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Editorial

The present issue of Selected Topics in Identifica­
tion, Modelling and Control is the fifth volume in
the series, reporting on ongoing research in the Me­
chanical Engineering Systems and Control Group at
Delft University of Technology. We have eleven pa­
pers on a variety of subjects that completely cover
the subjects of Identification, Modelling and Con­
trol.
In the area of Modelling, the issue of model uncer­
tainty representation is considered by Lambrechts et
al. with a contribution aimed at obtaining struc­
tured uncertainty models to be used in Jl-synthesis
controller design. Wortelboer and Bosgra consider
extensions to frequency weighted balancing model
reduction. The modelling of a wind power gen­
eration system is the subject of Van Baars and
Bongers who present first results on the issue of
experimental validation of their theoretical models.
The real-time modelling of heat balances and the
estimation of the relevant process variables on the
basis of operational chemical process plant data is
the subject of work reported by Baak et al.
The field of Control is covered in contributions by
Bongers and by Schrama et al. Both papers con­
sider robust control issues with both uncertainty in
plant and in controller, and derive new results with
respect to robust stability. The interplay between
the requirements of robust high-performance con-

vi

trol and the achievements of error-analysis-directed
system identification is shown in the contribution
by Schrama and Van den Hof
In the area of System Identification we have two
papers by Hakvoort ad dressing worst-case aspects
of identification for two fundamentally different er­
ror criteria. The issue of guaranteed error bounds
in system identification results is discussed and
worked out by De Vries and Van den Hof Finally,
Heuberger et al. show the construction of orthogo­
nal domains that may lead to advantageous signal
and system representations in system identification.
The present issue contains results from applied
projects and from theoretical studies. We appreci­
ate the fact that results from collaborative projects
performed in cooperation with external institutes
and industrial research groups constitute a consid­
erable part of this issue. Although most of the ma­
terial presented here will eventually be published
elsewhere in the open literature, we appreciate the
efforts of our authors who in many cases have made
available some of their most recent research results.
We hope you enjoy the result.

ükko Bosgra
Paul Van den Hof

Editors
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Pararnetric uncertainty modeling using LFTs

Paul Lambrechtsl , Jan Terlouwl , Samir Bennani'' and Maarten Steinbuch]

t Mechanical Engin eering Systems and Control Group, Delft University of Technology,
Mekeluieq 2, 2628 CD Delft, Tlle Netherlands
§ Fac, of Aerospace Engin eering, Section Stability and Conirol, Delft University of Tech­
nology, l\ïuyverweg 1, 2629 IJS Delft, The Netherlands
U Philips Researcli Laboraiories, P.O.Box 80.000, 5600 JA Eindhov en, Th e Neth erlands

Abstract. In this pap er a general approach for mod elling structured real-valued para­
metric perturbations is presented. It is based on a decomposition of perturbations into
linear fractiona! transformations (LFTs ), and is applicable to rational multi-dimensional
(ND) polynomial per turbations of ent ries in state-space modeis. Mod el reduction is used
to reduce the size of th e un certainty st ructure . The procedure will be applied for the
un certainty modelling of an aircraft model depending on alt itude and velocity (ftight
envelope ).

1 Introduetion

In both robustness arialysis aIHI robust cont rol sys­
tem design th e conce pt of t he st ruct ureel singular
value J.l as introduced by Doyle (1982) is of great
importance. lt allows a high degree of det ail in
modelling the conditioris und er which th e consid­
ered con trol syst em should operate sat isfactorily,
both in th e sense of stability and perform an ce. Th e
calcula t ion of ft for such mod els th en results in a
single number acting as an acc urate measure in in­
dicating whether the behaviour of t he cont rolled
system is satisfactory or not. T he relevan ee of using
the st ruct ured singular value instead of measures
that do not refiect t he structural propert ies of the
plan t un certain t ies, like the oo-norm or t he 2-norm,
can be found in lit era t ure; the latter may lead to
arbitrarily conse rvative statements whe n practical
examples are conside red (see for instanee Balas et
al., 1990, St ein and Doyle, 1978, 1991, Doyle et al.,
1986, Skogestad et al. , 1988). In spi te of this t he
use of J.l has been seriously hampereel by th e con­
siderable computational effort needed for it s calcu­
lation with resp ect to a given un certainty moelel.
Recently elevelop ed methoels for calcula t ing close
upper and lower bounds for th e most genera] cases
(Fan anel Tits, 1986, 1991, Young et al. , 1991)

now motivate th e effort of modelling uncertainties
in great el etail. Th e main issue of this paper is to of­
fer a complete procedure for setting up the general
st ruc ture for th e calcula t ion of J.l when uncertainties
like real-valued parameter variations in state-space
mod els and variations in operational conditions oe­
cur.

First , we will give som e preliminary results on the
use of Linear Fractional Transformations (LFTs)
and th ei r importan ce for unc ertainty modelling, fol­
lowed by a definition of the structured singular
value ft anel some relevan t uncertainty sets. Sec­
t ion 3 th en will present a procedure for parametrie
un certain ty modelling based on a state-space model
in which uncertain entries may be given as rational
mult i-dimensional polynomial fun ctions of a set of
parameters. T he usefulness of this procedure for
practi cal problems will be demonstrated by means
of an extensive exam ple in sect ion 4, aftel' which
some concl uding remarks follow in section 5.

2 Preliminaries

This section will review some of the properties of
Linear Fractional Transformatiens (LFTs) and the
structured singu lar value fl along the lines of Doyle



2.1 D efinition of LFTs

and let .0.u E R (S)ql XPl an d .0. / E R(S)q2 XP2 be ar­

bitrary. We will th en define the upper an d lotoer
LFT s as ope rators on .0.u and .0., res pectively :

(3)

with PMN:= PMI + PNI anel qMN:= qMl + qNI .

Then th e cascaele conneet ion obtained by setting

lOM = ZN with r := qAf 2 = PN 2 (see fig.2) results in
an upper LFT on .0.MN with coefficient matrix:

'1'0 de monst rate this we will first look at the two
most basic connect ions between two LFTs: the cas­
cade and parallel config urations. After that we will
show a sim ple feedb ack configuration for one LFT
whi ch ca n also be rewrit ten into the standard form
of fig. 1. These three configurat ions will play an
im por tan t role in t he a1gorithmic ap proach to un­

certainty mod elling we will pr esen t in sec tion 3.
Given matrices M and N par ti ti oned as in eq .l:

M E R(S)PM XqMl and NE R(S)PNXqN, with PAf:=

Pll11 +P1I12, qll1 := qll1l +qIl12, PN := PNI +PN 2 and
a» := qNl + qN 2· Let Mand N be th e coefficient
matrices of the upper LFTs on .0.M E R( s )qMl XP M I

and .0.N E R( S)qNl XPN I resp ectively and define th e
combined structure:

(1)

We will conside r m atrices with ent ries that ar e frac­
tions of polynomials in a cornplex- val ued variable s;
th e space of all such real rati onal functions will be
el eno teel as R( s) , M E R( s )PXq will denot e that M
is a p x q matrix with ent ries in R(s) . Suppose a
matrix M E R( s) is parti t ioned as:

et al. (1987 , 1991). First we will give a defini­
t ion of upper and lower LFTs and discuss some im­
por tan t possibili ti es of combining anel rearranging
them. Next we will consieler the LFT conce pt as
a fram ework for un cer tainty modell ing and within
this framework we will give a elefinition of Il and
some releva nt uncertainty sets.

(4)

Fu(M , .0. u ) .- M2á
M 21(I - .0.uMIl )-I.6. uM1 2

F/(M,.0.,) .- MIl +
Mdl- .0. /i'v!n )- l.0. /M21

(2)

o

Eith er LFT will be calleel uiell defined if t. he con­
cern ing inverse ex ists : elct ( ! - .0. u.MI 1) -# 0 ancl
det(J - .0./M22 ) -# O. The matri x M is some t imes
refcrred to as the coefficicnt matr ix of thc LFT.
Not e that if s is interpret eel as th e Lapl ace vari­
abl e , a matrix with ent t ies in H(s) can be seen as
a mu ltivariab le transfer fun ction of ~. linear time
invarian t finit c dirn en sion al sys te m. In th at case
LFTs ca n be see n as ope rat.ions resul ting Irom Ieed ­
back st ruetures as given in fig. 1; eq.2 the n defines
a closcd loop transfer fun cti ons from Wil ! to ZII1 in
both cases.

Fig. 2: Cascade connection of LFTs

T he par allel conneet ion obtained
by sett ing W II1 = WN and ZII1N = ZII1 + ZN with
1'q := qll1 2 = qN 2 an d 1'p: = PM2 = PN2 (sec fig.3)
a lso resu lt s in an up per LF T on .0.MN, this t ime
with coeffic ient matri x:

Fig. 1: Upper and lower LFT as feedback st ructure

An important reason for using t he conce pt of LFTs
in linear sys te ms t heo ry is t hat lincar interconn ee­
t ions of LFTs can be rewritten as one sing le LFT.
Thi s implies that LFTs can be useel to sepa rate ly
mod el specific details of th e sys tern under consid­
erat ion after whic h a complete sys te m descript ion
can be obtained by work ing out all connect ions.

(5)

2



Fi g. 3: P a rall el connect ion of LFTs

Fig. 4: An LFT in t he feedback pat h

Not e that we have conve n ient ly chose n thc inputs
and outputs of both LFTs to be com pat ible, but
t hat it is a lso possible to co nnee t on ly parts of in­
put and output veetors by definin g a fur thcr par ti­
t ion ing of M and N.

Next cons ide r t he feedback co nfiguration given
in figA with M il sq uare (PI = qd . In t h is case

(8)

in whi ch 8;1kj, i = l 7' den ote repeated seclar
blocks and .6.;, i = 1 J denote Jul! blocks. Note
t hat for .6. E a to be compatib le wit h a coefficient
matrix accord ing to eq. l we must have for an up­

per LFT tz: k; = PI = ql and for a lower LFT

~~:{ k, = P2 = q2; extensions to the non-square
case are reasonably straightforward. An often use­
fu l restrietion of the set a can be obtaincd by tak­
ing bounds for t he oo-norrns of t he sub-blocks of .6.,
with the oo-norm of a matrix M E R(s)PXq defined
as :

it is thcn possibl e to specify a set of linear mod­
els rather t han a single one. Especially if this set
of models is closely related to phys ical properties
of the system under consideration it thus provides
a basis for non-conservative and trustworthy state­
ments on robust ness of controlled systems in the
face of ' t rue ' uncertainties.

For many relevant choices of the subspace a it
is poss ib le to determine whcther all modcls with in
t he specified set are stabie by calculati ng a single
non-conservat ive measure. This measure was intro­
clucecl by Doyl e in 1982 as t he st ructured singular
val ue or J1 an d is based on a block-di agon al st ruc­
ture of a:

a = {cliag (81hl , . . . ,8r hr, .6.1, . . . , .6.j):
8; E R(s), .6.; E R(s)kr+.xkr+i }

lV,l f N

z

the coefficient matrix of t he equivalent LF T can he
calculated as:

with ä den oting th e la rgest sing ular value . Ass um­
ing t hat sealing fac tors are in corporated in the co­
effic ient m a tri x of the LFT, .6. is an element of a
uni t ball in a :

[
Mf11 M f 12 ]Mf =
M f 21 M f 22

with:

(6 )

11lVl 11 00 := sup ä(M(jw))
w

. (9)

2.2 Uncertainty descriptions with LFTs
and the structured singular value

Clea rly, for this coefficient matrix to be weil defined
we must have det( I + Mil) =I O. A more ge neral
form of th is structure is known as the 'Redheffer
Star- P roduct ' (Redheffer, 1959) .

Another main advantage of t he LFT co nce pt is t hat
it prov ides a framework for un cer t.ainty mo de ll ing .
T hc coefficien t m a trix can be see n as th e part of
a lin ear model t hat is ass umed t o be correct: the
nominal model then results as an LFT on .6. = O.
By t aking A E a with a C R(s) a give n subs pace,

(10)Ba = {.6. Ea : 11.6. /100 ::; l}

For t he b lock-d iagonal structure of eq .8 we can
now define t he st ructured singular va lue as follows:

1l .ó.(M) :=
(1 1)

min{II.6.lI oo:.6. E a , de t (l - .6.M Il ) = O} -I

unless no .6. E a makes 1- .6.1\111 singular in which
case It.ó. (M ) := O.

Clearly It.ó. (M) deterrnines t he smallest .6. E a for
whi ch the LFT under co ns ide ration is no longer weil
defined, If F(/I'I, 0) a nd all .6. E a are stabie t rans­
fer fun etion m atrices , we m ayalso interpret th is .6.

Definition 2.1 Giv en an upper LFT with coeffi­
cieni matrix M , partitioned as in eq.l and given
a compatible block-diagonal slruciure as in eq.8;
1l .ó.(M) is th en dejin ed as:

(7)

.- M2 1(I + Mil )-1!'v112 + M22

M 2 1(1 +Mld-I
-(I + MII)- I/1112

(I + 1\111)-1

1vl111

Mjl2 ' ­

M f 21 .-

M / 22 . -

3



we can write th is as

(15 )

(16)

(14)A(p)x + B (p )u ,

C(p)x + D (p )u ,y

x

Now we wou ld like to rewrit e eq. 15 using an lIpp er
LFT:

S(p) = M22 + 11-121(1 - .6.uMII) -I.6.uMI 2 (1 7)

with .6.u E Ba TT (eq.1 3) and the mat rices
kin , 1\121, J1dll , /1112 indep enden t of .6." .
lf we cons ide r only t he non- trivial case that
5i i 0, i = 1 . . . r we ca n t he n define Pi:= 1/ 5i

and rewri te eq. 17 as:

Wi th the (n + I ) x (n + m ) mat rix S(p) defined as :

S(p) := (A(P) B (P))
C( p) D (p )

the parameter vector p:as t he sm allest on e such that F (M , .6.) is unstable .
Note that lower LFTs ca n easi ly be rewri t ten as up­
per LF T s such t.hat we can use t he same defi nit ion;
Iurtherrnore we have that It is also defi ned if in eq. l

we take P 2 = q 2 = O.
W ith t his defin it ion we now have t he possibil ­

ity to test t he prop er ti es of a set of systems by
constructing an approp riate LFT , normali zin g .6.
suc h that .6. E Ba and fina lly determining wheth er
It :s 1. For an overview of such tests in t he gen­
era l ca se of eq.8 we refer to DoyIe et al. (1991).

Fu rth errnore , we will not go into det ail on corn ­
pu t ati onal issues with respect to It but sim ply refer
to recent developments as rep orted by Fan and Tits
(1986, 1991) and Young et al. ( 1991) . We will con­
centrate on a fur ther restri ct ed set of .6.s th at di­
rectly resul ts from real valued parameter va ria tion s
in state-space models as ee ns ielered in sec t ion 3.
For t his purpose we define t he set of .6.s t hat are
square and diagonal a nd consist only of real-v alued

repeaied scalar blocks:

In accordance wit h t he genera l st ruct.ure of eq.S we
ea u us ually assume that sealing factors are incorpo­
ra ted in t he coefficient mat rix an d that .6. is Iurther
rest ricted to the bounded set:

Note t hat we now have tra nsformed the problem of
find ing an LFT representation of eq. 14 to an NO­
rea lization probl ern (see Bose (1982)) .

(18)0] ]- I
- !"'[II /1112

PTIk ,.

( 1:3)BaTT := {di ag(8,h" ... ,b,-h,.):
8; E [- 1, +1]}

3 P aram e t rie uncertainty
modelling

3.2 Existence of a solut ion

Using a cons t ruct ive algorithm we ar e now abl e to
prove th e followin g th eerem .

In t his pa ragrap h we will conside r t he problein
of state-space mo de ls wit h pa ram et rie u ncer t.ain ty
occurring as real ra ti onat ND-po lynomia ls. T his
genera lizes earl ier resu lts in paramet rie uncertainty
mo de lling as given by Morton and McAfoos ( 198.5)
and Steinbuch et a l. (199 1, 1992). In section 3.1
the prob1em will be Ior mula ted , which t UrIJS out to
be an N O-real izat ion problem. Sect ion :3 .2 discusses
the existence of a solution and section :3.3 p rov ides
an algorit hm for so lving t he rea lizat ion problem by
const ructing an appropriate LFT.

3 .1 Transformation of a state-space model
to an LFT

Conside r a vec tor p = (PI, ..., ]JT ) E W containing l'

bounded scalar paramet ers. Let th e model of t he
per turbed sy st em be givcn as a sta tc- space reali za­
ti en in which the entries of th e matrices dep end on

Theorem 3.1

;\ so lu ii on to ih e problem o] tran sJorm ing a
state -s pace model

with puram et rie uncert.ainlsj lo an LFT exisls
ij

ihe slate -s pace matrices can be given as
real rationel N D-polynomials in the parameters.

Proof:
Real rational varyin g entries in a state-space model
can be described as LF T s individually. Based
on t he pr op erties of th e in ter connecti on of LFTs,
treated in subsec tio n 2.1, t hese indi vid ual LF T s can
bc collected in one LFT afte rwards . For details on
t he algorithm sec sect ion 3.3 . 0

Minimality of th e obtain ed LFT can not be gua r­
anteed since it is not straightforward to generalize
th e 1D concept s of cont rollab ility and ob servabi lity

4



to ND-systems. By for instanee Hinamoto (1980),
Kung and Levi (1977) and Roesser (1975) 20 coun­
te rparts of these notions are conside red , leading to
the definition of local and global controllability and
observability. As is weil known , for 1D systems the
minimality of a state-sp ace description is equivalent
to the property that su ch a realization is control­
lable and observable. By Kung and Levi (1977) it is
shown by means of an exam ple that global observ­
abili ty and cont rollability does not imply minimal­
ity . However , by removing locally unobservable and
uncontrollable perturbations the dimensions of the
obtained LFT can be reduced substantially. This
approach has been implementeel in th e algorithm
given in th e next section .

3.3 A procedure for the transformation

I 62 61
l

L
-I

J [ I J0 0P ol 52 P o251

- 1 0 f.- - 1 0 I--

61 0
0 62

- -0 0 51 52

1 0 0

- 0 1 0 :.-

Fig. 5: The varying terms 111 the numerator n ij

written as LFTs

61 0 0 0

o 62 0 0 ~_~
o 0 61 0
o 0 0 62

1. Sealing the varying parameters
Lower and up per bo und veetors for t he pa­
rame te r vector P ca n be dctermined, den oted
respectively as pand ij: IO \\' defin e Po =

(p + p)/2, 8 = - (iJ - p)/ 2, Ó = (ÓI " . ór ) ,

ó7 E [-1,+1], such t h~"i Pi = Poi + 8iÓj for
i = 1 · · ·1'. Substi tu ti on of t his res ult in eq .14
t hen gives scaled NO-polynom ia l ex press lons
for all va ry ing numera tors and den ominators.
For instan ce, suppose a numerator is given as
njj(Ph P2) = PIP2 , with PI = Pol + 8 1ÓI an d
P2 = P02 + 82Ó2. Thcn the scaled numerator is

o 0 0 0
o 0 0 0
o 0 0 0
1 0 0 0
1 1 0 1

P o25 1

Po l52

5 152

o
P oIPo2 ~ _

2. Individual varying terms as LFTs
The varying parts of a nurnerator or denomi­
nator consist of a number of terms that can be
written as sepe rate LFTs. For exa m ple, th e
scaled numerator njj( 151, 152 ) given above has
t hree var ying terms resu lt ing in three LFTs
(see fig.5). Of course th e sarn e can be done
with the varying terms in denominators.

3. Numerators of varying entries
Using the fact that two parallel LFTs form
again an LFT (see eq. 5) the addition of all
terms in each nurnerator can again be written
as an LFT. Since we use upper LFTs, th e nom­
inal (constant) part of each nurnerator results
in a feedthrough term, whi ch can be incorpo­
rated in th e M 22 term of t he combineel LFT.
The resulting LFT giving the nurnerator n jj of
eq.19 is depi ct ed in fig.6.

n jj(ÓI,Ó2) =
PoIP02 + P02Sl Ó1 + Pol 82Ó2 + 8182ÓIÓ2

( 19)

5

Fig . 6: The numer ator njj given as a sin gle LFT

4. Denominators of varying entries
A similar procedure is followed for the denom­
inators, However, there is a slight elifference.
In fact we ar e interested in an LFT-description
of th e inverse of the NO-polynomial denomi­
nator. This inver se can be thought of as a feed­
back structure as in figA, with the denomina­
tor minus 1 in the feedback path. Accoreling to
eq.6 th is structure can then be rewritten as an
LFT under the condition that the term M ll + 1
is invertible. This corresponels with the restric­
tion that the norninal parts of all the varying
denominators of a state-space model must be
unequal to zero.

5. Combining numerators and denomina­
tors of individual entries
Cascade conneetion of the LFTs of each
numerator-denorninator pair found in the pre­
vious steps can he perforrned as in eqA .



6. Combining all varying entries
We now have a complete descrip tion of a ll un­
cert a in entries specified in eq .14 in t he form of
LFTs. Combining the LFTs for t he A, B , C
and D matrices sep ar ately by mean s of eq.5 re­
sults in fig.7 that can be rcwri tten as on e single
LFT with ~ = diag(~A , ~ B, ~c , ~D )'

procedure can be performed inter acti vely. In t he
next section an example is give n.

4 U ncertainty modelling for the
Phugoid approximation of the
DHC2-Beaver aircraft.

Fig. 7: LFT description of state-space param etri e
un certainties

7. Transformation to the real-repeated
blockstrueture
~ can now be rearanged in to t he real-va lued
rep eated scalar block st ructure of eq. 12 by
means of inter changing rows and colum ns of
th e LFT. Note that du e to step 1 th e ent ries of
~ ar e e1ements of [- 1, 1], such that ~ E BA"T'

(20)
[

u(t) ]
O( t)

1] [u(t)]
O( t)

A

[ 0

[1~(t)]
O( t)

y(t )

The airc raft mod el cons ielereel in t his example is the
linear approxirn ation moelel of t he phugoid mot ion
anel can be given in state-s pace for m as :

4.1 Modelling the phugoid motion

The design exam ple is based on t he variat ions of
aerodynarnic coefficients and relative mass within
th e flight envelope, as they appear in the phugoiel
approximation of th e Beav er aircraft . The phugoid
motion is a low frequen cy badly damped oscilla­
tory effect appearing in forward velo city and alti­
tude of the aircraft. For good aircraft design it is
important that th e effcct of the phugoid mot ion is
minimizeel to ertsure sat isfact ory handling and fly­
ing quality, especially under instrument flight rul es.
Also for cont roller design it is important to find
an acc ur ate cha racter iza t ion of this effect. We will
th er efore start with t hc definition of t he analyt ica l
phugoid model in whi ch stability derivati ves ar e de­
fined t hat have becn quantified acc urate ly over th e
whol e flight envelope by Tj ee and Mulder (1988).

In our exam ple we ar e in ter est eel in modelling pa­
ram et er variation of the airc raft in cruise flight con­
di tions ove r th e ent ire fligh t envelope . The flight en­
velopc represen t s a se t of Ilyin g condit ions, in terms
of velo city and al ti tude, under whi ch th e aircraft
can op erate. The goal of this exc rcise is to obtain an
ai rcraft model that accura.tely represents all fiight
cond it ioris t hat may occur and that may be used for
stability anel performan ce arial ysis and also can be
useel in robust cont roller sy nt hes is. We will show
that on ce the variations ar e explicit ly defined, th e
model can be writ.t en as an LFT su ch th at calcu­
lation of th e stru ctureel singula r valu e may provide
a measure for th e unw anted effect of t he phu goid
motion .

u

8. Reducing the dimension of ~
The resulting LFT may now be rcdu ced in di­
mension ; if possible th e individual rep eated
blocks are replaced hy smaller blo cles . 'I'he re­
duetion procedure is startcel by sepe rat ing th e
first repeated blo ck from th e deri ved LFT re­
sult ing in a subsyste m whi ch lias a st ate-space
form . The remaining part of ~ may th en be in­
terpreted as an un certain ty block act ing on th is
subsyste m . Subsequen tl y the un controllable
and unobservable per turbat.ions of th e subsys ­
tem may be removeel using a standard ( I J))
reduction technique. Rewriting t he LFT such
that th e next rep eated block is sepa ratc d th en
allows to perform this red uction ste p for all
blo cks. Although a mini mal reali zation can not
always be obtained by t.his pro cedure, many
exam ples have shown th a t. an ex te ns ive reduc­
tion of dimensions can be achi eved.

u

With these st eps we now have an LFT description
which is equivalent to th e state-space systcm of
eq .14. These steps have been implem enteel within
the environment of PC Matlab such that the entire

wit.h:

. _ [ 21'~~) C CXu (p ,V) -go/V]
A.- 21:(p) c Cz.t» , V) 0 (21)
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The state vector x = (u, 0) represents the longi­
tudinal component of t he ve locity vector (u) a nd
the pitch angle (0). T he inpu t vector 10 is ad ded
to demonstrate the possibility of m od ell ing the ef­
fect of, for instanee, air turbulence on t he phu goid
motion. As a measure of the effect of the phugoid
mot ion we ass ume that the pi t ch a ng le 0 can be
measured . T he ter ms Cx. an d Cz; re present th e
stablity der ivatives whi ch a re kn own in te rms of al­
t itude (air dens ity p) and ve loc ity V . The accelle r­

ation of gravity is given as 90 = 9.80665 m / s2 and
t he factor Jl c = p~c represents t he relative ai rcr aft
mass with m denoting the nominal ai craft mass , S
t he win g area allel ë the m ean ae rody nami c chord

of the wing profil e . The air density p is assurned
to dep end on alt it ude h accoreling to the St andarel
Atm osp here m odel:

Polyn omial fit of the Iligh t envelope as a fun ction of ór
.',------------=-------~

m aximal order of 2 a re given by:

Cx ; = 5.95e- 02 b;b; - 6.37e-02 b; by
+ 1.38e-02 b; + 3.97e-02 bx8;
- 3.99c-02 bxby - 7.9 5e-04 bx
- 9.9 1e-02 8; + 1.23e-Ol by - 0.1 4 (24)

Cz• 1.02e-Ol b;8; - 2.9 0e-01 8;8y
+ 1.83e-0 1 8; + 1.0ge-OI 8x8;

- 2.41e-Ol 8xby + 1.91e-02 bx

- 2.37e-Ol b; + 7.68e-Ol 8y - 1.43

and pl ot ted in fig.9. Finall y t he rel a ti ve ai rc raft

0.'-0.'-I
~o L..:__--~~---_:_---~-------....J

Fi g. 8: Flight envelope and its app roximat ion

v

(22)

,\ = -0.0065 K/ m ,

[
Ta ]~+1

p = Po Ta +,\ h

with Ta = 288 .15 K ,
Ra = 83 14.32 J /K·km ol and
Ma = 28.9644 kg/k mo!.

4 .2 Fitting the stability derivatives

1'0 obtain a paramet rie elescription of t he stability

de rivat ives Cx• and Cz; as a fun ction o f p anel V
we will use a 2 dimension al polyn omial fit ting pr o­
cedure . Data regard ing the stab ilit y derivat ives for
several com binations of panel V wi thin th e f1i ght
envclope is avail able from Tj ee and Mulder (19 88).

Alt hough the a rea of the flight enve lope is not
sq uare it ca n be ap proximated by means of poly­
norn ial fit s of t he no m inal value an d deviation of V
as a funct ion of p. Both t hc ap proxi mat ion of th e

area and t he surfaces defined by Cx. and Cz; ca n
t hen be givcn as a funet ion of t wo new parameters

bx and by vary ing between -1 a nd 1. For t he ap­
proximat ion of the area, secend order polyn omial
fits have been deter.milled resul ti ng in :

h
p
V

4000 s. + 6000 [ft]
- 1.25e-Ol bx + 1.03 [kg/ m:']
- 3.57 b;by + 3..57 b; - 3.50 brby
+ 3.50 bx + 12.3 by + 47 .7 [mis]

(23)

Fi g . 9: Fitteel su rfaces of Cx ; and Cz;

The flight envelo pe thus descr ibed is visu a lizeel in

fig.8 as a function of bx' Polynomial fit s for ex.
and Cz• within this ar ea and with terms having a

mass can be detcrmin ed as:

Jl c = 7.43 bx + 60.9 (25)
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4.3 Results o; = [0 0 0 0 0 0 I 0 0 0 0 0 0 0 I 0 ( (34)

Using the pr ocedure of sect ion 3 we arrive at an up­
per LFT description of the state-space model given
in eq.20 with thirteen un certainty inputs and out­
pu ts

1t Ó%6

X = A x + [BÓ1 BÓ2 I Bu ] 1t Óy l

(26)

To dem onstrate the possibili ty of using the st ruc­
tureel singular value 11 as a measure for th c worst
case influ en ce of disturbance input w on the
phugoid motion , we will calculate Jl for t he inter­
conneetion structure given in eq.26. T he st ructure
of the un certain ty block ~ for t his LFT can be given
according to eq .8 as À = diag(óxI6, óyI7, ów) wit h
óx, óy the real paramet er vari a tion s as defined be­
fore and Ów a complex per turbati on to ex press our
elemand to restri et t he phugoid motion. We used a
pr elirninary release of th e MUSYN tooibox to ca lcu­
late It for this mi xeel real-rep eated complex pr oblem
resulting in fig.lO. Our choice of distur bance input

Y Óy7

Y

Y Ó%6 ll Ó%6

Y Óyl = C x + [ DÓ' DÓ2 I Du ] ll Óy l

o -1 .33e-02 0 2 .05e-O l - 8. 0 ; e - 0 2 - 6 . 15e - 0 1

l O"

--_. w [rad/sj
Real ft for the Ph ugoid mot ion of the
Beaver aircraft

40

JI
3 5

I 30

25

20

15

10

5

0
10 - 1

Fig. 10:

Upper a nd lower bounds of real IJ.

5 Conclusions

'w and out put Y was arbit rary and ju st to demon­
st rate th e pro cedure. The valu e of lt of 38.6 can be
int erpreted as th e maxim al am plificat ion occur ring
In th e t rans fer fun cti on matrix Irorn w to Y und er
the worst case cond it ions within the flight envelope
an d with the worst case disturban ce w (a sine of
frequ en cy 0.27 ra d / sl o A cho ice of in puts an d out­
pu ts based on a physical in terpreta tion of dist ur­
bances and th e desir ed suppress ion of th e phu goid
mot ion is cur rent ly a research topic at th e facul ty
of aerospace enginee ring.

(28)

(27)

(32)

(29)

(:30)

o - 1. 4 8 e - Ol
1.81e-01 0

o 0
o 0
o 0
o 0

- 3. 05 e-0 2 -5.88e-03
- l A 8 e-0 2 5 .0 8 e - 0 2
- 4. 11e - 0 3 -IAQe-OI
- 1. 8 5 e-0 2 0
- 1. 48 e-0 2 0
-3 .87e-03 0

J .OOe-D3 0
o 1

o 0 0 0 0 0
- 7. 3 4e-0 2 0 l.DSe -OI 0 0 0

o - 1. 22e- Ol 0 0 0 0
- 7 . 14 e - Ol 0 0 0 0 0

o 2 .3 7e -O l 0 0 0 0
o 0 0 5 .5 7('-0 1 0 0
o 0 0 0 5 .20(' Ol 0

- 1. 42 1e - 0 2 5 .2ge-02 2 .03e-02 1.90e-O I l.i Je - OI 2 . IGe-O I
1.23e-0 1 1. 98e - 0 2 - 1.ï5e-O I - 5. 0 0e - 0 2 1.1 2e - OI 1. 36e - Ol

- 3. 3 74 e - Ol 4 .9 6 e - 0 3 4 .8 2 e - Ol - 2. 6 2 e - 0 2 3 .36e-02 4 .04 e - 0 2
o 8 .0Se - 0 2 0 4 . l.S ~-O I - 3 .20 t'- Ol - 2. 8 1 ~- O I

o 3 .05~-02 0 -4 .24~-0 1 -2 . 8i ~-0 1 - 2 . 7B ~ - 0 1

o -6 . 4 5 ~ - 0 2 0 r .rse- or 2 .16e-02 2 .55e-0 1

BÓ, =
[

- 1.0 18 e - Ol 8 .25e-03 J.4 5e - Ol 1 .8 g e - 02 9 .92e- 0 3 2 .oie- 0 2 ]
o - 1. 2 2e-Ol 0 - 4 .4 7e-0 1 - 1.5 4e-Ol - 2 . ï4 e-Ol

B [- 1. ]7 9 .61e-Ol 1. 94e-02 0 0 00 ]
6 2 == 3 .0 4 3 .7 0e-Ol 6 .68 e - 0 3 0 0 0 0

A - [ - 3 .47e-02 - 2. 0 6 e - OI ]
- 3 .5 4e - Ol 0

with :

c =

0000000
- 1.0 2e-0 2 8 .77e-02 -2 .41e-01 0 0 0 0
0000000
0000000
0000000
0000000
0000000

-1.33e-O l -a.ss- 0 1 1. 50e - Ol 2 .0 1e -Ol 1.50!.>e -Ol 0 0
1.69~-01 4 . 0 6 ~-02 1.0 1e - Ol 3 . 56 ~ -0 1 - 7..Sge - 0 2 0 0
5 .6 4e -02 1.25e-O l -2 . 14e -Ol 1. 21 e - 01 -3. 41~-02 0 0
3 .27e-02 1 .0I e - Ol 3 .53e-02 - 4 .95e - 0 2 -9 . 5 8 ~ - 0 2 8 . 18~-02 8 .6!.><, -02

-1.80e-02 - 2 .1ge - 0 1 -7.88e-02 3 .4ge- 02 - 1.65~- 02 3 .3 4e -O l - 2. 12e - 0 2
-3.86e-02 - 4 . 12('-02 -1.34e-02 - 4 .40e-02 - 1.5 7 ~ - 0 1 2 .64~-0 1 2 .72t' -0 1

2 .2 4e-02 - 1 . 3 9 ~ - 0 1 -5 . 14~-02 1.62e-0 1 8 .3&~ 02 2 .62t'-03 - 1. 4g e Ol

(33)

The development of meth ods for analys is and de­
sign based on t he structured sing ular value Jl causes
an increasin g dem and for th e const ruction of accu­
rate un cer tainty models in the form of LFTs. Usu­
ally th e knowl edge conce rn ing un certainty in math ­
emat ical models of physical sys tems is available in
terru s of paramet er variaticris. In state-space mod­
els thi s often appear s as variations of ent ries that
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can be approximated accurately by m ean s of ra­
tios of N D-polyno m ials in ind ep end en t va riables
which have a physical in tcrpre ta ti on. In t h is pape r
an algo rithm is p resen ted which is used to trans­
form a state-space m odel wit h th is ty pe of para­
metric uncert ainty to an LF T descript ion wit h a
real-repeated perturbation mat r ix. Alt ho ug h t hc
dimension of this pcrturbat ion m atrix may initially
bc ve ry hi gh , a red uction p rocedure is p ro posed
that usuall y decreases it significa n t ly. Il owever ,
th is procedure does not guarantce m in imality of t he
resul ting structure. T he proposed proced ure has
been ap pl ied to t he un cer t ainty m od elling for t he
phugoid approx imat ion of the DI-I C2-B eaver a ir­
craft resulting in an LF T descr iption allowing the
analysis of the influen ce of d ist ur bances over t he en­
t ire flight envelope. The procedure has been imple­
mented in Mat Lab , such t hat unce rta inty mod els
can be set up in an in ter acti ve user-friendl y man­

ner.
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Abstract. The aim of this pap er is to derive a new robust stability m argin for simulta­
neous pe rtu rbat.ion of plan t and cont rolle r whi ch is less conservative than th e gap-metric
robu stness. Kn own suffic ient conel it ions for robust stability stateel in the ga p-met rio
contain inh eren t conse rvat iveness in t he form ulation of the vari ous steps . In this paper
conservat ive ness in one of t he steps is removeel, resulti ng in a new anel less conse rvat ive
robu stn ess margin . The key issue is that more infor mat ion of the nominal feeelback sys­
tem is taken into considcration. T he improvement of the ne w robustn ess margin will be

illustrated by an example.

Keywor els. robust ness, sirnultaneous perturbations, coprime Iactorizations, gap-metric

1 Introduction

A perfect model of the real pla nt, if it is avai lable,
will in genera l he non-lin car an d of ex t reme ly high
ord er. In eng inee ring practice th e plant will be ap­
proxirn ated by a low oreler linea r moel el. The dis­
cre pancy between th e nomina! moelel an d the plant
is then elescribeel by a set of plan t un cert .ainty moel­
els. In th e next ste p a cont rolle r will he sy nt hes ized
in such a way that it robnstly st abili zes the norninal
model and th e set of plant un certain ty moelels, for a
pre-sp ecifieel performan ce; Meth od s to elesign such
robust cont rolle rs are for example given in (Do yle
et al.(1989), McFariane anel Glover (1989), Bongers
and Bosgra (1990 )) .

Wh en dealing with industrial pro cesses th e con­
trol computers ar e calcula t ing in finit e worel length
arit hmet ics or even integer a rit hmet ics, whil e for
th e cont roller limiteel time anel space on th e com­
puter is available, Therefore th e implem enteel con­
troller is only an approximation of th e el esign eel
cont roller . The discrepancy between th e design eel
controller and th e implcm ented controller can be
elescribeel by a set of controller un certainty moelels.

The feeelback connee t ion of plant moelel and con-
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t ra iler will be ca lled rob ustly stable if t he feedb ack
sys te m rem ain s stabie for all plant variat ions de­
scrihe el by t he set of plant uncertain ty moelels anel
all cont roller variat ions elescribeel by th e set of con­
troller un certain ty modeis.

In sorne recent papers by Georgiou and Smith
(1990a) , Bon ger s and Bosgra (1990) a sufficient
condition for robu st stability of a closeel loop sys­
tem has been stateel for pl an t perturbations mea­
sureel in the gap-metr ic. In Georgiou and Smith
(1990b) gap -m etri o robustness under simultaneous
plant and controller perturbations has been stud­
ieel. In the gap-me t ric robustness the nominal plant
(controller) is factorized in normalized coprime fac­
tors. The differen ce between a perturbed plant
(controller) and the nominal plant (controller) is
described by perturbations on the normalized co­
prime factors of th e nominal plant (controller). Ro­
bustness of the closed loop for a class of perturbed
plants and cont rolle rs is guaranteed if th e norm of
th e perturbations on th e normaliz ed coprime fac­
tors is small enongh. The maximum allowable norm
of th e perturb ations is det ermined by th e infinity
norm of th e feedback syst em . This means that in
th e gap-me t ric robustness only cru de information



D efi n ition of distance measures

M* M + N *N = I (M M * + IVIV* = 1)

with M * = M T ( -8) .

