 6.

In order to facilitate the creation of a patient network, we
need a hardware platform which can run the ECG synthesis
algorithm online and at the same time provide the wireless
connectivity required to transmit the synthetic parameters to a
data aggregator. To this end we propose a smart wearable ECG
monitoring system called “Heart watch”. The system consists
of two main units - (i) ECG sensing unit and (ii) Processing
and communication unit. Though we have chosen AD8233 and
nRF52832 chips on the hardware prototype shown in Fig. 7,
we impose no restriction on the ECG chip and the processing
unit to be chosen. Our proposed algorithm is independent of
the number of ECG channels required and the processing
platform. However, the processing unit should be able to
sense and execute our algorithm in real-time. Additionally,
alternate SoCs or RF chips which support WiFi can also be
used depending on the required communication mode and
frequency.

A. ECG sensing unit

The system uses an AD8233 ECG monitoring front-end chip
from Analog Devices to record the ECG signals. This chip
supports dual channel ECG electrodes and has inbuilt filters to
eliminate motion artifacts, signal noise and the electrode half-
cell potential often seen when capturing the raw ECG signal.
Additionally, the chip is equipped with high gain amplifier
circuitry to boost the ECG signal such that it can be easily
identified by a processing unit. The signal output generated
from this block is in analog form and is connected to the
processing unit for analysis.

B. Processing and communication unit

The system houses a low power System on Chip (SoC)
- nRF52832 from Nordic Semiconductors that embeds a 64
MHz Cortex-M4 micro controller and 2.4 GHz Bluetooth Low
Energy communication. One of the main reasons for choosing
this chip is that the chip consumes only 0.1 mW at 64 MHz
during processing and a maximum of 0.2 W during radio
transmission over Bluetooth Low Energy (BLE). The chip has



Fig. 7: Heart watch hardware prototype with electrodes and
outer case

15 inbuilt Analog to Digital Converters (ADC) which can be
leveraged to sample the ECG signals at the maximum sampling
rate of 200 kHz which is well within the limit of clinical ECG
sampling requirements (1 kHz). Alongside this, the SoC also
includes a Floating Point Unit (FPU) which can be further
exploited to capture the ECG signals as fast as possible. Our
proposed algorithm is executed on this SoC and the processed
parameter data is sent over Bluetooth to a receiving unit in
the patient’s close vicinity such as a smartphone or internet
gateway. The output signal from AD8233 is sampled at 1 kHz
by nRF52832 and fed into our algorithm every 1 s. The ECG
synthesis algorithm is run online and produces the parameter
matrix Mopt for the captured signal for each cycle. This step
is processed in on an average of 0.6 seconds and is then used
to transmit the parameter matrix Mopt to the smart phone or
receiver. The entire system is powered using a coin cell Li-Ion
battery.

The system is highly sensitive or large jumps in parameter
value and the error function value itself which can indicate
an anomaly. This feature can push the system to transmit the
raw data on incidences of such anomalous behaviour of the
signal based on the discretion of the doctor or health care
professional. The same hardware device can be utilized in
hospital settings other than the patient’ home. The hardware
device can be connected over WiFi to the hospital’s internal
network and act as a high fidelity, low bandwidth ECG
transmission module which could be particularly useful in low
income economies.

V. EVALUATION

The accuracy and real-time performance of the proposed
system have been evaluated over 40 cycles of ECG data
corresponding to 30 seconds of captured ECG signal from
a healthy patient with no prior known cardiac ailments.

Fig. 8: Comparison between actual and synthetic ECG (10
cycles)

Fig. 9: CDF plot of RMSE (L2) error

Fig. 10: Evolution of dynamical parameters across ECG cycles

A. Learning Accuracy

In Fig. 8 the actual and synthetic ECG signals have been
compared for 13 consecutive cycles. It can be seen that
the proposed algorithm generates a signal which consistently
matches the actual signal with high accuracy. The CDF plot of
the RMSE (L2) error has been plotted in Fig. 9. The RMSE
has been computed for 40 cycles and on average is 0.0038,
and within 0.0058 with 90% probability.



Fig. 11: Comparison between computing time and signal time,
shows sufficient buffer for wireless communication

B. Real time Parameter Evaluation

Fig. 10 shows the variation of the parameters M across 40
cycles. Since in each cycle of the 1kHz ECG we only transmit
17 parameters, we achieve a compression ratio of 46.5. Fig. 11
compares the computing time and the signal time across 40
cycles. Here it can be seen that the iterations of the algorithm
and other computations complete well before the measured
signal. On average, 1s of the signal is processed within 0.68s,
and over larger number of cycles there is also sufficient buffer
time. This renders our algorithm suitable for implementation
on hardware along with wireless transmission protocols.

VI. CONCLUSION

We proposed a system, Heart Watch, which is a hardware
solution that synthesizes ECG signals based on real-time
clinical data. The system was based on a nonlinear dynamical
systems model whose parameters are updated in real-time
with each incoming ECG wave measured from a patient.
The system was driven by 17 parameters which encoded the
morphology of the ECG wave. The parameters were trained
using a novel global optimization algorithm that was proposed
in order to handle the complications due to the nonlinear and
non-convex cost function. It was shown that the computing
time of the algorithm was sufficiently within the signal time
which rendered it ideal for deploying on hardware platforms
with wireless communication protocols. We also presented a
hardware prototype i.e., Heart Watch which is capable of data
acquisition, processing and wireless transmission. In addition
to being computationally simple, the algorithm also showed
better RMSE as compared to existing approaches based on
machine learning. Our method required no training and only
one cycle buffer making it ideally suitable for edge devices.
Since the synthetic ECG generator proposed in this paper
reproduces the original signal with a high degree of accuracy,
it can also be used to generate large datasets of ECG data with
various abnormalities in order to train diagnostic models, and
for running several other experiments in the area of biomedical
signal processing and analysis.
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