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Summary 
 

Problem Statement 

The World Health Organization recognizes road crashes as a public health epidemic with daily 
fatalities averaging over 100 in the USA and more than 3,000 worldwide. In the search for 
underlying causes to address, human error (particularly that of inadequate attention) is commonly 
identified as a principal culprit. Consequently, today’s automotive industry and its safety advocates 
are very keen on advancing an automated/autonomous vehicle (AV) agenda to transform the 
domain. However, a human factors complication arises by releasing AV technology onto publics 
roads in an evolving manner: the continuous driving task changes to a monitor and fallback for 
driving automation. Generally, human operators are expected to face challenges for sustaining 
attention in particular for the transitionary stages of the SAE levels of driving automation: whether 
they are end-consumers serving as full-time supervisors (SAE level 2) or on-call backups (SAE level 
3), or hired test drivers over-seeing the development of autonomous vehicles (SAE level 4+). 

 

Thesis Aim and Approach 

Within a larger Human Factors of Automated Driving project (HFAuto, PITN-GA-2013-605817), the 
objective of this thesis was: ‘to develop a system that is able to monitor the driver’s vigilance’.  With 
an Oxford English Dictionary definition of ‘the action or state of keeping careful watch for possible 
danger or difficulties’, vigilance is thus entailed in all kinds of driving. However, because driving 
does not actually require full-time and undivided conscious attention (despite contrary casual 
assumptions), practical problems immediately appear when attempting to operationalize ‘careful’, 
‘danger’, and/or ‘difficulty’ and especially for driver monitor systems (DMS) where unnecessary 
alerts degrade end-user trust, acceptance, and adherence to the system (‘the cry-wolf effect’). 
More knowledge of specific driving attentional requirements (i.e., how much under what 
circumstances) is expected to produce better assessments of the readiness of drivers across levels 
of driving automation.  

 

The selected approach to meet the given thesis objective was to investigate vigilance from a 
cognitive systems engineering approach (ecological perspective). Instead of restricting the concept 
of vigilance to be some kind of internal state/property of a driver, this thesis treated vigilance as a 
state/property of a system (i.e., the relationship between a driver and a driving scene/situation). To 
differentiate from the traditional status quo, this thesis purposefully prepends the qualifier 
‘situated’ to describe cognition, vigilance, and/or DMS, etc. that directly takes into account present 
circumstances (the driving scene) in conjunction with conventional driver-centric 
measures/constructs. 

 

Methods 

Recently, video recording and processing technology have undergone exponential gains in 
capability with reduced form factors and costs. Thus, camera-based physiological and 
environmental measures (esp., eye and scene tracking/segmentation) should be increasingly useful 
research application areas to support a cognitive systems engineering approach of situated 
vigilance monitoring for driving. Increasing levels of AV control diminish hands-on and feet-on 
activity as sources of information about a driver’s present behaviors, so videos (and eye tracking) 
remain as viable sources for driver assessment. Research/application questions progress from the 
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like of ‘What is the driver’s attention/vigilance level?’ to concerns more akin to ‘Is the driver 
engaged/vigilant enough for the present demands?’ by simultaneously considering filmed aspects 
of the driving scene (and relating task contents and demands). Upon detecting imbalances, a 
situated driver monitor system functions to restore nominal balance between driver and scene 
demands via various kinds of DMS involvement, whether of information (notices, warnings, alarms, 
etc.) and/or actions (deceleration, transition of control, etc.). 

 

Because accurate representations of real-life work domains and ecological constraints are essential 
to cognitive systems engineering approaches, this thesis recorded and related different eye 
measurements of both nominal and aberrant visual control, under a variety of high/low demand 
driving conditions from both in the lab and out on the road. Thus, the present thesis included a 
range of low, medium, and high fidelity methods to investigate situated applications of driver eye 
measurement towards issues of vigilance assessment. Across the thesis, theoretical and empirical 
research was used in the form of literature survey/review, non-intrusive eye-tracking measures, 
dash-cam driving scene film recordings, crowdsourced driving scene content categorizations, on-
road measurements and a driving simulator.  

 

Results and Connections  

This thesis consists of five parts; the first part introduces relevant background theory and the 
framework underlying the thesis and the last part discusses major conclusions. Parts 2-4 focus on 
reviews for driver vigilance (Part 2), experiments to relate driving scenes and driver eyes (Part 3), 
and the integration of eye-based DMS with adaptive driving automation in a driving simulator (Part 
4). 

 

Chapter 2.1 aimed to characterize vigilance tasks applied in driving research, in terms of 
instructions/conditions, signal types/rates, and work component features in comparison to the 
classic vigilance literature. The review supported the importance of vigilance tasking details (i.e., 18 
are provided in Table 2.1.1) that are lacking for predicting/managing conventional driving vigilance 
decrement situations: specific consensus definitions of conventional driving signal(s), noise, and 
required responses. However, for supervising automated driving, properties in common with classic 
vigilance decrement theory were discussed as increasing the likelihood of problems: temporal and 
spatial uncertainty of intermittent/rare signals requiring time critical response, within prolonged 
task durations and increased monotony. Conclusions from Chapter 2.1 thus recommended caution 
and suggested (re)design opportunities for deploying automated driving.   

 

Chapter 2.2 proposed six solution area themes to problems of vigilance decrements in human 
supervision over automation. Generally, the first three themes described avoidance strategies 
either in a hard sense or different versions of a soft stance: objective or subjective supervisory 
control task reductions. The latter three themes were based from general learning theory 
paradigms in a chronological order: behaviorism, cognitivism, and ecological constructivism. 
Specifically, the solution areas were enumerated, labeled, and exemplified as follows. Solution Area 
(1): Avoid the role of sustained human supervision of automation (i.e., suspend/repeal/skip levels of 
automation requiring human oversight and backup). Solution Area (2): Reduce the supervising role 
along an objective dimension (i.e., change the amount of time or envelope of automated 
operations). Solution Area (3): Reduce the supervising role along a subjective dimension (i.e., share 
responsibilities and/or alter the end user experience and impressions). Solution Area (4): Support 
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the supervising role from the behaviorism paradigm (i.e., condition the desired target behaviors 
through training and/or selection). Solution Area (5): Support the supervising role from the dyadic 
cognitivism paradigm (i.e., inform designs to support cognitive processes and mental models). 
Solution Area (6): Support the supervising role from the triadic ecological paradigm (i.e., inform 
designs to leverage external environment contexts and/or task considerations). 

 

Results from Chapter 2.2 showed that independent raters were able to reliably apply the themes to 
categorize recommendations from influential human-automation interaction research. The most 
common solution areas to the problem of keeping attention while supervising automation included 
those focused on internal cognitive states, followed by those with a broader situational 
(task/ecological) perspective. 

 

Taken together, the studies of Part 2 emphasize the importance of cognitive and situational themed 
approaches for managing vigilance issues in general, but a lacking of available practical details (i.e., 
what driving scene features and driver eye measurements) with which one might proceed to build a 
situated DMS. Thus, applied driver eye and driving scene measurement studies were conducted in 
Part 3. 

 

Chapter 3.1 produced a broad yet efficient driving scene content categorization scheme for feature 
presence/absence (Appendix 3.1.B) e.g., type and locations of other road users, vehicular behavior 
such as lane changes and turns, and infrastructural details like road-markings, signage, and road 
curvature, etc. Chapter 3.1 confirmed relatively high levels of accuracy and reliability in 
crowdsourced annotations using that scheme. Because external crowdworkers completed the 
scene categorizations about ten times faster than conventional internal confederate researchers 
without degradation in the quality of that work, crowdsourcing is considered to offer compelling 
potential to situational driving safety research. Overall, measurement of driving scene aspects was 
nailed down in a concrete and viable manner which suggest that contextualized driving information 
is not to nebulous/arduous to collect and capture. 

 

Chapter 3.2 determined specific driving scene features (i.e., road curvature and traffic) to be of 
importance to perceived driving effort ratings and associated behavioral, rather than cognitive, eye 
movements (i.e., saccade amplitude). The high volume of annotated scene segments in Chapter 3.1 
(~12,862 scenes from around 50 different driving videos) enabled a selection of stimulus material 
that contained a sufficient degree of resolution to perform predictive regression analyses in 
Chapter 3.2 (i.e., continuous scaled independent variables to match continuous scaled dependent 
variable constructs). For example, one of the resultant equations represents the amount of 
perceived effort to expect in the presence of specific amounts of driving scene contents, while 
another, the consequential amount of saccade amplitude. Notably, the lower level eye movement 
measurements showed stronger (more reliable) relations with perceived effort and visible scene 
contents (lateral/longitudinal conflicts) than the higher level representation (and eye 
measurement) aspects of information uptake (fixation duration) and increased cognitive processing 
(pupil size). 

 

Chapter 3.3 measured both on-road eye movements and driving scene aspects. ‘Out-of-the-loop’ 
eyes generally exhibited greater off-center movement distances across entire trips. However, the 
off-center distances of ‘in-the-loop’ eyes were observed to periodically rise and fall with 
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respectively low and high driving scene demands (as operationalized by steering angle, traffic 
count, and speed).  

 

Taken together, the studies of Part 3 emphasize the viability of measuring relations between driver 
eyes and driving scenes at a behavioral level. An applicable situated DMS conclusion was that 
specific measureable (visible) scene demand features of road curvature and traffic count could 
reliably be represented in low-level pre-cognitive eye movement measurements. Next, the studies 
of Part 4 executed simulator proof-of-concept design validations of various integrations of real-time 
vigilance DMS and driving automation.  

 

Chapter 4.1 implemented a driving simulator proof-of-concept real-time DMS and driving 
automation integration (i.e., where the automation backs up a driver that looks away too long) that 
showed safety and acceptance improvements over an emulated concept of present-day on-market 
functional allocations of automated driving (i.e., where the automation de-activates itself upon 
detecting distraction). 

 

Chapter 4.2 extended the successful proof-of-concept from Chapter 4.1. Inattention problems with 
supervising driving automation were evidenced (but also reduced from a condition requiring one 
hand be kept on the wheel). Situated and implicit DMS integration designs of adaptive-backup 
control showed user interaction and performance improvements. 

 

Taken together, the studies of Part 4 emphasize problems with presently released driving 
automation designs where humans supervise without continuous physical involvement 
requirements. Most importantly, the Part 4 studies confirm viability of real-time eye-based DMS 
integration with driving automation towards practical user experience and safety advantages not 
only when deployed in an adaptive-backup directionality for transition of control, but also as from a 
situated version of DMS specifically. 

 

Conclusions, Recommendations, and Impact 

It can be concluded from this thesis, that to develop DMS of driving vigilance, eye measurements 
(especially of movement distances) and scene contents (especially road curvatures and collision 
hazards) are important and relatable factors. Furthermore, it is concluded that these factors are 
obtainable in viable ways for future research and development application efforts. Specifically, the 
present thesis studies suggest means for DMS to be targeted to protect and maintain the lower 
foundational level or inner-most loop of driving attention at a behavioral level (rather than 
interactive implicit cognitive layers and representational experiences that can be added on top). 

 

To achieve automatic DMS contributing to transportation safety we need to include human-like 
intelligence in DMS assessments of human beings across levels of driving automation. Humans are 
an adaptive and social species that take/expect situated information and judgments as a given (esp. 
when they are being criticized as being negligent). While retaining meaningful specificity that avoids 
misses, perceived false alarms from end-users should be reduced by DMS use of lower-level 
behavioral (visuomotor) assessments of eyes and scene features taken together in relation to each 
other. Practical recommendations for future research fall under two general categories: (1) greater 
fidelity/complexity in driving simulations (e.g., more traffic, intersections, and real-life secondary 



 
 

xii 

tasks should provide greater generalizability of naturalistic driver adaption to driving scene 
demands) and (2) greater instrumentation technology in on-road vehicles (e.g., better knowledge 
of the driving scene contents and eye movement behaviors with improved measurement 
capabilities). Additionally, driving video recordings are recommended as a growing research 
resource that offers a hybrid of enhanced stimulus/behavioral fidelity towards on-road applications 
that also allows for laboratory levels of repeatability and control. 

 

A situated approach is expected to better avoid cognitive ambiguity/dilemmas, and so serves to 
make more acceptable DMS more tractable. Otherwise, as a result of DMS over-alerting, people 
may not heed safety warnings (SAE Level 0), may become upset with unexpected steering or brake 
adjustments (SAE Level 1), may misuse driving automation by not returning their attention when 
prompted (SAE Level 2), may reject and/or not be ready during control transition requests (SAE 
Level 3), and may miss out on important inferences of their trust/satisfaction with autonomous 
driving behavior (SAE Level 4-5).  

 

Very commonly, experimental research results are caveated as depending on the situation/context. 
This thesis supplies ways to better know the specifics of driving scenes and driver readiness. By 
knowing how much eye movement is appropriate for a specific set of visible demands, the burdens 
of sustained driving attention and/or supervisory oversight of driving automation can be alleviated 
via reduction of unnecessary DMS alerts. Additionally, from the same relational/situated 
knowledge, driver support can be more judiciously administered and fine-tuned on an as-needed 
basis (e.g., adaptive back-up control) rather than in a gross sweeping way that propagates catch-22 
ironies (supervising automation that purports to replace human activity) for as long as such support 
falls short of full-time 100% perfection and true autonomy. 
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Samenvatting 
 

Probleemstelling 

De Wereldgezondheidsorganisatie erkent verkeersongevallen als een volksgezondheidsepidemie 
met dagelijks gemiddeld meer dan 100 doden in de VS en meer dan 3.000 wereldwijd. In de 
zoektocht naar onderliggende oorzaken, worden menselijke fouten (met name die van 
onvoldoende aandacht) vaak als een hoofdschuldige geïdentificeerd. Daarom zijn de hedendaagse 
auto-industrie en haar voorvechters op het gebied van veiligheid erg geïnteresseerd in het 
bevorderen van geautomatiseerde / autonome voertuigen (AV) om zich te transformeren. Een 
complicatie van menselijke factoren ontstaat echter door AV-technologie op evoluerende manieren 
toe te passen op openbare wegen: de continue rijtaak verandert in een taak van toezicht houden 
en tussenkomen in geval van nood voor de automatisering van de besturing. Over het algemeen 
wordt verwacht dat menselijke operatoren met uitdagingen zullen worden geconfronteerd, met 
name voor de overgangsfasen van de SAE-niveaus van automatisering van de besturing: ongeacht 
of zij eindgebruikers zijn die als voltijdse opzichters (SAE-niveau 2) of als soort van 
veiligheidssysteem ingrijpen en op afroep werken (SAE niveau 3), of gehuurde testrijders die de 
ontwikkeling van autonome voertuigen overzien (SAE level 4+). 

 

Thesis Doel en Aanpak 

Binnen een groter project op het vlak van menselijke factoren bij geautomatiseerd autorijden 
(HFAuto, PITN-GA-2013-605817), was het doel van dit proefschrift: 'een systeem ontwikkelen dat de 
waakzaamheid van de bestuurder kan bewaken'. Met een Oxford English Dictionary-definitie van 
'de actie of toestand van het nauwlettend in de gaten houden voor mogelijk gevaar of 
moeilijkheden', is waakzaamheid dus betrokken bij allerlei soorten autorijden. Omdat autorijden 
echter geen volledige en onverdeelde aandacht vereist (ondanks tegenovergestelde gemakzuchtige 
aannames), treden er praktische problemen op van zodra men probeert de concepten 'voorzichtig', 
'gevaar' en / of 'problemen' te operationaliseren en in het bijzonder voor systemen om de 
bestuurder onder toezicht te houden (DMS) waar onnodige waarschuwingen het vertrouwen van 
eindgebruikers, de aanvaarding en de naleving van het systeem aantasten (het zogenaamde ‘cry-
wolf-effect'). Meer kennis van specifieke aandachtsbehoeften (d.w.z. in welke omstandigheden) zal 
naar verwachting resulteren in betere beoordelingen van de paraatheid van bestuurders hoe om te 
gaan met verschillende niveaus van automatisering van de besturing.  

 

De geselecteerde benadering om te voldoen aan de doelstelling van het proefschrift was het 
onderzoeken van de waakzaamheid vanuit een cognitieve benadering van de systeemtechniek 
(ecologisch perspectief). In plaats van het concept van waakzaamheid te beperken tot een soort 
interne staat / eigenschap van een bestuurder, behandelde dit proefschrift de waakzaamheid als 
een staat / eigenschap van een systeem (d.w.z. de relatie tussen een bestuurder en een rijscène / 
situatie). Om te differentiëren ten opzichte van de traditionele status-quo, plaatst dit proefschrift 
doelbewust de kwalificatie 'situated' om cognitie, waakzaamheid en / of DMS, enz. te beschrijven 
die direct rekening houdt met de huidige omstandigheden (de rijstijl) in combinatie met 
conventionele, op de bestuurder gerichte maatregelen. 
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Methoden 

Onlangs heeft video-opname- en verwerkingstechnologie een exponentiële sprong voorwaarts 
gemaakt met behulp van gereduceerde vormfactoren en kosten. Aldus moeten cameragebaseerde 
fysiologische en omgevingsmaatregelen (in het bijzonder het volgen van oogbewegingen en 
straatbeelden / segmentatie) in toenemende mate bruikbare onderzoekstoepassingsgebieden zijn 
ter ondersteuning van een cognitieve systeemtechnische benadering van ‘situated’ 
waakzaamheidbewaking voor het besturen van voertuigen. Toenemende niveaus van AV-controle 
verminderen de handen-op-stuur en voet-op-pedaal activiteiten als informatiebronnen over het 
huidige gedrag van een bestuurder, dus video's (en het volgen van oogbewegingen) blijven over als 
bruikbare bronnen voor de beoordeling van chauffeurs. Vragen voor onderzoek / toepassing lopen 
uiteen van 'Wat is het aandachts- / waakzaamheidsniveau van de bestuurder?' Naar vragen die 
meer lijken op 'Is de bestuurder betrokken / waakzaam genoeg voor de huidige eisen?' Door 
tegelijkertijd gefilmde aspecten van de rijstijl te overwegen (en met betrekking tot de taakinhoud 
en -eisen). Bij het detecteren van disproporties functioneert een ‘situated’ stuurprogramma-
monitorsysteem voor het herstellen van het nominale evenwicht tussen stuurprogramma- en 
scènevereisten via verschillende soorten DMS-betrokkenheid, of het nu gaat om informatie 
(mededelingen, waarschuwingen, alarmsignalen enz.) En / of acties (vertraging, overgang van 
besturing, enz.). 

 

Omdat nauwkeurige voorstellingen van echte werkdomeinen en ecologische beperkingen 
essentieel zijn voor cognitieve systeemtechnische benaderingen, heeft dit proefschrift verschillende 
oogmetingen van zowel nominale als afwijkende visuele besturing, onder een verscheidenheid van  
veeleisende en gemakkelijke rijomstandigheden zowel in het lab als in de praktijk opgetekend en 
gerelateerd. De huidige thesis omvat daarom een reeks methoden van hoge, middelmatige en lage 
betrouwbaarheid om ‘situated’ toepassingen van oogmeting van de bestuurder te onderzoeken in 
de richting van kwesties van de evaluatie van de waakzaamheid. In het proefschrift wordt 
theoretisch en empirisch onderzoek gebruikt in de vorm van literatuurstudie, discrete metingen van 
de oogbewegingen, filmopnames van straatbeelden met een boordcamera, groeperen van  
straatbeelden via publieksraadpleging, metingen op de weg en een rijsimulator.  

 

Resultaten en Verbindingen 

Dit proefschrift bestaat uit vijf delen; het eerste deel introduceert de relevante achtergrondtheorie 
en het raamwerk dat ten grondslag ligt aan het proefschrift en het laatste deel bespreekt de 
belangrijkste conclusies. Onderdelen 2-4 richten zich op beoordelingen voor waakzaamheid van de 
bestuurder (Deel 2), experimenten om straatbeelden en bestuurdersogen te relateren (Deel 3), en 
de integratie van ooggebaseerde DMS met adaptieve stuurautomatisering in een rijsimulator (Deel 
4). 

 

Hoofdstuk 2.1 is gericht op het karakteriseren van waakzaamheidstaken die worden toegepast in 
het stimuleren van onderzoek, in termen van instructies / voorwaarden, signaaltypen / snelheden 
en werkcomponentkenmerken in vergelijking met de klassieke literatuur op het vlak van de 
waakzaamheid. De beoordeling ondersteunt het belang van bewakingsdetails voor waakzaamheid 
(dat zijn er 18 in Tabel 2.1.1) die ontbreken voor het voorspellen / beheren van conventionele 
rijbewustheidsafname-situaties: specifieke consensusdefinities van conventionele 
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besturingssignalen, ruis en vereiste reacties. Echter, voor het toezicht op geautomatiseerd rijden, 
worden eigenschappen zoals de klassieke rijbewustheidsafname theorie besproken als het 
vergroten van de kans op problemen: temporele en ruimtelijke onzekerheid van intermitterende / 
zeldzame signalen die tijdkritische respons vereisen, binnen langdurige tijdspannes voor het 
uitvoeren van een taak en verhoogde eentonigheid. De conclusies uit Hoofdstuk 2.1 bevelen dus 
aan tot voorzichtigheid en suggereren (her-)ontwerpmogelijkheden voor het inzetten van 
geautomatiseerd rijden.   