T he gap metric distance (E l-Sakkary (1985),
Za mes and E l-Sakkary (1980)) 8(Pt , P2 ) between
t he two plants is defined as

The pair M, N(M, IV) is a normalized right (left)
coprim efraetional representation (nref or nlef )
if it is a coprim e fraetiona l represeniaiion and:

max{d(PI , P2 ) , d(P2 , Pd}

QE1t.\~~I= ~1 I1[ ~: ] - [ ~: ]QIL
d(PI,P2 )

i(PI , P2 )

P = NM- t (= M- t IV)

The pair M , N(M , IV) is right (left) coprim e [rac­
tional represeniaiion (ref or lef ) if it is a right
(left) fraetional representation and ihere exists
U, V(Ü , V) E H such thai:

UN + VM = I (IVÜ + MV = 1)

Suppose PI, P2 are two plants with nref
(NI, Md, (N2 , Nh) respectively, and suppose C is
a cont roller such that T (PI , C) E H with (X, Y) a
nlef of C.

The graph m etric distance (Vidyasagar (1984) )
d(PI , P2 ) between the two plants is defin ed as

Defini tion 2.1 ( V idyasagar (1982))

A plant P E F has a right (left) fraetional repre­
sentation if there exist N , M(IV,M) E H such
that

ab out the norninal feedback system is taken into
considerat ion .

The main idea behind the new and less conserva­
tive robustness margin , to be conside red in this pa­
per , is to take into account more information about
t he nominal feedback system. On e can think of this
inforrnation as refinement of the infinity norm to a
frequency dependent maximum singular value, and
t he directionality of the feedback loops in m ultivari­

able sys tems.
In order to take account of the c!osed loop char­

actcrist ics a norrnali zed coprime factori za tion of the
norninal controller (p lant) is used to define a sp ecific
coprime factorization of th e norninal plant (con­

trolIer) .
The difference between a simult aneously per­

turbed plant and controller (Pt>., Ct>.) and the nom­
inal plant and controller (P, C) is now described
by perturbations on the specific coprime factors of
t he nominal plant and nominal cont ro ller whi ch in­
cludes detailed information about the nomina] con­
t ro ller an d plant resp ecti vely.

It will be shown that t h is new robustness m argin
allows a larger c!ass of copr im e factor pla nt and
cont roller perturbations t han allowed in t he ga p­
metric.

The layout of th is paper is as follows: afte l' some
pr eliminaries in Section 2, stability of a nominal
c!osed loop system is discu ssed in sect ion 3. Then
th e new robustness margin will be derived in Sec­
tion 4, where it will be demonstrateel that this mar­
gin is less conservative tban t hc gap-met ric. T be
wbo le procedure ~ i ll be illust rated by an example
in Section 5 followed by tbe conclusio ns

The A-gap margin 8A(Pt , P2 ) between the two
plants is defined as

where A = [X y] [ ~: ]. Note that the nref

of P, is shaped with A-t to account for the closed
loop operation of tbe plant . If there is no controller,
A-t will be Mt-t, as can be checked easily, and the
A-gap will be:

max{l(PI , P2 ) , l(P2 , Pd}

J~L 11 [ ~: ] [ ~: ] Qll oo

8(PI , P2 )

l(PI,P2)

2 Preliminaries

In this note we adopt tb e ring theoreti c setting of
Desoer et al.(1980) and Vidyasagar et al.(1982) to
study stabie muItivariabI e Iinear systems by con­
sidering them as transfer fun ction matrices hav­
ing all ent r ies belonging to th e ring 1{, In this
note we will identify the rin g H witb IRHoo , the
spa ce of stabie reaI rational finit e dimensional lin­
ea r time-invariant continuous-time systems. We
cons ide r the class of pos sibly non -proper and/or
un st able muItivariable systems as transfer function
matrices whose entr ies are elem ents of th e quo­
ti ent field F of H (F := {a/b I a E H , bE H\ O}).
The set of multiplicative un it s of H is defined as:
.J := {h E H I h- I E H}. In th e sequel systems
P E F" ?" are denoted as P E F.
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3 Closed loop stability

In this paper we will study the closed loop stabi l­
ity according to Fig. 1, where we assume that a
stabilizing controller C has been designed for the
nominal plant P.

el + u p Y
+

C
- e2

+

Fig. 1: Closed loop st ructure

The closed loop transfer function T( P, C) map­
ping the external inputs (el, e2) onto the outputs
(u, y) is given by:

T (P, C) = [ ~ ] (1 + CP) -I [ J C]

For bounded exogeneous in puts (el, e2), stabi lity
of the closed loop, i.e. the controller C internally
stabi lizes the plant P , is guara nteed if anel on ly if
T(P, C) E 1{. Now let P = N M- I with (N, M ) a
ref of P an d let C = X- IY with (X,Y) a lef of C
then:

Theorem 3.1 (Vidyasagar et al.(1982))
Let P E :F be given as P = N M- I with (N, M)
a ref of Pand let th e con tro ller C E :F be given as
C = X- Iy wit h (X,Y) a lef ofC or as C = YX - I
with (Y, X) a ref of C . The n the f ollowing st ate­

ments are equivalent :

1. The closed loop is stabie

2. ( [ X y ] [ ~ ]) = 1\ E J

3. U: = [ ~ -: ] E J

For robust stability it is esse nt ia l t hat the closed
loop transfer fun cti on rem ain s st able for plants P6

"close to" P cont rolled by cont rolle rs C6 "close to"
C. Usually the cont ro ller C is el esigned with knowl­
edge of P only.
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4 Main result

In this section a sufficient condition for feedback
stability uneler simultaneous plant an d controller
perturbations is presented. As a by-p roduct we
have sufficient conditions for only plant pe rturba­
t ions or only controller perturbations.
Next it will be show n that this robustness margin
is less conservative than a simila r margin baseel on
the gap-metric distance between the nominal plant
and perturbeel plant summed wit h the gap -met ric
el istance between the nominal controller an d the
pertur bed controller, as elerived by Georgiou and
Smit h (1990b) .
T his will immediately imply that the gap-metrio
robustness m argin is also less conservat ive than a
margin based on graph-metric el istances, as der ived
by Vielyasagar and Kim ura (1986)
Fi na lly it will be shown un der what conelitions the
ne w robu stness margin equals the ga p-metric baseel
robustness margin.

Theorem 4.1 Suppose T( P, C) is siable, and that
both plant and controller are perturbed to P6 , C6

respectiveiy. Then all pairs (P6 , C6 ) form a stab ie
closed loop T( P6 , C6 ), provided:

Proof: Let (Nt M), (Y,_Xl be nref of P, C, resp ec­
t ively and let (M, N), (X, Y ) be nlef of P, C, respec­
ti vely. Then frorn stabilit y of T(P, C) th e matrix

[M-Y]U = N X E J.

Deno te

U= [M -Y] [1\-1 _0 ]
o N X 0 1\-1

where 1\ = [ X y ] [ ~ ] ,À = [1\1 N ] [ ~ ] .
Then U;;I can be partitioneel as

U-I = [ X_ ~ ]
o -N M

Now let (N6 , M 6 ) , (Y6 , X 6 ) be ref of P6 , C6 , re­
spectively . Accordin g to Theorem 3.1 T( P6 , C6 ) E

'H if and on ly if

Select real numbers s; > 8A (P, P6 ),8c > 8A (C,Ct>,)
such th at s, + s, < 1.·



Now if 11 (1 - U~U; II")Q < 1 t hen (accord ing to
Lemma A. I) U~ E .:J an d thereby the pair (P~, C~)

is stabIe. U; - U~ = [A B], where

Now assembling t he pieces, usin g t he definition of
the gap-metric and Lem ma A.3 we have that

ó/\(P, P~ ) S; sçr, P~) IIT( P, C)lIoo

A = [[ ~ ] A-I - [ ~: ]]

B = [[ -;,. ] A-I - [ -:: ]]

[ A B] Uo-
I

A [ je )/] + B [- N Û J

Along the same lines we have

Then using t he fact t hat 111'(C, P )1100
111'( P, C) 1100 (Georgiou and Smith (1990b)) we have
t hat

8/\ (P, P~ ) +8/\ (C, C~ ) S;

(8(P, P~) + sic, C~)) II T(P,C)lloo

5 Example

In t his section the applicat ion of the presented 1'0 ­

bustness margin will be illustrated using an exam­
ple . For simplicity only SISO systems are consid­
ercd, which implies that the improvement of the
new robustness marg in by taking into account di­
rect ionality of the feedback loops can not be demon­
st rated .

In F ig. 2 the frequency respon ses of both t he
nomi nal plan t model P of order 5 an d a per tu rb ed
plan t mod el P~ are shown.

Using th e control design method described in
Bonger s and Bosgra (1990) a cont rolle r C of ord er
3 has been design ed on P such that II T (P, C)lloo
is minimized . In Fi g. 3 th e frequen cy resp onses

The transfer function A-I can be seen as a
weighting fun ction on t he gap between t he nom­
inal plant and t he pe rt urbed plant . Onl y when
A = a l, with a E IR, t he extraction of A- I will
not introduce conservatism. In that case the gap­
met ric rob ustness is not more conservative than the
new robustness margin.
It can be show n (Bongers (1992)) that a spe­
cific cho ice of the controller order in a lRI-I oc-norm
design based on no rmalize d coprime fact orizat ions
will lead to A = a l.
However in gene ral t he maxi mum sing ula r value of
1\ will be frequ en cy dep end en t. For mult iva riable
cont ro l designs t he sing ular valu es of A will in gen­
era l not be equal, whi ch means that in A also di­
recti onality will be presen t .
The presented robustness mar gin takes both th e
features of directionality and frequen cy dep endency
in to acc ount. This im pli es that the presented 1'0 ­

bustness m argin has practical ben efits compared to
t he gap-metric robustness mar gin .

owhich proves the t heo rem

Theorem 4.3 Suppose 1'( P, C) is stable, then a
sufficient eondition [or ó/\(P, P~) + ó/\(C,C~) <
is !Jiven in the gap-metrie by

ó/\(P, P~ ) J~LI1[~ ]1\-I - [ ~: ] -l
= J~~II([ ~ ] [ ~:] 0)A-111 oo

< J~~II( [~] - [ ~: ] O) lloo II A- 11Ioo

ó(P, P~ ) + sic, C~) < IIT(P, Cl11:.1

and

Corollary 4.2 Suppose 1'( P, Cl is stabie. There
holds

Proof:

II[ A B ] U;llloo < IIA [ je f' Jll oo
+ 11B [ -N i ! J1100

< s, + Óc

if Ó/\(P, P~ ) < 1 t hen T( P~, C) E H

In the next theorem it will he shown th at a suf­
ficient condit ion for stability acco rding to Th eo­
rem 4.1 can be stated in terms of gap-metr ic dis­
t ance. Ther eby we will show that Theorem 4.1 is a
generalizat ion of the gap-metric robu stness

T he ro bustness resul ts of (Bongers (1991 l,
Schra ma et al.(1992)) are a specia l case of Th eo­
rem 4.1, which ca n be see n in the next corollary.

Now if óp + s, < 1 t he n U~ E J which proves that
T(P~, C~) E H , whi ch cornpletes t he proof. 0
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of both thc designed cont roller C and a perturbed
cont roller Có are shown.

If the robu stness is measured in the gap -metric,
the closcd loop system T (Pó , Có ) (Theorem 4.3)
remains stabIe providcd

10'
< ;

10' -100

10'
·200

10°
-300

u 10,' ~"0,
~

-400
Ö. 10" .,
~ -a.

-500
10')

10· -600

10" ·700

'- . _0'
....

10· -800
10° 10' 10'10" 10" 10' 10' 10' 10" 10"

Irequen cy [rad/st Ireq uency [rad/sj

Fig. 2: Frequency response P (-) , Pó (- -)

ScP, Pó ) + S(C, Có ) ~ "T( P, C) ";:'1

T he gap between t he nominal plan t and perturbed
plant is:

Sc P, Pó ) = 0.19,

and th e gap between t he nominal cont roller and the
perturbed cont roller is:

S(C, Có ) = 0.14

The nominal plant ,controller pair imply a robust­
ness margin of: IIT(P, C ) 11 :;,1 = 0.1 It is obvious
that even th e individual perturbations do not sat­
isfy the robustn ess margin, th erefore stability of the
perturbed feedback syste m can not be guaranteed.

Next the refinement of th e new robustness mar­
gin will be shown. The improvement of the new
robu stness margin , by taking into account the fre­
quen cy dep endency of the feedback system, is ilIus­
t rat ed in Fig. 4.

Fig. 3: Frequ cncy response C (- ) , Có ( - -)

10'10'10'

Irequency [radIs]

10"

Fig. 4: Frequency response a(A ) (-)
"T(P, C)II:;,I (- -)

0.5

0.45

0.4

0.35

u 0.3"0

.è
ö.
~ 015

0.2

0.15

0.1

0.05
10"

Suppose, for a moment, only plant perturba­
t ions are present. T he n stability of the closed loop
in gap-metric sens e is gua ranteed provided that
S(P, Pó ) is smaller than the dash ed line in Fig . 4.

The refinem ent towards th c new robustness mar­
gin can be seen as follows: The frequency where
th e largest differcnce between Pand Pó lies is not
taken into account in SCP, Pó ) , it is in SA(P,Ps).
Let Qbe th e optimal solut ion in Theorem 4.3, then

Irequen cy [rad/si

·200L....~~~~~........
10 ' 10" 10° 10' 10'

100

..
so c-:

0

'"u
~ -so
~-a.

-100

· ISO
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It can be seen eas ily seen t hat robust stability of
the per turbed feed back system is gua ra nteed by t he
new robustness marg in .

For com pleteness the Irequen cy response of t hc
(2,2) -element of the feedback sys te m T (P, C) IS

given in Fig. 5.

10')

Fig. 5: Frequen cy response P(l + C p)-I C (-),
Pb,(I + Cb,Pb,) -I Cb, (- -)

Thc lamb da-gap between t hc norn inal plant and t he
pc rturbed plant is

IS smaller than o-(A) , then T(Pb" C) IS st abIe.
T he reby the area of allowable P~ s is extende d to­
wards the solid curve in Fi g. 4.

When the stability robustn ess is measured in t he
ne w robustness margin (Theorem 4.1) , th e per ­
t ur be d closed loop T(Pb" Cb,) remains stabie pro­
vided:

Next if the differ en ce between P and Pb" de fined

as

-
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A Proofs

Lemma A.I Given a transfer funet ion H EH. If
lil - Hlloo < 1 then H E J.

Proof: For an arbitrary fun ction F E H , a suffi­
cient cond it ion for I - F to have a stab ie inver se
is give n by the small gain co nd it ion 1/ FII 'X) < I .
Define H := I - F and t he lemm a is proveel. 0

Theorem A.2 Let (N, M ) be a rcf of P and (Y, X )
be a rcf of C, then T( P, C) E H ij and only ij

[M-Y]U = IV X E J .

Proof: Vidyasagar a nd Kimura (1986 ), lemma .5. 1
o

Lemma A .3 Let (N,M),(Y,X) be nrcf of P,C.
respeetive/y and iet (Nt,N) ,(.':J') be nlcf of P,C,

. i D :ft A -_ [x-r ,,; . ] [ iNH ] , A --respeetwe y. e m e a I a

[Nt N] [ ~ ] , then

I/T(P, C)ll oo

IIT(C, P)ll oo

P r o of: Using the normalized coprime factoriza­
tions for P, C, T( P, C) can be expressed as

The fact that [ ~ ] is a nrcf , [.); }/ ] is a nlcf

and (XM+YN)-I = />.-1 proves the firsl part.

The second part can be proved si m ila rly. 0
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Stability robustness for simultaneous perturbat ions
of linear plant and controller: beyond the gap m etric
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Abstract . In this paper we st udy robust st ability und er sirn ult aneo us plant and con­
t roller pe rt urbat ions . We use a Youla parameteriaation to represent the class of all
possible pla nt per turbations that do not dest abili ze the nominal feedback system. A
simi la r representation is used for t he class of controlle r pe rt ur bations that do not desta­
bi lize the nominal feed back system. From t hese two Youla parameterizations we deri ve a
suffic ient condit ion for robust stability un der sim ultaneous pe rt urbat ions . This condit ion
is shown to be less conservative than a condition for robust stability under simultaneons
plant-controller perturbations measured in the gap metric. An example is provided in
which the new condition guarantees robust stability for some simultaneous perturbat ions
that are too large in view of the gap-metric condit ion.

Keywords. stability, robustness, closed loop systems, coprime fractions, gap met ric.

1 Introduetion

T his paper is addressed to the robustness of feed­
ba ck st ability in the face of simultaneou s plant and
cont roller perturbations. Robust stability under
plan t perturbations has been wid ely st udied in th e
robust con t ro l th eory, see e.g. Fran cis (1987) , Ma­
ciejowski (1989), Morari and Zafiriou (1989) , St ein
and Doyle (1991). Simultaneous cont rolle r pertur­
bations play an important role in engineering ap ­
plications, wher e an implem en ted cont roller usuall y
differs from the design ed controlle r .

A con dit ion for robust st abili ty under simult a­
neous perturba t ions must guarantee that each el­
ement of some "uncertainty domain" aro und the
plant P is stabilize d by each element of anothe r "un­
cer tain ty domain" around the controller C. Hence
only dynamicall y perturbed plants Pt:. that a re st a­
bilized by the nominal cont roller C ar e of inter est .
Likewise we have to conside r only the dynami cally
per turbed cont rolle rs Ct:. that stabilize th e nomi-

t Aut hor to whom all corr espondence should he
ad dressed.
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nal plan t P. T hese classes of perturbed plants and
cont rollers ca n be represented precis ely with two
Youla par am eteri zation s based on th e norn inal P
and C . From these two Youla parameter izations
we derive a sufficient condit ion for robust stability
in th e presen ce of simult aneous plant and controller
perturb ations.

Condit ioris for robust stability under combined
plan t-con troller perturbations have been derivcd
by Vidyas agar (1984) and Vidyasagar and Kirnura
(1986) in terms of the graph metric. Georgiou and
Smi th (1990a, 1990b ) have est ablishe d a condition
for robust st ability under sim ult aneous perturba­
tions measured by t he gap metric . Each of these
met rics induce sets of bounded plant perturbations
t hat are ind ep en dent of the norninal controller C:
th e graph and the gap between a norninal plant and
a per turbed plant do es not depend on C . Simi larly,
t he induced sets of bounded cont roller perturba­
tions are indep endent of the nominal plant P. In
cont ras t with these approaches, we use th e nom i­
nal plant and the norn inal cont rolle r to define the
plant perturbations of concern . The sarn e applies



to the class of controller perturbations that we con­
sider. Conse que nt ly, our condit ion is less con serva­
ti ve than the stability conditions in terms of the
gra ph and gap metrics. The significanee of this re­
du etion of conservat ism is illustrated by an exam­
ple.

The next section defines th e classes of admissible
plant and cont roller perturbations. Our stability
result is derived in Section 3. In Section 4 it is
shown to be less conservat ive than the condition
for robust stability in th e gap metric. In Section 5
we provide the example, and the paper ends with
some concluding remarks in Section 6.

2 Admissible Dynamical Perturba­
tions

We st udy linear time-invari ant fini t e dimen sional
systems, and the set of proper stabIe sys tems is
denoted IRHoo ' \Ve cons ide r the feedback inter con-

condition for a perturbed plant PD. (controller CD.)
to be admissible.

The plant Padmits normalized right and
left coprime factorization s over IRIIoo (for dcf­
ini tions see Vidyasagar , 1985) , i.e, th er e ex ist
N , D,N,D ,X, Y ,X,Y E IRHoo such th at

P(s) = N(s)D-l(s) = D-l(s )N (s ) (2)

with

XN+YD=I, NX+DY=[ (3)

and

NT(-s)N(s) + DT(-s)D(s) = J, "Is

N(s)NT(-s) + D( s)DT( - s) = J, Vs.

Likewise th e cont roller Cadmits th e normali zed co­
prime factorizations

where Ne' De' Ne' De E IRH"". In Desoer et al.
(1980), Vid yasagar et al. (1982) an d Vidyasaga r
(1985) coprime factori za ti ons of P and C have bee n
used to establish necessar y and sufficient cond it ions
for stability of H (P, C) . For ease of rcfer en cing we
state these resul ts in terms of the above nota tion.

Fig. 1: Feedback inter connection H(P , C) .

neet ion H(P, C) shown in Fig. 1. In here P rep­
resen ts the plant and C represen ts th e cont rolle r.
The closed-loop dynamics of H( P, C) ar e described
by th e transfer function

Lemma 2.3 Let Pand C have normali::ed coprime
Jactorizations as in (2) and (4), and lel A, À E
RH "" be defined as

A=NeN+DeD, À=NNe+DDe. (5)

Then ihe Jollowing statem ents are equivalent:

In order that plant and controller perturbations
can be investigated individually, we introduce th e
following defini tion.

Definition 2.2 A perturbed plant PD. (controller
CD.) is admissible ij and only ij H(PD. , C)
(H(P,CD. )) is stable.

Notice that perturbations of Pand C at least must
be admissible in order that the simultaneously per­
turbed feedback system H(PD., CD.) is robustly sta­
bIe. Below we derive a neccessary and sufTicient

[
D -N ]-1

IV. N D
e

e
E RHoo .

With this stability result it is easy to pararne­
terize th e set of all controllers that stabilize P
(Vidyasagar , 1985). We state th e dual resul t in
terms of a perturbed plant PD. '

Proposition 2.4 Let Pand C have normalized
coprime Jaetorizations as in (2) and (4), and let
JJ( P, C) o] Fig. 1 be stabie. Then the perturbed
[eedback syst em H(PD., C) is stable ij and only ij
PD. admits the coprime Jaetorization

lo JJ( P, C) is stable,

Ilo A-I E RHoo }

lll . À-I E RHoo }

[or some !:!,.p E RHoo .

(1)T(P,C) = [~](J+cprl[C I],

which maps the vector of variables col(r2 ' rl) into
col(y ,u). This transfer function is used to define
th e notion of st ability of H(P, C).

Definition 2.1 The [eedback syst em H( P, C) o]
Fig. lis stable ij and only ij T( P, C) E RHoo-
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Proof: By Lemma 2.3 th e stability of H (P, C)
implies that A-I , À-I E lRH oo . Coprimeness of
N+ D/ :),.p and D-Ne6. p follows from (A-If<)(N+
De6.p )+(A .,..IDJ (D-Ne6. p ) = J. Further , x.;Y", x,
and Y;, defined as

belong to lRH oo and

3 Sufficient Condition for Robust
Stability

The following lemma contains a sufficient condition
for robust stability under simultaneous plant and
controller perturbations.

Lemma 3.1 Let Pand C have normalized coprime
[aciorizaiions as in (2) and (4), let H( P, C) of
Fig. 1 be siable, and let PA and CA be admissi­
ble. Then th e f eedback system H(PA, CA) is stable
if 6. p of (7) and 6. c of (8) satisfy

From here the result follows along the same lines as
in Vidyasagar (1985), p.109. 0 (J"ma x (6. c (jw)) . (J"max (6. p (j w)) < 1 (10)

Combining Proposition 2.4 with Definition 2.2
yie1ds the following necessary and sufficient condi­
t ion for admissibility .

Lemma 2.5 Lel Pand C hav e no rmalized coprime
factori zatio ns as in (2) an d (4), and lel H ( P, C ) of
Fig. 1 be sl able. Then lhe pertu rbed plant PA is
admissible if and only if 11 + PACI =1= 0 an d 6. p E

AUI"" with

Proof: By Definition 2.2 and Proposition 2.4 PA
is admissible if and onl y if PA admits th e coprime
factorization of (6). We rewrite the latter equat ion

as

(N+De6. p) = PA(D-Ne6. p )

<=> (De+PANe)6.p = (PA-ND-I)D

from which (7) follows straightforwardly. 0

Similarlya perturbed controller CA is admissible if
and only if IJ +CAPI =1= 0 and 6. c E lRH"" with

satisfying

Remark 2.6 The property of admissibility has the
following geometrie interpretation. The operator
associated with T( P, C) is a projection on the graph
of P (for details see Georgiou and Smith (1990a,
1990b)). As T(P, C)T(PA, C) =T(P, C), an admis­
sibie perturbation of Presults in a perturbation of
th e graph of P in a direction parallel along th e pro­
jection that is associated with T(P, C). 0
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[or all frequencies w E R.

Proof: By Lemma 2.5 and Proposition 2.4 the ad­
mi ssibili ty of PA and CA implies that PA and CA
ad mit t he cop rime faci ori zations of (6) and (9) with
6. p E lRH"" as in (7) and 6. c E IRH"" as in (8). By
dcfinition Defini tion 2.1 H(PA , CA) is st ablo if and
only if T( P A , CA) E IRIl"". Applying Lemma 2.3 to
the copr ime factor izations of (6) and (9) yiclds

Next we use the fact that any U, V E ffiIl "" with
U-I E IRH"" satisfy

Togcther with facts ii.-iv. of Lemma 2.3 impiied by
the stability of H(P, C) we can rewrite the stability
condition of (11) as follows.

T(PA , CA) E IRH"" <=>

[ [
D -Ne ]-1 [D-Ne.ó.p -N -D A c] ]-1c ti lRH
N De N+De.ó.p De-N.ó.c E 00

[ ]

- 1
J -6.c

<=> 6.
p

J E IRH"".

Using th e [act that lRH"" is closed under addition ,
wc add diag(O, - 1) to the latter right hand side , so
that



{:} [_~p] (I +6c6p)-1 [I 6c] E IRHoo

{:} (I +6C6p)-1 E IRHoo '

Finally, as 6p and 6C belong to IRHoo by
Lemma 2.5, the product 6c6p is a contraction if
(10) holds. Then I +6c6p is guaranteed to have a
stabie inverse by virtue of the small gain theorem,
see Desoer and Vidyasagar (1975) , which completes
the proef. 0

Remark 3.2 A robust stability test for any given
couple of a perturbed plant Pó and a perturbed
compensator Có proceeds as follows . First I+PóC
and 1+ CóP must be demonstrated to be non­
singular. Then it must be verified that 6p and
6 c belong to IRHoo . Finally Lemma 3.1 is applicd
to ascertain robust stability. 0

The fact that the factorizations (N , D) and
(Ne ' De) are normalized will be of use in the next
section. This property has not been exploited
in deriving the condition for robust stability of
Lemma 3.1. Therefore we can readily extend this
robu st stability condition to other pairs of coprime
factorizations of Pand C. Such factori za tions can
always be represented as resp ectively ( N Q , DQ)
and (NeQe, D eQe), in which Q and Qe are unimod­
ular e1em ents of IRJ-Ioo (i .e. o:' ,Q;1 E lRHoo ). By
letting Q and Qe vary freely over th e space of uni ­
modular e1ements of IRHoo we can study all coprime
factorizations of Pand C at once. This results in
the following general condition for robust stabi lity
under simultaneous plant and controller perturba­
tions .

Theorem 3 .3 Let Pand C have normalized co­
prime factorizations as in (2) and (4), let H( P, C)
of Fig. 1 be siable, and let Pó and Có be admissi­
bie. Th en the feedback system H(Pó, Có) is sfable
if ih ere exist some unitnodular Q, Q e E RHoo such
that 6p of (7) and 6 c of (8) satisfy

O"m ax (Q-l(jw)6 c(jW)Qe(jw)) .

'O"max (Q~1(jw)6p(jw)Q(jw))< 1 (13)

[or all [requencies w E R.

Proof: We define the coprime factorizations
(N , fJ) of Pand (Ne, De) of C as

N=NQ , D=DQ, N e=NeQe, fJc=DeQe

for any particular unimodular Q, Q e E IRHoo . Sim­
ilar to (7) and (8) we define 6.p, 6. c as

6. p = D;I(I+PóC)-I(Pó-P)D
6. c = fJ-l(I+CóPtl(Có-C)fJe
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so that 6.p = Q;16pQ, 6. c = Q-16cQe' Like
in Proposition 2.4 and Lemma 2.5 th e perturbed
Ps and C ó are admissible if and only if 6. p , ïS. c E

lRHoo ' And H(P, C) is robustly stabIe under si­
multaneous perturbations if the admissible pertut­
bations 6.p ,6.c satisfy

O"max (L5.. c (jw )) . O"max (6.p(jw)) < 1 (14)

for all frequencies w E IR. The proof hercof
is the same as that of Lemma 3.1 cxccpt that
N, D, N e, D e, s; and s; have to be subst it uted
for respectively N, D, N e' D e' 6p and 6 c. Finally
(13) follows by replacing 6. p and i5..c in (14) by
respectively Q;16pQ and Q-1 6 cQc - 0

Remark 3.4 A robust stability test based on Th e­
orem 3.3 proceeds as in Remark 3.2, exce pt that th e
freedom of the unimodul ar Q , Qe can he ex ploitcel

to ascertain robust stability. 0

Noti ce that Theorem 3.3 contains a condit ion for
robust stab ility of H (P, C ) undcr sim ult aneous per­
turbat.ions , and not just a condit ion for sta bility of
lI(Pó , C ó ) . In this persp ecti ve th e ad missib ility
of Pó and Có incurs no restrieti on , since we want
lI(Pó, C ó ) to remain stabie if th e perturbation of
cithe r thc plant or the cont roller vani shes. Furth er ,
as 6p and 6 c must belong to IRHoo for robust sta­
bility, following corollary follows from Theerem 3.3.

Carollary 3.5 Let Pand C have normalieed co­
prime factorizations as in (2) and (4), let Il(P, C )
of Fig. 1 be stable, and let Pó and Có be admissi­
bie. Then the feedback system J/(Pó , Có) is stabie
if there exist some unimodular Q , Q e E AUT oo su cl:

tliai 6p of (7) and 6c of (8) satisfy

IIQ-16cQellooIIQ~16pQlloo < 1. (15)

This condition for robust stability has the follow­
ing attractive property. If the controller perturba­
tion 6 c converges to 0 in IRHoo , then the stability
condition of (15) admits every plant perturbation
6p E IRIIoo ' In that case we retrieve precisely the
set of all plants that are stabilized by the nominal
controller C (see Propasition 2.4). The dual result
holds in case of a vanishing plant perturbation 6p
in lRII oo ' Hence our condition for robust stabil­
ity under simultaneous perturbations involves only
very little conservatism if either the plant pertur­
bat ion or the controller perturbation is relati vcly
small.

Finally we mention that all results in this section
have a dual counterpart frarn ed in terms of left co­
prime factorizatians .



4 Relation to the gap metric

In this section we show th at the condition of Theo­
rem 3.3 is less conservative than a condition for 1'0­

bust stability under simultaneous plant-controller
perturbations measured in the gap metric. In or­
der to adopt the gap metric res ults from Georgiou
(1988) and Georgiou and Smith (I990a), we intro­
duce the following notation. The perturbed plant
P~ and controller C~ adm it thc normal ized coprime
facto rizations

The seque l of t his section is merely addressed to
pro ving T heorem 4.3. First we establish some pre­
lim inary facts. Thereaftcr we list sever al proper ties
of P", and C", that are implied by the gap-metric
robust stability condit ion of (18). T hen we pro ­
vide the proof of Theorem 4.3. In conc! usion of th e
section wc rc!ate our results to t he condit ion for
robust stabil ity under sirnultaneous perturbati ons
measur ed in the graph metric.

Faet 4.4 Let P an d C ha ve normalized coprim e
ja ctorization s as in (2) and (4), and let Il(P ,C)
oJ Fig. 1 be st abie. T he n

Fur ther , the gap between Pand Pt, is dcnotcd
5( P, Pt, ), and th e direci ed gap is denotcd 5( P, Pt,)
(sec Georgiou, 1988, and Geor giou a nd Smi th ,
1990a, for defini tions).

Proposition 4.1 (Georgiou (1988) ) Let Pand Pt,
have norm alize d coprime Jaclorizations as in (2)
an d (16). Then

5( P, Pt, ) = m ax {5( P, Pt,) , 8( Pt" P)}

Zo IIT(P,C)lloo = IIT(C, P)lloo ,

11. IIT(P, C)lloo = 111\-11100 = IIÄ-111 00 '

Proof:
(i.) Corolla ry 1 of Georgiou and Smith (1990a).
(ii.) By subst itut ing N D- 1 and Ne D; ) for P

and C in (1) we get

and

where Hoo den ot es th e standard Hard y space .

(20)

(J"max(l -M) < l- b =} (J"min (M » b (19)

since [ ~] is inn er and [Ne De] is co-inner (sec

Francis, 1987). Similarly IIT(C, P)lloo = IIÄ -111 00 ,
and th e result is complete by fact i. 0

Proposition 4.5 Let M be a square complex ma­
trix. Th en

Proof: Let v be any non-zero vector such that

[or any b E [0,1) , and

(J"max (l - M) :::; 1 - d =} (J"min (M) ~ d

[or any d E (0, 1].

We use thc inequality

(J"max(l-M) ~ 1I(l-M)vI12/lIvI12 to obtain

(J"min (M) ~ 1 - (J"max (I - M)

wher e 11 . 112 is the usua l Eucl idian vector norm. As
1I(l-i\l)vIl2+ IIMvll2 ~ IIvll2 we have

(J" . (M) > l _ II(I-M)vIl2
mtn - II v 1l2 '

(18)

(17)

Theorem 4.2 (G eorgiou and Smith (1990a))
Let H(P, C) be stabie. Th en H(Pt" Ct, ) is slabie

ij

T he opposite of th is theerem is not true, and thus
our robust stability condit ion is less conservat ive
th an the gap-metrio condit ion. T hat is, if PsC«
comply with our robu st stability condit ion of (15),
th en th e gap-met ric condit ion of (18) is not nee­
essarily sat isfied. An exam ple thereof will be pro­
vided in the next section.

Now we can state the main resul t of this sect ion: if
a perturbed couple Pt" Ct, sa t isfies the gap-met ric
robust stabi lity condi t ion of (18), then this couple
Pt"Ct, satisfies also the robust stability cond itio n
of Corollary 3.5 (and of Theorem 3.3) .

Theor em 4.3 Let H( P, C) be stabie and let
Ps .O« satisJy (18). Then there exisi unimodular
Q, Qe E R I-loo such that (15) is satisfied.

from which (19) and (20) are immediate. 0
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is a un imodular element of lREoo by virtue of
Lemma 2.3. Next, for notational convcnience, wc
define

I-laving established these preliminaries , now we re­
veal several implications of the gap-rnetric robust
st ability condition of (18) .

Lemma 4.6 Let Il (P, C) be stable, and iet P6 ,C6

satisf y (18) . Define
[ ~: ] = [ ~ ] - [ ~: ] Qc , (26)

th en
IIA-l lloo e5(P, P6 ) < 1-7

and 7 E [0 ,1).

(21)

(22)

so that

[Ne D e] [ ~:] Qc =

= [ N e D e ] [ [ ~ ] - [ ~: ] ]

from wh ich we obtain

Proof: As the gap 8(P, P6 ) is the maximum of two
direct ed gaps , cf. Proposition 4.1, the inequality

(23)
with \IJ E IREoo satisfying

is satisfied if (18) holds . Application of Fact 4.4 .ii
yields

whi ch implies that 7 < 1, and (22) fol!ows st raight­
forwardly. 0

Proposition 4.7 Let H ( P, C) be stable, and let
h ,C6 satisfy (18) . Th en P6 and C6 admit
ihe riqlit caprittie [aciorizaiions (N6 C ' D6 C ) and

(Ne6 C ' De6 C ) such that

o

Lemma 4.8 Let fl(P, C) be slable, and iel P6, C6

salisfy (18). Define Q,Qe E R Hoo as

11\IJ 11 00 ~ IIA-ill oo 11 [Ne D e] 11 00 II [ ~: ] 1100 =

= IIT(P,C)lloo e5(P, P6 )

and IIT(P, C)llooe5(P, P6 ) < 1 by (23).

As A6 and A are unimodular, Qc ha s a stabie in­
ver se if and only if (I +\IJ) has a stabIe invers e. By
the smal! gain th eorem (D eso er and Vielya sagar ,
1975) (I + \IJ ) has a stabie inver se if \IJ E mu., is
a contraction. And (18) implies that 11\IJ 11 00 < 1,
because by Fact 4.4.ii and (25)

(24)
e5(P, P6 )

e5(C, C6 )

wilh (N6 C ' D6 C ) ' (Ne6 C ' De6 C ) as in (24). Th en
Q-1,o;' E R Hoo and

Proof: We prove only the expression for e5( P, P6 ),
as the proof of the ot her part is completely analo­
gous.

By Theorem 6.1.1 of Francis (1987) the infimum
of (17) is actual1y reached for some Q=Qc E lRHoo ,
J.C .

(25)

(27)

with (N6 , D 6 ) as in (16) . We define (N6 C ' D 6 C ) as

(N6 Qc,D 6 Qc), wh ich is a right coprime factoriza­
tion of P6 if an d on ly if Qc E lRE oo is unimodu lar.
So it remains 1,0 be shown that Qc/ E lRHoo .

The ro bust stab ility of H (P6 , C6 ) implies that
IJ(P6 , C) is stable, which im plies that A6 , defined
as

wit h 6p of(7), 6c of(8) and 7 as defined in (21).

Proof: Fro m (18) and t he stabi lity of Jl(P,C)
it fol!ows that H (P6 , C) and H( P, C6 ) are sta­
bIe. T his mean s th at P6 and C6 are aelmiss i­
ble, so that by Lemma 2.5 6p and 6 c belong 1,0

lRII oo ' Furthe r, by Lemma 2.3 t he ad missibi lity
of P6 an d C6 im pl ies that NeN6 C + De D6 C anel
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NNet!.G+iJDet!.G are unimodular, since (Nt!.G' Dt!.G)
and (Net!.G ' Det!.G) are right coprime factorizations
by virtue of Proposition 4.7. Consequently Q and
Qe have stabIe inverses.
Next we use the equivalences

= [N+Det!>p ] 1\-I [N De] [ Nse ]
D-Net!>p e Dt!.G

T(Pt!., C) [ t:]
= [Nt!.G ] (NeNt!.G+DeDt!.G)-I.

Dt!.G

. [Ne De] [ ~~~ ]

and similarly

[
Ne+ D6C ] a.= [ Net!.G ]
De- N6c Det!.G

to obtain

[ ~ ] (I - Q) + [ -~e ] 6pQ =

(28)

(29)

Multiplying (28) to the left with A-I [ -iJ N]
yields

- - I [ - -. [ [ N ] [ N se ] ]6pQ = ti. -D N D - Dt!.G .

