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Editorial

The present issue of Selected Topics in Identifica-
tion, Modelling and Control is the fifth volume in
the series, reporting on ongoing research in the Me-
chanical Engineering Systems and Control Group at
Delft University of Technology. We have eleven pa-
pers on a variety of subjects that completely cover
the subjects of Identification, Modelling and Con-
trol.

In the area of Modelling, the issue of model uncer-
tainty representation is considered by Lambrechts et
al. with a contribution aimed at obtaining struc-
tured uncertainty models to be used in p-synthesis
controller design. Wortelboer and Bosgra consider
extensions to frequency weighted balancing model
reduction. The modelling of a wind power gen-
eration system is the subject of Van Baars and
Bongers who present first results on the issue of
experimental validation of their theoretical models.
The real-time modelling of heat balances and the
estimation of the relevant process variables on the
basis of operational chemical process plant data is
the subject of work reported by Baak et al.

The field of Control is covered in contributions by
Bongers and by Schrama et al. Both papers con-
sider robust control issues with both uncertainty in
plant and in controller, and derive new results with
respect to robust stability. The interplay between
the requirements of robust high-performance con-

vi

trol and the achievements of error-analysis-directed
system identification is shown in the contribution
by Schrama and Van den Hof.

In the area of System I[dentification we have two
papers by Hakvoort addressing worst-case aspects
of identification for two fundamentally different er-
ror criteria. The issue of guaranteed error bounds
in system identification results is discussed and
worked out by De Vries and Van den Hof. Finally,
Heuberger et al. show the construction of orthogo-
nal domains that may lead to advantageous signal
and system representations in system identification.
The present issue contains results from applied
projects and from theoretical studies. We appreci-
ate the fact that results from collaborative projects
performed in cooperation with external institutes
and industrial research groups constitute a consid-
erable part of this issue. Although most of the ma-
terial presented here will eventually be published
elsewhere in the open literature, we appreciate the
efforts of our authors who in many cases have made
available some of their most recent, research results.
We hope you enjoy the result.

Okko Bosgra
Paul Van den Hof
Editors
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Abstract. In this paper a general approach for modelling structured real-valued para-
metric perturbations is presented. It is based on a decomposition of perturbations into
linear fractional transformations (LFTs), and is applicable to rational multi-dimensional
(ND) polynomial perturbations of entries in state-space models. Model reduction is used
to reduce the size of the uncertainty structure. The procedure will be applied for the
uncertainty modelling of an aircraft model depending on altitude and velocity (flight

envelope).

1 Introduction

In both robustness analysis and robust control sys-
tem design the concept of the structured singular
value p as introduced by Doyle (1982) is of great
importance. It allows a high degree of detail in
modelling the conditions under which the consid-
ered control system should operate satisfactorily,
both in the sense of stability and performance. The
calculation of p for such models then results in a
single number acting as an accurate measure in in-
dicating whether the behaviour of the controlled
system is satisfactory or not. The relevance of using
the structured singular value instead of measures
that do not reflect the structural properties of the
plant uncertainties, like the co-norm or the 2-norm,
can be found in literature; the latter may lead to
arbitrarily conservative statements when practical
examples are considered (see for instance Balas et
al., 1990, Stein and Doyle, 1978, 1991, Doyle et al.,
1986, Skogestad et al., 1988). In spite of this the
use of u has been seriously hampered by the con-
siderable computational effort needed for its calcu-
lation with respect to a given uncertainty model.
Recently developed methods for calculating close
upper and lower bounds for the most general cases
(Fan and Tits, 1986, 1991, Young et al., 1991)

now motivate the effort of modelling uncertainties
in great detail. The main issue of this paper is to of-
fer a complete procedure for setting up the general
structure for the calculation of 4 when uncertainties
like real-valued parameter variations in state-space
models and variations in operational conditions oc-
cur.

First, we will give some preliminary results on the
use of Linear Fractional Transformations (LFTs)
and their importance for uncertainty modelling, fol-
lowed by a definition of the structured singular
value g and some relevant uncertainty sets. Sec-
tion 3 then will present a procedure for parametric
uncertainty modelling based on a state-space model
in which uncertain entries may be given as rational
multi-dimensional polynomial functions of a set of
parameters. The usefulness of this procedure for
practical problems will be demonstrated by means
of an extensive example in section 4, after which
some concluding remarks follow in section 5.

2 Preliminaries

This section will review some of the properties of
Linear Fractional Transformations (LFTs) and the
structured singular value p along the lines of Doyle



et al. (1987, 1991). First we will give a defini-
tion of upper and lower LFTs and discuss some im-
portant possibilities of combining and rearranging
them. Next we will consider the LFT concept as
a framework for uncertainty modelling and within
this framework we will give a definition of x and
some relevant uncertainty sets.

2.1 Definition of LFTs

We will consider matrices with entries that are frac-
tions of polynomials in a complex-valued variable s;
the space of all such real rational functions will be
denoted as R(s), M € R(s)?*? will denote that M
is a p % ¢ matrix with entries in R(s). Suppose a
matrix M € R(s) is partitioned as:

My, M, : ; :
M = R(s)Prtr2)x(mtaz)
[ ﬂ/f‘n 11’1(22 ] 5 (") (l)

and let A, € R(s)?*? and A; € R(s)2*7 be ar-

bitrary. We will then define the upper and lower

LFTs as operators on A, and 4A; respectively:

FMLA) e M
May(I — AuMiyy) "' AuMig
Fi(M,Ay) = My+
Mo (1 — AyMyy) ™1 AMy,

Either LET will be called well defined if the con-
cerning inverse exists: det(/ — A, M) # 0 and
det(] — A;M3;) # 0. The matrix M is sometimes
referred to as the coefficient matrix of the LFT.
Note that if s is interpreted as the Laplace vari-
able, a matrix with entries in R(s) can be seen as
a multivariable transfer function of a linear time
invariant finite dimensional system. In that case
LFTs can be seen as operations resulting from feed-
back structures as given in fig.1; eq.2 then defines
a closed loop transfer functions from wys to zp in
both cases.

M wag I—'IH-—I
eM M UM el
' EN Uy
| A M M w
| 1 - ==

Fig. 1: Upper and lower LFT as feedback structure

An important reason for using the concept of LFTs
in linear systems theory is that linear interconnec-
tions of LFTs can be rewritten as one single LF'T.
This implies that LFTs can be used to separately
model specific details of the system under consid-
eration after which a complete system description
can be obtained by working out all connections.

To demonstrate this we will first look at the two
most basic connections between two LFTs: the cas-
cade and parallel configurations. After that we will
show a simple feedback configuration for one LFT
which can also be rewritten into the standard form
of fig.1. These three configurations will play an
important role in the algorithmic approach to un-
certainty modelling we will present in section 3.

Given matrices M and N partitioned as in eq.1:
M € R(s)Pm*9m) and N € R(s)P¥*™, with pyy =
Py tpm2, M = gmitqm2, PN 2= Paitpne and
gy = qn1 + qnz. Let M and N be the coefficient
matrices of the upper LFTs on Ay € R(s)7Mm1%XPan
and Ay € R(s)?1*P¥1 respectively and define the
combined structure:

Boe 0

0 M] € Risjnmex i SN()

Apn = [

with pya :=pan + Py and  qun := qar + gas-
Then the cascade connection obtained by setting
wy = zy with r := qaz = pnz (see fig.2) results in
an upper LFT on Ayy with coefficient matrix;

My, My Nay | Mia Ny

A ‘J(' tad 0 f'\"’], 1 IVI 2

My, My Nay | M2y Ny,

M, € R(s)Pantr)x(anntr)
‘Jl Ap
EM
2 | M

Fig. 2: Cascade connection of LFTs

The parallel connection obtained
by setting wy = wy and zyy = 2p0 + 2y with
Ty = qm2 = qn2 and 7= parp = py,y (see fig.3)
also results in an upper LFT on Auy, this time
with coefficient matrix:

My 0 M,

Aq’i' g 0 N]] N2

My, Ny | Moy + Nap

M

% LE R.(:j)(“‘N"'fl’}x('fmfv-i-rq)
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Fig. 3: Parallel connection of LFTs

Note that we have conveniently chosen the inputs
and outputs of both LFTs to be compatible, but
that it is also possible to connect only parts of in-
put and output vectors by defining a further parti-
tioning of M and N.

Next consider the feedback configuration given
in fig.d with My; square (p; = ¢1). In this case

27 wy
Why A
e
Uns M €A1
Apy

Fig. 4: An LFT in the feedback path

the coefficient matrix of the equivalent LE'T can be
calculated as:

_ [ Mg [ Mo A(p2tp1 )X a2+
My = [m € R(s) (6)

with:
Mpy = Mayy(I+ Mi)="Miz + Mas
Mo = Moy (I 4 Myy)™! )
Af;g] = —(I+ ﬂ’fnj-lﬂ'!m
.M]gg = (!+.‘14“)_]

Clearly, for this coefficient matrix to be well defined
we must have det(/ + M,;) # 0. A more general
form of this structure is known as the ‘Redheffer

Star-Product’ (Redheffer, 1959).

2.2 Uncertainty descriptions with LFTs
and the structured singular value

Another main advantage of the LFT concept is that
it provides a framework for uncertainty modelling.
The coefficient matrix can be seen as the part of
a linear model that is assumed to be correct: the
nominal model then results as an LFT on A = 0.
By taking A € A with A C R(s) a given subspace,

it is then possible to specify a set of linear mod-
els rather than a single one. Especially if this set
of models is closely related to physical properties
of the system under consideration it thus provides
a basis for non-conservative and trustworthy state-
ments on robustness of controlled systems in the
face of ‘true’ uncertainties.

For many relevant choices of the subspace A it
is possible to determine whether all models within
the specified set are stable by calculating a single
non-conservative measure. This measure was intro-
duced by Doyle in 1982 as the structured singular
value or u and is based on a block-diagonal struc-
ture of A:

A = {diag(d1lk,yer.s6r 06, D1y.. Af) )
5, € R(s), Ar € R(s)brioxiese

in which é&;ly,2 = 1...r denote repeated scalar
blocks and A;,i=1...f denote full blocks. Note
that for A € A to be compatible with a coefficient
matrix according to eq.l we must have for an up-
per LFT Yk = p, = ¢ and for a lower LFT
Z:’]f ki = p2 = q2; extensions to the non-square
case are reasonably straightforward. An often use-
ful restriction of the set A can be obtained by tak-
ing bounds for the co-norms of the sub-blocks of A,
with the co-norm of a matrix M € R(s)?*? defined
as:

[M]|oo := sup a(M(jw)) - (9)

with & denoting the largest singular value, Assum-
ing that scaling factors are incorporated in the co-
efficient matrix of the LFT, A is an element of a
unit ball in A:

BA={A€A:|All. <1} (10)

For the block-diagonal structure of eq.8 we can
now define the structured singular value as follows:

Definition 2.1 Given an upper LFT with coeffi-
cient matriz M, partitioned as in eq.l and given
a compatible block-diagonal structure as in eq.8;
pnalM) is then defined as:

pa(M) :=

(11)
min{|[A|le : A € A, det(/ — AM;;) =0}?

unless no A € A makes [ —AMy, singular in which
case pa(M) = 0.

Clearly pa (M) determines the smallest A € A for
which the LFT under consideration is no longer well
defined. If F(M,0) and all A € A are stable trans-
fer function matrices, we may also interpret this A



as the smallest one such that F(M,A) is unstable.
Note that lower LFTs can easily be rewritten as up-
per LFTs such that we can use the same definition;
furthermore we have that u is also defined if in eq.1
we take p2 = ¢ =0,

With this definition we now have the possibil-
ity to test the properties of a set of systems by
constructing an appropriate LFT, normalizing A
such that A € BA and finally determining whether
. < 1. For an overview of such fests in the gen-
eral case of eq.8 we refer to Doyle et al. (1991).
Furthermore, we will not go into detail on com-
putational issues with respect to p but simply refer
to recent developments as reported by Fan and Tits
(1986, 1991) and Young et al. (1991). We will con-
centrate on a further restricted set of As that di-
rectly results from real valued parameter variations
in state-space models as considered in section 3.
For this purpose we define the set of As that are
square and diagonal and consist only of real-valued
repeated scalar blocks:

A, :={diag(6:lp,,...,0-1k,) : 6; € R} (12)

In accordance with the general structure of eq.8 we
can usually assume that scaling factors are incorpo-
rated in the coefficient matrix and that A is further
restricted to the bounded set:

BA.; = {diag(dil). s ooesinlin)i:

5 € (o1, +1]) (13)

3 Parametric uncertainty
modelling

In this paragraph we will consider the problem
of state-space models with parametric uncertainty
occurring as real rational ND-polynomials. This
generalizes earlier results in parametric uncertainty
modelling as given by Morton and McAfoos (1985)
and Steinbuch et al. (1991, 1992). In section 3.1
the problem will be formulated, which turns out to
be an ND-realization problem. Section 3.2 discusses
the existence of a solution and section 3.3 provides
an algorithm for solving the realization problem by
constructing an appropriate LI'T.

3.1 Transformation of a state-space model
to an LFT

Consider a vector p = (py,...,p-) € R” containing »
bounded scalar parameters. Let the model of the
perturbed system be given as a state-space realiza-
tion in which the entries of the matrices depend on

the parameter vector p:

A(p)z + B(p)u, =ze€R*',ueR™ (14)
C(p)z + D(p)u, yeR'

z

Y

Il

With the (n+ 1) x (n 4+ m) matrix S(p) defined as:

oy — [ AlP) B(p)
bw“‘(cm)mm) S

we can write this as

(i)=ﬂm(§) (16)

Now we would like to rewrite eq.15 using an upper

LET;
S(p} = )1422 + J'Wg](f T Auﬂ'ﬂfll }_lﬁuﬁ‘f[z “?)

with A, € BA,, (eq.l13) and the matrices
My, Myy, Myy, My, independent of A,,.

If we consider only the non-trivial case that
6;#0, ¢=1...r we can then define p;:=1/§;

and rewrite eq.17 as:
S(p) = Mo+
r h‘i 0 "
_ e (18)
Moy ., - My, M,
0 .ror[kr

=1

Note that we now have transformed the problem of
finding an LFT representation of eq.14 to an ND-
realization problem (see Bose (1982)).

3.2 Existence of a solution

Using a constructive algorithm we are now able to
prove the following theorem.

Theorem 3.1
A solution to the problem of transforming a
state-space model
with paramelric uncertainty to an LFT exists
if
the state-space matrices can be given as
real rational ND-polynomials in the parameters.

Proof:

Real rational varying entries in a state-space model
can be described as LFTs individually. Based
on the properties of the interconnection of LFTs,
treated in subsection 2.1, these individual LFTs can
be collected in one LFT afterwards. For details on
the algorithm see section 3.3. |

Minimality of the obtained LFT can not be guar-
anteed since it is not straightforward to generalize
the 1D concepts of controllability and observability




to ND-systems. By for instance Hinamoto (1980),
Kung and Levi (1977) and Roesser (1975) 2D coun-
terparts of these notions are considered, leading to
the definition of local and global controllability and
observability. As is well known, for 1D systems the
minimality of a state-space description is equivalent
to the property that such a realization is control-
lable and observable. By Kung and Levi (1977) it is
shown by means of an example that global observ-
ability and controllability does not imply minimal-
ity. However, by removing locally unobservable and
uncontrollable perturbations the dimensions of the
obtained LFT can be reduced substantially. This
approach has been implemented in the algorithm
given in the next section.

3.3 A procedure for the transformation

1. Scaling the varying parameters
Lower and upper bound vectors for the pa-
rameter vector p can be determined, denoted
respectively as p and p: Now define p, =
(p+p)/2 s = (p—p)/2, 6 = (&...4;),
6 € [—1,41], such that p; = p, + s;6; for
¢ = 1:+-7. Substitution of this result in eq.14
then gives scaled ND-polynomial expressions
for all varying numerators and denominators.
For instance, suppose a numerator is given as
nii(p1,p2) = papa, with pi = pa + $16; and
P2 = Pa2 + 8262. Then the scaled numerator is

nij(61,682) =

: 19
Po1Poz + Po28101 + Por 5202 + 5152016, (19)

2. Individual varying terms as LFTs

The varying parts of a numerator or denomi-
nator consist of a number of terms that can be
written as seperate LFTs. For example, the
scaled numerator n;;(d;,62) given above has
three varying terms resulting in three LFTs
(see fig.5). Of course the same can be done
with the varying terms in denominators.

3. Numerators of varying entries

Using the fact that two parallel LFTs form
again an LFT (see eq.5) the addition of all
terms in each numerator can again be written
as an LFT. Since we use upper LFTs, the nom-
inal (constant) part of each numerator results
in a feedthrough term, which can be incorpo-
rated in the Msy; term of the combined LFT.
The resulting LFT giving the numerator n;; of
eq.19 is depicted in fig.6.

62 '51
0 porsa 0 po2s:
1 0 1 0
6 0
0 &
0 B 5189
1 0] 0
0 1] 0

Fig. 5: The varying terms in the numerator n;
written as LFTs
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Fig. 6: The numerator n;; given as a single LFT

4. Denominators of varying entries

A similar procedure is followed for the denom-
inators. However, there is a slight difference.
In fact we are interested in an LFT-description
of the inverse of the ND-polynomial denomi-
nator. This inverse can be thought of as a feed-
back structure as in fig.4, with the denomina-
tor minus 1 in the feedback path. According to
eq.6 this structure can then be rewritten as an
LFT under the condition that the term M;j,+1
isinvertible. This corresponds with the restric-
tion that the nominal parts of all the varying
denominators of a state-space model must be
unequal to zero.

5. Combining numerators and denomina-
tors of individual entries
Cascade connection of the LFTs of each
numerator-denominator pair found in the pre-
vious steps can be performed as in eq.4.




6. Combining all varying entries
We now have a complete description of all un-
certain entries specified in eq.14 in the form of
LFTs. Combining the LFTs for the A, B, C
and D matrices separately by means of eq.5 re-
sults in fig.7 that can be rewritten as one single

LFT With A= dlag(A; AB. .ﬂ(;, A,r_)].

Dy D2
Dj] Do

Fig. 7: LFT description of state-space parametric
uncertainties

7. Transformation to the real-repeated
blockstructure
A can now be rearanged into the real-valued
repeated scalar block structure of eq.12 by
means of interchanging rows and columns of
the LE'T. Note that due to step 1 the entries of
A are elements of [—1, 1], such that A € BA,.

8. Reducing the dimension of A

The resulting LFT may now be reduced in di-
mension; if possible the individual repeated
blocks are replaced by smaller blocks. The re-
duction procedure is started by seperating the
first repeated block from the derived LFT re-
sulting in a subsystem which has a state-space
form. The remaining part of A may then be in-
terpreted as an uncertainty block acting on this
subsystem. Subsequently the uncontrollable
and unobservable perturbations of the subsys-
tem may be removed using a standard (1D)
reduction technique. Rewriting the LFT such
that the next repeated block is separated then
allows to perform this reduction step for all
blocks. Although a minimal realization can not
always be obtained by this procedure, many
examples have shown that an extensive reduc-
tion of dimensions can be achieved.

With these steps we now have an LFT description
which is equivalent to the state-space system of
eq.14. These steps have been implemented within
the environment of PC Matlab such that the entire

procedure can be performed interactively. In the
next section an example is given.

4  Uncertainty modelling for the
Phugoid approximation of the
DHC2-Beaver aircraft.

The design example is based on the variations of
aerodynamic coefficients and relative mass within
the flight envelope, as they appear in the phugoid
approximation of the Beaver aircraft. The phugoid
motion is a low frequency badly damped oscilla-
tory effect appearing in forward velocity and alti-
tude of the aircraft. For good aircraft design it is
important that the effect of the phugoid motion is
minimized to ensure satisfactory handling and fly-
ing quality, especially under instrument flight rules.
Also for controller design it is important to find
an accurate characterization of this effect. We will
therefore start with the definition of the analytical
phugoid model in which stability derivatives are de-
fined that have been quantified accurately over the
whole flight envelope by Tjee and Mulder (1988).

In our example we are interested in modelling pa-
rameter variation of the aircraft in cruise flight, con-
ditions over the entire flight envelope. The flight en-
velope represents a set of flying conditions, in terms
of velocity and altitude, under which the aireraft
can operate. The goal of this exercise is to obtain an
aircraft model that accurately represents all flight
conditions that may occur and that may be used for
stability and performance analysis and also can be
used in robust controller synthesis. We will show
that once the variations are explicitly defined, the
model can be written as an LFT such that calcu-
lation of the structured singular value may provide
a measure for the unwanted effect of the phugoid
motion.

4.1 Modelling the phugoid motion

The aircraft model considered in this example is the
linear approximation model of the phugoid motion
and can be given in state-space form as:

u(t) | u(t
[f)(u]‘ + {0

(t
(i
y(t) =[0 1] [“((j

0
with:
v 1
= C',\'..{Pn V) -‘}'(]IV
2uclp)e .
= — ¥ 9
A 2;;,&;}& C‘zu(pu v) 0 ("])




The state vector @ = (u,0) represents the longi-
tudinal component of the velocity vector (u) and
the pitch angle (0). The input vector w is added
to demonstrate the possibility of modelling the ef-
fect of, for instance, air turbulence on the phugoid
motion. As a measure of the effect of the phugoid
motion we assume that the pitch angle # can be
measured. The terms Cy, and Cz, represent the
stablity derivatives which are known in terms of al-
titude (air density p) and velocity V. The acceller-
ation of gravity is given as go = 9.80665 m/s* and
the factor . = ~%&= represents the relative aircraft
mass with m denoting the nominal aicraft mass, S
the wing area and ¢ the mean aerodynamic chord
of the wing profile. The air density p is assumed
to depend on altitude h according to the Standard
Atmosphere model:

M,
10 } o +1

”Z”U[T{)Hh

with To=288.15 K,
R, = 8314.32 J/K-kmol and
My = 28.9644 kg/kmol.

A= —0.0065 K/m,

4.2 TFitting the stability derivatives

To obtain a parametric description of the stability
derivatives C'y, and Cz, as a function of p and V
we will use a 2 dimensional polynomial fitting pro-
cedure. Data regarding the stability derivatives for
several combinations of p and V within the flight
envelope is available from Tjee and Mulder (1988).

Although the area of the flight envelope is not
square it can be approximated by means of poly-
nomial fits of the nominal value and deviation of V
as a function of p. Both the approximation of the
area and the surfaces defined by Cx, and Cz, can
then be given as a function of twe new parameters
&, and &, varying between -1 and 1. For the ap-
proximation of the area, second order polynomial
fits have been determined resulting in:

h = 4000 6, + 6000 [ft]

- 1.25e-01 é, + 1.03 [kg/m?]

_ 357 626, + 3.57 &% - 3.50 6,5,

+ 3.50 &, + 12.3 6, + 47.7 [m/s]

(23)

<™
Il

The flight envelope thus deseribed is visualized in
fig.8 as a function of §.. Polynomial fits for Cy,
and Cz, within this area and with terms having a

Polynomial fit of the flight envelope as a function of §,
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Fig. 8: Flight envelope and its approximation

maximal order of 2 are given by:

Cx. 5.95e-02 6282 - 6.37e-02 626,

+ 1.38e-02 62 + 3.97e-02 6,67

- 3.99¢-02 6,6, — 7.95e-04 &,

- 9.91e-02 82 + 1.23e-01 6, - 0.14
Cz. 1.02e-01 6262 - 2.90e-01 628,

+ 1.83e-01 67 + 1.09e-01 6,67

- 2.41e-01 &;6, + 1.91e-02 é,

~ 2.37e-01 62 + 7.68e-01 &, — 1.43

and plotted in fig.9. Finally the relative aircraft

Il

(24)

I

Fig. 9: Fitted surfaces of Cx, and Cy,

mass can be determined as:
e =T.43 6, + 60.9 (25)



4.3 Results

Using the procedure of section 3 we arrive at, an up-
per LFT description of the state-space model given
in eq.20 with thirteen uncertainty inputs and out-
puts

[ s,

'lf,gts

T = A ey = [ 861 352 | Bu J 'UEN

Uus,,
w | (26)
Yo Uss
Ybs Us.q

wl

y"yl :C‘I+[D§1 D.52 [Du] s

Yo7 W,z
L ¥ || e ]
with:
/ ~3.47e-02 -2.062-01 G hrd
A= [ 3.54e-01 n] (27)
Bs, (28)
[-1 018e-01 8.25¢-03 1.45e-01 1.88e-02 0.92¢-03 2.0Te 02] L
0 -1.22¢-01 0 ~4A4Te-01 -1.54e-01 -2.T4e~01]
B e [—I. 7 0.61e-01 1.94e-02 0 0 ] {')l])
§z = 3.04 3.70e-01 6.68¢-03 0000 L5k
- 1 V)
By ="[4] (30)
T 0 ~1.48e-01 ]
1.81e-01 0
0
0 0
0 0
0 0
(‘ _ =3.05e-02 -5.88e-03 ;I
= -1.48¢-02 5.08¢-02 ( }
—4.11c-03 -1.40e-01
-1.85e-02 '}
~1.48e-02 0
~3.87e-03 0
3.00e-03 0
o T
Blg =
r 0 0 [ (1 0 0]
-7.54e~02 0 1.05e-01 0 0 0
0 -1.22¢-01 0 0 0 0
-7.14e-01 0 0 0 ] 0
0 2.37e-01 0 0 0 0
0 0 0 5.57e-01 0 0 Q4
] ] ] 0 5206-01 0 (32]
-1.421e-02 5.29¢-02 2.00¢-02 1.90e-01 1.T1e-01 2.16e-01
1.23e-01 1.98e-02 -1.75e-01 -5.00e-02 1.12e~01 1 36e-01
-3.374e-01 4.96¢-03 4.82e-01 -2.62¢-02 3.36e-02 4.04e-02
0 B.05e-02 0 4.15¢-01 -3.20e-01 ~2.81e-01
0 3.05¢-02 0 -4.24¢-01 -2.84e-01 -2.78¢-01
0 -6.45e-02 0 1.79e-01 2.16e-02 2.55¢-01
L 0 -7.33e-02 0 2.056-01 -8.07e-02 -6.15¢-01 |
D;, =
i 0 0 0 0 0 0 07
-1.02e-02 B.77e-02 -2.41e-01 0 0 0 0
0 0 0 ] 0 0 a
0 0 0 0 0 0 [
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
~1,03¢-01 -3.98e-01 -1.50e-01 2.01e-01 1.556-01 0 [
1.68e-01 4.066-02 1.01e-01 3.56e-01 -7 59¢-02 0 0
5.64e-02 1.25e~01 -2.14e-01 121e-01 -3.41e-02 0 0
3.27e-02 1.01e-01 3.53e-02 -4 95e-02 -0.580-02 8.18e-02 B 6he-02
-1,806-02 -2.19e-01 ~7.88¢-02 3.40e-02 -1.656-02 3,34e-01 -2.12¢-02
~3.86e-02 ~4.12¢~02 ~1.34¢-02 -4 40c-02 ~1.5Te-01 2.64e=01 2.72e-01
2.34¢-02 -1.39e-01 -5 14e~02 1.62e-01 8. 05¢-02 2.626-00 -1.40e-01

(33)

D,=[000000[0000000]0]" (34)

To demonstrate the possibility of using the struc-
tured singular value p as a measure for the worst
case influence of disturbance input w on the
phugoid motion, we will calculate u for the inter-
connection structure given in eq.26. The structure
of the uncertainty block A for this LET can be given
according to eq.8 as A = diag(é./s,8,17,6,,) with
8z, 8, the real parameter variations as defined be-
fore and é,, a complex perturbation to express our
demand to restrict the phugoid motion. We used a
preliminary release of the MUSYN toolbox to calcu-
late y for this mixed real-repeated complex problem
resulting in fig.10. Our choice of disturbance input

Upper and lower bounds of real p

40
H

354

3ok

25

20F

Q R
101 100

: : w [rad/s]
Fig. 10: Real p for the Phugoid motion of the

Beaver aircraft

w and output y was arbifrary and just to demon-
strate the procedure. The value of u of 38.6 can be
interpreted as the maximal amplification occurring
in the transfer function matrix from w to y under
the worst case conditions within the flight envelope
and with the worst case disturbance w (a sine of
frequency 0.27 rad/s). A choice of inputs and out-
puts based on a physical interpretation of distur-
bances and the desired suppression of the phugoid
motion is currently a research topic at the faculty
of aerospace engineering.

5 Conclusions

The development of methods for analysis and de-
sign based on the structured singular value y causes
an increasing demand for the construction of accu-
rate uncertainty models in the form of LFTs. Usu-
ally the knowledge concerning uncertainty in math-
ematical models of physical systems is available in
terms of parameter variations. In state-space mod-
els this often appears as variations of entries that




can be approximated accurately by means of ra-
tios of ND-polynomials in independent variables
which have a physical interpretation. In this paper
an algorithm is presented which is used to trans-
form a state-space model with this type of para-
metric uncertainty to an LFT description with a
real-repeated perturbation matrix. Although the
dimension of this perturbation matrix may initially
be very high, a reduction procedure is proposed
that usually decreases it significantly. However,
this procedure does not guarantee minimality of the
resulting structure. The proposed procedure has
been applied to the uncertainty modelling for the
phugoid approximation of the DHC2-Beaver air-
craft resulting in an LFT description allowing the
analysis of the influence of disturbances over the en-
tire flight envelope. The procedure has been imple-
mented in MatLab, such that uncertainty models
can be set up in an interactive user-friendly man-

ner.
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Robustness of feedback systems under simultaneous
plant and controller perturbation
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The aim of this paper is to derive a new robust stability margin for simulta-

neous perturbation of plant and controller which is less conservative than the gap-metric
robustness. Known sufficient conditions for robust stability stated in the gap-metric
contain inherent conservativeness in the formulation of the various steps. In this paper
conservativeness in one of the steps is removed, resulting in a new and less conservative
robustness margin. The key issue is that more information of the nominal feedback sys-
tem is taken into consideration. The improvement of the new robustness margin will be

illustrated by an example.

Keywords.

1 Introduction

A perfect model of the real plant, if it is available,
will in general be non-linear and of extremely high
order. In engineering practice the plant will be ap-
proximated by a low order linear model. The dis-
crepancy between the nominal model and the plant
is then described by a set of plant uncertainty mod-
els. In the next step a controller will be synthesized
in such a way that it robustly stabilizes the nominal
model and the set of plant uncertainty models, for a
pre-specified performance; Methods to design such
robust controllers are for example given in (Doyle
et al.(1989), McFarlane and Glover (1989), Bongers
and Bosgra (1990)).

When dealing with industrial processes the con-
trol computers are calculating in finite word length
arithmetics or even integer arithmetics, while for
the controller limited time and space on the com-
puter is available. Therefore the implemented con-
troller is only an approximation of the designed
controller. The discrepancy between the designed
controller and the implemented controller can be
described by a set of controller uncertainty models.

The feedback connection of plant model and con-

11

robustness, simultaneous perturbations, coprime factorizations, gap-metric

troller will be called robustly stable if the feedback
system remains stable for all plant variations de-
scribed by the set of plant uncertainty models and
all controller variations described by the set of con-
troller uncertainty models.

In some recent papers by Georgiou and Smith
(1990a), Bongers and Bosgra (1990) a sufficient
condition for robust stability of a closed loop sys-
tem has been stated for plant perturbations mea-
sured in the gap-metric. In Georgiou and Smith
(1990b) gap-metric robustness under simultaneous
plant and controller perturbations has been stud-
ied. In the gap-metric robustness the nominal plant
(contreller) is factorized in normalized coprime fac-
tors. The difference between a perturbed plant
(controller) and the nominal plant (controller) is
described by perturbations on the normalized co-
prime factors of the nominal plant (controller). Ro-
bustness of the closed loop for a class of perturbed
plants and controllers is guaranteed if the norm of
the perturbations on the normalized coprime fac-
tors is small enough. The maximum allowable norm
of the perturbations is determined by the infinity
norm of the feedback system. This means that in
the gap-metric robustness only crude information



about the nominal feedback system is taken into
consideration.

The main idea behind the new and less conserva-
tive robustness margin, to be considered in this pa-
per, is to take into account more information about
the nominal feedback system. One can think of this
information as refinement of the infinity norm to a
frequency dependent maximum singular value, and
the directionality of the feedback loops in multivari-
able systems.

In order to take account of the closed loop char-
acteristics a normalized coprime factorization of the
nominal controller (plant) is used to define a specific
coprime factorization of the nominal plant (con-
troller).

The difference between a simultaneously per-
turbed plant and controller (Pa,Ca) and the nom-
inal plant and controller (P,C') is now described
by perturbations on the specific coprime factors of
the nominal plant and nominal controller which in-
cludes detailed information about the nominal con-
troller and plant respectively.

It will be shown that this new robustness margin
allows a larger class of coprime factor plant and
controller perturbations than allowed in the gap-
metric.

The layout of this paper is as follows: after some
preliminaries in Section 2, stability of a nominal
closed loop system is discussed in section 3. Then
the new robustness margin will be derived in Sec-
tion 4, where it will be demonstrated that this mar-
gin is less conservative than the gap-metric. The
whole procedure will be illustrated by an example
in Section 5 followed by the conclusions

2 Preliminaries

In this note we adopt the ring theoretic setting of
Desoer et al.(1980) and Vidyasagar et al.(1982) to
study stable multivariable linear systems by con-
sidering them as transfer function matrices hav-
ing all entries belonging to the ring H. In this
note we will identify the ring H with IRH., the
space of stable real rational finite dimensional lin-
ear time-invariant continuous-time systems. We
consider the class of possibly non-proper and/or
unstable multivariable systems as transfer function
matrices whose entries are elements of the quo-
tient field F of H (F := {a/b|a € H, b € H\0}).
The set of multiplicative units of H is defined as:
J = {h€ H|h' € H}. In the sequel systems
P € F™*" are denoted as P € F.

Definition 2.1 ( Vidyasagar (1982))

A plant P € F has a right (left) fractional repre-
sentation if there exist N, M(N, M) € H such
that

P=NM""(=MN)

The pair M, N(M, N) is right (left) coprime frac-
tional representation (rcf or Icf ) if it is a right
(left) fractional representation and there exists

U,V(U,V) € H such that:
UN+VM =1 (NU+MV =1)
The pair M, N(M, N) is a normalized right (left)

coprime fractional representation (nrcf or nlcf )
if it is a coprime fractional representation and:

M*M +N*N =1 (MM*+ NN* =1)
with M* = M"(—s).
Definition of distance measures

Suppose P, P, are two plants with nref
(N1, My), (Nq, M;) respectively, and suppose C' is
a controller such that T'(P;,C) € H with (X,Y) a
nlef of C.

