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A B S T R A C T   

In stratified porous media, non-uniform velocity between layers combined with thermal conduction across layers 
causes spreading of the thermal front: thermal Taylor dispersion. Conventional upscaling not accounting for this 
heterogeneity within simulation grid blocks underestimates thermal dispersion, leading to overestimation of 
thermal breakthrough time. We derive a model for effective longitudinal thermal diffusivity in the direction of 
flow, αeff, to represent the effective thermal dispersion in two-layer media. αeff, accounting for thermal Taylor 
dispersion, is much greater than the thermal diffusivity of the rock itself. We define a dimensionless number, NTC, 
a ratio of times for longitudinal convection to transverse conduction, as an indicator of transverse thermal 
equilibration of the system during cold- or hot-water injection. For NTC > 5, thermal dispersion in the two-layer 
system closely approximates a single layer with αeff. This suggests a two-layer medium satisfying NTC > 5 can be 
combined into a single layer with an effective longitudinal thermal diffusivity αeff. In application to a geothermal 
reservoir, one can apply the model to perform upscaling in stages, i.e. combining two layers satisfying the NTC 
criterion in each stage. The αeff model accounting for the fine-scale heterogeneity within simulation grid blocks 
would enhance the prediction accuracy of thermal breakthrough time and thus thermal lifetime.   

1. Introduction 

Geothermal formations usually feature strong heterogeneity (Blank 
et al., 2021; Crooijmans et al., 2016; Major et al., 2023). In numerical 
simulations of geothermal processes, a full description of fine-scale 
heterogeneity using fine-grid resolution is computationally expensive. 
It is necessary to upscale the description of formation heterogeneity, 
utilizing large grid blocks and assigning uniform properties within each 
grid block. Conventional upscaling estimates geophysical properties 
within a grid block by averaging: e.g. arithmetic, harmonic or geometric 
averaging (Norouzi et al., 2022; Plumb and Whitaker, 1988; Thomas 
et al., 2023). These averaging methods yield upscaled thermal conduc
tivities close to conductivities of rock itself (Rühaak et al., 2015). This 
way of upscaling is often problematic, because formation heterogeneity 
strongly affects thermal dispersion (Robert et al., 2022) but is not 
accounted for in the upscaled thermo-physical properties. This leads to 
inaccurate prediction of thermal breakthrough time. Our goal is to 
develop a more-effective approach for upscaling: specifically, of 

thermo-physical properties of rocks. In particular, we account for the 
effect of fine-scale heterogeneity of layers combined within simulation 
grid blocks in our new upscaling approach. 

Taylor (1953) analyzed the concentration distribution of solute in a 
liquid flowing slowly through a tube. The spreading of the concentration 
distribution results from combined effects of convection and longitudi
nal and transverse diffusion (Dentz et al., 2018; Taylor, 1953). The 
transverse diffusion arises from velocity variations in the vertical 
cross-section, as shown in Fig. 1a., shrinking the concentration 
spreading that would result from convection alone. This phenomenon is 
known as Taylor dispersion. It has been extensively studied in various 
bulk and subsurface processes, e.g. transport of contaminant or radio
active waste, mixing of oil-displacing agents or dispersion of a tracer. 
The spreading of solute concentration in the flow direction is dominated 
by Taylor dispersion from non-uniform convection and transverse 
diffusion across streamlines. John et al. (2010) also illustrate that for 
field-scale mixing in heterogeneous formations, velocity variation be
tween layers together with transverse diffusion across layers is primarily 
dominant over longitudinal diffusion. This indicates that ignoring 
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longitudinal diffusion may cause little or no loss of accuracy in the 
modeling of dispersion. 

Thermal dispersion in stratified geothermal formations exhibits a 
similar phenomenon: velocity variations between layers result in non- 
uniform thermal fronts, illustrated in Fig. 1b. This causes transverse 
thermal conduction across layers, which reduces the spreading of the 
cooling front: thermal Taylor dispersion (Bruderer and Bernabé, 2001; 
Emami Meybodi and Hassanzadeh, 2011; Yan et al., 2022). In effect, 
thermal Taylor dispersion slows down the advance of the leading edge of 
the cooling front. This is especially crucial in that the advance of the 
cooling front dominates the thermal lifetime of a geothermal process 
and thus production of geothermal energy (Sbai and Larabi, 2023). 

This phenomenon has been addressed in various thermal processes, 
e.g. wellbore heat transmission in the petroleum industry or trans
portation of geothermal fluids for heating (Batycky et al., 1994; Ortan 
et al., 2009; Park et al., 2018; Tang and van der Zee, 2021). In these 
processes, the major cause for thermal Taylor dispersion is velocity 

variation within a pipe or channel (e.g., Nakayama et al., 2006; Pearce 
and Daou, 2014). However, no model has yet accounted for Taylor 
dispersion of the temperature front in vertically heterogeneous porous 
media. 