Making use of Proposition 4.7, Lemma 4.6 and the
fact that [ -iJ ft] is co-inner we obtain

Similarly the inequality

results after multiplying (29) to the left wit h
ti.-I [ - IJe Ne]. 0
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Lemma 4.9 Lel H(P, C) be stoble, and lel Ps .Cs
sali sfy (18). Then Q,o, defined in (27) salisfy

IIQ-11l00 <.!., IIQ;llIoo::; -1L.
r -r

with r defined in (21).

Proof: Similar to the proof of Lemma4.8 we multi­
~Iy (28) to the left by A-I [Ne iJe],which results
lil

Since [Ne IJe ] is co-inner

by virtue of (24) , Fact 4A .ii and Lemma ,1.6 . Like­
:vise, mu1tiplication of (29) by A-I [N fJ] results
lil

liJ - Qell oo ::; IIA-11I 008(C, Ct!.) = r.

The two latter inequalities imply that

amax (I - Q(j w)) < 1-r, amax (I - Qe(jw)) ::; 7

for all w E IR. For any particular frequ ency w E IR
we replace M , b of (19) with Q(jw) and 7 , and lil,d
of (20) with Qe(jw ) and 1-r, so that

amin (Q(j w)) > r, amin(Qe(jw)) 2: 1-7.

Using t he fact that l /amin(M) = amax(lII -l) for
every invert ible com plex matrix ]vI , Proposition
12.9.4. in Lan caster and Tismenetsky (1985), we
get

amax (Q-I(jW)) <.!., amax (Q;I(jW)) ::; -I_l-
T - 7

for any parti cular frequency w E IR, which proves
the lemma. 0

By now th e gap-metric condition for robust stabil­
ity of (18) has been sufficiently exploited to prove
Theorem 4.3. Especially the lat ter two lemmas
greatly facilitate the following proof.

Proof of Theorem 4.3: By Lemma 4.8 the sta­
bility of JI(P, C) and the inequality (18) together
imply that Q, Qe E IRHoo of (27) are unimodular.
For these particular Q,Qe we have

1 1 1-7
IIQ; 6pQll 00 < IIQ; 11 00 116pQll00 < 1-r = 1

IIQ-1 6cQe1l 00 < IIQ-11l 00 116cQell00 ::; .!. .r = 1
r

by Lemma tI.8 and Lemma 4.9, so that therc indeed
ex ist un imodular Q, Qe E IRHoo such that (15) is
satisfied, 0



5 Example

IIT(P,C)lI oo d(P, P6 ) + IIT(C, P)lI oo d(C, C6 ) < I,

where d(P, P6 ) denotes the distance between Pand
P6 in the graph metric . Using Fact 4.4.i we rewrite
the latter condition as

0.917

0.286

5.73. 10-2 .

sir, P6 )

sic, C6 )

IIT(P, C)II;;;,l

We have used two You la pararneterizat ions to de­
rive a new condit ion for robu st stabi lity in the face
of sim ultaneous pert urbat ions of the no m ina! plan t
an d controller. By a nu m ber of t heore ms we have
demonstrated that t h is new cond ition is less conser­
vativo than acondit ion for robust stabi lity under si­
mult.aneous perturbat ions measured in t he gap met­
ric. An exarnple has been provided in which robust
stability un der simultaneous perturbations is guar­
antecel by our conc1ition, but not by the gap-metric
condition.

In addition, our robust ness condition is non­
conservative if either the plant perturbations or the
controller perturbations vanish. The utility of th is
stability result for control design has been dernon­
strated in Schrama (1992), where a robust con­
troller is designed for a plant with uncertain dy­
namics. A geometrie interprctation of the new ro­
bust stability condition remains a topic for future
research.

6 Conduding remarks

Clearly b(P, P6 ) +b(C,C6 ) is much largor than
IIT(P,C)II~l. Hence from (18) it cannot be con­
cludecl that H (P6 , C6 ) is robust ly stable. More­
over, as sç», P6 ) > IIT(P, C)II~1 and sic, C6 ) >
IIT(P,C)II~I, the gap-met ric condition fails even to
guarantce stability of ll ( P6 , C) or of ll ( P, C6 ) . Fi­
nally, the srnall value of IIT(P, C)II~1 ind ica tes that
ll(P, C) has poor robustness propert ies in gap met­
r ic sen se, wh ile ll( P, C) is robustly stabJe against
rather large perturbat ions as shown in Fig. 2.d .

Desoer , C. A., R. -W. Liu , J. Murray anel R. Saek s
(1980). Feedb ack sys tem design: th c Iractional
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condition is less conservative than the gap-met ric
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bust stability under simultaneous pe rturbations is
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cern have the foll owing transfer funetions:
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C6 =

305; +8786+ 13155+ 14884+ 13083 + 6382 + 418 + 9.3

87 +8.356+3885+8354+ 10783+9752+625+ 13

The Bode diagrams of these systems have been de­
picted in Fig. 2.d.

The Figures 2.d.a and e display that P (-) and
P6 (- -) are strikingly different. The difference P-P6
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Abstract. A generalization of frequency weighted balanced reduction is worked out
that comprises: t he original frequency weighted balanced reduction of Enns (1984b),
and frequ ency interval balanced reduction of Gawronski & Juang (1990). The latter is
exte nded with scalar quadratic frequency weightings per frequ ency interval. Weighting in
frequ ency points is also develop ed . This generalization provides a very direct and flexible
way of sp ecifyin g frequ ency weigh tings. In a MAT LAB implementation the frequency
weightings ca n be adjusted and refined until t he reduct ion erro r afte r weight ed balanced
reduction is satisfactory. The procedure is iIIust rated by means of two examples.

Keywords. model reduct ion; frequency weighted balanc ing.

1 Introduetion

Frequency domain robust controller design methods
require some quantification of the expected devia­
tion ofthe nominal controller design model from t he
real system. The smaller t he deviations, t he easier
a robust high-performance controller can be found .
The contribution of model reduction to the devia­
tions in the frequency domain is more or less free
after the int roduetion of frequency weigh t ed mode l
redu ct ion met hods such as frequency weighted bal­
anced reducti on (FWBR). In FWBR (Enns 1984) ,
the standard balanced reducti on procedure is fol­
lowed , t he difference is that ins tead of the stan­
dard cont rollability Gramian Pand observability
Gramian Q (6), frequency weighted (FW) Grami­
ans Pw; (10) and Qw. are used (12) . FWBR can be
used to approximate the original model specifically
good in a bandwidth related frequency range where
relatively small errors are known to endanger robust
cont ro ller design. It is by no means clear however
wha t frequency weighting should be used to keep
th e reduction error below a certain frequ ency de­
pendent bound. A clear gu idelin e for the const ruc­
tion of appropriate frequ ency weighting functions
is lacking. This st imulated the development of a
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step by step FWBR procedure: afte r each FWBR
step the performance of a number of redu ced mod­
els is investigated and for frequency ranges where
the red uction error is t oo large additional frequency
weight ings can be created interactively. This re­
quires a concept of frequency range based balanced
reduction: to that end a method of Gawronski &
Juang (1990) which we wiJl call frequency inter­
val balanced rednetion is extended. The extension
comp rises the use of multiple intervals and scalar
quadratic frequ ency functions within these inte r­
vaIs , and th e use of frequ ency pulse weighting, a
limit case of frequency interval weighting.

In Section 2 balanced reduction is reviewed.
Enns' frequency weighted model reduction method
is discussed in Section 3. Section 4 extends the
frequency Interval Gramians to weighted frequency
interval Gramians. A special limit case, the fre­
quency point Gramians are introduced next in Sec­
t ion 5. In Sectien 6 the (MATLAB) implernenta­
tion of all methods is discussed. lts ease of use and
effectiveness in FWBR are illustrated by means of
two examples.



2.2 reduction

pHq = Un,.rErV::r
I

Rr = pUn,.rE;:'
I

Lr = (qVnqrE;:·)H

Er = diag(uI"' " (Tr)' U~~rUnl .r = V,;':rVnqr = Ir,
R; E lRnxr and Lr E IRrxn.

A second alternative for Cholesky factorizations
is used in the block-balancing iteration (Wortelboer
1991): it operates directlyon PQ and finds a bal­
anced realization of some fixed order nl by itera­
tion. Ir the first nl HSVs are all greater than zero,
no singularity problems can occur.

The Gramians Pand Q are usually not calcu­
lated by evaluating the time integrals in (1). In­
stead a pair of linear matrix equations is solved:

2.4 time domain interpretation

The controllability Gramian can be interpreted as
follows:

Jo
OO d(eAI BBH eAJlI

) = -BBH

Jo
oo d(e

AJI'c" CeAt) = _CHC
(3)

These are the controllability and observability Lya­
punov equations. The solution is straightforward
for system realizations with A in triangular form.

I

>..l(PQ) = (Ti (pHq) i = 1, ... , T

The singular value decomposition of pil q gives both
the T largest Hankel singular values and the corre­
sponding right (Rr ) and left (Lr) eigenveetors of
PQ that define the minimal balanced realization of
order T (LrARr, LrB, CRr, D)

with p E lRnxnp of rank np and q E lRnxnq of rank
nq• Let T = min(np , n q ) . Then we have T non-zero
Hanke! singular values:

singular values close to zero are no exception). A
singular value decomposition of Pand Q is a more
robust alternative for the Cholesky decomposition.
Since we know that Pand Q are non-negative def­
inite the following factorizations must exist:

(1)
Jo

OO eAt B BH eAJI
t dl

Jo
oo eAJltC HCeAt dl

P

Q

X Ax + Bu
y Cx + Du

and E a diagonal matrix with the so-called Hankel

singular values (HSVs) Ui = J>"i(PQ) in decreas­

ing order. The balanced realization (A, B, C, D)
= (T-I AT,T- I B, CT, D) thus has equal and di­
agonal Gramians and Ui measures how control­
lable/observable state Xi is.

The balancing state-space transformation is such

that

2.1 balancing

Denote Gr ( s) the reduced system. Gr ( s) has HSVs
UI , .. . , U n. , and the realization (A, è, c, D) is bal­
anc ed . The truncated HSVs determine a reduction

error bound:

T- I PT- H = TH QT = E

with P, Q the controllability, observability Gramian

(A ,iJ,è,D) = (LAR,LB,CR,D)

x E lRnxl, u E lRmx1, and y E lRPXI. Matrices
A, B, C, D have compatible sizes. (A, B, C, D) and
Gn(8) = C(û - A)-l B + D will both be used as
system description.

Balanced reduction is the truncation of a bal­
anced state space realization. It is restricted to
stabie systems.

2 Balanced reduction

Balanced reduction finds its origin in the work of
Moore (1981), a self-contained treatise can be found

in Glover (1984).
Consider the linear time-invariant system of or­

der n with minputs and p outputs

The actual reduction step is as follows: let R denote
the first n, columns of Tand L the first n, rows of
1'-1. The n;h order balanced truncation then is:

with x ll i the state response to an impulsive input
at channel i (ei E IRm is the i t h unit vector). This

2.3 algorithms

Many procedures for caiculating i' have been pro­
posed. The standard approach uses a Cholesky
decomposition of P or Q but this is not recorn­
mended because Pand Q are often almost singu­
lar (in the reduction of high-order systems Hankel

P (4)
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is a dir ect consequence of t he fact that BBH =
B 2::;:1 eie{fBH.

The obs ervability Gramian measures the energy
at t he output when the system is released from
x(O) = Xo while keeping the inputs equal to zero,

3 Frequency weighted Gramians
according to Enns

For a thorough discussion of FWBR we refer to
Enns (198 4a).

Q can also be interpreted as a summation of p sep­
arate parts:

Fig. 1: Series conneetion for input and output
weighting

with Yi,x" the response of the i t h output to a state
impulse at t = 0 and ei E IRP the it h unit vector.

with if>(s) = (sI - At1. These equat ions are a di­
rect consequ enc e of Parseval 's th eory. In th e time
domain the inputs were impulses, here the inputs
can be seen as white noise processes with unit in­
tensi ty.

In normal balanced reduction the inputs are as­
sumed to be unit intensity white noise processes.
Colored noise processes can be generated by means
of a weighting function W i (s) receiving white noise
inputs. Now W;(s) can be placed in series with the
system, but reduction of this series conneetion ap­
plies to both original and filter states. Similarly
filtering the output can be modeled by premulti­
plying the system with Wo(s), the output weight­
ing. The idea of Enns was to calculate the control­
lability Gramian of Gn(s )Wi(s) , the observability
Gramian of Wo(s)Gn(s) and to look only at the
part related to th e system states. These Gramian
parts determine t he FW-balancing transformation
and the subsequ ent reduction.

Let (Ai, Bi ,Ci, Di) be an order ni state space re­
alization of Wi(s) and (Aa, Ba, Co, Do) an order na
state space realiz a ti on of W o ( s) .

The frequency response of the states of
(A, B , C, D) to the new inputs Uw is

(5)

(6)

P 100
H der P

Q L Yi,x"Yi,x" dt = L qi
i =1 0 i=1

Yi,x" = elfC eA t

2.5 frequency domain interpretation

In th e sequ el th e frequency domain counterpart of
(1) wiII be of spec ial importance (Skelton 1988)

p = 211r J~00 if> Uw)BBH if> HUw)dw

Q = 2~J~00 if> HUw)CHCif>Uw)dw

Using (7) and the fact that uw(jw )u;t(jw) = I we
find

For X driven by unit intensity white noise Uw the
weighted controllability Gramian is

1 100

PWi = -2 x(jw)xH(jw)dw
7r -00

2.6 practica l u se

T he steps to be pe rformed are
1) calculat e t he Gramians Pand Q
2) ca lculate t he bal ancing transformation
3) calculate t he bal an ced realizat ion
4) t runcate the ba la nced realization

For sta bIe sys tems balanced reduction is a very
practical reduction method. Each truncation of a
balanced realization is stabIe and balanced and the
reduction error is bounded (2). In practice the re­
dueti on error is often evaluated based on the max­
imum singular value of GnUw) - GrUw) and it is
ofte n true that the reduction error has a unniform
distribution over frequency.

If we want non-uniform error distributions, fre­
quency weighted versions of balanced reduction can
be used. The common approach is to define fre­
quency weighted Gramians (modification of step
1) and to leave the other steps unchanged. For
all methods step 2 should be performed with care.
The next sections discuss the construction of FW
Gramians.

x(s ) = (sI - A )- 1BWi(s )uw(s)

n.i(sI - A.i)- 1B.iuw(s)
with

n., = [ Onn' In ], .
[ A- Oni,n]A. i = Bèi A

n; = [B~i ]

= ~1°O if>BWiWtBHif>{{dw
27r -00

n.iP'in~
with

(7)

(8)

(9)

(10)
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(j wl - A.;) P.; + P.;(jwI - A.;)lf =

-A.;P.; - P.;A~ = B.;B;; (11)

QJO is solved from the observability Lyapunov equa­
tion ,

A~~Q.o + Q.oA.o+ C:;'C.o = 0 (15)

The FW-balancing transformation is defined as

V,_ l V_ll Vll v, • ( )
1 w Pw.Tw = Tw Qwo7w = I:w = diag oW,;

Express ions (10,12) clearly show that the in-
fluence of the weightings is fully determined by
W;(jw)W;(jw)ll, Wo(jw)llWo(jw). The state-space
realizations of W;( s), Wo ( s) are irrelevant and thus
the FW HSVs OW,; are system invariants for given
(W;, Wo), As expected intuitively weighting with
all-pass systems has no effect.

4.1 frequency interval Gramians

In frequency interval balanced reduction it is as­
sumed that the frequency content of the input sig­
nals is limited to aspecific frequ ency band and sim­
ilarly the output is only of concern in t he same fre­
qu ency band. Note t hat t he interval is in fact a
pair. Define

The idea of defining Gramians over a fixed fre­
quency interval is due to Gawronski and Juang
(1990). They introduced new Gramians by limit­
ing the time evolution in (1) and/or the frequency
range in (6). Here we use the frequency interval
Gramians as a starting point for our generalization.

4 Frequency weighted
interva l G ramians

3.2 practical use

In FWBR the normal balanced reduction procedure
is applied to (A , B, C, D) using Pw" Qwo to define
t he FW-balancing transformation . pw• is so lved via
(10) and (11), and Qw

o
is so lved via (12) and (15).

In general t he redu ced models are not FW-balanced
and stability is not guaranteed . T he advantage over
balanced reduction is that the red uction error can
be shaped more or less <l;S a function of frequency.
A st rnctu red way of defin ing W; and Wo for this
purpose however is lacking. Also for practical use
the order of W; and Wo may not be too la rge .

ii) also for dynamic input weighting W;(s), and
constant ou tput weighting Do, observability of
(A, DoC) is suffici ent for stability of the reduced­
order model. Observability of (A,C) implies ob­
servability of (A , DoC) provided D~{Do is non­
singular.

(12)

Qwo

wit h

11' 0 [In On,no]

A.o [ A On,no ] (13)
BoC Ao

c; [DoC Co] (14)

QJO 2-100

ip~~C:~C.oip.odw
211" - 00

ip.o(s) (sI - A.o)-l

Ou tput weighting with Wo(s ) means

2-100

ipll C llWllW Cipdw
211" -00 0 0

1 100

1 I- (jw I - A.t dw = -2
211" - 00

p.; can be solved usin g a Lyapunov equation:

Since

PTJ =2~ J~oo ip(jw)B7J(w, [wa ,wb])B ll ipll(jW) dw

QTJ =2~ J~oo ipll(jw)Cll7J(w, [Wa ,Wb])Cip(jW) dw

PTJ and QTJ are not compnted via numerical integra­
t ion but via standard Lyapnnov equati ons and an
add iti onal matrix logari th m as will be shown in 4.3 .

Expe rime nt s wit h frequ ency interval balance d re­
duetion reveal ed that a large interval is needed to
ensnre t hat the redn ced orde r model is stabIe. In

3.1 stability

The truncation of the FW-balanced model is not
necessarily stabIe for stabIe systems as was the case
with balanced reduction, nor is it FW-balanced.

Stability is guaranteed for the following two
cases:

i) if the input weight ing is a constant mat rix
D; and (A, BD;) is a con t rolIabIe pair with A st a­
bIe, t hen FWBR results in a stabIe redn eed-order
mod el. (A, BD i ) is a con trolIabI e pair if and only
if (A ,B) is a con trollable pair and D;Dfl is non­
singular. The output weighting W o( s) is allow ed to
be dynamic.

7J(w, [wa, Wb ]) = 1 for w E [Wa, Wb ]
= 0 for w rt [Wa ,Wb )

The frequency interval Gramians then are

(16)
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that case the advantage over stand ard balanced re­
duetion is minimal. A va luable extension however
is created by using more intervals each equipped
with some frequency weighting function .

4.2 definition of FW interval Gramians

Let 's wri te our generalized FW Gramians as

po. = 2~ J~oo cp(jw) BD.j(w)BlfcpH(jw) dw (17)
Qo.. = 2

1
,. J~ cpH(jw)CllD.o(w)CCP(jw) dw

For D. j(w) = Wj(j w)Wjll (j w) and D.o(w) =
WoH(jw)Wo(jw) we have Enns' (Wj, Wo)-weighted
Gramians. For D.j(w) = I7711J(w, [Wa,Wb]) and
D.o(w) = Ip1J(w, [wa, Wb]) we have the plain interval
case of Gawronski & Juang (1990).

We are looking for weIl defined D. functions

Next the integration (20) can be exec uted t erm by
term :

R 2~ 1,":.~ X(]' wI-A )- Hdw+r,[w. ,w~J n ~

2~ J: : (jwI-A)-l X Hdw+
.L rw~ Bf BHdw =271" Jw~ 2

2~ {X S H(Wa,Wb) + S(Wa,Wb)X H

+ Bf2BH(Wb - Wa)}
(22)

with S (wa,Wb ) = -j In[(jwaI-A)-l(jWbI-A)]. The
matrix logarithm S(wa,Wb) can be solved by first
transforming A to diagonal farm.

For the interval case with I'0 = I (21) simplifies
to the standard (unweighted) controllability Lya­
punov equation yielding X = P. The interval
weighted controllability Gramian then is

D.(-w) = D.(w)
D.H(w) = D.(w) > 0

(18)

t hat can be sp ecified eas ily and that allow a solution
to (17) based on Lyapunov equat ions .

A piecewise quadratic frequency function is pro­
posed :

D. (w) = E k(f ok+ fu lwl + f 2kw2) 1J(w, [Wa, Wb]k)
(19)

For each interval k, th e const ants fo, f 1 and f 2

should be sueh that (18) is satisfied .
The derivatio n of the weighte d observability

Gramian is similar to t he derivation of the cont rol­
lability Gra mian that will be given next. We can
concentrate on one frequency inte rval [wa ,Wb] with
Wb > Wa ~ O. The associate d [-Wb, - Wa] part of the
weighted controllability Gramian can be ob tained
by substitution.

4.3 solution of the weighted controllab ilit y
Gramian

A similar solut ion can be derived for

4.4 practical use

For each interval with aquadratic frequency func­
tion given by f o, f ll f 2 , (21) is solved and X is
substi t ut ed in (22) . For the associated negative
int erval t he same f's are used. Qr,lw.,w~1 is han­
dled similarl y. The sum over all frequency interval
pairs yields th e FW Gramiansvpo. an~ Qo.. . In the
FW-balanced farm we have po. = Qo.. = ~o =
diag(lTo,;). In general the reduced models are not
FW-balanced and stability is no t guaranteed. Com­
pared to Enns' FWBR the freedom in specifying
D.(w) is large. No realizations for Wj(s) and Wo(s)
are needed.

we write Y as

with X the solut ion to the following linear matrix
equation

5 Frequency pulse Gramians

Sup pose we have an interva l function bounding a
unit area (Wb - wat 11J(w , [Wa,Wb])' For Wa ~ Wb
t his func tion deforms into a Dirac delta function
c5(w - Wb)' For Wb =I 0 a frequency pulse pair is used
to satisfy (18 ): D.(w) = f 5(c5(w - Wb) + c5(w + Wb))
with I'5 real and positive definite. Let wbl represent
a frequency pulse at Wb and wbi a frequency pulse
pair at {-Wb, +Wb} ' With (17) we find for the pulse
weighted controllability Gramian
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(21 )A X + XA H+ Bplf = 0

P - BfH 'AB f H A2BfH
- 0 -] 1 - 2

Por the solution of

P = ~ l.: cp(jw)ycpH(jw) dw (20)r.lw•.w~J 271" w.

with Y = B(fo + f 1w + f 2w2 )B
lf

(j wI -A)X + XH(jwI _A)H
+(jwI -A)Bf2B

lf (jwI _A)ll



This can be computed straightforwardly.
The rank of this matrix cannot exceed m , t he

number of inputs. By choosing nk pairs of fre­
quency pulses (at positive and negative frequen­
cies) the order of the controllability Gr amian will
be 2nkm. Ir we require positive definite Gramians
for minimal systems we have to take nk 2:: ~n/m .

6 Generalized framework

In th e most general case we start with input and
out put weighting W i and Wo and apply the inter­
val based frequency weightings to the inputs Uw

and outputs Yw (see Fig .I). On the input side
we have A.i , B.i (8,9) and by means of piecewise
quadratic and pulse weightings the FW controlla­
bility Gramian is built up . At the end the original
system-state part is extractcd using the projection
n.i and the unweighted controllability Gramian P
is added with a sealing factor f3

PWfl; f3P + n.iP.i,fl;IT~ (24)
m;

r ;« = Lel: p.i,(r,(W. ,Wh));k + L p.i,(r.,.oIhl);/)
j =l k I

Thus we have a sum over intervals (k) , a sum over
frequ ency points (1) and all th ese summed over the
inputs U w of W i (see Fig.1 and (4)) . On the output
side we hav e A.o , a.o (13 ,14 ) and t he same approach
is followed to build QWflo '

A MATLAB model reduction tooi has been devel­
op cd that builds weighted controllability and ob­
servability Gramian in steps, showing the reduction
result (frequency response, reduction error ) aft er
each st ep and allowing the user to specify additional
weightings. One can st art with a sm all factor f3 to
analyse normal balanced reducti on . Next a scalar
piecewise quadratic fun ct ion or a se ries of pulses
can be specified for each input and output sepa­
ra tely. For quadratic weigh tin g withi n a single in­
te rval t hree frequ ency functi on values are required .
The lowest and high est frequencies determ ine t he
int erval , f o, f l and f 2 resu lt from an interpola­
tion through the three fun cti on valu es. Conti nu­
ati on in neighbouring intervals requires two addi­
tional function values. For a frequ ency pulse one
function value (Wb, f é ) is needed. The input of the
frequ ency function values can be performed graph­
ically. Picking points in a frequency response plot
has the advantage that the weighting can be tuned
to the system frequency characteristics. The re­
duetion error and the scalar weightings are plotted
together after each step. This gives the user a clue
for applying additional weightings.
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6.1 exampIe 1

First frequ ency weighted redu cti on of a 34th-ord er
siso mod el (Fig.2) of t he t racking mechanism in
a Compact Disc pl ayer is an alysed. The redu ced
ord er model will be used for the design of a con­
troller t hat achieves a bandwidth of abou t 1 kHz.
The lightly damped syste m poles t urn unstabl e if
the mod el reduction erro r near 1 kHz is to o large.
Here it will be shown that our frequ ency weight-

. ing concept is very efficient for controller-relevant
reduction. Let us first analyse standard balanced
rednetion (unweighted case) .

The HSVs (Fig.3) are used to ca1culate the er­
ror bounds (2) for all possible reduced orders. Fig­
ure 4 shows that only with n r 2:: 30 sufficiently ac­
curate results can be expected, due to the magni­
tude of the transfer function in the bandwidth fre­
quency range. 1'0 force a better fit around 1 kHz
aquadratic frequency function is added. Figure 2
sh ows th e three points that were picked and the
quadratic fit within the chos en interval. The fre­
qu ency weighted HSVs (Fig.3) point to a 12th ord er
redu ced model. Normalized LQG control design on
a 12th order frequ ency weighted reduced model gave
a con troller that performed weil on the 34th ord er
model whereas the same design on a balanced ap­
proximation of ord er 12 resulted in a cont roller that
dest abilized the original model. Figures 5 and 6
show th e results for n; = 12 in the unweighted and
weighted case. Balanced redu ction gives reduction
errors distributed almost uniforrnly over all frequ en­
cies , but t he dynamics in the bandwidth frequency
range ar e not included. In th e weighted case th e ac­
curacy is clearly improved within the int erval. At
low frequencies the fit is worse t han with normal
bala nced redu ct ion , but t his does not ham per su c­
cessful control design.

Weighting only with the quadratic part , t he 3.5
Hz mode turns unstable in most reduced rnodels.
Pl ain frequency interval ba lanced reduction sho ws
simi lar stability problems.

6.2 exampIe 2

The second exam ple sh ows t he use of the Dirac
pul se frequ ency weighting on a stabie single input
sin gle ou tput all-pass system:

(5 - 1)(5 - 2)(5 - 3)(5 - 4)
94(S) = (s+1)(s+2)(5+3)(s+4) (25)

This academical system provides no basis for bal­
anced reduction since all HSVs are equal to one .
FWBR gives distinct FW HSVs and thus a ba­
sis for reduction. Choosing a frequency weighting
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ni(w) = no(W) = 8(w + 1) + 8(w - 1) gives rank 2
weighted Gramians. The second ord er approxima­
tion is

S2 - 1.1268s + 0.7183
g2(s ) = s2 + 1.1268s + 0.7183 (26)

This reduced system has on e complex conjugate
pole pair and it is again a stabie all-pass system.
The reduction error is shown in Fig. 7. The ex­
trem ely accurate fit for w = 1 illustrates the power
of th e frequ ency pulse weighting.

6.3 practical use

The MATLAB implementation of generalized
FWBR mainly offers flexibility in mod el reduction.
Bal an ced reduction , Enns' frequency weighted bal­
anced reducti on , and frequ ency interval balanced
red netion a re all special cases. T he step by step
ap pro ach with graphical evaluation of t he red ucti on
rcsul ts and gr aph ical input of weighting functions
can be used ver y effect ively in de riving stable re­
d uccd order mod els t hat fit the original model in
thc intcnded way. The general experience is that
over the whole frequency range a minimal weight­
ing has to be applied to ensure that the reduced
order models remain stabie. The easiest way to do
this is to choose a sufficiently large f3 in (24). Very
small reducti on errors at specific frequencies can be
obtained wit h frequency pulse weight ings. This can
bc vcry practical in rctaining system zeros.

7 Conclusion

Gcncralized frequcncy weighted balanced reduction
(GFWBR) is introduced. It merg es Enns' fre­
qu ency weighted balanced reduction and frequ ency
interval balanced reduction of Gawronski & Juang
int o one unified framework. New features are th e
use of scalar quadratic frequency functions within
multiple frequency intervals and the frequ ency puls e
wcightings. The definition of th e weighted Grami­
ans as a surn over separate intervals and sepa­
ratc inputs and outputs allows GFWBR to be im­
plem cnted in a step by st ep reduction procedure.
Graphical eva luat ion of th e reduction results after
each step and graphical input of t he weighting fun c­
tions offer gr eat flexibility in frequ ency weighted
model reduction.

36

R eferences

Enns, D.F. (1984a) . Model reduction for control
system design, Ph.D. Thesis , Dept. Aeronautics
and Astronautics, Stanford University, Stanford ,
CA , USA.

Enns, D.F. (1984b). Model reduction with bal­
anced realization: an error bound and a fre­
quency weighted generalization . Proc. 23Td

Conf. Decision f3 Control, Las Vegas, USA, 127­
132.

Gawronski, W ., and J-N Juang (1990). Model Re­
duetion for Flexible Structures. Control and Dy­
namic Systems, vo1.36, 143-222.

Glover , K. (1984) . All optimal Hankel-norrn ap ­
proximations of lin ear multivariable systems and
their Loo-error bounds. Int. J. Contr., vol. 39,
1115-1193.

Moore, B.C. (1981) . Principal component an alysis
in linear systems: contro llability, observab ility,
and mod el reducti on . IEEE Trans. Automat.
Contr., AC- 26, 17-32.

Skelton, R.E. (1988). Dynamic Systems Control,
New Vork : John W iley & Sons.

Wortelboer, P.M.R. (1991). Balanced reducti on of
high-dimensional mechanical systems: a bleek­
balancing approach. Proc. 30th Conf. Decision
f3 Coniro l, Brig hton, UK, 1974- 1975.



@199 2 DeUt Uni vers ity P ress Selec ted Topics in Id entification , Modelling and Control

Vol. 5, December 1992

O n or t hogonal basis fu n ct ion s that contain system
dynamics t

Peter Heuberger § , Paul Van den Hof ~ and Okko Bosgra

M echanical Eng in eering Syst ems and Control Group
Delft Univers ity of Technology, M ekelweg 2, 2628 CD Delft, Th e Ne therlands .

Abstract . In many areas of signal, system an d control theo ry ort hogonal functions play
an import ant role in issues of analysis and design. In this paper it is shown that th ere
exist orthogonal functions that, in a natural way, are generated by stabie linear'dynamical
systems, and that compose an orthonormal bas is for t he signal space e~. To this end use
is made of balanced rea lizations of inner transfer functi ons. The orthogonal functions can
be considered as generalizations of e.g. the Laguerre funct ions and the pulse functions ,
related to the use of the delay operator, and give rise to an alternative series expansion
of rational transfer functions. It is shown how we can exploit these generalized basis
functions to increase the speed of convergence in a series expansion, i.e. to obtain a good
approximation by retaining only a finite number of expansion coefficients.

Keywords. system identification, orthogonal functions, system approximation .

wit h {Gd k=O,l,... the sequence of Mark ov pa­
rameters. In construct ing this series expansion
we have employed a set of orthogonal funetions:
{ZO, Z- l, Z-2, ' . . } , where orthogonality is consid­
ered in terms of t he inn er product in 1t2 • In a

Consider a finite-dimensional linear time-invari ant
discrete-time system G, represented by its transfer
function G(z) in the Hilb ert space 1t2 , i.e. G(z ) is
analytic outside th e unit circle, Izi ~ 1. A general
and common representation of G(z) is in term s of
its Lau rent expansion around z = 00 , as

with {Jk(Z) h=O,1.2 ,... a sequence of orthogonal func­
tions.
There are a number of research areas that deal with
the question of either approximating a given system
G with a fini te number of coefficients in a ser ies
expansion as in (2), or (approximately) identifying
an unknown sys te m in terms of a finite number of
expansion coeffi cients through

1 Introduetion

oe

G(z) = L Gkz-k

k=O
(1)

genera lized form we can write (1) as

oe

G(z ) = L Lkfk( z)
k=O

N

G(z) = L îdk(Z)
k=O

(2)

(3)
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11 visiting resear cher at the Cent re for Industrial Contr ol
Science, The University of Newcastle, N.S.W ., Austral ia.

§Now with the National Institute of Public Health and
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Bilth oven, T he Neth erlands.

lAut hor to whom all correspondence should be
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In an identification context, the use of the ortheg­
onal funetions as in (1) lead to the so called Fi­
nite Impuls e Response (FIR)-model, Ljung (1987).
However, it is weil known that for moderately
damped system s, and/or in situations of high sam­
pling rates, it may take a large value of N, the



nurnber coefficients to be est imated, in order to cap­
ture the essential dynamics of the system G into it s
model.
In this paper we consider the problem of construct­
ing orthogonal funetions fk(Z) in such a way that
a series expansion of the system G, as in (2) be­
comes very simpie, i.e. the number of coefficients L k

t hat is nee ded becomes smal!. In dealing wit h this
prob lem, we have cons ide red the questi on whether
a linear sys tem in a natural way gives rise to a set
of orthogo nal funct ions. T he an swer to this ques­
tion appears to be affirmative. It will be shown
th at eve ry st abie syst em gives rise to a complete
set of orthonormal fun cti ons based on input (or out­
put) bal anced reali za tions, or equivalently based on
a sing ular value decomposit ion of a correspo nding
IIan kel matrix .

The use of orthogonal funet ions with the aim to
adapt the system an d signal representation to the
specific properties of the systems and signals at
hand has a long history. The classical work of Lee
and Wiener during the 1930's on network synthesis
in terrns of Laguerre functions is summarized in Lee
(1960) . During the past decades, the use of orthog­
onal functions has been studied in problems of e.g.
filter synthesis, King and Paraskevopoulos (1977),
and system identification, King and Paraskevopou­
los (1979), Nurges and Yaaksoo (1981), Nurges
(1987) . In these approaches to system identifica­
tion, the input and output signals are transformed
to an (Laguerre) transformed domain and standard
identification techniques are applied to the signals
in this domain. Data reduction has been the main
moti vat ion in t hese studies. In recent years, a re­
ncwed interest in Laguerre functions has emerged.
The approximation of (infinite dimensional) sys­
tcms in terms of Laguerr e functions has been con­
sidered in Mäkilä (1990), Glover et al.(1990) and
Gil and Khargonekar (1989). In the identification
of coefficients in finite length series expansions, La­
gue rre function representations have been consid­
ercd from a statist ical analysis point of view in
Wahlberg (1991). The use of Laguer re-funct ion­
based identi fica tion in adaptive control and con­
troller tuning is studied in Zer vos et al.(1988). A
second-order extension to t he basic Laguerre func­
tions usin g the so ca lled Kau tz functions is sub ject
of discussion in Wahl berg (1990) .

In sec tio n 3 we will show how inner fun ctions gene r­
ate two sets of orthonormal functions that ar e com­
plet e in th e sign al space f.2 • Next th e interpret ation
of th ese results is given in ter ms of bal an ced state
space representations. Afte r showing the relati ons
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of the new basis functions with ex ist ing ones, we
will focus on the dynamics that implicitly are in­
volved in the inner funct ions generating the basis.
It will be shown that if the dynamics of a stabie sys­

tem match the dynamics of the inner function that
generates the basis, t he n t he representation of th is
system in terms of this basis becomes extremely
simpie. Consequences for a re lated icien tificat ion
an d ap prox imat ion pr obl em are discus sed in a final
sect ion. For the pr oofs of t he resul t s t he read er is
referred to Heuberger et al.(1992).

2 Preliminaries

We wil! denote «r as the complex conjugate t rans­
pose of a matrix, Z+ as t he set of nonnegative in­
tegers. f.2 [0,00) is the space of squared summabie
sequences on the time interval Z + , e;,xn [0,00) the
space of matrix sequences {Fk, k = 0,1,2, ... } such
that "L"::otr( F; Fk) is fini te. 11· 112 is the induced
2-norm or speetral norm of a matrix, i.e . its maxi­
mum singular value. 'vVe will consider discrete-time
signals and systems. A linear time- invariant finite­
dimensional system will be represented by its ra­
tional transfer function G(z) E IRPxm(z), with m
the number of inputs in u, and p the number of
outputs in y. (A, B, C, D) is a realization of G if
G(z) = C(z I - A)-l B + D. A realization is stable
if la(A)J < 1, where a(A) is the set of eigenvalues
of A. If a realiza t ion is stabie, the controllability
Gramian Pand observabi lity Gramian Q are de­
fined as the solutions to the Lyapunov equations
APA" + BB" = Pand A*QA + CoC = Q respec­
tively. A stabie realizat ion is called (internally) bal­
anced if P = Q = ~,with ~ = diag(al, ···,an ),

al 2: .. . 2: an , a diagonal matrix with the positive
Hankcl singular values as diagonal elements. A sta­
ble realization is called input balanced if P = I,
Q = ~2, and output balanced if P = ~2, Q = I .

A square system (p = m) is ca lled all-pass if it sat­
isfies GT(Z- l )G(z) = I , or equiva lently
G(z)GT(Z-l) = J. An inner transfer function ma­
trix is an all-pass transfer fun ct ion that is stable,
i.e. it is analytic outside and on the uni t circle.
Wh en dealing with in ner fun cti ons in t his pap er ,
we will implicitl y ass ume t ha t th e inn er fun cti on
G is proper, i.e. it has a Laurent series expansion
"L"::oGkZ-k . The (bloek) I-Iankel matrix associated
with G is den ot ed by H(G), and is const ru cted from
the Marko v parameters {Gd k= I.2,. .. .



(7)
[or k = 1, 2, . . . (8)

Proposition 3.5 Let G( z) E Rm xm( z) be an in­

ner funclion with McMilIan degre e n > 0, and con­
sider a sequence of unitary matrices {V;}i=O,l,... as

Theorem 3.4 L et C( z) be an inner funct ion with
McMillan degree n > O. Th en

(6)
constitute a sinqular value decomposi tion of
1i(C k ), through 1i(Ck) = f kfk;

(b) Let G(z) have a Laurent expansion G(z) =
:Z:=~O O,»:', and consider th e block Toeplitz
m atrices Tu, Tv as in (4), th en th is m at rix se ­
quen ce {Ui, ll;};=o,l, .. satisfies

Considering Proposition 3.1, it follows that the
rows of Va'' and the columns of Ua, are n mutu­
ally orthonormal veetors of infinite dimension . Ad­
ditionally Lemma 3.3 shows that we can construct
an inner transfer function wit h increasing McMil­
lan deg ree , by repeatedly mu!tiply ing the t ra nsfer
funct ion with itself, and thus im pli citly crcating an

increasing number of orthogonal vectors. T he fol­
lowin g resul t shows how we can increase this num­
bel' of vectors, by embe dding the svd of 11.(C) into
a sequence of svd's of 1i(C k).