The graph metric distance (Vidyasagar (1984))
d(P;, P;) between the two plants is defined as

d(Py, Py) = max{d(Py, P,),d(Py, P,)}

M] M-;

M ] N, }Q“m
The gap metric distance (El-Sakkary (1985),

Zames and El-Sakkary (1980)) 6(P;, P;) between
the two plants is defined as

§(P, P) = max{g(P;,Png(Pz_Pl)}
-
Ny N, ] Q”m

The A-gap margin 6x(P;, P») between the two

plants is defined as
][
Nl Ng

where A = [)Z' f’] [Jxl ] Note that the nrcf
d

d( Py, Py)

111
Qe IQ]l. <1

inf
QeH

5(Py, P,)

f

(P, Py) = mf

of P, is shaped with A~" to account for the closed
loop operation of the plant. If there is no controller,
A~ will be M, as can be checked easily, and the
A-gap will be:

oa(Pr, Py) = 52{{'

n =[Nl




3 Closed loop stability

In this paper we will study the closed loop stabil-
ity according to Fig. 1, where we assume that a
stabilizing controller C' has been designed for the
nominal plant P.

e + U i .|
L P

€3

+4

Fig. 1: Closed loop structure

The closed loop transfer function 7'(P, C') map-
ping the external inputs (e;,e;) onto the outputs
(u,y) is given by:

1

T(P,C) = [P

} (I+6P)[1.C]

For bounded exogeneous inputs (e;, ez), stability
of the closed loop, i.e. the controller C internally
stabilizes the plant P, is guaranteed if and only if
T(P,C) € H. Now let P = NM~" with (N, M) a
ref of P and let C = X~'Y with (X,Y) a lcf of C
then:

M

N ' (1)

3 bt b
T(P,C) = [ ] (XM +¥N) [X ¥
Theorem 3.1 (Vidyasagar et al.(1982))
Let P € F be given as P = NM-' with (N, M)
a rcf of P and let the controller C' € F be given as
C = XY with (X,Y) alcf of C oras C = Yx
with (Y, X) a rcf of C. Then the following state-

ments are equivalent:

1. The closed loop is stable

. ([5( ?][m)zney

M -Y

.‘}.U:z[N %

} €T

For robust stability it is essential that the closed
loop transfer function remains stable for plants Py
“close to” P controlled by controllers Ca “close to”
C. Usually the controller C is designed with knowl-
edge of P only.
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4 Main result

In this section a sufficient condition for feedback
stability under simultaneous plant and controller
perturbations is presented. As a by-product we
have sufficient conditions for only plant perturba-
tions or only controller perturbations.

Next it will be shown that this robustness margin
is less conservative than a similar margin based on
the gap-metric distance between the nominal plant
and perturbed plant summed with the gap-metric
distance between the nominal controller and the
perturbed controller, as derived by Georgiou and
Smith (1990b) .

This will immediately imply that the gap-metric
robustness margin is also less conservative than a
margin based on graph-metric distances, as derived
by Vidyasagar and Kimura (1986)

Finally it will be shown under what conditions the
new robustness margin equals the gap-metric based
robustness margin.

Theorem 4.1 Suppose T'(P,C') is stable, and that
both plant and controller are perturbed to Pa,Ca
respectively. Then all pairs (Pa,Ca) form a stable
closed loop T'(Pa,Ca), provided:

6a(P, Pa) +6a(C,Ca) <1 (2)

Proof: Let (N, M), (Y, X) be nrcf of P,C, respec-
tively and let (M, N), (X, Y) be nlcf of P, C, respec-
tively. Then from stability of T'( P, C) the matrix

M —Y
U:[N X]EJ'

Denote
Bk M -Y A=ET )
G A g A~
AR i ) o o X
where A = [)\ Y] [ N].A:[M N] [Y]
Then U;! can be partitioned as
S i o
Uo== [—N M]
Now let (Na, Ma),(Ya,Xa) be rcf of Pa,Ca, re-

spectively. According to Theorem 3.1 T'(Pa,Ca) €
‘H if and only if

Max =Ya
Ja =
Us [ Na Xa

Select real numbers &, > 6a(P, Pa),6c > 4(C,Ca)
such that 6, + 6. < 1.

|ea



Now if ||(I = UaU; ||, < 1 then (according to
Lemma A.1) Uy € J and thereby the pair (Pa,Ca)
is stable. U, — Ua = [ AN ]‘ where

=[] [he]
A [l

I -UpU;' = [4 B2
= A[X Y]+B[-N M]
Il4a BlU, < A[X ¥ ]|,
+|B[-N Mm]|,
< & +6

Now if 8, + 6. < 1 then Us € J which proves that
T(Pa,Ca) € H, which completes the proof. mi

The robustness results of (Bongers (1991),
Schrama et al.(1992)) are a special case of Theo-
rem 4.1, which can be seen in the next corollary.

Corollary 4.2 Suppose T(P,C) is stable. There

holds

if 6o(P, Pa) <1 then T(Pa,C)eH
and

if 65(C,Ca) <1 then T(P,Ca) € H.

[n the next theorem it will be shown that a suf-
ficient condition for stability according to Theo-
rem 4.1 can be stated in terms of gap-metric dis-
tance. Thereby we will show that Theorem 4.1 is a
generalization of the gap-metric robustness

Theorem 4.3 Suppose T(P,C) is stable, then a
sufficient condition for §5(P, Pa) + 04(C,Cya) < 1
is given in the gap-metric by

§(P, Pa) +6(C,Ca) < IT(P.C)IZ.

Proof:
6x(P,Pa) = inf [ﬁ}’\_l_[ﬁ:}QHm
- | ((¥]- [ ]2+,
= (“\f } K [ ﬁf]“’) H«, I

Now assembling the pieces, using the definition of
the gap-metric and Lemma A.3 we have that

6A(P, Pa) < 6(P, Pa) |IT(P,C)ll,,
Along the same lines we have
60(C, Ca) < 8(C,Ca) IT(C, P,

Then wusing the fact that |T(C,P)|, =
|T(P,C)|l (Georgiou and Smith (1990b)) we have
that

6a(P, Pa) 4+ 6a(C,Ca) <

(6(P, Pa)+ 8(C,Ca)) IT(P,C)|

which proves the theorem O

The transfer function A™' can be seen as a
weighting function on the gap between the nom-
inal plant and the perturbed plant. Only when
A = al, with o € IR, the extraction of A=! will
not introduce conservatism. In that case the gap-
metric robustness is not more conservative than the
new robustness margin.

It can be shown (Bongers (1992)) that a spe-
cific choice of the controller order in a IRH_,-norm
design based on normalized coprime factorizations
will lead to A = al.

However in general the maximum singular value of
A will be frequency dependent. For multivariable
control designs the singular values of A will in gen-
eral not be equal, which means that in A also di-
rectionality will be present.

The presented robustness margin takes both the
features of directionality and frequency dependency
into account. This implies that the presented ro-
bustness margin has practical benefits compared to
the gap-metric robustness margin.

5 Example

In this section the application of the presented ro-
bustness margin will be illustrated using an exam-
ple. For simplicity only SISO systems are consid-
ered, which implies that the improvement of the
new robustness margin by taking into account di-
rectionality of the feedback loops can not be demon-
strated.

In Fig. 2 the frequency responses of both the

nominal plant model P of order 5 and a perturbed
plant model Py are shown.

Using the control design method described in
Bongers and Bosgra (1990) a controller C' of order
3 has been designed on P such that |T'(P,C)||,
In Fig. 3 the frequency responses

is minimized.
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of both the designed controller ' and a perturbed
confroller C's are shown.

If the robustness is measured in the gap-metric,
the closed loop system T'(Pa,Ca) (Theorem 4.3)
remains stable provided

8(P,Pa) +6(C,Ca) < |T(P,C)||IZ:

The gap between the nominal plant and perturbed
plant is:

§(P, Ps) = 0.19,

and the gap between the nominal controller and the
perturbed controller is:

§(C,Ca) = 0.14

The nominal plant,controller pair imply a robust-
ness margin of: ||T'(P,C)||Z} = 0.1 Tt is obvious
that even the individual perturbations do not sat-
isfy the robustness margin, therefore stability of the
perturbed feedback system can not be guaranteed.

Next the refinement of the new robustness mar-
gin will be shown. The improvement of the new
robustness margin, by taking into account the fre-
quency dependency of the feedback system, is illus-
trated in Fig. 4.

0454 4

amplitude

frequency [rad/s]

Fig. 4: Frequency response

IT(P, )N (--)

a(A) 5" B

Suppose, for a moment, only plant perturba-
tions are present. Then stability of the closed loop
in gap-metric sense is guaranteed provided that
6(P, Pa) is smaller than the dashed line in Fig. 4.

The refinement towards the new robustness mar-
gin can be seen as follows: The frequency where
the largest difference between P and P, lies is not
taken into account in §(P, Pa), it is in 8o(P, Pa).
Let @ be the optimal solution in Theorem 4.3, then




T'(Pa,C) is stable if

5A(P,Pa)50([ﬂ.;]“ [i{i]@)ﬂ'(:\'i)<l

Next if the difference between P and Pa, defined

as
M Ma |
a([N]_{Na}Q)

is smaller than a(A), then 7T'(Pa,C) is stable.
Thereby the area of allowable PLs is extended to-
wards the solid curve in Fig. 4.

When the stability robustness is measured in the
new robustness margin (Theorem 4.1), the per-

turbed closed loop T'(Pa,Ca) remains stable pro-
vided:

Sa(P, Pa) +64(C.Ca) < 1

The lambda-gap between the nominal plant and the
perturbed plant is

‘SA( P, P"_\) = 0.5004

and the lambda-gap between the nominal controller
and the perturbed controller is

5A(C,Ca) = 0.3220

It can be seen easily seen that robust stability of
the perturbed feedback system is guaranteed by the
new robustness margin.

For completeness the frequency response of the
(2,2)-element of the feedback system T'(P,C) is
given in Fig. 5.
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Fig. 5: Frequency response P(I + CP)~'C (—),

Pa(I+CaPa)™'Ca (--)
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6 Conclusions

The derivation of a new robust stability margin for
simultaneous perturbation of plant and controller
has been presented. It has been shown that this
margin is less conservative than similar robustness
margins stated in the gap-metric or graph-metric.
The improvement of the new margin lies in the fact
that frequency dependency of the feedback system
and directionality of the feedback loops are taken
into account. The application of this robustness
margin has been illustrated by an example.
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A Proofs

Lemma A.1 Given a transfer function H € H. If
[7—H| <1then He J.

Proof: For an arbitrary function F' € H, a suffi-
cient condition for I — F to have a stable inverse
is given by the small gain condition ||F|, < I.
Define H := I — F and the lemma is proved. |

Theorem A.2 Let (N, M) be arcfof P and (Y, X)

be a ref of C, then T'(P,C) € H if and only if

: M =Y T
v=¥ T es

Proof: Vidyasagar and Kimura (1936), lemma 5.1
0O

Lemma A.3 Let (N,M),(Y,X) be nrcf of P, C,
respectively and let (M, N),(X,Y) be nlcf of P,C,

- & M -
respectively. Define A = [X ¥ ] { .\{ } A=

[ A1 N]{':,,],men

I7(P, C)ll
IT(C, P)

471
i

s ’

Proof: Using the normalized coprime factoriza-
tions for P,C, T'(P,C) can be expressed as

h{ v ¥a 2. VI V4
T(P,C)_[N](AMHN) [ #]
The fact that | isanrcf, [X Y]isanlcf

N
: e
and (XM’ 4 YN) = A~! proves the first part.
The second part can be proved similarly. O
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Abstract.

In this paper we study robust stability under simultaneous plant and con-

troller perturbations. We use a Youla parameterization to represent the class of all
possible plant perturbations that do not destabilize the nominal feedback system. A
similar representation is used for the class of confroller perturbations that do not desta-
bilize the nominal feedback system. From these two Youla parameterizations we derive a
sufficient condition for robust stability under simultaneous perturbations. This condition
is shown to be less conservative than a condition for robust stability under simultaneous
plant-controller perturbations measured in the gap metric. An example is provided in
which the new condition guarantees robust stability for some simultaneous perturbations
that are too large in view of the gap-metric condition.

Keywords. stability, robustness, closed loop systems, coprime fractions, gap metric.

1 Introduction

This paper is addressed to the robustness of feed-
back stability in the face of simultaneous plant and
controller perturbations. Robust stability under
plant perturbations has been widely studied in the
robust control theory, see e.g. Francis (1987), Ma-
ciejowski (1989), Morari and Zafiriou (1989), Stein
and Doyle (1991). Simultaneous controller pertur-
bations play an important role in engineering ap-
plications, where an implemented controller usually
differs from the designed controller.

A condition for robust stability under simulta-
neous perturbations must guarantee that each el-
ement of some “uncertainty domain” around the
plant Pis stabilized by each element of another “un-
certainty domain” around the controller C. Hence
only dynamically perturbed plants Pa that are sta-
bilized by the nominal controller C' are of interest.
Likewise we have to consider only the dynamically
perturbed controllers Cs that stabilize the nomi-

‘Author to whom all should be

addressed.

correspondence
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nal plant P. These classes of perturbed plants and
controllers can be represented precisely with two
Youla parameterizations based on the nominal P
and €. From these two Youla parameterizations
we derive a sufficient condition for robust stability
in the presence of simultaneous plant and controller
perturbations.

Conditions for robust stability under combined
plant-controller perturbations have been derived
by Vidyasagar (1984) and Vidyasagar and Kimura
(1986) in terms of the graph metric. Georgiou and
Smith (1990a, 1990b) have established a condition
for robust stability under simultaneous perturba-
tions measured by the gap metric. Each of these
metrics induce sets of bounded plant perturbations
that are independent of the nominal controller C:
the graph and the gap between a nominal plant and
a perturbed plant does not depend on C. Similarly,
the induced sets of bounded controller perturba-
tions are independent of the nominal plant P. In
contrast with these approaches, we use the nomi-
nal plant and the nominal controller to define the
plant perturbations of concern. The same applies




to the class of controller perturbations that we con-
sider. Consequently, our condition is less conserva-
tive than the stability conditions in terms of the
graph and gap metrics. The significance of this re-
duction of conservatism is illustrated by an exam-
ple.

The next section defines the classes of admissible
plant and controller perturbations. Our stability
result is derived in Section 3. In Section 4 it is
shown to be less conservative than the condition
for robust stability in the gap metric. In Section 5
we provide the example, and the paper ends with
some concluding remarks in Section 6.

2 Admissible Dynamical Perturba-
tions
We study linear time-invariant finite dimensional

systems, and the set of proper stable systems is
denoted IRH.,. We consider the feedback intercon-

|
A7l
Fig. 1: Feedback interconnection H(P,C).

nection H(P,C) shown in Fig. 1. In here P rep-
resents the plant and C represents the controller.
The closed-loop dynamics of H(P,C') are described

by the transfer function

P

T(P,C) = [ ;

]([+CP)“‘ e aeis ™ T

which maps the vector of variables col(rz,r;) into
col(y,u). This transfer function is used to define
the notion of stability of H(P,C').

Definition 2.1 The feedback system H(P,C) of
Fig. 1 is stable if and only if T(P,C) € RH.

In order that plant and controller perturbations
can be investigated individually, we introduce the
following definition.

Definition 2.2 A perturbed plant Pa (controller
Cp) is admissible if and only if H(Pa,C)

(H(P,Cp)) is stable.

Notice that perturbations of P and C at least must
be admissible in order that the simultaneously per-
turbed feedback system H(Pa,Ca) is robustly sta-
ble.

Below we derive a neccessary and sufficient

20

condition for a perturbed plant Pa (controller Ca)
to be admissible.

The plant P admits normalized right and
left coprime factorizations over IRII. (for def-
initions see Vidyasagar, 1985), i.e. there exist

N,D,N,D,X,Y,X,Y € RHy such that

P(s) = N(s)D7'(s) = D7} (s)N(s)  (2)

with

XN+YD=1I, NX+DY =1 (3)

and
NT(—s)N(s) + DT(—=s)D(s) =1, Vs
N(s)NT(—s)+ D(s)DT(=s) = I, Vs.

Likewise the controller C admits the normalized co-
prime factorizations

C(s) = N(s)D'(s) = D7 (s)N.(s)  (4)

where N_, D, P:"c, Dc € IRH,. In Desoer et al
(1980), Vidyasagar et al. (1982) and Vidyasagar
(1985) coprime factorizations of P and C have been
used to establish necessary and sufficient conditions
for stability of H(P,C). For ease of referencing we
state these results in terms of the above notation.

Lemma 2.3 Let P and C have normalized coprime
factorizations as in (2) and (4), and let A,A €
RI11., be defined as

A=NN+D.D, A=NN+DD,.  (5)
Then the following statements are equivalent:

i. H(P,C) is stable,

ii. A™' € RH,

iii. A=! € RH,

With this stability result it is easy to parame-
terize the set of all controllers that stabilize P
(Vidyasagar, 1985). We state the dual result in
terms of a perturbed plant Pa.

D —N.

-1
N Dc] € RH.

Proposition 2.4 Let P and C have normalized
coprime factorizations as in (2) and (4), and let
H(P,C) of Fig. 1 be stable. Then the perturbed
feedback system H(Pa,C) is stable if and only if
Pa admaits the coprime factorizalion

B (N+DCAP)(D—NCAP)_1
for some Ap € RH,.

(6)




Proof: By Lemma 2.3 the stability of H(P,C)
implies that A~ A-! € RH. Coprimepess of
N+D_Ap and D—N_Ap follows from (A_I_Nc)_(N—I—
D ApH{(A='D,)(D-N.Ap)=1I. Further, X, Y., X.
and Y. defined as

X.=NA"Y, ¥.=DA™, X.=A"'N, Y.=A"'D
belong to IRH,, and
X.NAY.D,=I, NX.+DY.=T.

From here the result follows along the same lines as
in Vidyasagar (1985), p.109. O

Combining Proposition 2.4 with Definition 2.2
yields the following necessary and sufficient condi-
tion for admissibility.

Lemma 2.5 Let P and C have normalized coprime
factorizations as in (2) and (4), and let H(P,C) of
Fig. 1 be stable. Then the perturbed plant Pa is
admissible if and only if |[I+PaC| # 0 and Ap €
RH.. with

Ap = D7 (I+PaC)~"(Pa—P)D. (7)
Proof: By Definition 2.2 and Proposition 2.4 Py
is admissible if and only if Py admits the coprime
factorization of (6). We rewrite the latter equation

as

(N+D.,Ap) = Pa(D—-N_,Ap)
& (D4 PaN,)Ap = (PA—ND™)D
from which (7) follows straightforwardly. D

Similarly a perturbed controller Ca is admissible if
and only if [I4+CaP| # 0 and Ac € IRHy, with

Ac = D(I+CaP)™(Ca—C)D, (8)

satisfying

Ca = (N4DAg)(D.~NAc)™. (9)
Remark 2.6 The property of admissibility has the
following geometric interpretation. The operator
associated with 7'( P, C) is a projection on the graph
of P (for details see Georgiou and Smith (1990a,
1990b)). As T(P,C)T(Pa,C)=T(P,C), an admis-
sible perfurbation of P results in a perturbation of
the graph of P in a direction parallel along the pro-
jection that is associated with T(P,C). D

3 Sufficient Condition for Robust
Stability

The following lemma contains a sufficient condition
for robust stability under simultaneous plant and
controller perturbations.

Lemma 3.1 Let P and C have normalized coprime
factorizations as in (2) and (4), let H(P,C) of
Fig. 1 be stable, and let Py and Ca be admissi-
ble. Then the feedback system H(Pa,Ca) is stable
if Ap of (T) and Ac of (8) satisfy

Omaz (Ac(Jw)) * Omez (Ap(jw)) < 1 (10)

for all frequencies w € R.

Proof: By Lemma 2.5 and Proposition 2.4 the ad-
missibility of Px and Ca implies that Pa and Cya
admit the coprime factorizations of (6) and (9) with
Ap € IRH,, asin (7) and Ag € IRH, as in (8). By
definition Definition 2.1 H(Pa,C4) is stable if and
only if T(Pa,Ca) € IRH.,. Applying Lemma 2.3 to
the coprime factorizations of (6) and (9) yields

T(Pa,Ca) € IRH,, &

D—N.Ap —N.—DAc |
N+D.Ap D,~NAc

1
€ RH.,.(11)

Next we use the fact that any U,V € IRH., with
U-! € IRH,, satisfy

V'€ RHy & (UV)! € RH,.

Together with facts ii.-iv. of Lemma 2.3 implied by
the stability of H(P, C') we can rewrite the stability
condition of (11) as follows.

T(Pa,Cs) € RH,, &

[ D ~Nc]“ [ D—N,Ap —NC—DAC]

IRH
N Dc N—{—D,;Ap Dc—NAc €

" Gy D, N,
0 A*]|-N b
D-N.Ap ~N.-DAg 11"
[N+DCAP D.~NAc “ €8

A
Q[Ap I

Using the fact that IRH., is closed under addition,
we add diag(0, —7) to the latter right hand side, so
that

2 |
] € IRH...

T(Pa,Ca) € RH,, < (12)
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o, [
“AP
& (I+AcAp)™" € RH.

Finally, as Ap and Ag belong to IRHe by
Lemma 2.5, the product AgAp is a contraction if
(10) holds. Then I+AcAp is guaranteed to have a
stable inverse by virtue of the small gain theorem,
see Desoer and Vidyasagar (1975), which completes
the proof. O

] (I+AcAp) [ I Ac | € RH,,

Remark 3.2 A robust stability test for any given
couple of a perturbed plant Pa and a perturbed
compensator C'a proceeds as follows. First [+PaC
and I+ CaP must be demonstrated to be non-
singular. Then it must be verified that Ap and
Ac belong to IRH,,. Finally Lemma 3.1 is applied
to ascertain robust stability. O

The fact that the factorizations (V,D) and
(N,,D,) are normalized will be of use in the next
section. This property has not been exploited
in deriving the condition for robust stability of
Lemma 3.1. Therefore we can readily extend this
robust stability condition to other pairs of coprime
factorizations of P and C. Such factorizations can
always be represented as respectively (NQ,DQ)
and (N.Q., D.Q.), in which @ and Q. are unimod-
ular elements of RHy (i.e. @71, Q"' € RH,). By
letting @ and Q. vary freely over the space of uni-
modular elements of IRH,, we can study all coprime
factorizations of P and C at once. This results in
the following general condition for robust stability
under simultaneous plant and controller perturba-
tions.

Theorem 3.3 Let P and C have normalized co-
prime factorizations as in (2) and (4), let H(P,C)
of Fig. 1 be stable, and let P and Ca be admissi-
ble. Then the feedback system H(Pa,Ca) is stable
if there exist some unimodular Q,Q. € RH,, such
that Ap of (7) and A¢ of (8) satisfy

Tmaz (Q-](JW)QCUW]QC(,}W)) "
ez (@7 (jw)Ap(jw)Q(iw)) <1

for all frequencies w € R.

(13)

Proof: We define the coprime factorizations

(N, D) of Pand (N, D.) of C as
N=NQ, D=DQ, N.=N.Q., Dc=D.Q.
for any particular unimodular @, Q. € RH. Sim-
ilar to (7) and (8) we define Ap, Ac as
Ap D;‘{I+P¢C)_‘(1’Q—P)D
Ac D-Y(I4+CaP)~*(Ca—C)D.
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so that Ap = Q-'ApQ, Ac = Q'AcQ.. Like
in Proposition 2.4 and Lemma 2.5 the perturbed
Pa and C, are admissible if and only if ApiAg €
IRH... And H(P,C) is robustly stable under si-
multaneous perturbations if the admissible pertur-
bations Ap, Ag satisfy

Omaz (Ac(jw)) * Omaz (Ap(jw)) <1 (14)

for all frequencies w € IR. The proof hereof
is the same as that of Lemma 3.1 except that
N,D,N,, D, Ap and Ac have to be substituted
for respectively N,D,N_, D.,Ap and Ac. Finally
(13) follows by replacing Ap and Ac in (14) by
respectively Q7' Ap@ and Q' AcQ.. i

Remark 3.4 A robust stability test based on The-
orem 3.3 proceeds as in Remark 3.2, except that the
freedom of the unimodular @, Q. can be exploited
to ascertain robust stability. |

Notice that Theorem 3.3 contains a condition for
robust stability of H( P, C) under simultaneous per-
turbations, and not just a condition for stability of
II(Ps,Ca). In this perspective the admissibility
of Py and Ca incurs no restriction, since we want
H(Pa,C4a) to remain stable if the perturbation of
either the plant or the controller vanishes. Further,
as Ap and A must belong to IRHy for robust sta-
bility, following corollary follows from Theorem 3.3.

Corollary 3.5 Let P and C have normalized co-
prime factorizations as in (2) and (4), let H(P,C)
of Fig. 1 be stable, and let Py and Cp be admissi-
ble. Then the feedback system H(Pa,Ca) is stable
if there exist some unimodular Q,Q. € Rl such

that Ap of (7) and Ac of (8) satisfy
17 AcQellllQ7" ApQllss < 1.

This condition for robust stability has the follow-
ing attractive property. If the controller perturba-
tion A¢ converges to 0 in IRH, then the stability
condition of (15) admits every plant perturbation
Ap € RH4. In that case we retrieve precisely the
set of all plants that are stabilized by the nominal
controller C' (see Proposition 2.4). The dual result
holds in case of a vanishing plant perturbation Ap
in IRH,,. Hence our condition for robust stabil-
ity under simultaneous perturbations involves only
very little conservatism if either the plant pertur-
bation or the controller perturbation is relatively
small.

Finally we mention that all results in this section
have a dual counterpart framed in terms of left co-
prime factorizations.

(15)




4 Relation to the gap metric

[n this section we show that the condition of Theo-
rem 3.3 is less conservative than a condition for ro-
bust stability under simultaneous plant-controller
perturbations measured in the gap metric. In or-
der to adopt the gap metric results from Georgiou
(1988) and Georgiou and Smith (1990a), we intro-
duce the following notation. The perturbed plant
Pa and controller €' admit the normalized coprime
factorizations

By'= N DY, Cn = Ny DR (16)

Further, the gap between P and Pa is denoted
&(P, Pa), and the directed gap is denoted 6(P, Pa)
(see Georgiou, 1988, and Georgiou and Smith,

1990a, for definitions).

Proposition 4.1 (Georgiou (1988)) Let P and Pa
have normalized coprime factorizations as in (2)
and (16). Then

S(E ER)I= max{8(P, Pa), g(P. ,P)}

and
2 AR N Na'la S
YN B Bl
where H., denotes the standard Hardy space.

Theorem 4.2 (Georgiou and Smith (1990a))
Let H(P,C) be stable. Then H(Pa,Cy) is stable

i

§(P, Pa) + 6(C, Ca) < |IT(P, C)|I<- (18)
Now we can state the main result of this section: if
a perturbed couple Pa,Ca satisfies the gap-metric
robust stability condition of (18), then this couple
Py ,Ca satisfies also the robust stability condition
of Corollary 3.5 (and of Theorem 3.3).

Theorem 4.3 Let H(P,C) be stable and let
Pa,Ca satisfy (18). Then there exist unimodular
Q,Q. € RH,, such that (15) is satisfied.

The opposite of this theorem is not true, and thus
our robust stability condition is less conservative
than the gap-metric condition. That is, if Pa,Ca
comply with our robust stability condition of (15),
then the gap-metric condition of (18) is not nec-
essarily satisfied. An example thereof will be pro-
vided in the next section.
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The sequel of this section is merely addressed to
proving Theorem 4.3. First we establish some pre-
liminary facts, Thereafter we list several properties
of Py and (s that are implied by the gap-metric
robust stability condition of (18). Then we pro-
vide the proof of Theorem 4.3. In conclusion of the
section we relate our results to the condition for
robust stability under simultaneous perturbations
measured in the graph metric.

Fact 4.4 Let P and C have normalized coprime
factorizations as in (2) and (4), and let H(P,C)
of Fig. I be stable. Then

i. |T(P,C)|lso = IT(C, P)lloos
ii. |T(P,C)lloo = 1A loo = IA"]|co-

Proof:
(i.) Corollary 1 of Georgiou and Smith (1990a).
(ii.) By substituting ND=' and N_D' for P
and C in (1) we get

I(P, C)lloo = | [ = ] AT [N De ] lloo = 1A oo

I e -
since { D ] is inner and [ N, D, ] is co-inner (see
Francis, 1987). Similarly ||T(C, P)|lec = 1A~ |co;
and the result is complete by fact 1. D

Proposition 4.5 Let M be a square compler ma-
triz. Then

Omaz (I =M) <1 —b=>0min (M) >b (19)
Jor any b € [0,1), and
Omazr ([ — M) <1 —d= onin (M) >d  (20)

for any d € (0,1].

Proof: Let v be any non-zero vector such that
|| M|z
llvll2

where || - || is the usual Euclidian vector norm. As
[[(I—M)v|lz+]||Mvl|z = ||v||l2 we have

_la=ayolls

lIoll2

= Omin (ﬂf)

a2 1

We use the inequality
Omaz(I—M) 2 |[(I—M)v||a/||v]|2 to obtain

Tmin (M) 3 1 = Oz (I = M)

from which (19) and (20) are immediate. O




Having established these preliminaries, now we re-
veal several implications of the gap-metric robust
stability condition of (18).

Lemma 4.6 Let II(P,C) be stable, and let Px,Ca
satisfy (18). Define

7= ||A7|d(C, Ca), (21)

then i hy
||!\'1 |ec0(P, Pa) < 1—7

and 7 € [0,1).

(22)

Proof: Asthe gap §(P, Pa) is the maximum of two
directed gaps, cf. Proposition 4.1, the inequality
8(P, Pa) + 8(C,Ca) < ||IT(P,C)||3 (23)

is satisfied if (1
yields

8) holds. Application of Fact 4.4.ii

1A |se8(P, Pa) + A~ |eB(C, Ca) < 1,

which implies that 7 < 1, and (22) follows straight-
forwardly. 8]

Proposition 4.7 Let H(P,C) be stable, and let
Pa,Ca satisfy (18). Then Pa and Ca admil
the right coprime factorizations (Nyg, Dag) and
(Noacy Doag) such that

5P, Ps) = ||[ ] {N&f’]nm
(21)
5(¢,Ca) = ||[ ] {""cig]uw

Proof: We prove only the expression for 5(P, Py),
as the proof of the other part is completely analo-
gous.

By Theorem 6.1.1 of Francis (1987) the infimum
of (17) is actually reached for some Q=Q¢ € RH,,,
i.e.

s =i |- 52 aole @

with (Na, D4) asin (16). We define (Nag, Dag) as
(NoQa, Do Qc), which is a right coprime factoriza-
tion of Py if and only if Q¢ € IRH, is unimodular.
So it remains to be shown that Q7' € RH.

The robust stability of H(Pa,Ca) implies that
H(Pa,C) is stable, which implies that A,, defined
as

A = NN, + D.Dy,
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is a unimodular element of IRH., by virtue of

Lemma 2.3. Next, for notational convenience, we

define
Ay| | N N L !
2Bl e
so that v
|: hr DL] [D ]QG:

A
A
e N
th [ [2]
from which we obtain
Qe =A3'A(I+¥)
with ¥ € IRH,, satisfying

U =—A'[N, D, ][An}

As A, and A are unimodular, Q¢ has a stable in-
verse if and only if (I+W¥) has a stable inverse. By
the small gain theorem (Desoer and Vidyasagar,
1975) (I+¥) has a stable inverse if W € IRH. is
a contraction. And (18) implies that []llJH\._ <l
because by Fact 4.4.ii and (25)

e An
T WAL ST el [
ot
= TP, )l (P, Pa)
and [|T(P,C)|lwd(P, Pa) < 1 by (23). o

Lemma 4.8 Let H(P,C) be stable, and let Pa,Ca
satisfy (18). Define Q,Q. € RH,, as

0 = AI[R. DC][gM]
| ) / N.’.\G {2?)
el ) e

with (Nags Dag); (Neoags Deag) as in (24). Then

QR 'Q:' € RH., and
1APQlles < 1—7, ||AcQc|leo < 7

with Ap of (7), Ac of (8) and 7 as defined in (21).

Proof: From (18) and the stability of H(P,C)
it follows that H(Pa,C) and H(P,Cp) are sta-
ble. This means that P» and Ca are admissi-
ble, so that by Lemma 2.5 Ap and Ag belong to
IRH.,. Further, by Lemma 2.3 the admissibility
of Pa and Ca implies that N N, + D.D,g; and




N Ncar.‘;‘{‘b D, are unimodular, since (Nag, Dag)
and (N.ags D.ag) are right coprime factorizations
by virtue of Proposition 4.7. Consequently @) and
@. have stable inverses.

Next we use the equivalences

JV—E—DcAp
D—N.Ap

c

o-

]
=
B
8
F—
=
B
Q
| —)

N - = s
= [ d o6 ] (‘{Vc‘?\IAG'l'DcD&G) L

1#, B.][ Bee

D.’_‘AG
- 122
D&G

and similarly

‘IIVCA G }

Dc&G

N.+DAg x [
D.—NAg | *°

to obtain

N _!)c =
{ D ] (I-Q)+ { N ] ApQ =

N Nxg
ST
[ ]r-00+ [ 57 | o=
N, N,
:[Dc]‘[&ﬁ]‘ 2%

Multiplying (28) to the left with A= [ =D N |
vields

ApQ=A"'[-D N]Hg]”[giz] ]

Making use of Proposition 4.7, Lemma 4.6 and the
fact that [ -D N ] is co-inner we obtain

18pQlleo < |A|e0b(P, Pa) < 1—.
Similarly the inequality
1A6Qclloo < 1A lood(C,Ca) = 7

results after multiplying (29) to the left with
A [ =D, N,]. u|

c
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Lemma 4.9 Let H(P,C) be stable, and let Pa,Cx
satisfy (18). Then Q,Q. defined in (27) satisfy

1

1@ leo < ——

- 1
”Q 1“00<_$ =
T 1—71

with 7 defined in (21).

Proof: Similar to the proof of Lemma 4.8 we multi-
ply (28) to the left by A=* [ N, D, |, which results

T

=a=4204 2.1{ [ 5] -[ 52

Since [ N, D, ] is co-inner

I = Qlleo < [|A~|eob(P, Pa) < 1,

by virtue of (24), Fact 4.4.ii and Lemma 4.6 . Like-
wise, multiplication of (29) by A~! [ N D ] results
in

I = Qelloo < 1A7|o8(C, Ca) = .

The two latter inequalities imply that
Tmax (j - Q(.?"‘J)J = I_Ta Urm:r(f = QL‘(JW)) S T

for all w € IR. For any particular frequency w € IR
we replace M, b of (19) with Q(jw) and 7, and M, d
of (20) with @.(jw) and 1—7, so that

Trmin {Q{Jw}) 2Ty Onin (Q,_(Jw}) ?. Teters

Using the fact that 1/omim(M) = omae(M™1) for
every invertible complex matrix M, Proposition
12.9.4. in Lancaster and Tismenetsky (1985), we
get

Lo 1 By 1
Tmax (Q_ (JM)) < ;'.' Ormax (Q( t(_.““")) S I._——T

for any particular frequency w € IR, which proves
the lemma. O

By now the gap-metric condition for robust stabil-
ity of (18) has been sufficiently exploited to prove
Theorem 4.3. Especially the latter two lemmas
greatly facilitate the following proof.