We investigate the effect of heterogeneity within a geothermal 
reservoir on thermal dispersion (Bredesen et al. 2020; Seibert et al., 
2014; Wang et al., 2020). Heat conduction from the overburden and 
underburden rocks affects the advance of the cooling front inside a 
reservoir (Willems et al., 2017; De Bruijn et al., 2021), but is neglected 
here for simplification. The approach we deploy is similar to that of Lake 
and Hirasaki (1981) for chemical dispersion. Nevertheless, heat con
duction is different from chemical diffusion, especially in that heat 
conduction is through both fluid and surrounding rocks and its disper
sion coefficient is of order ~ 10–6 m2/s, about 103 times greater than 
chemical-diffusion coefficient in liquids (~ 10–9 m2/s). Our goals are (1) 
to define a measure of the effects of transverse thermal conduction and 
(2) develop a model to represent effective thermal dispersion in layered 

Nomenclature 

ec = heat flux in the flow direction by transverse conduction, J/ 
(s.K) 

(etj/elj) = ratio of heat fluxes driven by transverse conduction and 
longitudinal convection, dimensionless (Eqs. 10 and 11) 

Fh = fraction of total thickness in the high-permeability layer 
Fc = heat-capacity contrast between layers 
Fch = heat capacity-thickness contrast between layers 
FK = permeability contrast between layers 
H = total reservoir thickness in z direction, m 
hj = layer thickness in z direction, m 
ITC = transverse thermal-conduction index, dimensionless (Eq. 

27) 
j = layer index 
Kj = permeability, m2 

L = reservoir length, m 
NTC = transverse thermal conduction number, dimensionless (Eq. 

13) 
(Npe)-1 = inverse Péclet number, dimensionless (Eq. 23) 
(Npe

eff)-1 = effective inverse Péclet number, dimensionless (Eq. 31) 
QD = dimensionless injection time (Eq. 1) 
(QD0)TD=0.5 = cumulative heat injection at the breakthrough of TD =

0.5 without heat conduction in either direction, 
dimensionless (Eq. 1) 

(QD)TD=0.5 = cumulative heat injection at the breakthrough of TD =

0.5 with heat conduction, dimensionless (Eq. 1) 
T = temperature, ◦C 
Tinj, Tini = injection and initial temperature, ◦C 
TD = dimensionless temperature (Eq. 1) 

t = cold-water injection time, s 
tlj = convection-driven thermal-front breakthrough time, s 
ttj = transverse thermal-conduction time across the two layers, s 
uj = Darcy velocity of cold-water injection, m/s 
v = heat capacity-thickness weighted average convection 

velocity of the cooling-front in a two-layer system, m/s 
(Eq. 5) 

vj = convection velocity of the cooling front, m/s 
W = reservoir width, m 
x, y, z = Cartesian coordinates, m 
xD = dimensionless position in x direction (Eq. 1) 
x̂D = dimensionless position relative to a plane moving at v (Eq. 

15) 
zD = dimensionless position in z direction (Eq. 1) 
αlj, αtj = longitudinal and transverse thermal diffusivity, m2/s 
αl = thickness-weighted average of longitudinal diffusivities αl1 

and αl2, m2/s 
αeff = effective longitudinal thermal diffusivity, m2/s (Eqs. 24 

and 25) 
κlj, κtj = longitudinal and transverse thermal conductivity, W/(m. 

K) 
κeff = effective longitudinal thermal conductivity, W/(m.K) 
(ρcp) = thickness-weighted average heat capacity, J/(m3.K) (Eq. 3) 
(ρcp)j = layer heat capacity accounting for rock grains and fluids, 

J/(m3.K) (Eq. 2) 
(ρwcpw) = heat capacity of water, J/(m3.K) 
(ρgjcpgj) = heat capacity of rock grains, J/(m3.K) 
ϕj = porosity, dimensionless  

Fig. 1. (a) Fluid-velocity profile in cross-section during fluid flow through a pipe (adapted from Wikipedia, 2016) and (b) Non-even cooling fronts between layers 
upon cold-water injection into a hot-water-saturated multi-layer porous medium (van Nieuwkerk, 2022). 
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porous media. In particular, we define a dimensionless criterion for 
combining a two-layer medium. Then we derive an analytical model for 
effective thermal diffusivity to represent the effective dispersion in the 
combined system. At the end, we illustrate the application of the model 
to upscaling the well-log data of a geothermal reservoir. More applica
tion examples are presented in van Nieuwkerk (2022). 

2. Geological model, assumptions and definitions 

2.1. Two-layer geological model 

Fig. 2a shows the well-log data from a geothermal reservoir featuring 
a pattern of layers. The thermal Taylor dispersion theory for upscaling is 
developed based on a two-layer system that represents such a sequence, 
as shown in Fig. 2b. We examine two representative scenarios: (1) two 
permeable layers with a permeability contrast and (2) two layers with 
one layer impermeable. 

Each layer j = 1 or 2 is characterized by the following properties: hj – 
thickness in the z direction, ϕj – porosity, Kj – permeability, and αlj and 
αtj – longitudinal and transverse thermal diffusivity. Respectively, αlj and 
αtj are ratios of thermal conductivity in the given direction to heat ca
pacity, i.e., [κlj /(ρCp)j] and [κtj /(ρCp)j] with j =1 denoting the higher- 
permeability layer. 

2.2. Assumptions and definitions 

For the analysis of thermal Taylor dispersion, we have made the 
following simplifying assumptions:  

• Single-phase, incompressible flow with uniform and constant fluid 
density and viscosity (no phase changes). As a result, there is no 
cross-flow between layers.  

• Areal homogeneity within a layer  
• Uniform layer width in the third (y) dimension.  
• On the pore scale, local thermal equilibrium, i.e. immediate thermal 

equilibration between fluid and surrounding rock grains.  
• Perfectly insulated top and bottom boundaries. 

(1) Dimensionless variables. 