 

Hoofdstuk 2.2 stelt zes thema's voor oplossingsgebieden voor om problemen met de afname van 
de waakzaamheid bij het menselijke toezicht op automatisering op te lossen. Over het algemeen 
beschrijven de eerste drie thema's vermijdingsstrategieën ofwel in een harde betekenis ofwel 
verschillende versies van een zachte houding: objectieve of subjectieve vereenvoudigingen van 
taken op het vlak van toezicht houden. De laatste drie thema's zijn gebaseerd op algemene 
leertheorie-paradigma's in een chronologische volgorde: gedragspsychologie, cognitivisme en 
ecologisch constructivisme. In het bijzonder worden de oplossingsgebieden als volgt opgesomd, 
benoemd en geïllustreerd. Oplossingsgebied (1): vermijd de rol van langdurig menselijk toezicht op 
automatisering (d.w.z. opschorten / opheffen / overslaan van automatiseringsniveaus die menselijk 
toezicht en een tussenkomst in geval van nood vereisen). Oplossingsgebied (2): reduceer de 
toezichthoudende rol langs een objectieve dimensie (dat wil zeggen, verander de duur of omvang 
van geautomatiseerde operaties). Oplossingsgebied (3): verminder de toezichthoudende rol langs 
een subjectieve dimensie (d.w.z. deel verantwoordelijkheden en / of verander de 
eindgebruikerervaring en -indrukken). Oplossingsgebied (4): ondersteun de superviserende rol 
vanuit het gedragspsychologie-paradigma (d.w.z. conditioneer het gewenste doelgedrag door 
middel van training en / of selectie). Oplossingsgebied (5): ondersteuning van de toezichthoudende 
rol vanuit het dyadische cognitivisme-paradigma (d.w.z. ontwerpen informeren ter ondersteuning 
van cognitieve processen en mentale modellen). Oplossingsgebied (6): ondersteuning van de 
toezichthoudende rol vanuit het triadische ecologische paradigma (d.w.z. ontwerpen informeren 
om gebruik te maken van externe omgevingscontexten en / of taakoverwegingen). 

 

Resultaten uit Hoofdstuk 2.2 tonen aan dat onafhankelijke beoordelaars de thema's op een 
betrouwbare manier konden toepassen om aanbevelingen te categoriseren uit invloedrijk 
onderzoek naar interactie tussen mens en automatisering. De meest voorkomende 
oplossingsgebieden voor het probleem om de aandacht erbij te houden tijdens het toezicht houden 
op automatisering omvatten degene die gericht zijn op interne cognitieve toestanden, gevolgd door 
diegene met een breder situationeel (taak / ecologisch) perspectief. 

 

Alles bij elkaar genomen, benadrukken de studies van Deel 2 het belang van cognitieve en situatie-
afhankelijke themabenaderingen voor het beheersen van waakzaamheidsproblemen in het 
algemeen, maar tonen ook een gebrek aan beschikbare praktische details (dat wil zeggen, welke 
eigenschappen van straatbeelden en oogmetingen van de bestuurder) waarmee men zou kunnen 
doorgaan met het bouwen van een ‘situated’ DMS. Aldus werden toegepaste oogmetingen van de 
bestuurder en straatbeelden uitgevoerd in Deel 3. 

 

Hoofdstuk 3.1 presenteert een breed maar efficiënt schema voor de categorisering van de rijscène-
inhoud voor aan- / afwezigheid van een functie (Bijlage 3.1.B), bijvoorbeeld type en locaties van 
andere weggebruikers, voertuiggedrag, zoals rijstrookwisselingen en bochten, en details van de 
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infrastructuur zoals wegmarkeringen, bewegwijzering, en wegkromming, enz. Hoofdstuk 3.1 
bevestigt relatief hoge niveaus van nauwkeurigheid en betrouwbaarheid in aantekeningen via 
publieksraadpleging met behulp van dat schema. Omdat externe deelnemers aan de 
publieksraadpleging de scènecategorisaties ongeveer tien keer sneller hebben voltooid dan 
conventionele intern verbonden onderzoekers, zonder degradatie van de kwaliteit van dat werk, 
wordt publieksraadpleging beschouwd als een interessant potentieel voor situatie-afhankelijk 
rijveiligheidsonderzoek. Al met al werd de meting van aspecten van rijscènes vastgelegd op een 
concrete en haalbare manier, wat suggereert dat gecontextualiseerde rij-informatie niet te vaag / 
lastig te verzamelen en vast te leggen is. 

 

Hoofdstuk 3.2 bepaalt specifieke kenmerken van het rijscenario (d.w.z. de wegkromming en het 
verkeer) om van belang te zijn voor de waargenomen rijprestaties en het bijbehorende gedrag, in 
plaats van cognitieve oogbewegingen (d.w.z. grootte van de oogsprong). Het grote aantal van 
aantekeningen voorziene scènesegmenten in Hoofdstuk 3.1 (~ 12.862 scènes uit ongeveer 50 
verschillende rijvideo's) maakte een selectie mogelijk van stimulusmateriaal met voldoende 
resolutie om voorspellende regressieanalyses uit te voeren in Hoofdstuk 3.2 (dat wil zeggen, 
continu geschaalde onafhankelijke variabelen om continu geschaalde afhankelijke variabelen te 
evenaren). Een van de resulterende vergelijkingen vertegenwoordigt bijvoorbeeld de hoeveelheid 
waargenomen inspanning die kan worden verwacht in de aanwezigheid van specifieke 
hoeveelheden inhoud van de rijscène, terwijl een andere, de resulterende grootte van de 
oogsprong. Met name de metingen van oogbewegingen op lager niveau vertoonden sterkere 
(betrouwbaardere) relaties met waargenomen inspanningen en zichtbare scène inhoud (laterale / 
longitudinale conflicten) dan de hoger niveau weergave (en oogmetingen) aspecten van 
informatieopname (fixatieduur) en toegenomen cognitieve verwerking (pupilgrootte). 

 

In Hoofdstuk 3.3 worden zowel oogbewegingen op de weg als aspecten van de rijstijl gemeten. 
'Out-of-the-loop'-ogen vertoonden over het algemeen grotere excentrische bewegingsafstanden 
over hele reizen. Er werd echter waargenomen dat de excentrische afstanden van 'in-the-loop'-
ogen periodiek stijgen en dalen met respectievelijk lage en hoge rijscène-vereisten (zoals 
geoperationaliseerd door stuurhoek, aantal verkeerssituaties en snelheid).  

 

Alles bij elkaar genomen, benadrukken de studies van Deel 3 de levensvatbaarheid van het meten 
van relaties tussen ogen van de bestuurder en autoraces op gedragsniveau. Een toepasselijke 
‘situated’ conclusie van DMS was dat specifieke meetbare (zichtbare) scènevereiste-kenmerken van 
wegkromming en verkeerstelling betrouwbaar konden worden voorgesteld in pre-cognitieve 
oogbewegingsmetingen op laag niveau. Vervolgens voerden de studies van Deel 4 
ontwerpvalidaties van een simulator proefmodel uit van verschillende integraties van real-time 
waakzaamheid DMS en aanstuurautomatisering.  

 

Hoofdstuk 4.1 implementeert een real-time DMS voor het rijsimulator-proefmodel en de 
automatisering van de rijdynamiek (dwz waarbij de automatisering dient als ‘back-up’ voor een 
bestuurder die te lang wegblijft) die verbeteringen toont in de veiligheid en de acceptatie ten 
opzichte van een geëmuleerd concept van de huidige functionele toewijzingen van 
geautomatiseerd rijden (dat wil zeggen, waarbij de automatisering zichzelf deactiveert bij het 
detecteren van afleiding). 
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Hoofdstuk 4.2 breidt het succesvolle proefmoel uit Hoofdstuk 4.1 uit. Onoplettendheidsproblemen 
met het toezicht op de automatisering van de auto werden bewezen (maar ook verminderd ten 
opzichte van een toestand waarbij één hand op het stuur werd gehouden). ‘Situated’ en impliciete 
DMS-integratieontwerpen van adaptieve reservecontrole toonden gebruikersinteractie en 
prestatieverbeteringen. 

 

Alles bij elkaar genomen, benadrukken de studies van Deel 4 problemen met momenteel 
uitgebrachte automatiseringsontwerpen voor auto's waar mensen toezicht houden zonder aan 
voortdurende fysieke betrokkenheidseisen te voldoen. Het belangrijkste is dat de studies in Deel 4 
de haalbaarheid van real-time ooggebaseerde DMS-integratie bevestigen met automatisering van 
de besturing in de richting van praktische gebruikerservaring en veiligheidsvoordelen, niet alleen bij 
de inzet in een directionele richting met adaptieve reserve voor de overgang van besturing, maar 
ook vanaf een ‘situated’ versie van DMS specifiek. 

 

Conclusies, Aanbevelingen en Impact 

Uit dit proefschrift kan worden geconcludeerd dat het ontwikkelen van DMS voor waakzaamheid, 
oogmetingen (met name van bewegingsafstanden) en scènes (met name wegkrommingen en 
botsingsgevaren) belangrijke en relateerbare factoren zijn. Bovendien wordt geconcludeerd dat 
deze factoren op haalbare manieren kunnen worden verkregen voor toekomstige inspanningen op 
het gebied van onderzoek en ontwikkeling. Specifiek suggereren de huidige thesisonderzoeken 
middelen voor DMS om gericht te zijn op het beschermen en onderhouden van het lagere 
fundamentele niveau of de meest innerlijke lus van rij-aandacht op gedragsniveau (in plaats van 
interactieve impliciete cognitieve lagen en representatieve ervaringen die erbovenop aan kunnen 
worden toegevoegd). 

 

Om een automatische DMS te bereiken die bijdraagt aan de transportveiligheid, moeten we 
menselijke intelligentie opnemen in DMS-beoordelingen van mensen in verschillende 
automatiseringsniveaus. Mensen zijn een adaptieve en sociale soort die ’situated’ informatie en 
beoordelingen als gegeven beschouwt / verwacht (vooral wanneer ze als nalatig worden 
bekritiseerd). Met behoud van een betekenisvolle specificiteit die missers vermijdt, moeten 
vermeende valse alarmsignalen van eindgebruikers worden verminderd door DMS-gebruik van 
gedragsgerichte (visuomotorische) beoordelingen van ogen en scènefuncties samengenomen in 
relatie tot elkaar. Praktische aanbevelingen voor toekomstig onderzoek vallen onder twee 
algemene categorieën: (1) grotere betrouwbaarheid / complexiteit in rijsimulaties (bijv. meer 
verkeer, kruispunten en reële secundaire taken moeten de generaliseerbaarheid van naturalistische 
aanpassing van de bestuurder aan de eisen van de draaicirkel vergroten) en 2) grotere 
instrumentatietechnologie in voertuigen op de weg (bijv. betere kennis van de inhoud van de rijstijl 
en oogbewegingsgedrag met verbeterde meetmogelijkheden). Bovendien wordt het besturen van 
video-opnames aanbevolen als een groeiende onderzoeksbron die een hybride biedt van 
verbeterde stimulus / gedragsgetrouwheid ten opzichte van praktijktoepassingen op de weg die 
ook laboratoriumniveaus van herhaalbaarheid en controle mogelijk maakt. 

 

Van een ‘situated’ benadering wordt verwacht dat deze cognitieve ambiguïteit / dilemma's beter 
vermijdt en dient om een acceptabeler DMS beter hanteerbaar te maken. Zoniet, als gevolg van 
DMS-overwaarschuwing, zouden mensen mogelijkerwijs geen rekening meer houden met 
veiligheidswaarschuwingen (SAE Niveau 0), kunnen ze overstuur raken door onverwachte stuur- of 
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remaanpassingen (SAE Niveau 1), waardoor automatisering mogelijk niet wordt gereactiveerd 
wanneer daarom wordt gevraagd (SAE Niveau 2), kunnen ze afwijzen en / of niet gereed zijn tijdens 
controle-overgangsaanvragen (SAE Niveau 3), en kunnen ze belangrijke gevolgtrekkingen missen 
van hun vertrouwen / tevredenheid met autonoom rijgedrag (SAE Niveau 4-5).  

 

Zeer vaak zijn experimentele onderzoeksresultaten onder voorbehoud afhankelijk van de situatie 
en/of context. Dit proefschrift biedt manieren om de bijzonderheden van rijtaferelen en paraatheid 
van de bestuurder beter te leren kennen. Door te weten hoeveel oogbeweging geschikt is voor een 
specifieke set van zichtbare eisen, kunnen de lasten van aanhoudende rij-aandacht en / of 
supervisie-toezicht op automatisering van de bestuurder worden verminderd door het aantal 
onnodige DMS-waarschuwingen te verminderen. Bovendien kan vanuit dezelfde relationele / 
‘situated’ kennis ondersteuning van de bestuurder beter worden beheerd en afgestemd op een 
‘indien nodig’ basis (bijv. adaptieve achteruitrijcontrole) in plaats van op een ruwe allesomvattende 
manier die hopeloze dilemma’s voortbrengt (toezicht houden op automatisering die beweert 
menselijke activiteiten te vervangen) zolang deze ondersteuning niet volstaat voor 100% perfectie 
en ware autonomie. 

 

- vertaald door "Google Translate" en Dr. ir. T. Lombaerts, Senior Aerospace Research Engineer en een 
goede vriend bij NASA Ames Research Center. Bedankt Thomas! 
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1. Background 

1.1 Problems – Traffic Safety Costs  

The current automotive driving domain presents formidable adverse costs for both physical and 
fiscal health. Nantulya and Reich (2002) have compared consequences of road traffic injuries to a 
worldwide societal epidemic. Within the single year of 2013, there were 32,893 motor vehicle 
traffic crash fatalities in the USA (NHTSA, 2018) and 1.25 million road traffic deaths across the 
entire world (WHO, 2018). Again within the year of 2013 in the USA, there were an approximate 
1.10 fatalities per 100 million vehicle miles traveled (NHTSA, 2018) and with an estimated 2.99 
trillion miles driven that year (FHA, 2018), reflects an average of about 90 people dying on the 
roads every single day. Beyond loss of life, other losses from car crashes can be substantial for a 
country’s economy, including: property damage, lost earnings, medical costs, emergency services, 
travel delays, lost time at work, quality of life and/or legal fees. In the USA in 2010, highway 
accidents alone produced $836 billion of costs, representing equivalencies of an annual expense of 
$2,708 per person if spread evenly across the entire population of 308.7 million people, 5.6 percent 
of the $14.96 trillion real USA Gross Domestic Product, and an estimated realized total tax payer 
cost of $18 billion which approximates $156 of additional taxes paid by every household (Blincoe et 
al., 2015).  

 

1.2 Causes – Supposed Human Culprits 

Human errors have been predominately blamed for vehicle traffic fatalities and accidents. The USA 
Department of Transportation Secretary has declared that ‘the major factor in 94 percent of all 
fatal crashes is human error’ (NHTSA, 2017). Compared to vehicle factors and road/atmosphere 
conditions, drivers have been implicated in a vast majority of causes for crashes with cited 
problems including: inadequate surveillance, distraction, and inattention (NHTSA, 2008). Crash data 
from 2010 showed that 17 percent (an estimated 899,000 crashes) of all police-reported crashes 
involved some type of driver distraction (NHTSA, 2013). In a 50 year review of driving safety 
research, Lee (2008) relates that crashes are often caused by drivers failing to look ‘at the right 
thing at the right time’ and cites supporting evidence showing that even short glances away 
increase crash risk (Klauer et al., 2006).  

 

1.3 Solutions – Automated/Autonomous Vehicle Technology 

The automotive industry has previously deployed advanced driver support systems (ADAS) that 
have saved many lives yet still see slow market uptake (Kyriakidis et al., 2015). Furthermore, the 
industry is also now developing automated/autonomous vehicles (AVs). Various DARPA multi-
million dollar driving challenges (i.e., 2004 Grand Challenge, 2005 Grand Challenge, and 2007 Urban 
Challenge) (Wikipedia:DARPA Grand Challenge, 2018) have served as significant catalysts. In 2009, 
Google embraced winning participants from those challenges to lead and develop its own ‘self-
driving car project’ (Wikipedia:Waymo, 2018). Thus, the so-called ‘Google Car’ became a uniquely 
positioned front-runner, given not only its DARPA head start, but also its Google-backed world-
wide-web sphere of influence and potential to captivate audiences everywhere. Envisioned 
automotive AV benefits have since included aspects of increasing traffic efficiency (Van Arem et al., 
2006), reducing pollution (Spieser et al., 2014), and eliminating traffic accidents and/or fatalities 
(Gao et al., 2014). By now, nearly every automobile manufacturer is investing in research, 
development and deployment of various forms of AVs. However, autonomous vehicles have also 
been placed along an emerging technology hype cycle (Panetta, 2017) where there are risks of 
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‘inflated expectations’ and a ‘trough of disillusionment’ before a slow ‘slope of enlightenment’ can 
be climbed towards an eventual  ‘plateau of productivity’. 

1.4 Complications – Continual Evolution of Imperfect AVs  

AVs are continuing to evolve within and between different stages of release and development. In 
order to anticipate and understand potential issues of vigilance, misuse, and monitoring 
requirements (e.g., complacency), critical looks are required at the evolving ‘state of the art’. 
Concern about companies’ readiness for widespread deployment of AVs (esp. while lacking a 
stronger regulatory leadership role from NHTSA) has been expressed by a human-automation 
interaction expert in a congressional testimony (Cummings, 2016). From a RAND Corporation 
report, Kalra & Paddock (2016) calculated that self-driving cars need to drive 275 million miles 
without a fatality in order to verify them to be as safe as human drivers (and sometimes hundreds 
of billions of miles would be needed to demonstrate their reliability). Publically available 
information regarding reliability performance of AVs should reasonably be expected to constitute a 
critical causal factor in developing calibrated trust and end-user expectations in order to support 
appropriate interactions with AVs. Recently, Hancock et al. (2019) offered recommendations to 
address such AVs challenges:  

 

‘Two vital elements here concern calibrated operator trust and communicated transparency. 
For the former, design processes should seek to design explicitly for appropriate levels of 
trust by human occupants in light of the known reliability of the automation ... This goal is 
difficult, but achieving it is critical. It is difficult because we are still finding our way in 
understanding the contextual reliability of differing forms of automation and 
semiautomation offered by various manufacturers. It is critical, because if there is 
insufficient human trust in autonomous and semiautonomous systems, there will be both 

little usage and chronic misuse ...’ 

 

Despite their envisioned collective success and eventual impact (e.g., by October 2018 Waymo has 
logged more than 10 million miles driving in autonomous mode on public roads since 2009), even 
back in the sparse desert environments, or relatively controlled conditions of the urban air force 
base courses, the DARPA competition AVs were far from perfect. For example, in the first 2004 
competition no AVs finished the 150 mile route, and instead the furthest distance achieved was 
only about 7.32 miles. In 2005, only 5 of the 23 AVs completed a 132 mile course. In 2007, 6 out of 
11 AV finalists completed a 60 mile urban area course in the allotted 6 hour timeframe. Additionally 
in 2007, the contest also featured both robot collisions (with each other, pillars, and abandoned 
buildings) as well as robot traffic jams (Markoff, 2007). 

 

About a decade later, the California Department of Motor Vehicles (CA-DMV) reported that there 
were 61 autonomous vehicle testing permit holders operating on the public roads of California (as 
of January 2, 2019). Consequently, CA-DMV has been evolving standardized reporting requirements 
for issues such vehicles are facing in terms of both disengagement and collision reports. Thus, in 
California, the rate of disengagement incidents for autonomous cars driven on public roads can be 
observed to average about one for every 716 miles (Bhuiyan, 2017a, Bhuiyan 2017b) when 
averaging across eight different companies testing AVs (Max: 5000 miles, Min: 0.68 miles). More 
formally, Favaro et al. (2018) computed cumulative disengagements as a function of cumulative 
reported autonomous miles and after learning effects were shown to exponentially decrease rates 
in the first 1 million miles, an average ‘steady-state’ frequency was determined to be at around one 
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disengagement per around 210 miles. While disengagements can be caused by a multitude of 
reasons, range in terms of severity, and come from various sources  such as the vehicle or the 
driver/supervisor (as detailed in Favaro et al., 2018), the accident rates of AVs have also been 
computed by Favaro et al. (2017) to be one order of magnitude worse when compared to 
conventionally driven vehicles ‘with a mean mileage before a crash for conventional vehicles of 
about 500,000 miles, compared to 42,017 miles for AVs’.  

Within a climate of a technological automotive arms-race and consumer expectations, the on-road 
automated driving committee of the International Society of Automotive Engineers (SAE) produced 
a widely adopted standard J3016 in 2014 (SAE, 2014). It has been revised twice already (SAE, 2016; 
SAE, 2018a), and its most renowned chart another time still in December 2018 (SAE 2018b, Fig. 
1.1.), to describe operational definitions to support a common language for discussion and 
development within the AVs community. In their words, the J3016 was issued, in part, ‘to speed the 
delivery of an initial regulatory framework and best practices to guide manufacturers and other 
entities in the safe design, development, testing, and deployment of highly automated vehicles 
(HAVs)’ (SAE 2018b). Akin to Sheridan and Verplank’s seminal (1978) ‘Levels of Automation’, the 
SAE ‘Levels of Driving Automation’ extend beyond a simplistic all-or-none notion of 
manual/autonomous control, by providing a graded approach that conveys a sequence of 
progressive steps of increased automation involvement in the dynamic driving task.  