Proof of Theorem 4.3: By Lemma 4.8 the sta-
bility of H(P,C) and the inequality (18) together
imply that @, Q. € IRH,, of (27) are unimodular.
For these particular @, Q. we have

10 4r @l < 107l AP@lle < =2 = 1
Q7 2cQle < Q™" o A0Qllw < 2 -7 =1

by Lemma 4.8 and Lemma 4.9, so that there indeed
exist unimodular @, Q. € IRH,, such that (15) is
satisfied, @]




In conclusion we relate our robust stability condi-
tion of Corollary 3.5 to the graph metric condition
introduced by Vidyasagar and Kimura (1986):

I7(P,C)

loe d(P, Pa) + ||T(C, P)||w d(C,Ca) < 1,

where d( P, Pa) denotes the distance between P and
Pa in the graph metric. Using Fact 4.4.i we rewrite
the latter condition as

d(P,Pa)+d(C,Ca) < |T(P,O)|IZ,  (30)
which bears great similarity to the gap-metric con-
dition of (18). Moreover, as 6( P, Pa) < d(P, Pa) by
Corollary 1 of Georgiou (1988), the gap-metric con-
dition of (18) is less conservative than the graph-
metric condition of (30). Hence our condition of
Corollary 3.5 is less conservative than both the gap-
and graph-metric conditions for robust stability un-
der simultaneous perturbations.

5 Example

Having demonstrated that the new robust stability
condition is less conservative than the gap-metric
condition, now we provide an example in which ro-
bust stability under simultaneous perturbations is
guaranteed by our condition of (15), but not by the
gap-metric condition of (18). The systems of con-
cern have the following transfer functions:

g —s+1
T 45340452 +4s
17s% —2.354+10
= —
s44+3.35+11
P =

0.257 +3s%45.45%+7.851—225%+5.2s2— 215+ 3.2
10573155+ 150s%+1235% 421853+ 87524695+ 7.1

Ca =

3057 +875%41315% 41485+ 1305 +63s*+415+9.3
sT48.356+4 3855+ 83514+ 10752+ 97s% 4625 +13

The Bode diagrams of these systems have been de-
picted in Fig. 2.d.

The Figures 2.d.a and ¢ display that P (—) and
Py (--) are strikingly different. The difference P—Pa
() is quite large: its frequency response magni-
tude is at least 40% of | P(jw)]| over all frequencies,
and it is even larger than 60% at those frequencies
where |P(jw)C(jw)| & 1. The controller perturba-
tion seems to be moderate, but |C(jw)—Ca(jw)| is
larger than 15% of |C(jw)| over all frequencies, and
it is up to 70% at the frequencies where |PC| =~ 1.
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Like in (6), (9) we model Pa, Ca as perturbations
of the normalized coprime factors of P, C'. The cor-
responding plant and controller perturbations Ap
and Ag are shown in Fig. 3.

The H.,-norms of these perturbations are
[[Ap|ls = 0.968 and ||Ac|leo = 0.764. The product
of these norms is 0.734, so that even larger plant
and controller perturbations are allowed in view of
Corollary 3.5 (and Theorem 3.3).

For the robust stability test based on the gap-
metric condition of (18) we have the following num-
bers:

0.917
0.286
5.78'- 1072,

§(P,Ps) =
8(C,Ca)
IT(P, C)|I3)

Clearly 6(P, Pa)+6(C,Ca) is much larger than
|7(P,C)||Z}. Hence from (18) it cannot be con-
cluded that H(Pa,Ca) is robustly stable. More-
over, as §(P,Pa) > ||T(P,C)||Z} and §(C,Ca) >
|T(P,C)||Z!, the gap-metric condition fails even to
guarantee stability of H(Pa,C) or of H(P,Cy). Fi-
nally, the small value of ||T(P, C)||z} indicates that
H( P, () has poor robustness properties in gap met-
ric sense, while H(P, (') is robustly stable against
rather large perturbations as shown in Fig. 2.d.

6 Concluding remarks

We have used two Youla parameterizations to de-
rive a new condition for robust stability in the face
of simultaneous perturbations of the nominal plant
and controller. By a number of theorems we have
demonstrated that this new condition is less conser-
vative than a condition for robust stability under si-
multaneous perturbations measured in the gap met-
ric. An example has been provided in which robust
stability under simultaneous perturbations is guar-
anteed by our condition, but not by the gap-metric
condition.

In addition, our robustness condition is non-
conservative if either the plant perturbations or the
controller perturbations vanish. The utility of this
stability result for control design has been demon-
strated in Schrama (1992), where a robust con-
troller is designed for a plant with uncertain dy-
namics. A geometric interpretation of the new ro-
bust stability condition remains a topic for future
research.
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Abstract.

A generalization of frequency weighted balanced reduction is worked out

that comprises: the original frequency weighted balanced reduction of Enns (1984b),
and frequency interval balanced reduction of Gawronski & Juang (1990). The latter is
extended with scalar quadratic frequency weightings per frequency interval. Weighting in
frequency points is also developed. This generalization provides a very direct and flexible
way of specifying frequency weightings. In a MATLAB implementation the frequency
weightings can be adjusted and refined until the reduction error after weighted balanced
reduction is satisfactory. The procedure is illustrated by means of two examples.

Keywords. model reduction; frequency weighted balancing.

1 Introduction

Frequency domain robust controller design methods
require some quantification of the expected devia-
tion of the nominal controller design model from the
real system. The smaller the deviations, the easier
a robust high-performance controller can be found.
The contribution of model reduction to the devia-
tions in the frequency domain is more or less free
after the introduction of frequency weighted model
reduction methods such as frequency weighted bal-
anced reduction (FWBR). In FWBR (Enns 1984),
the standard balanced reduction procedure is fol-
lowed, the difference is that instead of the stan-
dard controllability Gramian P and observability
sramian @ (6), frequency weighted (FW) Grami-
ans Py, (10) and Qy, are used (12). FWBR can be
used to approximate the original model specifically
good in a bandwidth related frequency range where
relatively small errors are known to endanger robust
controller design. It is by no means clear however
what frequency weighting should be used to keep
the reduction error below a certain frequency de-
pendent bound. A clear guideline for the construc-
tion of appropriate frequency weighting functions
is lacking. This stimulated the development of a
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step by step FWBR procedure: after each FWBR
step the performance of a number of reduced mod-
els is investigated and for frequency ranges where
the reduction error is too large additional frequency
weightings can be created interactively. This re-
quires a concept of frequency range based balanced
reduction: to that end a method of Gawronski &
Juang (1990) which we will call frequency inter-
val balanced reduction is extended. The extension
comprises the use of multiple intervals and scalar
quadratic frequency functions within these inter-
vals, and the use of frequency pulse weighting, a
limit case of frequency interval weighting.

In Section 2 balanced reduction is reviewed.
Enns’ frequency weighted model reduction method
is discussed in Section 3. Section 4 extends the
frequency interval Gramians to weighted frequency
interval Gramians. A special limit case, the fre-
quency point Gramians are introduced next in Sec-
tion 5. In Section 6 the (MATLAB) implementa-
tion of all methods is discussed. Its ease of use and
effectiveness in FWBR are illustrated by means of
two examples.




2 Balanced reduction

Balanced reduction finds its origin in the work of
Moore (1981), a self-contained treatise can be found

in Glover (1984).
Consider the linear time-invariant system of or-
der n with m inputs and p outputs

Az + Bu
Cz + Du

T =
Yy =

2 € R u € R™, and y € RP*!. Matrices
A, B,C, D have compatible sizes. (4, B,C, D) and
Ga(s) = C(sI — A)~'B + D will both be used as
system description.

Balanced reduction is the truncation of a bal-
anced state space realization. It is restricted to
stable systems.

2.1 balancing

The balancing state-space transformation is such
that

TRl f=dQT =%
with P, Q the controllability, observability Gramian

P =

0 —
and ¥ a diagonal matrix with the so-called Hankel
singular values (HSVs) o; = 1/Ai(PQ) in decreas-
ing order. The balanced realization (ﬁ,é,é,l))
= (T*AT,T77'B,CT, D) thus has equal and di-
agonal Gramians and o; measures how control-
lable/observable state Z; is.

[ 2 BB eA™ dt

fom eA”tCHCeA: di (1)

2.2 reduction

The actual reduction step is as follows: let R denote
the first n, columns of 7' and L the first n, rows of
T='. The n!* order balanced truncation then is:

(A,B,C,D) = (LAR,LB,CR,D)

Denote G, (s) the reduced system. G,(s) has HSVs
01,...,0n,, and the realization (,«i, B.C, D) is bal-
anced. The truncated HSVs determine a reduction
error bound:

|Ga(jw) = Gr(iw)lloo < 2(Tnp41 + -+ a.) (2)

2.3 algorithms

Many procedures for calculating T have been pro-
posed. The standard approach uses a Cholesky
decomposition of P or @ but this is not recom-
mended because P and @ are often almost singu-
lar (in the reduction of high-order systems Hankel
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singular values close to zero are no exception). A
singular value decomposition of P and @ is a more
robust alternative for the Cholesky decomposition.
Since we know that P and () are non-negative def-
inite the following factorizations must exist:

P = pp"
Q = g¢q"
with p € IR™*™ of rank n, and ¢ € IR™*"* of rank

ng. Let r = min(ny, ny). Then we have r non-zero
Hankel singular values:

e

= [ e

A(PQ) = ’J'-(PHQ')

The singular value decomposition of p q gives both
the r largest Hankel singular values and the corre-
sponding right (R,) and left (L,) eigenvectors of
PQ that define the minimal balanced realization of
order r (L,AR,,L,B,CR,, D)
p’q = U,,3, v

My T
-s
pUﬂ.,,rE? *
—
(QV“Q" Er - )H

Rill=

L, =
%, = diag(oy,...,05), UnoUnpr = Vil Voo = Lo,
R, € R™*" and L, € IR™*".

A second alternative for Cholesky factorizations
is used in the block-balancing iteration (Wortelboer
1991): it operates directly on PQ and finds a bal-
anced realization of some fixed order n; by itera-
tion. If the first n; HSVs are all greater than zero,
no singularity problems can occur.

The Gramians P and @ are usually not calcu-
lated by evaluating the time integrals in (1). In-
stead a pair of linear matrix equations is solved:

AP + PAT
ARQ+QA =

fneo d(eAIBBHeA”t) gl
fumd(e,«t”tcﬂceﬁl) e L
(3)
These are the controllability and observability Lya-
punov equations. The solution is straightforward
for system realizations with A in triangular form.

2.4 time domain interpretation

The controllability Gramian can be interpreted as
follows:

[ H 4, def <
= 2/ T A =T (4)
i=1v0 i=1
z,, = e*'Be;
with z,, the state response to an impulsive input

at channel i (e; € IR™ is the i** unit vector). This




is a direct consequence of the fact that BBY =
BY™, eie B,

The observability Gramian measures the energy
at the output when the system is released from
z(0) = zy while keeping the inputs equal to zero,

| v wee) dt = 2l Qao

() can also be interpreted as a summation of p sep-
arate parts:

e e def
Q = Z‘/; yi,:nyi.-‘-!u dt = ZQ. (5)
i=1 i=1
Yigy = B,-"Ce’“

with y; ., the response of the i** output to a state
impulse at ¢ = 0 and e; € IR? the #*" unit vector.

2.5 frequency domain interpretation

In the sequel the frequency domain counterpart of
(1) will be of special importance (Skelton 1988)

P =
Q:

with @(s) = (s — A)~1. These equations are a di-
rect consequence of Parseval’s theory. In the time
domain the inputs were impulses, here the inputs
can be seen as white noise processes with unit in-

L 2, 8(jw) BB 8 (ju)dw

= [22, ®H(jw)CHCP(jw)dw (6)

tensity.

2.6 practical use

The steps to be performed are

1) calculate the Gramians P and Q

2) calculate the balancing transformation

3) calculate the balanced realization

4) truncate the balanced realization
For stable systems balanced reduction is a very
practical reduction method. Each truncation of a
balanced realization is stable and balanced and the
reduction error is bounded (2). In practice the re-
duction error is often evalnated based on the max-
imum singular value of G, (jw) — G,(jw) and it is
often true that the reduction error has a unniform
distribution over frequency.

[f we want non-uniform error distributions, fre-
quency weighted versions of balanced reduction can
be used. The common approach is to define fre-
quency weighted Gramians (modification of step
1) and to leave the other steps unchanged. For
all methods step 2 should be performed with care.
The next sections discuss the construction of FW
Gramians.
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3 Frequency weighted Gramians
according to Enns

For a thorough discussion of FWBR we refer to
Enns (1984a).

Usy

Gol(s)—L—dw,(s)—¥*

Wi(s)

Fig. 1: Series connection for input and output
weighting

In normal balanced reduction the inputs are as-
sumed to be unit intensity white noise processes.
Colored noise processes can be generated by means
of a weighting function W;(s) receiving white noise
inputs. Now W;(s) can be placed in series with the
system, but reduction of this series connection ap-
plies to both original and filter states. Similarly
filtering the output can be modeled by premulti-
plying the system with W,(s), the output weight-
ing. The idea of Enns was to calculate the control-
lability Gramian of G,(s)Wi(s), the observability
Gramian of W,(s)G,.(s) and to look only at the
part related to the system states. These Gramian
parts determine the FW-balancing transformation
and the subsequent reduction.

Let (A;, By, Cy, D;) be an order n; state space re-
alization of W;(s) and (Ao, B,, C,, D,) an order n,
state space realization of W,(s).

The frequency response of the states of
(A, B,C, D) to the new inputs u, is

z(s) (s — A)7'BW,(s)u,(s)

= H,.-{Sf—.f’i_"')_lB_"'ﬂw(S) (7)
with
W= | Opis Iy ]
Ao g ] ®)
Bu = [ gn ] )

For z driven by unit intensity white noise U, the
weighted controllability Gramian is

1 o0
=4 e N CHia
Py, = Qﬂ_f z(jw)z" (jw)dw

—00

Using (7) and the fact that wy(jw)ull (jw) = T we
find

1 oo
Pw, = f ®BW,WH BH oM 4y
I, P, I1E

Il

(10)
with




Bty lfm ®,,B,,B ®"dw
2?’[ — 00 = :

®,i(s) = (sI—Au)?
Since (il § I
35 )Gl — A)du=3
P,; can be solved using a Lyapunov equation:
(jw'f — Asi)P.si =k Pai(jw" T A-“')H 3
_A.II'P.H = P‘!A:{ = B-!I'B::T (]1)

Output weighting with W,(s) means

i Ql/m o7 CHWAW,Codw
M J—oo
= Hansonfi (12)
with
nsa *Ti |‘1n On,n,,]
A O
— nn, I
Ao sl o (13)
C.sn = [Doc Co] (14)
Qu = 5 [ BHCHC, B
M J—oo
i = (3I~A,c)_1

Q,. is solved from the observability Lyapunov equa-

tion,
(15)

The FW-balancing transformation is defined as

A:f Qan i anAso < C:icso =0

o

T Pw T = TEQw, Tw = Sw = diag(ow;)

Expressions (10,12) clearly show that the in-
fluence of the weightings is fully determined by
Wi (jw)Wi(jw) ™, Wo(jw)? W,(jw). The state-space
realizations of W;(s), W,(s) are irrelevant and thus
the FW HSVs ow; are system invariants for given
(W;,W,). As expected intuitively weighting with
all-pass systems has no effect.

3.1 stability

The truncation of the FW-balanced model is not
necessarily stable for stable systems as was the case
with balanced reduction, nor is it FW-balanced.

Stability is guaranteed for the following two
cases:

i) if the input weighting is a constant matrix
D; and (A, BD;) is a controllable pair with A sta-
ble, then FWBR results in a stable reduced-order
model. (A, BD;) is a controllable pair if and only
if (A, B) is a controllable pair and D;D! is non-
singular. The output weighting W,(s) is allowed to
be dynamic.

32

i1) also for dynamic input weighting W;(s), and
constant output weighting D,, observability of
(A, D,C) is sufficient for stability of the reduced-
order model. Observability of (A,C) implies ob-
servability of (A,D,C) provided DXD, is non-
singular.

3.2 practical use

In FWBR the normal balanced reduction procedure
is applied to (A, B, C, D) using Pw,, Qw, to define
the FW-balancing transformation. Py, is solved via
(10) and (11), and Qy, is solved via (12) and (15).
In general the reduced models are not FW-balanced
and stability is not guaranteed. The advantage over
balanced reduction is that the reduction error can
be shaped more or less as a function of frequency.
A structured way of defining W, and W, for this
purpose however is lacking. Also for practical use
the order of W; and W, may not be too large.

4 Frequency weighted
interval Gramians

The idea of defining Gramians over a fixed fre-
quency interval is due to Gawronski and Juang
(1990). They introduced new Gramians by limit-
ing the time evolution in (1) and/or the frequency
range in (6). Here we use the frequency interval
Gramians as a starting point for our generalization.

4.1 frequency interval Gramians

In frequency interval balanced reduction it is as-
sumed that the frequency content of the input sig-
nals is limited to a specific frequency band and sim-
ilarly the output is only of concern in the same fre-
quency band. Note that the interval is in fact a
pair. Define

[wa,ws] = [—wp, —wa| U [wa,wp] for wp >w, >0

1 for w € [w,,ws)
0 for w ¢ [w,,ws]

The frequency interval Gramians then are

r]{w, Ewﬂ'wb]) (Iﬁ)

P, =5- |5 ®(jw) By(w, [wa, ws]) BY @ (jw) dw
Qy =2L: ) 0= QH(jW}CH 7w, [wq,wa])C‘I’(jw) dw

F, and @, are not computed via numerical integra-
tion but via standard Lyapunov equations and an
additional matrix logarithm as will be shown in 4.3.

Experiments with frequency interval balanced re-
duction revealed that a large interval is needed to
ensure that the reduced order model is stable. In




that case the advantage over standard balanced re-
duction is minimal. A valuable extension however
is created by using more intervals each equipped
with some frequency weighting function.

4.2 definition of FW interval Gramians
Let’s write our generalized FW Gramians as

P, = 2 [, ®(jw) B (w) B @4 (jw) dw

@n, = 1 15,87 ()0 0, (w)C8(w) dw (17
For 0,0) = Wi(Gu)Wi(ju) and Qw) =

W (jw)W,(jw) we have Enns’ (W;, W,)-weighted
Gramians. For Q(w) = Inn(w,[ws ws]) and
Qo(w) = Iyn(w, [wa, ws]) we have the plain interval
case of Gawronski & Juang (1990).

We are looking for well defined © functions

-w) = Qw)
Qw) >0

QH(L;)) = (18)

that can be specified easily and that allow a solution
to (17) based on Lyapunov equations.

A piecewise quadratic frequency function is pro-
posed:

Qw) = T(Tox + Tre|w| + Poxw?) 7w, [wa, w])
(19)
For each interval k, the constants I'y,T'; and T
should be such that (18) is satisfied.

The derivation of the weighted observability
Gramian is similar to the derivation of the control-
lability Gramian that will be given next. We can
concentrate on one frequency interval [w,, ws] with
wy > w, > 0. The associated [—wsy, —w,| part of the
weighted controllability Gramian can be obtained
by substitution.

solution of the weighted controllability
Gramian

4.3

For the solution of

1 o i
Pojosnl = 5= ). @(jw)Y®" (jw) duw (20)
with Y = B(Ig+ w4+ Iw?)BY

we write Y as
(jwl—A)X + X”(jwf —A)H
+(qu—A)Bl‘gB”(jwl—A)”

with X the solution to the following linear matrix
equation

AX + XA? 4+ BFF =
F = Br{ — jABT{ — A’Br¥

(21)
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Next the integration (20) can be executed term by
term:

= ot X (jwI-A)~Hdw+
L [ (jwI-A)1X T dw+

% o H
W .
o Jrhhl BFQB dw —

2 (XS (War) + S(wa,ws) X
+ BFgBﬁ{wg—wn)}

PF,[w, st | =

(22)
with S(ws, ws) = —j In[(jwaI—A)~Y(jwy[-A)]. The
matrix logarithm S(w,,w;) can be solved by first
transforming A to diagonal form.

For the interval case with I'y = I (21) simplifies
to the standard (unweighted) controllability Lya-
punov equation yielding X = P. The interval
weighted controllability Gramian then is

Plo,wm) = -21?{ P[S’r{(w‘,, wy) + S"(—u;,, —w,)] +
[S(wa, wp) + S(—ws, —uwy)|P }

A similar solution can be derived for
Aw) = T (T, zlptlwl?) 0w, [we,wsl) (23)

4.4 practical use

For each interval with a quadratic frequency func-
tion given by Ty, Iy, Ty, (21) is solved and X is
substituted in (22). For the associated negative
interval the same I''s are used. Qr Jwauws] 18 han-
dled similarly. The sum over all frequency interval
pairs yields the FW Gramians Pq, and Qq,. In the
FW-balanced form we have }‘59_. = én" = Y
diag(oq;). In general the reduced models are not
FW-balanced and stability is not guaranteed. Com-
pared to Enns’ FWBR the freedom in specifying
w) is large. No realizations for W;(s) and Wo(s)
are needed.

5 Frequency pulse Gramians

Suppose we have an interval function bounding a
unit area (wp — we) 'n(w, [wa,w]). For w, — Wy
this function deforms into a Dirac delta function
6(w—wy). For wy # 0 a frequency pulse pair is used
to satisfy (18): Q(w) = I's(8(w — ws) + (w + wy))
with I's real and positive definite. Let ws| represent
a frequency pulse at wy, and wy| a frequency pulse
pair at {—wy, +w,}. With (17) we find for the pulse
weighted controllability Gramian

Ph,&" = Pm[-]- 12k

)

[
o= (dwnI — A)' BT3B (juw, I — A) ™

P‘-‘-’i! = 2“




This can be computed straightforwardly.

The rank of this matrix cannot exceed m, the
number of inputs. By choosing n, pairs of fre-
quency pulses (at positive and negative frequen-
cies) the order of the controllability Gramian will
be 2npm. If we require positive definite Gramians

for minimal systems we have fo take n; > %n/m‘

6 Generalized framework

In the most general case we start with input and
output weighting W; and W, and apply the inter-
val based frequency weightings to the inputs uy
and outputs 7, (see Fig.1). On the input side
we have A,;, B,; (8,9) and by means of piecewise
quadratic and pulse weightings the FW controlla-
bility Gramian is built up. At the end the original
system-state part is extracted using the projection
I1,; and the unweighted controllability Gramian P
is added with a scaling factor 3

PWﬂe == ,BP + HaiPsx,ﬂ;nﬂ (24)
Pai,ﬂ.- = E(z Pai‘[f‘,[w.‘ ,up.]]jk + Z P_“"([‘ﬁ P‘bl]j!)
i=1"k 1

Thus we have a sum over intervals (k), a sum over
frequency points (I) and all these summed over the
inputs u,, of W; (see Fig.1 and (4)). On the output
side we have A,,, C,, (13,14) and the same approach
is followed to build Qwaq,-

A MATLAB model reduction tool has been devel-
oped that builds weighted controllability and ob-
servability Gramian in steps, showing the reduction
result (frequency response, reduction error) after
each step and allowing the user to specify additional
weightings. One can start with a small factor g to
analyse normal balanced reduction. Next a scalar
piecewise quadratic function or a series of pulses
can be specified for each input and output sepa-
rately. For quadratic weighting within a single in-
terval three frequency function values are required.
The lowest and highest frequencies determine the
interval, I,y and Iy result from an interpola-
tion through the three function values. Continu-
ation in neighbouring intervals requires two addi-
tional function values. For a frequency pulse one
function value (wp, I's) is needed. The input of the
frequency function values can be performed graph-
ically. Picking points in a frequency response plot
has the advantage that the weighting can be tuned
to the system frequency characteristics. The re-
duction error and the scalar weightings are plotted
together after each step. This gives the user a clue
for applying additional weightings.
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6.1 example 1

First frequency weighted reduction of a 34'**-order
siso model (Fig.2) of the tracking mechanism in
a Compact Disc player is analysed. The reduced
order model will be used for the design of a con-
troller that achieves a bandwidth of about 1 kHz,
The lightly damped system poles furn unstable if
the model reduction error near 1 kHz is too large.
Here it will be shown that our frequency weight-
ing concept is very efficient for controller-relevant
reduction. Let us first analyse standard balanced
reduction (unweighted case).

The HSVs (Fig.3) are used to calculate the er-
ror bounds (2) for all possible reduced orders. Fig-
ure 4 shows that only with n, > 30 sufficiently ac-
curate results can be expected, due to the magni-
tude of the transfer function in the bandwidth fre-
quency range. To force a better fit around 1 kHz
a quadratic frequency function is added. Figure 2
shows the three points that were picked and the
quadratic fit within the chosen interval. The fre-
quency weighted HSVs (Fig.3) point to a 12" order
reduced model. Normalized LQG control design on
a 12 order frequency weighted reduced model gave
a controller that performed well on the 34" order
model whereas the same design on a balanced ap-
proximation of order 12 resulted in a controller that
destabilized the original model. Figures 5 and 6
show the results for n, = 12 in the unweighted and
weighted case. Balanced reduction gives reduction
errors distributed almost uniformly over all frequen-
cies, but the dynamics in the bandwidth frequency
range are not included. In the weighted case the ac-
curacy is clearly improved within the interval. At
low frequencies the fit is worse than with normal
balanced reduction, but this does not hamper suc-
cessful control design.

Weighting only with the quadratic part, the 3.5
Hz mode turns unstable in most reduced models.
Plain frequency interval balanced reduction shows
similar stability problems.

6.2 example 2

The second example shows the use of the Dirac
pulse frequency weighting on a stable single input
single output all-pass system:

(s = 1)(s — 2)(s = 8)(s — 4)
(s+1)(s+2)(s+3)(s+4)

9a(s) = (25)
This academical system provides no basis for bal-
anced reduction since all HSVs are equal to one.
FWBR. gives distinct FW HSVs and thus a ba-
sis for reduction. Choosing a frequency weighting
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Q(w) = Q(w) = 8w + 1) + §(w — 1) gives rank 2
weighted Gramians. The second order approxima-
tion is

2 —1.1268s +0.7183
~ 52+ 1.1268s +0.7183

ga(s (26)
This reduced system has one complex conjugate
pole pair and it is again a stable all-pass system.
The reduction error is shown in Fig. 7. The ex-
tremely accurate fit for w = 1 illustrates the power
of the frequency pulse weighting.

6.3 practical use

The MATLAB implementation of generalized
FWBR mainly offers flexibility in model reduction.
Balanced reduction, Enns’ frequency weighted bal-
anced reduction, and frequency interval balanced
reduction are all special cases. The step by step
approach with graphical evaluation of the reduction
results and graphical input of weighting functions
can be used very effectively in deriving stable re-
duced order models that fit the original model in
the intended way. The general experience is that
over the whole frequency range a minimal weight-
ing has to be applied to ensure that the reduced
order models remain stable. The easiest way to do
this is to choose a sufficiently large 3 in (24). Very
small reduction errors at specific frequencies can be
obtained with frequency pulse weightings. This can
be very practical in retaining system zeros.

7 Conclusion

Generalized frequency weighted balanced reduction
(GFWBR) is introduced. It merges Enns’ fre-
quency weighted balanced reduction and frequency
interval balanced reduction of Gawronski & Juang
into one unified framework. New features are the
use of scalar quadratic frequency functions within
multiple frequency intervals and the frequency pulse
weightings. The definition of the weighted Grami-
ans as a sum over separate intervals and sepa-
rate inputs and outputs allows GFWBR to be im-
plemented in a step by step reduction procedure.
Graphical evaluation of the reduction results after
each step and graphical input of the weighting func-
tions offer great flexibility in frequency weighted
model reduction.
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Abstract.

In many areas of signal, system and control theory orthogonal functions play

an important role in issues of analysis and design. In this paper it is shown that there
exist orthogonal functions that, in a natural way, are generated by stable linear dynamical
systems, and that compose an orthonormal basis for the signal space £3. To this end use
is made of balanced realizations of inner transfer functions. The orthogonal functions can
be considered as generalizations of e.g. the Laguerre functions and the pulse functions,
related to the use of the delay operator, and give rise to an alternative series expansion
of rational transfer functions. It is shown how we can exploit these generalized basis
functions to increase the speed of convergence in a series expansion, i.e. to obtain a good
approximation by retaining only a finite number of expansion coefficients.

Keywords.

1 Introduction

Consider a finite-dimensional linear time-invariant
discrete-time system G, represented by its transfer
function G(z) in the Hilbert space Ha, i.e. G(2) is
analytic outside the unit circle, |z| > 1. A general
and common representation of G(z) is in terms of
its Laurent expansion around z = oo, as

G(z) = i Giz~*

k=0

(1)

with {Gg}r=01,... the sequence of Markov pa-
rameters. In constructing this series expansion
we have employed a set of orthogonal functions:
{z° 271,272 ...}, where orthogonality is consid-
ered in terms of the inner product in H;. In a

tPart of this work was done while the second author was
a visiting researcher at the Centre for Industrial Control
Science, The University of Newcastle, N.S.W., Australia.

iNow with the National Institute of Public Health and
Environmental Protection (RIVM), P.O. Box 1, 3720 BA
Bilthoven, The Netherlands.
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37

system identification, orthogonal functions, system approximation.

generalized form we can write (1) as

G(z) =) Lefi(2)

k=0

(2)

with {fx(z)}k=0,1,2,-- a sequence of orthogonal func-
tions.

There are a number of research areas that deal with
the question of either approximating a given system
G with a finite number of coefficients in a series
expansion as in (2), or (approximately) identifying
an unknown system in terms of a finite number of
expansion coefficients through

N
G(z) =Y Lefu(z) (3)

In an identification context, the use of the orthog-
onal functions as in (1) lead to the so called Fi-
nite Impulse Response (FIR)-model, Ljung (1987).
However, it is well known that for moderately
damped systems, and /or in situations of high sam-
pling rates, it may take a large value of N, the




number coefficients to be estimated, in order to cap-
ture the essential dynamics of the system ( into its
model.

In this paper we consider the problem of construct-
ing orthogonal functions fx(z) in such a way that
a series expansion of the system G, as in (2) be-
comes very simple, i.e. the number of coefficients L
that is needed becomes small. In dealing with this
problem, we have considered the question whether
a linear system in a natural way gives rise to a set
of orthogonal functions. The answer to this ques-
tion appears to be affirmative. It will be shown
that every stable system gives rise to a complete
set of orthonormal functions based on input (or out-
put) balanced realizations, or equivalently based on
a singular value decomposition of a corresponding
Hankel matrix.

The use of orthogonal functions with the aim to
adapt the system and signal representation to the
specific properties of the systems and signals at
hand has a long history. The classical work of Lee
and Wiener during the 1930’s on network synthesis
in terms of Laguerre functions is summarized in Lee
(1960). During the past decades, the use of orthog-
onal functions has been studied in problems of e.g.
filter synthesis, King and Paraskevopoulos (1977),
and system identification, King and Paraskevopou-
los (1979), Nurges and Yaaksoo (1981), Nurges
(1987). In these approaches to system identifica-
tion, the input and output signals are transformed
to an (Laguerre) transformed domain and standard
identification techniques are applied to the signals
in this domain. Data reduction has been the main
motivation in these studies. In recent years, a re-
newed interest in Laguerre functions has emerged.
The approximation of (infinite dimensional) sys-
tems in terms of Laguerre functions has been con-
sidered in Makila (1990), Glover et al(1990) and
Gu and Khargonekar (1989). In the identification
of coefficients in finite length series expansions, La-
guerre function representations have been consid-
ered from a statistical analysis point of view in
Wahlberg (1991). The use of Laguerre-function-
based identification in adaptive control and con-
troller tuning is studied in Zervos et al.(1988). A
second-order extension to the basic Laguerre func-
tions using the so called Kautz functions is subject
of discussion in Wahlberg (1990).

In section 3 we will show how inner functions gener-
ate two sets of orthonormal functions that are com-
plete in the signal space €. Next the interpretation
of these results is given in terms of balanced state
space representations. After showing the relations
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of the new basis functions with existing ones, we
will focus on the dynamics that implicitly are in-
volved in the inner functions generating the basis.
It will be shown that if the dynamics of a stable sys-
tem match the dynamics of the inner function that
generates the basis, then the representation of this
system in terms of this basis becomes extremely
simple. Consequences for a related identification
and approximation problem are discussed in a final
section. For the proofs of the results the reader is
referred to Heuberger et al.(1992).

2 Preliminaries

We will denote (+)* as the complex conjugate trans-
pose of a matrix, Z, as the set of nonnegative in-
tegers. 5[0,00) is the space of squared summable
sequences on the time interval Z,, £5""[0,00) the
space of matrix sequences {Fi,k =0,1,2,---} such
that Y o, tr(FyFx) is finite. || - |2 is the induced
2-norm or spectral norm of a matrix, i.e. its maxi-
mum singular value. We will consider discrete-time
signals and systems. A linear time-invariant finite-
dimensional system will be represented by its ra-
tional transfer function G(z) € IRP*™(z), with m
the number of inputs in u, and p the number of
outputs in y. (A, B,C,D) is a realization of G if
G(z) = C(zI — A)7'B + D. A realization is stable
if |o(A)| < 1, where o(A) is the set of eigenvalues
of A. If a realization is stable, the controllability
Gramian P and observability Gramian ¢ are de-
fined as the solutions to the Lyapunov equations
APA™ + BB* = P and A"QA+ C*C = @ respec-
tively. A stable realization is called (internally) bal-
anced if P = Q = I, with ¥ = diag(oy,---,0,),
oy > -+ > 0y, a diagonal matrix with the positive
Hankel singular values as diagonal elements. A sta-
ble realization is called input balanced if P = I,
Q = ¥?, and output balanced if P = X% Q = I.

A square system (p = m) is called all-pass if it sat-
isfies GT(27')G(z) = I, or equivalently
G(z)GT(z7') = I. An inuer transfer function ma-
trix is an all-pass transfer function that is stable,
i.e. it is analytic outside and on the unit circle.
When dealing with inner functions in this paper,
we will implicitly assume that the inner function
(i is proper, i.e. it has a Laurent series expansion

oo Gkz~*. The (block) Hankel matrix associated
with G is denoted by H(G), and is constructed from
the Markov parameters {G }k=12,...-




3 Orthonormal functions gener-
ated by inner transfer functions

In this section we will show that a square and in-
ner transfer function gives rise to an infinite set of
orthonormal functions. This derivation is based on
the fact that a singular value decomposition of the
Hankel matrix associated to a linear system induces
a set of left (right) singular vectors that are orthog-
onal. Considering the left (right) singular vectors
as discrete time functions, they are known to be or-
thogonal in {;-sense, thus generating a number of
orthogonal functions being equal to the McMillan
degree of the corresponding system. We will em-
bed an inner function with McMillan degree n into
a sequence of inner functions with McMillan degree
kn, for which the left (right) singular vectors of the
Hankel matrix span a space with dimension kn. If
we let & — oo the set of left (right) singular vec-
tors will yield an infinite number of orthonormal
functions, which can be shown to be complete in
i,

The Hankel matrix of an inner transfer function has
some specific properties, reflected in the following
two results.

Proposition 3.1 Let G(z) be an inner function
with MeMzllan degree n > 0. Then a singular
value decomposition (svd) of H(G) satisfies H(G) =
UoVy with Uy, Vo € C®*" unitary malrices, and
the pair (Ua, Vo) is unique modulo postmultiplica-
tion with a unitary matriz T' € C**".