(a) There exist unitary matrices Ui, V; E coo xn,

i = 0,1"" , sucli that [or eve r y 0 =I k E Z+,
th e m atrices

f~ = [ Uk- l ... UI Ua] and f k =

The theorem shows t he const ruct ion of orthoge­
nal matrices f k, f k that have a nesting st ructure.
The suggested svd of 1i(Ck ) incorporates svd 's of
1i(Gi

) for all i < k. In th is way orthogonal matri ­
ces fk an d f k are constructed with an inc reas ing
ra nk. Note t hat the restriet ion on the structure of
the consecutive svd's is so strong that, according to
(b), given a singu lar value decom position 1i(G) =
UaVa'' the matrix sequence {Ui, V;, i = 1, 2,···} is
uniquely determine d. Note also that there is a d eal'
duality between t he controllability par t f k and the
observability par t f k. In orde r to keep the expos i­
tion and th e notat ion as simple as possibl e we wiII
further restriet attent ion to th e cont rollability part
of th e problem. Dual results exist for th e observ­
ability part.
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(4)

(5)

Co Cl C z
0 C o Cl G z

Tv 0 0 Go Cl
0 Go

G o 0 0
Cl Go 0

Tu = G z Cl Go

Gl Co

3 Orthonormal functions gener­
ated by inner transfer functions

Proposition 3.2 Let C( z) be an inner funetion ,
ha ving a Laurent expansion C( z) = :Z:=;;:o c,»:".
Denote th e block To eplilz matrices

Lemma 3.3 L et G( z) be an inner funetion with
McMilIan degree n. Then [or all k E Z+, Gk(z) is
an inner funclion with McMilIan deqree kn , 0

Proposition 3.1 Let C(z) be an inner f unetion

with M cMilla n deqree n > O. Th en a sinqular
value decomposil ion (s vd) of1i(C ) satisfies 1i(C ) =
UoVoo wi th ti; Vo E coo xn unitary matrices , and
th e pair (Ua, Va) is un iqu e module postmultiplica­
tion with a un itary matrix T E cnxn .

In th is section we wiII show that a square and in­
ner transfer function gives rise to an infinite set of
orthonormal functions . This derivation is based on
the fact that a singular value decomposition of the
Hankel matrix associated to a linear system ind uces
a set of left (r ight) singular veetors that are orthog­
onal, Conside ring t he lcft (right) singula r veetors

as discret e time funct ions, th ey are kn own to be 01' ­

thogo na l in frsense , thus gene rat ing a number of
ort hogo nal function s being equal to the McMillan
degree of the corresponding system . We will em­
bed an inner fun ction with McMill an degree n into
a sequence of inner functions with McMilIan degree
kn , for which th c left (right) singular veetors of th e
Hank el matrix span a space with dimension kn, If
we let k -+ 00 t he set of left (right) singular vee­
to rs will yield an infini te number of ort honor mal
functions, which ca n be shown to be com plete in

ez·
T he Hankel matrix of an inner t ra nsfe r functi on has
some specific prop erti es, reflect ed in th e following
two resul ts.



meant in Theorem 3.4. Denote

D efinition 3 .8 We define the classes ofJunclions:

For use later on we wiU formalize two classes of

inner functions .

(10)
00

H(z) = D + Z-1 L c,Vk(Z)
k=O

A 0 0

B C A 0 0

Ak = BDC B C 0 (11 )

0
BDk- 2 C BDk- IC B C A

4 Balanced state space representa­

tions

Proposition 4.1 Let G be a transfer Junclion with
minimum baleneed realization (A, B , C, D), Then
G(z)GT(Z -I) = I ij and only if (i) P = Q = I ;
(ii) BD" + AC" = 0, and (iii) DD" + CC" = 1. 0

Note that for t his propos it ion t here also exists a
du al form , eoncerning the t ransfer functi on GT with
reali zati on (A", C" , B" , D"). T he class of fun cti ons
91 can simply be cha racterized in terms of a bal­
aneed realization.

Proposition 4 .2 Let G E R mxm(z ) be an inner
funclion with minimal balanced realization
(A, B, C, D) . Then GE 91 if and only ij rank B =
m , or equivalently rank C = m.

The following proposition shows that we can use a
balanced realization of G to construct a balanced
realization for any power of G.

P r oposi t io n 4.3 Let G be an inner transfer func­
tion with minimal balanced realization (A, B, C, D)
having state dimension n > O. Then [or any k > 1
the realization (A k, Bk, Ck, Dk) with

In order to represent the orthogonal controUability
matrix in a state spaee form , we will use a balaneed
state space realization of G.

We rejer to D, Lk as ihe orthoqonal expansion co­
efficients of H(z) . 0

We wiU refer to the sequenee {Vk(z )h=o,I, .. as the
sequenee of generating transfer fun ctions for the or­
thonormal basis W(G). In orde r to find appropri ate
ways to ealculate the orthogo nal fun ctions, as weU
as to determine the tran sformation as meant in the
coroUary, we will now first analyse the results pre­
sented so far in te rms of state space reali zations.

Corollary 3.9 Let G be an inner funclion , G E
91, and let W(G) be as defined in theorem 3.6 . Then
for every proper stabie transfer funetion H (z) E
RP xm(z) there exist unique D E RP xm, and L =

{Ldk=O,I,... E e~ xn[O,oo) , such thai

o

(9)

00

Vk(z) L Ah(i)z-i, with Nh(i) defined by
i=O

[<Pk(O) <Pk( l) <Pk(2) . . . ] = Vk" '

Then the set of funclions W(G) := {cPd k:oO con­
stitutes an orthonormal basis of the signal space
e~[o, 00) . 0

Remark 3 .7 This basis has been derived from the
singular value decomposition of the Hankel matrix
H (G) . As stated in Proposition 3.1 this svd is
unique up to postmultiplication of U«, Vo with a
unitary matrix. Consequently - within this context
_ both Vt , Vk (z) and the corresponding basis fun c­
tions {cPd are unique up to unitary premultiplica­

tion.

91 .- {all inner Junetions G with McMillan degree
> 0 such that IIGol12 < I};

92 {all inner funetions G with McMillan deqree
> 0 such that GóGo = GoGó}'

Theorem 3.6 Let G(z ) E R mxm(z ) be an inn er
funclio n with McMillan degree n > 0, such that
IIGoll2 < 1; consider a sequetice of unita ry matrices
{V;}i=O,I ,... as meant in Theerem 3.4· For each k E
Z+ consider the Junclion <Pk : Z+ -t C" , defined
by:

As a result of the fact that the proposed orthonor­
mal fun ctions eonst itute a basis of e~, each square
inne r function generates an orthonormal basis that
provides a unique t ransformat ion of e~ -signals to an
ort hogo na l domain. Similarl y, when given sueh an
ort honorrnal basi s, each st abi e rational fun cti on ean
be expanded in a ser ies expansion of basis functions
Vk(z) as defined in proposition 3.5 .

and Mk(i) E cnxm, k E Z+.
Then Vk(Z) = Vo(z)Gk(z).

T he pro pos iti on aetuaU y is a z-transformequivalent
of the resul t in T heorem 3.4. It shows the eon­
st ruct ion of the cont roUabilit y mat rix f A, . In the
next st age we show that this cont roUability matrix
generates a sequence of ort hogonal fun ctions that

is complete in Cl ·
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B
BD
BD2 (12)

(a) th e elemenis of f %are dei ermined by the fol­
lowing recursiue equations

Mo(O) B

Ck =[ Dk - IC D k- 2 C .. . D 2 C D C C ] (13)

o, = Dk (14)

is a minimal baleneed realization of G k with state
dimeneion ,n . k . 0

Exam ining the realizat ion in t he above proposition,
reveals a similar strueture of observability and con­
t ro llab ility matri ces, as has been discuss ed in the
p reviou s seetion. E.g . taking th e situation k = 2,
i t shows that th e cont rollability m atrix of (A 2 , B2 )

contains the cont ro llability matrix of (A , B) as its
first blo ck row.

Proposition 4.4 Let G(z) E nm xm(z) be an in­

ner transfer [unction with McMillan decree n > 0,
wlwse Hankel matrix has an svd 'H(G) = UoVcJ·, and
let (A , B , C, D) be a m inimal balan ced realization
of G sucli that Vo· = [B AB A 2 B . .. J. Th en th e

unique sequence of orthogonal matrices {f%h=I ,2 , ..
as m eant in th eoreta 3.4 is determined by

k

Mk (i + 1) = AMk(i) + L pj-l X Mk_j(i)
j = 1

with f %as in (6) an d (9).

(b) f %is unique, i.e. it is not dependent on th e
specific choice of R in cas e R is nonunique. 0

Th e recursive equat ions show how we can sim­
ply construct th e set of orthogonal funetions. We
now com e to the const ruct ion of a series expansion
of any stabIe proper ratiorial transfer funetion in,
terms of the new orthonormal basis.

Theorem 4 .7 L et G be an inner function G E
(91 n 92) with a minimal baleneed realizaiion
(A , B , C, D). L et this inner function qenerate
an orthonormal basis with corresponding gener­
at ing functions Vk(z), as defined in Proposition
3.5. L et H E .Alpxm(z) be any proper and sta­

ble transfer fun ct ion with a minimal realization

(A S! B S! C., D s). Th en

00

with A k, Bk as defined in (12) .

(15)

o

H( z) = o, + Z - 1 L LkVk(z)
k=O

with L k E C pxn deiermined by:

(16)

The above result shows how a minimal balanced
rcalization of G aetually generates the sequence of
orthogonal matrices f k, the rows of which are the
basis funetions in our orthonorrnal basis of e~ . For
inn er funetions in Çh specific properties in terms
of their balan ced state space representation can be
derivcd.

Proposition 4.5 Let G E n mxm( z) be an inner

f un ct ion wi th m inimal balan ced realization

(A, B , C, D ). Th en G E 92 if and only if th ere
exists a un itar y m atrix R sucli that C = B* R. o.

T hcre exist recurs ive form ulae for construeting the
orthogonal funct ions .

Proposition 4.6 Let G be a~ in ne r function , G E
(91n 92)' an d conside r th e assumptions and nota­
lioti as in Tli eorem 3.4 and Proposition 4.4. De­
nole X = B C, and P = - R A *, with R according
to Proposition 4- 5. Th en
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t., c.a, (17)
Qo A"QoA* + BsB* (18)

Qi+l A sQi+I A* + A sQiR* - QiAR* (19)

In seetion 6 we will show that specific choices of
G(z) in re!ation with H( z) , i.e . specific re!ations
between th e inn er function G producing the or­
thonormal basi s and a transfer function H that
should be described in this basis, will lead to very
simple representations.

5 A generalization of classical basis
functions

In this section we show two examples of weil known
sets of or thogon al functions that are frequently used
in th e description of linear time-invariant dynami­
cal sys tems, and that occur as special cases in the
fram ework that is discussed in this paper.



Pulse funet ions
Consider the inner function G(z) = Z -I, GE 91.
The Hankel matrix of G satisfies:

H(G)

As a result Vo( z) = 1, and wit h proposition 3.5 the
generating t ransfer funct ions Vk(Z) satisfy Vk(z) =
c:(z) = e:", k = 0, 1, . . -, The corresponding set
of basis funetions IlJ(G) is determined by </>dt) =
5(t - k) with 5(7) the Kronecker delta funct ion .

The inner function G can be realized by the mini­
mal bal anced realizat ion (A , B , C, D) = (0,1 ,1 ,0),
showing that DD" = D" D and so G E 92. Ap­
plying theorem 4.7 with R = 1 shows the classical

result that Lk = CsA:Bs'

Laguerre funetions
1 - az

Consider th e inner function G(z) = ---, with
z - a

some real-valued a, lal < 1, and denote "I = 1 - a
2

.

Since Go = -a it is clear that G E (91 n 92)'
A minimal balanced realizat ion of G is given by
(A, B, C, D) = (a, yTi, yTi, - a), leading to R = 1.
App licat ion of Proposition 4.6 gives X = "I, P =
-a, and taking acco unt of the fact that for one ­
dimensional sca la r G, Mk(i) = </>k(i), it follows that

</>0(0) = .jiï
k

</>k(i + 1) a</>k(i) + "I '2) -a)j- l</>k_j(i)
j=1

-a</>k-l (0)

These equat ions exactly match the equations that
generate the normalized discrete-time Laguerre
polynomials with discount factor a (Nurges and
Yaaksoo, 1981) .
The corresponding generating transfer funct ions
Vd z) can be analysed with the result of proposi­
tion 3.5:

(21)

This exactly fits with t he formulation of the gener­
at ing transfer functions of discrete-time Lag uerre
polynomials in e.g. King and Paraskevopou los

(1979).
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6 Orthonormal functions originat­
ing from ge neral dynamical sy s­
tems

We have shown that any square inner transfer fun c­
tion G E 91 generates an orthonormal basis for th e
signal space e;. One of the reasons for developing
this generalized bases was to find out whether we
can yield a more suitable representa t ion of a general
dynamical systern, when tbe basis within which we
describe tbe system is more or less adapted to th e
system dynamics . In view of the resu lts presented
so far, this aspect relates to the question whether
we can construct an inner t ransfer funetion generat­
ing a bas is, that incorporates dynamics of a general
system to be represented within this basis.
There are several ways of conneet ing general trans­
fer funetions to inner funetions , as e.g. inn er/outer
factorization (Fra ncis, 1987) , normalized coprime
factori zation (Vidyasagar, 1985), or inn er-unst abl e
factorizat ion (Baratchart and Olivi , 1991). In thi s
paper we will exp lore a d ifferent conneetion, where
a genera l stabie dyn ami cal system with input bal­
anced realization (A, B ,c, ÏJ ) will induce a inner
function through ret aining the matrices (A, B) and
construct ing (C, D ) such t hat (A, B , C, D ) is inn er.
This implies that the poles of the stabie dynami­
ca l sys te m ar e ret ain ed in th e corr esponding inner
function .

Prop os ition 6 .1 Let H E Al Pxm(z ) be a proper

stable tra nsfer funetion, wi th input balanced real­
iza tio n (A , B, c, ÏJ) having state dim ension n > O.
Th en

(a) th ere exist matrices C, D suc li that

(A, B , C, D) is a minimal balanced realization
of an inner [unciioti G;

(b) This G satisfies G E 92 if and only if (i) C =
B"R, (ii) B D" + AC" = 0 and (iii) D" D +
B"B = I , with R = UV", and U , Vanysquare
unitary matrices sucli that A = U SV" is an svd
of A. 0

In the proposition all inner functions in 91 n 92 are
characterized that can be constructed in the way as
decribed above, by retain ing the matrices (A, B) of
any given stabie system. Note that the extension
with C, D is not necessarily unique. For an analysis
of this see Heuberger et al.(1992).
We will now present a resu it that is very appeal­
ing. It shows that when we want to describe the
dynamical system IJ in terms of the bas is that it
has generated, as presented in Proposition 6.1, then



the series expansion in t he new orthogonal basis be­
comes extremely simpIe.

Theorem 6 .2 Let H E AlPxm(z) be a proper s/a­
bie iransjer [unclion, wi/h input balanced realiza­
lion (As, B s,Cs, Ds), having all conl rollability in­
dices > O. Let G E 9J be an in ner [unctioti wilh
minimal balanced realization (A, B , C, D) sucli tluii
A = As and B = B s, generating an orthonormal ba­
sis unili generating transfer funclions Vk(z ). Th en
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H( z ) = o, + Z - l L i;Vk(z) (22)
k=O

uiitli Lo = Cs arul Lk = 0 for k > O. 0

Th e theere m shows that when we use a genera! sta­
bIe and proper dynarni cal sys tem to generate an or­
thortormal basis as descr ib ed above, then the sys­
tem itself ha s a very simple representation in terrns
of t his basis. It is represented in a series expansion
wit h only two non zero expansion coefficients , be­
ing equal to the system matrices Cs and Ds. In the
next section we wiJl discuss th e results of th is paper
in regard of the ir relevan ee to problem s of syste m
ide nt ification and system approxim ation .

It has to be st resse d that so far , we have only
uscel the generalized orthonormal basis to st udy
t. he series ex pa nsion of a given stabie transfer furie­
tion. Sirnil ar to the case of the pul se fun ctions
and Lagu erre fun ctions, th e presentod gener alized
fun cti ons induce a transformation of f2-signals to
a transfe rm dornain , compare e.g. with th e z­
domain when puls e functions are used. In this
transferm domain dyn ami cal sys te m equations can
be derived, leading to tran sferm pairs of time­
dom ain and orthogo nal-domain syst em represen­
tat ions (He ubc rgc r and Bosgra , 1990; J-1 euberger,
!991).

7 Identification and Syste rn Ap-
proxim ation

We will now take a look at the question how we
can utilize the results to problems of ident ification
aud system approximation . As mentioned in the in­
trod uction, identificat ion of a finite impulse model
(FIR) fails to be successful when the number of
cocfficients to be est irna te d becomes large. An al­
ternative way to attain th e advantages of th is iden­
tification method, is to exploit th e model structure

where é( l) is the one step ah ead predi ction er­
ror , D(O), Lk(O) the parametrized expansion coef­
ficients, and with Vk(z) representing an appropri­
ate!y chosen basis.
Identifying 0 through least squares op timiza tion of
d l) over the t ime interva l, is a sim ilar problem as in
th e case of an F IR-mode!. However, with appropri­
ately chosen bas is funct ions, t he convergence rate
of the seri es expansion can become extremely fast,
i.e. t he number of coefficient s to be estimated can
be com e very srnall. Not e that the resu lt of Theorem
6.2 shows an ul ti m ate result of on ly two expansion
coefficients that are nonz ero.

There is another point of interest, being t he a priori
knowl eelge that very often is available in an iden­
t ification situation . Very often the experimenter
has a -rough- knowledg e about the dynamics of
the syst em uneler consielerat ion , an el it woulel be
favour able to exploit this know ledge in the identi­
fication procedure. The method suggested ab ove,
shows that this a priori knowledge can be exploited
in terms of th e basis functions that are chosen. T he
mo re precise th e a priori knowledge is, t he better we
can adap t the basis functions to the system dynam­
ics, and the sim pIer will becom e the identification
prob!em ; th e la t ter effect, du e to the smaller nurn­
bel' of ex pansion coefficient s that essentially con­
tribute to th e ex pression (23).
In ord er to justify this identification/app rox imation
method we will prese nt some resu lts show ing that
the speed of convergence in an orthogonal ser ies
expansion can be qu antified , show ing t he increase of
speed as the dynarnics of syste m and basis approach
eachothe r.

Theorem 7.1 Lel H( z) E RPX1(Z) be a proper
stabie tran sfer [unction with an input balanced real­
ization (AS) Bs,Cs, Ds), and lel (A , B) be an input
balanced pair that generates an inner transfer func­
tion G E Al(z ) wilh G E (91 n 92), leading 10 an
orihonormal basis \ji (G) . Lel
Pi, i = 1, . . . ,ns denote the eigenvalues of A s, and
Pj , j = 1,··· ,n denote ihe eigenv alues of A .

n I Ifl"- p.
and denole IÀ;J = I1 t J and À := maxi IÀJ

1 - u ·p ·j=l ,t J

Th en for any 11 E Al, TJ > À, there exists a finit e
c E Al suc li iliat

N+J

IIH(z) - iIN (z)lI oo ::; c_TJ - (24)
l -TJ

wilh JIN(z) = D + z - JL~=~l LkVk(z) 0
N-1

y(l) = D( O) + L Lk( O)Vk(q)u (t) +d t )
k=O

(23)
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The above theorem shows that we can draw con­
clusions on the convergence rate of the sequence



of expansion coeffic ients { Ldk=O,. .., when given t he
eigenvalues of the or iginal system H(z) and the
cigenvalues of thc inner funetion G(z) that gener­
ates the bas is. Note that when the sets of eigen­
valucs {Pi}, {Pj} coincide, then Ài = 0, for all i .
Since À is a measure for the "closeness" of system
dy namics and basis dyn ami cs, the above theorem
shows that the error t hat is made when negleeting
the tail of a series exp ansion, becomes smaller as À

bccomes smaller.

C onclus ions

We have developed a theory on orthogon al func­
tions as basis funct ions for general linear t im e­
invarian t st abie systems. The basic ingredi ent is
that every square inner transfer fun ction in a very
natural way induces two sets of orthogonal fun c­
tions that form a basis of the signal space e2 • The
ordiuary pul se fun ctions and the classical Lagu erre
polynomials are specia l cases in th is theory of inner

functions .
With th is concept it follows that any conneetion
between a linear system and an inner function, e.g.
through innerjouter factorization, normalized co­
prime factorization, leads to bases of specific system
based orthonormal funetions. In th is paper we have
exp lorcd a fact orizati on in which the poles of the
syst.cm determine the inner fact or. An im por t ant
propcr ty of the resulting orthonorrnal funeti ons is
that they - to some ex tent - incor porate the dy ­
namic behavior of the underl yin g system , leading
to an increasing speed of converge nce in a series

expansion .
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P art ial validat io n of a flexible wind turbine model :j:
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Abs tract . In this paper validation results of a flexible wind turbine model are presented .
The pap er starts with the description of a modular structured theoretical model for
flexibl e wind turbines. Such a model can cont ribu te essentially when designing wind
turbin e systems that have to beha ve pro perly at low construct ion cost s. Experiments
on a real life wind turbine system have been performed to obtain experime ntal modeIs
which can serve for validation of parts of the t heoretical model. System identification
techniques have been used to find the input-output relations in the experime nt al data.
Because t he wind plays an important role in the behavior of the system an indep end ently
parametrized stochastic part of the experimental models is needed to obtain accurat e
modeIs. Considering step responses the theoretical model prediets ap pro ximately the
same outputs as the experirnental model. Hence the theoret ica l model can be used to
describe th is part of the wind turbine behaviour.

Keywords. Experimental modelling, wind power plants, Systern identification, Valida­
tion

1 Intro d uction

Wind turbine systerns, or wind energy conversion
systems (WECS), are deve loped in order to uti lize,
in some way, the energy present in the wind. In
most cases this energy souree is exploited to pro­
duce electrical powe r and feed it into the pu blic
grid. At this moment t he efficiency of this conver­
sion can not compete comp letely with the price of
electrica l power generated using fossile fuels. This
can be im proved by reducti on of cons t ruction costs,
achieving a long life t ime of th e const ruction, and
highly efficient conversion of wind power. Such irn­
proveme nt is needed to achieve a significan t cont ri­
but ion of wind generated power to public demand
of electical power. This is a desir abIe goal because
the environ me ntal aspects, which are expected to
become more important in the future, compare

IT his research was supported by the CEC und er grant
JO UR-OllO and th e Neth erlands agency for encrgy and en­
vironment under gra nt 40.35-001. 10

45

favou rably with convent ional power plants.
It is expected that low cost W ECS can be devel­
ope d if fl exibility is allowed in t he different subsys­
terns t hat compose the complete wind turbine sys­
tem (Hongers et al. (1990)). Examples are: flex­
ible blades in the rotor , shafts with low torsional
st iffness in the transmission, and elect rical conver­
sion systems t hat can buffer energy before feed ing
it into the grid . T he des ign should also aim at long
life time. This is directly related to fatigue which
can also be redu ced when flexible components are
used .
As a consequence of these flexibilities the dynamic
behavior wiII become more complex. This poses a
more complicated design and control problem for
a flexible wind turbine compared to convent ional
rigid wind turbines. Such a design must be car­
ried out very carefully otherwise the benefits of
applying flexib le components will be lost or even
reversed . The cont rol design pursues optimal en­
ergy producti on without an excess of mechanical



loads , to maintain areasonabie operational life of
the wind turbine. Therefore the design of weIl con­
trolled flexible wind turbines seems to be attractive
for commercial applications.
To solve these design problems an accurate model
describing the relevant dynamics of the complete
wind turbine is necessary in the design ph ase of a
weil controlled flexible wind turbine system.
There is an abundance of publications concern­
ing dynamic models of wind turbines. Typical
aero-elastic rotor models are for example found
in (Kirchgasner (1986)), typical models describ­
ing mainly th e rotating machinery are for example
found in Mattson (1984), Steinbuch (1989). Often
these mod els more or less concent rate on one com­
ponent of th e wind turbine syst em using simplified
descriptions of the ot her turbine parts. In Bongers
et al. (1990) an int egrated dynamic model of a
f1 exible wind turbine is presented which takes into
accoun t both th e aero-elasti c rotor parts as weil as
th e rotating machinery. Mod els of this kind are
scar ce and only have been developed recently.
For these models to produce reliable predi ctions
they need to be validated with resp ect to th eir dy­
namics for different configurations. Some of these
dynamic mod els have been partly validated by
quasi-stationairy measurements. A model of a rigid
wind turbine described in Bongers et al. (1989) is
also validated with respect to its dynamics. The
integrated dynamic model has not been validated
with measurements yet.
This paper describes the first steps made in investi­
gating the validity of this theoretical model. These
steps include the estimation of experimental models
by means of black box system identification. In the
field of wind energy research this technique has only
been applied rarely, but in helicopter and flight dy­
namics testing it has been succesfully used in many
cases. For example the identification of helicopter
rotor dynamics has been succesfully performed by
Tischler (1986) and Du Val et al. (1989) .
Validation obviously requires an experimental site.
The UNIWEX experimentai wind turbine offers
th e possibility to emulate a large set of (flexible)
wind turbine configurations (Müller (1989)) . The
benefits of this experimental wind turbine lie in the
fact that there are no hardware changes involved
when switching between different configurations.
As stated earlier it is expected that the application
of components with flexible characteristics will in­
troduce a more complex dynamic behavior. The
validation procedure should therefore cover more
phenomena, and a more detailed examination of
particular phenomena that did not play a role in
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the rigid case. In order to be valid for a diversity of
flexible configurations the dynamics should be ex­
amined over a range of flexibilities. Therefore one
may expect the amount of work related to the vali­
dation to be a great deal more in comparison to the
dynamically more simple case of a rigid system.
In this paper the validation procedure for the most
rigid configuration will be dealt with first. If this
validation turns out to be successfull some confi­
dence about the more flexible configurations will
be justified.

The layout of this paper is as follows: Section 2
presents a description of the UNIWEX experi­
mental wind turbine. Both th e theoretical mod el
as weIl as t he expe rime ntal model structure of th e
wind turbine are discussed. In Section 3 prelim­
inary results are presented, which consist of the
identification experime nt s and th e validation re­
sult s of t he integr ated dynamic wind turbine mod el.
The pap er is ends with conclusions in Section 4.

2 Wind turbine description

In this section various descriptions of the UNI­
WEX experimental wind turbine are presented.
First some details about th e UNIWEX wind tur­
bine itself will be given. After that the dynam­
ics of the wind turbine will be approximated by
an integrated model derived by laws of first prin ­
ciples . This model will be referred to as the theo­
retical model. Finally a procedure to approximate
the dynamics by means of system identification on
measurement data is discussed. This procedure will
provide experimental modeis.

UNIWEX experimental wind turbine

The UNIWEX experimental wind turbine Fig. 1
is located near the city of Stuttgart, Germany. It
is operated by the Institute for Computer Applica­
tions of the University of Stuttgart. The construc­
tion of the UNIWEX turbine can be seen as a
series of linked rigid bodies which are : the two
rotor blades, the tower and hub connected to each
other by joints. Hydraulic cylinders are mounted
across these joints and act like virtual springs and
dampers. By adjusting the joint characteristics a
family of flexible wind turbines can be emulated
without hardware manipulations that could con­
sume considerable time and financial effort.
The blades, with a length of 8m and a weigth of
75kg , are mounted to the hub by a three degrees of
freedom joint allowin g the blades to hinge in plane



Fig. 1: drawing of UNIWEX wind t ur bine

of rot ation (lead-lag) , out of plane (flap) , and ro­
tate around th eir own axis (pitch). This rotor sys­
tem is abl e to emulate almost every two bladed ro­
to r concept known for horizontal axis wind energy
conversion systems (rigid, flexible flap and/or lead­
lag, teet er) . Changes between concepts can be ex­
ecuted within a short time span because only soft­
ware paramet er adjustments are needed . This can
save a considerable amount of time and effort and
can thereby make fluent measurement sessions pos­
sible. The paramet er values themse lves can also
vary over a reasonable range. For example th e flexi­
bIe flap rotor stiffness can vary between almost rigid
to ext remely flexibl e. Hereby it is possible to test a
sequence of different rotor systems exposed to ap­
proximate1y the same wind regime. In that case
differences in dynamic behavior probably can be
identified in a more decisive way.
The nac elle is mounted to the tower (height ;::;:
15m) with a 2 degr ees of freedom joint allowing t he
nacelle to rotate in the horizontal plane (yaw), and
in the vertical plane (tilt). The tower is mounted to
th e ground by a 2 degrees of freedom joint allowing
tower bending in one dir eetion and rotation around
it s axis.
Th e rotor syste m converts th e absorbed wind en­
ergy to mechani cal energy and the transmission in­
creases the rotat ional speed to a value th at is suit­
able for the generator.
The UNIWEX turbine is not grid conneeted and
has no e1eetrical conversion system. Instead , a hy­
draulic pump is used to dissipate the mechanical
energy of the rotoating shafts into heat . This pump
can be controlled to have different torque-rotational
speed charaeteristics. This opens th e possibili ty to
operate th e turbine in such a way that th e pump
behaves globally corres ponding to e1eetrical conver­
sion systems usually applied in grid-conneeted wind
turbine systems. Thereby the dynamic behavior of
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one turbine with different conversion systems can
be studied without the financi al investments to ac­
tually bu y these syste ms, and without losing time
needed to mount and dismoun t them on the tur­
bine.

Theoret ic al model

In this part we will introduce a mo del describing
the dy namic behaviour of a wind t urbi ne. The com­
plet e model consists of a description of each of the
wind turb ine parts in separate modules and mutual
conneet ions between th ese modules by interaetion
variables. T his modular st ru ct ure of wind turbine
mod elling together with the interaction variables
can provide an appropriate way of describing dif­
ferent wind turbine configurat ions (Bongers et al.
(1990), Steinbuch (1989)) . H, for example, the im­
pact of changes in th e transmission is of interest,
only this module has to be changed or a new trans­
mission module can be linked to the other parts of
the complete model.
Here we will apply this modelling approach to de­
scribe the dyn ami c behaviour of the UNIWEX
turbine. As stated in Seetion 1 we consider the most
rigid configuration first. Fig. 2 is a schematic rep­
resentation of th e UNIWEX wind turbine. The

Fig. 2: Blo ck scheme of UNIWEX turbine

mathematical model of this wind turbine consists
of th e interconnection of submodels having the fol­
lowing charaeterist ics:

T he rotor has two blades, without flexibility in the
joints. Only pitch anglc movements were allowed by
the cont roller. T he complete rotor system has addi ­
t ional freedorn in yaw and tilt direetions. The equa­
tions of motion are derived using Kane's method as
described in Kan e and Levinson (1985) .
The aerodynamic behavior of the rotor is described
as follows. Ea ch blade is di vided into 10 sect ions,
each seetion has its own corde, mass, twist and pro­
file. The local wind velocity depends on wind shea r



(i.e. variat ions of wind speed with height), the
wake of the wind turbine and the velocity of the
blades. Based on the local wind velocity and angle
of inflow of each section the aerodynamic forces are
caiculated using the blade element theory (Glauert
(1959)) . The UNIWEX wind turbine operates in
down wind position. This means that wind passes
the tower first before meeting the rotor disc, so
there wiII be a significant tower wake. The rotor
system is mounted on a rigid tower so no flexi­
bility in the tower system is assumed. Torsional
movements in the transmission are described by
the first torsional mode of the rotor shaft . The dy­
namics of th e hydraulic generator are not known
in det ail. In t he model it is describ ed by a spring
cha rac te rist ic.

The block scheme Fig . 2 shows various signa ls go­
ing in and comin g out of the modules ju st desc ribed
above. Out of these signal s th e following inpu t and
output signa ls have been defined for th e complete
wind turbine system.

input signai s:

The wind speed obviously is t he drivi ng input of
the wind turbine system. But unfor tunately it is
not a cont rollabie input. Besides that it is impos­
sibie to measure the wind speed over the complete
rotor dise at all time instants. Therefore the wind
speed Vw as feIt by the rotor is considered to be a
stoelc astic input.
Th e amo unt of absorbed wind ene rgy by the rotor
can be influenced dir ectl y by the blade pitch angle
O. Together with th e directi on of th e wind speed as
feIt by the rotor blades th e pitch angle determines
the angle of attack. Lift and drag forces produ ced
by each blade element are functions of this angle.
For the UNIWEX turbine the pitch angle of the
blad es can be controlled and t herefore can be seen
as the first determinisiic input.
Th e counter torque M g generated by th e hydraulic
generator can be adjusted by manipulating th e
valve position Xv which is the second determinis­
tic input.

output signai s:

In order to gain insight in the dynamic behaviour
of th e wind turbine the following outputs are mea­
sured. The rotor shaft speed Wr, and the rotor shaft
torque Mr. These are important output variables
when the overall behavior of th e complet e system
is consid ered.
Other output signals are the following two. The
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blade root in plane moment MI, or lag moment ,is
mainly det ermined by the weight of the blades. Th e
blade root out of plane bending moment M f , or flap
moment, is mainly determined by the wind thrust
on the structure, and therefore can give an indi ca­
tion of how accurate the applied aerodynamic for­
mulas are.

This model is implemented in the DUWECS com­
puter code (Bongers (1990)) developed at th e Delft
University of Technology in order to perform non­
linear or linear simulations, analysis of lineari zed
versions of the model, and controller design.

Experimental model

This sect ion introduces the system identifi cation
te chnique which is used to obtain Iinear experirnen­
tal modeIs known as th e predict ion error meth od
(Ljung (1987)) because it has proven to be suc­
cessfui. Based on prior expe rime nts with a rigid
wind tur bine (Bongers et al. (1989)) we assume
th at the measured data can be explained by the
following Box-Jenkins model structure:

A Ê( q- l ,0) ê(q- I, 0) (1)
Yt = A Ut + A et

F(q- I, O) D(q- I,B)

with:
o parameter vector Yt predicted output

at t ime t
Ut input at time t et white noise

q-l backward shift operator

B(q-I, 0),ci«:', 0), D(q- l ,0), F(q-l, 0) are poly­
nomin als in the backward shift operator q-l with
unknowrr coefficients th at are lined up in th e pa­
ram eter vector O. Based on measurem ents of th e
sys te m inputs and outputs th ese parameters have
to be est imated. T he deterministi c part , in th is

- 1

model st ru ct ure ~~:=<:~, describes th e influence
which th e deterministic input has on the output.

ê ( -1 11)
Th e stochast ic part D(:-<II) models th e way in
which noise affects the system. For an accurate
exp erimental model of a wind turbine system a
parametrized stochastic part will be necessary be­
cause the stochastic input (mainly the wind veloc­
ity) is exp ect ed to have a complicated dynamic im­
pact on the system output. Furthermore the wind
velocity itself can not be represented by whit e noise
(van Baars (1991)).
This model structure has th e important advan-

tage that the det erministic transfer function ~~:=:::l
can be estimated consistently even when the noise
model set is not rich enough to admit a completely



correct description of the system.
Using a definition of the prediction error <Ot as the
difference between the measured outpu t and the
output predicted by the model <Ot = Yt - Yt a
quadratic cost function VN(0, ZN) can be defined:

N

v (0 zN) = 2- " ~ 2(0)N, N L.J 2<Ot
t=1

(2)

of both expe rimental and theoret ical model. Since
this is only the beginning of the validation the eval­
uation of stepresponses can provide an global idea
of how the dynamics of both models compare to
each ot her. If results turn out to be enco uragin g
more detailed validation can be pursued.

Identification experiment

LV is the number of data samples availab le.
The identification problem can be st.ated as follows.
Find the parameter vector ON , guided by the mea­
surcd dat a ZN, such that t he crit erium (2) is min­

imized:
ON = arg min VN (O, ZN) (3)

In case of the used Box-J enkins model st ructure
the minimization problem has no analyt ic solut ion.
T he minimizing solut ion has to be found in an it­
erative way.

3 Identification and validation re ­
sults

In this sect ion resul ts obt.aine d from system identi­
ficat ion on the measure d wind t urb ine dat a as weil
as validation results are presented.
T he organization of this sect ion is as follows: Fi rst
the approach of t he identi fication and valid atien
is sketched . Nex t the identification experime nt is
described, followed by th e ident ification resul ts ob­
tained from the measured data. At the end of th e
sect ion first valida tion results are discussed.

The approach is to measure the same wind turbine
configurat ion exposed to different average wind
speeds applying the same inp ut signal. Each av­
erage wind speed defi nes a different point of opera­
t ion. Based on t he measurements we wan t to iden­
t ify reliable experimental models for those points of
operation seperately.
The theoretical model introduced in Section 2 is
linearized in thc same points of operation as the
experiments . The validation consists of the com­
parison between the experimental model and the
theoretical model for each point of operation cov­
ered by the experiments.
If this turns out to be succesful the validation holds
not only for a single point of operation, but point­
wise over the whole ope rational range of th e wind
t urbine system. Obv iously t his is a far more pow­
erful result th an parti al validation in a single poin t
of operation .
As a st art this paper discusses only validation in
one point of operat ion by looking at step responses
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There was practically no a priori information about
the UNIWEX turbine, hen ce detailed experiment
design could not be performe d. T he possibility to
measure the tur bine with the desired average wind
speed depends of course on th e pres ence of such
wind speeds at the time experime nts can be per ­
formed . Since the wind spee d cannot be controlled
this means t hat the point of operation of the ex­
pe riments cannot be dictated and one possibly has
to wai t until the suitable average wind speed oe­
curs (this can take weeks or months). In practice
me,:~mrements were reco rded with the wind velocity
available at t hat t ime .
Ou t of the system input and output relations of
interest (disc ussed in Section 2) we will first inves­
tigate the t ra nsfer function from blade pitch angle°to rotor speed W r and roto r shaft torque Mr. Be­
cause the blade pitc h angle dir ectly influences the
rotor system it is expected that these transfer func­
t ions reveal the rotor dynamics and differences be­
tween rotor configurat ions. One of the results from
Ljung (1987) with respect to experiment design is
~hat th e condi t ions during the identification exper­
irnent shou ld resem bie as mu ch as possible the con­
diti~n s of intend ed use of the model. In th is paper
th e intended use of th e mod el will be prediction of
open loop dynamical behavior in order to validate
th e th eoret ical model. Therefore open loop experi­
ments are preferabie.
Feedback of the system outputs has been disabled
which means that open loop expe rimental condi­
t ions have been created.
Using the experimental wind turbine some identifi­
cation e~perimentswere performed. During a series
of experirnents the set point of the blade pitch angle
was changed according to a Pseudo Random Binary
Sequence (PRBS) and the posit ion of the genera­
tor valve was kept constant. In this experiment th e
blade .pitch angle of the two blades was chan ged
stepwise over a range of 4°. T his is only a moder­
at e exc itation which int roduces no heavy loads and
th er:fore no safety prob lems . Moreover normal op­
erat ien can conti nue during the identification ex­
periment which can be a serious economie ad van­
tage for example in case of experimental modelling



Fig. 4: Iden tifi cation result in time and frequen cy
domain
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terministic part as wel! as the stochastic part. The
accuracy of the models was evaluated by looking
at the loss criterion (2) and stepresponses of th e
different modeis. For deterministic orders> 5 and
stochastic orders> 8 both the loss criterium and
the model step responses show no significant im­
provement , they only differ slightly. Residual anal­
ysis pointed out that there was no information left
in the data and therefore it may be assumed that al!
significant linear relations in the data are explained
by the model.
Identification results in time and frequency domain
are presented in Fig. 4.