 

 
Figure 1.1. SAE J3016 levels of driving automation. Adopted from SAE (2018b).   

 

A dangerous dilemma found within such an evolutionary approach regarding AVs appears in the 
middle levels of imperfect driving autonomy (i.e., ‘automation’) which while allowing for hands and 
feet free operations, either requires continuous active human supervision (i.e., SAE Level 2) or 
readiness for automation initiated return of control to manual involvement (i.e., SAE Level 3). Banks 
et al. (2014) argued that incrementally increased vehicle automation (along the way to full 
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autonomy) may contribute to safety concerns rather than overcome them via an increased 
pressure put on drivers to monitor both the driving environment and the behavior of vehicle sub-
systems. Notably, such concerns also holds for more advanced autonomy levels (SAE level 4 and 
higher) which are still undergoing iterative on-road test and development with required human 
supervision and intervention (i.e., safety/test engineers).  

 

Decades of research from the discipline of human factors has suggested problems and ironies in 
putting humans into positions where they must monitor and/or back up automated processes. The 
highly cited study of Norman Mackworth (1948) exposed a vigilance decrement in the performance 
of military personnel in simulated radar detection tasks. Hancock (1991, 2013) argues that the 
human operator is ‘magnificently disqualified’ for a particular form of sustained attentive response 
and that there ‘can be little doubt that human beings have been aware of the putative failings of 
personnel engaged in long but uneventful period on watch’. Additionally, while vigilance problems 
are often regarded as a case of under-arousal associated with undemanding assignments, 
alternative perspectives have found the opposite to explain vigilance tasks as being highly 
demanding (i.e., effortful and stressful) on human mental resources (Warm et al., 2008). 
Parasuraman & Riley (1997) has warned that ‘it has become evident that automation does not 
supplant human activity; rather, it changes the nature of the work that humans do, often in ways 
unintended’. Likewise, Bainbridge (1983) introduces ironies where automation is used to resolve 
human error and humans are consequentially tasked to supervise that automation (which is not 
perfect)—the humans are then susceptible to further errors of manual and cognitive de-skilling that 
come as a result from lack of rehearsal and direct involvement.      

 

2. Driver Monitoring Systems  
While perfect AVs are not yet available to fully replace the human driver responsibility, automatic 
attention monitors present a reasonable solution to help mitigate consequences of inadequate 
surveillance problems from both the original crash causes in more traditional vehicles as well as the 
anticipated challenges regarding human oversight of mid-level AVs. In essence, a driver monitoring 
system (DMS) is concerned with detections of aberrant driver states or behavior and thus equally 
applicable in assessing engagement whether the observed human’s driving role is that of manual 
control (SAE Level 0), assisted control (SAE Level 1), supervisory control (SAE Level 2) or 
automation-backup upon request (SAE Level 3) because all entail normative requirements for driver 
vigilance (e.g., readiness to respond to danger) and thus some attention to the driving 
environment/scene. While previous DMS could rely on measures of drivers through their hand and 
feet activity (e.g., steering and pedal manipulation) and consequences on vehicle motions (e.g., 
lateral lane position and longitudinal accelerations) these will be reduced or absent as driver 
inference resources as the level of driving automation is increased and driver responsibility 
becomes more hands- and feet- free. 

 

In driving hands- and feet- free, the use of eye-tracking technology is in general expected to help 
address driver distraction problems and improve traffic safety. Camera and computation 
technologies have recently been progressing through reduced commodity costs (smaller, cheaper) 
without compromise on quality (resolution, capability). Human-centered intelligent vehicles often 
include video based head/eye-tracking as a major system component (Ohn-Bar & Trivedi, 2016). 
Hecht et al. (2019) conclude that overall, (with EEG lacking practicality and subjective measures 
being prone to misjudgment), ‘eye tracking is the technology with the most potential’, due to its 
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‘possibility of non-intrusive measurements and the multitude of information about the driver state’, 
but also retains further developmental needs to increase its reliability. Furthermore, Hecht et al. 
(2019) suggested an apparent consensus problem result of their review that ‘driver state and the 
different constructs lack a common definition’.  

 

Historically, the most common form of DMS has been focused around issues of driver underload 
with related terms including: ‘drowsiness’, ‘sleepiness’, ‘fatigue’, ‘arousal’, etc. (Haworth & Vulcan, 
1991; Barr et al., 2009; Rau, 2005; Hanowski et al., 2008; Blanco et al., 2009; Aidman et al., 2015). 
However, and especially from the onset of omnipresent mobile/smartphones and growing 
commonality of various in-vehicle infotainment options (navigation, audio media, web applications, 
etc.), the use of DMS has been shifting to also include the topic of driver distraction (McGehee et 
al., 2007; Hickman & Hanowski., 2011).  

 

2.1 DMS with relatively lower success 

Haworth and Vulcan (1991) performed laboratory tests of various fatigue monitors in the form of 
eye closures from a pair eye glasses, a head nod device worn over the ear, and a reaction time 
measure to a red dashboard light. Upon detection of an aberrant state (eye glasses and ear-piece), 
or lack of timely response (dashboard light), each device produced a consequential warning in the 
form of an audible alarm or a loud physical buzzing. The authors reported that ‘the devices showed 
an ability to detect fatigue in some cases but were not able to maintain alertness and thus prevent 
performance deterioration’. In summary of their findings, Haworth and Vulcan (1991) stated that: 
‘none of the devices used resulted in fewer or shorter periods of eye closure than when no device 
was used’ (p.13), and ‘performance after the warning signal was not markedly different to before‘ 
(p.17).  

 

Barr et al. (2009) performed a review of 10 different commercially available and research 
drowsiness detection devices that were evaluated against a set of proposed design guidelines, thus 
resulting in a 10 (device) x 18 (criteria) assessment table. The device meeting the highest amount of 
criteria only met half of the criteria set. Criteria met in common across all drowsiness detection 
devices included aspects of being non-invasive, operating in real-time, requiring minimum training, 
and not distracting from driving tasks/other safety devices. Criteria missing (i.e., requiring more 
data than presently available) from all devices included a minimization of missed events and false 
alarms, normal maintenance/replacement costs, proficiency of use, functional awareness, 
perceived safety benefit, intent to purchase, willingness to recommend to others, and susceptibility 
to behavioral adaptations.  

 

A field operational test of a drowsy detection and warning system for heavy vehicle commercial 
truck operators was conducted from a partnership of the Virginia Polytechnical and State University 
Transportation Institute (VTTI), and the Federal Department of Transportation’s Volpe Center (Rau, 
2005; Hanowski et al., 2008; Blanco et al., 2009). The detection/warning system comprised of a 
dashboard camera that used a percentage eye closure (PERCLOS) measure to trigger visual/audio 
alerts to seek rest or increase alertness. General conclusions reported included that drivers in the 
test group were less drowsy compared to baseline, drivers with favoring opinions of systems had an 
increase in safety benefits, and early prototypes of the device had an overall positive impact on 
driver safety. However, a first set of their major research questions (over 50 were included in all) 
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also reported showing either no practical differences (in frequency of alerts decreasing over time) 
or no statistical differences as follows: 

 

 No significant difference—impact on post-alert behavior 

 No significant difference—influence drivers to get more sleep  

 No significant difference—driver achievement of better quality of sleep  

 No significant difference—involvement in safety critical events  

 No significant difference—involvement in at-fault safety-critical events  

 Speculative results—fewer episodes of drowsy driving that were regarded as inconclusive due to 
rather large numbers of false alerts. 

 

2.2 DMS with relatively higher success 

Australian army reservists in an at-risk drowsiness population regarding on-the-job duty vehicle 
commutes were investigated by Aidman et al. (2015). Their system comprised of a set of worn 
glasses that measured blink velocity to generate continuous drowsiness scores (between 0 and 10 
points with one decimal point precision) at 1-minute intervals that were displayed via a 
monochrome dashboard LCD along with an audio alert. Significant effects of the feedback 
conditions were found regarding lower average drowsiness scores, as well as reductions in peak 
amplitudes and durations of drowsiness scores. Subjective report results included significantly 
perceived differences of maintaining safer driving distances and feelings of being less drowsy.    

 

Vehicle video recordings with external coaching from human authority figures produced 
significantly beneficial results with teenage novice drivers (McGehee et al., 2007) and commercial 
truck drivers (Hickman & Hanowski, 2011). Both studies made use of vehicle acceleration trigger 
events (i.e., specified g-force threshold criteria exceedances) to save both forward exterior driving 
scene and interior cabin facing camera footage and automatically transmit these events to parents 
in the case of the teenage participants and to management personnel in the case of the truckers. In 
either case, the incidents were reviewed with the participants by the authority figure and resulted 
in significant reductions in safety-related events.  

 

In summary of the above evaluated DMS applications, what appears to be most important is 
favorable end-user opinion/experiences, internal and external vehicle scene/situation capture, 
human assessments with human review/follow-up as well as continuous assessments with 
interval/ratio measures. In contrast, problems and difficulties are implicated in terms of binary 
lights or audio beeps and challenges regarding high numbers of false alerts.  

 

3. Theoretical Framework 
Collectively, the above evaluations showed mixed results of both problems and success with 
different sorts of DMS. Towards the previously introduced issues of inadequate surveillance for 
both traditional vehicles and future AVs, a scientific underpinning to account for such differences 
should be useful to characterize and design future DMS. Several DMS-relevant doctoral theses have 
been recently published regarding the related topics of maintaining/measuring adequate visual 
attention in driving and for such challenges specifically as posed by automated driving. Presently 
relevant major take-away points can be summarized as: a combination of looking away from the 
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road with the occurrence of unexpected events in the driving scene is very dangerous (Victor, 
2005); SAE Level 2 driving automation does not necessarily facilitate the execution of other tasks, 
but even the opposite which contradicts public expectations (Solis-Marcos, 2018); and physiological 
driver state assessment should be combined with ‘data from outside the vehicle (information 
regarding the vehicle environment; e.g., surrounding traffic, traffic signs, and other geo-specific 
information)’ (Van Leeuwen, 2019, p. 173).  

 

In their textbook ‘Display and Interface Design’, Bennett and Flach (2011) promote a paradigm shift 
inspired from and akin to the cognitive systems engineering of Norman (1986), Rasmussen et al. 
(1994), and Vicente (1999) as well as the ecological interface design work of Rasmussen and 
Vicente (1989, 1990), and Vicente and Rasmussen (1990). Therein, Bennett and Flach proposed a 
triadic framework to supersede the presently reigning dyadic perspective in regards to semiotics 
(i.e., the study of signs and symbols and their interpretation or use).  

 

The roots of the presently reigning dyadic approach to interface design are traced to Ferdinand 
Saussure (1857–1913) considered by many as a principal influencer of the science of cognitive 
psychology that would later gain credence around the 1950s. Saussure framed the semiotic 
problem as that of interpretive mappings between signifiers (e.g., symbolic language) and that 
which is signified (e.g., mental concepts). Such a framework fits well with metaphors and goals of 
modern linguistics and computer science (i.e., matching symbols to concepts). In contrast, the work 
of Charles Sanders Peirce (1839 – 1914) framed semiotics in the context of relational links of 
objects and experiences within an ecological surround. Figure 1.2 compares and contrasts the 
dyadic and triadic models of semiotics from Saussure and Peirce respectively.  

 

 
Figure 1.2. A comparison of Saussure’s dyadic model of semiotics with Peirce’s triadic model. Adapted from Bennet and 
Flach (2011), Figure 2.1, p. 18. 

 

Beyond information processing, the triadic framework is concerned with meaning processing, 
where meaning (as understood to refer to the relation between the ecology and the signifier or 
representation) is the unit of interest. Such a focus, as from Bennet and Flach (2011), is in accord 
with James J. Gibson’s notion of the direct perception of affordances that are not properties of 
objects or of mind but a relation of constraints/opportunities between a specific action of a specific 
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actor in a specific situation. For example, an affordance of walking across a sheet of ice covering a 
frozen lake depends on both the thickness of the ice (in reality) and the weight of the would-be 
walker (e.g., an ant vs. a human vs. an elephant). In other words, formulations of internal 
representations and resources are essentially devoid of functional meaning if not specified in 
relation and respects to external situations. 

 

The situated meaning processing conceptualization of Bennet and Flach (2011), as shown in Figure 
1.3, differentiates from conventional information processing approaches in several important ways. 
First, it is not framed in terms of processes in the head, but in terms of dynamics occurring between 
an actor, an information medium, and an ecology. Second, it does reflect a serial progression of 
processes, but an intimate coupling and parallel operation of perception and action (or control and 
observation). Lastly, none of the elements in Figure 1.3 is uniquely associated with either the 
individual or the environment – the ecology reflects the constraints scaled with respect to the 
organism (i.e., affordances). Bennet and Flach (2011) describe their approach of cognitive systems 
engineering and ecological interface design in terms of being problem-driven (as opposed to user- 
or technology-driven with goals of designing interfaces that (1) are tailored to specific work 
demands, (2) leverage the powerful perception-action skills of humans, and (3) use powerful 
interface technologies wisely. In other words, a principal differentiation comes from the direct 
treatment of situation/context which basic experimental scientists tend to want strip away as noise, 
but which is instead recognized as a meaningfully informative piece of the puzzle (e.g., situated 
cognition/action of Suchman, 1987). 

 
Figure 1.3. The dynamics of meaning processing involve interactions between a cognitive system (on the right) and an 
ecology (on the left) as mediated via an interface (in the middle). Perception and action observations are dynamically 
coupled in parallel with each other (terminology colored in green) and also include parallel control loops operating 
between consequences of actions and updates to referent-goals based from errors (terminology colored in black). 
Adapted from Bennet & Flach (2011), Figure 2.3, p. 32.  



 
 

10 

In terms of DMS reliability and ultimately effectiveness, these can thus be considered at different 
levels. From a dyadic perspective, the reliability of the DMS might be evaluated in terms of its 
ability to specify the monitored signal (e.g., an eye closure distance) as being present amidst 
measurement noise and whether those measurements might be interpreted as reflecting a 
construct of interest (e.g., sleepiness). From a triadic perspective, the same signals can further be 
evaluated in terms of meaning by consideration of the task and the environment. Using broader 
aspects and relational information, it is able to address ambiguities such as:  

 

(1) “Is the person awake enough for the present heavily trafficked urban intersections he/she is 
driving through?” 

 

(2) “Is the eye closure because the person is sleepy or because he/she is squinting under direct 
sunlight?” 

 

Presumably, aspects of both the driving situation/scene and the driver change in continuous and 
dynamic ways and this then could be considered inconsistent with binary representations of a too-
simplistic beep or buzz. More continuous value assessments would then plausibly be easier to 
understand, trust, and accept (cp. Aidman et al., 2015). Not only were vehicle dynamics and 
external scenes captured in the successful DMS intervention programs of McGehee et al (2007) and 
Hickman & Hanowski (2011), the assessments also included human-human discussions and 
elaborations of meaningfulness of the automatically triggered events in the form of reviews with an 
authority figure.  
 

People expect many different kinds of benefits from different levels of AVs. However, automation 
benefits are easily undermined by negative user experiences and poor human-computer 
interactions if not designed well enough. If DMS alerts are triggered too often out-of-context (i.e., 
perceived false alarms), then so-called ‘cry-wolf’ effects can decrease driver trust and acceptance 
with consequences ranging between not heeding a warning to actively seeking to defeat safety 
measures they deem annoying/unnecessary. For example, frustrated drivers might de-activate the 
DMS or not use (appropriately or at all) the driving assistance and/or automation it coincides with. 
Thus, the approach of this thesis was to try to understand driving vigilance issues from a situated 
cognition perspective of a triadic meaning processing rather than a dyadic information processing 
perspective (i.e., in line with the Bennett & Flach, 2011 framework). The assumption here is that a 
system that takes situations into account (more akin to how humans naturally do in nearly 
everything they do) would be more familiar and better accepted as something that is more 
‘smart/sophisticated’ than a closed computational model of assessment that might be too easily 
dismissed as ‘simplistic/robotic’. The following two example questions emphasize this subtle yet 
prominent difference in approach. 

 

(1) “How to detect and correct low levels of attention in a driver by measuring his/her eyes?”  
(information processing) 

 

(2) “Is the observed eye behavior appropriate for the present driving task demands and what 
can be changed to restore a balance?” 
(meaning processing)   
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Dyadic information processing perspectives construe meaning as an interpretation between 
concepts to be signified (e.g., latent internal cognitive processes) and representations that act as 
signifiers (e.g., physiological/behavioral measures) while then tending to avoid situations as 
confounding noise or difficult to interpret interactions of main effects. Unfortunately, by literally 
moving between contexts (across time and space) the tasks of driving (across levels of driving 
automation) clearly take place under a variety of demands that are hard to ignore from scientific 
and applied investigations that seek meaningful impact. Driving is clearly not one thing nor a task 
that can be cleanly separated and analyzed independent of its surrounding situations (Figure 1.4).  
 

 
Figure 1.4. Different driving scene situations: high density intersection traffic in a rainy urban environment (left) and low 
density straight interstate freeway travel under sunny blue skies (right). Adopted from 
https://youtu.be/KpGAEpm1SMs?t=43 (left), https://youtu.be/zT_B9Px6qdQ?t=33 (right). 

 

Effective assessment of driver attention adequacy is hard to imagine without consideration of what 
is happening around the driver and the vehicle. Thus, it is assumed and pursued in this thesis that 
safety (i.e., from driver vigilance) depends not solely on measurements of latent internal driver 
states (arousal, attention, workload) but measureable actions (eye movements) able to be assessed 
relative to measureable situations (components of different driving contexts) that eyes are 
supposed to be adaptively working and appropriating within. The doctoral thesis of Victor (2005) 
reflects such motivations in the concept of ‘vision-for-action’ and the Victor (2003) patent 
application ‘System and method for monitoring and managing driver attention loads’ suggested that 
‘If control task intrusion is detected during secondary task glance behavior, during different road 
types or different demand levels, then a corresponding warning is issued‘. However, Victor (2003) 
did not offer further details regarding how such scene-dependencies might be practically achieved 
and so it is taken as a motivating research gap to which this thesis aims to contribute. 

 

4. Thesis Aims 
Across levels of driving automation, there are risks involved whenever humans become aberrant in 
the adequacy of their required surveillance/readiness. Automatic assessments of driver visual 
attention in DMS can help mitigate such risks, and eye trackers present a compelling piece of 
equipment that has seen massive reductions in form-factor, costs, and intrusiveness since previous 
generations.  

 

This thesis was initiated in an early stage researcher (ESR) position within the Human Factors of 
Automated Driving (HFAuto) Initial Training Network (ITN) Seventh Framework Programme (FP7) 
funded by the European Commission Research Executive Agency (project number: 605817). The 
issued project objective was to ‘answer crucial human-factors questions, such as: how should 
human-machine-interfaces (HMI) be designed to support transitions between automated and 
manual control? how can the automation understand the driver’s state and intentions?...’  

https://youtu.be/KpGAEpm1SMs?t=43
https://youtu.be/zT_B9Px6qdQ?t=33
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The objective of this thesis was to develop a system that is able to monitor the driver’s vigilance.  

 

The selected approach to meet that objective, was to investigate vigilance from a cognitive systems 
engineering approach (i.e., situated cognition/ecological perspective) by including detailed 
considerations of driving scenes/situations within which to relate assessments of 
drivers/supervisors. 

 

5. Thesis Structure 
This thesis consists of five Parts; the current part (Part 1) introduces relevant background theory 
and the framework underlying the thesis and the last part (Part 5) discusses major conclusions 
drawn across the related research. In between, Parts 2-4 focus on reviews for the topic of driver 
vigilance (Part 2), experiments to relate driving scenes and driver eyes (Part 3), and the integration 
of eye-based DMS with adaptive driving automation in a driving simulator (Part 4). Several 
developed driving research tools are further documented and detailed alongside the research 
studies (as Appendices) and include: a driving scene content coding scheme (3.1.B.1), a library and 
interface for selecting clips with specific driving scene contents (3.1.B.2), an inexpensive apparatus 
for capturing on-road driving video footage (3.2.A.1), a MATLAB function for automatically clipping 
segments out of larger video files (3.2.A.2), a driving automation-integrated driver monitor system 
(4.2.A.1-2) and a programmable visual n-back GUI secondary task (4.2.A.3). 
 

(1) In Part 1, Introduction, a brief background picture has been painted of the human-
automation interaction problems that might be expected as AV technology continues to 
evolve (e.g., inadequate visual attention from drivers/supervisors). Consequently, eye-
based DMS was motivated as a relevant area for research and development, and in 
particular, a situated approach was introduced.   

 

(2) In Part 2, Driver Vigilance Review, literature surveys/reviews (Chapters 2.1, 2.2) are 
conducted to cover what has been known and done before regarding driving vigilance both 
before and upon the advent of AVs. 