Proposition 3.2 Let G(z) be an inner function,
having a Laurent expansion G(z) = E:Q:U Giz—%.
Denote the block Toeplitz matrices

[ A e Al
0 Go G, Gy
T, = 0 0 (.r'u G‘], (4)
: i 0 Go
[Gs 0 0 ]
Gy Gy 0
T. = | G2 Gi Go (5)
P L Gy Gy

Then T,TY = TXT, = 1.

Lemma 3.3 Let G(z) be an inner function with
McMillan degree n. Then for all k € Z,, G*(z) is
an inner function with McMillan degree kn. O
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Considering Proposition 3.1, it follows that the
rows of Vi, and the columns of Uy, are n mutu-
ally orthonormal vectors of infinite dimension. Ad-
ditionally Lemma 3.3 shows that we can construct
an inner transfer function with increasing McMil-
lan degree, by repeatedly multiplying the transfer
function with itself, and thus implicitly creating an
increasing number of orthogonal vectors. The fol-
lowing result shows how we can increase this num-
ber of vectors, by embedding the svd of H(G) into
a sequence of svd’s of H(G*).

Theorem 3.4 Let G(z) be an inner function with
MecMallan degree n > 0. Then

(a) There ezist unitary matrices U;, Vi € C®*n
t = 0,1,---, such that for every 0 # k € Z,,
the matrices

Vs

Vi

? =[Upoy +++ Uy Up] and TG =

Vk;—l
(6)

constitute a singular value decomposition of

H(G*), through H(G*) = T3T%;
(b)

Let G(z) have a Laurent expansion G(z) =
o0 Giz™', and consider the block Toeplitz
matrices Ty, T, as in (4), then this matriz se-

quence {U;, Vi }izo,,.. salisfies

Vk- ==
U =

Via T,
Tu U k-1

(7)
fork=1,2,--- (8)
The theorem shows the construction of orthogo-
nal matrices I'j, I'; that have a nesting structure.
The suggested svd of H(G*) incorporates svd’s of
H(G") for all ¢ < k. In this way orthogonal matri-
ces '} and I'{ are constructed with an increasing
rank. Note that the restriction on the structure of
the consecutive svd’s is so strong that, according to
(b), given a singular value decomposition H(G) =
UsVy', the matrix sequence {U;,V;, i = 1,2,---} is
uniquely determined. Note also that there is a clear
duality between the controllability part I'{ and the
observability part I'}. In order to keep the exposi-
tion and the notation as simple as possible we will
further restrict attention to the controllability part
of the problem. Dual results exist for the observ-
ability part.

Proposition 3.5 Let G(z) € R™*™(z) be an in-
ner function with McMillan degree n > 0, and con-
sider a sequence of unitary matrices {V;}i=1... as




meant in Theorem 3.4. Denote

Z Mi(3)z~", with M(i) defined by

Vi(z) =
Ve = [Mi(0) Mi(1) Mu(2) -+ ) 9)
and M(i) € C**™, k€ Z,.
Then Vi(z) = Vo(2)G*(2). o

The proposition actually is a z-transformequivalent
of the result in Theorem 3.4. It shows the con-
struction of the controllability matrix I';. In the
next stage we show that this controllability matrix
generates a sequence of orthogonal functions that
is complete in £3.

Theorem 3.6 Let G(z) € R™™(z) be an inner
function with McMillan degree n > 0, such that
|Goll2 < 1; consider a sequence of unitary matrices
{Vi}iz0,, as meant in Theorem 8.4. For each k €
Z consider the function ¢y : Zy — C7, defined
by:
[6x(0) k(1) ¢x(2) --- 1= Vi

Then the set of functions W(G) = {dk}izo con-
stitutes an orthonormal basis of the signal space
[0, 00). o

Remark 3.7 This basis has been derived from the
singular value decomposition of the Hankel matriz
H(G). As stated in Proposition 3.1 this svd s
unique up to postmultiplication of U, Vo with a
unitary matriz. Consequently - within this contezt
- both V7, Vi(2) and the corresponding basis Junc-
tions {¢r} are unique up to unitary premaultiplica-
tion.

For use later on we will formalize two classes of
inner functions.

Definition 3.8 We define the classes of functions:

G

Ii

> 0 such that ||Goll2 < 1};
Gy =
> 0 such that G5Go = GoGg}-

As a result of the fact that the proposed orthonor-
mal functions constitute a basis of £3, each square
inner function generates an orthonormal basis that
provides a unique transformation of £3-signals to an
orthogonal domain. Similarly, when given such an
orthonormal basis, each stable rational function can
be expanded in a series expansion of basis functions
Vi(2) as defined in proposition 3.5.

{all inner functions G with McMillan degree

{all inner functions G with McMillan degree
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Corollary 3.9 Let G be an inner function, G €
Gi, and let W(G) be as defined in theorem 3.6. Then
for every proper stable transfer function H(z) €
RPX™(z) there exist unique BiE REEM and I =
{Li}r=0a, € &5 "[0,00), such that

H(z)=D+z"' i L Vi(z)

k=0

(10)

We refer to D, Ly as the orthogonal expansion co-
efficients of H(z). o

We will refer to the sequence {Vi(2)}k=04,.- as the
sequence of generating transfer functions for the or-
thonormal basis ¥(G). In order to find appropriate
ways to calculate the orthogonal functions, as well
as to determine the transformation as meant in the
corollary, we will now first analyse the results pre-
sented so far in terms of state space realizations.

4 Balanced state space representa-
tions

In order to represent the orthogonal controllability
matrix in a state space form, we will use a balanced
state space realization of G.

Proposition 4.1 Let G be a transfer function with
minimum balanced realization (A, B,C,D), Then
G(2)GT(z") = I if and only if (i) P = Q = I;
(ii) BD* + AC* =0, and (iii) DD" + Con=1.18

Note that for this proposition there also exists a
dual form, concerning the transfer function GT with
realization (A*, C*, B*, D*). The class of functions
G, can simply be characterized in terms of a bal-
anced realization.

Proposition 4.2 Let G € R™*™(z) be an inner
function with minimal balanced realization
(A, B,C,D). Then G € Gy if and only if rank B =

m, or equivalently rank C'=m.

The following proposition shows that we can use a
balanced realization of G to construct a balanced
realization for any power of G.

Proposition 4.3 Let G be an inner transfer func-
tion with minimal balanced realization (A, B,C, D)
having state dimension n > 0. Then for any k> 1
the realization (Ag, Bk, Ck, Di) with

A GRE =
BC A 0
B | BDE ) BC (1)

o e [ == T 2 ()

BD¥*C BDC --- BC




B
BD
B.= | BD? (12)

Bbk—-l

=D 0 DF¢ D*C DC €] (13)

Dyi= D* (14)

is a minimal balanced realization of G* with state
dimension n - k. 0

Examining the realization in the above proposition,
reveals a similar structure of observability and con-
trollability matrices, as has been discussed in the
previous section. E.g. taking the situation k = 2,
it shows that the controllability matrix of (Az, Ba)
contains the controllability matrix of (A, B) as its
first block row.

Proposition 4.4 Let G(z) € R™*™(2) be an in-
ner transfer function with McMillan degree n > 0,
whose Hankel matriz has an svd H(G) = Uy, and
let (A, B,C,D) be a minimal balanced realization
of G such that V5 = [B AB A?B ---]. Then the
unique sequence of orthogonal matrices {I'§ }i=1,2,...
as meant in theorem 3.4 is determined by

¢ = [By AeBy A2By -] (15)

with Ag, By as defined in (12). O

The above result shows how a minimal balanced
realization of G actually generates the sequence of
orthogonal matrices I'{, the rows of which are the
basis functions in our orthonormal basis of €. For
inner functions in G, specific properties in terms
of their balanced state space representation can be
derived.

Proposition 4.5 Let G € R™*™(z) be an inner
function with minimal balanced realization

(A,B,C,D). Then G € G, if and only if there
exists a unitary matriz R such that C = B*R. 0O,

There exist recursive formulae for constructing the
orthogonal functions.

Proposition 4.6 Let G be an inner function, G €
(G, N Gy), and consider the assumptions and nota-
tion as in Theorem 3.4 and Proposition 4.4. De-
note X = BC, and P = —RA*, with R according
to Proposition 4.5. Then
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(a) the elements of T are determined by the fol-
lowing recursive equations

Mo(0) = B
k
Mi(i+1) = AM(i)+ Y PP~ X Mi_;(i)
1=1
f‘--fk(UJ = wark—l{u)

with T', as in (6) and (9).

(b) T is unique, i.e. it is not dependent on the
specific choice of R in case R is nonunique. O

The recursive equations show how we can sim-
ply construct the set of orthogonal functions. We
now come to the construction of a series expansion
of any stable proper rational transfer function, in
terms of the new orthonormal basis.

Theorem 4.7 Let G be an inner function G €
(Gr N G2) with a minimal balanced realization
(A,B,C,D). Let this inner function generate
an orthonormal basis with corresponding gener-
ating functions Vi(z), as defined in Proposition
3.5. Let H € RP*™(z) be any proper and sla-
ble transfer function with a minimal realization
(As B Gy lls) s Lhen

H(z) =D, + 27" ) LiVi(2) (16)
k=0

with Ly € CP*" determined by:

Lk = Cst
Qo = A;QoA" + B,B*
Qi1 = AQinA” + AQ:R* — Q:AR® (19)

In section 6 we will show that specific choices of
G(z) in relation with H(z), i.e. specific relations
between the inner function G producing the or-
thonormal basis and a transfer function H that
should be deseribed in this basis, will lead to very
simple representations.

5 A generalization of classical basis
functions

In this section we show two examples of well known
sets of orthogonal functions that are frequently used
in the description of linear time-invariant dynami-
cal systems, and that occur as special cases in the
framework that is discussed in this paper.



Pulse functions
Consider the inner function G(z) = z7%, G € G;.
The Hankel matrix of G satisfies:

10 0 1

! 00 0 0 0
HG) = |oo o o|l=1o|[1 0]
= UV (20)

As a result Vo(z) = 1, and with proposition 3.5 the
generating transfer functions Vi(z) satisfy Vi(z) =
k() =58 b= 051, s The corresponding set
of basis functions ¥(G) is determined by ¢x(t) =
§(t — k) with §(r) the Kronecker delta function.
The inner function G can be realized by the mini-
mal balanced realization (A, B,C, D) = (0,1,1,0),
showing that DD* = D*D and so G € Ga. Ap-
plying theorem 4.7 with R = 1 shows the classical
result that Ly = C,A*B,.

Laguerre functions

Consider the inner function G(z) = 19 “u{:, with
some real-valued a, |a| < 1, and denote n =1 — a.
Since G = —a it is clear that G € (G N Ga).

A minimal balanced realization of G is given by
(A, B,C, D) = (a,/", /7,—a), leading to 1= Tl
Application of Proposition 4.6 gives X' = 1, P =
—a, and taking account of the fact that for one-
dimensional scalar G, My(2) = ¢x(i), it follows that

$0(0) = V1
k
gi(i+1) = ag(i)+n)_(—ay " ér-i()
J=1
6x(0) = —adx1(0)

These equations exactly match the equations that
generate the normalized discrete-time Laguerre
polynomials with discount factor a (Nurges and
Yaaksoo, 1981).
The corresponding generating transfer functions
Vi(z) can be analysed with the result of proposi-
tion 3.5:
—az)*

V(o) = Vs e (21)
This exactly fits with the formulation of the gener-
ating transfer functions of discrete-time Laguerre
polynomials in e.g. King and Paraskevopoulos
(1979).
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6 Orthonormal functions originat-
ing from general dynamical sys-
tems

We have shown that any square inner transfer func-
tion G € G, generates an orthonormal basis for the
signal space £7. One of the reasons for developing
this generalized bases was to find out whether we
can yield a more suitable representation of a general
dynamical system, when the basis within which we
describe the system is more or less adapted to the
system dynamics. In view of the results presented
so far, this aspect relates to the question whether
we can construct an inner transfer function generat-
ing a basis, that incorporates dynamics of a general
system to be represented within this basis.

There are several ways of connecting general trans-
fer functions to inner functions, as e.g. inner/outer
factorization (Francis, 1987), normalized coprime
factorization (Vidyasagar, 1985), or inner-unstable
factorization (Baratchart and Olivi, 1991). In this
paper we will explore a different connection, where
a general stable dynamical system with input bal-
anced realization (A, B,C, D) will induce a inner
function through retaining the matrices (A, B) and
constructing (C, D) such that (A, B,C, D) is inner.
This implies that the poles of the stable dynami-
cal system are retained in the corresponding inner
function,

Proposition 6.1 Let H € RP*™(z) be a proper
stable transfer function, with input balanced real-
ization (A, B, C, D) having state dimension n > 0.
Then

(a) there exist matrices C, D such that
(A, B,C, D) is a minimal balanced realization
of an inner function G;
(b) This G satisfies G € Gy if and only if (i) C =
B*R, (ii) BD® + AC* = 0 and (iii) D*D +
B*B =1, with R=UV*, and U, V any square
unitary matrices such that A = USV* is an svd
of A. 0

In the proposition all inner functions in G; NG, are
characterized that can be constructed in the way as
decribed above, by retaining the matrices (A, B) of
any given stable system. Note that the extension
with C, D is not necessarily unique. For an analysis
of this see Heuberger et al.(1992).

We will now present a result that is very appeal-
ing. It shows that when we want to describe the
dynamical system H in terms of the basis that it
has generated, as presented in Proposition 6.1, then




the series expansion in the new orthogonal basis be-
comes extremely simple.

Theorem 6.2 Let H € R"™(z) be a proper sta-
ble transfer function, with input balanced realiza-
tion (A, B, Cs, D), having all controllability in-
dices > 0. Let G € Gy be an inner function with
minimal balanced realization (A, B,C, D) such that
A = A, and B = B,, generating an orthonormal ba-
sis with generating transfer functions Vi(z). Then

1(z) = Dy + 27" ) LiVi(2) (22)
k=0
with Ly = C, and Ly =0 for k > 0. o

The theorem shows that when we use a general sta-
ble and proper dynamical system to generate an or-
thonormal basis as described above, then the sys-
tem itself has a very simple representation in terms
of this basis. It is represented in a series expansion
with only two nonzero expansion coefficients, be-
ing equal to the system matrices C, and D,. In the
next section we will discuss the results of this paper
in regard of their relevance to problems of system
identification and system approximation.

It has to be stressed that so far, we have only
used the generalized orthonormal basis to study
the series expansion of a given stable transfer func-
tion. Similar to the case of the pulse functions
and Laguerre functions, the presented generalized
functions induce a transformation of £;-signals to
a transform domain, compare e.g. with the z-
domain when pulse functions are used. In this
transform domain dynamical system equations can
be derived, leading to transform pairs of time-
domain and orthogonal-domain system represen-
tations (Heuberger and Bosgra, 1990; Heuberger,
1991).

7 Identification and System Ap-
proximation

We will now take a look at the question how we
can utilize the results to problems of identification
and system approximation. As mentioned in the in-
troduction, identification of a finite impulse model
(FIR) fails to be successful when the number of
coefficients to be estimated becomes large. An al-
ternative way to attain the advantages of this iden-
tification method, is to exploit the model structure

N-1

y(t)=D(0) + ) Li(0

k=0

WVilq)u(t) +e(t)  (23)
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where &(t) is the one step ahead prediction er-
ror, D(0), Li(0) the parametrized expansion coef-
ficients, and with Vi(z) representing an appropri-
ately chosen basis.
Identifying 6 through least squares optimization of
£(t) over the time inferval, is a similar problem as in
the case of an FIR-model. However, with appropri-
ately chosen basis functions, the convergence rate
of the series expansion can become extremely fast,
e. the number of coefficients to be estimated can
become very small. Note that the result of Theorem
6.2 shows an ultimate result of only two expansion
coefficients that are nonzero.

There is another point of interest, being the a priori
knowledge that very often is available in an iden-
tification situation.
has a -rough- knowledge about the dynamics of
the system under consideration, and it would be
favourable to exploit this knowledge in the identi-
fication procedure. The method suggested above,
shows that this a priori knowledge can be exploited
in terms of the basis functions that are chosen. The
more precise the a priori knowledge is, the better we
can adapt the basis functions to the system dynam-
ics, and the simpler will become the identification
problem; the latter effect, due to the smaller num-
ber of expansion coefficients that essentially con-
tribute to the expression (23).

In order to justify this identification /approximation
method we will present some results showing that
the speed of convergence in an orthogonal series
expansion can be quantified, showing the increase of
speed as the dynamics of system and basis approach
eachother.

Very often the experimenter

Theorem 7.1 Let H(z) € RP*'(z) be a proper
stable transfer function with an input balanced real-
ization (A,, By, Cy, Dy), and let (A, B) be an input
balanced pair that generates an inner transfer func-
tion G € R(z) with G € (Gi N G;), leading to an
orthonormal basis V((G). Let

Wi, 2 =1,---,n, denote the eigenvalues of A, and
L = O dmo."c the eigenvalues of A.
= 4
and denote | )| = and ) 1= max; |\
= 1’[ o o

Then for any e JR n > A, there ezists a finite
c € R such that

N+1

|1 H(z) (24)

— AN (@)oo < 07—

with AN(2) = D+ 27V Y0 LiVi(2) O

The above theorem shows that we can draw con-
clusions on the convergence rate of the sequence



of expansion coefficients { Lk }k=o,.., When given the
cigenvalues of the original system H(z) and the
eigenvalues of the inner function G(z) that gener-
ates the basis. Note that when the sets of eigen-
values {it:}, {p;} coincide, then A; = 0, for all i.
Since A is a measure for the "closeness” of system
dynamics and basis dynamics, the above theorem
shows that the error that is made when neglecting
the tail of a series expansion, becomes smaller as )
becomes smaller.

Conclusions

We have developed a theory on orthogonal func-
tions as basis functions for general linear time-
invariant stable systems. The basic ingredient is
that every square inner transfer function in a very
natural way induces two sets of orthogonal func-
tions that form a basis of the signal space {;. The
ordinary pulse functions and the classical Laguerre
polynomials are special cases in this theory of inner
functions.

With this concept it follows that any connection
between a linear system and an inner function, e.g.
through inner/outer factorization, normalized co-
prime factorization, leads to bases of specific system
based orthonormal functions. In this paper we have
explored a factorization in which the poles of the
system determine the inner factor. An important
property of the resulting orthonormal functions is
that they - to some extent - incorporate the dy-
namic behavior of the underlying system, leading
to an increasing speed of convergence in a series

expansion.
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Partial validation of a flexible wind turbine model !
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Abstract. In this paper validation results of a flexible wind turbine model are presented.
The paper starts with the description of a modular structured theoretical model for
flexible wind turbines. Such a model can contribute essentially when designing wind
turbine systems that have to behave properly at low construction costs. Experiments
on a real life wind turbine system have been performed to obtain experimental models
which can serve for validation of parts of the theoretical model. System identification
techniques have been used to find the input-output relations in the experimental data.
Because the wind plays an important role in the behavior of the system an independently
parametrized stochastic part of the experimental models is needed to obtain accurate
models. Considering step responses the theoretical model predicts approximately the
same outputs as the experimental model. Hence the theoretical model can be used to

describe this part of the wind turbine behaviour.

Keywords.
tion

1 Introduction

Wind turbine systems, or wind energy conversion
systems (WECS), are developed in order to utilize,
in some way, the energy present in the wind. In
most cases this energy source is exploited to pro-
duce electrical power and feed it into the public
grid. At this moment the efficiency of this conver-
sion can not compete completely with the price of
electrical power generated using fossile fuels. This
can be improved by reduction of construction costs,
achieving a long life time of the construction, and
highly efficient conversion of wind power. Such im-
provement is needed to achieve a significant contri-
bution of wind generated power to public demand
of electical power. This is a desirable goal because
the environmental aspects, which are expected to
become more important in the future, compare

FThis research was supported by the CEC under grant
JOUR-0110 and the Netherlands agency for energy and en-
vironment under grant 40.35-001.10
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favourably with conventional power plants.

It is expected that low cost WECS can be devel-
oped if flexibility is allowed in the different subsys-
tems that compose the complete wind turbine sys-
tem (Bongers et al. (1990)). Examples are: flex-
ible blades in the rotor, shafts with low torsional
stiffness in the transmission, and electrical conver-
sion systems that can buffer energy before feeding
it into the grid. The design should also aim at long
life time. This is directly related to fatigue which
can also be reduced when flexible components are
used.

As a consequence of these flexibilities the dynamic
behavior will become more complex. This poses a
more complicated design and control problem for
a flexible wind turbine compared to conventional
rigid wind turbines. Such a design must be car-
ried out very carefully otherwise the benefits of
applying flexible components will be lost or even
reversed. The control design pursues optimal en-
ergy production without an excess of mechanical



loads, to maintain a reasonable operational life of
the wind turbine. Therefore the design of well con-
trolled flexible wind turbines seems to be attractive
for commercial applications.

To solve these design problems an accurate model
describing the relevant dynamics of the complete
wind turbine is necessary in the design phase of a
well controlled flexible wind turbine system.
There is an abundance of publications concern-
ing dynamic models of wind turbines. Typical
aero-elastic rotor models are for example found
in (Kirchgasner (1986)), typical models describ-
ing mainly the rotating machinery are for example
found in Mattson (1984), Steinbuch (1989). Often
these models more or less concentrate on one com-
ponent of the wind turbine system using simplified
descriptions of the other turbine parts. In Bongers
et al. (1990) an integrated dynamic model of a
flexible wind turbine is presented which takes into
account both the aero-elastic rotor parts as well as
the rotating machinery. Models of this kind are
scarce and only have been developed recently.

For these models to produce reliable predictions
they need to be validated with respect fo their dy-
namics for different configurations. Some of these
dynamic models have been partly validated by
quasi-stationairy measurements. A model of a rigid
wind turbine described in Bongers et al. (1989) is
also validated with respect to its dynamics. The
integrated dynamic model has not been validated
with measurements yet.

This paper describes the first steps made in investi-
gating the validity of this theoretical model. These
steps include the estimation of experimental models
by means of black box system identification. In the
field of wind energy research this technique has only
been applied rarely, but in helicopter and flight dy-
namics testing it has been succesfully used in many
cases. For example the identification of helicopter
rotor dynamics has been succesfully performed by
Tischler (1986) and Du Val et al. (1989) .
Validation obviously requires an experimental site.
The UNIWEX experimental wind turbine offers
the possibility to emulate a large set of (flexible)
wind turbine configurations (Miiller (1989)) . The
benefits of this experimental wind turbine lie in the
fact that there are no hardware changes involved
when switching between different configurations.
As stated earlier it is expected that the application
of components with flexible characteristics will in-
troduce a more complex dynamic behavior. The
validation procedure should therefore cover more
phenomena, and a more detailed examination of
particular phenomena that did not play a role in
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the rigid case. In order to be valid for a diversity of
flexible configurations the dynamics should be ex-
amined over a range of flexibilities. Therefore one
may expect the amount of work related to the vali-
dation to be a great deal more in comparison to the
dynamically more simple case of a rigid system.

In this paper the validation procedure for the most
rigid configuration will be dealt with first. If this
validation turns out to be successfull some confi-
dence about the more flexible configurations will
be justified.

The layout of this paper is as follows: Section 2
presents a description of the UNIWEX experi-
mental wind turbine. Both the theoretical model
as well as the experimental model structure of the
wind turbine are discussed. In Section 3 prelim-
inary results are presented, which consist of the
identification experiments and the validation re-
sults of the integrated dynamic wind turbine model.
The paper is ends with conclusions in Section 4.

2 Wind turbine description

In this section various descriptions of the UNI-
WEX experimental wind turbine are presented.
First some details about the UNIWEX wind tur-
bine itself will be given. After that the dynam-
ics of the wind turbine will be approximated by
an integrated model derived by laws of first prin-
ciples. This model will be referred to as the theo-
retical model. Finally a procedure to approximate
the dynamics by means of system identification on
measurement data is discussed. This procedure will
provide experimental models.

UNIWEX experimental wind turbine

The UNIWEX experimental wind turbine Fig. 1
is located near the city of Stuttgart, Germany. It
is operated by the Institute for Computer Applica-
tions of the University of Stuttgart. The construc-
tion of the UNIWEX turbine can be seen as a
series of linked rigid bodies which are : the two
rotor blades, the tower and hub connected to each
other by joints. Hydraulic cylinders are mounted
across these joints and act like virtual springs and
dampers. By adjusting the joint characteristics a
family of flexible wind turbines can be emulated
without hardware manipulations that could con-
sume considerable time and financial effort.

The blades, with a length of 8m and a weigth of
75kg, are mounted to the hub by a three degrees of
freedom joint allowing the blades to hinge in plane




Fig. 1: drawin’.g‘ of UNIWEX wind turbine

of rotation (lead-lag), out of plane (flap), and ro-
tate around their own axis (pitch). This rotor sys-
tem is able to emulate almost every two bladed ro-
tor concept known for horizontal axis wind energy
conversion systems (rigid, flexible flap and/or lead-
lag, teeter). Changes between concepts can be ex-
ecuted within a short time span because only soft-
ware parameter adjustments are needed. This can
save a considerable amount of time and effort and
can thereby make fluent measurement sessions pos-
sible. The parameter values themselves can also
vary over a reasonable range. For example the flexi-
ble flap rotor stiffness can vary between almost rigid
to extremely flexible. Hereby it is possible to test a
sequence of different rotor systems exposed to ap-
proximately the same wind regime. In that case
differences in dynamic behavior probably can be
identified in a more decisive way.

The nacelle is mounted to the tower (height =~
15m) with a 2 degrees of freedom joint allowing the
nacelle to rotate in the horizontal plane (yaw), and
in the vertical plane (tilt). The tower is mounted to
the ground by a 2 degrees of freedom joint allowing
tower bending in one direction and rotation around
its axis.

The rotor system converts the absorbed wind en-
ergy to mechanical energy and the transmission in-
creases the rotational speed to a value that is suit-
able for the generator.

The UNIWEX turbine is not grid connected and
has no electrical conversion system. Instead, a hy-
draulic pump is used to dissipate the mechanical
energy of the rotoating shafts into heat. This pump
can be controlled to have different torque-rotational
speed characteristics. This opens the possibility to
operate the turbine in such a way that the pump
behaves globally corresponding to electrical conver-
sion systems usually applied in grid-connected wind
turbine systems. Thereby the dynamic behavior of
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one turbine with different conversion systems can
be studied without the financial investments to ac-
tually buy these systems, and without losing time
needed to mount and dismount them on the tur-
bine.

Theoretical model

In this part we will introduce a model describing
the dynamic behaviour of a wind turbine. The com-
plete model consists of a description of each of the
wind turbine parts in separate modules and mutual
connections between these modules by interaction
variables. This modular structure of wind turbine
modelling together with the interaction variables
can provide an appropriate way of describing dif-
ferent wind turbine configurations (Bongers et al.
(1990), Steinbuch (1989)). If, for example, the im-
pact of changes in the transmission is of interest,
only this module has to be changed or a new trans-
mission module can be linked to the other parts of
the complete model.

Here we will apply this modelling approach to de-
scribe the dynamic behaviour of the UNIWEX
turbine. Asstated in Section 1 we consider the most
rigid configuration first. Fig. 2 is a schematic rep-
resentation of the UNIWEX wind turbine. The

9.1 Xv
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Fig. 2: Block scheme of UNIWEX turbine

mathematical model of this wind turbine consists
of the interconnection of submodels having the fol-
lowing characteristics:

The rotor has two blades, without flexibility in the
joints. Only pitch angle movements were allowed by
the controller. The complete rotor system has addi-
tional freedom in yaw and tilt directions. The equa-
tions of motion are derived using Kane's method as
described in Kane and Levinson (1985) .

The aerodynamic behavior of the rotor is described
as follows. Each blade is divided into 10 sections,
each section has its own corde, mass, twist and pro-
file. The local wind velocity depends on wind shear



(i.e. variations of wind speed with height), the
wake of the wind turbine and the velocity of the
blades. Based on the local wind velocity and angle
of inflow of each section the aerodynamic forces are
calculated using the blade element theory (Glauert
(1959)) . The UNIWEX wind turbine operates in
down wind position. This means that wind passes
the tower first before meeting the rotor disc, so
there will be a significant tower wake. The rotor
system is mounted on a rigid tower so no flexi-
bility in the tower system is assumed. Torsional
movements in the transmission are described by
the first torsional mode of the rotor shaft. The dy-
namics of the hydraulic generator are not known
in detail. In the model it is described by a spring
characteristic.

The block scheme Fig. 2 shows various signals go-
ing in and coming out of the modules just described
above. Out of these signals the following input and
output signals have been defined for the complete
wind turbine system.

input signals:

The wind speed obviously is the driving input of
the wind turbine system. But unfortunately it is
not a controllable input. Besides that it is impos-
sible to measure the wind speed over the complete
rotor disc at all time instants. Therefore the wind
speed V,, as felt by the rotor is considered to be a
stochastic input.

The amount of absorbed wind energy by the rotor
can be influenced directly by the blade pitch angle
0. Together with the direction of the wind speed as
felt by the rotor blades the pitch angle determines
the angle of attack. Lift and drag forces produced
by each blade element are functions of this angle.
For the UNIWEX turbine the pitch angle of the
blades can be controlled and therefore can be seen
as the first deterministic input.

The counter torque M, generated by the hydraulic
generator can be adjusted by manipulating the
valve position y, which is the second determinis-
tic input.

output signals:

In order to gain insight in the dynamic behaviour
of the wind turbine the following outputs are mea-
sured. The rotor shaft speed w,, and the rotor shaft
torque M,. These are important output variables
when the overall behavior of the complete system
is considered.

Other output signals are the following two. The
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blade root in plane moment M, or lag moment,is
mainly determined by the weight of the blades. The
blade root out of plane bending moment My, or flap
moment, is mainly determined by the wind thrust
on the structure, and therefore can give an indica-
tion of how accurate the applied aerodynamic for-
mulas are.

This model is implemented in the DUWECS com-
puter code (Bongers (1990)) developed at the Delft
University of Technology in order to perform non-
linear or linear simulations, analysis of linearized
versions of the model, and controller design.

Experimental model

This section introduces the system identification
technique which is used to obtain linear experimen-
tal models known as the prediction error method
(Ljung (1987)) because it has proven to be suc-
cessful. Based on prior experiments with a rigid
wind turbine (Bongers et al. (1989)) we assume
that the measured data can be explained by the
following Box-Jenkins model structure:

. _ B0 | Clg,0)
q

¢
t = —= bt - = 1
i R v

-1.9) i

with:

! parameter vector 7; predicted output
at time 1
u; input at time ¢ e; white noise

q~' backward shift operator

B(q™*,0),C(¢7",0), D(¢7",0), F(q™",0) are poly-
nominals in the backward shift operator ¢~' with
unknowrr coefficients that are lined up in the pa-
rameter vector . Based on measurements of the
system inputs and outputs these parameters have
to be estimated. The deterministic part, in this
B(q",ﬂ!
F(g~1,0)’
which the deterministic input has on the output.
The stochastic part H models the way in
which noise affects the system. For an accurate
experimental model of a wind turbine system a
parametrized stochastic part will be necessary be-
cause the stochastic input (mainly the wind veloc-
ity) is expected to have a complicated dynamic im-
pact on the system output. Furthermore the wind
velocity itself can not be represented by white noise
(van Baars (1991)).

This model structure has the important advan-
Blg~1.0)
F(g=1,0)
can be estimated consistently even when the noise

model set is not rich enough to admit a completely

model structure describes the influence

tage that the deterministic transfer function




correct description of the system.

Using a definition of the prediction error ¢ as the
difference between the measured output and the
output predicted by the model ¢ = y¢ — gt a
quadratic cost function Viy(6, Z") can be defined:

T
Vi (0, ZN) = N ; §Et (0) (2)

N is the number of data samples available.

The identification problem can be stated as follows.
Find the parameter vector 0y, guided by the mea-
sured data ZV, such that the criterium (2) is min-

imized: )
dn = arg min Vi (8, ZV) (3)

In case of the used Box-Jenkins model structure
the minimization problem has no analytic solution.
The minimizing solution has to be found in an it-

erative way.

3 Identification and validation re-
sults

In this section results obtained from system identi-
fication on the measured wind turbine data as well
as validation results are presented.

The organization of this section is as follows: First
the approach of the identification and validation
is sketched. Next the identification experiment is
described, followed by the identification results ob-
tained from the measured data. At the end of the
section first validation results are discussed.

The approach is to measure the same wind turbine
configuration exposed to different average wind
speeds applying the same input signal. Each av-
erage wind speed defines a different point of opera-
tion. Based on the measurements we want to iden-
tify reliable experimental models for those points of
operation seperately.

The theoretical model introduced in Section 2 is
linearized in the same points of operation as the
experiments. The validation consists of the com-
parison between the experimental model and the
theoretical model for each point of operation cov-
ered by the experiments.

If this turns out to be succesful the validation holds
not only for a single point of operation, but point-
wise over the whole operational range of the wind
turbine system. Obviously this is a far more pow-
erful result than partial validation in a single point
of operation.

As a start this paper discusses only validation in
one point of operation by looking at step responses

49

of both experimental and theoretical model. Since
this is only the beginning of the validation the eval-
uation of stepresponses can provide an global idea
of how the dynamics of both models compare to
each other. If results turn out to be encouraging
more detailed validation can be pursued.

Identification experiment

There was practically no a priori information about
the UNIWEX turbine, hence detailed experiment
design could not be performed. The possibility to
measure the turbine with the desired average wind
speed depends of course on the presence of such
wind speeds at the time experiments can be per-
formed. Since the wind speed cannot be controlled
this means that the point of operation of the ex-
periments cannot be dictated and one possibly has
to wait until the suitable average wind speed oc-
curs (this can take weeks or months). In practice
measurements were recorded with the wind velocity
available at that time.

Out of the system input and output relations of
interest (discussed in Section 2) we will first inves-
tigate the transfer function from blade pitch angle
0 to rotor speed w, and rotor shaft torque M,. Be-
cause the blade pitch angle directly influences the
rotor system it is expected that these transfer func-
tions reveal the rotor dynamics and differences be-
tween rotor configurations. One of the results from
Ljung (1987) with respect to experiment design is
that the conditions during the identification exper-
iment should resemble as much as possible the con-
ditions of intended use of the model. In this paper
the intended use of the model will be prediction of
open loop dynamical behavior in order to validate
the theoretical model. Therefore open loop experi-
ments are preferable.

Feedback of the system outputs has been disabled
which means that open loop experimental condi-
tions have been created.

Using the experimental wind turbine some identifi-
cation experiments were performed. During a series
of experiments the set point of the blade pitch angle
was changed according to a Pseudo Random Binary
Sequence (PRBS) and the position of the genera-
tor valve was kept constant. In this experiment the
blade pitch angle of the two blades was changed
stepwise over a range of 4°. This is only a moder-
ate excitation which introduces no heavy loads and
therefore no safety problems. Moreover normal op-
eration can continue during the identification ex-
periment which can be a serious economic advan-
tage for example in case of experimental modelling



a commercial grid connected wind turbine system.
We have chosen to elaborate the data set of the
series of experiments which has the most constant
wind speed and a reasonable effect of the pitch an-
gle on the outputs. The relatively constant wind
speed indicates more or less constant point of op-
eration which increases the possibility to identify a
reliable linear model out of the data. The exper-
iment lasted about 200 seconds while the signals
were sampled at 50Hz. This implies that theoreti-
cally the wind turbine dynamics up to 25Hz can be
identified. This should be enough to cover the rele-
vant dynamics of the wind turbine, especially since
the blade pitch angle primarily effects the aerody-
namics and thereby the slow dynamics of the wind
turbine.