The upper half of F ig. 4 confro nts t he pred ic­
t ion of t he deterministi c part of t he mod el with
t he measured data. J ust for visual convenicnce the
mcasured rotor speed has been filter ed to re move
t he 1P effect (i.e. a phe nomenon that is related
to one t imes the rotati onal frequen cy of the rot or)
which has nothi ng to do with t he identified t rans­
fer function. T hc deterministi c response can be ex­
plained by physical reasoning: th e st epwise change
of pitch angle alters the aerodynamic efficiency of
the rotor. Because of rotor inertia and aerodynamic
effects the rotor slowly accelerates or decelerates to­
wards a new stationary value. Before this value is
reached the pitch angle has changed again and a
new transient is induccd. Because of this physical
interpretation we are quite confident about the re­
liability of the deterministic part.
The difference between the measured output and
the output of the deterministic part of the model ,
driven by the applied input signal, is assumed to be
mainly du e to variations of wind speed. These vari ­
ations are of random nature and need to be covered
by the stochastic part of the model. The output
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Fig. 3: Identi ficati on experiment (fragment) inp ut :
pi t ch angle, output : rotor speed

a commercial grid connected wind turbine system.
We hav e chosen to elabora te t he dat a set of the
series of experirnents whi ch has the most con stant
wind speed and a reasonable effect of the pitch an ­
gle on the outputs. The relatively constant wind
speed indicates more or less constant point of op­
eratien whi ch incr eases the po ssibili ty to identify a
reliable linear model out of the data. The exper­
im ent lasted about 200 seconds while the signals
wer e sampled at 50Hz. This implies that theoreti­
cally the wind turbine dynamics up to 25Hz can be
identified. This should be enough to cover the rele­
vant dynamics of the wind turbine, especially since
the blade pitch angle primarily effects the aerody­
namics and ther eby the slow dynamics of t he wind
t urbine .
Fig. 3 gives an overview of such an identification
expe riment.

This figure shows that the excitation of the pitch
angle does not disturb normal operation drasti call y
th erefore abortion of normal ope ration is supe rflu­
ous. At first sight no c1ear relation between the
input and its effect on the output can be detected.

Identification results

Given the measured data th e experimental trans­
fer functions from blade pitch angle to rotor shaft
speed, rotor shaft torque and flap moment are esti­
mated. Here the identification result for the trans­
fer function from pitch angle to rotor speed is dis­
cussed. Investigation of the other transfer functions
leads to approximately the same conclusions.
Differ ent choices of model orders have been inves­
tigated (that is the order of the pol ynomials in the
Box-Jenkins model structure (1)), both for the de-
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Fig. 5: Rotor shaft angular velocity, rotor shaft
torque
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signals are modelled as the summation of a deter­
ministic and stochastic contribution. Because we
are also interested in a proper description of the
wind influ enc e on the wind turbine system we want
to valid a te t he stochastic part also. Since the input
signal of the stochast ic part is typicall~ un.kno:vn in
th e time domain we have to pursue validatien In the
frequ en cy domain. The lower half of Fig. 4 displays
the spectrum of the output signal and the sum of
spectra of both de te rminist ic and stochastic pa~t of
the model. As it can be see n thcre are no sen ous
discrepancies between the data and th e total model.
Rcferring to the up per half again we can stat~ ~h~t

th e differ en ce bet ween th e pr edicted deterministic
part and th e measured data is almost enti,rel~ ~ov­

ered by th e stochas t ic part of the model. I'his IS a
support to the assumption that the influ ence of the
wind speed on the sys tem should be acccounted for
by th e stochatic part of the model.

val idation results

In this subsection th e validity of the theoretical
model with respect to the transfer function from
blade pitch angle to rotor speed and torque will be

investigated . .,
As stated in the first part of th is sectien the vali-
dation consists of the confrontation of stepresponse
obtained from both the theoretical model and the
experimental model. Perform ing the va~idation on
the basis of experimental and theoretical model
simu lations yields some pr ofits. F irst of all extreme
situations can be inves tigated wit hout pu t ting the
rea l wind turbine in danger. Moreover it is pos­
sible to dev ide the resp onses in det erministi c and
stochastic contributions to the output and valida­
tion can focus on each part separately. Since bo th
models involved in the validation are linear models
also system properties such as location of eigenval­
ues and frequ ency responses can be compared.
In this paper th e validation is restricted to one
point of operation. The theoretical model is lin­
earized , using DUWECS (Bongers (1990)) , i~

an operating condition corresponding to the expert­
mental condition from whi ch the experimental data
were obtained. In order to account partly for non­
linearities in the experimental data two different
linear models are obtaine d from th e non-linear the­
oret ica l model, one at 0 = 7° and one at 0 = 3°. In
Fig. 5 st ep responses (to an increase of the blad e
pitch angle of one degree) of different e~perimental

models and t he two linearized t heo re t ical models

ar e given.

lt can be seen in Fig. 5 that th e experimental

modeIs are squeezed between the two linear re­
sponses of the theoretical model. T his can be ex­
plained by reasoning that the experimental model ,
wh ich is linear, is the best compromise between th e
non-linearities in the experimental da ta.
In order to investigate the valid ity of the aerody­
namics in the rotor mo del the t ransfer function be­
tween the blade pitch ang le and the flap moment
is estimated . By changing th e blad e pitch angl e
the absorbed wind energy and thereby th e aerody­
namic forces act ing on th e blades change. These
for ces are best observable looking at th e flap mo­
ments of the blades. Despite serious tower wake
and effects of un balan ce of the blades on th e flap
moment a clear cut det erministic influ ence can be
ident ified from the data , whi ch corr esponds rather
weil wit h t he t heoretical mo del. The instantaneous
part at the step moment an d the slower transient
behaviour are found in both the theoret ica l model
as weIl as the experimental model whe n comparing
the magnitudes, which strengthens t he confiden ce
in the mathematical description of the ae rody na m­
ICS .

Of course the validity is not ultim ately established
by comparison of step responses, bu t as a first resul t
it is encouraging. This validation procedu re has to
be repeated for other points of operatien (e .g. dif­
ferent average wind sp eed) to be able to draw the
conclusion that th e theoretical model of th is con fig­
uration is valid over th e complete wind reg ime from
low to high wind sp eed. After that the validi ty of
the model for other (more flexible) configura t ions
can be investigated the same way.
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4 Conclusions

In this paper a modular structured theoretical
model of the UNIWEX wind turbine is presented.
Experiments on this wind turbine system are per­
formed for validatien of a theoretical model. Ex­
perimental models describing the transfer function
Irorn blade pitch angle to rotor speed, rotor torque,
and blade root flap moment have been calculated
to explain the input-output relations present in the
experimental data. It has been illustrated that a
stochastic part of the experimental models is neces­
sary to account for the wind influence on the wind
turbine system. Because the deterministie model
response can be explained by physical reasoning
and because the summation of deterministic and
stochastic part covers the frequency content in the
data almost completely there is reasonable confi­
dence that the identified models are suitable to de­
scribe the measured data. As a validation result
of the theoretical model it has been shown that,
for the transfer functions under consideration, the
theoretical model prediets approximately the same
outputs as the experimental model in one point
of operation. Hence the theoretical model can be
used to describe the wind turbine in open-loop be­
haviour.
Further research will focus on the validation of the
same transfer function in different wind regimes,
the transfer funetions related to the generator valve,
and validation of more flexible configurations of the
UNIWEX wind turbine.

acknowledgements

The authors wish to thank the ICA of the univer­
stity of Stuttgart for the possibility to experiment
with the UNIWEX turbine, and in particular
the people working at the test site for the pleas­
ant coöperation during the measurement sessions.

References

Bongers r.M.M. (1990). DUWECS Reference
Guide, Delft University Wind En ergy Conver­
sion Simulation Program. Delft University of
Technology, The Netherlands , .

Bongers P.M.M., W.A.A.M. Bierbooms, Sj. Dijk­
stra, Th. van Holten (1990). An Integrated Dy­
namic Model of a Flexible Wind Turbine. Delft
University of Technology, The Netherlands, .

Bongers r .M.M., T .G. van Engelen, Sj. Dijkstra,
Z.D.Q .P. Koek (1989). Optimal control of a
wind turbine in full load . Proc. European Wind

. Energy Conference 1989, Glasgow, UK, .

52

Glauert H. (1959) . The elements of airfoil and
airscrew theory, (second ed.). Cambridge Uni­
versity Press.

Kane T.R., D.A. Levinson (1985). Dynamics, the­
ory and applications. McGraw-Hill series in
mechanical engineering.

KirchgaBner B. , Linearisierte aeroelastische anal­
yse einer Windturbine mit zweiblattrotor. PhD
Thesis, Universität von Stuttgart, 1986.

Ljung L. (1987). System Identification: theory [or
the user. Prentice Hall" Inc. Englewood Cliffs,
New jersey.

Mattson S.E . , Modelling and control of large hor­
izontal axis wind power planis. PhD Thesis,
Lund-Sweden, 1984.

Müller M. (1989). Experimental investigations
with the universal test wind turbine. Proc.
European Wind energy Conf. 1989., Glasgow,
Schotland, 832-836.

Steinbuch M. , Dynamic modelling and robust con­
trol of a wind energy conversion system. PhD
Thesis, Delft University of Technology, The
Netherlands, 1989.

Tischler, M. B. Leung, J. G. M. Dugan, D.
C. (1986). Identification and verification of
frequency-domain models for XV-15 tilt-rotor
aircraft dynamics in cruising flight. Journal
of Guidance, Control, and Dynamics, 9, 446­

453.
Amrani, A. 0 ., Du Val, R. (1990). Parameter iden­

tification of aeroelastic modes of rotary wings
from transient time histories . Journalof Guid­
ance, Control, and Dynamics, 13, 669-674 .



@ 1992 Delft Un ivcrs ity P r ess Sc lcc te d Top ics in Id entification, Modelling and Con t ro l

Vol. 5, De cember 1992

Hea t balance reconciliation in chemical processes

Emil e A .J .Ch . Baak§, Joho Krist ! , Sjo erd D ijkstr-at

tprocess Developme nt and Control Depar/m ent
DO W B en elux N. v., P.O. box 48, 4530 Al1 Tern euzen, Th e Ne the rlande.
§M echanical Engineering Syst ems and Cont rol Group
Delft Unioe rsi isj of Technology, Mekelioeç 2, 2628 CD Delft, Th e Ne therlands.

Abstract . Measurement data from chcmical plants, in general, contain random ly dis­
tributed errors. Due 1.0 these errors, th e mcasured variables do not exactly obcy th c
th eoreti cally exist ing balance equations. For th e application of an on-line optimization
algorithm it is neccessary 1.0 reduce these err ors as much as possible. So far, only a
tcchniquc was available 1.0 correct mass flow rneasurem ents with mass balances, the so
called ma ss balance reconciliation. In this paper the extention of this theory towards th e
field of correcting temperature rneasurem ents with heat balances will be presented .

Keyword s. heat balance recon ciliation, data reconciliation , on-lin e optimization, cor­
recting measurem ents.

1 Introduetion

Chem ical processes ar e often controlled by local
cont rollers, supervis ed by a host computer. Th e
controllers regu late th e operation of the process,
using flowrate, pressure, temperature and cornpo­
sition measurem ents. An optirnizat ion program,
running on the host com pute r, uses the same in­
pu ts 1.0 det ermine the set points for the local con­
trollers. Unfortunately, process measurem ents are
never perfect. and somctimes th ey are even quite
wrong due 1.0 instrument drift, plu ggin g up , fail­
ing or 1.0 the non-i deal eliaraeter of the measure­
ment dev ices. As a consequence, an opt irnization
program will find a wrong optimum and money is
wasted. To correct the measurement data in order
1.0 improve the quality of the measurements, à pri ­
ori knowledge can he helpful. This information is
mainly avai lable in the form of mass and heat ba l­
ances. T he physical conservation laws for m ateri al
and ene rgy are, in general, suitable for che mical
cquipme nt like distillation columns, reactors and
heat exchangers . For st eady state conditions, the
stat ic balances can easely be derived. Although the
assumption of st eady state is not always essential, it
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is usu all y permi tted 1.0 assume that large chemical
processes, ex c1 uding start-up or shut down situa­
tions, are op erating at, or near steady state.

A stat ist ical procedure which enab1cs the adjust­
ment of rneasurcm ents is data reconciliation. In
general , data reconciliation is only applicable in
overspecified sit ua t ions with regard 1.0 the num­
bel' of rneasuremen ts taken or information sources,
i.e. a certain level of redundancy. This proce­
dure minimizes t he differences between th e theo­
retical!y calculatcd and the real tn easu red values.
Instcad of arbitrarily replacing measurcrnents by
theoretically calcu lated values, the sma l1cst or the
most likely correct ions 1.0 all measurem ents are se­
lect.ed. The or igin of informat ion can be both
the direct measurement and a value resu!ting from
ot her measurements (Romagnoli and St ephanopou­
los(1980), Tamhane and Mah (1985), Il cenan and
Ser th(1986)) . Besid es this, it is also possible 1.0 ree­
oncile measurem ents with à priori knowl edge about
the corrclat ion between variables in t ime. Here
it is important 1.0 have an impression of the rel­
ative inaccuracy. This last method, called dynamic



data reconciliation (Grinten, van der (1971)) uses
Kalm an-filtering (Barham and Humphries (1970))
and assumes quasi steady state situation. T he
method to be described here is based on measure­
ments only. Due to the fact that only steady state
balances are used to correct the data, this method
can be seen as statie Kalman filtering .

Until now, only measurements of mass flows were
involved in data reconciliation techniques and it
had to be assumed that temperature measurements
were reliable. This was basically because no gen­
eral theory was availab le to reconci le t hese mea­
surements wit h energy or heatbalances. The tech­
nique of heatbalance reconciliat ion is based on a
non-li near model that arises from the fact t hat en­
ergy, in most cases, can not be measured directly
but can only be determined by considering it as a
product of mass flow and specific enthalpy.

2 Preliminaries

First the key assumptions are listed for the purpose
of this study. For a more detailed description of
some of these items see the literature survey made
by Baak (1991). T hese assumptions are valid until
ot herwise is stated:

• The random errors are independent an d nor­
mally dist ributed.

• All process variables are measure d with known
uncertainty.

• No gross errors are present in the measure­
ments (i.e . errors due to calibration defects ,
wear of measureme nt dev ices or fouli ng) .

• On ly one set of measurements is taken.

• The process is operating at steady state.

3 Linear data reconciliation

The method to be presented first is used concern­
ing mass bolanee reconciliation and is based on the
theory of Lagrange multipliers . In Figure 1, a sim­
ple distillation column is depicted and to simplify,
only mass flows are taken into account. In general,
the steady state mass balance equation can simply
be der ived, considering :

L F loWin - L F loWout = 0 (1)

With th e real measured flowrates, in general, equa­
tion (1) will not be equal to zero. So one, two or
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Fig. 1: Ma ss flows round dist illation uni t.

perhap s all three of the measured flowrates show
errors and these erro rs will typica lly yield th e in­
consistent mass balance . Random errors can be
reconciled by the following procedure. T he mass
ba lance of th e distillation column given, can be de­
rived through ap plying equation (1):

(2)

Wi th the measured values of these variables, Xl, X2
and X3, the right hand-sid e (i.e . the imbalance) of
equation (2) will not be equa l to zero . Afte r adding
corrections ~XI ' ~X2 and ~X3, t he mass balance is:

T he problem here is to find the most likely correc­
t ions ~Xi , which sat isfy equat ion (3) . Most likely
can be interp reted as the smallest possibl e correc­
t ions, taking into acco unt some weighing factor de­
fined as Ui. The weighing factors for each mea­
surement are derived from the error var iances . The
value of Ui is normally independently estimated, us­
ing the manufacturer 's specifications together wit h
the eng ineer's knowledge of the pe rformance of the
measurement device. Often, the error var iances are
found by a statistical analysis of the measurement
data (I-Ieenan and Serth (1986)) . The most likely
corrections are found by minimizing the following
consirained least squares criterion:

This expressio n reaches a minimum value if all the
derivatives wit h respect to ~Xi, are zero. T he
use of a least squares criterion as objective func­
tion in da t a reconciliation problem s is based on
th e assum pt ion that the measurem ent errors have



a normal distribution, without taking into accoun t
gross errors that may be present (Tjoa and Biegler
(1991)) . Then, one of the 6.x j-values can he elimi­
nated using equation (3). For example, solving the
lin ear equations for 6.XI' leads to:

(12)

lead s to :

8Luncon.tr.
6.~Tp-I + ~TA (10)86.x = =Q

aLunconstr.
A(~ + 6.;f ) (11 )

a6.~
= =Q

This immedia te ly shows that the varianee decreases
aft er recon ciliati on.

E {ixT
} = P (14)

E{xi
T

} E{(~ + 6.~)(~ + 6.~f}

= E{xiT} - E{6.~6.~T}

= P-PAT{APAT}-I A P (15)

It can be shown that the accuracy improves, un­
der the theoretical ass um pt ions. The reconciliation
procedure estimates the random measurement er­
ror . If t he estimates of t he process variabie is rep­
resen ted by i.. t he variances are given below:

T his is a system of m lineari ly independe nt equa­
tions, and consequently ~ can be uniquely solved.
Substituting this solution in (10) lead s to the de­
sired corrections:

This system must be solved in order to find the
most likely corr ect ions. By eliminating 6.~, t he fol­
lowing expression gives the values of the Lagrange
multipliers:

(5)

(6)A E 1Rm x n

Min imizing criterion (4) with equation (3) as con­
straint can properly be done with thc he lp of a
Lagrange multip lier, represented by À. In genera l,
the number of Lagrange m ultipliers equals the num­
ber of constraints or balance equations . W it h these
mu lt ip liers, the consirai ned least squares criterion
can be t ransformed to an unconstrained cr iterion.
If the systern becomes more complicated it can be
recom men ded to pass on to matrix represen tations.
The to pological balance st ructure is rep rese nted by
A, t he so ca lled incidence or system matrix (Ro­
magnoli and Stcphanopoulos (1980)) . An eleme nt
aji of matrix A is either a 1, if st ream i is an in­
put of unit j or -1 in case stream i is an output . lf
t here are n streams and m unit s, consequently m
balan ces can be derived:

Here e is defined as: e ~f {XI - X2 - xJ}' the im­
balance of the distillation colum n. As can he seen
from equat ion (5) that the corrections on the mea­
surem ents are proportional to the imbalance and
thc re1ativc inaccuracies, the ratios of the ars.

mtntmlz e:

Luncon.tr . = 6.;fTP-I6.;f +2)/A(~+ 6.~) (9)

The vector ~ contains the m Lagrange mult ipli­
ers . Differentiating this expression wit h respect to
the cor rections ..:1~ and the Lagrange multipliers j ,

Here ;f is a vector with a ll th e measured pr ocess
variab les. If wc apply the same subst it ut ion as be­
fore, Xj = Xj + 6.Xj, the matrix representati on of
the constrained least squares criterion is:

The weighing matrix is represcnted by P, with ele­
ments af on thc diagonal (a ssuming no correlation
between measurernent errors). With th e introduc­
tion of th e Lagrange multipli ers th e probl em can be
redu ced to t he following uuconst rained crite rion:

4 Non-linear data reconciliation

As referred to in t he introduction , there are cir­
cumstances in which the method of lin ear data ree­
onciliation has scvere shortcomings. The values of
flow variables, for exarnple, are mostly directly mea­
sured by orifice or vort ex devices. Measurements
can then be reconciled by ap plying th e described
linear reconcilia t ion theory. If the vari able is not
or can not be directly measured, a non -linea r data
reconciliation technique might be neccesary. Heat
or energy are gen erally not directly measurable bu t
have to be calcula te d from mass flow and specific
enthalpy (temperature) measurements. T his lead s
to non-linear balance cquations. The phenome non
non-Iinear data rcconcil iation also arises in case
of the reconciliat ion of component measurem ents.
The global differcnce between linear and non -linear
case s is in fact that the lin ear approach is not use­
ful when entries of a certai n balance are composed

(7)

(8)

6.;fTp-I 6.;f

A(i. + 6.;f)Q
L con.tr.mtntmtz e:

constraints :
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Fig. 2: Mass and specific enthalpy flows round dis­
tillation unit.

out of two or more measurements. Entries of heat
balances are calculated as follows:

with m as mass flow and h as specific enthalpy. the
measurement error is represented by ó.

Essential for this non-linear method is the introduc­
tion of ratio numbers. These numbers are the link
between the mass balance and the heat balance.
The treatment of these ratio numbers is equal to
the treatment of the process variables. This is pos­
sible due to the weighing phenomenon. To present
the method of non-linear reconciliation, the distilIa­
tion unit of Figure 1 is considered, but now specific
enthalpies are added as in Figure 2. The au thor
was inspired by Duyfjes and Swenker (1976) where
component halance reconciliation is discussed. The
mass and heat balances are:

mI - m2 - m3 0 (17)

m1h l - m2h2 - m3h3 = 0 (18)

Respectively. A change to a new vector ~ will be
made. The elements for this vector ~ are, as in the
example of Figure 2:

Xl = mI Xs = hl X4 = 1

X2 = m2 X7 = h 2 X6 = 1

X3 = m3 X9 = h 3 Xs = 1

The numbering method for th is vector will soon be
dear while considering the balances or the recon­
ciliation model. For the simple distillation column,
three extra halances are introduced, representing
the interaction between the mass flow and heat flow
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in one particular stream. In these halances, the ra­
tio numbers play an important role. In this case,
the variables X4 , X6 and Xs are set equal to one
but they can have any value as long as the values
of these variables are equal. The corrections of all
the measurements are then scaled in the same way.
The reconciliation model for the distillation column
IS:

Xl -rlx4 =0
-X2 +r2 X6 =0

-X3 +r3XS =0 (19)

XI-X2- X3 =0

The flexibility of the approach allows to define the
varianee of the variables X4, X6 and Xs to he zero .
This implies that the value of these variables re­
mains the same and consequently the interaction of
the balances does not change during reconciliation.

The reason to write the reconciliation model in the
form ahove is that the balance system (19) can he
divided into blocks. Actually every flowsheet can
be written in form (19). The first n balances refer
to the n strearns involved. In case of the simple col­
umn, th ree streams occur so three ratio equations
are needed. The remaining two equations are the
physical halances, respective1y the mass and heat
balance round the column. Ir we divide the sys­
tem (vertically) into four, i.e. (n + 1), hlocks, it
is possible to present the system in the following
form:

The four parts are in accordance with the hlocks in
(20) after defining:

(21)

1 o 0 -1 0 0 0 0 0
o -1 0 00 1 0 0 0

Ao= o 0-1 AI = o 0 A2 = 0 0 A3 = 1 0
1 -1 -1 00 o 0 o 0
000 o 1 o -1 o -1

(22)

To match the new situation, the criterion func­
tion must be changed. In the particular case
of the column, once more with the assumption
~i = ii + 6 ~i' the constrained least squares



Here p . are the varianee matrices of th e variables
J •

in the veetors respectively ~j and serve agam as
weighing matrices. In th e varianee matrices, the
variances 0"4 , 0"6 and 0"8 are set equal to zero.

criterion is:

minimize: L constr. t. (~~ir
n=3

:L ~~fpte-s, (23)
j = O

so 2( n+ m) unknowns, respectively. The number of
non-Iinear equations is also 2( n + m), n + 2m from
equation (28) and n from (29). This set of equations
can be solved in two different ways. The set may
either be solved directly with the help of numerical
equation solver routines like those in the flowsheet
simulation package SP EEDUP. After the values of
the Lagrange multipliers and the ratio numbers are
found, th e optimal correct ions can be found by ap­
plying equat ion (27). The other way is to linearize
the equations and solve the set iteratively.

So far, the presented theory concerned only the
flowsheet of Figure 2. However , the theory can ?e
app lied to any flowsheet as long as st ~ady state .sIt­
uations are cons ide red. Eve ry syste m IS convertible
to the reconci liation model of ty pe (19). Hence th e
general least squares problem is:

n

.. , L - "" 6.xTp:-I6. X' (24)nunlmlze: con s tr. - 0 - J J - J

j =O
n

consi rain is: Q = :L r j( Ajij + Aj6.~j)(25)
j = O

d er . hi bIHere, by definition: ro = 1 Agam , t IS pro .e~
can be solved with th e help of Lagrange multipli­
ers À. Transforming the const rained least squares
criterion into an unconstrained, leads to:

minimize:
n

L = "" ~xTp:-l ~x · +unconstr . 0 -) J -}

j=O
n

2~T:L rj(Ajij +Aj~~j) (26)
j=O

Differentiating this criterion with resp ect to ~~j'

j=O, . . ., n, th e ratio numbers rj, j=1,.. :' n and the
Lagrange multipliers À, leads to the optirnal correc-

tion s:

~~j = -rjPjAf~ j = 0, ... , n (27)

Substituting (27) in the equations providing the op­
timal solution leads to:

n n

:LrjAjij- :LrJAjPjAf~ = Q (ro = 1) (28)
j = O j =O

(Ajij-rjAjPjAf~{~ 0 j = 1, oo.,n(29)

This solvable, non-linear system, has th e ratio num­
bers r j and th e elem ents of the mul tiplier vector ~
as unk nowns, resulting in a total of n plus (n+ 2m)
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5 Solving the system

In a practical environme nt, such as a chemical
plant , a robust reconciliation algorithm is needed.
T he reconciled measurements must be reliable and
consequently the solution must converge to a set of
consistent process values under all circumstances.
Alt hough the procedure of lineari zing th e set equa­
t ions (28) and (29), and succesively coming to a so­
lution via an iterati ve ap proach works fine in all the
investigated examples, a flowsheet simulation pack­
age can add a number of advantages. First of all,
in th e case of da ta deduced from large process flow­
sheets, it is not easy to transform this flowsheet into
a corr esponding reconciliation model. As can be
seen from (19), even for a very simple fiowsheet ex­
ample, there are a lot of equations involved. Trans­
forming a flowsheet into the required reconciliation
model can automatically be done while approaching
the problem with a flowsheet simulation package.
Secondly, solving the non-linear equat ions via suc­
cesively solving linear subproblems may not be ro­
bust enough in practical situations. However, after
adjusting the flowsheet to a flowsheet program, this
program returns with the optimal corrections and
shows to be very robust. Temporarily or perma­
nent not measured process variables are estimated
during the calculation. This is important as mea­
surements with so called gross errors are not to he
taken into account in the reconciliation procedure.

6 Experimental results

As th e original formulation of the problem required,
after reconciliation , the imbalance of the mass and
heat balances mu st he reduced to zero. This is
done in such a way that the weighed adjustments
to the measurement values will always be as small
as possihle. With the help of a random genera­
tor in a FORTRAN rou t ine, 105 data sets were ere­
at ed. Besides the heat balances, also the compo­
nent balances were taken into account in th e same
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Fig. 3: The dispersion reduetion of a mass flow

measurement.

way. Aftel' reconciliation, th e standard deviation
of th e imbalances of all th e units is reduced to zero
with zero mean. This is obvious since th e prob­
lem was put in that way. Besides this , there is
the desired effect on th e accuracy of the measure­
ment values . Adding information, by means of the
balances, the dispersion of th e measurement val­
ues will be reduced. For a partienlar mass flow
value, this phenomenon is shown in Figure 3. A
statistical program is used to count th e absolute
frequ encies of the valu es within certain num erical
int ervals . Then by means of non-linear regression
techniques, the normal or bell-sluiped curve is con­
st ructed. Figure 3 shows that aftel' reconciliation ,
the curve becomes narrower (the standard devia­
t ion decreases). In this case the standard dev ia­
tion is red uced with 67%. The reduction rates of
the other mass flow measurements are conform this
value, depending on location and relative inaccura­
cies or weighing. Also th e redundancy plays an im­
portant role. The accuracy im provement is larger
the more the system is overspecified. T he redu ction
ra tes of t he te mpera t ure rneasurements although
significant (± 15%), are smaller due to two reasons.
First of all, it is always possible to der ive more mass
bal an ces than heat bal an ces in the reconciliati on
mod el, due to th e fact that in normal cases, heat
leaks for more easier from pip es or reactors than
mass does . Consequently, th ere is more additional
information about the mass flows than about the
temperature values and so th e effect of reconci lia­
tion is more observable. Secondly, as can be seen
from (19), mass flow measurements are ent ries of
both the mass balances and hea t balances. T hese
meas urements have to obey two restrict ions instead
of one if specific enthalpy or temp érat ure mes ure-

(31)

(30)

I::I> 1.96

S j = Xi - Xj

where a, is the standard dcviation of th e resid­
ua!. The out liers, if any, are considered to be
result of gross errors. Besides this, another ap­
proach based on observation of th e residu als
can be made. Due to t he fact t hat th e mea­
surement valu es are normally distributed , th e
residuals will be normally distributed with a
mean zero and a certain variance. In case of in­
volved gross errors, this mean differs from zero
while observing a sufficient number of samples.
Thus another way of detecting gross errors is
by observing the mean of t he residuals.

The outliers among the S j values are those that
exceed some number of standard deviations,
for example: 1.96 for a 95% confidence level.
Thus, a given residual is an outlier if the Iol­
lowing is true:

Wh ile data reconciliation via the Lagrange mul­
tiplier method yield good, i.e. consistent, mass
and heat balances, the adjusted measurements will
be erroneous if there are gross errors present in
the used data set. Therefore, such errors have to
be identified, the offending measurements removed ,
befor e preceeding th e with data rccon ciliation pro­
cedure. In the following , two general types of sta­
tistical tests are considered:

(11) Methods for analyzing nodal imbalances.
T he imbalance Sj for a node or unit j (with J(

(I) Method s for analyzing leas t sq uar es
r esid ual s .
Here, the idea is to adjust th e data using th e
described least squared error analysis and th en
calculate a set of residuals:

7 Discussion

In real applicat ion the steady state assumption will
not be fulfilled complete ly. However , dynamic ef­
fects are normally very sm all and can be negleet ed
in comparison to the measurem ents err ors. In case
of ste ady st ate optimization , steady state det ectors
are mostly installed and no optimization and rec­
onciliation will be carr ied out without steady state
situation.

ments are considered. Again , more additional in­
form ation causes a biggel' acc ur acy improvement.
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inputs and L outputs) is defined by:

This value is divided by th e nod al standard de­
viation a j, which is t he squared root of the
nodal varia nce:

K L

êj = L inpuii; - L out.pui,
k= 1 1=1

(32)

1

2 4

K L

aj= L a~ + Lar (33)
k=1 1=1

Here, the summation extends over all the
streams connecte d to node j. Equation (33)
is direetl y applica ble while considering mass
flows only. In case of hea t flows however, the
variances of the balance ent ries must be calcu­
lated from variances of th e temperature and
possib le fraetion measurements. This [unc­
t iona lity is mostly non-lin ear. Oue to this,
the determination of th e nodal varianee is nor­
mally a resu lt of some kind of linearizat ion.
Again for a 95% confidence interval, there are
one or mo re gross err ors present in th e mea­
surements if th e following expression for th e
normalized imbalance of nod e j is valid:

Fig. 5: The pro cess aftel' nodal aggregation.

principal drawbacks. First the least squares proce­
dure tends to spread th e error over all the data.
So, even the best measurements can have fairly
high resid uals . Ir th ese residuals fail the test for
outl iers, then the correspond ing measurements are
erroneously identified as having gross errors. The
second drawback is that there is no provision to
prevent unrealistic fiowrates or temperatures from
being computed. If the algorit hm fails to identify
all the gross errors, the dat a reconciliation proce­
dure may gene rate for example negative fiowrates
or absur dly large posit ive ones. In modern flow­
sheet simulation progra ms however, it is possible
to overcome thi s by placing certain bounds on the
variabl es.

I:: I> 1.96
(34)

8 Future research

Fig. 4: The proc ess before riodal aggr egation.

be found aft erwards by solving th e ba lance equa­
tion for node A or node B. T hese me thod has two

Once a gross error has been identified, th e corre­
sponding measurement is eliminated from the data
by a process called nodal aggregation. For exarn­
ple consider the small flowsheet shown in Figure 4.
If there is a gross error detected in stream 3, this
stream can be eliminated by combining nodes A
and B to yield the aggregate node shown in Fig­
ure 5. The random errors in an aggregated network
can be reconciled in the normal way. This leads
to correeted measurem ents for all st reams except
st ream 3. The reconciled value for stream 3 can

In view of the application: steady state optimiza­
lion, only steady state systems are considered. In
the future, research can be extended towards the
dynamic case. For dynamic systems extended and
augmented Kalman filters have been used to ree­
oncile process data and estimate parameters. The
recursive nature of the Kalman filter makes it very
efficient and well-suited for on-line applications.
However , these methods are based on linear approx­
imations which may not be suitable for chemical
engineering systems which are operating in highly
non-linear region s. In addition, if the data ree­
onciliation obj eeti ve funetion is not weighed least
squares , th e Kalman filter is not applicable. Kim
et al.(1991 ) presented a method to extend the data
reconciliation and parameter estimation to the field
of non-lin ear dynamic systems. This is done based
on numerical integration nested within a non-linear
programming algorithm. A moving data horizon is
defined which exte nds back to a certain number of
time steps from the current time. Unfortunately,
th ese techniques have recently been developed and
no gene ra l tests have been carr ied out of how these
algorit hms perform in praetice.

3

2

1

59



9 Conclusions

Reconciliation strategies based on constrained least
squares criterions are proposed to reduce the influ­
ence of the random errors which occur in measure­
ments. This is done for both mass and tempera­
ture measurements with the help of steady state
mass and heat balances . After application, fairly
high imbalances of several units disappeared . En­
t ries of both mass and heat balances are in equilib­
rium. As a second resul t , t he acc uracy of all t he
involved me asurements improved more or less. T he
im provement in accuracy of the measureme nt s de­
pents on the loca tion in the topologie strueture of
the flowsheet and the level of redu ndancy. Tempe r­
at ure measurements show a smaller im provement
then mass fiows, in all the cases.

In praetice, the reduetion of the inaccuracies will be
smaller then the obtained results. This arises from
the fact that no accurate information is present
about the parameters of the distributions. Since
the standard deviation is used as a weighing fac­
tor in the procedure, th is can cause problems. Be­
sides this, the used balances are derived from the
assumption that the chemical plant is operating at
steady state, which is not always upheld in practice.
However, this will hardly influ enc e the results .

Finally the conc1usion can be drawn that normally, ,
heatbalance reconciliation is possible since robust
numerical optimizat ion tools are availab le. Both
rnass and heat measurements descended from fairly
com plicated and multi-component fl owsheets can
easi ly be reconciled in case the cr iterion is prop­
erly formulated and the weighing factors are deter­
mined. However, gross errors will always lead to
erroneous results. Therefore, these errors have to
he detected and removed from the data set. The as­
pect of gross errors and their remedies could eventu­
ally be subject of further research pending the im­
plementation of the presented reconciliation tech­

mques.

Glossary of sym b ols

A incidence or system matrix
h specific enthalpy
m mass flow, number of ba lances
n number of pr ocess variables
P weighing matrix
r ra t io numbe r
x measurement value of vari abi e x

~x correct ion on measu rem ent x

60

8 error
e imbalance, residual
À Lagrange multiplier
a standard deviation, weighing factor
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Abstract. In trrobust control design model uncertainty can be handled if an upper­
bound on the tj-norm of the model error is known. In this paper a procedure is develope d
which yields such an upper bound for a given nominal model, using measureme nt data
and a priori information consisting of a time domain bound on the noise and information
about the decay-rate of the pulse response of the model error. The upper bound is
calculated by solving a set of linear programming problems.
Moreover a pr ocedure is presented to derive a new nominal model which is optimal in
an el-sense, i.e. has a minimal upper bound on the tl-norm of the model error. This is
performed in two st eps , in th e first step the so-called central estimate is computed and
in the second step mo del redu ct ion in t l-norm is performed. For the latter problem a
solution is given for the case that t he reduced order model is linear in the parameters .

Keywords . wors t-case ident ificati on , el -nOrm, linear programming

1 Introduction

Analogous to lIoo -control theory the el-o pt imal
feedback design problem has been forrnul at ed and
solved (Dahleh and Pearson, 1987; McDona ld and
Pearson, 1991) . In this setting knowledge of an el­
bound on the model error can be ut ilized for the
analysis and design of robust controllers (Kham­
mash and Pearson, 1991). Consequently identifica­
tion strategies are being developed that are com­
patible with the el-control design, i.e. yield an up­
per bound on the el-norm of the model error and
an tl-optimal nominal model (Chen et al., 1992;
Jacobson and Nett, 1991; Mäkilä, 1990, 1991; Tse

et al., 1991).
The algorithms so far available have a restricted

applicability due to the fact that often only additive
uncert ainty is cons ide red and that specific experi­
ment al conditions have to be met, e.g. the inp ut sig-

IThis pap er is also pres ented a t the 31st Conference
on Decision and Control, Tucson, U.S.A., December 16-18,
1992. Copyright of this paper remains with IEEE.
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nal is requ ired to be a step , an impulse or a Galois
sequence , and th e ini tial conditions are ass umed to
be zero. However in many practical situations th e
input signal can not be sp ecified arbitrarily, for ex­
ample if t he syst em is operating in closed loop.