  

(3) In Part 3, Driving Scenes and Driver Eyes, several experiments investigate driving scene 
content categorizations (Chapter 3.1) and scene-situated assessments of driver eye 
measures (Chapters 3.2, 3.3).  

 

(4) In Part 4, Adaptive Driving Automation, two driving simulator experiments were used to 
investigate various adaptive automation implementations of integrating an eye-based DMS 
with automated driving functionality (Chapters 4.1, 4.2).  

 

(5) In Part 5, Discussion, the results from the individual studies are re-summarized towards 
drawing and discussing the main conclusions across the related research at a higher level 
and in convergence with both broader attentional theories and recent emergent empirical 
evidence.  

 

As depicted in Figure 1.5, this thesis presumes a descriptive framework model of driving monitoring 
systems (DMS) that serve to restore nominal balance in the face of aberrant risks. Thus, the eyes of 
a human supervisor within a vehicle with driving automation (or a conventional vehicle without AV 
technology) are presumed observable for assessment in terms of being balanced (or not) against a 
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given set of contextualized driving demands (traffic, signage, rules, obstacles, scenery, roadway, 
infrastructure, etc.). The DMS may employ alternatively heavy and/or light-handed corrections 
along a spectrum of automatically triggered involvement consequences (e.g., between warning 
information and/or driving control modification/functionality). Also Figure 1.5 is used to convey 
how the different publication chapters of this thesis (each with their own separate sub-goals) can 
approximately be represented to fit together in a comprehensive manner. This figure and 
summative tie-in text is re-used at the front of each journal publication chapter to serve as a re-
orientation guide for the relevancy of that previously and separately published piece of research 
towards the overall thesis big picture. 
 
Accurate representations of real-life work domains and ecological constraints are essential to 
cognitive systems engineering approaches. Thus, the present thesis includes a range of low, 
medium, and high fidelity methods to investigate application of driver eye movement behavior and 
measures towards issues of driver vigilance across levels of driving automation. Across the thesis, 
theoretical and empirical research was used in the form of literature survey/review, non-intrusive 
eye-tracking measures, dash-cam driving scene film recordings, crowdsourced content 
categorizations, on-road measurements and a driving simulator. 
 

 
Figure 1.5. Relational mapping of publication chapters within the shared holistic coverage thesis aims to relate driver 
eyes, automotive vehicle automation, and driving scenes. The literature survey/review of chapters 2.1-2.2 serve as a 
foundation for understanding the topic of driver vigilance with and without driving automation. The investigations of 
chapters 3.1-3.3 orient around driving scene contents and measurable driver eye dependencies on those scene 
characteristics. The studies of 4.1-4.2 explore different real-time implementations and integrations of driving 
automation with driver monitoring systems (DMS).  
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Chap. 2.1) From Mackworth’s Clock to the Open 
Road: A literature review on driver vigilance task 
operationalization 
(2016) Transportation Research Part F 
 

 

 

 

 
In regards to the overall thesis big picture, this literature review serves as a foundation 
for understanding the topic of driver vigilance. One of its central questions is what are 
drivers actually required to be vigilant of (beyond anecdotal accounts or general 
recommendations). As a result of the review, it appears there are not well-specified 
consensus answers in driving vigilance research that suggest likely vigilance decrement 
problems in a majority of driving tasks (i.e., little definitive overlap with classical vigilance 
decrement situational features). This appears to be the case as driving is recognized to be 
a highly variable, rather than unitary activity. However, it is also observed herein that 
some present designs of automated driving overlap more with classic vigilance 
decrement features (e.g., increasingly rare and subtle signals to which fall-back drivers 
must perform required responses in a consistent and time-critical manner, etc.) and thus  
unfortunately point towards likely vigilance problems in automated driving.  

 

 

 

Adapted from: 

Cabrall, C.D.D., Happee, R., & de Winter, J.C.F. (2016). From Mackworth’s clock to the open road: A literature review 
on driver vigilance task operationalization. Transportation Research Part F: Traffic Psychology and Behaviour, vol. 40, 
pgs. 169-189.  
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Abstract 
Objective: This review aimed to characterize tasks applied in driving research, in terms of 
instructions/conditions, signal types/rates, and component features in comparison to the classic 
vigilance literature.  Background: Driver state monitoring is facing increased attention with 
evolving vehicle automation, and real-time assessment of driver vigilance could provide 
widespread value across various levels (e.g., from monitoring the alertness of manual drivers to 
verifications of readiness in transitions of control between automated and manual driving). 
However, task requirement comparisons between the classic vigilance research and vigilance in 
car driving have not to date been systematically conducted.  Methods: This study decomposed the 
highest-cited vigilance literature of each full decade since the 1940s for the situational features of 
the renowned vigilance decrement phenomenon originating from Mackworth (1948). A consensus 
set of 18 different situational features was compiled and included for example an (1) isolated (2) 
subject … perceiving (3) rare (4) signals … against (10) frequent (11) noise … in a (17) prolonged 
(18) task. Next, we reviewed 69 experimental vigilance task operationalizations (i.e., required 
signal detection and response) within 39 publications concerned with driving vigilance. All vigilance 
tasks were coded as “driving vigilance tasks” or “non-driving vigilance tasks” based on the 
perceptual signal and response action both belonging to normal driving activity or not. Presence, 
absence, and unreported presence/absence of each of the 18 features was rated for each task 
respectively as “overlap”, “contrary”, and “unspecified”. In conjunction, 
instructions/environmental conditions, signal definitions, signal rates, and summaries of the 
experimental vigilance tasks were extracted.  Results: A majority of driving vigilance tasks was 
performed in simulators (69%) compared to on-road (28%) and watching videos (3%) along with 
large differences in task conditions. Participants had to maintain fixed speed/lane positions in the 
simulators in higher proportion (74%) than on the road (36%) where they had only to drive 
“normally” and/or by loose conventions like “according to the law” more often (55% versus 15%). 
Additionally, presence of other traffic was found more often on-road (91%) than in simulators 
(48%). A specification of signals to detect and react to was found present within/for driving less 
often (59%) than alongside/in conjunction with driving (100%). Likewise, rates of signals (i.e., 
frequency of signal occurrence) were reported more often for non-driving vigilance tasks (80%) 
than in driving vigilance tasks (21%). For driving vigilance tasks, the highest overlap was 12 of the 
18 features present (67%). On average, results showed relatively low levels of classic feature 
overlap (36%) with high rates of unspecified feature presence (46%) for driving vigilance tasks 
compared to non-driving vigilance tasks with higher classic feature overlap (64%) and fewer 
features unspecified (13%).  Conclusion and application: There is little overlap between the well-
known and often cited vigilance decrement phenomenon and published experimental tasks of 
driving vigilance. Major differences were also found in the instructions/environmental conditions 
of simulator versus on-road experimental driving vigilance tasks. What driving vigilance practically 
is in the real-world thus remains a promising area for future research. We recommend that 
researchers apply approaches which account for more real-world driving features to better expose 
and address uncertainty regarding driving and vigilance. 
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1. Introduction 

1.1. Timely value of vigilance operationalization for advancing driving automation 

Automobile accidents have severe costs in terms of both personal safety and financial 
consequence. For example, from motor vehicle crashes in the United States in 2010, there were 3.9 
million non-fatal injuries, 32,999 fatalities, and economic costs totalled around $242 billion 
(Blincoe, Miller, Zaloshnja, & Lawrence, 2015). Between 2005 and 2007, critical reasons for pre-
crash events from a total of 5,361 analyzed crashes in a National Motor Vehicle Crash Causation 
Survey have been attributed to the driver in an overwhelming majority (95%) compared to vehicles 
(2%) and to roadway/atmospheric conditions (3%), where 48% of driver causes involved adverse 
driver readiness states like inadequate surveillance, distraction, inattention (e.g., daydreaming, 
etc.), following too closely, overcompensation, panic/freezing and/or being asleep (NHTSA, 2008). 
Presently researchers and industry stakeholders are rapidly progressing technological solutions 
within vehicles to support safer driving. Developments span a wide range of conceptual and 
deployed products of manufacturers and suppliers, research consortiums/initiatives, as well as 
information technology companies and service providers. These automotive technology 
developments involve a large range of categories such as driver warnings, active control assistance, 
and temporary or even complete relief of driving authority/responsibility. Encapsulating these 
developments, the German Federal Highway Institute (BASt), the United States National Highway 
Traffic Safety Administration (NHTSA) and the International Society of Automotive Engineers (SAE) 
have each produced scales for distinguishing and categorizing various levels of vehicle driving 
automation technology ranging from none to full (Gasser & Westhoff, 2012; NHTSA, 2013; SAE, 
2014). Crucially, issues and value of knowing how to measure driver vigilance can be found 
throughout these aspirations and technologies in all except the absolute highest automation levels 
(i.e., with no human involvement at all). Definitions of vigilance are provided next before 
elaborating on this point. 

 

Colloquially, the adjective ‘vigilant’ might only evoke images of dutiful security positions ranging 
from the sentinels in front of Buckingham Palace to anyone’s own local neighbourhood watch 
program. More formally but also more broadly, Merriam-Webster and Dictionary.com respectively 
define vigilant as ‘‘alertly watchful especially to avoid danger” and ‘‘keenly watchful to detect 
danger; wary . . . ever awake and alert; sleeplessly watchful” fitting many more situations, that is, 
seemingly any involving purposeful watching with some adverse consequence at stake. Most well 
cited (and maintaining a broad coverage area), the seminal operational research definitions of 
vigilance classically stem from the British scientist Norman Mackworth. Within his classic WWII 
radar era article ‘‘The breakdown of vigilance during prolonged visual search” subjects were tasked 
to watch an experimental clock hand for specific sized movements (Mackworth, 1948). Mackworth 
first cites the usage of the term vigilance from the esteemed neurologist Sir Henry Head as ‘‘both a 
physiological and psychological readiness to react.” Immediately after which, Mackworth then 
treats vigilance as ‘‘a useful word to adopt, particularly in describing a psychological readiness to 
perceive and respond, a process which, unlike attention, need not necessarily be consciously 
experienced” (Mackworth, 1948, p. 6). Thus, the present analysis follows in broadly treating 
vigilance tasks as any involving the ability to meet required perception and response demands.  

 

In the context of driving, difficulties in drivers meeting required perception and response demands 
may be influenced from a variety of overlapping effects and mechanisms, such as widely 
investigated and closely related constructs of driver fatigue, driver distraction and hazard 
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perception. Fatigue can be characterized both as a physiological sleepy or drowsy state of a driver 
detectable from signature activities regarding the eyes, head, and face (Ji, Zhu, & Lan, 2004), as a 
psychological state of subjectively experienced disinclination to continue performing the task at 
hand (Brown, 1994), or relating to both physiological and psychological processes reflecting a 
general decreased capacity to perform (Thiffault & Bergeron, 2003). Definitions of driver distraction 
include not only shifts of attention away from driving stimuli/tasks (Steff & Spradlin, 2000) but also 
incorporate aspects of consequence (i.e., impact/effect), sources internal/external to the vehicle 
(i.e., activity/event/object/person) and modality types (i.e., auditory, biomechanical, cognitive, 
visual, or a combination) (Pettitt et al., 2005; Young & Regan, 2007). Hazard perception is a natural 
combination of both dangerous situations on the road ahead (Horswill & McKenna, 2004) as well as 
a skill developed through experience for recognizing and responding to such hazards in decreasing 
amounts of time (Wetton et al., 2010). Whether these constructs (and even more like workload, 
attention, arousal, stress, etc.) are considered independent/orthogonal, e.g., drivers may exhibit 
reduced vigilance (distraction) even in non-fatigued states (fully awake) and suffer performance 
decrements in states of both over- and underload or whether they are dependently tied, e.g. 
vigilance decrement as direct effect of fatigue/sleepiness is an open area of relational 
representation (Heikoop et al., 2015; Stanton & Young, 2000) beyond the scope of this review. 
However, regardless of the specific boundaries drawn by different terminology usage, such 
constructs (including the present topic of vigilance) all share extended consideration and coverage 
of both endogenous factors (i.e., emanating from within) of both physiological and psychological 
processes as well as exogenous factors (i.e., originating from outside). 

 

Accurate accounts of driving demands are prerequisite to designing roles and responsibilities for 
various automated and/ or human driving agents. The value vigilance stands to contribute across 
driving and automation is detailed next by taking a step-by-step account of the NHTSA levels of 
vehicle automation as specific example. In the NHTSA Definitions of Levels of Vehicle Automation 
(NHTSA, 2013), the categories begin with Level 0 – No Automation (e.g., lane departure warning) 
and progress through four more levels: Level 1 – Function-Specific Automation (e.g., electronic 
stability control), Level 2 – Combined Function Automation (e.g., adaptive cruise control in 
combination with lane centering), Level 3 – Limited Self-Driving Automation (e.g., the 2012 Google 
car with human override), Level 4 – Full Self-Driving Automation (e.g., the 2014 Google car with no 
steering wheel, gas pedal, or brake pedal). 

 

Starting with Level 0, a distinction is made that regardless of the presence/absence of various 
warnings (e.g., forward collision, lane departure, blind spot) or automated secondary controls (e.g., 
wipers, headlights, turn signals, hazard lights, etc.) the driver is in complete and sole command of 
the primary vehicle controls (brake, steering, throttle, and motive power) at all times and 
responsible for monitoring the roadway and safe operation of all vehicle controls (NHTSA, 2013). 
Clearly, responsibility is explicitly given to the driver for watching many aspects of both control 
devices and the roadway in this level and so safety checks of readiness in these duties of watching 
could be useful. 

 

In Level 1, automation is function-specific (and independent in the case of multiple functions 
operating simultaneously) where the driver has overall control but can choose to cede limited 
authority over a primary control, the vehicle can automatically assume limited authority over a 
primary control, or provide added control in certain normal driving or crash- imminent situations; 
all of which occur without replacing driver vigilance and assuming driving responsibility from the 
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driver (NHTSA, 2013). Explicitly, vigilance is identified as a requirement of the driver not intended to 
be relieved from the use of the automation and hence, presumably would benefit from real-time 
verification that the driver is not over-relying on the automation and is sustaining appropriate levels 
of vigilance. 

 

In Level 2, automation of controls can work in unison (i.e., hands off the steering wheel and foot off 
the pedal at the same time) however the driver is still responsible for monitoring the roadway and 
safe operation and expected to be available for control at all times (i.e., short notice, no advanced 
warning) (NHTSA, 2013). When a driver is expected for short and no- notice transitions of control, 
the real-time assessment of his/her readiness could be critical for safe operations to avoid 
startle/upset and/or loss of control. 

 

In Level 3, the driver is no longer expected to constantly monitor the roadway while driving but 
instead to rely heavily on the vehicle to monitor for changes with the driver available only for 
occasional control and with sufficiently comfortable transition times (NHTSA, 2013). If only called 
upon occasionally for driving control, a driver’s level of preparedness to react and respond can be 
expected to vary within a pre-determined allotted transition time depending on how far removed 
or closely tied to the driving situation the driver may or may not be. 

 

Lastly, in Level 4 the driver is excused from an expectation of availability of control for an entire 
trip. While continual driver readiness to perceive and respond then is not a direct requirement, 
vigilance may still be useful to assess against risks of driver initiated control actions under 
inappropriate levels of readiness. 

 

Generally, across any driving automation hierarchy and functional allocation framework, there may 
be value from accurate driver vigilance operationalization in recognizable ways. For more manual 
control levels, a driver might fall behind driving task demands for many reasons (e.g., falling asleep, 
becoming angry, day dreaming, inexperience, stimulus overload, etc.). Early detections of 
mismatches of driver watchfulness and preparedness to respond to events could be vital precursors 
to actual performance decrements and hence promote active safety through prevention rather 
than merely passive safety through mitigation. For partially automated situations where the driver 
maintains responsibility in case of automation inadequacy (or even for nominal transitions of 
control) and he/she is tasked to observe, the driver is expected to be ready to uptake control. 
Methods for actively verifying this preparedness could add value by obviating the vulnerability of 
merely assuming watchful readiness. Lastly, from partial and into more highly automated 
situations, a real-time qualification and quantification of driver vigilance can provide practical 
information regarding how close/far away a driver might be from the driving task demands 
(especially when they are allowed/encouraged to uptake additional tasks) and so can support 
requirements for assuring drivers back into the control loop in safe and appropriate ways. All of 
these aspirations for improved driving safety through none to some levels of automation entail 
grounding knowledge and operationalization of driving vigilance (i.e., specifically what and how 
drivers need to be watchful and ready for) and would be expected to be informed by established 
literature on human capabilities for vigilance in general.   
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1.2. Classic general vigilance literature 

As a starting point for reconciling the above interests and values in the advancing domain of driving 
task responsibility evolution, the current review seeks to first look back towards classic human 
factors knowledge regarding the heavily researched vigilance decrement phenomenon 
(Mackworth, 1948), before progressing forward with future driving vigilance operationalization. We 
consider a summary of knowledge of the factors contributing to decreases of vigilance in general to 
support practical extrapolation of previously learned lessons to driving tasks specifically. 

 

As described above, the automation of human control tasks can create problems in operational 
practice in addition to its intended benefits. This observation is supported by and established within 
the classic human factors literature. For example, Lisanne Bainbridge’s seminal work “Ironies of 
Automation” introduces and discusses the ways in which ‘automation of industrial processes may 
expand rather than eliminate problems with the human operator’ (Bainbridge, 1983). Specifically, 
she laments that within an automated system, a former operator may be recast to a monitoring 
role under which he is expected to take-over if things do not operate correctly. This is a problem 
because manual control skills that preclude against unstable or imprecise control all degrade 
without direct practice and use. Furthermore, cognitive strategies for appropriate control in novel 
or unusual situations rely on sufficient prior exposure and experience with nominal operations, and 
this exposure is typically remote or occluded with the provision of automated processes. Bainbridge 
continues by citing Mackworth stating that “we know from many ‘vigilance’ studies (Mackworth, 
1950) that it is impossible for even a highly motivated human being to maintain effective visual 
attention towards a source of information on which very little happens” (Bainbridge, 1983, p. 776). 

 

Given the potential for grave danger and adverse safety consequences, it should not be surprising 
that Bainbridge was not alone in these observations and interests. By the 1980s, reviews indicated 
that there were already at least around one thousand published reports in the literature on the 
topic of vigilance since WWII (Craig, 1984, Wiener, 1987). Furthermore, concerns were expressed 
as early as 1962 that with investigators of vigilance behaviour “spread over several continents and 
publishing under the sponsorship of numerous military, industrial and academic organizations, it 
has become a major problem to keep up with the technical literature” (Frankmann & Adams, 1962, 
p. 257). As a quick and current confirmatory check only of the topic’s proliferation, a Google Scholar 
search (March, 2015) was made of titles since Mackworth in 1948 and revealed 8,140 results for 
vigilance and 1,540 results for its synonym sustained attention in the title only; the sum together of 
which (minus double-counts for appearances of both terms in the title) stood remaining at 9,652 
total results. Indeed by 1987, enough material and interest had amassed on the topic of vigilance 
and sustained attention that a full special issue of the Journal of the Human Factors and 
Ergonomics Society was centralized around this topic only; an initiative itself in commemoration of 
the end already, of at least one entire career spent in pursuit of the same (Warm & Parasuraman, 
1987). For example, the recent review of Chan (2008) provides an encompassing account of 
theoretical aggravators (e.g., lack of reinforcement feedback, inaccurate estimations of signal 
probability, irregular spatial/temporal and successive presentation of signals and events, etc.) and 
alleviators (e.g., increase in signal rate, self-paced tasks, greater signal intensity, etc.) of the 
vigilance decrement. The lessons learned in classic vigilance literature often revolve around general 
theoretical terminology regarding signals. To apply their solutions to vigilance assessment and 
decrements in driving, it is then pre-requisite to identify in driving, what exactly constitutes such 
signals and other relevant and potentially interacting factors or features.  
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1.3. Vigilance and signal stimuli concerns in the driving literature 

In research publications, it is common to see driving vigilance expressed as interest/aim in many 
different ways. Among others, examples include: labelling driving in part or whole as some kind of 
vigilance task/test (Inkeri, 2010, Mets et al., 2008, Thiffault and Bergeron, 2003), vigilance as a 
contributing or critical factor for driving safety (CARRS-Q, 2013, Michael and Meuter, 2006, Vrignon 
and Rakotonirainy, 2007), driving as including/requiring large amounts of vigilance 
behaviour/demands (Bloomer, 1962, Boverie et al., 2008, Mackie and O’Hanlon, 1977) or driving as 
being comparable to/resembling a vigilance task (Atchley and Chan, 2011, Chan, 2008, Schmidt et 
al., 2007). Notably, consideration has also been raised to the unambiguous application of vigilance 
literature to specific driving scenarios like driver supervision of ACC control (Ervin, Bogard, & 
Fancher, 2000), the absence of regular engagements and distractions that are available on a normal 
highway/normal road versus in a tunnel (Jayakumar, Novak, Faber, & Bouchner, 2014) and to the 
relevancy of focus of vigilance problems on straight roads rather than in curves, where it is highly 
unlikely for someone to fall asleep (Giusti, Zocchi, & Rovetta, 2009). 