Fig. 3 gives an overview of such an identification
experiment.

45 identification experimnent
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Fig. 3: Identification experiment (fragment) input:

pitch angle, output: rotor speed

This figure shows that the excitation of the pitch
angle does not disturb normal operation drastically
therefore abortion of normal operation is superflu-
ous. At first sight no clear relation between the
input and its effect on the output can be detected.

Identification results

Given the measured data the experimental trans-
fer functions from blade pitch angle to rotor shaft
speed, rotor shaft torque and flap moment are esti-
mated. Here the identification result for the trans-
fer function from pitch angle to rotor speed is dis-
cussed. Investigation of the other transfer functions
leads to approximately the same conclusions.

Different choices of model orders have been inves-
tigated (that is the order of the polynomials in the
Box-Jenkins model structure (1)), both for the de-
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terministic part as well as the stochastic part. The
accuracy of the models was evaluated by looking
at the loss criterion (2) and stepresponses of the
different models. For deterministic orders > 5 and
stochastic orders > 8 both the loss criterium and
the model step responses show no significant im-
provement, they only differ slightly. Residual anal-
ysis pointed out that there was no information left
in the data and therefore it may be assumed that all
significant linear relations in the data are explained
by the model.

Identification results in time and frequency domain
are presented in Fig. 4.
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Fig. 4: Identification result in time and frequency
domain

The upper half of Fig. 4 confronts the predic-
tion of the deterministic part of the model with
the measured data. Just for visual convenience the
measured rotor speed has been filtered to remove
the 1P effect (i.e. a phenomenon that is related
to one times the rotational frequency of the rotor)
which has nothing to do with the identified trans-
fer function. The deterministic response can be ex-
plained by physical reasoning: the stepwise change
of pitch angle alters the aerodynamic efficiency of
the rotor. Because of rotor inertia and aerodynamic
effects the rotor slowly accelerates or decelerates to-
wards a new stationary value. Before this value is
reached the pitch angle has changed again and a
new transient is induced. Because of this physical
interpretation we are quite confident about the re-
liability of the deterministic part.

The difference between the measured output and
the output of the deterministic part of the model,
driven by the applied input signal, is assumed to be
mainly due to variations of wind speed. These vari-
ations are of random nature and need to be covered
by the stochastic part of the model. The output




signals are modelled as the summation of a deter-
ministic and stochastic contribution. Because we
are also interested in a proper description of the
wind influence on the wind turbine system we want
to validate the stochastic part also. Since the input
signal of the stochastic part is typically unknown in
the time domain we have to pursue validation in the
frequency domain. The lower half of Fig. 4 displays
the spectrum of the output signal and the sum of
spectra of both deterministic and stochastic part of
the model. As it can be seen there are no serious
discrepancies between the data and the total model.
Referring to the upper half again we can state that
the difference between the predicted deterministic
part and the measured data is almost entirely cov-
ered by the stochastic part of the model. This is a
support to the assumption that the influence of the
wind speed on the system should be acccounted for
by the stochatic part of the model.

validation results

In this subsection the validity of the theoretical
model with respect to the transfer function from
blade pitch angle to rotor speed and torque will be
investigated.

As stated in the first part of this section the vali-
dation consists of the confrontation of stepresponse
obtained from both the theoretical model and the
experimental model. Performing the validation on
the basis of experimental and theoretical model
simulations yields some profits. First of all extreme
situations can be investigated without putting the
real wind turbine in danger. Moreover it is pos-
sible to devide the responses in deterministic and
stochastic contributions to the output and valida-
tion can focus on each part separately. Since both
models involved in the validation are linear models
also system properties such as location of eigenval-
ues and frequency responses can be compared.

In this paper the validation is restricted to one
point of operation. The theoretical model is lin-
carized, using DUWECS (Bongers (1990)) , in
an operating condition corresponding to the experi-
mental condition from which the experimental data
were obtained. In order to account partly for non-
linearities in the experimental data two different
linear models are obtained from the non-linear the-
oretical model, one at @ = 7° and one at ¢ = 3°. In
Fig. 5 step responses (to an increase of the blade
pitch angle of one degree) of different experimental
models and the two linearized theoretical models
are given.

It can be seen in Fig. 5 that the experimental
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models are squeezed between the two linear re-
sponses of the theoretical model. This can be ex-
plained by reasoning that the experimental model,
which is linear, is the best compromise between the
non-linearities in the experimental data.

In order to investigate the validity of the aerody-
namics in the rotor model the transfer function be-
tween the blade pitch angle and the flap moment
is estimated. By changing the blade pitch angle
the absorbed wind energy and thereby the aerody-
namic forces acting on the blades change. These
forces are best observable looking at the flap mo-
ments of the blades. Despite serious tower wake
and effects of unbalance of the blades on the flap
moment a clear cut deterministic influence can be
identified from the data, which corresponds rather
well with the theoretical model. The instantaneous
part at the step moment and the slower transient
behaviour are found in both the theoretical model
as well as the experimental model when comparing
the magnitudes, which strengthens the confidence
in the mathematical description of the aerodynam-
ics.

Of course the validity is not ultimately established
by comparison of step responses, but as a first result
it is encouraging. This validation procedure has to
be repeated for other points of operation (e.g. dif-
ferent average wind speed) to be able to draw the
conclusion that the theoretical model of this config-
uration is valid over the complete wind regime from
low to high wind speed. After that the validity of
the model for other (more flexible) configurations
can be investigated the same way.



4 Conclusions

In this paper a modular structured theoretical
model of the UNIWEX wind turbine is presented.
Experiments on this wind turbine system are per-
formed for validation of a theoretical model. Ex-
perimental models describing the transfer function
from blade pitch angle to rotor speed, rotor torque,
and blade root flap moment have been calculated
to explain the input-output relations present in the
experimental data. It has been illustrated that a
stochastic part of the experimental models is neces-
sary to account for the wind influence on the wind
{urbine system. Because the deterministic model
response can be explained by physical reasoning
and because the summation of deterministic and
stochastic part covers the frequency content in the
data almost completely there is reasonable confi-
dence that the identified models are suitable to de-
scribe the measured data. As a validation result
of the theoretical model it has been shown that,
for the transfer functions under consideration, the
theoretical model predicts approximately the same
outputs as the experimental model in one point
of operation. Hence the theoretical model can be
nsed to describe the wind turbine in open-loop be-
haviour.

Further research will focus on the validation of the
same transfer function in different wind regimes,
the transfer functions related to the generator valve,
and validation of more flexible configurations of the
UNIWEX wind turbine.
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Abstract.

Measurement data from chemical plants, in general, contain randomly dis-

tributed errors. Due to these errors, the measured variables do not exactly obey the
theoretically existing balance equations. For the application of an on-line optimization
algorithm it is neccessary to reduce these errors as much as possible. So far, only a
technique was available to correct mass flow measurements with mass balances, the so
called mass balance reconciliation. In this paper the extention of this theory towards the
field of correcting temperature measurements with heat balances will be presented.

Keywords.
recting measurements.

1 Introduction

Chemical processes are often controlled by local
controllers, supervised by a host computer. The
controllers regulate the operation of the process,
using flowrate, pressure, temperature and compo-
sition measurements. An optimization program,
running on the host computer, uses the same in-
puts to determine the setpoints for the local con-
trollers. Unfortunately, process measurements are
never perfect and sometimes they are even quite
wrong due to instrument drift, plugging up, fail-
ing or to the non-ideal character of the measure-
ment devices. As a consequence, an optimization
program will find a wrong optimum and money is
wasted. To correct the measurement dafa in order
to improve the quality of the measurements, a pri-
ori knowledge can be helpful. This information is
mainly available in the form of mass and heat bal-
ances. The physical conservation laws for material
and energy are, in general, suitable for chemical
equipment like distillation columns, reactors and
heat exchangers. For steady state conditions, the
static balances can easely be derived. Although the
assumption of steady state is not always essential, it
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is usually permitted to assume that large chemical
processes, excluding start-up or shut down situa-
tions, are operating at, or near steady state.

A statistical procedure which enables the adjust-
ment of measurements is data reconciliation. In
general, data reconciliation is only applicable in
overspecified situations with regard to the num-
ber of measurements taken or information sources,
1.e. a certain level of redundancy. This proce-
dure minimizes the differences between the theo-
retically ealeulated and the real measured values.
[nstead of arbitrarily replacing measurements by
theoretically calculated values, the smallest or the
most likely corrections to all measurements are se-
lected. The origin of information can be both
the direct measurement and a value resulting from
other measurements (Romagnoli and Stephanopou-
los(1980), Tamhane and Mah (1985), Heenan and
Serth(1986)). Besides this, it is also possible to rec-
oncile measurements with a priori knowledge about
the correlation between variables in time. Here
it is important to have an impression of the rel-
ative inaccuracy. This last method, called dynamic



data reconciliation (Grinten, van der (1971)) uses
Kalman-filtering (Barham and Humpbhries (1970))
and assumes quasi steady state situation. The
method to be described here i1s based on measure-
ments only. Due to the fact that only steady state
balances are used to correct the data, this method
can be seen as static Kalman filtering.

Until now, only measurements of mass flows were
involved in data reconciliation techniques and it
had to be assumed that temperature measurements
were reliable. This was basically because no gen-
eral theory was available to reconcile these mea-
surements with energy or heatbalances. The tech-
nique of heatbalance reconciliation is based on a
non-linear model that arises from the fact that en-
ergy, in most cases, can not be measured directly
but can only be determined by considering it as a
product of mass flow and specific enthalpy.

2 Preliminaries

First the key assumptions are listed for the purpose
of this study. For a more detailed description of
some of these items see the literature survey made
by Baak (1991). These assumptions are valid until
otherwise is stated:

o The random errors are independent and nor-
mally distributed.

e All process variables are measured with known
uncertainty.

e No gross errors are present in the measure-
ments (i.e. errors due to calibration defects,
wear of measurement devices or fouling).

e Only one set of measurements is taken.

o The process is operating at steady state.

3 Linear data reconciliation

The method to be presented first is used concern-
ing mass balance reconciliation and is based on the
theory of Lagrange multipliers. In Figure 1, a sim-
ple distillation column is depicted and to simplify,
only mass flows are taken into account. In general,
the steady state mass balance equation can simply
be derived, considering :

Z Flow;, — Z Flow,, =0

With the real measured flowrates, in general, equa-
tion (1) will not be equal to zero. So one, two or

(1)
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Fig. 1: Mass flows round distillation unit.

perhaps all three of the measured flowrates show
errors and these errors will typically yield the in-
consistent mass balance. Random errors can be
reconciled by the following procedure. The mass
balance of the distillation column given, can be de-
rived through applying equation (1):

(2)

With the measured values of these variables, Z1, @,
and F3, the right hand-side (i.e. the imbalance) of
equation (2) will not be equal to zero. After adding
corrections Azy, Azy and Azs, the mass balance is:

(3)

The problem here is to find the most likely correc-
tions Az;, which satisfy equation (3). Most likely
can be interpreted as the smallest possible correc-
tions, taking into account some weighing factor de-
fined as ;. The weighing factors for each mea-
surement are derived from the error variances. The
value of o; is normally independently estimated, us-
ing the manufacturer’s specifications together with
the engineer’s knowledge of the performance of the
measurement device. Often, the error variances are
found by a statistical analysis of the measurement
data (Heenan and Serth (1986)). The most likely
corrections are found by minimizing the following
constrained least squares criterion:

.T]‘—I'Z—Igzﬂ

(&1 + Azy) — (&2 + Azg) — (Fa + Azs) =0

;‘_\2.‘]’71 Ag.'-l',"g (_’321‘?3
Leonst. = — 2 3 (4)
O'I 0'-2 0'3

This expression reaches a minimum value if all the
derivatives with respect to Aw;, are zero. The
use of a least squares criterion as objective func-
tion in data reconciliation problems is based on
the assumption that the measurement errors have




a normal distribution, without taking into account
gross errors that may be present (Tjoa and Biegler
(1991)). Then, one of the Az;-values can be elimi-
nated using equation (3). For example, solving the
linear equations for Az, leads to:

A]l O'E{j'g"f*.i;j—'j‘l} 1 -
Ty = 9 2 a2 o 2 01
: oi + o} + ol = +;%

(5)

als

1

Here € is defined as: s‘{ér{fl — &y — Z3}, the im-
balance of the distillation column. As can be seen
from equation (5) that the corrections on the mea-
surements are proportional to the imbalance and
the relative inaccuracies, the ratios of the o’s.

Minimizing criterion (4) with equation (3) as con-
straint can properly be done with the help of a
Lagrange multiplier, represented by A. In general,
the number of Lagrange multipliers equals the num-
ber of constraints or balance equations. With these
multipliers, the constrained least squares criterion
can be transformed to an unconstrained criterion.
If the system becomes more complicated it can be
recommended to pass on to matrix representations.
The topological balance structure is represented by
A, the so called incidence or system matrix (Ro-
magnoli and Stephanopoulos (1980)). An clemn?nt
a;; of matrix A is either a 1, if stream i is an in-
put of unit j or -1 in case stream i is an output. If
there are n streams and m units, consequently m
balances can be derived:

Az =10 A e R™" (6)

Here z is a vector with all the measured process
variables. If we apply the same substitution as be-
fore, z; = &; + Az;; the matrix r:{pref;cntatlon of
the constrained least squares criterion is:

= Az P Az
A(z + Az)

(7)
(8)

Lconﬂ T

e =

MINLMLZE :

constraints :

The weighing matrix is represented by P, with ele-
ments o on the diagonal (assuming no correlation
between measurement errors). With the introduc-
tion of the Lagrange multipliers the problem can be
reduced to the following unconstrained criterion:

minimize :
= Az"P7'Ag +2)"A(E + Az) (9)

!- unconsir.

The vector A contains the m Lagrange multipli-

ers. Differentiating this expression with respect to
the corrections Az and the Lagrange multipliers ),
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leads to:

aLuﬂmnstr. B

T p-1 Bl e

9Az = AzTP140TA =0 (10
aLunconstr. e - =

O it AlZ+Az) =0 (11)

This system must be solved in order to find the
most likely corrections. By eliminating Az, the fol-
lowing expression gives the values of the Lagrange
multipliers:

A= {APAT} Az (12)

This is a system of m linearily independent equa-
tions, and consequently A can be uniquely solved.
Substituting this solution in (10) leads to the de-
sired corrections:

Az = —PAT{APAT} " A5 (13)
It can be shown that the accuracy improves, un-
der the theoretical assumptions. The reconciliation
procedure estimates the random measurement er-
ror. If the estimates of the process variable is rep-
resented by # the variances are given below:

E{zz"} =P

E{&:"} = E{(&+ Oz)(&+ Az)")
E{zz"} — E{AzAzT)
= P—PAT{APAT}'AP (15)

(14)

Il

This immediately shows that the variance decreases
after reconciliation.

4 Non-linear data reconciliation

As referred to in the introduction, there are cir-
cumstances in which the method of linear data rec-
onciliation has severe shortcomings. The values of
flow variables, for example, are mostly directly mea-
sured by orifice or vortez devices. Measurements
can then be reconciled by applying the described
linear reconciliation theory. If the variable is not
or can not be directly measured, a non-linear data
reconciliation technique might be neccesary. Heat
or energy are generally not directly measurable but
have to be caleulated from mass flow and specific
enthalpy (temperature) measurements. This leads
to non-linear balance equations. The phenomenon
non-linear data reconciliation also arises in case
of the reconciliation of component measurements.
The global difference between linear and non-linear
cases is in fact that the linear approach is not use-
ful when entries of a certain balance are composed
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Fig. 2: Mass and specific enthalpy flows round dis-
tillation unit.

out of two or more measurements. Entries of heat
balances are calculated as follows:

E = mh = (m+ 6x)(h+ ) (16)
with m as mass flow and h as specific enthalpy. the
measurement error is represented by 6.

Essential for this non-linear method is the introduc-
tion of ratio numbers. These numbers are the link
between the mass balance and the heat balance.
The treatment of these ratio numbers is equal to
the treatment of the process variables. This is pos-
sible due to the weighing phenomenon. To present
the method of non-linear reconciliation, the distilla-
tion unit of Figure 1 is considered, but now specific
enthalpies are added as in Figure 2. The author
was inspired by Duyfjes and Swenker (1976) where
component balance reconciliation is discussed. The
mass and heat balances are:

Il

0 ar)
0 (18)

my — Mg — Mg

mihy — mohy — mahs
Respectively. A change to a new vector = will be
made. The elements for this vector z are, as in the
example of Figure 2:

Iy =my 275-_—1111 Iy = |
Igq = MMy Ty = }!.2 Tg = 1
T3 = M3z $9=h3 $3_—‘l

The numbering method for this vector will soon be
clear while considering the balances or the recon-
ciliation model. For the simple distillation column,
three extra balances are introduced, representing
the interaction between the mass flow and heat flow
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in one particular stream. In these balances, the ra-
tio numbers play an important role. In this case,
the variables z4, s and xs are set equal to one
but they can have any value as long as the values
of these variables are equal. The corrections of all
the measurements are then scaled in the same way.
The reconciliation model for the distillation column
is:

T —T1T4 ==l
—23 +roxe =)

—T3 +raxg =) (19)
T1—To—T3 =y
r1Ts —roTy —73z9= 0

The flexibility of the approach allows to define the
variance of the variables x4, z¢ and zg to be zero.
This implies that the value of these variables re-
mains the same and consequently the interaction of
the balances does not change during reconciliation.

The reason to write the reconciliation model in the
form above is that the balance system (19) can be
divided into blocks. Actually every flowsheet can
be written in form (19). The first n balances refer
to the n streams involved. In case of the simple col-
umn, three streams occur so three ratio equations
are needed, The remaining two equations are the
physical balances, respectively the mass and heat
balance round the column. If we divide the sys-
tem (vertically) into four, i.e. (n 4+ 1), blocks, it
is possible to present the system in the following
form:

Aoy + 1Az, + r2Aszy + r3A323 =0 (20)

The four parts are in accordance with the blocks in
(20) after defining:

To match the new situation, the criterion func-
tion must be changed. In the particular case
of the column, once more with the assumption

; Z; + A z;, the constrained least squares




criterion is:

minimize:  Leonstr. =

an A : 2
5=
i

= ) Ac{P7'Az; (23)

=0

Here P; are the variance matrices of the variables
in the vectors respectively z; and serve again as
weighing matrices. In the variance matrices, the

variances oy, o and og are set equal to zero.

So far, the presented theory concerned only the
flowsheet of Figure 2. However, the theory can be
applied to any flowsheet as long as steady state sit-
unations are considered. Every system is convertible
to the reconciliation model of type (19). Hence the
general least squares problem is:

manimize : Leonstr. =

Y Az Pl Az (24)
y=0

> ri(A; + A;4;)(25)

=0

constraints: 0 =

Here, by definition: 7o ey Again, this problem
can be solved with the help of Lagrange multipli-
ers \. Transforming the constrained least squares
critf:rion into an unconstrained, leads to:

MInIMmizZe ;

=0

Luncans!r.

AT ri(AiE; + Aidz;) (26)

=0

Differentiating this criterion with respect to Az;,
j=0,.. ., n, the ratio numbers 7;, j=1,..., n and the
Lagrange multipliers A, leads to the optimal correc-
tions:

NE ;= —-T‘J'PjA?A =Drsn, B (27)

-

Substituting (27) in the equations providing the op-
timal solution leads to:

Z?‘j-Ajij"Zr?AiPiA}‘A =0 (ro=1) (28)
=0 =0
(A;2;—r;APAT)A = 0 j=1,...,n(29)

This solvable, non-linear system, has the ratio num-
bers r; and the elements of the multiplier vector A
as unknowns, resulting in a total of n plus (n+2m)

so 2(n+ m) unknowns, respectively. The number of
non-linear equations is also 2(n + m), n + 2m from
equation (28) and n from (29). This set of equations
can be solved in two different ways. The set may
either be solved directly with the help of numerical
equation solver routines like those in the flowsheet
simulation package SPEEDUP. After the values of
the Lagrange multipliers and the ratio numbers are
found, the optimal corrections can be found by ap-
plying equation (27). The other way is to linearize
the equations and solve the set iteratively.

5 Solving the system

In a practical environment, such as a chemical
plant, a robust reconciliation algorithm is needed.
The reconciled measurements must be reliable and
consequently the solution must converge to a set of
consistent process values under all circumstances.
Although the procedure of linearizing the set equa-
tions (28) and (29), and succesively coming to a so-
lution via an iterative approach works fine in all the
investigated examples, a flowsheet simulation pack-
age can add a number of advantages. First of all,
in the case of data deduced from large process flow-
sheets, it is not easy to transform this flowsheet into
a corresponding reconciliation model. As can be
seen from (19), even for a very simple flowsheet ex-
ample, there are a lot of equations involved. Trans-
forming a flowsheet into the required reconciliation
model can automatically be done while approaching
the problem with a flowsheet simulation package.
Secondly, solving the non-linear equations via suc-
cesively solving linear subproblems may not be ro-
bust enough in practical situations. However, after
adjusting the flowsheet to a flowsheet program, this
program returns with the optimal corrections and
shows to be very robust. Temporarily or perma-
nent not measured process variables are estimated
during the calculation. This is important as mea-
surements with so called gross errors are not to be
taken into account in the reconciliation procedure.

6 Experimental results

As the original formulation of the problem required,
after reconciliation, the imbalance of the mass and
heat balances must be reduced to zero. This is
done in such a way that the weighed adjustments
to the measurement values will always be as small
as possible. With the help of a random genera-
tor in a FORTRAN routine, 105 data sets were cre-
ated. Besides the heat balances, also the compo-
nent balances were taken into account in the same
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Fig. 3: The dispersion reduction of a mass flow
measurement,

way. After reconciliation, the standard deviation
of the imbalances of all the units is reduced to zero
with zero mean. This is obvious since the prob-
lem was put in that way. Besides this, there is
the desired effect on the accuracy of the measure-
ment values. Adding information, by means of the
balances, the dispersion of the measurement val-
es will be reduced. For a particular mass flow
value, this phenomenon is shown in Figure 3. A
statistical program is used to count the absolute
frequencies of the values within certain numerical
intervals. Then by means of non-linear regression
techniques, the normal or bell-shaped curve is con-
structed. Figure 3 shows that after reconciliation,
the curve becomes narrower (the standard devia-
tion decreases). In this case the standard devia-
tion is reduced with 67%. The reduction rates of
the other mass flow measurements are conform this
value, depending on location and relative inaccura-
cies or weighing. Also the redundancy plays an im-
portant role. The accuracy improvement is larger
the more the system is overspecified. The reduction
rates of the temperature measurements although
significant (15%), are smaller due to two reasons.
First of all, it is always possible to derive more mass
balances than heat balances in the reconciliation
model, due to the fact that in normal cases, heat
leaks for more easier from pipes or reactors than
mass does. Consequently, there is more additional
information about the mass flows than about the
temperature values and so the effect of reconcilia-
tion is more observable. Secondly, as can be seen
from (19), mass flow measurements are entries of
both the mass balances and heat balances. These
measurements have to obey two restrictions instead
of one if specific enthalpy or temperature mesure-
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ments are considered. Again, more additional in-
formation causes a bigger accuracy improvement.

In real application the steady state assumption will
not be fulfilled completely. However, dynamic ef-
fects are normally very small and can be neglected
in comparison to the measurements errors. In case
of steady state optimization, steady state detectors
are mostly installed and no optimization and rec-
onciliation will be carried out without steady state
situation.

7 Discussion

While data reconciliation via the Lagrange mul-
tiplier method yield good, i.e.
and heat balances, the adjusted measurements will
be erroneous if there are gross errors present in
the used data set. Therefore, such errors have to
be identified, the offending measurements removed,
before preceeding the with data reconciliation pro-
cedure. In the following, two general types of sta-
tistical tests are considered:

consistent, mass

(I) Methods for analyzing least squares
residuals.
Here, the idea is to adjust the data using the
described least squared error analysis and then
calculate a set of residuals:

Ei=1T;— I; (30)

The outliers among the &; values are those that
exceed some number of standard deviations,
for example: 1.96 for a 95% confidence level.
Thus, a given residual is an outlier if the fol-
lowing is true:

Ei

T

> 1.96 (31)

where o; is the standard deviation of the resid-
ual. The outliers, if any, are considered to be
result of gross errors. Besides this, another ap-
proach based on observation of the residuals
can be made. Due to the fact that the mea-
surement values are normally distributed, the
residuals will be normally distributed with a
mean zero and a certain variance. In case of in-
volved gross errors, this mean differs from zero
while observing a sufficient number of samples.
Thus another way of detecting gross errors is
by observing the mean of the residuals.

Methods for analyzing nodal imbalances.
The imbalance ¢; for a node or unit, j (with K




inputs and L outputs) is defined by:

K L

By = Z inputy — Z output; (32)

k=1 1=1

This value is divided by the nodal standard de-
viation o, which is the squared root of the
nodal variance:

(33)

gj =

K L
2 2
208 D

k=1 i=1

Here, the summation extends over all the
streams connected to node j. Equation (33)
is directly applicable while considering mass
flows only. In case of heat flows however, the
variances of the balance entries must be calcu-
lated from variances of the temperature and
This func-
tionality is mostly non-linear. Due to this,
the determination of the nodal variance is nor-
mally a result of some kind of linearization.
Again for a 95% confidence interval, there are
one or more gross errors present in the mea-
surements if the following expression for the
normalized imbalance of node j is valid:

possible fraction measurements.

> 1.96 (34)

Once a gross error has been identified, the corre-
sponding measurement is eliminated from the data
by a process called nodal aggregation. For exam-
ple consider the small flowsheet shown in Figure 4.
If there is a gross error detected in stream 3, this
stream can be eliminated by combining nodes A
and B to yield the aggregate node shown in Fig-
ure 5. The random errors in an aggregated network
can be reconciled in the normal way. This leads
to corrected measurements for all streams except
stream 3. The reconciled value for stream 3 can

Fig. 4: The process before nodal aggregation.

be found afterwards by solving the balance equa-
tion for node A or node B. These method has two
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~_4
A

Fig. 5: The process after nodal aggregation.

principal drawbacks. First the least squares proce-
dure tends to spread the error over all the data.
So, even the best measurements can have fairly
high residuals. If these residuals fail the test for
outliers, then the corresponding measurements are
erroncously identified as having gross errors. The
second drawback is that there is no provision to
prevent unrealistic flowrates or temperatures from
being computed. If the algorithm fails to identify
all the gross errors, the data reconciliation proce-
dure may generate for example negative flowrates
or absurdly large positive ones. In modern flow-
sheet simulation programs however, it is possible
to overcome this by placing certain bounds on the
variables.

8 Future research

In view of the application: steady state optimiza-
tion, only steady state systems are considered. In
the future, research can be extended towards the
dynamic case. For dynamic systems extended and
augmented Kalman filters have been used to rec-
oncile process data and estimate parameters. The
recursive nature of the Kalman filter makes it very
efficient and well-suited for on-line applications.
However, these methods are based on linear approx-
imations which may not be suitable for chemical
engineering systems which are operating in highly
non-linear regions. In addition, if the data rec-
onciliation objective function is not weighed least
squares, the Kalman filter is not applicable. Kim
el al(1991) presented a method to extend the data
reconciliation and parameter estimation to the field
of non-linear dynamic systems. This is done based
on numerical integration nested within a non-linear
programming algorithm. A moving data horizon is
defined which extends back to a certain number of
time steps from the current time. Unfortunately,
these techniques have recently been developed and
no general tests have been carried out of how these
algorithms perform in practice.




9 Conclusions

Reconciliation strategies based on constrained least
squares criterions are proposed to reduce the influ-
ence of the random errors which occur in measure-
ments. This is done for both mass and tempera-
ture measurements with the help of steady state
mass and heat balances. After application, fairly
high imbalances of several units disappeared. En-
tries of both mass and heat balances are in equilib-
rium. As a second result, the accuracy of all the
involved measurements improved more or less. The
improvement in accuracy of the measurements de-
pents on the location in the topologic structure of
the flowsheet and the level of redundancy. Temper-
ature measurements show a smaller improvement
then mass flows, in all the cases.

In practice, the reduction of the inaccuracies will be
smaller then the obtained results. This arises from
the fact that no accurate information is present
about the parameters of the distributions. Since
the standard deviation is used as a weighing fac-
tor in the procedure, this can cause problems. Be-
sides this, the used balances are derived from the
assumption that the chemical plant is operating at
steady state, which is not always upheld in practice.
However, this will hardly influence the results.

Finally the conclusion can be drawn that, normally,
heatbalance reconciliation is possible since robust
numerical optimization tools are available. Both
mass and heat measurements descended from fairly
complicated and multi-component flowsheets can
easily be reconciled in case the criterion is prop-
erly formulated and the weighing factors are deter-
mined. However, gross errors will always lead to
erroneous results. Therefore, these errors have to
be detected and removed from the data set. The as-
pect of gross errors and their remedies could eventu-
ally be subject of further research pending the im-
plementation of the presented reconciliation tech-
niques.

Glossary of symbols

A incidence or system matrix

h specific enthalpy

m mass flow, number of balances
n number of process variables

P weighing matrix

r ratio number

T measurement value of variable =
correction on measurement
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é error

15 imbalance, residual

A Lagrange multiplier

o standard deviation, weighing factor
References

Baak, E.A.J.Ch. (1991). Meetwaardenvereffening
voor de procesindustrie (Dutch). Literature sur-
vey 8-577 Delft University of Technology, Faculty
of Mechanical Engineering.

Barham, P.M. and D.E. Humphries (1970). Deriva-
tion of the Kalman filtering equations from ele-
mentairy statistical principles. Agardograph No
139, pp. 12-31.

Duyfjes, G and A.G. Swenker (1976). Het veref-
fenen van overtallige informatie (Dutch). Poly-
technisch Tijdschrift P(31) Ne 9, pp. 535-546.

Edgar, T.G. and D.M. Himmelblau (1988). Op-
timization of chemical processes. M*Graw-Hill
Chemical Engineering Series.

Grinten, P.M.E.M. van der (1971). Statische en dy-
namische vereffening van meetgegevens (Dutch).
De Ingenieur No 21, pp. 70-72.

Heenan, W.H. and R.W. Serth (1986). Detect-
ing errors in process data. Chemical Engineering
No 11, pp. 99-103.

IMSL, Fortran subroutines for statistical analysis.
User’s manual. 3¢ vol. version 1.1. Houston,
January 1989.

Kim, LW., M.J. Liebman and T.F. Edgar (1991).
A sequential error-in-variables method for non-
linear dynamic systems. Computers in Chemical
Engineering vol. 15 No 9, pp. 663-670.

Lawrence, P.J. (1989). Data reconciliation: Get-
ting better information. Hydrocarbon Processing
No 6 June, pp. 55-66.

Mah, S.H. (1981). Design and analysis of process
performance monitoring systems. Chemical Pro-
cess Control No 1 January, pp. 525-540.

Romagnoli, J.A. and G. Stephanopoulos (1980).
On the rectification of measurement errors for
complex chemical plants. Chemical Engineering
Seience vol. 35, pp. 1067-1081.

SPEEDUP, Flowsheet simulation package. User’s
manual, Issue 5.3.1. Prosys Technology, Cam-
bridge. January 1991.

Stephenson, G.R. and C.F. Shewchuk (1986). Rec-
onciliation of process data with process simula-
tion. AICRE Journal vol.32 No 2 February, pp.
247-254.




Tamhane, A.C. and S.H. Mah (1985). Data rec-
onciliation and gross error detection in chemical
process networks. Technometrics november vol.
27 No 4, pp. 409-422.

Tjoa, I.B. and L.T. Biegler (1991). Simultenious
strategies for data reconciliation and gross error
detection of non-linear systems. Computers in
Chemical Engineering vol. 15 No 10, pp. 679-
690.

61




62




Selected Topics in Identification, Madelling and Control

Vol. 5, December 1992

Worst—case system identification in ¢;: error bounds,
optimal models and model reduction *

Richard G. Hakvoort

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract.

In £,-robust control design model uncertainty can be handled if an upper-

bound on the £;-norm of the model error is known. In this paper a procedure is developed
which yields such an upper bound for a given nominal model, using measurement data
and a priori information consisting of a time domain bound on the noise and information
about the decay-rate of the pulse response of the model error. The upper bound is
calculated by solving a set of linear programming problems.

Moreover a procedure is presented to derive a new nominal model which is optimal in
an £,-sense, i.e. has a minimal upper bound on the £;-norm of the model error. This is
performed in two steps, in the first step the so-called central estimate is computed and
in the second step model reduction in £;-norm is performed. For the latter problem a
solution is given for the case that the reduced order model is linear in the parameters.

Keywords.

1 Introduction

Analogous to H.-control theory the ¢;-optimal
feedback design problem has been formulated and
solved (Dahleh and Pearson, 1987; McDonald and
Pearson, 1991). In this setting knowledge of an ;-
bound on the model error can be utilized for the
analysis and design of robust controllers (Kham-
mash and Pearson, 1991). Consequently identifica-
tion strategies are being developed that are com-
patible with the £,-control design, i.e. yield an up-
per bound on the £;-norm of the model error and
an {;-optimal nominal model (Chen et al, 1992;
Jacobson and Nett, 1991; Makila, 1990, 1991; Tse
et al., 1991).

The algorithms so far available have a restricted
applicability due to the fact that often only additive
uncertainty is considered and that specific experi-
mental conditions have to be met, e.g. the input sig-

!This paper is also presented at the 31st Conference
on Decision and Control, Tucson, U.S.A., December 16-18,
1992. Copyright of this paper remains with IEEE.
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worst-case identification, £,-norm, linear programming

nal is required to be a step, an impulse or a Galois
sequence, and the initial conditions are assumed to
be zero. However in many practical situations the
input signal can not be specified arbitrarily, for ex-
ample if the system is operating in closed loop.

In the present paper worst—case identification in
¢i-norm is considered. First the problem is con-
sidered of the estimation of an error bound. An
identification algorithm is developed that yields an
upper bound on the ¢;-norm of the model error for
a given nominal model. There are no restrictions
on the experimental conditions, i.e. the shape of the
input signal. A general uncertainty description is
adopted, weighted additive uncertainty, which in-
cludes the multiplicative uncertainty description.
The main prior information assumed available is
a bound on the pulse response of the model error
and a time domain bound on the noise. No model
order assumption on the true system is made, nor
any statistical properties of the noise are assumed.,
The resulting error bound is a hard bound, which
means that the true model error is guaranteed to be




smaller than the calculated upper bound, provided
the prior information that is used is correct.

Next in the same setting a second problem is con-
sidered, the problem of identifying an £;-optimal
nominal model, i.e. a nominal model with mini-
mal corresponding guaranteed error bound. Aftera
problem simplification a solution is shown to be ob-
tainable in two steps. In the first step the so—called
central estimate is computed, which is in general a
high order model. In the second step this high order
model is reduced to a model of the desired order ap-
plying model reduction in £;-norm. For this model
reduction problem a solution is given in case the
reduced order model is parametrized linearly.