To facilitate the problem description, we deploy dimensionless var
iables: 

TD =
Tinj − T

Tinj − Tini

xD =
x
L

zD =
z
H

QD =
vt
L

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)  

where TD is the dimensionless temperature with temperature T 
normalized with respect to injection (Tinj) and initial (Tini) temperatures; 
xD and zD are the dimensionless horizontal and vertical positions, with 
coordinates x and z normalized by reservoir length L and total thickness 
H, respectively; QD is the dimensionless time, representing the total heat 
capacity of the fluid volume injected at time t divided by the heat ca
pacity of the two-layer medium. v in QD is the average velocity of the 
cooling-front in the two-layer system, which is given below. 

(2) Cooling-front velocity 

The volumetric heat capacity of layer j is the volume-weighted 
average of water (ρwcpw) and rock grain (ρgjcpgj) heat capacities: 
(
ρcp

)

j = φjρwcpw +
(
1 − φj

)
ρgjcpgj. (2) 

The average heat capacity of the two-layer system is the thickness- 
weighted average: 

(
ρcp

)
=

(
ρcp

)

1h1 +
(
ρcp

)

2h2

H
. (3) 

Assuming local thermal equilibrium (i.e. instantaneous thermal 
equilibration between fluid and rock grains through which it flows) and 
no dispersion between cold and hot regions within layers or conduction 
between layers, TD at the cooling front is a unit step change in each layer. 
We define a control volume of dimensions (WhjΔx) just ahead of the 
cooling front, where W is the reservoir width in the y direction. The front 
advances through this volume in time Δt. An energy balance on this 
volume gives the velocity of the cooling front in each layer j: 

vj =
Δx
Δt

=
ujρwcpw

φjρwcpw +
(
1 − φj

)
ρgjcpgj

=
ujρwcpw
(
ρcp

)

j

, (4)  

where uj is the Darcy velocity in layer j. 
The pore velocity of fluid is (uj/ϕj). vj in Eq. 4 is proportional to the 

fluid pore velocity (uj/ϕj), but slowed down by a heat-capacity ratio of 

Fig. 2. Geothermal formations featuring interspersed layers: (a) well-log data (Bredesen et al., 2020) and (b) a two-layer model.  
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the fluid to fluid-matrix combination, [(ρwcpw)ϕj/(ρcp)j]. This delay is 
known as the retardation effect (Oldenburg and Pruess, 1998). 

Assuming instantaneous thermal equilibration across the layers and 
no dispersion in the flow (x) direction gives the thermal-front velocity, v, 
i.e. heat capacity-thickness weighted average: 

v =
Δx
Δt

=
u1ρwcpwh1 + u2ρwcpwh2

[
φ1ρwcpw + (1 − φ1)ρg1cpg1

]
h1 +

[
φ2ρwcpw + (1 − φ2)ρg2cpg2

]
h2

=
v1
(
ρcp

)

1h1 + v2
(
ρcp

)

2h2
(
ρcp

)

1h1 +
(
ρcp

)

2h2
.

(5) 

The heterogeneity of the system in Fig. 2b is characterized by the 
following factors: 

Fh ≡ h1
H : Fraction of total thickness in the high-permeability layer 

Fc ≡
(ρcp)1

(ρcp)2
: Heat-capacity contrast between layers 

Fch ≡
(ρcp)1

h1

(ρcp)2
h2
: Heat capacity-thickness contrast between layers 

FK ≡ K1
K2

: Permeability contrast between layers 

For the scenario with two permeable layers, Eqs. 4 and 5, incorpo
rating Darcy’s Law for uj, yields the following velocity correlations: 

v1

v2
=

FK

Fc

v1

v
=

(Fch + 1)FK

FKFch + Fc

v2

v
=

(Fch + 1)Fc

FKFch + Fc

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6) 

Eqs. 2 and 3 give the heat-capacity relations: 
(
ρcp

)

1(
ρcp

) =
Fc

FcFh + (1 − Fh)
(
ρcp

)

2(
ρcp

) =
1

FcFh + (1 − Fh)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (7) 

For the scenario with one layer impermeable, i.e. K2 = 0, the heat- 
capacity relations in Eq. 7 still hold. Nevertheless, as v2 = 0, the veloc
ity relations in Eq. 6 become 

v1

v
=

Fch + 1
Fch

v2

v
= 0

⎫
⎪⎪⎬

⎪⎪⎭

. (8)  

3. Definition of transverse thermal-conduction number NTC 

The thermal lifetime of a geothermal process is usually dominated by 
pressure-driven convection. Nevertheless, it is strongly affected by 
thermal conduction, in particular conduction in the transverse direction 
arising from nonuniform cooling fronts between the layers. The trans
verse conduction slows down the advance of the convection-driven 
cooling fronts, elongating the breakthrough time of cold water and 
thus thermal lifetime. As a measure of the transverse thermal conduction 
relative to convection, we define a dimensionless number NTC, a time 
ratio given by 

NTC ≡
tlj
ttj

=
L
H

et j

elj
, (9)  

where 
tlj: convection-driven thermal-front breakthrough time in layer j; 
ttj: transverse thermal-conduction time across the two layers; 

(etj/elj): ratio of heat fluxes driven by transverse conduction and 
longitudinal convection: 

elj = vjTD, (10)  

et j = −
(αtj

H

)
⋅
(

ΔTD

ΔzD

)

. (11) 

Substituting Eqs. 10 and 11 into Eq. 9 yields 

NTC =
L

H2
αtj

vj

(
− ΔTD/ΔzD

TD

)

. (12) 

Following Lake and Hirasaki (1981), we take [(-ΔTD/ΔzD)/TD] in Eq. 
12 to be a constant, 12.5, and choose properties making NTC minimum. 
NTC is the minimum of the following two expressions: 

NTC = 12.5 ×
L

H2
αt2

v1
, or

= 12.5 ×
L

H2
αt1

v1
.