In the present paper worst-case identification in
et-nOrm is considered . First the problem is con­
sidered of the estimation of an error boun d. An
identification algorithm is developed t hat yields an
upper bound on the el-norm of the mo del error for
a given nominal model. There are no rest rict ions
on the experimental conditions, i.e. t he shape of the
input signal. A general un cert ain ty descript ion is
adopted, weighted additive uncer tainty, which in­
cludes the multiplicative uncertainty description.
The main pr ior info rmation assumed available is
a bound on the pulse response of the model error
an d a time domain bound on the nois e. No model
order assumption on the true system is made, nor
any statistical properties of the noise are assumed.
The resulting error bound is a hard bound, which
means that the true model error is gu aranteed to be



We consider the uncertainty configuration

Go(q) = G(q) + ~c(q)W(q), (2)

If more information is available about the pulse re­
sponse of the model error this may be included as
weIl. It is for example possible to consider an inter­
val bound on ódk) independent of the bound for
other values of k.

Finally we assume to know upper bounds on past
(unmeasured) data u(t) and y(t),

(4)lu(t)1 ~ s, ly(t)1 ~ y, V t ~ O.

where G(q) is some a priori given nominal model,
constructed by any identification or modelling pro ­
cedure and W(q) is an a priori specified fixed
weighting function. The system Go(q) and the
model error ~dq) are unknown. All transfer func­
tions in (2) are assumed to be stable, We require
the weighting function W( q) and the noise model
H(q) to be minimum-phase. Without loss of gener­
ality we further require W(q) to be biproper. The
[possibly infinite) pulse response seq uences of the
transfer functions will be denoted by the corre­
sponding lower -case characters. Hence (2) defines
the pulse responses 90, iJ, Óc and w.

Next we assume to knowan M > 0 and p > 1
such that

smaller than the calculated upper bound, provided
the prior information that is used is correct.

Next in the same setting a second problem is con­
sidered, the problem of identifying an il-optimal
nominal model, i.e. a nominal model with mini­
mal corresponding guaranteed error bound. After a
problem simplification a solution is shown to be ob­
tainable in two steps. In the first step the so-ca1led
central estimate is computed, which is in general a
high order model. In the second step this high order
model is reduced to a model of the desired order ap­
plying model reduction in i l-norm. For this model
reduction problem a solution is given in case the
reduced order model is parametrized linearly.

The outline of the paper is as follows. In the next
section the a priori information assumed available
is summarized. In section 3 it is described how
this information, including the measurement data,
is processed, such that it can be used in the worst­
case analysis. Then in section 4 a solution is given
for the problem of identifying an upper bound for
the il-norm of the model error. In section 5 we
consider the problem of identifying an il-optimal
model. Then in section 6 an example is given of
the entire procedure developed. The paper ends
with conclusions .

2 A Priori Knowledge

We consider a discrete time, asymptotica1ly stable,
linear, time-invariant, causal SISO system Go(q) =
L:~o 90( k )q-k (where q is the forward shift oper­
ator) with additive bounded output noise. The
input-output behaviour of the plant is assumed to
be given by the equation

y(t) = Go(q)u(t) + H(q)e(t), e(t) E [e/(t), eu(t)],
(1)

where u(t) is the measured input signal, y(t) is
the measured output signal, e(t) is the noise, only
known to be bounded by e/(t) and eu(t). H(q) is
some (a priori given) noise model, that can be used
to bring in a priori knowledge about the frequency
distribution of the noise.

For identification purposes we need measure­
ments of the input signal u(t) and the output signal
y(t) acting on the system, t = 1,2, ... , N. There
are no prior restrictions whatsoever on u(t), it may
for example be generated in closed loop. Here the
situation is considered that one data sequence is
available. It is however straightforward to extend
to the case that more measurement sequences are
available.

If the system is at rest at t = 0, il can be chosen to
be equal to O.

Note that no model order assumption has been
imposed on the system Go(q), neither any statisti­
cal properties have been assumed for the noise e(t).

The information obtained so far does not uni­
quely determine the system Go(q) and the model
error ~dq). There is a set of systems G(q) and
corresponding model errors ~(q) consistent with
the data and the prior information. We accordingly
define

a c,c = {~(q) I (1), t = 1, ... , N,

(2), (3) and (4) are satisfied}, (5)

with the property ~dq) E a c,c '

3 Processing the Information

The idea now is to formulate the identification
problems as constrained optimization problems.
However the set ac,c has a complicated (implicit)
structure and is not weIl suited for numerical opti­
mization techniques. In this section it is described
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how a set t:J.ë,B can be obtained that is a simple
(outer) box-approximation of the set t:J.ë ,c ' For
that purpose as an intermediate result first a set
t:J. ë L' consisting of linear constraints, is calculated.
Thi~ set t:J.ë,L outer bounds the set t:J.ë,c' Then the
set t:J.ë,B is calculated using linear programming.
This set t:J. ë,B is a tight outer bounding orthotope
of the set t:J.ë,L'

3.1 Construetion of t:J. ë L

In order to obtain a finite dimensional optimization
problem, the number of unknowns in D.c(q) has
to be reduced to some finite number n + 1. For
that reason the (pulse response of the) model error
D.ë(q) is split into two parts:

D.c(q) = Lic(q) + .6.ë (q),

n 00

Lië(q) = L 5ë(k)q-k, .6.ë (q) = L 5ë(k)q-k,
k=o k=n+ l

(6)
where n is a design variabie which influence will be
discussed later on.

We substitute (2) into (1), divide by H(q) and
introduce ÏI(q) = H-l(q), G(q) = H- 1(q)G(q) and
W(q) = H- 1(q)W(q), yielding

ÏI(q)y(t) = G(q)u(t) + D.c(q)W(q)u(t) + e(t),

e(t) E [et(t) , eu(t») . (7)

When calculating various sign als a distinction
will be made between the known part of a signal
and the unknown part. Bound s will be calculated
for these unknown parts and their influen ce will be
capt ured in the bounded output noise. Usin g (4)
in order to calculate t he worst-case influence of the
initial conditions, we write for the terms appearing
in (7),

1-1

ÏI(q)y(t) = x(t) + a(t), x(t) = L h(k)y(t - k),
k=O

00

la(t)1 :s; ä(t) = L Ih(k)lY, t = 1, ... , N, (8)
k=1

1-1

G(q)u(t) = v(t) + b(t), v(t) = L g(k)u(t - k),
k=O

00

Ib(t)1 :s; b(t) = L Ig(k)lü, t = 1, . .. , N,
k=1

1-1

W(q)u(t) = w(t) + c(t), w(t) = L w(k)u(t - k),
k=O

00

Ic(t)1 :s; ë(t) = L Iw(k)lü, t = -n + 1, . . . , N,
k=1
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with the ad dit ional property that

ë(-t) = . 00 = ë(O) 2: ë(l ) 2: .. . 2: ë(t),

w(-t) = 0, V t 2: O.

In fact ä(t), b(t) and ë(t) are decreasing functions
of t.

We now obtain

D.ë(q)W(q)u(t) = (Lié(q) + .6.é (q»( w(t ) + c(t» =

= Lic(q)w(t) + d(t) + f (t ),

d(t) = Lië(q)c(t), f(t) = .6.ë (q)(w(t ) + c(t»,

where, using (3), d(t) can be bounded by

n

Id(t )1s L 15ë(k)llc(t - k)1 :s;
k=O

n

:s; L Mp -kë(t - k) = d(t), t = 1, ... , N,
k=O

which is also a decreasing fun ct ion of t , and f(t)
can be bounded by

00

If(t)l:s; L 15c( k )I(lw(t - k)1+ Ic(t - k)l) :s;
k=n+1

00

< L Mp-k(lw(t - k)1+ ë(t - k» =
k=n+l

1-1 00

L Mp -k (lw(t -k)l+ë(t-k»+L Mp-kë(O ) =
k=n+l k=1

I -I

L Mp - k(lw(t - k)1 + ë(t - k» +
k=n+l

+ M p- I+l(p - lt1ë(0) = /(t), t = 1, . . . , N,

that will generally not vanish for increasing t, espe­
cially due to the contribut ion of Iw(t - k)l.

With these results equation (7) can be written as

x(t) + a(t) = v(t) + b(t) + Lic(q)w(t) +

+ d(t) + f(t) + e(t), t= I ,. oo , N ,

e(t) E [et(t), eu(t»), la(t)l:S; ä(t ), Ib(t )l:S; b(t),

Id(t)1 :s; d(t), If(t)1 :s; /( t). (9)

If we now introduce extended nois e bounds

x(t) - v(t) - eu(t) - ä(t) - b(t) +
- d(t) -/(t),

x(t) - v(t) - et(t) + ä(t ) + b(t) +
+ d(t) + /(t),



then (3) and (9) yie1d a set of (linear inequality)
constraints for the unknown pulse response param­
eters óc(k), ~6(q) E .6.6,L' where

n

::; L ó(k)w(t - k) ::; nu(t), t = 1, . . . , N,
k=O

_Mp-k ~ 5(k) ~ Mp-k, k = O, ... ,oo}.

The set .6.ê ,1- has been constructed in such a way
that .6.ê C ç .6.ê L as each ~(q) satisfying the con­
straints in (5) al~o satisfies the constraints of the
set .6.6,L' In general the set .6.6,L will be a fairly
tight approximation of the set .6.6 C provided n has
been chosen large enough, as in that case the sig­
nals a(t), etc. remain small (compared to the noise
level e,(t), eu(t)). The set .6.6 L is even identical
to .6.6 c if ü = 0, H(q) = 1 and n ~ N - 1 as in
that c~se the signals ä(t), b(t), ë(t), d(t) and f(t)
are zero Vt.

3.2 Construction of l::t.. 6,B

Applying the box-bounding procedure of Milanese
and Belforte (1982) we calculate

Ó/(k) = min ó(k),
AEAG,L

óu(k) = max 5(k), k = 0, ... ,n,
AEAG,L

which requires solving 2(n + 1) linear programming
problems for n-l-I unknowns subject to 2(N +n+1)
linear inequality constraints, This can be done
using standard linear programming software avail­
able. See Luenberger (1984) for an extensive treat­
ment of the linear programming problem and nu­
merical algorithms to solve it. Here we notice the
price for choosing a large value of n in (6) as in that
case more and larger linear programming problems
have to be solved.

We thus obtain the outer-bounding box-de­
scription

.6.68 = {~(q) I ói(k) ~ ó(k) ~ óu(k), k = 0, ... ,n,

_ M p- k ~ ó(k) ~ Mp-k, k = n + 1, ... ,oo},

which has the property .6.6 L ç .6.6 B' The box
.6.6 B is tight in the sense th~t there does not exist
a box (with the same orientation) of smaller size
which contains the set .6.6 L' The set .6.ê B has
been calculated on the basis of the set .6.6 ,1- 'which
has in turn been constructed from the data and the
prior information. Hence the quality of the data
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and prior information directly influences the size
of .6.6 B' If e.g. many measurements are available
with ~ low noise level, the set .6.6 B will be rel­
ative1y small. The simple box-structure of l::t..6,B
will be utilized later on when solving the problems
of identification in i l.

4 Identification of an Upper Bound
for the tl-norm of the Model Er­
ror

The first problem we focus on is the estimation of
an upper bound on the fl-norm of the model error,
1I~6I1l' This will only be an upper bound as the
true model error is unknown. Using the results of
the previous section such an upper bound is given
by the following result.

Theorem 4.1

00

11~611l = L lóc(k)1 s max 1I~lll ~
k=O AEAG,c

Proof: The first equality is the definition of the
il-norm. The inequalities are direct implications
of the construction of the sets involved, where
~c(q) E .6.6,c ç .6.6,L ç .6.6,B· The last equality
finally follows from the fact that for any ~(q) E

.6.6,B'
00 n 00

1I~lll = L ló(k)1 = L ló(k)1 + L 15(k)1 ~
k=O k=O k=n+l

n 00

~ Emax{-ói(k),óu(k)} + E Mp-k,
k=O k=n+l

which yields the desired result by noting that there
is a worst-case model error in the set .6.6 B for
which the it -norm equals this upper bound.' 0

The upper bound obtained in this way has been
calculated using information from the data and the
prior information. In general however it is not the
minimal upper bound that can (theoretically) be
derived from this information. By definition this
smallest upper bound is given by maxAEA Gc 1I~lIl'

which generally can not be calculated. In Hakvoort
(1991) an approach has been proposed to calculate
maxAEAG,L 1I~lll although in that paper this set
has been defined slightly different. If that proce­
dure is carried out in general a tighter bound for



lI.6.clI l
will be obtained than given by theorem 4.1,

however the procedure is computationally very in­
volved. In section 6 an example is given of the cal­
culation of an upper bound acc or ding to theorem
4.1 which shows that this can be carried out wit h
some computational effort.

Theore m 5.1 The optimal model GN(q) defined
in (10) satisfies

GN(q) = ar g .min II(Ge - G;"")W- 111 (11)
C;"EM I'

where

5 Identification of an .f1-5 u b op t i­
mal Model

Ge(q) = arg min max lI !:i.e 11 1 ,
C'cEÄ t>.cEl!J.(;, B

c '

(12)

5 .1 Introduction

In the previous section we have presented a proce­
dure to determine an upper bound on the il-norm
of the model error. A natura! way to continue is
now to determine a new nominal model GN(q) that
minimizes the il-norm of the worst-case model er­
ror. We will con sider that problem in this section.

For a fixed weigth W (q) the newly identified
model satisfies the equation

GN(q) + .6.CN(q)W(q) = Go(q) =

= G(q) + .6.c(q)W(q).

Accordingly the new uncertainty set !:i. ëN,l, is given
by

!:i.CN,l, = {.6.N(q) I .6.N(q) = .6.(q) +

+ (G(q) - GN(q)) W-l(q), .6.(q) E !:i.ë,L}·

This new set has a dependenee on the old nominal
mo del G(q) as the prior information (3), which is
used in t he const ruction of t he set s, is dependent
on this old nominal model. The new box-beunding
set !:i.c B is now immediat ely found to be

N ,

!:i.CN ,B = {.6.N(q) I .6.N(q) = .6.(q) +

+ (G(q) - GN(q)) W-l(q) , .6.(q) E !:i.C,B}'

which hence does not require the solution of a new
set of linear programming problems.

We can formulate our problem of finding an op­
timal nominal model GN ( q) as

GN(q) = arg ,min max II.6.NIII' (10)
C;" EM t>. N El!J.(; ;" ,B

where M is a prespecified model set. By formulat­
ing the optimization problem over the set !:i. c' B

N'
instead of the set !:i.c;." e the results will be subop-
tirnal rather than optimal, We will show that the
pr oblem (10) is solvable in two steps. In the first
step a high order nominal model is calculated with­
out any model order restrictions. In the second step
model reduction in [I-norm is performed, reducing
the high order model to a model of the desired or­
der. This is formalized in the next theorem.
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and A denotes the algebra of BIBD stable, linear,
time-invariant, eausol operators on 1

00
,

Proof: Given in the proof of t he orem 5.2. 0

5.2 The Central Estimate

In this subsection we consider sub- problem (12) of
identifying an optima! model Ge(q) without any
model order restrictions. The solution to this prob­
lem is given by the so-called cent ra! estimate as,
formulated in t he next theorem.

Theorem 5 .2 The optimal model Ge(q) defined in
(12) satisfies

Ge(q) = G(q) + Ae(q)W(q), (13)

uihere

Ae(q ) = Ek=o 5e(k)q- k,
5e(k) = H8t(k) + 8u(k)), k = 0, ... ,no

Proof: Firs t we note that Ge(q) as given by (13) is
stabie as it is the sum and product of st abie transfer
functions. Next , making use of the fact that

.6.(q) + (G(q) - Ge(q)) W-l (q) = D.(q) - Ae(q)

and hence the set !:i.c B is a symmetrie box withc,D.e(q) =: 0 as center, we ob tain t hat for any nomina!
model G;"" (q),

= max liD. + (G - G;"" )W-111 =
t>.El!J.(;,B 1

max liD. + (G - Ge)W - 1+ (Ge - G' )W-111
t>.El!J. (; ,B N 1

= max IID.e+(Ge- G;"" )W- 1
11 =

t>.cEl!J.(;C ,B 1

= t>.C~l~c'B lID.c11 1 + li(Ge - G;"" )W- t ~ (14)

> max lI D.elll =
t>. CEl!J. (; c,B



5.3 Model Reduetion in il-Norm

where d(q) is an a priori given denominator of order
p with all roots within the unit circle and x(q) is
the parametrized numerator polynomial.

Next we assume that Gc(q) and W(q) are finite
dimensional rational transfer functions, given by

(16)Gc(q) = gn((q)), W(q) = wn(q),
s« q Wd(q)

In this subsection we consider the model reduction
in il-norm problem (11). To the author's knowl­
edge no results have been published so far that
provide a solution for the il-model reduction prob­
Iem. This is in contrast with the Hoo-model reduc­
tion problem, which has been extensively studied
(Glover, 1984), but only approximately solved. In
this section an exact solution is given for the model
reduction problem in il-norm, but only for a re­
stricted class of estimation models. We restriet to
linearly parametrized models, i.e, we consider the
model set

Proposition 5.3 Consider the central model
Gc(q) dejined in (12), then

max II~cll:s 2 min I max II~~II·
I). c El!J.(;c .L G;;EA I).cEl!J.ë; ;; .L

= max II~clll + ,min ii(Gc - G~)W-III
I).cEl!J.ë;c.B G~EM I

which proves theorem 5.1. 0

Note that for any new nominal model GN(q) the
il-norm of the worst-case model error can be cal­
culated using equation (14).

We will shortly discuss the optimality of the cen­
tral estimate Gc( q) when evaluated over the set
l!J.. a L' The fol1owing proposition says that this een­
tral model is in any norm optimal within a factor 2
when evaluated over this set of linear constraints.

n 1 Mp-n
= L 2"(6u(k) - 6/(k)) + ---=T'

k=O P

and equality is achieved by choosing G~(q)
Gc(q), which proves the theorem. Moreover,

Pro of: First we note that due to the convexity of
the set l!J.. a Land the fact that l!J.. a B is a tight
outer beunding orthotope of this set', the central
estimate .6.c (q) is a feasible point of the set l!J..a ,L'

i.e . .6.c (q) E l!J..a,L' Next define

where gn(q),gd(q), wn(q) and Wd(q) are polynomials
in q-l.

Then by introducing the error function ~(q) the
model reduction problem (11) can be reformulated

as,

min II~III s.t.
x.1).

and

~(q) = f 6(k)q-k = (gn(q) _ x(q)) Wd(q),
k=O gd(q) d(q) wn(q)

or equivalently

then

o

00

min L J6(k)1 s.t.
x,1). k=O

gd(q)d(q)wn(q)~(q) +gd(q)Wd(q)X(q)+

- gn(q)d(q)Wd(q) = O. (17)

The standard procedure (Lu and Wang, 1988) now
is to introduce a new parametrization,

Hence the central estimate Gc (q) is optimal with
respect to the set l!J..a,B but only suboptimal with
respect to the set l!J.. a L'

which transforms the (infinite dimensional) nonlin­
ear optimization problem (17) into an (infinite di­
mensional) linear programming problem. The re­
sult is given in the next proposition.
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Proposition 5 .4 The solution of the model reduc­
tion problem in il -norm as defined by (11) and
(15), (16) is given by the solution of the (infinite
dim ensional) linear programming problem

gd(q)d(q)wn(q) (~p(q) - ~n(q)) +
+ 9d(q)Wd(q)X(q) - 9n(q)d( q)Wd(q) = 0,

óp(k) 2: 0, ón(k) 2: 0, k = 0, ... ,00. (18 )

Pro of: Follows from the fact that in the optimum
for each k either óp(k) = °or ón(k) = 0, and there­
fore óp(k) + ón(k) = ló(k)l, which makes the opti­
mization problems (17) and (18) identical. 0

Now we can explain why the model has been chosen
line ar in the parameters. In case d(q) nee ds to be
calculated as weIl, pr oblem (18) would be a very
unattractive non-Iinear programming problem.

For a practical impleme ntation the problem (18)
is truncated to a finite dimensional linear program­
ming problem, analogous to the truncation per­
formed in t he context of il -optimal controller de­
sign (McDonald and Pearson, 1991). We choose
some (large) value for the truncation parameter I
and calculate

a(q) = L~=o a(k)q-k = 9d(q)d(q)wn(q),

b(q) = L~=o b(k)q -k = 9d(q)Wd(q),

c(q) = L~=o c(k)q-k = 9n(q)d(q)Wd(q),

where I should be at least equal to the maximum or­
der of the transfer functions appearing at the right­
hand sides (and consequently a(q), b(q) and c(q)
may end with trailing zeros). Then the truncated
linear programming problem can be formulated as

k min(p.k)

L a(k - j)(óp(j) - ón(j)) + L b(j - k) x( j) +
j=O j=O

- c(k) = 0, 5p(k) 2: 0, 5n(k) 2: 0, k = 0, ... ,I,
(19)

which is a linear programming problem with p +
21 + 3 unknowns subject to 3(1 + 1) linear equality
and inequality constraints.

It is possible to obtain insight in how close the so­
lution of the truncated problem (19 ) is to t he solu­
tion of the infinite dimensional problem (18) . T his
is formalized in the next proposition.
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Proposition 5.5 Let the solution of the trun­
cated problem (19) be qiuen. by Xt.o(q), ~l.o(q) =
L~=o 5t.o(k'n:" and let the solution of the in­
fin ite dimensional problem (18) be given by
xo(q), ~o(q) = Lb o5o(k )q- k, then the optimal
criterion uolue 11~o lil for the infini te dimensional
problem is bounded by

Proof: As xo(q), ~o(q) is a fea sible solu tion for
(18), xo(q), ~o(q) = L~=o 5o(k )q- k is a feasi­
bIe solution for (19) . Hence, as ~t.o is optimal,

I I ~ t .o l l l ~ "Ao"l ~ lI~ollll which proves the left­
hand inequality. The right-han d inequality is a di­
rect implication of optimality of xo(q), ~o(q). 0

The bo und s provided in t his proposition can be
used to check if t he truncation parameter I has been
chosen large enough.

The model reduction problem considered and
solved in this section requires a fixed denomina­
tor. There are several possible ways to arrive
at such adenominator. One may for example
take the denominator of a model resulting from
any other identification procedure, or apply a La­
guerre or Kautz model structure (Heuberger, 1991;
Wahlberg, 1991) . Finally it is also possible to first
do Hankelnorm or balanced model reduction and
after that tune the numerator in an iroptimal way.

6 Example

In this section a simulation example is presented
which shows the applicability of the theory devel­
oped. First an upper bound will be calculated for
the i l-norm of the model error for a given nominal
model. Next an i l-suboptimal model will be iden­
t ified by first calc ulating the central estimate and
then applying model reduction to this high-order
model.

In figure 1 a Bo de diagram is given of the 5th
order system Go(q), t he 3rd order nominal model
G(q) and the 7t h order weighting function .W( q)
that have bee n chosen (quite randomly). The ll­
norm of the t rue model error ~{; defined by (2)
is equal to 0.8997 . Starting from zero-initial con­
ditions (ü = 0), a simulation experiment has been
performed with a Gaussian white noise input signal
(vari an ce 1) and a uniformly distributed additive
output noise (e(t) E [-0.3 , 0.3), H(q) = 1, hence
the choice of ij is irrelevant as ä(t ) = 0, Vt in (8)).
We chose M = 2, p = 1.1, which are conservative



values. We used 1000 samples for identification pur­
poses and chose n = 80, which means that to obtain
the set ~ê B 162 linear programming problems had
to be solv~d for 81 unknowns subject to 2162 lin­
ear inequality constraints. This has been done on
a VAX workstation 3100 using the linear program­
ming software in the Fortran NAG library. Solving
one such linear programming problem takes ab out
4 minutes CPU time.

The result is shown in figure 2, where the cal cu­
lated upper and lower bound of the pulse response
sequence of the model error are plotted together
with the pulse response of the true model error.
The worst-case il-norm found in this way is 1.8787,
a factor 2 larger than the il-norm of the true model
error.

Next we calculated the central estimate and did
model reduetion in il-norm. \Ve reduced the 90th
order central estimate Ge(q) to a 10th order model
GN(q) with all poles a priori fixed to 0.5. In figure
3 a Bode diagram is given of the resulting model.
We see that the model bears a great resemblance
to the system, except for extreme high frequencies
(see phase-plot). The upper bound on the model
error of this new nominal model is 1.0437, whereas
the il-norm of the new true model error .6.êN(q) is
0.0518, a lot smaller. In this case the model is a lot
closer to the true system than expeeted from the
worst-case analysis.

1 Conclusions

An identification procedure has been developed
which yields for a given nominal model G(q) and
weight W(q) an upper bound for the il-norm of
the model error, starting from measurement data
and some a priori information. This prior informa­
tion consists of a time domain bound on the noise
and information about the decay rate of the pulse
response of the model error. There are no restric­
tions on the shape of the input signal. Numerically
it requires solving a set oflinear programming prob­
lems.

Moreover a procedure has been developed to
identify a new nominal model GN(q) that is op­
timal in the sense that it yields a minimal upper
bound on the il-norm of the model error as com­
puted above. This is performed in two steps, in the
first step the central estimate is straightforwardly
computed and in the second step model reduction
in il-norm is performed. For the lat ter problem a
solution is given for the case that the reduced order
model is linear in the parameters.

An example showed the applicability of the pro-
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cedure. It appeared that the estimated optima!
model GN(q) may be a lot closer to the true sys­
tem than expected from the worst-case analysis.
This is due to the worst-case character of the anal­
ysis (the noise is always assumed to have the worst
possible value) and the fact that conservativeness
has been introduced in the procedure by bounding
the set ~ê.L by the set ~ê.B" A smaller upper
bound on the model error may be obtained by us­
ing more data and more (and more accurate) prior
information. Current investigations show that it
is possible to utilize the fact that the noise e(t) is
uncorrelated to the input signa! u(t) (under open
loop conditions) or some external reference signal
r(t) (under closed loop conditions). This is done by
adding certain linear constraints to the set ~ê.L'

In the companion paper Hakvoort (1992) the
same time domain setting is applied to the problem
of worst-case identification in Hoc)' In that paper
the problem is considered of identifying an upper
bound on the Hoo-norm of the model error for a
given nominal model. Also the problem is consid­
ered of identifying a new nomina! model with min­
ima! upper bound on the Hoo-norm of the model
error. The problems are solved using linear pro­
gramming techniques.

This paper has been considering the SISO case.
However the MIMO case is basically not more diffi­
cult and it is quite straightforward to extend the
problem formulation and the solutions presented
here to the MIMO case.
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Abstract. An ident ification procedure is developed which yields an uppe r bound for the
Hoe-norm of the model error for a given nominal model, using measu reme nt data and a
priori information consisting of a time domain boun d on the noise an d inform at ion about
the decay rate of the pulse response of the model error . The upper bou nd is calculated
by solving a set of linear programming pr oblems.
Moreover a procedure is presented to derive a new nominal mode l with reduced upper
bo und on the Hoe-norm of the mod el erro r . This is pe rformed in two steps, in the first
step fre quency response data are generate d and in the second st ep a nominal model is
ident ified with a curve-fit pr ocedure, minimizing a maximum absolute value criterion

fun cti on .

Keywords. worst-case ident ifica tion, Hoe-norm, linear programming

1 I ntrod uct io n

Hoe-control theory is able to cope with a system
representation consisting of a nominal model an d an
Hoo -bound on the model error (Maciejowski , 1989).
Consequently identification strategies are be ing de­
veloped that are compatible with the Hoo -cont rol
design, i.e. yield an upper bound on the Hoe-norm
of the model error and an optimal nominal model.

The problem of quantification of model errors
is considered by many au thors. Bai (1991) and
Lamaire et al. (1991) inv estigate procedures for use
in adaptive cont rol. Lau et al. (1990 ) and Younce
and Rohrs (1992) con sider a comb ined parametric­
nonparametrie uncertaint y approach . In Wahlberg
and Ljung (1991) the leas t-squares algorithm is
used to deri ve frequency dom ain error bounds .
Goodwin et al. (1990) and Ninness et al. (1992)
adopt a sto chastic approach to the pr oblem. Fi­
nally in Van den Boom et al. (1991) and De Vries
and Van den Hof (1992) frequency domain error
bounds are derived assuming the noise is bo un ded
in the frequency domain.
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The prob lem of identifying a nominal model that
min imizes t he wors t-case err or is for example con­
sidered in Helmicki et al. (1991, 1992), Partington
(1991) an d Gu and Kh argo nekar (1992), wh ere in­
terpolation algorithms are presented to const ruct a
nominal model from a finite nu mbe r of nois y fre­
quency response data.

In this paper a time domain set ting is adopted
for the problem of worst-case ide nt ification in H oo •

In the companion paper Hakvoort (199 2) the same
setting is applied to the problem of worst-case iden­
tification in ll' First the problem is considered of
identifying an upper bound for the Hoe-norm of the
model error. A new identification algorithm is de­
velop ed that yields a frequency dependent boun d
on the model error for a given nomina! mo del, from
which the Hoe-bound can readily be derived . There
are no restrictions on the experiment al condi tions,
i.e. the shape of the input signal. The main prio r
information assumed available is a bound on the
pulse res ponse of t he model error and a time do­
main bound on t he noise. No model order assump­
tion on the true syste rn is made, nor any statistica!



properties of the noise are assumed.
In the identification procedure the model error is

parametrized and the actual worst-case perturba­
tion is calculated using linear programming tech­
niques. On the one hand the resulting error bound
is a hard bound, which means that the true model
error is guaranteed to be smaller than the calcu­
lated upper bound, provided the prior informa­
tion that is used is correct. On the other hand
the resulting error bound is proven to be non­
conservative under certain conditions, which means
that no smaller bound for the model error can be
derived from the information available.

Next in the same setting the problem is con­
sidered of identifying an Hoc-optimal model, i.e, a
nominal model with minimal corresponding error
bound. An approximate solution to this problem
is obtainable in two steps. In the first step fre­
quency response data are calculated using the no­
tion of central estimate. In the second step a norn­
inal model of the desired order is calculated with a
frequency domain curve-fit procedure, minimizing
a maximum absolute value criterion.

The outline of the paper is as follows. In the next
section the a priori information assumed available
is summarized. In section 3 it is described how
this information, including the measurement data,
is processed, such that it can be used in the worst­
case analysis. Then in section 4 a solution is given
for the problem of identifying an upper bound for
the Hoc-norm of the model error. In section 5 we
consider the problem of identifying a new nominal
model with minimal error bound. Then in section
6 an example is given of the entire procedure devel­
oped. The paper ends with conclusions.

y(t) acting on the system, t = 1,2, ... , N. There
are no prior restrictions whatsoever on u(t), it may
for example be generated in closed loop. Here the
situation is considered that one data sequence is
available. It is however straightforward to extend
to the case that more measurement sequences are
available.

We consider the uncertainty configuration

Go(q) = G(q) + Ác:;(q)W(q), (2)

where G(q) is some a priori given nominal model,
constructed by any identification or modelling pro­
cedure and W(q) is an a priori specified fixed
weighting function. The system Go(q) and the
model error Ác:;(q) are unknown. All transfer func­
tions in (2) are assumed to be stable. We require
the weight W(q) and the noise model H(q) to be
minimum-phase. Without 1055 of generality we
further require W (q) to be biproper. The (possi­
bly infinite) pulse response sequences of the trans­
fer functions will be denoted by the corresponding
lower-case characters. Hence (2) defines the pulse
responses go, 9, óë and w.

Next we assurne to knowan M > 0 and p > 1
such that

If more information is available about the pulse re­
sponse of the model error this may be included as
well. It is for example possible to consider an inter­
val bound on ó{;(k) independent of the bound for
ot her values of k.

Finally we assume to know upper bounds on past
(unmeasured) data u(t) and y(t),

2 A Priori Knowledge lu(t)1 ::; u, ly(t)1 ::; fj, V t ::; o. (4)

We consider a discrete time, asymptotically stable,
linear, time-invariant, causal SISO system Go(q) =
L:k:::O go(k )q-k (where q is the forward shift oper­
ator) with additive bounded output noise. The
input-output behaviour of the plant is assumed to
be given by the equation

y(t) = Go(q)u(t)+ H(q)e(t), e(t) E [et(t),eu(t)],
(1)

where u(t) is the measured input signal, y(t) is
the measured output signal, e(t) is the noise, only
known to be bounded by et(t), eu(t). H(q) is some
(a priori given) noise model, that can be used to
bring in a priori knowledge about the frequency dis­
tribution of the noise.

For identification purposes we need measure­
ments of the input signal u( t) and the output signal

74

If the system is at rest at t = 0, u can be chosen to
be equal to O.

Notice that no model order assumption has been
imposed on the system Go(q), neither any statiati­
cal properties have been assumed for the noise e(t).

The information obtained so far does not uni­
quely determine the system Go(q) and the model
error Á{;(q). There is a set of systems G(q) and
corresponding model errors Á(q) consistent with
the data and the prior information. We accordingly
define

l:!JJ.{;,c = {Á(q) I (1), t = 1, ... , N,

(2), (3) and (4) are satisfied}, (5)

with the property Ác:;(q) E l:!JJ.{; c-



3 Processing the Information

The ide a now is to formulat e the identification
problem s as const rained optimizat ion problems.
However t he set A c c has a complicated (implicit)
st ructure and is not 'weU suited for numerical opti­
miza tion te chniques. In this section it is described
how a set A c L consisting of a number of linear
const rai nt s, ca~ be obt ained, t hat is a close outer
approximat ion of t he set A c,c' T his set of linear
const raints will then be used in numerical optimiza­
tion techniques, or more specifical1y linear program­
ming, in order to calculate an upper bound on the
Hoo-norm of the model error.

In order to obtain a finite dimensional optimiza­
tion problem the number of unknowns in ~c(q) has
to be reduced to a finite number n+1. For that rea­
son the (pulse response of the) model error ~êCq)
is split into two parts :

n 00

Lic(q) = L ác(k)q-k, .&c(q) = L ác(k)q -k,
k=O k=n+1

(6)
where n is a design variabie which influence will be
discussed later on.

We substitute (2) into (1), divide by H(q) and
introduce H(q) = H-I(q), G(q) = H-I(q)G(q) and
W(q) = H-I(q)W(q) , yielding

Ï/(q)y(t) = G(q)u(t) + ~c(q)W(q)u(t) + eet),

(7)

When calculating various signals a distinction
will be made between the known part of a signal
and the unknown part. Bounds will be calculated
for these unknown parts and their influence will be
cap tured in the bounded output noise. Using (4)
in order to calculate the worst-case influence of the
init ial condit ions , we wri te for the te rms appearing
in (7) ,

I -I

Ï/(q)y( t) = x(t) + aCt), x(t) = L h(k)y(t - k),
k=O

00

la(t)l~a(t)= Llh(k)ly, t=l , . .. , N , (8)
k=1

1-1

G(q)u(t) = vet) + bet), vet) = L g(k)u(t - k),
k=O

00

Ib(t)1 ~ bet) = L Ig(k)lü, t = 1, ... , N,
k=1
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1-1

W(q)u(t) = wet) + c(t), wet) = L w(k)u(t - k),
k=O

00

Ic(t )J ~ ë(t) = L Iw(k )lü, t = -n + 1, ... , N,
k=1

with the additional property that

ë(- t ) = .. . = ë(O) ;::: ë(l) ;::: . . . ;::: ë(t),

w(-t) = 0, V t ;::: O.

In fact aCt ), bet) and ë(t ) ar e decreasing functions
of t.

We now obtain

~c(q)W(q)u(t) = (Lic(q) + .&c(q))(w(t) + c(t)) =

= Lic(q)w(t) + d(t) + f(t) ,

d(t) = LiêCq)c(t), f(t) = .&c(q)(w(t) + c(t)),

where, using (3), d(t) can be bounded by

n

Id(t )1 ~ L lác( k)llc(t - k)1 ~
k=O

n

~ L Mp-kë(t - k) = d(t), t = 1, ... ,N,
k=O

which is also a decreasing function of t, and f(t)
can be bounded by

00

If(t)J ~ L lác(k)I(lw(t - k)1 + Ic(t - k)l) ~
k=n+1

00

< L Mp-k(lw(t - k)1 + ë(t - k)) =
k=n+I

1-1 00

L Mp-k(lw(t -k)J+ë(t-k))+L Mp-kë(O) =
k=n+1 k=1

I - I

= L Mp-k{lw(t - k)/ + ë(t - k))+
k=n+ I

+Mp-I+I(p -1)-l ë(O)=/(t), t=l, . . . ,N,

that will general1y not vanish for increasing t, espe­
cial1y due to the contribution of Iw(t - k)l.

With these results equation (7) can be written as

x(t) + aCt) = vet) + bet) + Lic(q)w(t) +

+d(t )+ f(t )+e(t ), t =l, ... , N ,

eet ) E re/Ct ), eu(t )J , la(t)1~ aCt), Ib(t)1 ~ bet),

Id(t )1~ d(t) , If(t)1 ~ /(t). (9)



If we now introduce extended noise bounds

nt(t) :z:(t) - v(t) - eu(t) - ä(t) - b(t) +
- d(t) - /(t),

nu(t) = :z:(t) - v(t) - et(t) +ä(t) +b(t) +
+ d(t) + f(t),

then (3) and (9) yield a set of (linear inequality)
constraints for the unknown pulse response param­
eters óG(k), ~a(q) E dG,L' where

n

::; L e5(k)w(t - k) ::; nu(t), t = 1, ... , N,
k=O

-u«'< e5(k)::; Mp-k, k = O, ... ,oc}.

The set dG,L has been construeted in such a way
that "d Gc ç dG L as each ~(q) satisfying the con­
straints in (5) also satisfies the constraints of the
set dG,L' In general the set dG,L wil1 be a fairly
tight approximation of the set dG,c provided n has
been chosen large enough, as in that case the sig­
nals ä(t), etc. remain small (compared to the noise
level et(t), eu(t)). The set dG,L is even identical
to dG c if ü = 0, H(q) = 1 and n 2: N - 1 as
in thai case the signals ä(t), b(t), ë(t), d(t) and
/(t) are zero Vt. At the price of some conservatism
we thus have obtained a set of linear constraints,
which contains information from the data and the
prior information, that is wel1 suited for usage in
numerical optimization techniques.

4 Identification of an U pper Bound
for the Hoc-norm of the Model
Error

The first problem we focus on is the estimation of an
upper bound on the Hoe-norm of the model error.
This will only be an upper bound as the true model
error is unknown. To derive an upper bound we will
use the fact that ~G E dG,c ç dG,L and hence

II~Glloe = sup 1~a(é")I::;
",e[o,,..]