The outline of the paper is as follows. In the next
section the a priori information assumed available
is summarized. In section 3 it is described how
this information, including the measurement data,
is processed, such that it can be used in the worst-
case analysis. Then in section 4 a solution is given
for the problem of identifying an upper bound for
the ¢;-norm of the model error. In section 5 we
consider the problem of identifying an £;-optimal
model. Then in section 6 an example is given of
the entire procedure developed. The paper ends
with conclusions.

2 A Priori Knowledge

We consider a discrete time, asymptotically stable,
linear, time-invariant, causal SISO system Go(g) =
% 5 go(k)g* (where g is the forward shift oper-
ator) with additive bounded output noise. The
input-output behaviour of the plant is assumed to
be given by the equation

y(t) = Go(q)u(t) + H(@)e(t), e(t) € lei(t), eult)],

(1)
where u(t) is the measured input signal, y(t) is
the measured output signal, e(t) is the noise, only
known to be bounded by e(t) and e, (t). H(q) is
some (a priori given) noise model, that can be used
to bring in a priori knowledge about the frequency
distribution of the noise.

For identification purposes we need measure-
ments of the input signal u(#) and the output signal
y(t) acting on the system, t = 1,2,...,N. There
are no prior restrictions whatsoever on u(t), it may
for example be generated in closed loop. Here the
situation is considered that one data sequence is
available. It is however straightforward to extend
to the case that more measurement sequences are
available.
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We consider the uncertainty configuration
Go(q) = G(a) + Ae(@)W(a), (2)

where G(q) is some a priori given nominal model,
constructed by any identification or modelling pro-
cedure and W(q) is an a priori specified fixed
weighting function. The system Gp(g) and the
model error A;(g) are unknown. All transfer func-
tions in (2) are assumed to be stable. We require
the weighting function W(q) and the noise model
H(g) to be minimum-phase. Without loss of gener-
ality we further require W(g) to be biproper. The
(possibly infinite) pulse response sequences of the
transfer functions will be denoted by the corre-
sponding lower—case characters. Hence (2) defines
the pulse responses go, g, 65 and w.

Next we assume to know an M > 0 and p > 1
such that

66(k)| < Mp™*, Yk >0. (3)

If more information is available about the pulse re-
sponse of the model error this may be included as
well. It is for example possible to consider an inter-
val bound on §;(k) independent of the bound for
other values of k.

Finally we assume to know upper bounds on past
(unmeasured) data u(t) and y(t),

lu(t)| <@, ly(t)| <9, VE<O.

(4)

If the system is at rest at ¢ = 0, % can be chosen to
be equal to 0.

Note that no model order assumption has been
imposed on the system Go(g), neither any statisti-
cal properties have been assumed for the noise e(t).

The information obtained so far does not uni-
quely determine the system Go(g) and the model
error Ag(g). There is a set of systems G(g) and
corresponding model errors A(g) consistent with
the data and the prior information. We accordingly
define

Agc=1{A(g) | (1), t=1,..., N,

(2), (3) and (4) are satisfied},
with the property As(g) € Age-

(5)

3 Processing the Information

The idea now is to formulate the identification
problems as constrained optimization problems.
However the set A, has a complicated (implicit)
structure and is not well suited for numerical opti-
mization techniques. In this section it is described




how a set Ay, can be obtained that is a simple
(outer) box-approximation of the set As .. For
that purpose as an intermediate result first a set
Ag 1, consisting of linear constraints, is calculated.
This set A( 1, outer bounds the set Ay ;. Then the
set Ag p is calculated using linear programming.
This set Ay g is a tight outer bounding orthotope
of the set Ag ;.

3.1 Construction of A,

In order to obtain a finite dimensional optimization
problem, the number of unknowns in Ags(g) has
to be reduced to some finite number n + 1. For
that reason the (pulse response of the) model error
Ax(g) is split into two parts:

Aelg) = Aglg) + Aelg)

Z gfi(k)q_k

k=n+1
(6)

where n is a design variable which influence will be
discussed later on.

We substitute (2) into (1), divide by H(g) and
introduce H{ )= H'(q), G(q) = H *(¢q)G(q) and
W(q) = H™'(g)W(g), yielding

H(q)y(t) = G(a)u(t) + Ag(a) W (g)u(t) + e(t),
e(t) € [ed(t), eu(t)]. (7)

When calculating various signals a distinction
will be made between the known part of a signal
and the unknown part. Bounds will be calculated
for these unknown parts and their influence will be
captured in the bounded output noise. Using (4)
in order to calculate the worst—case influence of the

initial conditions, we write for the terms appearing
in (7),

=1

2(t) +a(t), z(t)= Y h(

k=0

H(q)y(t) = y(t — k),

|a(t)|sa(t):§1£(k)w, PN Y

G(q)u(t) = v(t) + b(t), w(t)= Eg Ju(t —
BE)| < B(E) =3 5(R)[, t=1,...,N,
k=t
W (@)u(t) = w(e) + e(t), wlt)= 3" k)l — k),

k=0

le(t)] < &(t) = i lo(k)|lg, t=-n+1,...,N,

with the additional property that
&(—t)=..
w(—t)=0, Vt>0.

L= 8(0) > (1) >...> &),

In fact a(t
of &.
We now obtain

Ag(a)W(9)u(t) = (Ag(a) + Bg(a))(w(t) + c(t)) =
= Ag(q)u(t) + d(t) + £(t),

Ag(a)elt), ()= Bgla)(w(t) +c(t)),
where, using (3), d(t) can be bounded by

), b(t) and &(t) are decreasing functions

d(t) =

[d(t)|<Zi5 Nle(t — k)| <

<) Mp et —k)=d(t), t=1,..
k=0

‘1N?

which is also a decreasing function of ¢, and f(t)
can be bounded by

f(t)] < Z 166(

k=n+1

(lw(t — k)| + |e(t — k)|) <

< i Mp*(juw(t — )] + &t — k)) =

kz Mp~™*(|w(t—k)|+&(t— k)+sz k5(0) =
Z Mp™*(fw(t — k)| + &(t — k)) +
k=n+1

+ Mp™*'(p — 1)7'¢(0) = f(t), t=1,...,N,

that will generally not vanish for increasing ¢, espe-
cially due to the contribution of |w(t — k).
With these results equation (7) can be written as

v(t) + b(t) + Ag(g)w(t) +
+d(t) + f(t) +e(t), t=1,...,N,
e(t) € [el(t), eu(t)], |a(t)] < a(t), [b(t)| < B(t),
|d(t)| < d(t), |£(t)| < f(t). (9)

If we now introduce extended noise bounds

z(t) + a(t) =

n(t) = z(t) — v(t) — eu(t) — a(t) — b(t) +
_J(,:)_ f(2),

nu(t) = =z(t) - o(t) - el(t) + a(t) + b(t) +
+dt)+f()



then (3) and (9) yield a set of (linear inequality)
constraints for the unknown pulse response param-

eters §4(k), Aglq) € Ag p, where

Agy = {A() | m(t) =

< i&(k}w(t —k) €nut), t=1,..., N,

—Mp* < 8(k)< Mp*, k=0,...

The set A, has been constructed in such a way

that &g o C AG ,, as each A(q) satisfying the con-
straints in (5) also satisfies the constraints of the
set Ag ;. In general the set Ag , will be a fairly
tight approximation of the set A4  provided n has
been chosen large enough, as in that case the sig-
nals @(t), etc. remain small (compared to the noise
level e/t), eu(t)). The set Ay, is even identical
to Az ifu =0, H(g)=1landn>N—-1lasin
that case the signals a(t), b(t), &t), d(t) and f(t)
are zero Vt.

, 00}

3.2 Construction of Ag p

Applying the box-bounding procedure of Milanese
and Belforte (1982) we calculate

&i(k) = min §(k),

QEA(‘- z

8u(k) = max &(k),

&EAGIL

k= Dy,
which requires solving 2(n + 1) linear programming
problems for n+1 unknowns subject to 2(N +n+1)
linear inequality constraints. This can be done
using standard linear programming software avail-
able. See Luenberger (1984) for an extensive treat-
ment of the linear programming problem and nu-
merical algorithms to solve it. Here we notice the
price for choosing a large value of n in (6) as in that
case more and larger linear programming problems
have to be solved.

We thus obtain the outer-bounding box-de-
scription

Agp = {Ag) | &ik) < 8(k) < 8u(k),k =0;...,m,
—Mp*<§(k)<Mp* k=n+1,...,00},
which has the property Ag, € Ag . The box

Ag p is tight in the sense that there does not exist
a box (with the same orientation) of smaller size
which contains the set Ay ;. The set Agsp has
been calculated on the basis of the set &g which
has in turn been constructed from the data and the
prior information. Hence the quality of the data
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and prior information directly influences the size
of Ags . If e.g. many measurements are available
with a low noise level, the set Agsp will be rel-
atively small. The simple box-structure of Ag g
will be utilized later on when solving the problems
of identification in £;.

4 Identification of an Upper Bound
for the £;-norm of the Model Er-

ror

The first problem we focus on is the estimation of
an upper bound on the £;-norm of the model error,
|Agll,- This will only be an upper bound as the
true model error is unknown. Using the results of
the previous section such an upper bound is given
by the following result.

Theorem 4.1
1Al = X 166(k)| < o lAll, <
k=0

< max [[Al, < max [|A]l, =
Eac‘;.n ‘3‘6‘&@3

Mp—'l'l

= i max{ —Ef(k) 1

k=0

LRy =t

Proof: The first equality is the definition of the
l;-norm. The inequalities are direct implications
of the construction of the sets involved, where
As(g) € Age € Ag € Ag g The last equality
finally follows from the fact that for any A(q) €
Ag g

Al

!—El5k)1+ Z |&(k

k=n+1

= Z 16
k=0

= Emax{ bi(k), 6u(k)} + Z Mp~*
k=n+1
which yields the desired result by noting that there
is a worst-case model error in the set Ay for
which the £,-norm equals this upper bound. O

The upper bound obtained in this way has been
calculated using information from the data and the
prior information. In general however it is not the
minimal upper bound that can (theoretically) be
derived from this information. By definition this
smallest upper bound is given by maxaea,, . [|Al;,
which generally can not be calculated. In Hakvoort
(1991) an approach has been proposed to calculate
maxaea,, , [|All; although in that paper this set
has been defined slightly different. If that proce-
dure is carried out in general a tighter bound for




|Agll, will be obtained than given by theorem 4.1,
however the procedure is computationally very in-
volved. In section 6 an example is given of the cal-
culation of an upper bound according to theorem
4.1 which shows that this can be carried out with
some computational effort.

5 Identification of an {;-Subopti-
mal Model

5.1 Introduction

In the previous section we have presented a proce-
dure to determine an upper bound on the £;-norm
of the model error. A natural way to continue is
now to determine a new nominal model Gy(g) that
minimizes the £;-norm of the worst-case model er-
ror. We will consider that problem in this section.

For a fixed weigth W(g) the newly identified
model satisfies the equation

Gn(g) + Ag, (9)W(q) = Golg) =
= G(q) + As(a)W(q)-

Accordingly the new uncertainty set A;_; is given
by '

As. . ={An(q) | An(g) = Alg) +
+ (G(q) - Gn(q)) W'(q), Alg) € Ag .}

This new set has a dependence on the old nominal
model G(g) as the prior information (3), which is
used in the construction of the sets, is dependent
on this old nominal model. The new box-bounding

set Ag g is now immediately found to be

Ag. 5 ={An(g) | An(q) = Alg) +

+ (Glg) — Gn(q)) W'(9), Alg) € Ag s}y
which hence does not require the solution of a new
set of linear programming problems.

We can formulate our problem of finding an op-
timal nominal model Gy(q) as

Gn(q) =arg min  max ||Ax];, (10)
G EM 3NEA¢:\”H

where M is a prespecified model set. By formulat-
ing the optimization problem over the set Ac’.‘*

instead of the set AG; c the results will be subop-
timal rather than optlmal We will show that the
problem (10) is solvable in two steps. In the first
step a high order nominal model is calculated with-
out any model order restrictions. In the second step
model reduction in £,-norm is performed, reducing
the high order model to a model of the desired or-

der. This is formalized in the next theorem.
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Theorem 5.1 The optimal model Gy(q) defined
in (10) satisfies

-

Gn(g) = arg mm “(Gc — G )W~ ”1 1 (31)

where

GC(Q) = arg n'un max

2 oo Al

(12)
and A denotes the algebra of BIBO stable, linear,
time-invariant, causal operators on I

Proof: Given in the proof of theorem 5.2. m|

5.2 The Central Estimate

In this subsection we consider sub—problem (12) of
identifying an optimal model @c(q) without any
model order restrictions. The solution to this prob-
lem is given by the so-called central estimate, as
formulated in the next theorem.

Theorem 5.2 The optimal model G¢:(q) defined in
(12) satisfies
Gelg) = G(a) + Ac(q)W(q) (13)
where
_ Aclg) = p be(k)g,
bc(k) = 3(6i(k) + 6u(K)), k=0,..

Proof: First we note that G¢(q) as given by (13) is
stable as it is the sum and product of stable transfer
functions. Next, making use of the fact that

A(q) + (G(a) - Gela) W'(g) = Alg) — Ac(q)

and hence the set Ay 5 is a symmetric box with
Ac(g) = 0 as center, we obtain that for any nominal
model Gy (q),

&Nénj:;wa lAn]l, =
= ma “\|A+ (G-Gow| =
s ””‘” (G = Go)W ™+ (Go - Gryw,
- a5 o+ o Gowl -
= 0o ol +{(Ge — Gw > (14)
% Acéhy IAcll, =




n 1 M —-n
=Y 5(u(k) - (k) + —L

k=0
and equality is achieved by choosing ¢ Nig) =
Ge(q), which proves the theorem. Moreover,

AN, =

min  max
Gl eEM &NEA(‘;;WB

ke, o -
5 M‘E“f;‘c,,”ﬁ“‘”' 8 Gmm [(Ge - Gow,
which proves theorem 5.1. O

Note that for any new nominal model G‘N(q) the
¢,-norm of the worst—case model error can be cal-
culated using equation (14).

We will shortly discuss the optimality of the cen-
tral estimate G¢(gq) when evaluated over the set
A - The following proposition says that this cen-
tral model is in any norm optimal within a factor 2
when evaluated over this set of linear constraints.

Proposition 5.3 Consider the central model
Gc(q) defined in (12), then
max ||Ac¢|]| <2 min max |AZ]-
Jex I8l <2 min mx 6]

Proof: First we note that due to the convexity of
the set Ag, and the fact that Agp is a tight
outer bounding orthotope of this set, the central
estimate A¢(q) is a feasible point of the set Agp,

i.e. Ac(g) € Ag . Next define

G = min max Al
() Mgc’ CAOLEA , | Al

and ! ‘ L
Ax(q) = (Gola) — G(a)) W' (9);
then
A :é'gi: Ac]l = max “A AC” =
¥ aeAab “A A%+ Az - AG“ <
< mpx [a-Ag]+[Ac -
i 2&212:;, "A AC“ =2 Eng.:. [|Ac]| -

O

Hence the central estimate G¢(g) is optimal with
respect to the set Ags p but only suboptimal with
respect to the set Ag ;.

68

5.3 Model Reduction in £,-Norm

In this subsection we consider the model reduction
in £;-norm problem (11). To the author’s knowl-
edge no results have been published so far that
provide a solution for the £;-model reduction prob-
lem. This is in contrast with the H-model reduc-
tion problem, which has been extensively studied
(Glover, 1984), but only approximately solved. In
this section an exact solution is given for the model
reduction problem in £;-norm, but only for a re-
stricted class of estimation models. We restrict to
linearly parametrized models, i.e. we consider the
model set

DN zq)=§xtk}q-*, (15)

where d(g) is an a priori given denominator of order
p with all roots within the unit circle and z(g) is
the parametrized numerator polynomial.

Next we assume that G¢(g) and W(q) are finite
dimensional rational transfer functions, given by

wa(q)
wd("i’)’

w,(g) and wy(q) are polynomials

Gelq) = 9.(4)

(@)’ W(q) =

(16)

where g.(q), 94(9),
m g

Then by introducing the error function A(g) the
model reduction problem (11) can be reformulated
as,

min [|A[ s.t.
il (9::(4) @
94(q)

T‘glg]a(kn s.t.

= i 8(k)g

k=0

or equivalently

9a(9)d(q)wn(9)A(q) + ga(q)wa(q)=(q)+

— 9n(9)d(q)wa(q) = 0. (17)
The standard procedure (Lu and Wang, 1988) now
is to introduce a new parametrization,

A{q) = AP(Q) = ‘&H(QL 5P{k) 2 0| En(k) 2 01 Vk1

which transforms the (infinite dimensional) nonlin-
ear optimization problem (17) into an (infinite di-
mensional) linear programming problem. The re-
sult is given in the next proposition.




Proposition 5.4 The solution of the model reduc-
tion problem in £;-norm as defined by (11) and
(15), (16) is gien by the solution of the (infinite
dimensional) linear programming problem

min i(&,(?ﬁ) + bn(k)) s.t.

z,6p6n k=0

94(2)d(q)wn(q) (Ap(g) — An(q)) +
+ ga(9)wa(q)=(q) — gn(g)d(g)wa(q) = 0,

5,(k) >0, é,(k) 20, E=0,...,00. (18)
Proof: Follows from the fact that in the optimum
for each k either &,(k) = 0 or é,(k) = 0, and there-
fore 6,(k) + én(k) = |6(k)|, which makes the opti-
mization problems (17) and (18) identical. o

Now we can explain why the model has been chosen
linear in the parameters. In case d(gq) needs to be
calculated as well, problem (18) would be a very
unattractive non-linear programming problem.

For a practical implementation the problem (18)
is truncated to a finite dimensional linear program-
ming problem, analogous to the truncation per-
formed in the context of £;-optimal controller de-
sign (McDonald and Pearson, 1991). We choose
some (large) value for the truncation parameter [
and calculate

a(q) = Tho a(k)g™* = ga(g)d(g)wn(q),
b(g) = Thoo b(k)g™* = ga(q)wa(q),
e(g) = Theo c(k)a™* = gn(g)d(q)wa(q),

where [ should be at least equal to the maximum or-
der of the transfer functions appearing at the right-
hand sides (and consequently a(q), b(¢) and <(q)
may end with trailing zeros). Then the truncated
linear programming problem can be formulated as

min i(&,,(k) + 8,(k)) s.t.

k min(p.k)
> a(k —5)(6,(1) = 8a(@)) + X bl —K)=(3) +
—c(k) = 0, 8,(k) >0, 6u(k) >0, k=0,...,1

(19)
which is a linear programming problem with p +
2l + 3 unknowns subject to 3(I + 1) linear equality
and inequality constraints.

It is possible to obtain insight in how close the so-
lution of the truncated problem (19) is to the solu-
tion of the infinite dimensional problem (18). This
is formalized in the next proposition.
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Proposition 5.5 Let the solution of the trun-
cated problem (19) be given by z,(q), Ato(q) =
Yheo0to(k)g* and let the solution of the in-
finite dimensional problem (18) be given by
z.(q), Ao(q) = X2 8.(k)g*, then the optimal
criterion value ||A,||, for the infinite dimensional
problem is bounded by

1Beoll < 18, < | (60 = 22) w1 .

Proof: As z,(g), A.(g) is a feasible solution for

(18): 30(?): Ao(?) = Zi=u 5o(k)q‘* is a feasi-
ble solution for (19). Hence, as A, is optimal,

[[Arll, < ”An y [[Asll;, which proves the left—
hand inequality. The right-hand inequality is a di-
rect implication of optimality of z,(q), A,(g). O

The bounds provided in this proposition can be
used to check if the truncation parameter I has been
chosen large enough.

The model reduction problem considered and
solved in this section requires a fixed denomina-
tor. There are several possible ways to arrive
at such a denominator. One may for example
take the denominator of a model resulting from
any other identification procedure, or apply a La-
guerre or Kautz model structure (Heuberger, 1991;
Wahlberg, 1991). Finally it is also possible to first
do Hankelnorm or balanced model reduction and
after that tune the numerator in an £;-optimal way.

6 Example

In this section a simulation example is presented
which shows the applicability of the theory devel-
oped. First an upper bound will be calculated for
the £,-norm of the model error for a given nominal
model. Next an £;-suboptimal model will be iden-
tified by first calculating the central estimate and
then applying model reduction to this high-order
model.

In figure 1 a Bode diagram is given of the 5th
order system Go(g), the 3rd order nominal model
G(g) and the 7th order weighting function W(q)
that have been chosen (quite randomly). The ¢,-
norm of the true model error A; defined by (2)
is equal to 0.8997. Starting from zero-initial con-
ditions (% = 0), a simulation experiment has been
performed with a Gaussian white noise input signal
(variance 1) and a uniformly distributed additive
output noise (e(t) € [-0.3,0.3], H(g) = 1, hence
the choice of g is irrelevant as a(t) = 0, Vt in (8)).
We chose M = 2, p = 1.1, which are conservative




values. We used 1000 samples for identification pur-
poses and chose n = 80, which means that to obtain
the set Ay 5 162 linear programming problems had
to be solved for 81 unknowns subject to 2162 lin-
ear inequality constraints. This has been done on
a VAX workstation 3100 using the linear program-
ming software in the Fortran NAG library. Solving
one such linear programming problem takes about
4 minutes CPU time.

The result is shown in figure 2, where the calcu-
lated upper and lower bound of the pulse response
sequence of the model error are plotted together
with the pulse response of the true model error.
The worst—case £;-norm found in this way is 1.8787,
a factor 2 larger than the £;-norm of the true model
error.

Next we calculated the central estimate and did
model reduction in £;-norm. We reduced the 90th
order central estimate G¢(g) to a 10th order model
G'n(g) with all poles a priori fixed to 0.5. In figure
3 a Bode diagram is given of the resulting model.
We see that the model bears a great resemblance
to the system, except for extreme high frequencies
(see phase—plot). The upper bound on the model
error of this new nominal model is 1.0437, whereas
the £;-norm of the new true model error As (q) is
0.0518, a lot smaller. In this case the model is a lot
closer to the true system than expected from the
worst—case analysis.

7 Conclusions

An identification procedure has been developed
which yields for a given nominal model G(q) and
weight W(q) an upper bound for the £;-norm of
the model error, starting from measurement data
and some a priori information. This prior informa-
tion consists of a time domain bound on the noise
and information about the decay rate of the pulse
response of the model error. There are no restric-
tions on the shape of the input signal. Numerically
it requires solving a set of linear programming prob-
lems.

Moreover a procedure has been developed to
identify a new nominal model Gn(g) that is op-
timal in the sense that it yields a minimal upper
bound on the £;-norm of the model error as com-
puted above. This is performed in two steps, in the
first step the central estimate is straightforwardly
computed and in the second step model reduction
in £;-norm is performed. For the latter problem a
solution is given for the case that the reduced order
model is linear in the parameters.

An example showed the applicability of the pro-
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cedure. It appeared that the estimated optfimal
model Gy(g) may be a lot closer to the true sys-
tem than expected from the worst—case analysis.
This is due to the worst—case character of the anal-
ysis (the noise is always assumed to have the worst
possible value) and the fact that conservativeness
has been introduced in the procedure by bounding
the set Ay by the set Agp. A smaller upper
bound on the model error may be obtained by us-
ing more data and more (and more accurate) prior
information. Current investigations show that it
is possible to utilize the fact that the noise e(t) is
uncorrelated to the input signal u(t) (under open
loop conditions) or some external reference signal
7(t) (under closed loop conditions). This is done by
adding certain linear constraints to the set Ag /.

In the companion paper Hakvoort (1992) the
same time domain setting is applied to the problem
of worst—case identification in H,. In that paper
the problem is considered of identifying an upper
bound on the H.-norm of the model error for a
given nominal model. Also the problem is consid-
ered of identifying a new nominal model with min-
imal upper bound on the H.,-norm of the model
error. The problems are solved using linear pro-
gramming techniques.

This paper has been considering the SISO case.
However the MIMO case is basically not more diffi-
cult and it is quite straightforward to extend the
problem formulation and the solutions presented
here to the MIMO case.
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Abstract. An identification procedure is developed which yields an upper bound for the
H..-norm of the model error for a given nominal model, using measurement data and a
priori information consisting of a time domain bound on the noise and information about
the decay rate of the pulse response of the model error. The upper bound is calculated
by solving a set of linear programming problems.

Moreover a procedure is presented to derive a new nominal model with reduced upper
bound on the H..-norm of the model error. This is performed in two steps, in the first
step frequency response data are generated and in the second step a nominal model is
identified with a curve-fit procedure, minimizing a maximum absolute value criterion

function.

Keywords.

1 Introduction

H . -control theory is able to cope with a system
representation consisting of a nominal model and an
H.,-bound on the model error (Maciejowski, 1989).
Consequently identification strategies are being de-
veloped that are compatible with the H-control
design, i.e. yield an upper bound on the H.-norm
of the model error and an optimal nominal model.

The problem of quantification of model errors
is considered by many authors. Bai (1991) and
Lamaire et al. (1991) investigate procedures for use
in adaptive control, Lau et al. (1990) and Younce
and Rohrs (1992) consider a combined parametric—
nonparametric uncertainty approach. In Wahlberg
and Ljung (1991) the least-squares algorithm is
used to derive frequency domain error bounds.
Goodwin et al. (1990) and Ninness el al (1992)
adopt a stochastic approach to the problem. Fi-
nally in Van den Boom et al. (1991) and De Vries
and Van den Hof (1992) frequency domain error
bounds are derived assuming the noise is bounded
in the frequency domain.
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worst—case identification, H.-norm, linear programming

The problem of identifying a nominal model that
minimizes the worst—case error is for example con-
sidered in Helmicki et al. (1991, 1992), Partington
(1991) and Gu and Khargonekar (1992), where in-
terpolation algorithms are presented to construct a
nominal model from a finite number of noisy fre-
quency response data.

In this paper a time domain setting is adopted
for the problem of worst—case identification in H,,.
In the companion paper Hakvoort (1992) the same
setting is applied to the problem of worst—case iden-
tification in ;. First the problem is considered of
identifying an upper bound for the H_-norm of the
model error. A new identification algorithm is de-
veloped that yields a frequency dependent bound
on the model error for a given nominal model, from
which the H.-bound can readily be derived. There
are no restrictions on the experimental conditions,
i.e. the shape of the input signal. The main prior
information assumed available is a bound on the
pulse response of the model error and a time do-
main bound on the noise. No model order assump-
tion on the true system is made, nor any statistical




properties of the noise are assumed.

In the identification procedure the model error is
parametrized and the actual worst-case perturba-
tion is calculated using linear programming tech-
niques. On the one hand the resulting error bound
is a hard bound, which means that the true model
error is guaranteed to be smaller than the calcu-
lated upper bound, provided the prior informa-
tion that is used is correct. On the other hand
the resulting error bound is proven to be non-
conservative under certain conditions, which means
that no smaller bound for the model error can be
derived from the information available.

Next in the same setting the problem is con-
sidered of identifying an H-optimal model, i.e. a
nominal model with minimal corresponding error
bound. An approximate solution to this problem
is obtainable in two steps. In the first step fre-
quency response data are calculated using the no-
tion of central estimate. In the second step a nom-
inal model of the desired order is calculated with a
frequency domain curve-fit procedure, minimizing
a maximum absolute value criterion.

The outline of the paper is as follows. In the next
section the a priori information assumed available
is summarized. In section 3 it is described how
this information, including the measurement data,
is processed, such that it can be used in the worst—
case analysis. Then in section 4 a solution is given
for the problem of identifying an upper bound for
the H.,-norm of the model error. In section 5 we
consider the problem of identifying a new nominal
model with minimal error bound. Then in section
6 an example is given of the entire procedure devel-
oped. The paper ends with conclusions.

2 A Priori Knowledge

We consider a discrete time, asymptotically stable,
linear, time-invariant, causal SISO system Go(g) =
32 go(k)g* (where g is the forward shift oper-
ator) with additive bounded output noise. The
input—output behaviour of the plant is assumed to
be given by the equation

40) = Golaut) + H(@(), o) € eth sl
1

where u(t) is the measured input signal, y(t) is
the measured output signal, e(t) is the noise, only
known to be bounded by e(t), eu(t). H(g) is some
(a priori given) noise model, that can be used to
bring in a priori knowledge about the frequency dis-
tribution of the noise.

For identification purposes we need measure-
ments of the input signal u(t) and the output signal
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y(t) acting on the system, t = 1,2,.. ., N. There
are no prior restrictions whatsoever on u(t), it may
for example be generated in closed loop. Here the
situation is considered that onme data sequence is
available. It is however straightforward to extend
to the case that more measurement sequences are
available.

We consider the uncertainty configuration

Go(q) = G(g) + Ag(9)W(9)s (2)
where G(g) is some a priori given nominal model,
constructed by any identification or modelling pro-
cedure and W(gq) is an a priori specified fixed
weighting function. The system Go(g) and the
model error As(g) are unknown. All transfer func-
tions in (2) are assumed to be stable. We require
the weight W(q) and the noise model H(g) to be
minimum-phase. Without loss of generality we
further require W(q) to be biproper. The (possi-
bly infinite) pulse response sequences of the trans-
fer functions will be denoted by the corresponding
lower—case characters. Hence (2) defines the pulse
responses go, g, 65 and w.

Next we assume to know an M > 0 and p > 1

such that

be()| < Mp™*, VEZO.  (3)
If more information is available about the pulse re-
sponse of the model error this may be included as
well. It is for example possible to consider an inter-
val bound on §5(k) independent of the bound for
other values of k.

Finally we assume to know upper bounds on past

(unmeasured) data u(t) and y(t),

lu(t)] <, [y(t)| <9, VE<O. (4)
If the system is at rest at t = 0, & can be chosen to
be equal to 0.

Notice that no model order assumption has been
imposed on the system Gg(g), neither any statisti-
cal properties have been assumed for the noise e(t).

The information obtained so far does not uni-
quely determine the system Go(g) and the model
error Ag(g). There is a set of systems G(g) and
corresponding model errors A(g) consistent with

the data and the prior information. We accordingly
define

AC;“C = {A(Q) I (1)1 t= 1:'°'1Ns

(2), (3) and (4) are satisfied},
with the property As(q) € Ag -

(5)




3 Processing the Information

The idea now is to formulate the identification
problems as constrained optimization problems.
However the set A has a complicated (implicit)
structure and is not well suited for numerical opti-
mization techniques. In this section it is described
how a set Ag, consisting of a number of linear
constraints, can be obtained, that is a close outer
approximation of the set Ay . This set of linear
constraints will then be used in numerical optimiza-
tion techniques, or more specifically linear program-
ming, in order to calculate an upper bound on the
H..-norm of the model error.

In order to obtain a finite dimensional optimiza-
tion problem the number of unknowns in Az(g) has
to be reduced to a finite number n+-1. For that rea-
son the (pulse response of the) model error As(g)
is split into two parts:

Ag(a) = Agla) + Bela);
Aslq) = E%(k =, Bg Z 5(k)a ™,
k=n+1

(6)
where n is a design variable which influence will be
discussed later on.

We substitute (2) into (1), divide by H(g) and
introduce H(g) = H~'(q), G(q) = H™'(q)G(q) and
W(q) = H™(q)W(g), yielding

H(q)y(t) = G(q)u(t) + Ag(q)W (q)u(t) + e(t),

e(t) € [et), eu(t)]- (7)

When calculating various signals a distinction
will be made between the known part of a signal
and the unknown part. Bounds will be calculated
for these unknown parts and their influence will be
captured in the bounded output noise. Using (4)
in order to calculate the worst—case influence of the
initial conditions, we write for the terms appearing

H(q)y(t) = =(t) +a(t), =(t)= gh(k)y (t— k),
|au)|sa(t)=§|i:(k>w, t=1,...,N, (8)
(@)u(t) = v(t) + b(t), o Eg(k

Ib(t)léﬁ(t)=§|§(k)!ﬂ, t=1,...,,
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W (q)u(t) = w(t) + (t

o0

le(t)] < &(2) =Z

w(k)lg, t=—-n+1,...,

with the additional property that

w(—t)=0, Vit >0.

In fact a(t), b(t) and &(t) are decreasing functions
of .
We now obtain

As(@)W(@)ult) = (As(a) + Agla))(w(t) + c(t) =

(g)w(t) + clf(t + £(1),
() = Belg)(w(t) + c(t),

t) can be bounded by

d(t) = (Q)C

where, using (

d(6)] < 3 165(K)|[c(t - k)| <
k=0

<Y Mp~e(t — k)

k=0

=d(f), t=l,..N,
which is also a decreasing function of ¢, and f(t)

can be bounded by

OIS S BeR(lt— B)] + et — K))) <

k=n+1

< Y MpH(juw(t— k)] + &(t — k)) =

k=n+1

= 5 Mookl kn+>jMp~'=c(0)

k=n+1

> Mo (ju(t - k)| + (¢ — &)+

k=n+1

+ Mp~ ' (p—1)7"8(0) = f(2), t=1,...

that will generally not vanish for increasing ¢, espe-
cially due to the contribution of |w(t — k)|.
With these results equation (7) can be written as

» IV,

2(t) + a(t) = v(t) + b(t) + Ag(q)w(t) +
+d(t) + f(t) + e(t), t=1,...,N,
e(t) € [eilt), eult)], |a(t)] < a(t), [b(t)] < B(¢),
ld(®)] < d(2), |£(£)] < F(2). (9)




If we now introduce extended noise bounds

n(t) = () —v(t) — eu(t) — a(t) — B(t) +
—d(t) - f(t),

n(t) = z(t) —v(t) — et) + a(t) + b(t) +
+d(t) + f(2),

then (3) and (9) yield a set of (linear inequality)
constraints for the unknown pulse response param-
eters 8i(k), Ag(g) € Ag g, where

Ay ={Alg) | m(t) <

<25 k) < nu(t), t=1,..., N,
k=0
—Mp* < §(k) < Mp™*, k=0,...,00}.

The set A ; has been constructed in such a way
that Ag , C Ag g, as each A(g) satisfying the con-
straints in (5) also satisfies the constraints of the
set As ;. In general the set Ag , will be a fairly
tight approximation of the set A , provided n has
been chosen large enough, as in that case the sig-
nals a(t), etc. remain small (compared to the noise
level e/(t), eu(t)). The set Ag, is even identical
to Ag g if 2 = 0, H()—landn>N—la.s
in that case the signals a(t}, (t), e(t), d(t) and
f(t) are zero V¢. At the price of some conservahsm
we thus have obtained a set of linear constraints,
which contains information from the data and the
prior information, that is well suited for usage in
numerical optimization techniques.