 

It is been previously underscored that no reliable methods yet exist for defining a priori what a 
driver should be attending to (Hancock, Mouloua, & Senders, 2008). Instead, what (signal-
processing) activities are critical for safe driving is seen as an unresolved issue in traffic safety 
(Regan, Hallett, & Gordon, 2011). Some insights and progress may be gained through retrospective 
analyses of crash and incident data. However, working backwards through reports and naturalistic 
driving video footage and coding some information processing activities more critical/correct than 
others still presents many ambiguous situations (Regan et al., 2011). One area where both 
ambiguity of driving signals as well as definitions of functional driving vigilance might be expected 
to be explicitly handled and resolved is under the highly controlled conditions and detailed 
documentation of experimental research and reporting. 

 

1.4. Research aim and questions of the current literature review 

Our review of vigilance tasks in driving vigilance experiments was undertaken to answer to the 
following questions. 

 
(1) What are (un)common experimental instructions and environmental conditions of driving 

vigilance tasks? 

 
(2) What are the types of signals operationalized in driving vigilance experiments? 

 
(3) What are the rates of those signals? 

 
(4) How much overlap resides between consensus features of classic vigilance tasks and 

experimental operationalizations of driver vigilance? 

 
(5) Where overlap is or is not found, what are the most common classic features 

present/absent? 

 
(6) What other circumstances (additional to the classic features) surround those tasks with the 

highest amount of overlap? 
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With answers to these questions, transportation researchers can use knowledge of driver vigilance 
to achieve better automation designs and hopefully greater levels of driving safety. Knowledge 
about the degree of overlap between classic vigilance tasks and experimental operationalizations of 
driver vigilance would allow us to infer when/how we can proceed in an informed manner. Degrees 
of contradiction and un-specification, on the other hand, would uncover gaps of knowledge to be 
addressed in future driving research. 

2. Methods 

2.1. Multi-decade consensus features of classic vigilance tasks 

To utilize the findings and conclusions of prior research for applications to a new specific problem 
(in this case, of driving and driving automation), it is necessary to define shared components and 
characteristics between the prior and the current problem. A relevant first question becomes: what 
specific circumstances surround vigilance decrements so that we may make best use of already 
identified solutions? Returning to the seminal work of Mackworth (1948), the author devotes an 
entire section entitled “The Specific Problem” (p. 7) to introduce and emphasize the careful control 
of situational features surrounding the task of interest. 

 

Thus, using Google Scholar, we retrieved the highest cited research with the terms ‘vigilance’ or 
‘sustained attention’ in the title from each full decade inclusively since and that cites Mackworth in 
order to establish vetted consensus situational features of the now classic vigilance decrement (i.e., 
Davies and Parasuraman, 1982, Frankmann and Adams, 1962, Holland, 1958, Mackworth, 1948, 
Parasuraman, 1979, Sarter et al., 2001, Warm et al., 1996). Distal research domains outside of 
human factors and/or engineering psychology, such as from medicine or predator/prey animal 
behaviour were thus intentionally left out of scope. Common components were found to 
sufficiently relate a consensus in features namely involving (1) a subject/perceiver who between (2) 
signals/targets versus (3) noise/non-signifying events had (4) the work/task of perceiving and 
responding appropriately. In addition to mere presence/absence of these four feature object-
nouns, 14 mutually exclusive descriptors were found to modify such objects, that is, feature 
modifier-adjectives. These were hence compiled in a chronologically additive manner to result in a 
present day composite of multi-decade theoretical features of vigilance tasks in general (Table 
2.1.1). 

 
Table 2.1.1. Present day composite of multi-decade consensus theoretical features of vigilance decrement situations as 
feature object-nouns and feature modifier-adjectives extracted from review of top-cited vigilance works of each full 
decade since Mackworth (1948). 

Code Feature 

1 subject (a.k.a. participant, watcher, perceiver) 

1a isolated (a.k.a. alone) 

2 signal (a.k.a. stimulus, target) 

2a few (a.k.a. infrequent, occasional, rare) 

2b temporally uncertain, (a.k.a. unpredictable, probability not influenced by subject, random) 

2c difficult to perceive (a.k.a. small, near perceptual threshold) 

2d clearly perceptible when alerted (a.k.a. detectable, defined, unambiguous) 

2e short lasting (a.k.a. glimpse, transient) 

2f spatially uncertain 

3 noise (a.k.a. events, neutral, not meaningful, do not signify) 

3a very similar to signals 
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Code Feature 

3b frequent, (a.k.a. constantly encountered, high quantity, often) 

4 task (a.k.a. performance, work, assignment) 

4a long duration (a.k.a. sustained, extended, prolonged, lengthy, continuous, in a series) 

4b lacking objective feedback of subject’s own performance 

4c monotonous (a.k.a. same, consistent) 

4d successive presentations of signal and noise (a.k.a. a burden to or loading on memory) 

4e required response (a.k.a. action to take) 

Note. Feature object-nouns are in bold and feature modifier-adjective are in italics. 

 

2.2. Search criteria, filtering, and scope reduction 

Given finite resources, it would be untenable to aspire to an exhaustive review of every published 
driving vigilance operationalization. Instead, the goal of the present search was to gather a 
representative sample for detailed analysis from which to generalize. Accessing Google Scholar 
through Harzing’s Publish or Perish scholarly citation software, a search of publications between 
the years 1948 and 2014 was conducted where the title had at least one word from a set of 
“vigilance” terms (vigilance, sustained attention, vigil, vigilant) in combination with at least one 
word from a set of “driving” terms (driving, driver, drivers, motorist, motorists, automobile, 
automobiles, car, cars, vehicle, vehicles, road, roads, motorway, motorways). Again, such a search 
was not engineered to return all relevant papers, but instead to ensure with greater chance that 
the returned sample would retain relevancy on the assumption that presence of target terms in the 
title connotes importance of that term to the research and hence would be a point for elaboration 
and description within the text. 

 

Search results of 248, 8, 3, and 11 titles were returned respectively for “vigilance”, “sustained 
attention”, “vigil”, and “vigilant” in combination with one of the “driving” terms. A total of 181 titles 
remained rising in frequency over the years (Fig. 2.1.1) after 89 exclusions were made from 
manually reading the title and/or abstract for those that were written in a language other than 
English (27), were duplicates within the same year (25) and across different years (14), were written 
about trains (9), did not actually have the search terms in the title (4), used vigilance regarding 
criminal theft (3), used driving as a verb of causality/influence and not locomotion (2), used road 
but did not involve driving (1), were about aerial vehicles (1), were about the vigilance of physicians 
of car accident victims (1), were about the deaths of children in trunks of cars (1), and described a 
macroscopic level vehicle traffic congestion/flow system (1). 
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Figure 2.1.1. Publication search returns by year between 1948 and 2014 where the title had both a “vigilance” and a 
“driving” term in the title and did not meet exclusion criteria. 

 

Proceeding through each of these 181 publication title returns, an approximate two-thirds majority 
(n = 110) were retrieved in full text and assessed manually for the aim of isolating experimental 
driving vigilance tasks. The exclusion criteria previously applied to the title/abstracts was re-applied 
now in greater resolution in review of full texts, and 28 more removed. Additionally, 43 were set 
aside that involved either algorithm/prototype validation, naturalistic observational methods or 
otherwise lacked explicit description of driving task experimental conditions and controlled 
manipulations. Where multiple experimental tasks were involved under the same title, these were 
expanded (30 times). Consequentially, a remaining total of 69 experimental vigilance tasks (across 
39 different publications, Table 2.1.2) were eligible for analysis within the present review of 
sampling empirical driving vigilance task operationalizations for overlap with consensus theoretical 
vigilance set ups. 

 
Table 2.1.2. Publication list of present analysis with shorthand “Ref #” index code for use in subsequent tables. 

Ref # Year First Author Title 

1 2014 Chuang Kinesthesia in a sustained-attention driving task 

2 2014 Correa Effects of chronotype and time of day on the vigilance decrement during 
simulated driving 

3 2014 Jayakumar Driver Vigilance Monitoring–Impact of the Long Tunnels 

4 2014 Lin Wireless and Wearable EEG System for Evaluating Driver Vigilance 

5 2013 Amato Effects of three therapeutic doses of codeine/paracetamol on driving 
performance, a psychomotor vigilance test, and subjective feelings 

6 2013 Pei Effect of Driving Duration and Work Schedules on Vigilance Level and 
Driving Performance of Bus Drivers 

7 2013 Ruiz Measuring the three attentional networks in a vigilance context and their 
relationship with driving behaviour 
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Ref # Year First Author Title 

8 2011 Atchley Potential Benefits and Costs of Concurrent Task Engagement to Maintain 
Vigilance 

9 2011 Schmidt The short-term effect of verbally assessing drivers' state on vigilance 
indices during monotonous daytime driving 

10 2010 Inkeri Fatigue while driving in a car simulator: effects on vigilance performance 
and autonomic skin conductance 

11 2009 Giusti A noninvasive system for evaluating driver vigilance level examining both 
physiological and mechanical data 

12 2009 Schmidt Drivers’ misjudgement of vigilance state during prolonged monotonous 
daytime driving 

13 2009 Tippin Visual vigilance in drivers with obstructive sleep apnea syndrome 

14 2009 Ueno An analysis of saccadic eye movements and facial images for assessing 
vigilance levels during simulated driving 

15 2008 Chan Benefits and cost of dual-tasking in a vigilance task: A laboratory and 
driving simulator investigation 

16 2008 Mets Effects of Seasonal Allergic Rhinitis on Driving Ability, Memory 
Functioning, Sustained Attention, and Quality of Life 

17 2008 Preece Are individuals recovering from mild traumatic brain injury vigilant 
drivers? 

18 2007 Vrignon impact of subjective factors on driver vigilance: a driving simulator study: 
in driver behaviour and training volume 3 chapter 29 

19 2007 Dalton Effects of sound types and volumes on simulated driving, vigilance tasks 
and heart rate 

20 2007 Howard The interactive effects of extended wakefulness and low-dose alcohol on 
simulated driving and vigilance 

21 2007 Schmidt Assessing driver’s vigilance state during monotonous driving 

22 2006 Bonnefond Behavioural reactivation and subjective assessment of the state of 
vigilance—Application to simulated car driving 

23 2006 Desai Vigilance monitoring for operator safety: A simulation study on highway 
driving 

24 2006 Michael Sustained attention and hypovigilance: The effect of environmental 
monotony on continuous task performance and implications for road 
safety 

25 2005 Lo The impact of shift, circadian typology, and bright light exposure on 
sleepiness, vigilance, and driving performance in hong kong taxi drivers 

26 2004 Campagne Correlation between driving errors and vigilance level: influence of the 
driver's age 

27 2003 Santana Driver vigilance monitoring - new developments within the AWAKE project 

28 2003 Thiffault Monotony of road environment and driver fatigue: a simulator study 

29 2002 Lucidi The effects of sleep debt on vigilance in young drivers: an 
education/research project in high schools 

30 2002 Roge Alteration of the useful visual field as a function of state of vigilance in 
simulated car driving 

31 2001 Brice The effects of caffeine on simulated driving, subjective alertness and 
sustained attention 

32 2001 Roge Variations of the level of vigilance and of behavioural activities during 
simulated automobile driving 

33 1998 O'Hanlon Venlafaxine's effects on healthy volunteers' driving, psychomotor, and 
vigilance performance during 15-day fixed and incremental dosing 
regimens 
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Ref # Year First Author Title 

34 1995 Findley Vigilance and automobile accidents in patients with sleep apnea or 
narcolepsy 

35 1995 Wyon The effects of negative ionisation on subjective symptom intensity and 
driver vigilance in a moving vehicle 

36 1996 Wyon The effects of moderate heat on driver vigilance in a moving vehicle 

37 1978 Guillerman Effects of carbon monoxide on performance in a vigilance task 
(automobile driving) 

38 1976 Boadle Vigilance and simulated night driving 

39 1967 Brown Measurement of control skills, vigilance, and performance on a subsidiary 
task during 12 hours of car driving 

 

Notably, not all vigilance task operationalizations of the “driving” plus “vigilance” titled experiments 
were defined as belonging within nominal driving activity. For comparable and meaningful analysis, 
we found it necessary to further sub-divide and classify the 69 experimental vigilance tasks into 
mutually exclusive driving vigilance tasks (n = 39) versus non-driving vigilance tasks (n = 30). This 
division was made on the basis of whether both the perceptual elements to perceive and the 
required response actions of the task were nominally within the realm of driving or not. A 
representative example of each cell of this 2 × 2 decision matrix is given next for clarification of this 
classification judgement and also depicted in Table 2.1.3. Furthermore, such a division provided a 
baseline set of data to compare against instead of just comparing driving vigilance 
operationalization versus the composite consensus alone. 

 

(1) In Inkeri (2010) drivers were instructed to maintain a speed of 120 km/h and a central lane 
position and so were presumably watchful for deviations that they should correct through 
use of acceleration or deceleration and steering. In the present analysis, this vigilance task 
was classified as a driving vigilance task because both the perceptual targets and response 
actions reside within the notional activity of driving. 

(2) In Wyon, Wyon, and Norin (1995) driver attention was measured towards essential sources 
of information of varying degrees of priority within the driving task namely, indications and 
abnormal execution of most of the instruments, warning lamps, controls as well as auditory 
horn signals, noises from the engine or a near a rear wheel, and/or blue flashing (police) 
lights in any of the mirrors. However, the sole response required of the driver was to 
depress the foot switch, await an audible tone and report at leisure while holding down the 
foot switch and then releasing it. In the present analysis, this vigilance task was classified as 
a non-driving vigilance task due to the response action. 

(3) In Tippin, Sparks, and Rizzo (2009) drivers had to watch for small light targets appearing 
along the horizon at seven discrete locations and responded with clicking of the high beam 
control as soon as they detected the target. In the present analysis, this vigilance task was 
classified as a non-driving vigilance task due to the arbitrary perceptual targets. 

(4) In Schmidt et al. (2007), drivers were required to detect an auditory tone of 500 Hz and 
respond by pressing a button fitted to their right thumb. In the present analysis, this 
vigilance task was classified as a non-driving vigilance task due to the arbitrary nature of 
both perceptual target and response action. 
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Table 2.1.3. Experimental vigilance task division in driving research into driving vigilance tasks (++) and non-driving 
vigilance tasks (+-,-+,--) based on vigilance task perceptual elements and required response actions both belonging to 
notional activity of driving or not. 

Experimental  

Vigilance Tasks 

Driving response action (+) Non-driving response action (-) 

Driving percept (+) Example, Ref # 10:  
watch for deviations from a speed of 120 
km/h and central lane position (percept, +) 
correct deviations with 
acceleration/deceleration/steering (action, +) 

driving vigilance task (++) 

Full Set, Ref #s: 
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 
31, 32, 33, 34, 35, 36, 37, 38, 39  

Example, Ref # 35:  

pay attention indications and abnormal 
execution of most of the instruments, 
warning lamps, controls, as well as 
auditory horn signals, noises from the 
engine or near a rear wheel, and/or 
blue flashing (police) lights in any of the 
mirrors (percept, +)  

depress a footswitch and make a verbal 
report at leisure (action, -) 

non-driving vigilance task (+-) 

Full Set, Ref #s:  
8, 35, 36, 38, 39 

 

Non-driving percept (-) 

 

 

 

 

 

Example, Ref # 13:  

watch for small light targets along horizon at 
seven discrete locations (percept, -) 

click the high beam control lever (action, +) 

 non-driving vigilance task (-+) 

Full Set, Ref #s:  
13, 19, 25, 30, 37 

 

Example, Ref # 21:  

detect an auditory tone of 500 hz 
(percept, -)  

press a button fitted to the right thumb 
(action, -)  

non-driving vigilance task (--) 

Full Set, Ref #s:  
2, 5, 7, 9, 10, 12, 15, 16, 18, 19, 20, 21, 
24, 29, 31, 33      

 

2.3. Manual coding and annotation 

Each of the 69 tasks was manually reviewed by the first author and rated against a simple ternary 
coding scheme for the presence, absence or unreported presence/absence of each of the 4 feature 
object-nouns and 14 feature modifier-adjectives seen in the multi-decade consensus circumstance 
composite (Table 2.1.1). Per each task, percentages of “overlap”, “contrary”, and “unspecified” 
were calculated by summing the number of features present (true/consistent), absent 
(false/contradictory), and not reported in enough detail to determine presence/absence 
(unreported/uncertain) respectively and dividing each sum by the total feature set size of 18 and 
multiplying by 100%. Furthermore, such ratings were cross-validated with 5 additional volunteer 
raters who redundantly and independently coded a sub sample of 4 tasks each for a total of 20 
(approximately 30% of the full set of 69). A strong positive correlation was obtained between the 
calculated overlap percentages of these tasks rated by the additional volunteers and with those of 
the original rater on the same tasks (r = .83, Fig. 2.1.2). 
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Figure 2.1.2. Correlation ( r = .83) between the original rater and five other volunteer raters for 20 experimental vigilance 
tasks regarding that task’s overlap with the multi-decade consensus aspects/qualifiers (Table 2.1.2). 
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Additional aspects of feature details and environmental conditions of the experiment were also 
manually reviewed and annotated for each experimental task. Specifically, the present analysis 
involved a qualitative identification of what the signal of interest was and a quantification of its rate 
of presentation scaled over one hour. Environmental conditions recorded included whether the 
experimental tasks took place within a simulator versus a real road; with instructions to hold fixed 
(or within a fixed range) a specified lateral lane position and/or longitudinal speed value; with 
instructions to drive “normally” and/or by some established convention/law; with the presence or 
absence of other vehicle traffic; and during clear visibility conditions (e.g., day time) versus 
deteriorated visibility (e.g., night time, fog, etc.). 

 

3. Results 

3.1. Coverage of experimental instructions and environmental conditions for 
driving vigilance tasks 

Instructions and environmental conditions of the analyzed driving vigilance experimental tasks are 
presented in Table 2.1.4. Overall, a greater majority of experimental driving vigilance research was 
found to take place with simulators (27 of 39; 69%) compared to real-life roads (11 of 39; 28%) or 
use of video footage (1 of 39; 3%). Participants of the simulator studies were more often explicitly 
tasked with maintaining a fixed position (or a position within a fixed range) for longitudinal control 
(20 of 27; 74%) and/or lateral control (17 of 27; 69%) than were participants of experimental on-
road tasks where lateral positions (4 of 11; 36%) and longitudinal positions (2 of 11; 18%) were 
mandated to be held. Contrastingly, use of more flexible instructional guidance such as “drive 
normally” and/or by abiding to commonly established norms, laws, and conventions was found to 
be higher in on road driving vigilance tasks (6 of 11; 55%) compared to simulator tasks (4 of 27; 
15%). Furthermore, presence of other traffic (i.e., at least one other vehicle) was found in higher 
proportion in on-road (10 of 11; 91%) than in simulated tasks (13 of 27; 48%). Lastly, reporting of 
on-road driving vigilance tasks was found to primarily be of daytime/clear-visibility conditions (9 of 
11; 82%) with lower amounts of consensus features unspecified (2 of 11; 18%). Simulator driving 
vigilance tasks however, were more evenly split between daytime/clear visibility (8 of 27; 30%) and 
night-time/reduced visibility (7 of 27; 26%) with higher amounts of consensus features unspecified 
(12 of 27; 44%). 
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Table 2.1.4. Instructions and environmental conditions of driving vigilance experimental tasks. 

Ref # Road Sim. Video Lat. Long. Normally Alone Traffic Day Night 

1 

 

1 

 

1 1 ? 1 

  

1 

4 

 

1 

 

1 1 ? 1 

  

1 

3 

 

1 

 

? ? ? 

 

1 1 

 5b 

 

1 

 

1 1 ? 1 

 

1 

 8a 

 

1 

 

1 1 ? 

 

1 ? ? 

8b 

 

1 

 

1 1 ? 

 

1 ? ? 

14 

 

1 

 

1 1 ? ? ? ? ? 

15c 

 

1 

 

1 1 ? 

 

1 ? ? 

15d 

 

1 

 

? 1 ? 

 

1 ? ? 

18b 

 

1 

 

1 ? ? 

 

1 1 

 19b 

 

1 

 

? ? ? ? ? ? ? 

20a 

 

1 

 

1 1 ? 

 

1 

 

1 

22 

 

1 

 

1 1 ? 

 

1 

 

1 

25b 

 

1 

 

1 1 ? 1 

 

1 

 25c 

 

1 

 

1 1 ? 1 

 

1 

 31b 

 

1 

 

? 0 1 

 

1 ? ? 

34 

 

1 

 

1 1 ? ? ? ? ? 

38a 

 

1 

 

1 1 ? 

 

1 

 

1 

2b 

 

1 

 

1 1 ? 1 

 

1 

 10a 

 

1 

 

1 1 ? 1 

 

? ? 

13a 

 

1 

 

1 1 ? 

 

1 ? ? 

11 

 

1 

 

1 ? ? ? ? ? ? 

23 

 

1 

 

? ? ? 

 

1 1 

 26 

 

1 

 

? 0 1 ? ? 