(13) 

The reason for the choice of the factor 12.5 is given below in the 
verification of the definition of NTC; compare the 12.5 in Eq. 13 for heat 
conduction with Eqs. 14 in Lake and Hirasaki and 14.44 in Taylor (1953) 
for solute transport. The verification of the factor 12.5 in the definition 
of NTC given below is based on cases with a wide variety of layer ge
ometries with the same initial and injection temperatures. It is possible 
that an application with a very-different ratio of absolute temperatures 
might require an adjustment of this value. Greater values of NTC mean 
either slower convection or faster conduction. Both suggest a larger 
proportion of the system is at transverse thermal equilibrium during 
cold-water injection. 

4. Derivation of effective longitudinal thermal diffusivity - αeff 

The detailed derivation of the effective longitudinal thermal diffu
sivity, αeff, is shown below for the scenario with two layers, both 
permeable. The scenario with an impermeable layer follows the same 
procedures. 

With the assumptions in the Section 2.2, the energy-balance equation 
for an infinitesimal volume element in the 2D system of Fig. 2b is 

∂T
∂t

+ vj
∂T
∂x

− αlj
∂2T
∂x2 − αtj

∂2T
∂z2 = 0, (14)  

where j denotes layer 1 or 2. vj is given in Eq. 4, which varies in cross- 
section as a function of layer index j, i.e. the cause for thermal Taylor 
dispersion. We transform x to dimensionless coordinate x̂D: 

x̂D =
x
L
−

vt
L
= xD − QD, (15)  

which is the position relative to a vertical plane moving at velocity v. 
When transverse thermal conduction is significant, i.e. at large 

values of NTC, the cooling front spreads slowly around the position (vt) 
(e.g., Taylor (1953)). This suggests that in the equation recast in terms of 
x̂D, the term (∂T/∂t) in Eq. 14 is small and can be neglected: con
duction/dispersion around the front spreads like the square root of time 
and slows down with time. Following Taylor’s result and implications of 
previous work on dispersion in heterogeneous media, we leave out axial 
heat conduction for simplicity. This simplification gives an equivalent 
diffusion coefficient representing non-uniform convection and trans
verse conduction between layers. Eq. 14, inserting dimensionless vari
ables x̂D and zD, then becomes: 

(vj

v
− 1

) ∂TD

∂x̂D
=

(
L
H

)2 ∂
∂zD

(
αtj

vL
∂TD

∂zD

)

. (16) 
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Hereafter, the term (∂TD/∂x̂D) is treated as independent of zD; this 
treatment is justified by the fact that significant transverse conduction 
almost equalizes temperature in the z direction at position x̂D. At 
boundaries zD = 0 and 1, heat flux is zero. We integrate both sides of Eq. 
16 with respect to zD, over [0, zD] for 0 ≤ zD < Fh (layer j = 1) and over 
[zD, 1] for Fh ≤ zD ≤ 1 (layer j = 2), respectively. Performing a second 
integration, over [0, zD] for 0 ≤ zD < Fh and over [Fh, zD] for Fh ≤ zD ≤ 1, 
yields the transverse TD profile as a function of zD: 

for 0 ≤ zD < Fh: 

TD = TD|zD=0 +
1
2

(
vL
αt1

)(
H
L

)2(v1

v
− 1

)(
z2

D

)(∂TD

∂x̂D

)

, (17)  

for Fh ≤ zD ≤ 1: 

TD = TD|zD=0 +
1
2

(
vL
αt1

)(
H
L

)2(v1

v
− 1

)(
F2

h
)
(

∂TD

∂x̂D

)

+
1
2

(
vL
αt2

)(
H
L

)2(v2

v
− 1

)(
z2

D
− 2zD − F2

h
+ 2Fh

)(∂TD

∂x̂D

)

,

(18)  

where TD in Eqs. 17 and 18 is equal at zD = Fh, maintaining a continuous 
heat flux across the layer boundary. 

Based on the transverse TD (zD) profile, one can solve for the 
convective heat flux, ec across the moving plane at vt, through the 
following integration: 

ec = WH
∫ 1

0

(
vj − v

)(
ρcp

)

jTDdzD

= WH
∫ Fh

0
(v1 − v)

(
ρcp

)

1TDdzD + WH
∫ 1

Fh

(v2 − v)
(
ρcp

)

2TDdzD.

(19)  

ec is determined by substituting TD in Eqs. 17 and 18 into the corre
sponding integral in Eq. 19. With the relations in Eqs. 6 and 7, the 
expression for ec is derived as follows: 

ec = −
WHv

(
ρcp

)

3

(
H
L

)2( FcFh

FcFh + 1 − Fh

)(
FK − Fc

FKFch + Fc

)2[(vL
αt1

)

F2
h

+

(
vL
αt2

)

FcFh(1 − Fh)

](
∂TD

∂x̂D

)

+ ω, (20)  

where ω is a collection of terms independent of x̂D and canceled in the 
derivative of ec to x̂D below. 