Lemma 4.1 Consider the function fm(:Z:): <U-+
IR., defined by

fm(:Z:) = max Re(cm,k:Z:)'
k=l ,... ,m

with Cm,k = e2"'!;; i , k = 1,2, ... ,m 2: 3, where Re(·)
denotes the real part of·, then

(i) fm(:Z:)::; 1:z:1::; fmt))'
cos z,

m

(H) lim fm(:Z:) = 1:z:1.m-oe

Proof: For any :z: and any Cm,k with ICm,kl = 1,
Re(cm,k:Z:) ::; ICm,k:z:1 ::; ICm,kll:z:1 = 1:z:I, which proves
the left-hand inequality of (i). Further for any :z:
there exist an integer 1 and Ó E [-;;;-,;;;-) such that

:z: = I:z:I e(2,..;!,H)i , yielding

( lli 5)"= 1:z:IRe(e 2,.. m + I) = 1:z:1 cos(27l"W + ó).

If we now choose k = k: such that k* +1= nm for
some integer n, we obtain

Re(Cm,k·:Z:) = 1:z:1 cos(27l"n +ó) =

Re(cmko:Z:)
= 1:z:lcos(ó) 2: 1:z:lcos(~) {:? 1:z:1::; (',..) ,

cos -
m

which proves the right-hand inequality of part (i).
Final1y part (ii) immediately fol1ows from part (i)
for m -+ 00. 0

Moreover it is easy to show that the bounds in (i)
are tight in the sense that there exists an :z: such
that the lower bound becomes equality, and there is
an :z: such that the upper bound becomes equality.
The lemma in faet says that the amplitude of a
complex number can be calculated approximately
by checking a number of different direetions in the
complex plane.

We will derive bounds for the model error by eval­
uating 1.6.(ei"')1 for a finite number of frequencies.
The behaviour between the frequencies will later
on be estimated by means of a worst-case inter­
polation argument. The set of frequencies is given
by

(10)

In this seetion we will focus on deriving a bound
for the last term in this formula.

In the sequel we will often use the fol1owing
lemma.
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For each frequency Wj the model error is bounded
by .6.a(é"'i) E dG ", where

,]



which is a convex set as the set t!J.C,L is convex. Now
for each frequency Wj, j = 1, ... ,1 the frequency
domain uncertainty set t!J.c,j will be evaluated using
the tooI provided in lemma 4.1. With the Cm ,k as
defined in lemma 4.1 we calculate (ii) lim maxJlk(Wj) = max 1b.(e iwi )1 =

m~oc k 6.E l:!I.t;,L

lim max IVk(Wj)l.
m-+oo k

n

= max Re(cm,k E ó(k')e-ik'Wi) =
6.El:!I.t; ,L k' =O

k = I, ... ,m, j = 1, ... ,1, (11)

with Jlk+m = JLk, which requires solving mi linear
programming problems for n +1 unknowns subject
to 2(N + n + 1) linear inequality constraints (see
Luenberger (1984) for details about linear program­
ming). In this way for each frequency Wj a convex
polytope P m,j in the complex plane is determined,

Pm,j = {b.(Wj) I

Re(cm,kb.(Wj)):S Jlk(Wj) , k = I, . .. ,m}.

The convex polytope has vertices Vk(Wj ), k
1, ... , m which satisfy

Re(Cm,k+lVk (Wj)) = Jlk+l (Wj ), k = 1, . .. ,m . (12)

T his set has the property that it contains the exact
unc ert ainty set for the truncated model er ror,

Proof: The first inequality in part (i) directly fol­
lows from the definition of JLk(Wj ) and lemma 4.1.
The second inequality follows from the definition of
Vk(Wj). The bound defined by the second inequ al­
ity is the tightest bound that can be derived from
the set Pm,j' Noting that maxj, ~:S1~ is also an
upper bound according to lemma 4.1, we conclude
that the third inequality must hold, which proves
part (i). Next the statement in part (ii) is proven
by noting that the left-hand expression in (i) con­
verges to the right-hand expression for m ----. 00.

o

In this way we have established a frequency de­
pendent bound on the model error Ad q) for a fi­
nite numbe r of frequencies. Taking into account the
worst-case influence of the tail Lidq) and of the in­
tersample behaviour of the model error , an upper
bound for lI ~clloc can readily be derived. Introduce
the paramet er Àj for the intersample frequency dis­
t ance

Now a bound on the Hoc-norm of the model error
is established in the following theorem.

Theorem 4.3 Let,B(n ,n,m) be defined by

and hence b.deiWi) E P m,j ' Moreover due to the
convexity of the exact uncertainty set and the fact
that limn~oc b.( q) = ~(q) the following conver­
gence property holds,

lim Pm,j = t!J. c ".
nlm-oo ,1

(13)

,B(n, n , m ) =

{
I AlP} Alp-n

max max IVk(Wj)1 + - Àj ( )2 + --,
J k 2 p -I p -I

with Vk(Wj) defined by (12) and Àj by (14) then

(i) lI~clloc:S max 11 ~lIoc:S ,B(n,n,m),
6.E l:!I.(;,L

For the case m = 4 it simply means that for each
frequency Wj the minimum and maximum of the
real and imaginary parts of the model error A(wj)
are calculated, which yields a box in the complex
plane. Notice that the model error is evaluated
in the frequency domain without transforming the
measurement data to the frequency domain.

The following lemma establishes the bound ob­
tainable in this way.

Lemma 4.2 Let Jlk(Wj) be defined by (11) and
Vk(Wj) by (12), then
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(ii) lim lim ,B(n, n,m)= max 1I ~lloc '
n~[o,"'l rr.rn-e-oc 6.E l:!I.t;,L

P roof: The first inequality in par t (i) has been es­
tablished in (10). Next (6) yiel ds

and using the fact that the lrnorm upper bounds
the Hoc-norm,

max 11b.11 < max II LiII =
6.El:!I.(; ,L oc - 6.E.o.t;,L t,



~ M -k Mp-n
~ p =-- .

k=n+l p - 1
In De Vries and Van den Hof (1992) it has been
shown that assumption (3) implies that

I
d l~deiW)1 1 Id ~c(éW) I Mp< < ,Vw.

dw - dw - (p-IF

Worst-case interpolati on considerations now give

\Lic (eiw)1~ ILid eiWj )1 + ( M p )2lw j - wl, VW,Wj,
p-l

which in combination with lemma 4.2 yields the
desired result (i). Next, using lemma 4.2, we obtain

lim lim maxJLk(Wj) ~ max 1 1 ~lI oo ~
11-[0,11") n-e-cc J,k .ó.E~ G .L

lim lim ,B(n,n, m) = lim lim ~axIVk(Wj )1 ~
11- [0,11") n -e-co 11-[0,11") n-e-co J,k

< li li
JLk(Wj)

m m max---,
- 11-[0,11") n-oo j,k cos( ;;;)

which proves part (ii) by noting that the right-hand
side expression converges to the left -hand side ex­
pression for m --4 00 . D

We see that the total error in (i) consists of three
parts. The first contribution, max, \vk(wj)I, con­
sists of a kind of bias part and a kind of varianee
part. The bias part is the true model error Lideiwj)

and the varianee part sterns from the fundamental
uncertainty in the data (the noise level) . The bias
part can only be reduced by the choice of a more
accurate nominal model. This problem will be con­
sidered in the next section. The varianee part can
basically only be reduced by using more informa­
tive data or a priori information (besides a sma11
reduction obtainable by choosing a large value for
m). The second contribution to the error in (i),
~Àj (:6" comes from the fact that only a finite
number of frequencies is evaluated and the inter­
sample behaviour is analyzed by some worst-case
interpolation argument. T his error can be reduced
by evaluating more frequencies (which can be done
for the same data set) or doing a more careful in­
terpolation analysis, see De Vries and Van den Hof
(1992). However it should be emphasized that often
this interpolation contribution is much too conse r­
vative and that genera11y a more realist ic indica­
tion of the model erro r is ob tained by sim ply lin­
early inte rpolating the computed model error be­
tween two subsequent frequencies. The third con­
tribution, ~:~n, follows fro m the trun cation in the
parametrization of the model error an d reduction of
this error requires an in crease in the computational
effort as the size of the linear prog ramming prob­
lems increases. However this can also be performed
for the same data set.
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5 Identification of an Hoo-Subopti­
mal Model

5.1 Introduetion

In the previous section we have presented a proce­
dure to determine an upper bound on the Hoo-norm
of the model error. A natural way to continue now
is to det ermine a new nominal model GN(q) that
minimizes t he Hoo-norm of the worst-case model
error. For a fixed weight W(q) t he newly identified
model satis fies the equation

GN(q) + ~c)q)W(q) = Go(q) =

= G(q) + ~c(q)W(q).

Accordingly the new uncertainty set A c L is given
N,

by

A c L = {~N(q) I ~N(q) = ~(q) +N ,

+ (G(q) - GN(q)) W -l(q) , ~(q) E Ac,L}'

and the new frequency domain uncertainty set by

ACN,j = {~N(eiwj) I ~N(q) E AcN,L} =

= {~N(Wj) I ~N(Wj) = ~(Wj) +
+ (G(eiWj) - GN(eiWj)) W-1(eiwj), ~(Wj) E Ac,j}'

Notice that this new frequency domain uncertainty
set can be evaluated directly using the polytopes
P m,j that already have been calculated. In other
words to calculate the worst-case model error for
some new nominal model no new set of linear pro­
gramming problems need to be solved.

Now the problem of finding an optimal nominal
model GN(q) can be formulated as

GN(q) = arg .~in max II~Nlloo' (15)
GN EM .ó.NE~G' L

N '

where M is a prespecified model set.
We will present an approximate solution for this

identification problem by adopting a two-step pro­
cedure. Due to this approximation the resulting
model will be suboptimal rather than optimal. In
the first step we will calculate the complex-valued
so-called central estimate,

GC(Wj) = arg min max l ~c(wj ) I , VWj
C:::(e'Wj) .ó.C<Wj)E ~G::: .j

(16)
which is in fact a nonparametrie frequency do­
main description of the optimal nominal model. In
the second step we will perform frequency domain
model fitting in Hoo-norm,



arg .min max I(Ge(w) - G~(é"») W - I(é")I·
C;"'EM wE[D,,,.]

(17)
The motivation for this two-step procedure lies in
the fact that

+ max I(Gc( eiWj
) - GN(eiWj») W - I(eiWj )1~

wjE[D.".]

> max max l.ó.e(eiW) +
- wE[D,,,.]I:1 cE a a c ,L

+ (Ge( eiW
) _ GN(eiW») W - I(eiW)!=

= max max I.ó. (eiw) + (G(eiw) - Ge( eiw»).
wE[D,,,.] I:1E a a,L

.W - I(eiw ) + (Ge(e iw
) _ GN(eiw») W -1(eiW)1 =

= max max 1.ó. (eiW) +
wE[D,,,.] I:1 Eaa,L

+ (G(e iw
) _ GN(eiw») W-1(eiW)i =

= max max I.ó.N(eiw )! = max II .ó.NIIc", .
wE[D.".] I:1 N Ea aN ,L I:1 N Ea a N ,L

As the two contributions on the 1eft are minimized
by (16) resp . (17), also a smal1 (t hough not nee­

essari1y minima1) value on t he right is obtained,
which is exactly the objective (15). In t he next
two subsections the two subprob1ems (16) and (17)
are considered respective1y.

5.2 The Centra1 Estimate

+ Ge(Wj), wE [wj,wi+d. (20)

Then pointwise and uniform conver gen ce to the
central estimate can be proven.

Pro~osition 5.1 Consider Ge(w) defined by (16)

and Ge(w) defined by (19) and (20) then

(i) lim Ge(Wj) = Ge(Wj) , j = 1, .. . ,1.
n ,m -+ oo

(ii) lim lim Ge(w) = Ge(w), wE [0,71"]
rl-[D.".] n .m _ oe

Proof: Using (13) we obtain that for n, m ---ot 00,

max 1.ó. (Wj ) + (G(e iWj
) - Ge (wj») W-1 (eiWj )!

I:1 (Wj )Eaa,j

max l.ó.e(wj)l,
l:1 c(wj)Ea , .

G e .l

from which we conclude that the minimization (18)
is ident ical to the minimization (16), which proves
part (i). T he second part ~ol1ows from the first

part an d the fact that both Ge(w) and Ge( w) are
continuous fun ct ions of wand have bounded first
derivatives. More specifical1y the left and right
first derivatives of the real and imaginary parts are
bounded. 0

In this subsection we will consider subproblem (16),
the problem of calculating the central estimate
for each frequency. We will present a procedure
which approximate1y solves the problem, with the
property that asymptotica11y the exact problem is
solved. We utilize the polytopes P m.] as calculated
in the previous section. Define for each Wj E n the
(comp1ex-valued) center of t he polytope P m.j as

= arg .min max IVk(Wj ) - A~(Wj) l,
1:1;; (Wj) k= l .... .m

and define

(18)

Now the prob1em remains how to calc u1ate the
solution to (18). For the case m = 4 it is not 50

difficult as calcu1ating the center of a box is an easy
thing to do. For the general case we present an
a1gorithm to calcu1ate the center of the polytope
P m.j approximate1y, within any accuracy desi red.

Proposition 5.2 Consider for some m' ~ 3 and
[or some Wj E n the linear programming problem

min J.Lj s.t.
/-Ij .aj,bj

k = 1, ... ,m, k' = 1, . . . ,m',

The intersamp1e frequency behaviour of Ge(w) is
defined by linear interpo1ation,

79

where Vk(Wj) are defined in (12). Let the optimal
solution of this LP problem be given by J.Lj.o, c(Wj) =

aj,o + bj,oi and let A e(wj) be given by (18), then

(i) J.L j,o ::;mtx IVk(Wj) - Ae(wj)1 :S

max IVk(Wj) - c(Wj)l::; J.Lt".)'
k cos m'



Proof: The second inequalit y in part (i) arises
from the definition of Ae(wj ). Next we notice that

= Re(Cm' ,k'(Vk(Wj) - aj - bji)),

and hence the optima! solution has the property

which with lemma 4.1 yields the third inequality.
Finally optimality of c(Wj) implies that for some
k*,

fm,(vk.(Wj) - 6.e(Wj)) ~ JLj,o,

which again with lemma 4.1 yields the first inequal­
ity of part (i). For m' --. 00 the right-hand side
in (i) converges to the left-hand side and hence,
as ~c(Wj) is a unique complex number, c(Wj) con­

verges to 6.e(Wj), which proves part (ii). 0

This means that for m' large enough the complex
number c(Wj) resulting from the linear program­
ming problem presented here is a very good ap­
proximation of Ae(wj), the center of the polytope

Pm ,j' It can be used to calculate Ge(Wj) in (19),
which in turn is a very good approximation of the
exact central estimate Ge(Wj) provided that n and
m have been chosen large enough.

5.3 Frequency Domain Curve Fitting

In this subsection we cons ider subproblem (17),
the problem of Hoo-optim a! model fitting . We will
pr esent a pro cedure which approximately solve s
this problem. Asymptotically it will be shown to be
an exact solution for (17). The procedure consists
of fitting a parametrized t ransfer function to a fi­
nite number of freq uency response dat a minimizing
a maximum abs olute value criterion function, which
is closely related to the Hoo-norm op t imizatio n cri­
terion. The intersample frequency be haviour of t he
resulting model will be bounded.

We restriet to linearly parametrized models , that
is we consider the model set

-:Cm ~ :c(k) ~ :Cm, V k,

where d(q) is an a priori given denominator of or­
der p with all roots within the unit circle and the
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parameters in the numerator are bounded as spec­
ified.

Let there be given a continuous complex valued
frequency response function Ge(w) such that the
(left and right) first derivatives of its real and imag­
inary parts are bounded. With some abuse of ter­
minology we simply say that the first derivative of
Gc(w) is bounded. We consider the objective func­
tion

GN(q) =
arg .min max I(Ge(Wj) - G~(é"j))W-l(eiWj) l,

GNEM wjErI

(21)
which implies that in the optimization use is made
of only ~ finite number of frequencies. The nomina!

model GN(q) defined by (21) has a bounded inter­
sample behaviour and is moreover asymptotically
equal to the optimal model GN(q) as formulated in
the next theorem.

Theorem 5.3 Cons~der the optimal model GN(q)

defined by (17) and G N(q) defined by (21).

(i) The Hoo-norm of GN is a priori bounded by

li

G 11 < (p + l):Cm

N 00 - inf1zl=1 Id(z)l'

(ii) lim GN(q) = G N(q),
r1-[D,,,.]

where it is allowed that :Cm --. 00 provided that
[rnax, ,xj):Cm --. 0, where ,xj has been defined in

(14)·

P r o of: Let GN(q) = x;(q')l , t hen

11
" 11 l:c (z) IGN = sup _0_ <

00 Izl=1 d(z) -

SUPlzj=1 I L~=o :Co(k )z- kI (p + 1):Cm< < --'-='-----'-'----
- infjzl=1 Jd(z)1 - inf1zl=1 Id(z)l'

which proves part (i) . Next,

Id :c~~iW) I= Id L~=O::k)e-
iwk I=

= It :Co(k)(_ik)e-iWkl s
k=O

p p p(p+1)
~ :E Ik:co(k) I~ :cm:E k = :Cm ,

k=O k=O 2



yielding kil = 1, ... , mil, j = 1, ... , I,

= Id- 2
( éW) (d( eiw) d X~~iW) _ Xo(eiw) d ~(~W)) I~

~ I d_ l ( eiW ) ll d x~~iW )I +

+ Id- 2(eiW) dd~W) Ilxo(eiW)1 ~

~ X mp(p: 1) Ild-lll oo +xm(p + 1) Ild-2 :~L'vw.

-xm(k) ~ x(k) ~ xm(k), k = 0, ... •p,

and let ihe optimal.solution be given by /.Lo, xo(k).

Moreover consider GN(q) defined by (21), then

< /.Lo
- (,.. )'cos mil

/.Lo = max
wiE r!

Proof: T he seco nd inequality m part (i) arises

from the definitio n of GN(Wj). Next we notice that

which yields the third inequality by applying lemma
4.1. Finally, optimality of x o ( k) implies that for
some i ',

Re (Cmll'kll (Gc(Wj) _ L:~_~~:i~~-iWik ) W -1(eiWi)) ,

an d hence the opt imal solution has the property

(ii)

I
~ . dW-l(eiW)1

+ GN(e'W
) dw ~ Cl + C2 X m, Vw,

for some constants Cl and C2' Applying the sam e
interpolation argument as in theorem 4 .~ .... e ob tain

d I(Gc( w) - GN(eiW) ) W-l (eiW )1 <

d w

Hence,

~ my-x {I (Gc(Wj) - GN(eiWi)) W -l(eiWi)1+

+ ~>'j(Cl + C2 X m)}'
which yields the desired result (ii) by noting that
the first quantity on the right is minimized in the
interpolation procedure (21) and the second quan­
tity converges to zero for >'j, >'jXm -+ O. 0

Finally the problem remains how to calculate the
solution to problem (21). We propose a linear pro­
gramming procedure which yields the desired result
within any accuracy desired.

Proposition 5.4 Consider for some mil ~ 3 the
linear programming prob/em

which yields the first inequality of part (i) by again
applying lemma 4. 1. For mil -+ 00 the right-hand
side in (i) converges to the left-hand side, which
proves part (ii) . 0

min /.L s.t.
JJ ,x(k )

This means that for mil large enough the estirm ted
model i~ a very good approximation of the curve fit

model GN(q), which in turn is a very good approx­
imation of the H oo·optimal model GN(q) if enough
frequencies are used in the curve fitting procedure.
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6 Example

In this section an example is presented which shows
the applicability of the theory developed. First for a
given nomina! model we evaluate the model error in
the frequency domain, yielding an upper bound on
the Hoc-norm of the model error. Next we identify
an Hoc-suboptima! model by first calculating the
central estimate and then applying the curve fitting
algorithm derived in the previous section.

In figure 1 a Bode diagram is given of the 5th
order system Go(q), the 3rd order nomina! model
G(q) and the 7th order weighting function W(q)
that have been chosen (quite randomly). Starting
from zero initia! conditions (11 = 0), a simulation
experiment has been performed with a Gaussian
white noise input signa! (variance 1) and a uni­
formly distributed additive output noise (e(t) E
[-0.3,0.3), H(q) = 1, hence the choice of ij is
irrelevant as ä(t) = 0, Vt in (8)). We chose
M = 2, p = 1.1, which is a very conservative
choice. We used 1000 samples for identification
purposes and chose n = 130 (which implies that
the contribution of Li(q) to the model error is al­
most zero) and m = 4. We calculated the worst­
case model error for 100 frequencies logarithmically
distributed between 0.01 and 71'. This means that
400 linear programming problems had to be solved
for 131 unknowns subject to 2262 linear inequality
constraints. This has been done on a VAX werksta­
tion 3100 using the linear programming software in
the Fortran NAG library. Solving one such linear
programming problem takes about 4 minutes CPU
time.

The result is shown in the Nyquist plot of fig­
ure 2, where the calculated uncertainty regions are
shown, together with the true model error <Ó.a(q),
which is of course inside the uncertainty regions.
In figure 3 the upper bound on the amplitude of
the model error is plotted in a Bode diagram to­
gether with the amplitude of the true model error.
The influence of the interpolation contribution to
the worst-case model error in theorem 4.3 has not
been taken into account here. The Hoc-norm of
the worst-case model error is 0.65 whereas the Hoc ­

norm of the true model error is 0.57. We conclude
that a tight error bound has been obtained.

Next we calculated the central estimate and per­
formed curve fitting with maximum absolute value
criterion as described in section 5.3. The centra!
estimate is easily obtained by calculating the cen­
ters of the boxes in figure 2. The curve fit model
has been chosen a 10th order model with all poles
a priori fixed to 0.5. We chose mil = 8. Hence one
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linear programming problem had to be solved for
12 unknowns subject to 800 inequality constraints,
which took a few seconds computing time.

In figure 4 the amplitude of the worst-case model
error for the new nomina! model is shown in a Bode
diagram together with the amplitude of <Ó.CN(q),
the new true model error. In figure 5 a Bode dia­
gram is shown of the new nomina! model and the
true system, which appear to be very close. The
Hoc-norm of the worst-case model error of the new
nomina! model is 0.32 whereas the Hoc-norm of the
true model error is 0.02. We conclude that the
worst-case error is not tight for this new nomina!
model. In this case the nominal model is much
closer to the true system than expected from the
worst-case arialysis.

7 Conclusions

An identification procedure has been developed
which yields an upper bound for the Hoc-norm of
the model error, starting from measurement data
and some a priori information. This prior inforrna­
tion consists of a time domain bound on the noise
and information about the decay rate of the pulse
response of the model error. There are no restric­
tions on the shape of the input signal. Numerically
it requires solving a set of linear programming prob­
lems. The bound is a guaranteed upper bound on
the model error and moreover under certain condi­
tions it is non-conservative, i.e. no smaller bound
can be obtained using the information available.

Also a procedure has been developed to identify
a new nomina! model GN ( q) in such a way that the
upper bound on the Hoc-norm of the model error is
small. This is performed in two steps. In the first
step the centra! estimate is computed and in the
second step curve fitting in Hoc-norm is performed.
This curve fitting problem can again be solved using
linear programming if the nomina! model is linear
in the parameters.

In an example the complete procedure has been
illustrated. Tight frequency domain error bounds
were obtained with some computational effort. It
appeared that the estimated nominal model GN(q)
may be a lot closer to the true system than indi­
cated by the error bounds. This is mainly due to
the worst-case character of the analysis, the noise
is always assumed to have the worst possible value.
Current investigations show that the error bounds
can be reduced by utilizing more prior information
about the noise, more specifically the fact that the
noise is known to be uncorrelated to the input sig­
na! (in open loop) or some external reference signa!
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Abs tract. A procedure is presented to obtain an estimate of the transfer function
of a linear system together with an upper bound on the error, using only limited a
priori information on the data generating process. By employing a periodic input signa1,
toget her with a non-parametric Emperical Transfer Function Estimate (ETFE) over
each period, and by averaging over a number of estimates, the statistics of the resulting
model asymptotical1y can be obtained from the data. The model error consists of two
parts: a probabilistic part, due to the stochastic noise disturbance on the data, and a
deterministic part, due to the bias in the estimate. The latter is explicitly bounded
with a deterministic error bound, while the former asymptotical1y results from an F­
dist ribution. For this analysis no assumptions are made on the distribution of the noise.
A mixed deterministic-probabilisti c error bound is achieved, c1early distinguishing the
different sourees of uncertainty.

Keywords . Id en tification , frequency domain, model uncertainty, robust control.

1 Introduction

In the systems and control community there is a
growing interest in me rging the problems of sys­
tem identification an d (r obust) control sys tem de­
sign. This interest is based on the conviction that,
in many situations, models obtained from process
experiments will be used as a basis for control sys­
tem design. On the ot her hand, in model-based ro­
bust control design, models and model uncertainties
have to be available that are essentially provided by,
or at least validated by, measurement data from the
process.

Recently several ap proaches to the identification
problem have been presented, considering the iden­
tification in view of the control design. By far
the most attention has been paid to the construc­
tion of deterministic (hard) error bounds, see e.g.
He1micki et al. (1990), Gu and Khargonekar (1992),
Wahlberg and Ljung (1991) and Hakvoort (1992).
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In Goodwin and Salgado (1989), Goodwin et al.
(1992) and Bayard (1992) identification procedures
are presented that provide probabilistic (soft) error
bounds.

In Helmicki et al. (1990) and Gu and Khar­
gonekar (1992) the a priori inform ation consists of
a finite number of corrupted samples of the transfer
function of the system, and a weighted Hoc bound
on the measure of corruption. A model in Hoc and
a hard error bound that is valid on the whole unit
circle is obtained. In Wahlberg and Ljung (1991)
and Hakvoort (1992) hard model error bounds are
constructed usin g an upp er bound on the amplitude
of the noise in the time domain. In Wahlberg and
Ljung (1991) the hard error bound on the system's
transfer function is obtained using a least squares
FIR estimate and parameter set estimation tech­
niques, whereas in Hakvoort (1992) the bound is
obtained by directly calculating the worst-case un­
certainty from the time domain data using linear



2 Preliminaries

It is assumed that the plant, and the measurement
data that is obtained from this plant, allow a de­
scription

with 9o(k) the impulse response of the plant. We
will consider scalar (single input, single output) sys­
tems. The output disturbance v(t) is represented as

with y(t) the output signal, u(t) a bounded deter­
ministic input signal, v(t) an additive output noise,
q-l the delay operator, and Go the proper transfer
function of the system, being time-invariant and
exponentially stable. The transfer function can be
written in its Laurent expansion around z = 00, as

(1)

(2)

(3)v(t) = Ho(q)e(t)

00

Go(z) = E 9o(k)z-k
k=O

y(t) = Go(q)u(t) +v(t)

plication of the centrallimit theorem, cf. Brillinger
(1981), and by mutually comparing the informa­
tion arising from different sections of the measured
input-output data. This way of extracting the sta­
tistical properties of the noise is enabled by using a
periodic input signal. Using a periodic input signal
and distinguishing different sections of the data set
can be thought of as a repetition of similar exper­
iments, which is a very appealing way to separate
structural phenomena present in the data (i.e. the
input-output system) from random effects due to
disturbances.

In comparison with previous work on hard error
bounds, the probabilistic setting used in this pa­
per has the advantage that we do need only minor
a priori information. We do not need a hard er­
ror bound on the noise in the time or frequency
domain. Actually, through the repetition of exper­
iments, a corresponding probabilistic bound is esti­
mated from the data. As opposed to Goodwin et al.
(1992), the method proposed here has the property
that the form of the distribution of the error is in­
duced by the estimation procedure itself, 50 that we
do not have to choose it a priori. As parameters we
have the frequency dependent varianee of the noise,
which is estimated from the data, and whose esti­
mation error is taken into account. As opposed to
Bayard (1992), the noise is not assumed to be nor­
mally distributed, nor is the noise filter assumed to
be known, and the deviation from a steady-state
situation is taken into account.

For brevity, all proofs are omitted; the reader is
referred to deVries and Van den Hof (1992b).

programming. In deVries and Van den Hof (1992a)
a frequency domain estimation procedure based on
the ETFE is proposed, by which a frequency depen­
dent hard quantification of the model uncertainty
can be obtained for a prespecified nominal model.
The a priori information on the noise that is neces­
sary (a hard bound on the DFT of the noise) how­
ever will be hard to obtain in practice.

In Goodwin and Salgado (1989) and Goodwin
et al. (1992) a stochastic embedding approach is
used. The distribution of the error is assumed to
be known, up to a number of free parameters. The
free parameters of the distribution are estimated
from the data, together with a least squares esti­
mate of the system. The model error due to under­
modelling is represented as a zero mean stochastic
process. This results in a probabilistic description
of the error in the least squares estimate. In Bayard
(1992) a periodic input signal is used, and an ETFE
is made over each period of the input signal. The
average over a number of these ETFE's provides the
final estimate, and a probabilistic describtion of the
error in this final estimate is presented. However,
it is assumed that the noise is normally distributed,
that the noise filter is known, and that the steady­
state situation is reached before experimental data
is taken.

In this paper we will use a stochastic descrip­
tion of the disturbances, based on the same and,
in the authors' opinion, definitely sound arguments
that are given in Goodwin et al. (1992). We will
however consider the errors due to undermodelling,
as deterministic. The input signal is also consid­
ered to be deterministic, because the input signal
is known in the measurement interval. Hence, for
the influence of the noise we will use a probabilistic
description, whereas the errors due to undermod­
elling and unknown past inputs will be bounded
with deterministic bounds. This constitutes the
main deviation from existing methods: in the cur­
rent literature on identification with error bounds
either both the errors due to undermodelling and
noise are considered as being deterministic, or they
are both considered as being stochastic. As a re­
sult, the approach presented in this paper will yield
error bounds that consist of elements with a prob­
abilistic nature, and elements with a deterministic
nature. We will call this kind of error bound a
mixed deterministic-probabilistic error bound.

In this paper the ETFE is used to obtain a non­
parametrie frequency domain estimate G(ej wk ) ,

which is only defined at a finite number of frequency
points Wk, and an error bound. The asymptotic dis­
tribution of this estimate is obtained through ap-
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where {e(t)} is a sequence of independent identi­
ca1ly distributed random variables with zero mean
values, finite varianee u;,and bounded moments of
order 2+ 6 for some 6 > 0, and where Ho is a proper
trans fer function that is strictly stable. The noise
filter Ho(z) can be writ ten in its Laurent expansion
aroun d z = 00 , as

The a priori information on Mand p need not be
very tight in first instance, as it can be improved
using the measurement data. This will be discussed
later on . The a priori information on ü P is given by
the actuator cons traints.

3 The DFT of the Noise

Xi(t) = x(t + (i - I)No + Na) whe re tE TNo (5)

(7)
Some specific sets of frequencies that arise in the
DFT are denoted as

1 N o - !

Xi (eiw) = - L xi(t )e-iw1 (6)
~ 1=0

For a signal x(t), defined on T N , we will denote the
N-point Discret e Fourier Transform (D FT) by

Wk=/O,7r
Wk=/O,7r
Wk=O,7r
Wk =O,7r

var[Re{V;(eiWk)}] = ~IHo(eiwkW
var[Im{V;(e1wk)}] = var[Re{V;(e1Wk)}]

var[Re{V;(eiwk)}] = u;IHo(e1WkW

var[Im{V;(eiwk)} ] = 0

Re {V;(eiWk)}
Im{V;(eiwk)}
Re {V;(eiwl )}
Im{V;(eiwl )}
R e{Vm(e1"'l)}
Im{Vm(eiwl )}

where A is a diagonal matrix with diagonal e1ements
given by

Then, for Wk, wi E n No' wk =/ Wi, i, m = 1, ... , r
and i =/ m , there holds

VNo E AsN(O, A)

In t his section we will present a theorem dealing
with the properties of t he DFT of the output dis­
turbance. This theorem is also given in Brillinger
(1981), see Brillinger (1981) theorem 4.4.1 and exer­
cise 4.8.23, using slightly different conditions. This
theorem will be essential in the sequel ofthis paper.

Theorem 3.1 Consider Vi (t) as defined in (3),
(4), (5) and let V;(eiWk) be the No-point DFT of
Vi(t) with Wk E n No' Let

(4)

(8)

(9)

for

00

Ho(z) = 1 + L ho(k) z - k
k =!

27rk
.- {Wk = N ' k = 0,1, ... , N - I}

.- {Wk E nNo I 1Ui(eiWk)1 =/ O}

.21rk 1 N- ! . 21rk
X(e] N ) = lAT L x(t)e-] N 1

yN 1=0

Throughout the paper we will consider discrete
time intervals for input and output signals de­
noted by the int eger intervals T N := [0,N - 1],
TIJ. := [Na, N + Na - 1] with N and Na appro­
priate integers. We will frequently use a parti­
tioning of the time interval TIJ. with N = r No
in r time-intervals of length No, denoting Ti :=

[(i -1)No + N.., iNo+ Na - 1], i = 1, ..,r.
With the subscript i we will indicate a variabie that
originates from the i-th time interval Ti, e.g,

Fina1ly we will denote

max lu(t )1 = ü
I ET N+ N.

Throughout this paper we will adopt a number of
additional assumptions on the system and the gen­
erated data.

Assumption 2.1 We have as a priori inform ation
that

The theorem states that the DFT of the noise is
asymptotica1ly norma1ly distributed, with real and
imaginary parts that are uncorrelated, and have
equal varianee for Wk =/:- 0, 7r. Furthermore, asymp­
totica1ly t he DFT's of the noise for different fre­
quencies are uncorrelated, and the DFT's of the
noise over differ ent intervals are uncorrelated. Note
t hat uncorrelated jointly norma1ly distributed ran­
dom variables are independent.

z. ihere ezists a finite and known ü P E IR, sueh
that lu(t)J :::; ü P for t < 0

4 Error Bound for Transfer Func­
tion Estimate

n. there ezist finite and known Mand p, with
M,p E IR, p > 1, su eh that Igo(k)1 :::; M p-k,
for k E 7l +

4 .1 Introduction

In this section we will construct a nonparametrie
estimate Gof the system's tran sfer funct ion Go, by
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averaging over a set of ETFE's. This procedure is
similar to Bartlett's procedure of periodogram av­
eraging, see Brillinger (1981), and is also proposed
by Ljung (1985). Note that the ETFE is only de­
fined at a finite number of frequency points. We
will establish an error bound o(Wk) such that

IGo(è'k) - G(èJk)1 ~ O(Wk) (10)

for a finite set of frequencies that will he specified
later on. As mentioned in Sect. 1, we wil1 use a
probabilistic description of the noise, whereas both
the error due to undermodelling and the input sig­
nal are considered as being deterministic. This re­
sults in an upper bound on the error which has
both soft (probabilistic) and hard (deterministic)
components, and consequently a statement as (10)
can only be made within a prespecified probability.
In order to arrive at an error bound (10), we will
pursue the following strategy. Experimental data
is available over a time set of length N. This time
set is composed of a first interval of length N., not
used for identification, and consecutively rintervals
of length No. We consider an input signal that is
periodic with period No, such that in each of the
rintervals the same input signal is applied. This
repetition of experiments offers the opportunity to
mutually compare the information arising from dif­
ferent intervals of the data, and consequently to
formulate the statistica of the estimated transfer
funetion. In other words: the noise contribution on
the data is also identified on the basis of the ex­
periments. As aresult an error bound (10) can be
specified without heavily relying on a priori knowl­
edge of the noise.
Because of the periodicity of the input signal u it
follows that

n~t = nNo for all i = 1, ... , r

with Ri(ejwk) a component which is due to unknown
past inputs, i.e. input samples outside the time
interval that is considered. In deVries and Van den
Hof (1992a) it is shown that for Wk E nNo this term
is bounded by

-» + - M (1 - N o )

1
R-(ejwk)1<~ p - P p-(i-l)No-N.

• -.JN:, (p - 1)2
(14)

if u(t) is periodic with period No for t E T N+N. ,
and

IR -(ejWk)1< ü
p

+ Ü Mp(l - p-N
o)

(15)
• -.JN:, (p - 1)2

if u(t) is not periodic. Using (11) and (13) we can
write

with
R-(ejWk)

S -(ejwk) = · _ (17)
• lTi(eJ W k

)

the error due to the unknown past inputs for the
i-th estimate Gi . Because Si only depends on the
input and the system, it is a deterministic term.
This yields the fol1owing result.

Proposition 4.1 Consider the estimates Gi( ejwk)J
i = 1, ... ,r. For all Wk E nNo there holds

a. lE[Gi(e jwk)) = Go(ejwk) + Si(e jwk) , uihere
Si( eiWk) is given by (17) and is bounded using
(14) or (15)

b [G- _( jWk)) _ var[V;( ejwk))
. var I e - lUi(ejwkW

c. c. (e jwk) asymptotically in No is normally dis­
tributed

4.2 A Transfer Funetion Estimate

Define the fol1owing estimates for Wk E nNo
The above proposition states that the Emperical
Transfer Funetion Estimate (ETFE) is asymptoti­
cally normally distributed, and asymptotically un­

biased. However, the varianee does not decrease
with No in general, it is just the noise to signal ra­
tio in the frequency domain. The averaging (12)
is introduced in order to obtain an estimate with
decreasing varianee. However, Si( ejwk) is unknown
and varies with i, even if Ui(ejwk) is independent
of i for i = 1, ... ,r. Furthermore, var[V;(ejwk)) is
unknown, and var[Gi(eiWk)) varies with i if Ui(ejwk)

varies with i. Moreover , if the input is not periodic,
the uncertainty due to the unknown past inputs
Si( eiW k

) typical1y will dominate the error bound,
see (15). Hence in general the estimate G(eiW k

) will

(12)

i = 1,2, ...,r (11)

Note that we do not average over different fre­
quencies, we only average over different estimates
Gi(ejwk) of Go(eiWk) at the same frequency Wk. Em­
ploying the system's equations, similar as in deVries
and Van den Hof (1992a), it follows that

Y;( ejwk) = Go(ejwk)Ui(ejwk) + Ri(eiWk) + V;( ejwk)

(13)
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be heavily biased, and it is not possible to obtain a
satisfactory estimate of its var ianee.

In order to improve upon the above situation,
we will use a periodie input signal. We will split
up the analysis into two parts : first we will derive
the properties of an intermediate variable, and next
we will analyse the properties of the estimate (12).
Define the intermediate variabie Gi(eÏ'''k ) as

Proposition 4.2 Consider the int erm ediate vari­
ables Gi(e1"Jk),

Wk E nNo' Let u(t) be a periodic in­
put signal with period No for all t E T N +N , . Then
asymptotical1y in No the random variables Gi( eÏ'''k )
and Gl( eiWk) are independent and identical1y dis­
tributed for all i, l = 1, ... , r , i f L.