 

1 

30a 

 

1 

 

1 ? ? 

 

1 

 

1 

32 

 

1 

 

? ? 1 1 

 

? ? 

28 

 

1 

 

1 0 1 ? ? 1 

 6 1 

  

? ? 1 

 

1 1 

 9b 1 

  

? ? 1 

 

1 1 

 12a 1 

  

? ? 1 

 

1 1 

 17 

  

1 0 0 ? 

 

1 ? ? 

16a 1 

  

1 1 ? 

 

1 1 

 21a 1 

  

? ? ? 

 

1 1 

 27 1 

  

1 ? ? 

 

1 1 

 33a 1 

  

1 1 ? 

 

1 ? ? 

35a 1 

  

? ? 1 

 

1 1 

 36a 1 

  

? ? 1 

 

1 1 

 37a 1 

  

1 ? ? 1 

  

1 

39a 1 

  

? 0 1 

 

1 1 

 Note. Column header indications: “Road” – driving task took place on real life road; “Sim.” – driving 
task took place within a simulated environment; “Video” – driving task took place with videos of 
driving; “Lat.” – subject required to maintain a fixed lane position or hold steady in a set range; 
“Long.” – subject required to maintain a fixed speed or hold steady in a set range; “Normally” – 
subject asked to drive as normal/usual, by regulation, convention, law, standard, etc.; “Alone” – no 
other traffic present in driving task situation; “Traffic” – at least one other vehicle present in driving 
task situation; “Day” – daytime, clear visibility; “Night” – nighttime, fog, reduced visibility. Coding 
of “1” = true; “0” = false; “?” = unreported. 
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3.2. Types of signals 

Signal type categorization of driving and non-driving vigilance experimental tasks are shown in 
Table 2.1.5a, Table 2.1.5b, respectively. Across the 69 vigilance tasks from the driving vigilance 
literature, there were 53 specified signals in total together from Table 2.1.5a, Table 2.1.5b. Fewer 
signals from within the driving vigilance tasks were found specified (23 signals from 39 tasks; 59%) 
compared to those of the non-driving vigilance tasks (30 signals from 30 tasks; 100%). The 23 
identified driving vigilance signals were found to align under mutually exclusive categories in the 
following amounts and proportions: lateral or longitudinal deviation (12 of 23 signals; 52%), 
obstacles (9 of 23 signals; 39%), and light sources (2 of 23 signals; 9%). Contrastingly, the 30 
identified non-driving vigilance signals were found to align under modality categories of visual (23 
of 30 signals; 77%), auditory (5 of 30 signals; 17%), and multi-modal (2 of 30 signals; 7%). Further 
detailed descriptions follow for signal types of both the driving and non-driving vigilance tasks. 
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Table 2.1.5a. Signal type specification and sub-categorization of driving vigilance experimental tasks. 

 

 

Deviations Obstacles Light 

Ref # Specified Lane Speed Wind Pull-out Lead Ped. Hazard ? Mirror Intersect. 

1 1 1 
         

2b 1 1 1 
        

4 1 1 
 

1 
       

5b 1 1 1 
        

8b 1 
   

1 
      

10a 1 1 1 
        

13a 1 1 1 
        

14 1 
        

1 
 

11 1 
       

1 
  

17 1 
      

1 
   

16a 1 1 1 
        

15c 1 1 1 1 
       

15d 1 
   

1 
      

20a 1 
    

1 
     

22 1 
    

1 
     

25b 1 
          

25c 1 
     

1 
   

1 

30a 1 
    

1 
     

28 1 1 1 1 
       

33a 1 1 1 
        

34 1 
       

1 
  

37a 1 1 1 
        

38a 1 1 
         

3 ? 
          

6 ? 
          

9a ? 
          

8a ? 
          

12a ? 
          

18b ? 
          

19b ? 
          

21a ? 
          

23 ? 
          

26 ? 
          

27 ? 
          

31b ? 

          32 ? 

          35a ? 

          36a ? 

          39a ? 

          Note. Column header indications: “Specified ” – driving vigilance task signal definition/description 
specified within the text; “Lane” – a deviation from lateral lane position; “Speed” –a deviation from a 
longitudinal speed; “Wind” – the deviation included encouragement from an external perturbation, e.g. 
wind gust; “Pull-out” –a vehicle that pulls out in front of and cutting off subject vehicle; “Lead” – a 
vehicle the subject vehicle is following; “Ped.” – a pedestrian; “Hazard” – described at general level as 
“a potentially dangerous traffic situation”; “?” – an obstacle without description; “Mirror” – a light 
source in rear view mirror; “Intersect” – a traffic intersection light. Coding of “1” = true; “?” = not 
specified. 
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Table 2.1.5b. Signal type specification and sub-categorization of non-driving vigilance experimental tasks. 

  Multi- 

Modal 
Audio Visual 

  

     

Object 

         Property 

Ref # 
Spec
ified Hz Length Stim. Light Char. Shape Bboard Spat. pos. Color 

2a 1 

      

1 

  

1 

7a 1 

      

1 

 

1 

 7b 1 

      

1 

 

1 

 7d 1 

      

1 

 

1 

 5a 1 

      

1 

   9a 1 

 

1 

        8c 1 

       

1 

  10b 1 

    

1 

    

1 

13b 1 

    

1 

     12b 1 

 

1 

        16b 1 

     

1 

    15a 1 

     

1 

    15b 1 

     

1 

    18a 1 

 

1 

        30b 1 

      

1 

  

1 

30c 1 

      

1 

  

1 

37b 1 

    

1 

     38b 1 

    

1 

     39b 1 

    

1 

     19a 1 

    

1 

     19c 1 

      

1 

   21b 1 

 

1 

        20b 1 

   

1 

      24 1 

     

1 

    25a 1 

     

1 

    29 1 

  

1 

       31a 1 

     

1 

    33b 1 

    

1 

   

1 

 35b 1 1 

         36b 1 1 

         Note. Column header indications: “Specified ” – non-driving vigilance task signal definition/description specified 
within the text; “Multi-Modal” – multiple modalities; “Hz” – specific tone frequency; “Length – specific tone 
duration; “Stim.” – a visual stimulus without description; “Light” – a source of light; “Char.” – an alpha, numeric, 
or symbolic character ; “Shape” – a simple shape e.g. circle/square, etc.; “Bboard” – a billboard; “Spat. pos.” –
specific spatial position; -“Color” – specific color. Coding of “1” = true. 

 

Regarding the driving vigilance task signals, where the signal to detect was a deviation from 
maintenance of a prescribed fixed longitudinal speed (or speed range) (9 of 12 fixed position tasks; 
75%) a correspondent deviation from a required fixed lateral position was also simultaneously given 
as a signal (12 of 12 fixed position tasks; 100%). Additionally, externally forced perturbations (e.g., 
lateral wind gusts) were employed in a few cases (3 of 12 tasks; 25%): once with lateral position 
holding only and twice with both lateral and longitudinal holding. Obstacles of different kinds were 
used as driving vigilance signals in the following groups and amounts from greatest to least: vehicle 
continuously leads ahead (3 of 9 signals; 33%); vehicle with discrete pull out or cut in ahead (2 of 9 
signals; 22%); unspecified obstacles (2 of 9 signals; 22%); pedestrian leaves curb (1 of 9 signals; 
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11%,), and examples of hazards pictured in driving scenes but not detailed in explicit description (1 
of 9 signals; 11%). Lastly, in regards to the driving vigilance signals as light sources, one involved a 
light in a rear view mirror (1 of 2 signals; 50%) and the other a traffic signal light (1 of 2 signals, 
50%). 

 

Regarding the non-driving vigilance tasks, purely visual signals most frequently included shapes like 
circles or squares (8 of 23 signals; 35%); followed by sources of light (7 of 23 signals; 30%) and 
alpha, numeric, or symbolic characters (6 of 23 signals; 26%); with a single instance of a real life 
object, that is, a billboard (1 of 23 signals; 4%). Furthermore, only a handful of these included a 
discrimination of color in defining the signal (4 of 23 signals; 17%). For purely auditory signals, most 
were of a specified frequency (4 of 5 signals; 80%) with a single instance of signal definition based 
on duration (1 of 5 signals; 20%). Lastly, existing elements of a vehicle were rarely used and 
spanned multiple modalities (2 of 30 signals, 7%). 

 

3.3. Rates of signals 

Rates of signals for general and classic vigilance tasks have been already identified and discussed at 
length in the literature. For example by 1971, in his extensive 100+ page monograph “Vigilance: The 
problem of sustained attention”, road and motor vehicle traffic safety researcher Carl Stroh reviews 
over 35 different publications on the topic of signal frequency and concludes “when signal 
frequency is raised beyond a reasonable level (60–90 per hour), performance might be improved, 
but then it is doubtful that we are still dealing with a true vigilance situation” (Stroh, 1971, p. 8). 
Taking his upper bounds as the present analysis’ lower bound, signal rates less than and including 
90 per hour were considered presently “few” and those greater than 90 per hour were considered 
absently “few” and hence not matching in terms of the infrequency of signal characteristic found 
within the multi-decade consensus composite (Table 2.1.1, Feature 2a). Signal rate categorization 
and quantifications of driving and non-driving vigilance experimental tasks are shown in Table 
2.1.6a, Table 2.1.6b, respectively. A larger amount of unspecified feature adherence/contradiction 
was found regarding the reported rate of signal presentation for driving vigilance (31 reported 
signal rates from 39 tasks; 79%) than for non-driving vigilance (6 reported signal rates from 30 
tasks; 20%). Where signal rates were specified in driving vigilance, slightly more than half were 
found to match the aforementioned frequency of “few” (5 of 8 specified signal rates; 63%). In 
comparison, where signal rate was more often specified in non-driving vigilance tasks, a lower 
proportion were found to be “few” (7 of 24 specified signal rates; 29%). A comparative depiction of 
proportional signal rates between the driving and non-driving vigilance tasks as well as breakouts 
for rates not found to be “few” is given in Fig. 2.1.3. 
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Table 2.1.6a. Signal presentation rates per hour of driving vigilance experimental tasks. 

Ref # Few Rate(hr) 

1 ? ? 

2b ? ? 

4 0 133.33 

5b ? ? 

8b ? ? 

10a ? ? 

13a ? ? 

14 ? ? 

11 1 4.8 

17 ? ? 

16a ? ? 

15c ? ? 

15d ? ? 

20a ? ? 

22 ? ? 

25b ? ? 

25c ? ? 

30a 1 4.8 

28 ? ? 

33a ? ? 

34 ? ? 

37a 1 20 

38a ? ? 

3 ? ? 

6 1 60 

9a 1 60 

8a ? ? 

12a ? ? 

18b ? ? 

19b ? ? 

21a ? ? 

23 0 360 

26 ? ? 

27 ? ? 

31b 0 1560 

32 ? ? 

35a ? ? 

36a ? ? 

Note. Column header indications: “Few” – less than or equal to 90 presentations per hour; “Rate(hr)” = number of 
presentations per hour. Coding of “1” = true; “0” = false; “?” = not reported 
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Table 2.1.6b. Signal presentation rates per hour of non-driving vigilance experimental tasks. 

Ref # Few Rate(hr) 

2a 0 600 
7a 0 219.43 
7b 0 219.43 
7d 0 219.43 
5a 0 360 
9a 0 102.86 
8c 1 12.24 

10b ? ? 
13b 1 60 
12b 0 102.86 
16b ? ? 
15a 0 348.84 
15b 0 120 
18a ? ? 
30b 1 34.47 
30c 0 159.6 
37b ? ? 
38b 1 30 
39b 1 20 
19a 1 60 
19c 0 540 
21b 0 120 
20b 0 600 
24 0 345 
25a 0 200 
29 0 144 
31a 0 480 
33b 1 40 
35b ? ? 

Note. Column header indications: “Few” – less than or equal to 90 presentations per hour; “Rate(hr)” = number of 
presentations per hour.  Coding of “1” = true; “0” = false; “?” = not reported 
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Figure 2.1.3. Specification of signal rates in driving vigilance versus non-driving vigilance tasks and stacked bar 
delineation for proportions of specific rates when in excess of “true vigilance situations” (i.e., >90/hr) (Stroh, 1971, p. 8). 
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3.4. Percentages of overlap with classic/general vigilance tasks 

An overlap percentage was computed from the number of the multi-decade features (Table 2.1.1) 
that were present within each of every vigilance task operationalization. On average, less than half 
of the consensus features were found to be present overall (M = 48%, n = 69) with an average 
amount of unspecified features of 32%. Averaging separately, however, revealed a lower average 
overlap for the driving vigilance tasks (m = 36%, n = 39) with higher amounts unspecified (M = 46%) 
compared to the non-driving tasks (M = 64%, n = 30) with lower amounts unspecified (M = 13%) as 
seen in Fig. 2.1.4. 

 
Figure 2.1.4. Averages of classic consensus feature overlapping presence, contrary absence, and unspecified 
presence/absence for driving vigilance tasks (n = 39) versus non-driving vigilance tasks (n = 30). 
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3.5. Most common features of overlap, contrary, and unspecified 

For both the driving and non-driving vigilance tasks and each multi-decade consensus feature 
(Table 2.1.1), separate sums of the ratings of overlap, contrary, and unspecified were computed 
(Table 2.1.7) to determine what of classic vigilance tasks were most held in common, in 
contradiction or in uncertain terms. In the driving vigilance tasks, the most common feature 
overlapping with the classic features was that regarding a lengthy duration (i.e., half an hour or 
longer, Feature 4a) (28 of 39; 72%). In the non-driving vigilance tasks the most common feature in 
overlap was a tie between the detection of a signal (Feature 2) and the requirement of making a 
specified response (Feature 4e) (30 of 30; 100%). Regarding contrary features, the most common 
feature absent and in contradiction for the driving vigilance tasks was the successive presentation 
of signal and noise (i.e., a burden of memory of the distinction between these provided their non-
simultaneous/overlapping occurrences, Feature 4d) (20 of 39; 51%). For the non-driving vigilance 
tasks the most common feature absent and in contradiction was a tie between the signals being 
few in frequency (i.e., <90 per hour, Feature 2a) and the signals occurring in spatially uncertain 
locations (Feature 2f) (17 of 30; 57%). Lastly for unspecified feature presence/absence, the 
provision of objective feedback of a subject’s own task performance (Feature 4b) was the feature 
most often rated as unspecified in both driving vigilance (35 of 39; 90%) and non-driving vigilance 
tasks (20 of 30; 67%). 

 
Table 2.1.7. Counts of classic vigilance features (Table 2.1.1) for driving and non-driving vigilance experimental tasks 

 

"1" "1" "0" "0" "?" "?" 

Feature 

Code 

Driving 

(39 tasks) 
Non-Driving 

(30 tasks) 
Driving  

(39 tasks) 
Non-driving 
(30 tasks) 

Driving  
(39 tasks) 

Non-driving 
(30 tasks) 

1 25 27 0 3 14 0 

1a 14 10 14 9 11 11 

2 23 30 0 0 16 0 

2a 5 7 3 17 31 6 

2b 14 29 9 0 16 1 

2c 0 6 18 15 21 9 

2d 15 26 3 1 21 3 

2e 8 21 13 0 18 9 

2f 3 10 16 17 20 3 

3 17 18 4 11 18 1 

3a 17 18 4 11 18 1 

3b 14 17 6 11 19 2 

4 25 29 1 0 13 1 

4a 28 17 8 13 3 0 

4b 2 8 2 2 35 20 

4c 25 27 2 0 12 3 

4d 1 15 20 14 18 1 

4e 20 30 0 0 19 0 

Note. Column header indications: “1” = feature presence; “0” = feature absence; “?” = not reported feature 
presence/absence. Feature counts exceeding half of the full set of tasks are in bold as “common” and the highest 
count is in bold and in italics as “most common”. 
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3.6. Task summaries of the highest amount of overlap 

Finally, additional task summaries of those experimental driving vigilance tasks with the highest 
amount of overlap with the classic consensus general vigilance features are next presented in a 
four-way tie of 67% overlap each. First, with the lowest amount of unspecified features (6%), 
drivers were asked to immediately steer back to the center of the original lane once perturbed by 
random forced departure events while on a simulated night time roadway with no other traffic and 
cruising at a constant speed of 100 km/h (Lin et al., 2014). Second, with the next lowest unspecified 
consensus features of 11%, participants steered towards randomly left/right deviating red tail lights 
projected at a constant distance ahead “as if following it along a country road at night” while 
seated in a stationary car cabin but with a forward projection of a moving road of random dot 
patterns on an extended table surface ahead of their cabin, whose progression was coupled to the 
input of their accelerator pedal (Boadle, 1976, p. 220). Lastly, in two separately coded driving 
vigilance tasks from the same publication (Lo, 2005) and both with 17% of the consensus features 
unspecified, participants had to step on a brake pedal as response to encountering either a 
pedestrian stepping away from the sidewalk into the driving lane or a traffic light that changed from 
green to red. These participants were occupational taxi drivers who performed the test while 
seated in their own stationary real-life taxi with a 15″ laptop displaying a simulated 80 km/h flowing 
view of a monotonous road lacking any other traffic or lateral control. 

 

4. Discussion 
This review aimed to characterize experimental driving vigilance tasks in terms of common 
instructions/conditions, signal types/rates, and component features for comparison to the classic 
vigilance literature. From sampling experimental literature principally concerning both driving and 
vigilance, we found task operationalizations that were not highly similar with the full set of multi-
decade consensus situational features surrounding the vigilance decrement. The overall results 
support critical (re)evaluation of driving tasks as being construed as vigilance tasks in the classic 
sense. 

 

4.1. Coverage of experimental instructions and environmental conditions for 
driving vigilance tasks 

Our results revealed large and informative differences between the common instruction/conditions 
used in experimental driving vigilance research, especially along the dimension between the use of 
simulators or real roads. First, and perhaps unsurprisingly, simulator studies were about twice as 
common as real-world settings. Furthermore, simulator studies were found to more commonly 
restrict the driving task into maintaining a specific speed and lane position and hence driving 
vigilance arises as the perception and response to deviations from such mandates. When 
operationalized on real roads, drivers were more often flexibly tasked with only general adherence 
to legal/social conventions for driving. The driving vigilance here, might then be differently 
construed as the perception and response to deviations from safety or normality. Additionally, a 
large component of driving safety can reasonably be expected to include the presence/absence of 
other vehicles, which was about twice as commonly available in the real-world versus the simulator 
studies. Real-world studies, however, were seen to more commonly be restricted to conditions of 
near perfect visibility compared to simulator studies which more evenly exposed driving 
participants to both day/clear and night/fog environment. 
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4.2. Types of signals 

Similar challenges for the topic of driving vigilance were found from the analysis of signal types in 
experimental driving vigilance tasks. First, explicit descriptions of the driving specific signals a 
participant should be ready to perceive and respond to with a driving action were not found in over 
a third of what were coded as driving vigilance tasks. This shared difficulty alone suggests a 
decomposition of driving and assessment of driving vigilance to be potentially problematic. 
Potential solutions may include direct manipulations of instructions and/or stricter documentation 
of the specific instructions given to participants of driving vigilance experiments along with the 
avoidance of instructions which may be susceptible to generalities/assumptions such as to drive 
“safely”, “as you normally would”, “according to the law”, etc. Furthermore, clear consensus was 
not found between driving vigilance signal operationalizations, with a relatively even split between 
obstacles and speed/lane deviations and with only a few light signal sources. Unfortunately, as 
discussed earlier, deviations from prescribed speed or lateral positions might not be as realistic a 
concern of driving vigilance as the perception and avoidance of obstacles (i.e., especially other 
traffic). Additionally, a relative scarcity of light source signals (i.e., 2 of 23 driving vigilance signals) 
seems problematically disproportionate, given a large prevalence of visual light signals in real-world 
driving (e.g., intersection lights, caution lamps, turn signals, headlights, etc.) as well as in automated 
warnings/indicators (e.g., dashboard, heads up displays, etc.). Considering the possible modalities 
all of these driving vigilance signals might manifest through (as in the non-driving vigilance signals), 
additionally suggests a potential mismatch of focus. At present, a gap can be seen surrounding the 
use of real-life and multi-modal types of signals for experimental driving vigilance assessment and 
investigation. 

 

4.3. Rates of signals 

More problems for an informed identification and alleviation of vigilance decrements were found in 
the lack of reported signal rate/frequencies when describing the driving task specific signals and 
responses. This same level of unspecified signal rates (79%) was not evidenced in non-driving 
vigilance tasks (20%) and suggests in the least difficulty in reporting, and possibly even a gap in 
knowledge or approach regarding frequencies of driving vigilance signals. While more than half of 
specified signal rates in the driving vigilance tasks were indeed within the range of a “true vigilance 
situation” (Stroh, 1971, p. 8) these are at a minority against the disproportionate unspecified of the 
majority. Thus for the accurate prediction and alleviation of vigilance decrements, the present 
review reveals an unfortunate lack of articulation of a presumably prudent direct 
consideration/exploration of exactly how rare and/or how much influence drivers might have on 
the signals they must respond to while driving. Generally, whenever signal-response approaches 
are used, it is recommended to include precise documentation of the rate of signal presentation 
and especially for investigations of vigilance to also include stipulations surrounding any influences 
a participant might have on that rate or on its being predictable for the participant. 