Within the front of dimension (WHdx̂D), an energy balance over time 
interval dQD yields 

WHv
(
ρcp

) ∂T̃D

∂QD
+

∂ec

∂x̂D
= 0, (21)  

where T̃D is the average temperature in cross-section at x̂D, which is 
approximately TD when thermal equilibration across zD is nearly 
instantaneous (i.e. at large values of NTC). Solving for the derivative of ec 
in Eq. 20 with respect to x̂D and substituting the derivative into Eq. 21 
yields 

∂TD

∂QD
=

(
Npe

)− 1∂2TD

∂x̂2
D
, (22)  

where (Npe)-1 is the equivalent inverse Péclet number as contributed by 
Taylor dispersion: 

(
Npe

)− 1
=

vH2

3L

(
FcFh

FcFh + 1 − Fh

)(
FK − Fc

FKFch + Fc

)2[F2
h

αt1
+

FcFh(1 − Fh)

αt2

]

. (23) 

The effective longitudinal diffusivity, αeff is the sum of longitudinal 
diffusivity and extra diffusivity resulting from heterogeneous convection 
modified by transverse conduction, analogous to solute dispersion (Aris, 
1956; Lake and Hirasaki, 1981): 

αeff = αl + vL
(
Npe

)− 1
, (24)  

where αl is the thickness-weighted average of αl1 and αl2. 
Combining Eqs. 23 and 24 yields the analytical model for αeff for the 

scenario with two permeable layers: 

αeff = αl +
v2H2

3

(
FcFh

FcFh + 1 − Fh

)(
FK − Fc

FKFch + Fc

)2[F2
h

αt1
+

FcFh(1 − Fh)

αt2

]

,

(25)  

where αeff has the units of m2/s, when the parameters in the equation use 
standard units. Note that αeff here and in Eq. 26 below is an effective 
thermal diffusivity accounting for both water and rock. Treating αeff as 
volume-weighted average of diffusivities of water and rock, one can then 
calculate back the effective diffusivity of rock from αeff. 

For the scenario with an impermeable layer, the derivation of αeff 
follows the same steps from Eqs. 14 to 25. To account for K2 being zero, 
the relations in Eq. 8 should be used in deriving ec in Eq. 20. The cor
responding expression for αeff in this scenario then becomes: 

αeff = αl +
v2H2

3

(
FcFh

FcFh + 1 − Fh

)(
1

Fch

)2[F2
h

αt1
+

FcFh(1 − Fh)

αt2

]

. (26) 

Eq. 25 or 26 multiplied by (ρcp) in Eq. 3 gives the effective longitu
dinal thermal conductivity, κeff. Similar to αeff, κeff in the flow direction is 
the sum of longitudinal conductivity (i.e. thickness-weighted average of 
κl1 and κl2) and extra conductivity resulting from nonuniform convection 
and transverse conduction. The effective conductivity of rocks can be 
calculated from κeff, when treated as volume-weighted average of the 
conductivities of water and rock. 

5. Verification of the NTC and αeff Model 

We verify both the NTC and αeff equations via comparison with 2D 
numerical solutions of Eq. 14 for T(x, z, t). Simulation results were ob
tained with DARTS (Delft Advanced Research Terra Simulator) for 
geothermal processes (see Khait and Voskov (2018) and Wang et al. 
(2020) for details of the simulator). The mass- and energy-balance 
equations were numerically solved in a fully implicit manner using the 
same inputs as in the analytical model. In the setup of the numerical 
model, the reservoir was initially saturated with single-phase water at 
80 ◦C and 190 bar. At the injection-well boundary, cold-water of 30 ◦C 
was injected at a fixed rate, with whole thickness of the reservoir 
perforated. There is no flux across other boundaries, except at produc
tion well, which is perforated all along its length. The assumption of 
incompressibility and no density change with temperature for both fluid 
and rock assures that the fluid velocities are identical in the analytical 
and numerical modeling. The reservoir length is 1000 m and width 1 m. 
In our simulation runs, grid resolution (1 × 1 × 1 m) and a time step of 
maximum 10 days were utilized to represent actual thermal dispersion 
with minimized numerical diffusion. 

Table 1 lists the layer properties of the media used for illustrations of 
analytical and numerical modeling. We assume all properties are 
isotropic within a layer. The values of permeability and porosity refer to 
a geothermal reservoir in Copenhagen, Denmark (Bredesen et al., 2020). 
In the field example of Bredesen et al., permeable and impermeable 
layers are sandstone and shale, respectively. The thermophysical prop
erties for sandstone and shale are taken from Lake et al. (2014). Heat 
capacity, (ρcp)j of layer j is the volume-weighted average of the heat 
capacities of water and rock grains, as given in Eq. 2 in Section 2.2. 
Similarly, original thermal conductivity κj and diffusivity αj assigned to 
each layer j are the volume-weighted averages of the corresponding 
thermophysical properties of water and rock grains. 