4 Identification of an Upper Bound
for the H_-norm of the Model
Error

The first problem we focus on is the estimation of an
upper bound on the H,-norm of the model error.
This will only be an upper bound as the true model
error is unknown. To derive an upper bound we will
use the fact that Az € Az C Ag and hence

[8¢]l., = sup |Ag(e™)| <
uG[D,r]

< max [|Afl, < max [Afl,.  (10)
A€Ags AeAg
In this section we will focus on deriving a bound
for the last term in this formula.
In the sequel we will often use the following

lemma.
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Lemma 4.1 Consider the function fa(z): C —
IR, defined by

Fu(2) = Jmax Re(cmiz),

yaeay

tlt,"nthc,,,,k—e2 i R =G A
denotes the real part of -, then

,m > 3, where Re(:)

Jm(2) :
cos (ﬁ)

) Jim_ fn(e) = l2.

(1) fm(z) < 2| <

Proof: For any z and any cmx with |cmi| = 1,
Re(cmkz) < lema| < |emkl|z| = |2, which proves
the left-hand inequality of (i). Further for any z

there exist an integer [ and § € [—Z, L) such that
z = |z|e?m+0):, yielding
Re(emxz) = Re(e""’%‘!zle(%ﬁuji) =

= |:|:|Re(e(2"'%+6}") = |z| cos(2w kLt + §).

If we now choose k = k* such that k* + [ = nm for
some integer n, we obtain

Re(cpmpez) = |z| cos(2mn + 6) =

Re(cmie2)
cos(X)
which proves the right-hand inequality of part (i).
Finally part (ii) immediately follows from part (i)
for m — oo. (|

= |z|cos(8) > |z|cos(Z) & || <

?

Moreover it is easy to show that the bounds in (i)
are tight in the sense that there exists an z such
that the lower bound becomes equality, and there is
an z such that the upper bound becomes equality.
The lemma in fact says that the amplitude of a
complex number can be calculated approximately
by checking a number of different directions in the
complex plane.

We will derive bounds for the model error by eval-
uating |A(e™)| for a finite number of frequencies.
The behaviour between the frequencies will later
on be estimated by means of a worst—case inter-
polation argument. The set of frequencies is given

by

Q={w,...,w}, 0<w <= <w <.

For each frequency w; the model error is bounded
by As(ei) € Ag ;, where

AG,,‘ = {A(e‘.wj) | A(q) € AG,L}:




which is a convex set as the set A ; is convex. Now
for each frequency w;, j = 1,...,l the frequency
domain uncertainty set A, ; will be evaluated using
the tool provided in lemma 4.1. With the ¢, as
defined in lemma 4.1 we calculate

pa(w;) = max Re(cmpl(e™)) =
L

E Re(cpn 5(k')e~*wi) =
. e(c .kgu (%) )

n
= max

5 k.r R - —ik'w; ;
jmax 3 6(k)Re(cmee™)

G k'=0

(11)
with ftgim = px, which requires solving ml linear
programming problems for n + 1 unknowns subject
to 2(N + n + 1) linear inequality constraints (see
Luenberger (1984) for details about linear program-

k=1ciismy 3 =15l

ming). In this way for each frequency w; a convex
polytope P, ; in the complex plane is determined,

P =4805) |

Re(cmxA(w;)) < pr(w;), k=1,...,m}.

The convex polytope has vertices wvi(w;), k =
1,...,m which satisfy

Re(cmivi(w;)) = pr(w;),

Re{cm.k'l"lvk(wi)) = F’k-l-ltwj)! k= 1,...,m. (12)

This set has the property that it contains the exact
uncertainty set for the truncated model error,

{A(e™) | A(g) € Ag .} € P

and hence A;(e's) € P,, ;. Moreover due to the
convexity of the exact uncertainty set and the fact
that lim, .., A(q) = A(g) the following conver-
gence property holds,

lim P,,,._,' =5 A(';.J-.

nm—oo

(13)

For the case m = 4 it simply means that for each
frequency w; the minimum and maximum of the
real and imaginary parts of the model error A(w;)
are calculated, which yields a box in the complex
Notice that the model error is evaluated
in the frequency domain without transforming the

plane.

measurement data to the frequency domain.
The following lemma establishes the bound ob-
tainable in this way.

Lemma 4.2 Let py(w;) be defined by (11) and
1;k(u_,-) by (12), then

7

. N Alewi)| <
() mpxpu(w;) < max |A(e™)] <

#k(“‘".f)
max |va(w;)| < max cos(X)’

(ii) ,,P_{“mm,f-wk(wj)=&;n§-xm |A(e™)] =
Jim max [vi(w;)]-

Proof: The first inequality in part (i) directly fol-
lows from the definition of p(w;) and lemma 4.1.
The second inequality follows from the definition of
vg(w;). The bound defined by the second inequal-
ity is the tightest bound that can be derived from
the set P, ;. Noting that max; Bxle)) 1o also an

cos( =
upper bound according to lemma 4.1(:“3-:1: conclude
that the third inequality must hold, which proves
part (i). Next the statement in part (ii) is proven
by noting that the left-hand expression in (i) con-
verges to the right-hand expression for m — oo.
O

In this way we have established a frequency de-
pendent bound on the model error As(g) for a fi-
nite number of frequencies. Taking into account the
worst—case influence of the tail A;(g) and of the in-
tersample behaviour of the model error, an upper
bound for ||[As||_, can readily be derived. Introduce
the parameter A; for the intersample frequency dis-
tance

A; = max{w;—wj_,wip1—w;}, 3=1,...,1 (14)

Now a bound on the H.,-norm of the model error
is established in the following theorem.

Theorem 4.3 Let B(n,Q,m) be defined by

ﬁ(nin’m) =
1, Mp Mp™
m?x {m?x |ve(w;)| + EAJ(p I 1)2} it p—1’

with vi(w;) defined by (12) and A; by (14) then

0) I8¢l < mex AL, < A(n,0,m),

(ii) lim lim ﬁ(n,ﬂ,m):aéufx [|A]l

—[0,7] nm—+c0 5y o
Proof: The first inequality in part (i) has been es-
tablished in (10). Next (6) yields

gl < [Be],, +|2e]..

and using the fact that the £;-norm upper bounds
the H -norm,

max

18], = max
A€l e

< e |A], -




In De Vries and Van den Hof (1992) it has been
shown that assumption (3) implies that

d|As(e™)] ¥ d As(e™) < Mp e
dw = dw (p—1)
Worst—case interpolation considerations now give

Mp

|Ag(e)] < |Bg(e™)|+

(-71)21%' —wl|, Vw,wj,
which in combination with lemma 4.2 yields the
desired result (i). Next, using lemma 4.2, we obtain

li ) < A
(11{?}1,,] AR n},axpk(wj = Aglgg, ” ”

lim lim B(n,Q,m)=

sl e, lim lim max lve(w;)| <

Nn— [0 ,r] n—oo J

< lim lim max pk(w‘f),
a—{o,x)n—% sk cos(Z)

which proves part (ii) by noting that the right-hand
side expression converges to the left-hand side ex-
pression for m — oco. (]

We see that the total error in (i) consists of three
parts. The first contribution, max; |vx(w;)|, con-
sists of a kind of bias part and a kind of variance
part. The bias part is the true model error Z&é(e"“’i)
and the variance part stems from the fundamental
uncertainty in the data (the noise level). The bias
part can only be reduced by the choice of a more
accurate nominal model. This problem will be con-
sidered in the next section. The variance part can
basically only be reduced by using more informa-
tive data or a priori information (besides a small
reduction obtainable by choosing a large value for
m). The second contribution to the error in (i),
P i f7, comes from the fact that only a finite
numger of frequencies is evaluated and the inter-
sample behaviour is analyzed by some worst-case
interpolation argument. This error can be reduced
by evaluating more frequencies (which can be done
for the same data set) or doing a more careful in-
terpolation analysis, see De Vries and Van den Hof
(1992). However it should be emphasized that often
this interpolation contribution is much too conser-
vative and that generally a more realistic indica-
tion of the model error is obtained by simply lin-
early interpolating the computed model error be-
tween two subsequent frequencies. The third con-
tribution, #2== follows from the truncation in the
parametrization of the model error and reduction of
this error requires an increase in the computational
effort as the size of the linear programming prob-
lems increases. However this can also be performed
for the same data set.
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5 Identification of an H-Subopti-
mal Model

5.1 Introduction

In the previous section we have presented a proce-
dure to determine an upper bound on the H-norm
of the model error. A natural way to continue now
is to determine a new nominal model Gy(g) that
minimizes the H.-norm of the worst—case model
error. For a fixed weight W(q) the newly identified
model satisfies the equation

Gn(g) + Ag, (9)W(q) = Go(q) =
= G(q) + Be(9)W(9)-

Accordingly the new uncertainty set As _ ; is given
by

Ag, . =1{An(9) | An(g) = A(q) +
+ (Glg) — Gn(9)) W'(a), Alg) € Mg},

and the new frequency domain uncertainty set by
Ag,; ={An(e) | An(g) € Ag, L} =
= {An(w;) | An(wj) = B(wj) +

+(G(e™) — G () W' (), Alws) € B}
Notice that this new frequency domain uncertainty
set can be evaluated directly using the polytopes
P, ; that already have been calculated. In other
words to calculate the worst—case model error for
some new nominal model no new set of linear pro-
gramming problems need to be solved.

Now the problem of finding an optimal nominal
model Gy(g) can be formulated as

AN, — (15)

Gn(g) = arg min  max
GyEM aNEAG:‘f.L
where M is a prespecified model set.

We will present an approximate solution for this
identification problem by adopting a two-step pro-
cedure. Due to this approximation the resulting
model will be suboptimal rather than optimal. In
the first step we will calculate the complex-valued
so—called central estimate,

Ge¢(w;) = arg _min max

Ac(w:)|, Yw;
é:’:("iu’i)'ﬁc(“’j)EAabi‘ c(w;)|, Yw;

(16)
which is in fact a nonparametric frequency do-
main description of the optimal nominal model. In
the second step we will perform frequency domain
model fitting in H,-norm,

Gn(g) =




(Ge(w) - Y(e™)|-

(17)
The motivation for this two—step procedure lies in
the fact that

Gy(e™)) W~

arg min max
GlyeMwE[0,n]

max max Ac(w;)| +
“-';‘E[‘)r"]&c(wj)e‘lcc._;l (i)l

(Gole) - @N(e‘ws)) w-l(e-'ws)| >

+ max
w; €[0,7]

> max ‘Ac(e“"

~ welo, '\']ﬁ.:'GA(- L
+ (Ge(e™) - Gn(e™)) W'(e*)| =
[Ae) + (G(e) = Go(e™)) -

= Inax max
wel0m] AcA g

W () + (Go(e™) — Gn(e™)) W' ()| =
|A(e™) +

= Imax max
welo,x] A€ ﬁm.

+(G(e*) — Gu(e™)) W(e™)| =

Ry |An(e™)] = S . AN
As the two contributions on the left are minimized
by (16) resp. (17), also a small (though not nec-
essarily minimal) value on the right is obtained,
which is exactly the objective (15). In the next
two subsections the two subproblems (16) and (17)

are considered respectively.

5.2 The Central Estimate

In this subsection we will consider subproblem (16),
the problem of calculating the central estimate
for each frequency. We will present a procedure
which approximately solves the problem, with the
property that asymptotically the exact problem is
solved. We utilize the polytopes P, ; as calculated
in the previous section. Define for each w; € Q the
(complex—valued) center of the polytope P, ; as

Ac(w;) = arg a{:{1‘1"1}}J,_\(‘_JJJE,,M| (w5) = Ab(ws)| =
= arg m{lf)kn;fgf ve(w;) — Ag(wy)l,  (18)

and define X

Gelws) = G(e™) + Ac(w;)W(e), w; € Q. (19)

The intersample frequency behaviour of Ge¢(w) is
defined by linear interpolation,

éc(w) _ w—w; (éc(wj“] - éc(tﬂj)) 2y

Hidl =Ry
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+Go(w;), w € [wj,wysa)- (20)

Then pointwise and uniform convergence to the
central estimate can be proven.

Proposition 5.1 Consider G¢(w) defined by (16)
and G¢(w) defined by (19) and (20) then

6) ,lim Gowy) = Golwy), 5= 1,-.. L

(i) lim lim Gc(

n,_,[(] ,‘.I n,m-—oo

ég(w), w € [0,7]

Proof: Using (13) we obtain that for n,m — oo,

e |A(w;) — Ac(w;)| =
ST O |A(w;) — Ac(w;)] =
s 1 (-Gt

= max  [|Ag(wj)l,

-'-\(:{Wj}GA&;CIJ-
from which we conclude that the minimization (18)
is identical to the minimization (16), which proves
part (i), The second part follows from the first

part and the fact that both Cnv’(;(w) and @c(w) are
continuous functions of w and have bounded first
derivatives. More specifically the left and right
first derivatives of the real and imaginary parts are
bounded. O

Now the problem remains how to calculate the
solution to (18). For the case m = 4 it is not so
difficult as calculating the center of a box is an easy
thing to do. For the general case we present an
algorithm to calculate the center of the polytope
P, ; approximately, within any accuracy desired.

Proposition 5.2 Consider for some m' > 3 and
for some w; € Q) the linear programming problem

min p; s.t.

Bj,a,b;
Re(cm kvi(w;)) — Re(cmr pr)aj — Imfem p)b; < pj,
b= Yo mylis 1. om

where vg(w;) are defined in (12). Let the optimal
solution of this LP problem be given by p;,, c(w;) =
@jo+ bjot and let Ac(w;) be given by (18), then

() mjo < maxog(w;) - Ac(wj)| <

o(w;)] < —E22

cos( %)’

max [ve(w;) —




(i) lim c(w;) = Ac(w;).

m'—oo

Proof: The second inequality in part (i) arises
from the definition of A¢(w;). Next we notice that

Re(cmt kvi(ws)) — Re(em kr)a; — Im(cme p)bs =

a; — b;i)),

and hence the optimal solution has the property

= Re(em k(vi(w;) —

Pio = max fr (vi(w;) — e(w;)),

which with lemma 4.1 yields the third inequality.
Finally optimality of ¢(w;) implies that for some
k*,
four (Vi (w;) — DBo(w5)) 2 Ko

which again with lemma 4.1 yields the first inequal-
ity of part (i). For m’ — oo the right-hand side
in (i) converges to the left-hand side and hence,
as A¢(w;) is a unique complex number, ¢(w;) con-
verges to Ag(w;), which proves part (ii). a

This means that for m' large enough the complex
number ¢(w;) resulting from the linear program-
ming problem presented here is a very good ap-
proximation of Ac(wj), the center of the polytope

P,. ;. It can be used to calculate (,:}'c(wj) in (19),
which in turn is a very good approximation of the
exact central estimate éc{wj) provided that n and
m have been chosen large enough.

5.3 Frequency Domain Curve Fitting

In this subsection we consider subproblem (17),
the problem of H, -optimal model fitting. We will
present a procedure which approximately solves
this problem. Asymptotically it will be shown to be
an exact solution for (17). The procedure consists
of fitting a parametrized transfer function to a fi-
nite number of frequency response data minimizing
a maximum absolute value criterion function, which
is closely related to the H.-norm optimization cri-
terion. The intersample frequency behaviour of the
resulting model will be bounded.

We restrict to linearly parametrized models, that
is we consider the model set

S ahlas

k=0

M :Gy(q) = z(q) =

d()

2 < z(k) < 20, Yk,

where d(q) is an a priori given denominator of or-
der p with all roots within the unit circle and the
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parameters in the numerator are bounded as spec-
ified.

Let there be given a continuous complex valued
frequency response function Ge(w) such that the
(left and right) first derivatives of its real and imag-
inary parts are bounded. With some abuse of ter-
minology we simply say that the first derivative of
Ge(w) is bounded. We consider the objective func-
tion

éN(Q) T

arg min max (Go(w;) —
Gl EM W€

C(e )W ()],

(21)
which implies that in the optimization use is made
of only a finite number of frequencies. The nominal

model Gn(g) defined by (21) has a bounded inter-
sample behaviour and is moreover asymptotically
equal to the optimal model GN(q) as formulated in
the next theorem.

Theorem 5.3 Consider the optimal model Gnl(q)
defined by (17) and Gn(q) defined by (21).

(i) The Hy-norm of Gy is a priori bounded by

6], <

(pt1)zm
= infjy= [d(2)]]

(ii) (9),

where it is allowed that z,, — oo provided that
(max; A;)z,, — 0, where A; has been defined in

(14)-

Proof: Let C:}'N(q) = ‘d—"((f)l, then
A Zo(2)
GNH = sup <
u o =1 d(2)
SUP|;|=1 IZ:=U zﬂ(k)z_k| (P —+ l)Em
inf[z|=| ]d(z)I = infM:, id(z)i’

which proves part (i). Next,

dz,(e™)
dw

A SE g zo(k)eik|
= = o

~ |3 z(k)(—ik)e k| <

k=0

< 3 k(R < om 3 k= on BB
k=0 k=0




yielding
dGn(e™)| _ |45t
dw ¥ dw ¥
N i diza(e™) o dd(e”)
i i 27 w w i w
- i) (s 22D oy 24D
17| |4 2Z0(€™)
1/ 3w o
< e )| ||+
dd(e™ I8
[ m) { ) a(f-" )| <

=T

P(g—*”|\ﬂlm+mmcp+nuf gl ve

Hence,

d |(Ge) - Ene)) w-1(e)
dw

IA

(i) ] d_(i,',\r(e"“’)

=17 iw
Qo aa B dich
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for some constants ¢; and e,.
interpolation argument as in theorem 4.3 we obtain

(Get@) = Gue)) w(e)

<o+ ez, Yo,

+ ’éN(EM)

Applying the same

<

wE[O )

Y(e™9)| +

Smax{
J

(Golws) - Gu(e)) w-
+ %,\j(cl + c;zm]} !

which yields the desired result (ii) by noting that
the first quantity on the right is minimized in the
interpolation procedure (21) and the second quan-
tity converges to zero for A;, A;z,, — 0. O

Finally the problem remains how to calculate the
solution to problem (21). We propose a linear pro-
gramming procedure which yields the desired result
within any accuracy desired.

Proposition 5.4 Consider for some m"” > 3 the
linear programming problem

min p s.t.
“i:(k) ﬂ

Re (Cm” w0 Ge(wj)W! (eiwj)) T

- Z :B(k Re (Cmu JAT——— ¢

k=0 d(es)

—iwjk

"(8‘”")) < p,
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k=1, sepml, =1l el
—zm(k) < z(k) < zm(k), k=0,...,p,

and let the optimal solution be given by p,, z,(k).
Moreover consider Gn(q) defined by (21), then

() uo < E}gf—,‘ ‘(éC(Wj) == éN(eiwj))W_l(ei“’i) <

p —tw;k .
k=0 zﬂ(k)e ) W—l(eluj)

(@c(%') -

Gren d(ews)
Fo
<
= cos[r:,,)‘
.. =0 Zo(k)g™" 2
(“) i/ slees E‘L‘Ud(q() )q = GN(?J'

Proof: The second inequality in part (i) arises
from the definition of Gx(w;). Next we notice that

Re (cm”.w@cr(wj)w_l(emj) T

d(e“i)

Z;::O z(_k)e_’-wjk
d(ele)

W (e )) =

Jorse).

2nd hence the optimal solution has the property

p
. Z a}(k)RE (cm”,k"

k=0

Re (Cm"‘k“ (GG(WJ) -

po = max
g "‘.P_ 5 k —1w;k = i
(i Bl )

which yields the third inequality by applying lemma
4.1. Finally, optimality of z,(k) implies that for
some j~,

fm” ((G‘g(wj.) — @N(eiwj‘ )) W_'I(B‘“'j' ) 2 Moy
which yields the first inequality of part (i) by again
applying lemma 4.1. For m” — oo the right-hand

side in (i) converges to the left-hand side, which
proves part (ii). o

This means that for m” large enough the estimated
model is a very good approximation of the curve fit

model G‘N(q), which in turn is a very good approx-
imation of the H.-optimal model Gy(q) if enough
frequencies are used in the curve fitting procedure.




6 Example

In this section an example is presented which shows
the applicability of the theory developed. First for a
given nominal model we evaluate the model error in
the frequency domain, yielding an upper bound on
the H-norm of the model error. Next we identify
an H-suboptimal model by first calculating the
central estimate and then applying the curve fitting
algorithm derived in the previous section.

In figure 1 a Bode diagram is given of the 5th
order system Gg(g), the 3rd order nominal model
G(q) and the Tth order weighting function W(q)
that have been chosen (quite randomly). Starting
from zero initial conditions (Z = 0), a simulation
experiment has been performed with a Gaussian
white noise input signal (variance 1) and a uni-
formly distributed additive output noise (e(t) €
[—0.3,0.3], H(g) = 1, hence the choice of ¥ is
irrelevant as a(t) = 0, Vt in (8)). We chose
M = 2, p = 1.1, which is a very conservative
choice. We used 1000 samples for identification
purposes and chose n = 130 (which implies that
the contribution of A(g) to the model error is al-
most zero) and m = 4. We calculated the worst—
case model error for 100 frequencies logarithmically
distributed between 0.01 and 7. This means that
400 linear programming problems had to be solved
for 131 unknowns subject to 2262 linear inequality
constraints. This has been done on a VAX worksta-
tion 3100 using the linear programming software in
the Fortran NAG library. Solving one such linear
programming problem takes about 4 minutes CPU
time.

The result is shown in the Nyquist plot of fig-
ure 2, where the calculated uncertainty regions are
shown, together with the true model error Aj(g),
which is of course inside the uncertainty regions.
In figure 3 the upper bound on the amplitude of
the model error is plotted in a Bode diagram to-
gether with the amplitude of the true model error.
The influence of the interpolation contribution to
the worst—case model error in theorem 4.3 has not
been taken into account here. The H_-norm of
the worst—case model error is 0.65 whereas the H -
norm of the true model error is 0.57. We conclude
that a tight error bound has been obtained.

Next we calculated the central estimate and per-
formed curve fitting with maximum absolute value
criterion as described in section 5.3. The central
estimate is easily obtained by calculating the cen-
ters of the boxes in figure 2. The curve fit model
has been chosen a 10th order model with all poles
a priori fixed to 0.5. We chose m” = 8. Hence one
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linear programming problem had to be solved for
12 unknowns subject to 800 inequality constraints,
which took a few seconds computing time.

In figure 4 the amplitude of the worst-case model
error for the new nominal model is shown in a Bode
diagram together with the amplitude of As (g),
the new true model error. In figure 5 a Bode dia-
gram is shown of the new nominal model and the
true system, which appear to be very close. The
H_,-norm of the worst—case model error of the new
nominal model is 0.32 whereas the H.,-norm of the
true model error is 0.02. We conclude that the
worst—case error is not tight for this new nominal
model. In this case the nominal model is much
closer to the true system than expected from the
worst—case analysis.

7 Conclusions

An identification procedure has been developed
which yields an upper bound for the H,-norm of
the model error, starting from measurement data
and some a priori information. This prior informa-
tion consists of a time domain bound on the noise
and information about the decay rate of the pulse
response of the model error. There are no restric-
tions on the shape of the input signal. Numerically
it requires solving a set of linear programming prob-
lems. The bound is a guaranteed upper bound on
the model error and moreover under certain condi-
tions it is non-conservative, i.e. no smaller bound
can be obtained using the information available.

Also a procedure has been developed to identify
a new nominal model Gy(g) in such a way that the
upper bound on the H,-norm of the model error is
small. This is performed in two steps. In the first
step the central estimate is computed and in the
second step curve fitting in H-norm is performed.
This curve fitting problem can again be solved using
linear programming if the nominal model is linear
in the parameters.

In an example the complete procedure has been
illustrated. Tight frequency domain error bounds
were obtained with some computational effort. It
appeared that the estimated nominal model G (g)
may be a lot closer to the true system than indi-
cated by the error bounds. This is mainly due to
the worst—case character of the analysis, the noise
is always assumed to have the worst possible value.
Current investigations show that the error bounds
can be reduced by utilizing more prior information
about the noise, more specifically the fact that the
noise is known to be uncorrelated to the input sig-
nal (in open loop) or some external reference signal




(in closed loop). Current research also focusses on
extensions to the MIMO case and extending the
curve fit algorithm of section 5.3 to the case of a
fully parametrized transfer function.
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A mixed deterministic-probabilistic approach for
quantifying uncertainty in transfer function estima-
tion
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Abstract. A procedure is presented to obtain an estimate of the transfer function
of a linear system together with an upper bound on the error, using only limited a
priori information on the data generating process. By employing a periodic input signal,
together with a non-parametric Emperical Transfer Function Estimate (ETFE) over
each period, and by averaging over a number of estimates, the statistics of the resulting
model asymptotically can be obtained from the data. The model error consists of two
parts: a probabilistic part, due to the stochastic noise disturbance on the data, and a
deterministic part, due to the bias in the estimate. The latter is explicitly bounded
with a deterministic error bound, while the former asymptotically results from an F-
distribution. For this analysis no assumptions are made on the distribution of the noise.
A mixed deterministic-probabilistic error bound is achieved, clearly distinguishing the
different sources of uncertainty.

Keywords. Identification, frequency domain, model uncertainty, robust control.

In Goodwin and Salgado (1989), Goodwin et al.
(1992) and Bayard (1992) identification procedures
are presented that provide probabilistic (soft) error
bounds.

In Helmicki et al (1990) and Gu and Khar-
gonekar (1992) the a priori information consists of
a finite number of corrupted samples of the transfer
function of the system, and a weighted H,, bound
on the measure of corruption. A model in H,, and
a hard error bound that is valid on the whole unit
circle is obtained. In Wahlberg and Ljung (1991)
and Hakvoort (1992) hard model error bounds are
constructed using an upper bound on the amplitude

1 Introduction

In the systems and control community there is a
growing interest in merging the problems of sys-
tem identification and (robust) control system de-
sign. This interest is based on the conviction that,
in many situations, models obtained from process
experiments will be used as a basis for control sys-
tem design. On the other hand, in model-based ro-
bust control design, models and model uncertainties
have to be available that are essentially provided by,
or at least validated by, measurement data from the
process.

Recently several approaches to the identification
problem have been presented, considering the iden-
tification in view of the control design. By far
the most attention has been paid to the construc-
tion of deterministic (hard) error bounds, see e.g.
Helmicki et al. (1990), Gu and Khargonekar (1992),
Wahlberg and Ljung (1991) and Hakvoort (1992).
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of the noise in the time domain. In Wahlberg and
Ljung (1991) the hard error bound on the system’s
transfer function is obtained using a least squares
FIR estimate and parameter set estimation tech-
niques, whereas in Hakvoort (1992) the bound is
obtained by directly calculating the worst-case un-
certainty from the time domain data using linear




programming. In deVries and Van den Hof (1992a)
a frequency domain estimation procedure based on
the ETFE is proposed, by which a frequency depen-
dent hard quantification of the model uncertainty
can be obtained for a prespecified nominal model.
The a priori information on the noise that is neces-
sary (a hard bound on the DFT of the noise) how-
ever will be hard to obtain in practice.

In Goodwin and Salgado (1989) and Goodwin
et al. (1992) a stochastic embedding approach is
used. The distribution of the error is assumed to
be known, up to a number of free parameters. The
free parameters of the distribution are estimated
from the data, together with a least squares esti-
mate of the system. The model error due to under-
modelling is represented as a zero mean stochastic
process. This results in a probabilistic description
of the error in the least squares estimate. In Bayard
(1992) a periodic input signal is used, and an ETFE
is made over each period of the input signal. The
average over a number of these ETFE’s provides the
final estimate, and a probabilistic describtion of the
error in this final estimate is presented. However,
it is assumed that the noise is normally distributed,
that the noise filter is known, and that the steady-
state situation is reached before experimental data
is taken.

In this paper we will use a stochastic descrip-
tion of the disturbances, based on the same and,
in the authors’ opinion, definitely sound arguments
that are given in Goodwin et al. (1992). We will
however consider the errors due to undermodelling,
as deterministic. The input signal is also consid-
ered to be deterministic, because the input signal
is known in the measurement interval. Hence, for
the influence of the noise we will use a probabilistic
description, whereas the errors due to undermod-
elling and unknown past inputs will be bounded
with deterministic bounds. This constitutes the
main deviation from existing methods: in the cur-
rent literature on identification with error bounds
either both the errors due to undermodelling and
noise are considered as being deterministic, or they
are both considered as being stochastic. As a re-
sult, the approach presented in this paper will yield
error bounds that consist of elements with a prob-
abilistic nature, and elements with a deterministic
nature. We will call this kind of error bound a
mixed deterministic-probabilistic error bound.

In this paper the ETFE is used to obtain a non-
parametric frequency domain estimate G(ei“*),
which is only defined at a finite number of frequency
points wy, and an error bound. The asymptotic dis-
tribution of this estimate is obtained through ap-
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plication of the central limit theorem, cf. Brillinger
(1981), and by mutually comparing the informa-
tion arising from different sections of the measured
input-output data. This way of extracting the sta-
tistical properties of the noise is enabled by using a
periodic input signal. Using a periodic input signal
and distinguishing different sections of the data set
can be thought of as a repetition of similar exper-
iments, which is a very appealing way to separate
structural phenomena present in the data (i.e. the
input-output system) from random effects due to
disturbances.

In comparison with previous work on hard error
bounds, the probabilistic setting used in this pa-
per has the advantage that we do need only minor
a priori information. We do not need a hard er-
ror bound on the noise in the time or frequency
domain. Actually, through the repetition of exper-
iments, a corresponding probabilistic bound is esti-
mated from the data. As opposed to Goodwin et al.
(1992), the method proposed here has the property
that the form of the distribution of the error is in-
duced by the estimation procedure itself, so that we
do not have to choose it a priori. As parameters we
have the frequency dependent variance of the noise,
which is estimated from the data, and whose esti-
mation error is taken into account. As opposed to
Bayard (1992), the noise is not assumed to be nor-
mally distributed, nor is the noise filter assumed to
be known, and the deviation from a steady-state
situation is taken into account.

For brevity, all proofs are omitted; the reader is
referred to deVries and Van den Hof (1992b).

2 Preliminaries

It is assumed that the plant, and the measurement
data that is obtained from this plant, allow a de-
scription
y(t) = Go(q)u(t) +v(t) (1)
with y(¢) the output signal, u(¢) a bounded deter-
ministic input signal, ¥(¢) an additive output noise,
q~! the delay operator, and G, the proper transfer
function of the system, being time-invariant and
exponentially stable. The transfer function can be
written in its Laurent expansion around z = oo, as
oo
Gol) = 3 gulk)2~* (2)
k=0
with g,(k) the impulse response of the plant. We
will consider scalar (single input, single output) sys-
tems. The output disturbance v(¢) is represented as

v(t) = Ho(g)e(t) (3)




where {e(t)} is a sequence of independent identi-
cally distributed random variables with zero mean
values, finite variance o2, and bounded moments of
order 2+ 6 for some § > 0, and where H, is a proper
transfer function that is strictly stable. The noise
filter H,(z) can be written in its Laurent expansion
around z = oo, as

Hy(z)=1+ i ha(k)z'k

k=)

(4)

Throughout the paper we will consider discrete
time intervals for input and output signals de-
noted by the integer intervals TV := [0, N — 1],
Ty := [N,N + N, — 1] with N and N, appro-
priate integers. We will frequently use a parti-
tioning of the time interval T with N = rN,
in r time-intervals of length N,, denoting T; :=
[(F=1)Np + Ny ydlNo + N, = 1), 8 = 1,..,7.

With the subscript ¢ we will indicate a variable that
originates from the i-th time interval T}, e.g.

zi(t) = 2(t+ (i — 1)N, + N,) where t € T (5)
! T No—1
X"(e ) = VN, < (6)

For a signal z(t), defined on 7", we will denote the
N-point Discrete Fourier Transform (DFT) by

z(t)e 7"

2wk il 2mk
X(eN)= VN S z(t)e? Nt for keTV
fe=

(7)
Some specific sets of frequencies that arise in the
DFT are denoted as

Wi = Awii= % ok 20, L0y N—1} (8)
N, = {wr € Qn, | |Ui(e*)] # 0} (9)

Finally we will denote

Sax, lu(t)] =2
Throughout this paper we will adopt a number of
additional assumptions on the system and the gen-
erated data.,

Assumption 2.1 We have as a priort information
that

1. there exists a finite and known u#” € IR, such
that |u(t)| < @” fort <0

1. there ezist finite and known M and p, with
M,p € R, p > 1, such that |g,(k)| < Mp7*,
fork e Z,
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The a priori information on M and p need not be
very tight in first instance, as it can be improved
using the measurement data. This will be discussed
later on. The a priori information on @” is given by
the actuator constraints.

3 The DFT of the Noise

In this section we will present a theorem dealing
with the properties of the DFT of the output dis-
turbance. This theorem is also given in Brillinger
(1981), see Brillinger (1981) theorem 4.4.1 and exer-
cise 4.8.23, using slightly different conditions. This
theorem will be essential in the sequel of this paper.

Theorem 3.1 Consider v;(t) as defined in (3),
(4), (5) and let Vi(e’*) be the N,-point DFT of
v;(t) with wy € Qy,. Let

Re{Vi(e™)} ]
Im{Vi{er*)}
.| RefVi(e))
* = | Im{Vi(e)}
Re{Vin(e)}
| Im{V (™)} |

Then, for W, Wy € QNO: Wi :]é Wy Y mei=rd
and i # m, there holds

Va, € AsN(0,A)

where A 1s a diagonal matriz with diagonal elements
given by

var(Re{Vi(e*)}] = ZIH(#)  widOyn
var[Im{Iﬁ(e*‘.“’*)}] = var[Re{‘W(e’“‘*)}] wp#0, 7
var[Re{Vi(e’**)}] = o7 | H,(e’*)|? wrp=0,7
var[Im{V;(e?*)}] = 0 wp=0,m

The theorem states that the DFT of the noise is
asymptotically normally distributed, with real and
imaginary parts that are uncorrelated, and have
equal variance for wy # 0, 7. Furthermore, asymp-
totically the DFT’s of the noise for different fre-
quencies are uncorrelated, and the DFT’s of the
noise over different intervals are uncorrelated. Note
that uncorrelated jointly normally distributed ran-
dom variables are independent,

4 Error Bound for Transfer Func-
tion Estimate

4.1 Introduction

In this section we will construct a nonparametric
estimate G of the system’s transfer function G,, by




averaging over a set of ETFE’s. This procedure is
similar to Bartlett’s procedure of periodogram av-
eraging, see Brillinger (1981), and is also proposed
by Ljung (1985). Note that the ETFE is only de-

fined at a finite number of frequency points. We
will establish an error bound o(wy) such that
[Go(e?*) — G(e?)] < afwe) (10)

for a finite set of frequencies that will be specified
later on. As mentioned in Sect. 1, we will use a
probabilistic description of the noise, whereas both
the error due to undermodelling and the input sig-
nal are considered as being deterministic. This re-
sults in an upper bound on the error which has
both soft (probabilistic) and hard (deterministic)
components, and consequently a statement as (10)
can only be made within a prespecified probability.
In order to arrive at an error bound (10), we will
pursue the following strategy. Experimental data
is available over a time set of length N. This time
set is composed of a first interval of length N,, not
used for identification, and consecutively r intervals
of length N,. We consider an input signal that is
periodic with period N,, such that in each of the
r intervals the same input signal is applied. This
repetition of experiments offers the opportunity to
mutually compare the information arising from dif-
ferent intervals of the data, and consequently to
formulate the statistics of the estimated transfer
function. In other words: the noise contribution on
the data is also identified on the basis of the ex-
periments. As a result an error bound (10) can be
specified without heavily relying on a priori knowl-
edge of the noise.
Because of the periodicity of the input signal u it
follows that

N, = Uy, for all

G e )

4.2 A Transfer Function Estimate

Define the following estimates for wy. € Q}

Gi(ej"“’k) = ;_’:EZ‘J,::)) for ‘52132:-":?(11)
é(ejwi) . %;é.‘(e‘i”*) (12)

Note that we do not average over different fre-

uencies, we only average over different estimates
G;(e?*) of G,(e“*) at the same frequency wy. Em-
ploying the system’s equations, similar as in deVries
and Van den Hof (1992a), it follows that

Go(e™*)Ui(e?*) + Rie?%) + Vi(e?*)
(13)

Hfeier) =
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with R;(e?“*) a component which is due to unknown
past inputs, i.e. input samples outside the time
interval that is considered. In deVries and Van den
Hof (1992a) it is shown that for wi € Qy, this term
is bounded by

@ + 4 Mp(1—p=N
vN.  (p—1)?
(14)

if u(t) is periodic with period N, for t € TN*Ns,

and

%) —(i-1)No=N

|Bi(e?*)| <

@ +a Mp(l— p~™)
v N, (P a7 1)2

if u(t) is not periodic. Using (11) and (13) we can

write

| Ri(e™)] < (15)

Gi(e9%) = G,(e*) + Si(ei) + -;%% (16)
with .
R.-(e""*)

S“(gj“”‘) = U-(e-’f"’* (17)
the error due to the unknown past inputs for the
i-th estimate G;. Because S; only depends on the
input and the system, it is a deterministic term.
This yields the following result.