 

4.4. Percentages of overlap with classic/general vigilance tasks 

All the vigilance tasks of the analysis averaged together showed a weak overlap with the multi-
decade consensus vigilance theory situational features (less than half on average), thus suggesting 
some misalignment of operationalization between theory and practice. Splitting this overlap 
comparison revealed less theoretical overlap for driving vigilance tasks (36%) versus non-driving 
vigilance tasks (64%). Additionally, the unspecified consensus aspect/qualifier presence or absence 
was higher for the driving vigilance tasks (46%) and lower for the non-driving vigilance tasks (13%). 
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In the least, it is evident then and convergent with the prior results of the present analysis, that 
describing driving as a vigilance task and tackling its potential for detrimental vigilance performance 
is not straightforward and the lessons learned thus far from vigilance theory therefore might not be 
readily applied. Extensions of classical definitions of vigilance to situated definitions of driving 
vigilance, especially pertaining to anticipated or requisite characteristics (e.g., features) may 
provide a way forward. Moreover, such definitions might attempt to identify features that are 
essential throughout all driving vs. specific to particular driving contexts or scenarios. 

 

4.5. Most common features of overlap, contrary, and unspecified 

The present analysis extended beyond the identification of a lack of consensus overlap (i.e., 
between shared features of classic vigilance circumstances and experimental driving vigilance 
operationalization), to help reveal why this might be the case. Perhaps unsurprisingly, driving 
vigilance tasks and non-driving vigilance tasks had similar overlap with consensus vigilance features 
regarding the presence of a perceiver tasked to respond to signals over a prolonged period in a 
consistent/unchanging standard of performance. More informatively, however, the current analysis 
showed features that are not commonly reported for driving vigilance tasks but which are 
commonly reported in non-driving vigilance tasks. These features of large quantities of non-
meaningful noise events which are highly similar to target signals where the target signals 
themselves are not predictable and not subject to any driver influence on the probability or 
duration of occurrence are lacking specification in driving vigilance operationalization. Such a 
lacking presents direct challenges of practically matching driving vigilance problems to general 
classic vigilance theory. Furthermore, the successive and memory burdening presentation of signals 
separate from noise was found to be absent in more than half of the driving vigilance tasks where 
instead signals emerged from or simultaneously overlapped with their noise (e.g., a pedestrian 
stepping away from a curb, or lateral heading drifting away from lane center, etc.). 

 

4.5.1. Task summaries of the highest amount of overlap 

Those few tasks with the highest amount of consensus feature overlap may shed light on 
circumstances research could focus on for safeguarding against classic vigilance decrements. In 
summary of the cases with an approximate two-thirds overlap with consensus classic vigilance 
circumstances, decrements of vigilance might be predicted for drivers alone at night attempting to 
follow precise lateral positions at constant speeds, in performing correct braking responses to red 
traffic signal lights and errant pedestrians, or in other conceivability similar circumstances. As an 
example of applied vigilance solutions then, deviations from a prescribed lane canter could be 
made more salient by auditory and visual alerting with Lane Departure Warnings. In addition to 
increasing the predictable/regular occurrence of encounter of pedestrians and/or traffic lights (e.g., 
crosswalks, intersections, etc.) such signals might be highlighted or emphasized by advanced 
recognition software such as with heads-up displays. However, two-thirds (while the highest found) 
is by definition only partial overlap and those elements missing might also be the ones crucial to or 
interactive with other aspects for performance in that specific situation. Until these are better 
understood from additional research and investigation, the driver vigilance support solutions may 
prove inadequate at best and inappropriately applied at worst. 

 

4.5.2. Highest amount of overlap in highly automated driving? 

Decrements and problems of vigilance may be expected to arise in future driver assistance and 
automated driving systems to the extent that circumstances of their use cases might resemble the 
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classic vigilance situational feature set. While the driving tasks of the present analysis did not often 
explicitly identify themselves as operating within an automated driving paradigm, some task 
conditions did automate lateral and/or longitudinal control in their experimental methods and so 
could be seen as reflecting a NHTSA Level of Vehicle Automation 1 and/or 2. Moreover, a body of 
driving vigilance concerns are emerging from BASt- and NHTSA-like definitions of automated driving 
where a driver is required to respond to an automated system take-over request provided no/short 
notice and/or a pre-established length of time (Gasser and Westhoff, 2012, NHTSA, 2013). While 
initially out of the scope of the present analysis because the title did not use the terminology of 
“vigilance” or “sustained attention” in its title, the take-over request (TOR) automated driving 
simulator experiment of Gold, Dambock, Lorenz, and Bengler (2013) maintains relevance to the 
present discussion as many of its theoretical and experimental task features could be considered in 
overlap with the classic vigilance feature set. 

 

In Gold et al. (2013), subjects were tasked with a pre-occupying secondary task while the car drove 
itself until an auditory and visual alert prompted them to take-over to avoid an accident ahead of 
them either through braking or swerving to another lane. In their methods, 50% of the set of 
features of classic vigilance tasks are present with a subject watching/listening for an infrequent, 
temporally uncertain, unambiguous, time-critical signal that they must perform a required response 
to in a consistent/routine manner. However, a much higher overlap around 83% (and highest yet of 
any of the tasks of the present analysis) is conceivable for TORs when adding to the specific 
reported methods of Gold et al. (2013) features likely within TOR in general. These additional 
features might include an isolated driver required to respond during prolonged periods of inactivity 
to imperfect automation through which the driver must make asynchronous discriminations 
between noise (i.e., false alarm/missed events) that is highly similar to valid signals. The classic 
vigilance decrement features of time criticality (i.e., short lasting signals) and lack of feedback on 
driving response in TOR, while respectively present and unspecified present/absent in Gold et al. 
(2013), however should not and does not necessarily hold true in all future real-world TOR 
implementations. Further research and investigation is thus seen as especially needed in regards to 
the specific potential for decrements of vigilance provided higher levels of driving automation 
surrounding the situational features entailed by design, implementation and actual driver use. 

 

5. Summary and Limitations 
From reviewing experimental driving vigilance task operationalizations, the results of the present 
analysis have shown the topic to be of great concern but a challenge for specific consensus 
definition and treatment. The results are by strict definition limited to the narrow selection of 
literature from specific inclusion/exclusion criteria, yet may generalize beyond the use of 
“vigilance”/”sustained attention” and “driving” in the title. The general results of uncertainty 
surrounding driving vigilance operationalization might also be considered an artifact of the feature 
set and coding schemes undertaken. However, the marked differences observable from the non-
driving vigilance tasks using these same methods serve to provide relative confirmation. Moreover 
subjectively, the same difficulty of complexity and articulation in driving vigilance can be 
appreciated merely from asking oneself which and to what extent any of the circumstances 
described above may or not be present when people actually drive in normal day-to-day situations. 
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6. Directions for Future Research 
Concerns in the literature over the real-world applicability of findings from laboratory/simulator 
vigilance experimental tasks span multiple decades of criticism and review (Kibler, 1965, Craig, 
1984, Mackie, 1984, Wiener, 1987) to the near present day (Hancock, 2013a) and are equally 
shared by driving safety researchers seeking theoretical transfer (Rosenbloom & Wolf, 2001). 

 

Raising such discussion and concern in the transportation research literature can help protect 
against prohibitions regarding driving task requirements (i.e. perceptual targets and response 
actions) while these requirements are still uncertain and supports the introduction of new 
theoretical accounts. In concert with the accelerating development and applications of 
microprocessors that “have demanded not less but more of the human monitor” and “those who 
believe that just one more chip needs to be invented to automate the human out of the system” 
(Wiener, 1987, p. 735), a volume of tools are also growing for observation and data collection in 
instrumented vehicles, field operational studies, and naturalistic driving (Dingus et al., 2006, Eenink 
et al., 2014, McGehee et al., 2007, Regan et al., 2012, Stutts et al., 2005, Tivesten and Dozza, 2014, 
Victor et al., 2010). Collectively, such studies could begin to provide exactly the wealth of real-world 
operational knowledge needed to bridge theory and practice (e.g., Wiener, 1987). Furthermore, 
they typify and support emerging theoretical perspectives, that is, situated cognition, that posit 
knowledge as inseparable from doing by being situated in activity bound to social, cultural, and 
physical contexts (Robbins & Aydede, 2008). 

 

Interestingly, with accelerating advances in computation (Moore, 1965), telecommunication, and 
Internet connectivity technology, nothing should inherently prohibit such real-world data from 
entering into laboratories and like areas of greater control and manipulation. For example, 
augmented reality and other blended designs might be an appealing approach (Hancock & 
Sheridan, 2011, chap. 4) as well as widely publically available and diverse driving video data sets 
(e.g., YouTube DashCam videos). Overall, in parallel with a growing popularity of debunking myths 
of “good” and “bad” drivers (Arnstein & Arnstein, 2005), future driving vigilance research efforts 
might benefit from following lines of cognitive and work domain analyses well used by many other 
domains (Rasmussen et al., 1994, Vicente, 1999), along with critical re-consideration of 
fundamental driving attention and distraction paradigms (Hancock, 2013b, Kircher and Ahlstrom, 
2015) and direct consideration of real-world conditions and constraints typically under-represented 
in simulator studies, including the allowance of terminating/modulating vigilance task performance 
at one’s own intrinsic will rather than external compulsion that fixes down attention otherwise left 
free to vary (Hancock, 2013a, Scerbo, 2001). 

 

From naturalistic driving studies, evidence is only recently emerging that safety risks associated 
with cell-phone use are considerably smaller than previously believed (Fisher, Caird, Rizzo, & Lee, 
2011, chap. 1) by distinguishing between talking/listening vs. reaching/dialing cell-phone aspects 
and by comparing relative to other higher risk factors like drowsiness and specific environmental 
situations like intersections and increased traffic densities (Klauer, Dingus, Neale, Sudweeks, & 
Ramsey, 2006). Future studies may even begin to address the possibility of cell-phone use as a 
benefit, for example, as voluntary countermeasure to reduced alertness (Victor et al., 2015). The 
constant maintenance of some prescribed and pre-determined level of driving vigilance may itself 
also be worth challenging or in the least worth re-visiting provided more specific detailing of the 
situational features included in actual driving activity. Indeed, the lack of consensus from the 
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present analysis of driver vigilance operationalization may be viewed as support for reversals or at 
least re-examinations regarding assumptions or requirements of how drivers should, and/or how 
they actually do perceive and respond while driving. 
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Chap. 2.2) How to Keep Drivers Engaged while 
Supervising Driving Automation? A literature 
survey and categorization of six solution areas 
(in press) Theoretical Issues in Ergonomics Science  
 

 

 

 
In regards to the overall thesis big picture, this literature survey serves as a foundation for 
organizing previously proposed solutions to the problem of keeping the engagement of 
supervisors of automation (i.e., in general such that their lessons learned might be 
applied to the automated driving domain). The survey work generated six solution area 
themes with which independent raters exhibited better than chance agreement when 
tasked to apply the themes to categorize the conclusions found in 34 publications. The 
first three themes describe avoidance either in a hard sense or different versions of a soft 
stance: objective or subjective reductions in the supervisory control task. The latter three 
themes describe solutions under familiar learning theory paradigms in chronological 
order: behaviourism, cognitivism, and ecological constructivism. Cognitive followed by 

ecological themed solutions appear to be the most commonly proposed.     

 

 

 

 

Adapted from: 

Cabrall, C.D.D., Eriksson, A., Dreger, F., Happee, R., & de Winter, J.C.F. (2019). How to keep drivers engaged while 
supervising driving automation? A literature survey and categorization of size solution areas. Theoretical Issues in 
Ergonomics Science, vol. 20(3), pgs. 332-365. 
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Abstract 
This work aimed to organize recommendations for keeping people engaged during human 
supervision of driving automation, encouraging a safe and acceptable introduction of automated 
driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory 
was used to propose solution areas to human supervisory control problems of sustained attention. 
Driving and non-driving research examples were drawn to substantiate the solution areas. 
Automotive manufactures might (1) avoid this supervisory role altogether, (2) reduce it in 
objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles 
such as with gamification and/or selection/training techniques, (5) support internal driver 
cognitive processes and mental models and/or (6) leverage externally situated information 
regarding relations between the driver, the driving task, and the driving environment. Second, a 
cross-domain literature survey of influential human-automation interaction research was 
conducted for how to keep engagement/attention in supervisory control. The solution areas (via 
numeric theme codes) were found to be reliably applied from independent rater categorizations of 
research recommendations. Areas (5) and (6) were addressed by around 70% or more of the 
studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around 
20% and 5% respectively. The present contribution offers a guiding organizational framework 
towards improving human attention while supervising driving automation. 
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1. Background 

1.1. Addressing human driving errors with automation technology 

Traffic safety literature has predominately implicated human behaviour and cognition as principal 
factors that cause motor vehicle crashes and fatalities. Treat et al. (1979) performed 2,258 on-site 
and 420 in-depth accident investigations and found that human errors and deficiencies were a 
cause in at least 64% of accidents, and were a probable cause in about 90-93% of the investigated 
accidents. Treat et al. (1979) identified major human causes as including aspects such as improper 
lookout, excessive speed, inattention, improper evasive action, and internal distraction. The 
National Highway Traffic Safety Administration (NHTSA, 2008) conducted a nationwide survey of 
5,471 crashes involving light passenger vehicles across a three year period (January 2005 to 
December 2007). NHTSA (2008) determined the critical reason for pre-crash events to be 
attributable to human drivers for 93% of the cases. Critical reasons attributed to the driver by 
NHTSA (2008) included recognition errors (inattention, internal and external distractions, 
inadequate surveillance, etc.), decision errors (driving aggressively, driving too fast, etc.), and 
performance errors (overcompensation, improper directional control, etc.). 

 

Consequentially, Advanced Driving Assistance Systems (ADAS) and Automated Driving Systems 
(ADS) are commonly motivated as solutions to address transportation safety problems of human 
errors (Kyriakidis et al., 2015; Gao et al., 2014; NHTSA, 2017). The Society of Automotive Engineers 
International (SAE) originally released a standard J3016_201401 (SAE, 2014) that conveyed an 
evolutionary staged approach of five successive levels of driving automation ranging from ‘no 
automation’ to ‘full automation’ (herein referred to as SAE Level 0-5). While the SAE standard has 
been revised several times to its most current version available as of June 2018 (SAE, 2018), its 
principal levels have been retained and continue to be a common reference point for the 
automotive automated/autonomous vehicles (AVs) research domain. Automotive manufacturers 
have already begun to release various SAE Level 2 ‘Partial Automation’ systems within their on-
market vehicles, which allow combined automatic execution of both lateral and longitudinal vehicle 
control under specific operational design domains. At SAE Level 2, drivers are still expected to 
complete object and event detection and response duties while retaining full responsibility as a fall-
back to the driving automation (SAE, 2018).  

 

1.2. New roles, new errors: Supervisors of mid-level driving automation  

A complicating issue along the path to fully autonomous self-driving cars exists for the SAE Level 2 
partial automation systems in regards to a state of driver supervisory engagement and retention of 
responsibility. Owners’ manuals, manufacturer websites, and press releases of recent on-market 
SAE Level 2 systems were collected as background material to understand how the industry is 
presently addressing this issue. A sample of recently released SAE Level 2 driving automation 
system terminology and Human Machine Interfaces (HMI) regarding human disengagement is 
organized in Table 2.2.1. Notably, such concerns appear mostly in arguably passive (e.g., 
instructional guidelines and warnings), indirect (e.g., surrogate sensing of attention/involvement), 
and/or reactive (e.g., post-incident alerting) manners.  

 

Most manufacturers kept their descriptions of driver engagement responsibilities and requirements 
during use of their SAE Level 2 systems at a higher level than commonly found in research 
communities (e.g., specifications of aberrant driver state terminology such as drowsiness, 
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distraction, inebriation). Instead, manufacturer examples included abstracted aspects like always 
being aware of and acting appropriately in traffic situations or being ‘in control’. Some notable 
specifics for the remaining driver responsibility include Mercedes’ detailing of vehicle speed, 
braking, and staying in the lane (Mercedes-Benz, 2017, p. 177), a few statements from BMW that 
hands must be kept on the steering wheel (BMW, 2017), and repetitive remarks from Tesla 
regarding their hands-on requirements (Tesla, 2017, p. 73), including an entire sub-section entitled 
‘Hold Steering Wheel’ (Tesla, 2017, p. 74).  

 

Table 2.2.1. Partially automated driving releases (~ 2017)# 

Make Model System 
Terms for driver state of 

engagement 

Engagement 
Inputa 

modality 

Engagement 
Outputb 
modality 

Inattention 
escalation 
intervals 

Volvo Cars XC90 
S90, V90 

Pilot Assist II attention, judgment 
 
 
 

VLa  
VLn VMsc 

AU  
VI  

TOC 

0 

GM, 
Cadillac 

CT6 Driver 
Attention 
System  
(Super Cruise) 

attention, awareness, 
supervision, engagement 
 
 
 
 

VI AU  
VI  
TA  

TOC 

>1 

Tesla Model S 
Model X 

Autopilot Tech 
Package v. 8.0 

alert, safely, in control, 
hands-on, mindful, 
determine appropriate, 
be prepared 
 

VLa AU  
VI  

TOC 

5 

Audi A4, Q7 Traffic Jam 
Assist 

be in control, ready, 
responsible, assessing, 
attention 
 

VLa VMsc AU  
VI  

TOC 

>1 

BMW 750i 
7 series 

Active Driving 
Assistant Plus 

be in control, responsible, 
correctly assess traffic 
situation, adjust the 
driving style to the traffic 
conditions, watch traffic 
closely, actively intervene, 
attentively 
 

VLa AU  
VI  

(TA)  
TOC 

1 

Infiniti Q50S Active Lane 
Control 

be alert, drive safely, keep 
vehicle in traveling lane, 
control of vehicle, correct 
the vehicle’s direction 
 

(VLa) (AU)  
(VI) 

-1 

Daimler, 
Mercedes-
Benz 

S65 AMG Distronic Plus 
with Steering 
and Active 
Lane-Keeping 
Assist 

adapt, aware, ensure, 
control, careful 
observation, be ready, 
maintain safety 
 
 

VLa VMsc AU  
VI  

(TA)  
TOC 

1 
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a
 Input modalities (vehicle from driver): 

 VLa = vehicle lateral, steering, etc. 

 VLn = vehicle longitudinal, brake, gas, etc.  

 VMsc = vehicle misc., seat buckle, wait, door lock, etc. 
 

b
 Output modalities (vehicle to driver):  

 AU = audio 

 TA = tactile/haptic/vestibular 

 VI = visual 

 TOC = transition of control, change in functionality/level, etc. 
 