Table 2 summarizes the simulation results. The operation rates in 
geothermal fields vary greatly due to different formation properties, 
production rates and project lifespans. The tested injection rates (in 
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Table 2) scale up with reservoir thickness and are within the range of 
field rates, e.g. 0.7 to 4 m3/D over a cross-section area of 100 m2 (e.g. 
Bujakowski et al., 2016; Feng et al., 2017; Wang et al., 2021). Table 2 
also lists the upscaled thermal conductivity and diffusivity values, which 
can be much greater than those of the rock itself. For instance, in Case 5, 
κeff = 179.02 W/(m.K), nearly 69 times the conductivity of 
water-sandstone mixture, 2.61 W/(m.k); αeff = 9.30 × 10–5 m2/s, nearly 
81 times the thermal diffusivity of the water-sandstone mixture, 1.15 ×
10–6 m2/s. In conventional upscaling without accounting for Taylor 
dispersion, the upscaled thermo-physical properties are much less than 
we show here, e.g. close to those of the rocks involved. Due to under
estimated thermal conductivity/diffusivity in conventional upscaling, 
thermal dispersion is underestimated, which would result in over
estimation of thermal breakthrough time. 

5.1. Verification of the transverse thermal-conduction number NTC 

To verify the definition of NTC in Eq. 13, a transverse thermal- 
conduction index is introduced: 

ITC ≡
(QD)TD=0.5 − (QD0)TD =0.5

1 − (QD0)TD =0.5

, (27)  

where (QD)TD=0.5 and (QD0)TD=0.5 (given in Eq. 1) represent the cumu
lative heat injection at the breakthrough of TD = 0.5, with and without 
thermal conduction in either direction, respectively. TD = 0.5 is chosen 
as a representation of the cooling-front breakthrough. In the calculations 
of ITC, (QD)TD=0.5 (in Eq. 1) is obtained from simulations of various cases 
in Table 2. (QD0)TD=0.5 depends on FKh. For a system with two permeable 
layers, it is given by 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

For FKh > 1 (QD0)TD=0.5 =
FKFch + Fc

(Fch + 1)FK

For FKh < 1 (QD0)TD=0.5 =
FKFch + Fc

(Fch + 1)Fc

. (28) 

For a system with an impermeable layer, FKh is always greater than 
unity and (QD0)TD=0.5 is 

(QD0)TD=0.5 =
Fch

Fch + 1
. (29) 

The value of ITC in Eq. 27 indicates the accuracy of the assumption of 
instantaneous transverse thermal-equilibration across the two layers, as 
the cooling front advances. ITC = 1 indicates approximately 

instantaneous thermal equilibration and ITC = 0 indicates least thermal 
equilibration across the two layers. For ITC = 1, (QD)TD=0.5 = 1, meaning 
that the heat injection required is the heat capacity of the whole system 
at the breakthrough of TD = 0.5. This occurs only when transverse 
thermal equilibration is approximately instantaneous. For ITC = 0, 
(QD)TD=0.5 = (QD0)TD=0.5, meaning that the heat injection required is 
that as though with no transverse conduction at all. 

The behavior of ITC is illustrated by the 2D T distribution with respect 
to different values of ITC, as shown in Fig. 3. For instance, in Case 2 with 
top impermeable layer of h2 = 2 m and bottom permeable layer of h1 =

10 m, ITC = 1 and uniform T in the cross-section reflects instantaneous or 
fast equilibration across the layers. With the thickness of the imperme
able layer h2 increasing, e.g. h2 = 20 m in Case 5 and h2 = 90 m in Case 9 
where ITC = 0.908 and 0.122, transverse heat conduction is not fast 
enough to achieve uniform T in the cross-section. 

Fig. 4 shows a good correlation between NTC in Eq. 13 and ITC in Eq. 
27. For illustration, nine simulations were conducted with respect to 
different thickness contrasts between the low-permeability or imper
meable layer (h2) and high-permeability layer (h1), as summarized in 
Table 2. Each simulation run gives a value of ITC, and, based on the layer 
properties, one can calculate the corresponding value of NTC. With h2 
(the low-permeability layer) increasing relative to h1 (the high- 
permeability layer), NTC decreases from 87.61 to 0.15. Also, it takes 
longer for transverse conduction across the two layers, meaning a 
smaller fraction of the system at transverse thermal equilibration 
(Fig. 3). Less vertical thermal equilibration corresponds to ITC decreasing 
from 1 towards 0. The consistency between NTC and ITC suggests that NTC 
can be used as an indicator of transverse thermal equilibration without 
running simulations. 

The constant 12.5 included in the definition of NTC in Eq. 13 is 
chosen such that NTC = 1 at ITC = 0.5, for convenience. For NTC < 0.01, 
ITC is about 0, indicating that a two-layer medium behaves like two 
layers with no thermal interaction between the layers. For NTC > 5, ITC >

0.88: the two layers are approaching transverse thermal equilibrium, as 
shown in Cases 2 and 5 of Fig. 3. This further implies, for NTC > 5, that 
thermal dispersion in a two-layer system approximates a single homo
geneous layer. Therefore, NTC > 5 defines a physical criterion for 
combining two layers. In addition, the αeff model in Eq. 25 or 26 is 
derived assuming instantaneous thermal equilibration in the cross- 
section, so NTC > 5 also defines the valid condition for the αeff model. 
As illustrated in Case 9 of Fig. 3, with NTC < 5, a two-layer medium 
exhibits heterogeneous behavior in the T distribution, violating the αeff 

Table 1 
Layer properties used for illustrating the validity of NTC and αeff model.  

Layer 1 properties Layer 2 properties Water 

ϕ1 K1, m2 (ρcp)1, KJ/m3.K κ1, W/m.k α1, m2/s ϕ2 K2, m2 (ρcp)2, KJ/m3.K κ2, W/m.K α2, m2/s (ρcp)w, KJ/m3.K 

0.19 5 × 10–13 2267.73 2.61 1.15 × 10–6 0.19 1.25 × 10–13 2267.73 2.61 1.15 × 10–6 4190 
0.19 5 × 10–13 2267.73 2.61 1.15 × 10–6 0 0 1754.19 1.61 0.92 × 10–6 4190  

Table 2 
Numerical simulation results for transverse thermal conduction.  