Proposition 4.1 Consider the estimates G;(e**),

1=1,...,7. For all w, € O}, there holds

a. B[Gi(e™*)] = Go(e™*) + Si(e?™*) , where
Si(e?*) is given by (17) and is 6atmded using
(14) or (15)

b. var[é’.‘( k)] = %ﬁ—;&n

c. Gi(e’*) asymptotically in N, is normally dis-
tributed

The above proposition states that the Emperical
Transfer Function Estimate (ETFE) is asymptoti-
cally normally distributed, and asymptotically un-
biased. However, the variance does not decrease
with N, in general, it is just the noise to signal ra-
tio in the frequency domain. The averaging (12)
is introduced in order to obtain an estimate with
decreasing variance. However, S;(e’**) is unknown
and varies with i, even if U;(e’**) is independent
of i for i = 1,...,r. Furthermore, var[Vi(e?*)] is
unknown, and var[G (e?*)] varies w:th i if Uy(e“*)
varies with i. Moreover, if the input is not periodic,
the uncertainty due to the unknown past inputs
Si(e’*) typically will dominate the error bound,
see (15). Hence in general the estimate G(e7**) will




be heavily biased, and it is not possible to obtain a
satisfactory estimate of its variance.

In order to improve upon the above situation,
we will use a periodic input signal. We will split
up the analysis into two parts: first we will derive
the properties of an intermediate variable, and next
we will analyse the properties of the estimate (12).
Define the intermediate variable G;(e*) as

Gi(e ) = Gi(e™) —5(™)  (18)
2 Ga(ei“~)+§,'l'_gzjw:; (19)

Proposition 4.2 Consider the iniermediate vari-
ables Gi(e7*), wy € Q.. Let u(t) be a periodic in-
put signal with period N, for all t € TV*N+, Then
asymptotically in N, the random variables G;(e?**)
and Gi(e’**) are independent and identically dis-
tributed for all 1,6 =1,...,7, 1 # L.

We denote the averaged intermediate variable, av-
eraged over the different time intervals, as
— [t s :
G(e?F) = ;ZG;(&’“’*} for wp€Qy, (20)
g==1
This averaged intermediate is going to be used in
determining an error bound as meant in (10)

|Ga(e*) — G(e¥)] (21)
< |Go(e7%) — G(e7%)| + |G(e7%) — G(eir)]
= |Go(e?*) — G(e7*)| + | S(e?*)| (22)
with
eJWk — ES erk

Considering the inequality (22), the first term on
the right hand side is the variance contribution to
the error due to the noise disturbance. The second
term on the right hand side of (22) is a bias con-
tribution, due to unknown past inputs. This deter-
ministic ferm can be bounded by using (14). For a
periodic input signal this term can be made small
by choosing N,. A bound on the first (stochastic)
term has to be determined on the basis of its dis-
tribution. For the distribution of G(e’*) we have
the following results.

Proposition 4.3 Consider the situation as in
Proposition 4.2. Then for all wy € Qf, there holds

a. BIG(e™)] = Gy(ei)

b. Asymptotically in N,
var[G(e*)] = ,}:var{@'i(ej”*)
independent of i

T

var|V],-!ej“""!|
b [Ui(e™*)[*
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c. /1 é(e-"“’*) asymplotically in N is normally
distributed

As a result the asymptotic distribution of the esti-
mate G(e’“*) is specified, although its variance still
remains to be unknown. In the next steps we will
quantify this variance on the basis of measurement

data. To this end we use the following two esti-
mates
Wy e sy Dbl |G (&) — Gy(e?%)[2
O'r(G(E k)) 1"(1‘ = 1) (23)
r = jwkY = e
52(G(ein)) = Zem IG(E) — G

r(r - l)
Note that the first one of these estimates indeed

can be calculated from data. However the second
one is not available.

Proposition 4.4 Consider the situation as in
Proposition 4.2. Then the estimate 62(G(e’**)) is a
consistent estimate of var[é[ej“"")]. Asymptotically
in N, the variance of the estimate &%(G(e*)) de-

Although this estimate is not available from data,
we can bound the difference between the two esti-
mates (23), (24).

Lemma 4.5 Consider the estimates a’z(G(e-""*)]
&2(G(e™*)) as defined in (23), (24). Let u(t) be
a periodic input signal with period N, for all t €

TN+N: | Then
62(G(e™) = (G )] < elws)  (25)
with
_ S 2Ai(e ) [|B(e)| + [ Bi(e )
e(wg) =
r(r—1)
(26)
and
|Ai(e7%)| = IG( jor) — Gi(err)|
lB‘(ejuk)] = L |S' ‘”“'* | -+ ____is {8’”")'
| S;(e7x)| < a' + %@ Mp(1— p~Ne) p~(i-1)No=N,s

Ui(e”™*)]  (p—1)° VN,
Clearly the difference between &%(G(e’“*)) and
5%(G(e*)) is due to the S;(e?*), i.e. the influence
of the unknown past input signals. The difference is
small if the S;(e?“*) are small, which for a periodic
input signal can be obtained by choosing N,.
Using only the unknown intermediate trans-
fer function G(e’**), and its estimated variance




&2(G(e’“*)), an error bound with respect to the sys-
tem’s transfer function can be calculated asymptot-
ically in N,. Due to the fact that the intermediate
variables é.-(e-f““") are independent and identically
distributed, see Proposition 4.2, this results in an
F distribution for the error, as formulated in the
following lemma.

Lemma 4.6 Consider the intermediate transfer
function G(e**), (20), (19), and the estimate of
its variance (24). Let the input signal be periodic
with period N, fort € TN*N:, and let r > 1. Then
as N, — o0

IGo(eJ"‘"*)_— G(e™*)[? _}{F(Z,Z(r —1)) w#0,7
&E(G(e’“*}) F(l,r—1) wr=0,7

for all wp € {w € O}, | 62(G(e)) > 0}, where
F(n,d) denotes the F distribution with n degrees of
freedom in the numerator and d degrees of freedom
in the denominator.

Note that no assumptions are made on the distri-
bution of the noise, and that the uncertainty in the
estimated variance is taken into account by the F-
distribution.

Combining Lemma’s 4.5 and 4.6 and (22) leads
to an error bound that can be calculated on the
basis of data, in terms of a confidence interval. In
formulating this confidence interval, we will adopt
the following notation

F.(m,n)={P[z < o], z € F(m,n)}

which means that F,(m,n) is the probability that
z € F(m,n) is smaller than a.

Theorem 4.7 Consider the estimated transfer
function G(e*), (12), (11), and the estimate of its
variance (23). Let the input signal be periodic with
period N, fort € TN+N+, and let r > 1. Asymptot-
ically in N, there holds

|Go(e?*) = G(e7¥)] < yalwi) + [S(e?)|

{ Fa(2,2r —2) wi #0,7

7 g
Zr F.(l,r—1) we=0,7

for all w, € {w € QY | 63(G(e*)) > e(w)}, where

Yalwk) = Va (82(G(e) + elwn))*
1 #F+a Mp(l—pN) s
VN, U™ (p—1)°

and e(wy) s given by (26).

|S(e?x)| <

The deterministic error terms are €(wy) and S(e’“*),
where €(wy) is a function of the S;(e’“*). These
terms are due to the unknown past inputs, and
typically will be small in comparison with the er-
ror due to the noise /o &,(é(ej‘“*)). This is due
to the fact that S[ej”*) and S,'(e-f‘“*) have exponen-
tial convergence to zero with N,. For the error due
to the noise we have that, asymptotically in N,,
the variance decays as 1/r and the variance of the
estimated variance decays as 1/(r — 1).

Note that the above estimate is only defined at
the finite number of frequency points Q3 . Theo-
rem 4.7 can very well be used to provide an estimate
of the a priori information needed by e.g. Helmicki
et al. (1990) and Gu and Khargonekar (1992), to
obtain a model in H., and a hard error bound that
is valid on the whole unit circle. Note however that
the error bound formulated in theorem 4.7 is a soft
one, while the bound needed by e.g. Helmicki et al.
(1990) and Gu and Khargonekar (1992) is a hard
one.

5 Additional Results

Using a similar procedure as in Sect. 4, together
with Theorem 3.1, we have obtained a number of
additional results:

e By estimating a Finite Impulse Response
(FIR) model on each G; a set of FIR mod-
els can be obtained. Averaging over this set
results in a FIR model with an error bound on
the estimated parameters. Hence, an estimate
with an error bound of the impulse response of
the system is obtained, which can be used to
improve the prior information M and p.

e An error bound for the transfer function of an
estimated FIR model can be obtained. This
results in an error bound that is valid on the
whole unit circle, whereas the error bound of
Theorem 4.7 is only defined at a finite number
of frequency points.

e Estimates with an error bound of the response
of the system to arbitrary input signals can be
obtained. This is useful for validation, simula-
tion and fault detection purposes.

6 Example

To illustrate our results a simulation was made of
a fifth order system

No(z)
D,(z)

Gatz) =




ragnitude

=

=

il

Fig. 1: Magnitude of the DFT over one period of
the input signal, |U;(e?“%)|.

L |

frequency [rad/s]

N,(z) = 0.7027 — 0.8926z"" + 0.2427*
+0.524327% — 0.90232"* + 0.4z7°
Dy(z) = 1—2.474127" +2.891327

—1.9813z7% + 0.8337z"" — 0.18132°

whose impulse response g,(k) satisfies a bound
given by M, = 2 and p, = 1.23. There was 10 per-
cent (in amplitude) uniformly distributed colored
noise (highpass filtered white noise) on the output.

As a priori information on the impulse response
we choose M = 3 and p = 1.2. A periodic input
signal was applied to the system. The input sig-
nal was chosen to obey @* = 2 and % = 1. We used
1074 points with N = 1024, N, = 128 and N, = 50.
The magnitude of the DFT of the input signal over
one period, |U;(e’*)|, is given in Fig. 1. Note that
the frequency points where |U;(e’**)| > 0 are not
equidistant. The magnitude and frequency grid of
the input express that we are especially interested
in the behaviour of the system around w = 0.88
rad/s, and that we do not expect the system be-
haviour to change rapidly with frequency for the
higher frequencies.

In Fig. 2 a Nyquist plot of the estimate G(e7“*) of
Theorem 4.7 is given, together with the estimated
error bound and the true system. The probabil-
ity level for the error bound is 99 %. Note that a
very good estimate is obtained for those frequencies
where |U;(e?“*)|, the magnitude of the DFT of the
input signal, was chosen to be large. Note also that
the error bound is tight, i.e. the actual error can
be close to the upper bound.

7 Conclusions

In this paper a procedure is presented to obtain
an estimate, together with an error bound, of the
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Nyquist plot with Uncertainty Bounds

Fig. 2: Estimate G(e’*) with error bound, and
true system G,(e’*) for wy € Q% -

transfer function of a system, using only minor
a priori information. The basis of our results is
the derivation of the asymptotic distribution of a
Discrete Fourier Transform (DFT) of a filtered se-
quence of independent random variables, the seper-
ation of the error in a deterministic and a proba-
bilistic part, and the use of a periodic input signal.

By employing a periodic input signal a repeti-
tion of experiments is obtained. This repetition of-
fers the possibility to mutually compare the infor-
mation arising from different intervals of the data,
and consequently to formulate the statistics of the
estimated iransfer function. More specifically, a
non-paramefric Emperical Transfer Function Esti-
mate (ETFE) is made over each period of the in-
put signal, Due to the periodicity of the input sig-
nal these estimates are approximately independent
and identically distributed. Averaging over the esti-
mates, which provides the final estimate of the sys-
tem, now results in a fast decrease of the variance
of the final estimate with the number of averages.
Moreover, the final estimate is almost unbiased and
its variance can be estimated consistently. The er-
ror in this final estimate can be seperated into two
parts: a probabilistic part, due to the noise distur-
bance on the data, and a deterministic part, due
to the bias in the estimate. The latter is explicitly
bounded with a deterministic error bound. The for-
mer asymptotically has an F-distribution, so that
a confidence interval can be specified. This results
in a mixed deterministic-probabilistic error bound,
which clearly distinguishes the different sources of
uncertainty. No assumptions are made on the dis-
tribution of the noise, and the uncertainty in the
estimated variance is taken into account by the F-
distribution.
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Abstract.

The topic of this paper is the synthesis of a high performance controller

for a plant with unknown dynamics by means of approximate identification and model-

based control design.

For this purpose, identification and control design have to be

treated together as the joint problem of deriving a nominal model that gives rise to a
compensator which achieves a high performance for the plant under consideration. Using
a fairly general measure of performance we establish a link between the performance
designed for the nominal model and the performance actually achieved for the plant.
Hereupon we propose an iterative scheme of repeated identification and control design,
that will be illustrated with a simulation example.

Keywords.

1 Introduction

Recently it has been motivated that the problem of
designing a high performance control system for a
plant with unknown dynamicics through separate
stages of (approximate) identification and model
based control design requires iterative schemes to
solve the problem, see e.g. Zang et al(1991),
Schrama (1992a, 1992b), Lee et al.(1992). The un-
derlying idea is that there actually is a joint prob-
lem of finding an appropriate model P of the plant
P, and a controller Cp based on P, such that C'p
achieves a high performance for the modelled plant
P and a similar performance for the nominal model
P. The former is the true control objective; the lat-
ter is needed in order that we are confident about
the compensator Cp. Simultaneous high perfor-
mances are accomplished, if the feedback system
composed of the nominal model P and its own
high performance compensator Cp approximately

¥To appear in Proc. NSF/AFOSR Sponsored Workshop
on The Modelling of Uncertainly in Conirol Systems, Uni-
versity of California, Santa Barbara, CA, June 18-20, 1992.
Springer Verlag,
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Control-relevant identification; closed-loop identification; robust control.

describes the feedback system containing the plant
P and the same compensator Cs. The quality of
each candidate nominal model depends on its own
compensator and vice versa. Hence the problem of
designing a high performance compensator for an
imprecisely known plant boils down to a joint prob-
lem of approximate identification and model-based
control design. Solving this joint problem through
separate stages of identification and control design
can be done, only if these procedures are embed-
ded in an iterative scheme. We elaborate an itera-
tive scheme, in which each identification is based on
new data collected while the plant is controlled by
the latest compensator. Each new nominal model
is used to design an improved compensator, which
replaces the old compensator.

A few iterative schemes proposed in literature have
been based on the prediction error identification
method, together with LQG/LTR control design
(Bitmead et al., 1990) and with LQG control design
(Hakvoort, 1990; Zang et al., 1991; Hakvoort ef al.,
1992). Alternatively, in Lin and Skelton (1990) the
identification and control design are based on co-
variance data. In Lee et al(1992) the IMC-design




method is employed, and the identification step is
replaced by a model reduction based on full plant
knowledge. Alternatively,in Rivera (1991) an itera-
tion is used to build prefilters for a control-relevant
prediction error identification from one open-loop
dataset.

Our iterative scheme is composed of a robust con-
trol design method and a frequency domain iden-
tification technique that are conceived in terms of
coprime factorizations. We will discuss the itera-
tive scheme, and show an extensive simulation ex-
ample. For more details on the approach presented,
the reader is referred to Schrama (1992a).

2 A Link Between Identification
and Control Design

We adopt the following control design paradigm
from Bongers and Bosgra (1990) and McFarlane
and Glover (1988). The feedback configuration of
interest is the interconnection H(P, C), which is de-
picted in Fig. 1. The transfer matrix T(P,C) de-
fined as

P(I+CP'C P(I+CP)

a+cpic  g+epr | W

T(B,C) =
maps col(rz,r1) into col(g,%). This transfer ma-
trix is called the nominal feedback matriz, because
it embodies all feedback properties like disturbance
and noise attenuation, sensitivity, stability and ro-
bustness margins. The model-based controller Cp

is derived from the nominal model P according to
|7 (P, Cf)||oo (2)

with @ € R a scalar weight. The resulting con-
troller is optimally robust against stable pertur-
bations of the normalized right coprime factors of
aP , see Bongers and Bosgra (1990) and Vidyasagar
(1985) for details. At the same time this controller
Cp pursues some traditional control objectives like
a small sensitivity at the lower frequencies and a
small complementary sensitivity at the higher fre-
quencies. C; opfimizes robustness for a nominal
performance level associated with . The resulting
designed feedback system has its bandwidth close
to the cross-over frequency of aP’ (McFarlane and
Glover, 1988), and thus a large o corresponds to a
high nominal performance.

Conformably to (2) the nominal performance is

high, if ||T'(aP, Cp/a)||s is small. We examine the
performance norm of the actual plant P by the tri-
angular inequalities:

I7(@P, Cp/a)| 1T (P, Cp/a) - T(aP, Cpfa)]| <

Cp = arg mgn
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Fig. 1: Feedback configuration H (P, C) for control
design

< 17 (P, Cp/a)|l <

< IT(aP, Cp/a)l| + [T(aP, Cp/a) - T(aP,Cp/a)]|

(3)
The middle term reflects the performance of the
controlled plant. The nominal performance norm
|7 (aP,Cp/a)|l is minimized by the design of (2);
and ||T(aP,Cp/a) — T(aP,Cp/a)| is the *worst-
case’ performance degradation due to the fact that
Cp has been designed for the nominal model P
rather than for the plant P. With the above in-
equalifies we can make more precise the implica-
tions of the high performance control design prob-
lem. The point is to find a nominal model P with
an induced controller C'5 such that

IT(aP,Cp/a)| is small (4)
IT(aP,Cp/a) - T(aP,Cp/a)|| < ||T(aP,Cp/a)|.
(5)

The requirement of (4) pertains to a high nominal
performance. The strong inequality of (5) embod-
ies the demand of a robust performance: if (5) is
satisfied, then there is only a relatively small dif-
ference between the feedback properties of the de-
signed and actual feedback systems T/(P, C'p) and
T(P,Cp). The two requirements (4) and (5) can not
simply be separated. Note that for a given nomi-
nal model P, (4) refers to a control design problem,
and for a given controller C, (5) refers to a (closed
loop) approximate identification problem. This will
be clarified later on.

As the control design of (2) pursues a small nominal
performance norm ||T'(a P, Cp/a)||«, the remaining
task for the approximate identification would be to
find such a nominal model P that the performance
degradation

IT(aP,Cp/a) — T(aP,Cp/a)||oo

is relatively small. This approximate identification
problem cannot be solved straightforwardly, be-
cause the compensator Cp is not available prior to
the identification. This explains once more that the
problems of approximate identification and model-
based control design have to be treated as a joint
problem.




Note that the bounds of (3) are used to express the
identification objective in terms of the control ob-
jective of (2). The same approach applies to any
other control design method that optimizes a norm
or a distance function of the nominal feedback ma-
trix T(P,Cp). As explained in Schrama (1992a)
these methods include LQ control design and the
H_.-optimization of a weighted sensitivity.

As the choice of a refers to a required nominal per-
formance level, we will not fix its value a priori,
c.g. aiming at a very high but unachievable per-
formance, but we will gradually increase a during
the iteration process. A motivation for this will be
given later on.

We propose the following iterative scheme to tackle
the joint problem of approximate identification and
model-based control design.

Step 1. Given ﬁ'.'_,l, Ci_1, &g

(a) Obtain data from the plant, while it operates
under feedback by C;_;. The nominal model P:
is identified with an identification scheme that
asymptotically obtaines P; = arg minpep )

I7(@i-1P, Cict/aim1) = T(@i-1 P, Ciz1/ 1)z

(6)
where P(0) is the set of parameterized candi-
date models.

Determine o; > a;_1 and design a new con-
troller C; according to

(b)

C; = argmin IT(c: P, Clai)lloo-  (7)

such that the performance degradation
HT(a.-P, C,'/Ot';) = T(Q;P," C{/O’,‘)”w is kept

small.

Perform a robust stability test to wverify
whether the plant P will be stabilized by the
new controller C;, prior to implementing it.

(c)

Note that we have replaced the infinity-norm with
a 2norm in (6). This is done since there ex-
ists no identification technique yet that can han-
dle an H,, (or L) approximation. The rationale
for this replacement is that the L, approximation
yields a reasonably good nominal model in an L,
sense, provided that the error-term is sufficiently
smooth. This observation is backed up by the re-
sult in Caines and M. Baykal-Giirsoy (1989) on the
L., consistency of L, estimators.

Since the control design scheme does not take ac-
count of model uncertainties directly, the design
weight is used to tune the design. We intend to
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gradually increase the design weight during the iter-
ation in order to keep the performance degradation
small at each iteration step. In this way we guaran-
tee that in the control design step, there remains a
good resemblance between the feedback properties
of H(P;,C;) and H(P,C;).

The different steps in the iterative scheme will be
described in more detail in the next sections.

3 Control-Relevant Identification

We consider the feedback configuration of Fig. 2,
in which the plant P is stabilized by the controller
Ci—1. The feedback system is driven by the exoge-
nous inputs r; and r; and the additive output noise
v. The noise v is uncorrelated with r; and r, and it
is modelled as v= P,,w, where w is a white noise.
The problem of concern is to identify a nominal
model P; from measurements of u and y such that
the asymptotic identificationm criterion reflects

P; = arg ﬁ?g&) (P, Ciz1) = T(P, Cizt)|l2-

(8)

Only for notational simplicity we use a;_; = 1. We
recall from the previous sections that we actually
use system identification to find an approximate de-
scription of the feedback properties of H(P,C;_y).
Therefore we concentrate on the so-called “asymp-
totic bias distribution” due to undermodelling.
Since P ¢ P(0) the minimization in (8) from u and
y combines all problems that are encountered in ap-
proximate identification and in closed-loop identifi-
cation. The desired P; cannot be derived by a direct
application of some standard identification method
to v and y. In order to obviate this problem we
first represent the plant P by a right coprime fac-
torization (definitions are provided in Vidyasagar
(1985)).

The plant P is known to be stabilized by the lat-
est controller C;_;. As P belongs to the set of
all systems that are stabilized by C;_,, it can be
represented by a coprime factorization that is dual
to the (Youla-) parameterization of all stabilizing
compensators (Vidyasagar, 1985). This dual pa-
rameterization can be extended fo incorporate the




Fig. 3: Coprime factor representation of P and

P,

“noise filter” Py, (Schrama et al., 1992; Schrama,
1992a). A similar parameterization has been used
by Hansen (1989) for closed-loop experiment de-
sign.

This parametrization of P is sketched in Fig. 2,
with Fy an auxiliary model that is stabilized by
Ciy; Py = No(D,) 2, and Cig, = N(DJ7 jare
right coprime factorizations, and R, S any stable
transfer functions. For notational convenience we

define

N=N,+D,R; D=D,~N,R, (9)
so that P= ND™!, which is the dual of the Youla

parameterization. The following result can now be
employed.

Proposition 3.1 (Schrama, 1992a; Schrama and
Van den Hof, 1992). Consider the notation and
parametrization as presented above. Then

o S

r = (Do-{-C,'__lNa)_l{U-l-C,'_]y) (Il)
= (Do“I-C,‘_]ND)—](T';+C|'-1?‘2) (12)

(b)

and z is uncorrelated with w provided that w
is uncorrelated with ry,rs;

(c)

T(P,Cisy) = [ # ] (DACAN,) " [Ciy T].

(13)

The proposition shows that the signal « can be re-
constructed from the measured signals u and y, and
that = is "designed” through appropriate choice
of ry and/or ry. Since z is uncorrelated with w,
(10) shows that identification of the coprime fac-
tors (N, D) actually is an open loop identification
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problem. This creates the possibility of approxi-
mate identification of P = ND~! with an asymp-
totic identification criterion that is not influenced

by w.

Application of an output error identification algo-
rithm to (10) with a prefilter L, shows an asymp-
totic identification criterion (for SISO systems):

1N Go) = B2 + D) = D) @ (lE(G) Pl
¥ (14)
Through the choice of a prefilter L, satisfying

1+ |Cica(jw)?
(prl(w) = |C!'—1 U"-"’)Iz"pr:(w)

|L(jw)[* = (15)

the expression (14) can be shown to be equal to
IT(P,Cir) — T(P,Cion)|I2.

In the example shown later on, we will employ (10)
to construct a non-parametric estimate of the fre-
quency response of N(jw), D(jw); this estimate is
substituted for P in (8), in order to construct a low
order P; through nonlinear optimization. This lat-
ter minimization problem is all but trivial, because
the nominal model P; appears in T'(P;,Ci_;) in a
multiple and non-linear fashion. The problem is at-
tacked by the Newton-Raphson method in Schrama
(1992a). Due to its highly non-linear character the
utility of this particular optimization hinges on a
good initial estmate. In Schrama (1992a) such an
estimate is obtained by parametrizing P; in (8) in
terms of its coprime factors.

Finally we have to verify whether the estimated
model P: induces a performance degradation

||T(ﬂi-t P, C‘:‘—l/ﬂ:‘q)—T(ﬂi—: Pi, Ci—t/ﬂi—l)”oo

that is sufficiently small with respect to the nominal
performance. If this is not true, we might have to
increase the order of the model. The evaluation of
this degradation is done by replacing P by its esti-
mated frequency response, and evaluating the norm
for the available frequency response data points.

4 Enhancement of the Controller

We have a system H[ﬁ.-, Ci—1) that provides a good
description of H(P,C;_,) in view of the weighted
performance norm. We may expect that this holds
also if C;_; is slightly changed. Hence we design
an improved controller C; for P; in such a way that
C; does not differ too much from the old controller
Ci—1. The change of the compensator will be mod-
erate if the performance requirements are increased
moderately. Hence we may choose a; a bit larger
than a;_,. We outline how, in essence, this selection




of a; is guided by a frequency response estimate of
P (details can be found in Schrama (1992a)). We
build this estimate from the frequency response es-
timates of V and D used in the previous section.
Then we evaluate the ratio of maximum singular
values

o{T (P, Ci_y [e:)(jw)} ,a{T (iPs, Cia/ai)(jw)}
o{T(e; P, C; /) (jw)} &{T(o;ﬁ-,C;/a;)(jw)}

and a similar ratio for the upper bound of (3). We
choose «; such that these ratios are bounded for
every frequency response sample of P. Thereby C;
changes H(P, C;_,) similarly to H(P;,C;_;). In the
example shown later on, these bounds are chosen
to be 0.7 — 1.3.

As the choice of a; is based on a “prediction” of
the frequency response of T(P,C;), the feedback
systems H(P;, C;) and H(P,C;) are expected to be
similar in an L. -sense. However, stability still has
to be ascertained.

5 Robustness Analysis

Before the enhanced compensator C; is actually ap-
plied to the plant P, we have to ascertain the stabil-
ity of the new control system H(P, C;) . This stabil-
ity test is necessary anyway, because the optimiza-
tion of robustness against stable coprime factor per-
turbations is an unconstrained optimization, with-
oul the guarantee of obtaining sufficient robust-
ness. We employ the following result from Schrama
et al.(1992).

Proposition 5.1 Let P; = ND-' be stabilized by
C; = Y™'X, the latter being a normalized coprime
factorization, such that YD + XN = I. Denote
Pr» = NaD3' with Nn» = N+ AN, Da = D +
AD. Then H(Pa,C;) is stable for all Py such that

sl

The result is used as t:ollows. Knowing 15,- and C;,
we can construct N, D. For N, Da we substitue
the estimated frequency response of the coprime
factors (N, D) of P. If there exists a stable filter @)
N — NaQ
= DAQ
H(P,C;) can be concluded. In practice the 2-norm
of the expression is minimized over stable @, and

the inequality is verified for the oo-norm (Schrama,
1992a; Schrama et al., 1992).

<l

such that < 1, the stability of
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6 Simulation Study

We apply the iterative approach to a simulation ex-
ample. The data consist of 100 frequency response
samples that are uniformly distributed over a loga-
rithmic interval ranging from 0.1 to 100 rad/s, We
use exact frequency response data in order to stress
the effects due to undermodelling. We merely list
the results of this iterative high performance con-
trol design procedure, which is investigated in much
more detail in Schrama (1992a).

The continuous-time plant P under investigation
has a transfer function n(s)/d(s) with

n(s) = 30s°+3020s°+30538s"+40373s + 74041+
419725+ 12467
d(s) = s%426.023s"4321.70s5+2635.95°+104125" +

43091.45>+ 1103252+ 306.815+986.86.

In order to simulate a real application we pretend
that the plant P is imprecisely known. Accordingly
we do not use any knowledge of the plant’s num-
ber of poles or (unstable) zeros; we just know that
P is open-loop stable. Hence we cannot tell a pri-
ori how complex a compensator must be in order
to obtain some performance. Conversely we do not
know what performance is achievable with a com-
pensator of constrained complexity. The iteration
commences with an open-loop identification of F;.
Fig. 4 shows the Bode log-magnitude plots of P
(=) and P; (--). The nominal model P, provides
an accurate description of the low frequency behav-
ior of P. The mismatch at the higher frequencies
hardly contributes to the identification criterion of
(8) with Cy=0, because this criterion measures an
additive error on a linear scale. From P; we design
the compensator C; as in (7) with o; =0.113. We
apply C; to P, we obtain new data, and we subse-
quently derive several nominal models and compen-
sators. The iteration ends with the nominal model

Py(s)=(s)/d(s), where

A(s) = 8.8-107%s°—4.77-10"25%+34.75° + 249457+
16635+ 6028
d(s) = s°+13.35"+156.353+712.452+131.35+369.4,

=n.(s)/d.(s), where

with the compensator ('s(s)

n.(s) = 71.407s* 4+ 2182.1s° 4 287185 + 238545 +
+68457
d.(s) = s*+129.165% + 4829.05% + 3344.1s + 11571,

and with as = 20. The evolution of the nominal
models and of the controllers are illustrated respec-
tively in Fig. 4 and Fig. 5. The latter figure dis-
plays the gradual increase of control action. The
former figure reveals that during the iteration the
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Fig. 5: Log-magnitudes of the designed controllers.

accuracy of the nominal model is improved in the
high frequency range at the expense of a large mis-
match for the lower frequencies. Despite the large
open-loop mismatch between P and P; (see again
Fig. 4), the nominal model Ps is suited for high
performance control design. This is illustrated in
Fig. 6, which shows the log-magnitudes of T( P, Cs)
and of T(Ps, Cs). Considering the logarithmic scale
we may conclude that P and P; have very similar
high performances under feedback by Cs. Hence
the couple Ps5,Cs is a solution to the joint prob-
lem of approximate identification and model-based
control design.

Note that the model error that appears in the low
frequency range is due to the fact that we have
chosen a model order that is too small to capture
all system dynamics. If one additionally to the

Fig. 6: Log-magnitudes of T(P,Cs) (—) and
T(Ps, Cs) (--)-
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Fig. 7: Logarithm of the performance norms.
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Fig. 8: Sensitivities achieved for the plant P.

high performance control requirements, would re-
quire the estimated model to have a similar open
loop response as the plant, one has to "pay” for
that in terms of a higher model order.

We evaluate the performance norms for all pairs of
nominal models and compensators in regard of as.
That is, we determine for instance ||T'(asP, C;/as)||
as the maximum singular value over all frequency
reponse samples. These performance norms have
been plotted in Fig. 7. The indices at the horizontal
axis indicate the iteration step. The performance
norms corresponding to T(F;, C;) and T(P,C;) are
marked respectively by ’o’ and 'x’. The upper
bound of (3), indicated by (--), and the analogous
lower bound (--) disclose that the approximation
of T(P, C;) by T(P;, C;) is relatively accurate. This
is a direct consequence of the frequency reponse
based controller enhancement of Section 4. The fig-
ure also displays that the “worst-case” performance
(--) is improved in each step of the iteration. Fi-
nally Fig. 8 shows the evolution of the sensitivity
that is achieved for the plant P.

We complete the evaluation by using the method
of (7) and a5 to design also the compensator Cp of
order 4 directly from the plant P. In regard of as
this Cp is the optimal compensator of order 4 that
can be designed for and from the plant P. In Fig. 5
we see that the frequency responses of Cp and Cs
are indiscernible, which produces indiscernible sen-
sitivities for P (see Fig. 8). Thus the iteratively de-
signed high performance compensator Cs is almost
identical with the optimal plant-based compensator
Cp, even though no exact knowledge of P nor any
information of Cp has been used to achieve Cs.

Lastly we elucidate the need of an iteration to
solve the joint problem of approximate identifi-
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cation and model-based control design. The left
upper term of T(»P, Cg,)—T(Ps,Cs), which equals
PC5(I4+PCs)~'—PsCs(I+PsCs)™!, can be rewritten
to (I+PCs)*(P— Ps)Cs(I+ PsCs)~". Similar ex-
pressions can be derived for the other elements of
T(P,Cs) and T(Ps,Cs). Hence Ps,Cs make a couple
that produces a small mismatch

WL(P,Cs) (P—Bs) Wr(Ps, Cs),

where Wy, and Wpg are weighting functions de-
pending on P, Ps and Cs. It is tempting to sug-
gest that Ps could have been obtained directly
from a weighted open-loop identification. However,
Wi(P,Cs) and H’R(p‘r,, Cs) depend on the outcome
of the iteration, and thus the required weighting
functions are not available at the outset.

7 Concluding remarks

We addressed the problem of designing a high per-
formance compensator for an imprecisely known
plant. We tackled this problem by an iterative
scheme of repeated identification and control de-
sign. At each stage of the iteration data is obtained
from the plant while it is controlled by the lat-
est compensator. As the iterative design procedure
evolves, it learns about the control-relevant dynam-
ics of the plant in question. The resulting nominal
model is accurate near the cross-over frequency and,
at least as important, the large mismatch at other
frequencies does not impair the control design. In
addition the iteration reveals the performance that
is attainable for the imprecisely known plant.
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