We denote the averaged intermediate variable, av­
eraged over the different time intervals, as

This averaged intermediate is going to be used in
determining an error bound as meant in (10)

IGo(eiWk) - G(eiWk )1 (21)
~ JGo(eiWk ) - G(eiWk) 1+ IG(eiwk) - G( eiWk)1

= IGo(eiwk) - G( eiWk)\ + IS(eiwk)1 (22)

with
- 1~ -S( eJWh) = - ~Si(eJWk)

r i=1
Considering t he ine quality (22), t he first term on
the right hand side is the varianee eontribution to
the error due to the noise dist urbanee. The seeond
term on the right hand side of (22) is a bias eon­
tribution, due to unknown past inputs. This deter­
ministie term ean be bounded by using (14). For a
periodie input signal this term ean be made small
by ehoosing N. . A bound on the first (stoehastie)
term has to be determined on the basis of its dis­
t ribution. For the distribution of G( eiWk) we have
the fol1owing results.

Proposition 4.3 Consider the situation as in
Proposition 4. 2. Then for all Wk E nNo there holds

a. IE[G(eiWh)] = Go(eiWh)

b. Asymptotically in No
- - 1 - - var[V;(eiWk)]var[G(eJWh)] = - var [G-(eJWk)] = I ~

r I rIUi(eJWk)1 '
independent of i
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c. vr G(eiWk) asymptotically m N lS normally
distributed

As aresult the asymptotie dist rib ut ion of the esti­
mate G( eiWk) is speeified, although its varianee still
remains to be unknown. In the next steps we will
quantify this varianee on the basis of measurement
data. To t his end we use the fol1owing two esti­
mates

0-;( G( eiWk)) = L l=1IG(e
iWk)

- GL( e
iWkW (23)

r(r - 1)

o-;(G(eiWk)) = Ll- I IG(eiwk) - Gl(eiwk)12 (24)
r(r - 1)

Note that the first one of these estimates indeed
ean be ealculated from data. However the seeond
one is not available.

Proposition 4.4 Consider the situation as in
Proposition 4.2. Then the estimate û;(G(eiWh)) is a
consistent estimate of var[ G(eiWk)]. Asymptotically
in No the variance of the estimate û;(G( eiWk)) de-

Icays as r -I'

Although this estimate is not available from data,
we ean bound the differenee between the two esti­
mates (23) , (24).

Lemma 4.5 Consider the estimates 0-;(G( eiWk)),

û;(G(eiWk)) as defined in (23), (24) . Let u(t) be
a periodic input signal with period No for all t E
T N +N , . Then

with

and

Clearly the differenee between û;(G( eiWk)) and
û;( G(eiWk)) is due to the Si( eiWk), i.e. the influenee
of the unknown past input signals. The differenee is
small if the Si( eiWk) are smal1, whieh for aperiodie
input signal ean be obtained by ehoosing N•.

Using only the unknown intermediate trans­
fer function G(eiWk), and its estimated varianee



0-;(G( eiWk)), an error bound with respect to the sys­
tem's transfer function can be calculated asymptot­
ically in No. Due to the fact that the intermediate
variables Gi( eiWk) are independent and identically
distributed, see Proposition 4.2, this resu1ts in an
F distribution for the error, as formulated in the
following lemma.

Lemma 4 .6 Consider the intermediate transfer

funetion G( eiWk), (20), (19), and the estimate of
its varianee (24). Let the input signal be periodic
with period No for t E T N +N . , and let r > 1. Then

as N o~ oo

IGo(eiWk) - G(eiWkW {F(2,2(r - 1))
à-;(G(eiWk)) ~ F(I,r - 1)

for all Wk E {W E nNo I o-;(G(eiw)) > O}, where
F(n, d) denoies the F distribution with n degrees of
freedom in the numerator and d degrees of freedom
in ihe denominator.

Note that no assumptions are made on the distri­
bution of the noise, and that the uncertainty in the
estimated varianee is taken into account by the F­
distribution.

Combining Lemma's 4.5 and 4.6 and (22) leads
to an error bound that ean be ealeulated on the
basis of data, in terms of a eonfidenee interval. In
formulating this eonfidenee interval, we will adopt
the following notation

Fa(m,n) = {P[z :::; 0:], zE F(m,n)}

whieh means that Fa ( m, n) is the probability that
z E F(m, n) is smaller than 0:.

Theorem 4.7 Consider the estimated transfer
funetion G(eiWk), (12), (11), and the estimate ofits
varianee (23). Let the input signal be periodic with
period No for t E T N +N . , and let r > 1. Asymptot­

ically in No there holds

and E(Wk) is given by (26).
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The deterministie error terms are E(Wk) and S(eiWk),

where E(Wk) is a function of the Si(eiwk). These
terms are due to the unknown past inputs, and
typieal1y will be small in eomparison with the er­
ror due to the noise va à-r ( G(eiWk)). This is due
to the faet that S(eiWk) and Si( eiWk) have exponen­
tial convergenee to zero with N s » For the error due
to the noise we have that, asymptotieally in No,
the varianee deeays as l/r and the varianee of the
estimated varianee deeays as 1/(r - 1).

Note that the above estimate is only defined at
the finite number of frequeney points nNo' Theo­
rem 4.7 ean very weIl be used to provide an estimate
of the a priori information needed by e.g. Helmieki
et al. (1990) and Gu and Khargonekar (1992), to
obtain a model in H oo and a hard error bound that
is valid on the whole unit eirde. Note however that
the error bound formulated in theorem 4.7 is a soft
one, while the bound needed by e.g. Helmieki et al.
(1990) and Gu and Khargonekar (1992) is a hard
one.

5 Additional Results

Using a similar procedure as in Sect. 4, together
with Theorem 3.1, we have obtained a number of
additional results:

• By estimating a Finite Impulse Response
(FIR) model on eaeh c. a set of FIR mod­
els ean be obtained. Averaging over this set
results in a FIR model with an error bound on
the estimated parameters. Hence, an estimate
with an error bound of the impulse response of
the system is obtained, which can be used to
improve the prior information Mand p.

• An error bound for the transfer function of an
estimated FIR model ean be obtained. This
results in an error bound that is valid on the
whole unit cirde, whereas the error bound of
Theorem 4.7 is only defined at a finite number
of frequeney points.

• Estimates with an error bound of the response
of the system to arbitrary input signals ean be
obtained. This is useful for validation, simula­
tion and fault deteetion purposes.

6 Example

To illustrate our resu1ts a simulation was made of
a fifth order system
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Fig . 1: Magnitude of the DFT over one period of
the in pu t signal, 1Ui (ejwk) I.

Fig. 2: Estimate ê(eiW k
) with error bound, an d

t rue syste m Go ( ejwk) for Wk E n):lo'

0.7027 - 0.8926z - 1 + 0.24z - 2

+ 0.5243z-3
- 0.9023z-4 +0.4z - 5

1 - 2.4741z-1 + 2.8913z - 2

- 1.9813z- 3 + 0.8337z - 4
- 0.1813z - 5

whose impulse response 9o(k) sat isfies a boun d
given by Mo = 2 and Po = 1.23. There was 10 per­
cent (in amplitude) uniformly distributed colored
noise (highpass filtered white noise) on the output.

As a priori information on the impulse response
we choose M = 3 and p = 1.2 . A periodic input
signal was applied to the system. The input sig­
nal was chosen to obey ü P = 2 and ü = 1. We used
1074 points with N = 1024, No = 128 and N. = 50.
The magnitude of the DFT of the input signalover
one period, !Ui(ejwk)l, is given in Fig. 1. Note that
the frequency points where IUi(e jwk)! > 0 are not
equidistant. T he magnitude and frequency grid of
the input express that we are especial1y interested
in the behaviour of the system around w = 0.88
rad/s, and t hat we do not expect the system be­
haviour to change rapidly with frequency for the
higher frequencies.

In Fig. 2 a Nyquist plot of the estimate ê(ejwk) of
Theorem 4.7 is given, together with the estimated
error bound and the true system. The probabil­
ity level for the error bound is 99 %. Note that a
very good estimate is obtained for those frequen cies
where lUi(ejwk)1, the magnitude of the DFT of the
inp ut signal, was chosen to be large. Note also that
the error bound is tight, i.e. the actual erro r can
be close to the upper bound.

7 Conclusions

In this paper a procedure is presented to obtain
an estirnate, to gether with an error bound, of the

transfer function of a system, using only minor
a priori information. The basis of our results is
the derivation of the asymptotic dis tribution of a
Discrete Fourier Transform (DFT ) of a filtered se­
quence of independent random variables, the seper­
ation of the error in a determinis tic and a proba­
bilistic part, and the use of a periodic input signal.

By employing a periodic input signal a repeti­
tion of experiments is obtained. This rep etition of­
fers the possibility to mutual1y compare the infor­
mation arising from different intervals of the data,
and consequently to formulate t he statisti cs of the
estimated transfer function. More specifical1y, a
non-parametrie Emperical Transfer Funct ion Esti­
mate (ETFE) is made over each period of t he in­
put signal. Due to the periodicity of the input sig­
nal these est imates are approximately independent
and ident ically distributed . Averaging over the esti­
mates, which provides the final estimate of the sys­
tem, now results in a fast decrease of the varianee
of the final est im ate with the number of averages.
Moreover, the final estirnate is almost unbiased and
its varianee can be estimated con sistently. The er­
ror in this final estimate can be sep er ated into two
parts: a probabilistic part, due to the noise distur­
bance on the data, and a determi nisti c part, due
to the bias in the estimate. T he latter is explicitly
bounded with a deterministic error bound. The for­
mer asymptotic al1y has an F-distribution, so that
a confidenc e interval can be specified. This results
in a mixed deterministic-probabilistic error bound,
which clearly distinguishes the different sourees of
uncertainty. No assumptions are made on the dis­
tribution of the noise, and the uncertainty in the
estimated varianee is taken into account by the F­
distribution.

91



8 References

Bayard, D.S. (1992). Statistical plant set estima­
tion using Schroeder-phased multisinusoidal in­
put design. Proc. American Control Conf., pp.
2988-2995.

Brillinger, D.R. (1981). Time Series. Data Analy­
sis and Theory. Expanded Edition, Holden-Day,
San Francisco.

De Vries, D.K. and P.M.J. Van den Hof (1992a).
Quantification of model uncertainty from data:
input design, interpolation, and conneetion with
robust control design specifications. Proc. Amer­
ican Control Conf., pp. 3170-3175.

De Vries, D.K. and P.M.J. Van den Hof (1992b).
Quantification of uncertainty in transfer func­
tion estimation. Report N-410, Mechanical Engi­
neering Systems and Control Group, Delft Univ.
Technology, The Netherlands, Submitted to Au­
tomatica.

Goodwin, G.C., M. Gevers and B. Ninness (1992).
Quantifying the error in estimated transfer func­
tions with application to model order selection.
IEEE Trans. Automatic Contr., AC-37, pp.
913-928.

Goodwin, G.C. and M.E. Salgado (1989). Quan­
tification of uncertainty in estimation using an
embedding principle. Proc. American Control
Conf., pp. 1416-1421.

Gu, G. and P.P. Khargonekar (1992) . A class of
algorithms for identification in Hoc ' Autom atica,
vol. 28, pp. 299-312.

Hakvoort, R.G. (1992). Worst-case system identifi­
cation in Hoc: error bounds and optimal rncdels.
Selecied Topics in Identification, Modelling and
Control, 5. Delft University Press, The Nether­
lands.

Helmicki , A.J ., C.A. Jacobson and C.N. Nett
(1990) . Identification in Hoc: a robustly con­
vergent, nonlinear algorithm. Proc. American
Control Conf., pp. 386-391.

Ljung, L. (1985). On the estimation of transfer
functions. Automatica, vol. 21, pp. 677-696.

Wahlberg, B. and L. Ljung (1991). On estimation
of transfer function error bounds. Proc. Euro­
pean Control Conf., pp . 1378-1383.

92



@1992 Delft University Press Selected Topics in Identification, Modelling and Control

Vol. 5, December 1992

Iterative identification and control design:
a worked out example t

Ruud Schrama and Paul Va n den Hof
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Abstract. The topic of this paper is the synthesis of a high performance controller
for a plant with unknown dynamics by means of approximate identification and morlel ­
based con trol design . For this purpose, identification and control design have 1,0 be
treated together as the joint problem of deriving a nominal model that gives rise 1,0 a
compensator which achieves a high performance for the plant under cons ideration. Using
a fairly general measure of performance we establish a link between the performance
designed for the norninal model and the pe rformance actually achieved for th e plant.
Hereupon we propose an iterative scheme of repeated ident ificat ion and control design,
that will be illustrated with a simu lation example.

Keywords. Control-relevant identification; c1osed-loop ident ificat ion; robust contro!.

1 Introduction

Recently it has been motivated that t he problem of
designing a high performance cont rol system for a
plant wit h unknown dyn ami cics through sepa ra te
stages of (ap proxi mate) identification and model
based control design requires iter at ive schemes to
solve the problem, see e.g. Zang et al.(1991),
Schrama (1992a, 1992b), Lee et al.(1992). T he un­
derlying idea is that there actua lly is a joint prob­
lem of finding an appropriate model ft of the plant
P, and a controller Cp based on ft, such that Cp
achieves a high performance for the modelled plant
Pand a similar performance for the nominal model
P. The former is the true control objective; the lat­
ter is need ed in order that we are confident about
the compensator Cp. Simultaneous high per for­
mances are accomplished, if the feedback system
composed of the nominal model ft and its own
high performance compensator Cp approximately

ITo app ear in Proc . NSF/AFOSR Sponsored Workshop
on T he Mode lling of Uncer lain ty in Contro l Sys lems, Uni­
versity of Ca lifornia, Santa Barb ar a , CA, June 18-20, 1992.
Spr inger Verlag .
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describes the feedback system containing the plant
P and the same com pensator Cp. T he qua lity of
each candidate nom ina] model depends on its own
compensator and vice versa . Hence th e problem of
designin g a high perform ance compensator for an
imprecisely known plant boils down to a joint prob­
lem of approximate identi ficat ion and model-baeed
control design. Solving this joint prob1em through
separate stages of ident ificat ion and control design
can be done, only if these procedures are ernbed­
ded in an iterative scheme. Vve e1aborate an itera­
t ive scheme, in which each identification is based on
new data collected while the plant is controlled by
the latest compensator. Each new nominal model
is used 1,0 design an improved compensator, which
replaces the old compensator.

A few iterative schemes proposed in literature have
been based on the prediction error ident.ifi cat ion
method, together with LQG/ LT R control design
(Bitmead et al., 1990) and with LQG control design
(Hakvoort, 1990; Zang et al., 1991; Hakvoort ei al.,
1992). Alternatively, in Liu and Ske1ton (1g90) the
ident ificat ion and control design are bascd on co­
var ianee data. In Lee et al.(1992) the J l\I C-d e~ i gn



method is employed, and the identification step is
replaced by a model reduction based on full plant
knowiedge. Alternatively, in Rivera (1991) an itera­
tion is used to build prefilters for a control-relevant
prediction error identi ficat ion from one open-loop
dataset.
Our iterative scheme is composed of a robust con­
trol design method and a frequency domain iden­
t ification tec hnique that are conce ived in te rms of
coprime factorizations. We will discuss the it era­
tive scheme, and show an extensive simulati on ex­
amp le. For more det ails on th e approach presented ,
the reader is referred to Schrama (1992a).

2 A Link Between Identification
and Contro1 Design

We adopt the following cont rol design paradigm
from Bongers and Bosgra (1990) and McFarlane
and Glover (1988). T he feedback configurat ion of
interest is t he interconnection H(P,C), which is de­
picted in Fig. 1. The t ransfer matrix T( P, C) de­
fined as

~y-r,+_~

Fig. 1: Feedback configuration H(P, C) for control
des ign

< IIT (aP,Cp/a)11 s
::; IIT (aP,Cp/ a)1I + IIT(aP,Cp/a ) - T(a P,Cp/a)11

(3)
Th e middle term reflect s th e performance of t he
controlled plant. The nominal performance norm
II T(aP, Cp/ a)11 oo is minimized by th e design of (2);

and IIT(0'P, Cp/ 0') - T( 0'P,Cp/ 0') 11 is th e 'worst­
case' performance degradation du e to th e fact tha t
Cp has been designed for th e nominal mod el P
ra th er th an for th e plant P. With the above in­
equalit ies we can make more precise th e irnplica­
t ions of th e high performance cont rol design prob­
Iem. The point is to find a nominal model P with
an induced cont roller Cp such th at

maps col(r2 , rI) into col(y, û). This t ransfer ma­
tr ix is called the nominal f eedback matrix, because
it embodies all feedback properties like dist ur bance
and noise attenuation, sensit ivity, stability and ro­
bustness margins . The model-based controller Cp
is derived from the nomin al model P according to

Cp = arg min IIT(aP,C/a) ll<Xl (2)c

with 0' E ?R a sca lar weight. The resulti ng con­
tro ller is optimally robust against stabIe pertur­
bat ions of the normalized right coprime factors of
aP, see Bongers and Bosgra (1990) and Vidyasagar
(1985) for details. At the same t ime this controller
Cp pursues some traditional control objectives like
a small sensitivity at the lower frequencies an d a
small complementary sens itivity at the higher fre­
quencies . C, optimizes robustness for a nominal
performance level associated with 0' . The result ing
designed feedback system has its bandwidth close
to the cross-over frequency of aP (McFarlane and
Glover, 1988), and thus a large 0' corresponds to a
high nom ina l performance .
Conformably to (2) th e nominal performance is
high , if II T( aP,Cp/ a) 11 oo is smal!. We examine th e
performance norm of th e actual plant P by th e tri ­
angul ar inequalities:

IIIT(aP,Cp/a )II-IIT(aP, Cp/ a) - T(aP,Cp/a)/II::;

(1)
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IIT(aP,Cp/a) 11 is sma\l (4)

IIT(aP,Cp/a) - T(a P,Cp/a)1I <t:: IIT(a P,Cp/a)lI .

(5)

T he req uireme nt of (4) per tain s to a high nom inal
performance. T he strong inequali ty of (5) embod­
ies t he demand of a robust performance: if (5) is
satisfied, th en th ere is only a relat ively sma ll dif­
ference bet ween th e feedback properties of th e de­
signed and actual feedback systems T(P, Cp) and
T(P, Cp). Th e two requirements (4) and (5) can not
simply be separated. Not e th at for a given nomi­
nal model?, (4) refers to a cont rol design probl em,
and for a given controller C, (5) refers to a (closed
loop) approximate identi fi cat ion problem. Thi s will
be clarified later on.
As the control design of (2) pursues a small nomin al
performance norm IIT(0'P,Cp/a) II <Xl, the remaining
task for the approximate identification would be to
find such a nominaI model P that the performance
degradat ion

II T(aP,Cp/a) - T(a P,Cp/a) 11 co

is relati vely smal!. This approxim at e identificat ion
problem cannot be solved st raightfo rwardly, be­
cause t he compensator Cp is not available prior to
th e identification. This explains once more that th e
problems of approxim at e identification and model­
based cont rol design have to be treated as a joint
probJem .



Note that the bounds of (3) are used to express the
identification obj ective in terms of the control ob­
jective of (2) . The same approach applies to any
other control design method that optimizes a norm
or a distance function of the nominal feedback ma­
tr ix T(P,Cp). As explained in Schrama (1992a)
these methods include LQ control design and the
H",,-optimization of a weighted sensitivity.
As the choice of 0' refers to a required nominal per­
formance level , we will not fix its value a priori,
e.g. aiming at a very high but unachievable per­
formance, but we will gradually increase 0' during
the iteration process . A motivation for this will be
given later on .

We propose the following iterative scheme to tackle
the joint problem of approxirnate identification and
model-based control design.

Step i . Given Pi-I, Ci-1 , O'i-l

(a ) Obtain data from the plant, wh ile it operates

under feedback by Ci-l ' The nominal model Pi
is identified with an identification scheme that
asymptotically obtaines Pi = arg minpEP(O)

IIT(O'i-I P, Ci- Ifai- d - T(a i-l P' Ci-Ifai-dllz
(6)

where P(0) is the set of parameterized cand i­
date models.

(b) Determine a i > O'i-l and design a new con­
troller C, accord ing to

o. = arg min II T (O'iPi , CIO'i)II"" . (7)
c

such that the performance degradat ion

IIT(O'iP, Ci/O'i) - T(O'iPi, Ci/O'i) 11 "" is kept
small.

(c) Perform a robust stability test to ver ify
whether the plant P will be stabilized by the
new controller Ci, prior to implementing it .

Not e that we have replaced the infinity-norm with
a 2-norm in (6). This is done since there ex­
ists no identification technique yet that can han­
dle an H"" (or L",,) approximation. The rationale
for this replacement is that the L z approximation
yields a reasonably good nominal model in an L""
sense, provided that the error-t erm is sufficiently
smooth. This ob servation is backed up by t he re­
sult in Caines and M. Baykal-G ürsoy (1989) on t he
L"" consistency of Lz estimators.
Since the con trol des ign scheme does not take ac­
count of model uncertainties directly, t he des ign
weight is used to tune t he design . We intend to
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Fig. 2: Feedback configur ation for iden tifi cati on

gradually in creas e the design weight during th e it er ­
ation in ord er to keep the performance dcgradati on
small at each it eration step. In this way we guaran­
tee that in the cont rol design step, th ere t emains a
good resemblance between the feedba ck propert ies
of H(Pi, Ci) and H(P,Ci) '
The different st eps in the iterative schem e will be
described in more detail in the next sect ions.

3 Control-Relevant Identification

We consider the feedback configuration of Fig. 2,
in which the plant P is stabilized by th e controller
Ci - 1 • The feedback system is driven by th e exoge­
nous inputs rl and rz and the additive outpu t noi se
v . The noise v is uncorrelated with "i and rz and it
is modelled as v = Pywtv, where tv is a white noise.
The problem of concern is to id en tify a nominal
model Pi from measurements of u and y such that
the asymptotic identificationm criterion reflects

Pi = arg jnin IIT(P,Ci-d - T(P, Ci-dlk (8)
PEC(O)

Only for nota t ional simplicity we use O'i-l = 1. We
reeall from t he previous sec tions t hat we actual ly
use system identification to find an approximate de­
scription of the feedback properties of H( P, Ci - 1 ) .

Thercfore we concent ra te on the so-callcd "asym p­
totic bias distribution" due to undermodelling.
Sin ce P (j P(O) the minimization in (8) from u and
y combines all problems that are encountcred in ap­
proximate identification and in closed -Ioop identi fi­
cation. The desired Pi cannot be derived by a direct
appli cation of some standard identification method
to u and y. In order to obviate this problem we
first represent the plant P by a right coprime Iac­
torization (defini tions are provided in Vid yasagar
(1985)) .
The plant P is known to be stabilized by the lat­
est controller Ci - 1 • As P belongs to th e se t of
all systems that are stabilized by Ci - 1 , it can be
rep resented by a coprime fact orizat ion that is dual
to t he (Youla-) parameterization of all stabilizi ng
compensators (V idyasagar, 1985). T his dual pa­
ram eterizati on can be extended to incorporate the



Fig. 3: Coprime factor representation of Pand
Pyw.

"noise filter" Pyw, (Schrama et al., 1992; Schrama,
1992a). A similar parameterization has been used
by Hans en (1989) for closed-loop experime nt de­
sign.
This parametrization of P is sket ched in Fig. 2,
with Po an auxiliary model th at is stabilized by
Ci- I; Po = No(Do) -I, and Ci- I = Nc(Dc)-l are
right coprime factorization s, and R, S any st ab ie
t ransfer functions. For no tational convenience we
define

N = No+DcR; D =Do- NcR, (9)

sa t ha t P= N D-1
, which is the du al of th e Youla

pa rame te rization. The following result can now be
employed.

Proposition 3.1 (Se hram a, 1992a; S ehram a and
Van den Hof, 1992). Con sider ih e no tation and
paramelrization as present ed above. Th en

(a)

(10)

(b)

X (Do+Ci-I No)-I(u+ Ci- IY) (11)

(Do +Ci- INot l(rl+Ci- lr2 ) (12)

and x is uneorrelated wilh w pro vided that w

is uneorrelat ed with rl , r2;

(e)

T(P, Ci-t} = [ ~] (Do-tCi-INot l [Ci - I I] .
(13)

The proposition shows that th e signal x can be re­
constructed from the measured signals u and Y, and
that x is "designed" through appropriate choice
of rl and/or r2. Since x is uncorrelated with w,
(10) shows that identification of the coprime fac­
tors (N, D) actually is an open loop identification
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problem . This creates t he poss ibility of approxi­
mate identification of P = N D-I wit h an asymp­
totic identification criterion that is not influenced
by w.
Application of an output erro r identi fication algo­
rit hm to (10) with a prefilter L , shows an asy rnp­
totic identifica tion criterion (for SISO sys te ms):

1[INUw) - NUwW + IDUw) - DUw)1 2]<I>x(w)JLUw)1 2dw

(14)
Through th e choice of a prefilter L , satisfying

th e expression (14) can be shown to be equa l to
IIT(P, Ci-I) - T(P, Ci-d ll ~ ·
In th e exam ple shown later on , we will employ (la)
to construct a non-par am etrie est imate of th e fre­
quency response of N( jw), DUw) ; thi s est imate is
subst it uted for Pin (8), in ord er to const ruc t a low
order Pi through nonlinear op timiza tion . This lat­
te r minimization pr oblem is all bu t t rivial, because
the nominal model Pi appears in T (Pi, Ci- d in a
mul t iple and non -Iinear fashion. The pr oblem is at­
tac ked by the Newton-Ra phson method in Schr ama
(1992a) . Due to its highly non-linear eliar aeter the
ut ility of this parti enlar op timizati on hinges on a
good initi al est mate. In Schrama (1992a) such an
est irnate is obtained by parametrizing Pi in (8) in
terms of its coprime factors.

Finally we have to vcrify whether t he est imated
mod el Pi induces a performance degrad ation

t hat is sufficiently small with respect to the nominal
performance . If this is not t rue, we might have to
increase th e order of t he model. Th e evaluat ion of
thi s degra dation is done by repl acing P by its est i­
mat ed frequency respon se, and eva luat ing the norm
for the availab le frequ ency response data points.

4 Enhancement of the Controller

We have a sys te m H(Pi , Ci- I ) that provides a good
description of H(P, Ci- d in view of th e weighted
performance norm. We may expect that thi s holds
also if C;-I is slightly changed. Hen ce we design
an improved controller C, for Pi in such a way that
C, does not differ too much from the old controller
Ci-I. Th e change of the compensator will be mod­
erate if th e performance requirements are increased
moderately. Hence we may choose O'i a bit larger
than O'i- I' We outline how, in essence, this selection



of a i is guided by a frequency response estirnate of
P (details can be found in Schrarna (1992a)) . We
build this est im ate from the frequency response es­
t imates of N and D used in th e pr eviou s sec t ion.
Then we evaluate the ratio of maximum singular
values

Ö"{T(ai P, Ci- I! ai)~jw)} j Ö"{T( a i Pi.' Ci-I!ai)(jw)}
(J"{T(ai P, C;/ai)(]w)} Ö"{T(aiPi, C;/ai)(jw)}

and a similar ratio for the up per bound of (3) . We
choos e ai such that these ra tios are bounded for
every frequency response sample of P. T hereby Ci

changes H(P, Ci-d sim ilarly to H(Pi, Ci-d . In the
example shown later on, these bou nds are chosen
to be 0.7 - 1.3.
As the choice of a i is based on a "p red ict ion" of
the frequency response of T( P, Ci), the feedb ack
systems H(Pi, Ci) and H(P, Ci) are expected to be
similar in an Loo-sense. However , stability still has
to be ascertained.

5 Robustness Analysis

Before the enhanced compensator C, is actually ap­
plied to the plant P, we have to ascertain the stabil­
ity of the new control system H(P,Ci ) . T his stabi l­
ity test is necessary anyway, because the opt im iza­
t ion of robustness against stabIe cop rime factor pe r­
turbations is an unconstrained optim ization, wit h­
out the guarantee of obtaining sufficient robust­
ness. We employ t he following result from Schrama
et al.(1992).

Proposition 5.1 Let Pi = Nb-l be stabilized by
C, = y-lX, the latter being a normalized coprime
jactorization, such that yb + XN = I. Denote
P~ = N~Dó.l with N~ = N + é.N, D~ = b +
sr: Th en H(P~ , Ci) is stabie jor all P~ such that

I1 [ ~~ ] 11 00 < 1.

The result is used as follows . Knowing Pi and Ci,
we can construct N, b. For N~, D~ we substitue
th e estimated frequency response of the coprime
factors (N, D) of P. Ir t here exists a stabIe filter Q

h h
[

N - N~Q ] h bi li fsuc t at b _ D~Q 00 < 1, t e sta 1 ity 0

H(P, Ci) can be concluded. In practice the 2-norm
of the expression is minimized over stablo Q, and
thc inequality is vcr ified for the oo-no rm (Schrama,
1992a ; Schrama et al., 1992).
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6 Sim ulation St udy

We apply th e iterative approach to a simtdat ion ex­
ample. The data consist of 100 frequ en cy response
samples that ar e uniformly dis tributed over a loga­
rithmi c interval ranging from 0.1 to 100 teà ]«. We
use exact frequ ency resp ons e data in orde r to st ress
the effects du e to undermodelling. We mercl y list
the results of this it erative high performan ce con­
trol design procedure, which is investigated in mu ch
more detail in Schrama (l992a) .
The continuous-time plant P under investigation
has a transfer function n(s)jd(s) with

n(8) = 3086 +3020ss+305388 4 +4037383 + 7401\182+

419728+ 12467

d(8) 8
B + 26.02387 +321 .7086 + 2635.98S + 1041284 +

+3091.483+ 1103282+306.815+986.86.

In order to simulate a real application we pretend
that the plant Pis imprecisely known . Accordingly
we do not use any know ledge of the plant's num­
ber of poles or (unstable) zeros; we just know that
P is open-loop stabIe. Hence we cannot teil a pri­
ori how complex a compensator must be in order
to obtain some performance. Conversely we do not
know what performance is achievable with a com­
pensator of cons t rained complexity. The iteration
commences with an open-loop identification of PI'
F ig. 4 shows th e Bode log-magnitude plots of P
(-) and PI (--) . The nominal model PI provides
an accurate description of the low frequency behav­
ior of P. The m ismatch at the highe r frequencies
hardly contributes to the identi ficat ion criterion of
(8) with Co= 0, bccause this cr iterion measu res an
ad dit ive er ror on a linear scale . From i\ we des ign
the compensator Cl as in (7) with ai = 0.113 . We
apply Cl to P, we obt.ain new data, and we subse­
quently derive scveral nominal models and compen­
sators. The iteration ends with the nominal model
Ps(s)=n(s)jd(s), where

n(8) 8.8 . 1O- 48s - 4.77 . 10- 254 + 34.783 + 2'19482 +

16638+6028

d(8) 8S + 13.384+ 156.383+ 712.482+ 131.3s+369.4 ,

with th e compensator Cs(s) = nc(s )/ dc(s ), where

nc(8) 71.40784 + 2182.1s3 + 2871882 + 23854s +

+6 8457

dc(8) = 84 + 129.1683 + 4829.082 + 3344.18 + 11571,

and wit h as = 20. The evolution of th e nominal
mo dels and of the controllers are illustratcd resp ec­
tively in Fig. 1\ and Fig. 5. The lat ter Iigure dis­
plays the gradual incrcase of control action. The
former figure reveals that dur ing the itcrat ion the
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accur acy of the nominal model is improved in the
high frequ ency range at the exp ense of a large mis ­
match for th e lower frequencies. Despite th e large
open-loop mismatch between Pand Ps (see again
Fig. 4), the nominal model A is suited for high
performance control design. This is illustrated in
Fig. 6, which shows the log-magnitudes of T( P, Cs)
and of T(Ps, Cs). Considering th e logarithmic scale
we may conclude that Pand Ps have very similar
high performances under feedback by Cs. Hence
th e couple A,Cs is a solution ta th e joint prob­
lem of appraximate identification and model-based
contral design.

Nate that the model error that appears in the low
frequency range is due ta the fact that we have
chasen a madel order that is toa small to capture
all syste m dynamics. If one additionally to the
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Fig. 8: Sensitivities ach ieved for the plant P.

high performance control requirements, would re­
quire the estimated model to have a similar open
loop response as the plant, one has to "pay" for
that in terms of a higher model order.

We evaluate the performance norms for all pairs of
nominal models and compensators in regard of Q's .
That is, we determine for inst an ee IIT(Q'sP, CdQ's) 11

as the maximum singular value over all frequency
reponse samples. These performance norms have
been plotted in Fig. 7. The indices at the horizontal
axis indicate the iteration step. The performance
norms corresponding to T(Pi , Ci ) and T(P, Ci ) are
marked respectively by '0' and '*' . T he upp er
bound of (3), indicated by (-- ), and t he analogous
!ower bound (....) disclose that the approximat ion
of T(P, Ci ) by T(Pi , C;) is relati vely acc urate. T his
is a direct consequence of t he frequency reponse
based controller en hancement of Section 4. T he fig­
ure also displays that the "worst-case" performance
(- -) is improved in each step of the iterat ion. Fi­
nally Fig. 8 shows the evolution of the sens it ivity
that is achieved for the plant P.

We complete the evaluation by using the method
of (7) and Q's to design also the compensator Cp of
order 4 directly from the plant P. In regard of Q's
this Cp is the optima! compensator of order 4 that
can be designed for and from the plant P. In Fig. 5
we see that the frequency responses of Cp and Cs
are ind iscernible, which produces indiscern ible sen­
sitivities for P (see Fig. 8). Thus the iteratively de­
signed high performance compensator Cs is almost
identica! with the optima! plant- based compensator
Cp, even though no exact knowledge of P nor any
inform ation of Cp has been used to achieve Cs.
Lastl y we eluci date t he need of an it eration to
solve the joint problem of approxim ate identifi-
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cation and model-based control design. The !eft
upper term of T(P, Cs) - T(Ps, Cs), whi ch equals
PCs(J+PCstl_PsCs(J+PsCS)-l, can be rewritten
to (J+PCS)-l (P - Ps)Cs(J+PsCS)-l . Similar ex­
pressions can be derived for the other eleme nts of
T(P, Cs) and T(Ps, Cs). Hence A ,Cs make a couple
that produces a small mismatch

where W L and J,VR are weighting functions de­
pending on P, Ps and Cs. It is tempting to sug­
gest that Ps cou ld have been obtained direct ly
from a weighted open-loop ident ificati on. However,
WdP, Cs) and WR(PS , Cs) depend on the outcome
of the iteration, and thus the requi red wcighting
functions are not available at the outset .

7 Concluding remarks

We addressed the problem of designing a high per­
formance compensator for an imprecisc1y known
plant. We tack!ed this problem by an iterat ive
scheme of repeated identification and con trol de­
sign. At each stage of the iteration data is obtained
from the plant while it is controlled by the lat­
est compensator. As the iterative design procedure
evolves, it learns about th e control-relevant dynarn­
ics of the plant in question . The resulting nominal
model is accurate near the cross-over frequency and,
at least as important, the large mismatch at other
frequencies does not impair the contro! des ign. In
ad dit ion the iterat ion reveals the pe rformance that
is attainable for the imprec isely known plant.

References

P.I\.f.M. Bongers and O.H. Bosgra (1990). Lowor­
der robust Hoo controller synthesis. Proc. 29th
IEEE Conf. Decision and Control. I1onolulu, lIl,
pp . 194-199.

R.R. Bitmead , M. Gevers and V. Wertz (1990).
Adaptive Optimal Control. Th e Thinking Man 's
GPe. Prentice Hall , Englewood Cliffs , NJ.

P.E. Caines and M. Baykal -Gürsoy (1989). On the
Loo consistency of L2 estimators. Syst. Control
Lelt ., vol.12, pp . 71-76.

F.R. Hansen (1989) . A Fractional Representation
Approach to Closed Loop System Id entification
and Experiment Design. P h.D .-Thesis, Stanford
University, Stanford, CA, Ma rch 1989.

R.G. Hakvoort (1990). Opti m al ex peri me nt design
for predi cti on erro r identifica ti on in view of feed­
back design. Se lected Top ics in Id ent ifi cation,



lvlodelling and Control. vol. 2. Delft University
Press, pp. 71-78.

R.G. Hakvoort, R.J .P. Schrama and P.M.J . Van
den Hof (1992). Approximate identification in
view of LQG feedback design . Proc . 1992 A mer­
iean Control Conf., June 26-28, 1992, Chicago,
n., pp. 2824-2828.

W.S. Lee, RD.O. Anderson , R.L. Kosut and I.M .Y.
Mareels (1992) . On adaptive robust cont rol
and control-relevant system identification. Proc.
1992 American Control Conf. , June 26-28, 1992,
Chicago, IL, pp. 2834-284l.

K. Liu and R .E. Skelton (1990) . Closed loop iden­
t ification and iterative controller design. Proc .
29th IEEE Conf. Deeision and Control. Hon­
olulu , Hl, pp. 482-487.

D. McFarlane and K. Glover (1988). An Hoo design
procedure using robust stabilization of normal­
ized coprime factors. Proc. 27th IEEE Conf. De­
cision and Control. Austin , TX , pp. 1343-1348.

D.E. Rivera (1991). Control-relevant parameter es­
t imat ion: a systemati c procedure for prefilter
design. Proc. ·1991 Am erican Control Conf. ,
Boston , MA, pp . 237-241.

R.J.P. Schrama (1992a) . Approximate Idenlifica­
tion and Control Design with App! ication to a
Mechan ical Sy st em. Dr. Dissertation , Delft Uni­
versity of Technology, May 1992.

R.J.P. Schrama (1992b). Accurate mod els for con­
trol design: the necessity of an iterative scheme.
IEEE Trans . Automat. Contr., AC-37, pp . 991­
994.

R.J.P. Schrama and P.M.J. Van den Hof (1992) .
An iterative scheme for identification and control
design based on coprime factorizations . Proc.
1992 American Control Conf., June 24-26, 1992,
Chicago, u, pp. 2842-2846.

R.J.P. Schrama, P.M.M. Bongers and D.K. de Vries
(1992). Assessment of robust stability from ex­
perimental data. Proc. 1992 Am erican Control
Conf., Chicago, Il., pp . 266-270.

M. Vidyasagar (1985) . Control Syst em Synthesis:
A Faetorization Approach. M.I.T.-Press, Cam­
bridge, MA.

Z. Zang, KR. Bitmead and M. Gevers (1991). H2

iterative model refinement and control robustness
enhancement. Proc. 30th IEEE Conf. Decision
and Control. Brighton, UK, pp . 279-284.

100