Cases* h1, m h2, m Q, m3/D dp, bar κeff, W/(m.K) αeff, m2/s NTC (QD0)TD=0.5 (QD)TD=0.5 ITC 

1 10 2 0.8496 15.03 5.68 2.51 × 10–6 57.74 0.875 1.000 1.000 
2 10 2 0.4252 7.91 3.52 1.61 × 10–6 87.61 0.866 1.000 1.000 
3 10 5 0.5315 9.88 10.23 4.89 × 10–6 44.86 0.721 1.000 1.000 
4 10 10 0.7087 13.16 39.72 1.98 × 10–5 18.92 0.564 1.001 1.002 
5 10 20 1.0631 19.60 179.02 9.30 × 10–5 5.61 0.393 0.944 0.908 
6 10 30 1.4174 25.62 433.86 2.30 × 10–4 2.37 0.301 0.835 0.763 
7 10 40 1.7718 31.33 807.92 4.35 × 10–4 1.21 0.244 0.659 0.549 
8 10 50 2.1261 36.99 1302.61 7.08 × 10–4 0.70 0.205 0.499 0.370 
9 10 90 3.5435 60.92 4497.16 2.49 × 10–3 0.15 0.126 0.232 0.122  

* In each case, Tinj = 30 ◦C and Tini = 80 ◦C, and simulations of Case 1 and Cases 2 – 9 use the first and second row of layer properties in Table 1, respectively. dp 
denotes the overall pressure drop. 
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model’s assumption of instantaneous thermal equilibration. Thus, for 
NTC < 5, a two-layer medium should not be combined in terms of 
thermal dispersion. The NTC criterion and αeff model is further verified in 
the next section. 

5.2. Verification of the effective longitudinal thermal-diffusivity model αeff 

Eq. 22 represents the energy-balance equation for a single-layer 
medium having the average properties of the two-layer system in 
Fig. 2b. Replacing (Npe)-1 with the effective inverse Péclet number (Npe

eff)- 

1, an approximate solution to Eq. 22 follows an error function (Murphy 
et al., 1981; Axelsson et al., 2005): 

TD = 1 −
1
2

⎡

⎢
⎢
⎣1 − erf

⎛

⎜
⎜
⎝

xD − QD

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

QD

(
Neff

pe

)− 1
√

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦, (30)  

where 
(

Neff
pe

)− 1
≡

αeff

vL
. (31) 

Using Eqs. 30 and 31 and layer properties in Table 1, one can solve 
analytically for T(x, t) for the combined single-layer medium possessing 
the average properties of the two layers. 

Fig. 5 compares the analytical solutions with numerical solutions for 
both produced T history and T distribution along x, with respect to NTC 
values. In the numerical solutions, the produced T history reported on 
the left column is a volumetric-flow-rate-weighted average of produced 
T from the last column of grid blocks. The T profile reported on the right 

column in Fig. 5 is a volume-weighted average of T in the vertical col
umn of grid blocks at each position xD. 

In the analytical solutions, αeff in Eq. 25 or 26 is used to represent the 
effective longitudinal thermal diffusivity in the combined system. For 
NTC > 5, e.g. NTC = 57.74 in Case 1 and 5.61 in Case 5, a good match 
between analytical and numerical solutions is achieved in both effluent 
T history and T profile. The good match verifies the effectiveness of the 
αeff model for representing thermal Taylor dispersion in a two-layer 
system, when satisfying the criterion NTC > 5. For NTC < 5, e.g. NTC =

1.21 in Figs. 5e and 5f from Case 7, the fit is not as good. The deviation 
means that the αeff does not represent the effective thermal dispersion at 
low values of NTC. This is because low values of NTC correspond to slow 
transverse thermal conduction relative to convection. As a result, 
transverse thermal conduction is not fast enough to give a uniform T in 
the vertical cross-section. Thus, the two layers should not be combined 
into a single layer or represented by αeff for NTC < 5. 

5.3. Application of the model to upscaling well-log data of a geothermal 
reservoir 

The concept of effective thermal dispersion can be applied to 
upscaling the modeling of various subsurface thermal processes, e.g. 
geothermal and thermal enhanced oil recovery processes. There would 
also be similarities to dispersion of gas fronts in hydrogen-storage ap
plications, in that the magnitude of gas diffusion coefficients is similar to 
that of thermal conductivity, though the details of the derivation differ 
(Lake and Hirasaki, 1981). This suggests that in both applications, 
upscaling is feasible to a greater extent than with dispersion in liquid 
flow. 

Conventional upscaling approaches use arithmetic or volumetric 
averaging to estimate dispersion coefficients in layers combined in a 
simulation grid block. Such averaging does not account for the non- 
uniform convection modified by transverse conduction between the 
layers within a grid block. This underestimates the spreading of 
dispersion fronts, leading to overestimation of the time to thermal 
breakthrough (e.g. Babaei and Nick, 2019; Daniilidis et al., 2020). The 
analytical model αeff accounting for thermal Taylor dispersion provides a 
more-accurate representation of thermal dispersion in an upscaled sys
tem. Below we outline the general approach for extending the NTC 
layer-combining criterion and αeff model to multi-layer media. 

For a multi-layer medium as in Fig. 6a, one can upscale thermal 
conductivities with the αeff model by combining layers in stages (two 
layers per stage). Here we outline the procedures for upscaling a for
mation with n layers. One starts with calculating the values of NTC (Eq. 
13) for each pair of adjacent layers, e.g. NTC for layers 1 and 2, layers 2 
and 3, …, layers (n-1) and n. Then, the two layers with maximum NTC 
(when satisfying the upscaling criterion NTC > 5) are combined into one 
layer represented by average properties. In particular, in the combined- 
group permeability is upscaled by thickness-weighted average and 
thermal conductivity in the flow direction is calculated with the 
upscaling model in Eq. 25 or 26. The n-layer system now forms a new 

Fig. 3. 2D temperature (T) distribution at 30 years of cold-water injection in Cases 2, 5 and 9. Dashed line marks layer boundary, with the higher-permeability layer 
at the bottom in each case. In each case, the injection and production wells are perforated through the entire thickness of the formation. 

Fig. 4. Verification of the transverse thermal-conduction number, NTC (Eq. 13) 
as an indicator for transverse thermal equilibration in vertical cross-section. 
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system with (n-1) layers after the first stage of upscaling. With the 
combined system, one calculates again the values of NTC, combines the 
two layers with maximum NTC and calculates the average properties in 
the combined group as above. This process proceeds until no more 
adjacent layers satisfy the upscaling criterion. 

An application example of upscaling the well-log data of a 
geothermal reservoir is given in Fig. 6. With multi-stage upscaling, a 91- 
layer geothermal reservoir is combined to 12 layers. Again, the upscaled 
thermal conductivities accounting for the fine-scale heterogeneity in the 
combined layers, as shown in Fig. 6c, are much greater than those ob
tained with conventional upscaling methods by averaging. The upscaled 
description of the reservoir in Figs. 6b and 6c is then used as inputs for 
geothermal simulations to enhance the computational efficiency. 

The numerical simulation in Fig. 7 uses the formation properties in 
Fig. 6a, where the grid resolution used represents all 91 layers. This case 
is conducted as a reference to represent the actual thermal dispersion in 

the formation. The upscaling simulation in Fig. 7 uses the upscaled 
properties in Figs. 6b and 6c. The good match between the two verifies 
the effectiveness of the NTC criterion and αeff model in upscaling the 
description of stratified geothermal formations. 

6. Discussion 

For the first time, we develop physically based upscaling criterion 
(NTC) and upscaling model (αeff) for simplifying characterization of 
geothermal formations. The αeff model is derived based on simplified 
assumptions as stated in Section 2.2, to model the basic physics of 
thermal dispersion in geological formations. Upon the derivation as
sumptions, the model is applicable to horizontal flow in heterogeneous 
formations or formations that can be simplified as stratified. Compared 
with conventional upscaling without considering thermal Taylor 
dispersion between streamlines, the αeff model represents more 

Fig. 5. Verification of the αeff model (Eqs. 25 and 26) via comparison with numerical solutions for effluent T history and T profile (at 15 years): (a) and (b) from Case 
1; (c) and (d) from Case 5; (e) and (f) from Case 7. See Tables 1 and 2 for detailed simulation inputs. 
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accurately the effective thermal dispersion and thus gives more accurate 
prediction of thermal breakthrough time. 

In the field, there are various complex factors, including heat con
duction from overburden and underburden formations, areal heteroge
neity and fractures, multi-phase flow, gravity effects, etc. These factors 
have strong impact on thermal dispersion and thus thermal lifetime of a 
geothermal project. In particular, many geothermal formations are a 
combination of matrix and fractures. The presence of fractures strongly 
affects fluid convection and thus thermal dispersion. The extension of 
our upscaling model to those complex geological formations needs 
further investigation. 

7. Summary and conclusions 

Non-uniform fluid velocities combined with heat conduction across 
streamlines, i.e. thermal Taylor dispersion, mean effective thermal 
conductivity in the flow direction is greater than that of rock itself. 
Ignoring this effect, as in conventional upscaling of thermophysical 
properties, leads to overestimation of thermal breakthrough time of a 
geothermal doublet. 

From an energy balance, we derive an upscaling model, αeff, for 
effective longitudinal thermal diffusivity, to represent effective thermal 
dispersion in a two-layer system. αeff accounts for longitudinal heat 
conduction at the cooling front and transverse heat conduction between 
streamlines, so it can be much greater than the thermal diffusivity of 
rock itself. 

We define a dimensionless number, NTC (i.e. a ratio of times for 
longitudinal-convection breakthrough and transverse conduction across 
the two layers). We find that for NTC > 5, a two-layer heterogeneous 
system can be closely approximated by a single homogenous layer where 
the effective thermal dispersion can be represented by αeff. Thus, NTC 
provides a physical criterion for combining two layers. 

The NTC criterion and αeff model provides a new physically based 
upscaling approach to simplify the description of geothermal forma
tions. Its validity is preliminarily verified via an application example of 
upscaling well-log data of a stratified geothermal formation. 

The upscaling criterion and model we present here reveals the basic 
physics of thermal dispersion in horizontal flow or stratified formations. 
The extension of the upscaling model to complex geological formations 
needs further research, e.g. geothermal formations with complexities 
such as heat conduction from overburden and underburden formations, 
areal heterogeneity or fractures, multi-phase flow, gravity effects, etc. 
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