# sources of information  

 Volvo Cars 
o http://volvornt.harte-hanks.com/manuals/2017/S90_OwnersManual_MY17_en-US_TP22301.pdf 
o http://volvo.custhelp.com/app/answers/detail/a_id/9769/~/new-features-available-as-of-

november-2016 

 GM, Cadillac 
o http://media.gm.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/apr/

0410-supercruise.html 
o https://www.youtube.com/watch?v=Shm3GY_JG-w 

 Tesla 
o https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf 

 Audi 
o http://ownersmanual.audiusa.com/ 
o http://www.audi.com/en/innovation/piloteddriving/assistance_systems.html 
o https://www.youtube.com/watch?v=T8ESfICGnAc 
o https://www.youtube.com/watch?v=RMj4H4ybEkc 

 BMW 
o https://www.bmwusa.com/owners-manuals.html 
o http://www.bmw.com/en/topics/fascination-bmw/connected-drive/driver-assistance.html 
o https://www.youtube.com/watch?v=RKAE-ANKIBY 
o https://www.youtube.com/watch?v=7fqXJcscjzw 

 Infiniti  
o https://owners.infinitiusa.com/content/manualsandguides/Q50/2017/2017-Q50-owner-manual-

and-maintenance-info.pdf 

 Daimler, Mercedes-Benz  
o https://www.mbusa.com/mercedes/service_and_parts/owners_manuals#!year=2017&class=S-

Sedan 
o http://techcenter.mercedes-benz.com/en/distronic_plus_steering_assist/detail.html 
o http://techcenter.mercedes-benz.com/en_ZA/steering-pilot/detail.html 

 Unofficial demonstration/review reports 
o https://www.youtube.com/watch?v=RjvI57BIDp0 
o https://www.caranddriver.com/features/semi-autonomous-cars-compared-tesla-vs-bmw-

mercedes-and-infiniti-feature-2016-bmw-750i-xdrive-page-4 
o https://www.youtube.com/watch?v=isZ3fSbE_pg 
o https://www.youtube.com/watch?v=C7xV9rMajNo 

 

 

Across the various inputs that are interpreted as aberrant driver engagement/readiness  (e.g., 
inadequate braking levels, unbuckled seatbelts, open doors, and driver facing cameras), the most 
common classification was that of measures associated with lateral vehicle control (i.e., steering 
wheel touch/torque and/or lane position). GM/Cadillac currently stands out as the only one so far 
to use a visual modality of a driver-facing camera to ascertain driver inattention. The consequential 

http://volvornt.harte-hanks.com/manuals/2017/S90_OwnersManual_MY17_en-US_TP22301.pdf
http://volvo.custhelp.com/app/answers/detail/a_id/9769/~/new-features-available-as-of-november-2016
http://volvo.custhelp.com/app/answers/detail/a_id/9769/~/new-features-available-as-of-november-2016
http://media.gm.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/apr/0410-supercruise.html
http://media.gm.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/apr/0410-supercruise.html
https://www.youtube.com/watch?v=Shm3GY_JG-w
https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf
http://ownersmanual.audiusa.com/
http://www.audi.com/en/innovation/piloteddriving/assistance_systems.html
https://www.youtube.com/watch?v=T8ESfICGnAc
https://www.youtube.com/watch?v=RMj4H4ybEkc
https://www.bmwusa.com/owners-manuals.html
http://www.bmw.com/en/topics/fascination-bmw/connected-drive/driver-assistance.html
https://www.youtube.com/watch?v=RKAE-ANKIBY
https://www.youtube.com/watch?v=7fqXJcscjzw
https://owners.infinitiusa.com/content/manualsandguides/Q50/2017/2017-Q50-owner-manual-and-maintenance-info.pdf
https://owners.infinitiusa.com/content/manualsandguides/Q50/2017/2017-Q50-owner-manual-and-maintenance-info.pdf
https://www.mbusa.com/mercedes/service_and_parts/owners_manuals#!year=2017&class=S-Sedan
https://www.mbusa.com/mercedes/service_and_parts/owners_manuals#!year=2017&class=S-Sedan
http://techcenter.mercedes-benz.com/en/distronic_plus_steering_assist/detail.html
http://techcenter.mercedes-benz.com/en_ZA/steering-pilot/detail.html
https://www.youtube.com/watch?v=RjvI57BIDp0
https://www.caranddriver.com/features/semi-autonomous-cars-compared-tesla-vs-bmw-mercedes-and-infiniti-feature-2016-bmw-750i-xdrive-page-4
https://www.caranddriver.com/features/semi-autonomous-cars-compared-tesla-vs-bmw-mercedes-and-infiniti-feature-2016-bmw-750i-xdrive-page-4
https://www.youtube.com/watch?v=isZ3fSbE_pg
https://www.youtube.com/watch?v=C7xV9rMajNo
https://www.youtube.com/watch?v=C7xV9rMajNo
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output modalities of auditory, visual, and transitions of control (ToC) were found to be used by all 
manufacturers in their reactive HMI strategies. One manufacturer officially mentioned use of a 
tactile modality alert (GM/Cadillac) while a few others (Mercedes, BMW) were found in unofficial 
reports (MercBenzKing, 2016; Sherman, 2016). 

 

By counting stages beyond a first warning (i.e., escalation intervals), Tesla was found to use the 
highest number of escalations in their reactive HMI. At least five escalations were observable from 
online Tesla owner videos (e.g., Black Tesla, 2016; Super Cars, 2017). Descriptions and 
approximated timings of the following escalations are in regards to coming after the initial warning 
of a grey filled textbox with wheel icon and ‘Hold Steering Wheel’ message at the bottom of the 
dashboard instrument cluster.  

 

(1) +2 seconds after first warning - dashboard instrument cluster border pulses in white with 
an increasing rate 

 

(2) +15 seconds after first warning - one pair of two successive beeps 
 

(3) +25 seconds after first warning - two pairs of two successive beeps 

 

(4) +30 seconds after first warning - at the bottom of the instrument cluster, a red filled 
textbox plus triangle exclamation point icon with two line written messages of ‘Autosteer 
Unavailable for the Rest of This Drive’ on line one, and ‘Hold Steering Wheel to Drive 
Manually’ on line two in smaller font, along with a central image of two red forearm/hands 
holding a steering wheel that replaces the vehicle’s lane positioning animation, the same 
previous pairs of successive beeps are repeated in a continuous manner; the vehicle 
gradually reduces speed 

 

(5) +37 seconds after first warning – all alerts from previous level remain, two yellow dots are 
added at the beginning of each forearm; the vehicle hazard blinkers are activated 

 

A few manufacturers could be determined as having more than one escalation (GM/Cadillac, Audi), 
a few others as exactly one escalation (BMW, Daimler/Mercedes-Benz), and Volvo appeared to 
have a single first level/stage warning with no further escalation. Infiniti appeared to have no HMI 
reactive to driver disengagement/misuse of their Level 2 system (Active Lane Control). All but one 
manufacturer (Infiniti) were found to use at least the visual modality in their first stage of warning 
against driver disengagement.  
 

2. Introduction of Solution Grouping Framework 

2.1. Proactive solution strategies for human engagement in supervisory control 

To complement the passive, indirect, and/or reactive approaches presently available in the 
aforementioned on-market industry examples, a set of proactive solution strategies towards human 
engagement in supervisory control might be helpful. Longstanding human factors and ergonomics 
principles have previously suggested risks in relying on humans as monitors of automated (e.g., 
invariant, predictable, monotonous, etc.) processes over extended periods (Greenlee et al., 2018; 
Hancock, 2017a; Molloy & Parasuraman, 1996; Bainbridge, 1983; Mackworth, 1950). Thus, it was 



Chapter 2.2: Supervisory Engagement with Driving Automation 

 

63 

expected that many solutions might exist across the academic literature and could benefit from a 
qualitative framework for organizing trends and patterns in their recommendations.  
 

A natural starting point to the difficulties in human supervisory control of driving automation is to 
avoid the supervisory role outright (e.g., skip SAE Level 2). Logically, softer versions of such a hard 
stance might also be realizable in either objective or subjective ways. Objectively, the amount of 
time or envelope of automated functionality could be reduced. Subjectively, the supervisory 
experience of responsibility could be refashioned with altered perceptions of the human’s role 
towards shared or even fully manual authority. Furthermore, extensive research conducted under 
multiple paradigms of psychological theory might suggest approaches out of different schools of 
thought. The behaviourism paradigm centres around conditioning learning theories and suggests 
associative stimuli and/or stimulus-response pairing principles to promote the desired behaviour 
and discourage that which is undesirable. The cognitivism paradigm focuses on internal information 
processes and advises ways to support limited mental resources, representations, and awareness. 
Lastly, ecological approaches emphasize inclusion of external considerations of the task and the 
environment surrounding the worker/learner towards enhanced relational performance from a 
broader systems-level view. In summary, a grouping framework of six proactive solution areas is 
proposed to help answer the question ‘How do we keep people engaged while supervising (driving) 
automation?’ In each case, the solution areas are introduced first in a general manner of various 
automation domains, before exemplifying relevancy specifically for engagement in supervisory 
control of driving automation. 
 

Solution Area (1): Avoid the role of sustained human supervision of automation 

 Suspend/repeal/skip levels of automation requiring human oversight and backup 

o ‘just don’t do it’ 
 

Solution Area (2): Reduce the supervising role along an objective dimension  

 Change the amount of time or envelope of automated operations   

o ‘don’t do it as much’  
 

Solution Area (3): Reduce the supervising role along a subjective dimension 

 Share responsibilities and/or alter the end user experience and impressions 

o ‘do it without drivers having to know about it’ 

 

Solution Area (4): Support the supervising role from the behaviourism paradigm 

 Condition the desired target behaviours through training and selection 

o ‘make or find drivers who do it better’  

 

Solution Area (5): Support the supervising role from the dyadic cognitivism paradigm 

 Inform designs to support cognitive processes and mental models 

o ‘focus on internal mental constructs’  

 

Solution Area (6): Support the supervising role from the triadic ecological paradigm 

 Inform designs to leverage external environment contexts and task considerations 

o ‘focus on external task/environment factors’ 
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2.1.1. Solution Area (1): Avoid the role of human supervision of automation 

The most parsimonious proactive solution could be to avoid subjecting drivers to the unnatural 
requirement of monitoring automated processes. Decades of human factors and ergonomics 
research have echoed that this is not something humans do well. A resounding result from Norman 
Mackworth (1948) was that despite instruction and motivation to succeed in a sustained attention 
task (used as an analogy to the critical vigilance of WWII radar operators watching and waiting for 
enemy target blips on their monitor screens), human detection performance dropped in relation to 
time-on-task. Thousands of reports have since been published on the challenges of human 
vigilance, also known as ‘sustained attention’ (Frankmann & Adams, 1962; Craig, 1984; Cabrall et 
al., 2016). Bainbridge (1983) observed the irony that human supervisory errors are expected when 
operators are left to supervise an automated process put in place to resolve manual control errors. 
Humans were described as deficient compared to machines in prolonged routine monitoring tasks, 
as seen in the MABA-MABA (Men Are Better At – Machines Are Better At) list by Fitts (1951), and 
such characterizations persist today (De Winter & Dodou, 2011). In a review of automation-related 
aircraft accidents, Wiener and Curry (1980) suggested that it is highly questionable to assume that 
system safety is always enhanced by allocating functions to automatic devices rather than human 
operators. They instead consider first-hand whether a function should be automated rather than 
simply proceeding because it can be.  

 

Driver responses have been found to be negatively impacted when having to respond to simulated 
automation failures while supervising combined automatic lateral and longitudinal driving control 
(De Waard et al., 1999; Stanton et al., 2001; Strand et al., 2014). From elaborated operator 
sequence diagram models, Banks et al. (2014) indicated that far from reducing driver workload, 
additional sub-system tasks associated with monitoring driving automation actually would increase 
cognitive loads on a driver. Banks et al. (2018) analysed on-road video observations of participants 
operating a Tesla Model S in Autopilot mode (i.e., SAE Level 2 driving automation). Their analysis 
suggested that ‘drivers are not being properly supported in adhering to their new monitoring 
responsibilities and instead demonstrate behaviour indicative of complacency and over-trust’. 
Accordingly, Banks et al. (2018) discussed a possibility that certain levels of driving automation (DM, 
driver monitoring) need not be implemented even if they are feasible from a technical point of 
view, and that a simplified set of roles of only DD (driver driving) and DND (driver not driving) could 
be preferred from a human factors role/responsibility point of view. 

 

‘…it seems more appropriate at the time to accept that the DD and the DND) roles are the 
only two viable options that can fully protect the role of the human within automated 
driving systems. This in turn means that either the human driver should remain in control 
of longitudinal and/or lateral aspects of control (i.e., one of the other) or they are removed 
entirely from the control-feedback loop (essentially moving straight to SAE 4)’. (p. 144). 

 

2.1.2. Solution Area (2): Reduce the role along an objective dimension  

In the mid-1990s, several key studies suggested a less strict avoidance approach in the human 
supervision of automation. Various schemes for alternating periods of manual and automated 
control were investigated (Parasuraman et al., 1996; Scallen et al., 1995; Endsley & Kiris, 1995). In 
Parasuraman et al. (1996), adaptive control conditions where control was temporally returned to a 
human operator showed subsequent increases in monitoring performance compared to a non-
adaptive full automated condition. In Scallen et al. (1995), adaptive switching between manual and 
automated control was investigated at short time scale intervals (i.e., 15, 30, and 60 seconds). 
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Objective performance data indicated better performance with shorter rather than longer cycles. 
However, such benefits were associated with increased workload during the shorter cycle durations 
(i.e., the participants did better only at the cost of working harder and prioritizing a specific sub 
task). Thus, the authors concluded that if the goal of the operator is to maintain consistency ‘on all 
sub-tasks, at all times’ then the performance immediately following episodes of short automation 
warrants particular concern: i.e., ‘the results support the contention that excessively short cycles of 
automation prove disruptive to performance in multi-task conditions’.  In Endsley and Kiris (1995) 
the level of automated control was investigated. Rather than manipulating the length of time of 
automated control, a shift from human active to passive processing was deemed responsible for 
decreased situation awareness and response time performance. Manual control response times 
immediately following an automation failure were observably slower compared to baseline manual 
control periods. However, the effect was less severe under partial automation conditions compared 
to the full automation condition. 

 

In Merat et al. (2014), a motion-based driving simulator experiment study was conducted with 
adaptive automation. They compared a predictable fixed schedule for triggering ToC to manual 
control with a real-time criterion which switched to manual based on durations of drivers looking 
away from the forward roadway. The authors concluded that better vehicular control performance 
was achieved when the automated to manual ToC was ‘predictable and based on a fixed time’.  

 

2.1.3. Solution Area (3): Reduce the role along a subjective dimension  

Rather than altering the objective amount of automated aid as in solution area (2), automation 
system design can also focus on the driver’s psychological subjective experience or perception of 
responsibility and/or capability. In other words, manual human operator behaviour is not replaced 
in solution area (3) but augmented, extended, and/or accommodated. Such subjective shaping 
might take the form either as help (e.g., automatic backup) or even as hindrance (e.g., to provoke 
positive adaptive responses). Schutte (1999) introduced the concept of ‘complemation’ to describe 
technology that is designed to enhance humans by augmenting their innate manual control skills 
and abilities rather than to replace them. With such complementary technology, ‘many of the tasks 
that could be automated (i.e., performed solely by technology) are deliberately not automated so 
that the human remains involved in the task. This involvement must be meaningful rather than 
simply “doing something” or “busy work”’ (Schutte, 1999, p. 116., emphasis added). Flemisch et al. 
(2016) relayed similar theoretical concepts and design approaches where both the human and the 
machine should act together at the same time under a ‘plethora’ of names, such as shared control, 
cooperative control, human-machine cooperation, cooperative automation, collaborative control, 
co-active design, etc. Young & Stanton (2002) proposed a Malleable Attentional Resources Theory 
positing that the size of relevant attentional resource pools can temporally adapt to changes in task 
demands (within limits). Thus, cognitive resources may actually be able to shrink/grow to 
accommodate various decreases/increases in perceived demands (e.g., even while retaining 
objective protections in the background).  

 

Janssen (2016) evaluated simulated automated driving as a backup and found improved lateral 
performance and user acceptance (workload and acceptance) compared to adaptive automated-to-
manual ToC. Mulder et al. (2012) improved safety performance and decreased steering variation in 
a fixed-base driving simulator through the use of haptic shared control. By requiring and retaining 
some level of active control from the human driver (i.e., amplification of a suggested torque), the 
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shared control model was expected by Mulder et al. (2012) to maintain some levels of engagement, 
situation awareness, and skill as compared to the supervisory control of automation.  

 

A concept of promoting increased care in driving from the end-user by a seemingly reductive or 
even counter-productive human automation interface design can be found in Norman (2007). In 
order to keep human drivers informed and attentive, the proposition suggested that more 
requirements for human participation might be presented than is really needed. In other words, an 
automated driving system can encourage more attention from the human supervisor by giving an 
appearance of being less capable, of doing less, or even doing the wrong thing. Norman (2007) 
exemplified this framework of ‘reverse risk compensation’ by reference to Hans Monderman (1945-
2008) and then to Elliot et al. (2003). In Monderman’s designs, the demarcations, rules, and right of 
ways of a designed traffic system are purposefully diminished/removed in favour of shared spaces. 
The idea is to provoke end-users (drivers, pedestrians, cyclists, etc.) to collectively combat 
complacency and over-reliance on rules/assumptions by being forced to look out for themselves 
(and one another). Norman (2007) cited results from Elliot et al. (2003) where artificial increases in 
perceived uncertainty resulted in driver adoption of safer behaviours such as increased information 
seeking and heightened awareness. In sum, Norman (2007) described an interesting potential of 
designed automated processes in futuristic cars where there could be an approach of shaping 
psychological experiences. 

 

‘…we can control not only how a car behaves but also how it feels to the driver. As a 
result, we could do a better job of coupling the driver to the situation, in a natural manner, 
without requiring signals that need to be interpreted, deciphered, and acted upon … The 
neat thing about smart technology is that we could provide precise, accurate control, even 
while giving the driver the perception of loose, wobbly controllability’. (p. 83).  

 

2.1.4. Solution Area (4): Support the role from the behaviourism paradigm 

A historical psychological perspective on shaping people to behave as desired can be traced back to 
the early 1900s behaviourism learning models of Ivan Petrovich Pavlov (‘classical conditioning’) and 
Burrhus Frederic Skinner (‘operant conditioning’). Broadbent and Gregory (1965) attributed 
prolonged watch detriments to a shift in response criterion whereby operators might be better 
persuaded towards reacting to doubtful signals (e.g., manipulation of payoff). More recently, the 
term ‘gamification’ has been defined as the ‘use of game design elements in non-game contexts’ 
(Groh, 2012) and was recognized in positive and negative ways to exemplify conditional learning 
aspects (Terry, 2011). In gamification, interface designs utilize the mechanics and styles of games 
towards increased immersion. Related approaches include an emphasis on skills either acquired 
over practice (e.g., training focus) and/or from innate pre-dispositions (e.g., personnel selection, 
individual differences, etc.). Neuro-ergonomic approaches in Nelson et al. (2014) improved 
vigilance task performance via transcranial direct current stimulation. Parasuraman et al. (2014) 
identified a genotype associated with higher skill acquisition for executive function and supervisory 
control. Sarter and Woods (1993, p. 118) advised directions to support awareness through ‘new 
approaches to training human supervisory controllers’, and Gopher (1991) suggested potential 
promise via the enhancement of ‘skill at the control of attention’. 

 

Behaviouristic dispositions are also observable in the automotive domain concerning increased 
driver vigilance with ADAS. Similar to the aforementioned investigations of selection interest (e.g., 
neurological disposition for enhanced cognitive executive control), automotive research 
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recommendations have included the implementation of training programs and/or gamified 
concepts. This solution area aims to enhance operators without enough attentive skills, or 
executive control for sustained focus, to instead obtain such skill/focus via extra practice, 
immersion, and/or motivation. Diewald et al. (2013) reviewed ‘gameful design’ and saw promise for 
its use for in-vehicle applications (e.g., navigation, safety, and fuel efficiency). For driving safety, 
virtual money/points and virtual avatar passengers were identified as rewards/punishments tied to 
onboard diagnostics of driving styles. In Lutteken et al. (2016), a simulated highly automated 
highway driving vehicle performed longitudinal and lateral control while the human driver 
controlled lane changes as a manager of consent. A gamified concept consisting of partner teaming, 
virtual currency points that could be earned/spent, and time scores was found to motivate and 
increase the desired cooperative driver behaviours. In a test-track study, Rudin-Brown and Parker 
(2004) found increased response times to a hazard detection task while using adaptive cruise 
control (ACC). Rudin-Brown and Parker (2004) concluded that response times to the ACC failure 
were related to drivers’ locus of control and suggested driver awareness training as a potential 
preventive strategy that could minimize negative consequences with using novel ADAS. The TRAIN-
ALL (European Commission co-funded) project had the objective to develop training schemes and 
scenarios for computer-based training in the use of new ADAS (Panou et al., 2010). Panou et al. 
(2010) evaluated various ADAS training simulations so that trainees would learn how to optimally 
use ADAS without overestimating their functionality and maintain appropriate knowledge of their 
limitations.  

 

2.1.5. Solution Area (5): Support the role from the dyadic cognitivism paradigm 

The internal human mind is the focus of solution area (5). The chapter ‘The Human Information-
Processer’ of Card et al. (1983) described a model of communication and information processing 
where ‘Sensory information flows into Working Memory through the Perceptual Processor’, 
‘Working Memory consists of activated chunks in Long-Term Memory’, and ‘The basic principle of 
operation’ consists of cycles of recognizing and acting (e.g., resulting in commands to a motor 
processor). In accord with this seminal work, cognitive user-centric interface design theory and 
practices (e.g., Johnson, 2010) have generally used metaphors and constructs to align content, 
structure, and functions of computerized systems with content, structure, and functions of human 
minds: attention (Sternberg, 1969; Posner, 1978), workload (Ogden et al., 1979, Moray, 1982), 
situation awareness (Endsley, 1995), (mental-spatial) proximity compatibility principle (Wickens & 
Carswell, 1995), and multiple (modality) resource theory (Wickens, 1980, 1984). Similar mentally 
focused accounts persist for the topic of sustained attention and monitoring. Parasuraman (1979) 
concluded that loads placed on attention and memory are what drive decrements in vigilance. See 
et al. (1995) argued for the addition of a sensory-cognitive distinction to the taxonomy of 
Parasuraman (1979), where it was emphasized that target stimuli that are (made to be) more 
cognitively familiar would reduce vigilance decrement consequences. Olson and Wuennenberg 
(1984) provided information recommendations for user interface design guidelines regarding 
supervisory control of Unmanned Aerial Vehicles (UAVs) in a list that covered cognitive topics of 
transparency, information access cost minimisation, projections, predictions, expectations, and 
end-user understanding of automation. Sheridan et al. (1986) described the importance of mental 
models in all functions of supervisory control, including aspects for monitoring (e.g., sources of 
state information, expected results of past actions, and likely causes of failures) and intervening 
(options and criteria for abort and for task completion). Lastly, the highly cited human trust of 
automation theory from Lee and See (2004) underscored arriving at appropriate trust via cognitive 
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aspects of users’ mental models of automation: understandable algorithms, comprehensible 
intermediate results, purposes aligned to user goals, expectancies of reliability, and user intentions.  

 

The importance of mental process components is shared by SAE Level 2 simulator studies (De 
Waard et al., 1999; Strand et al., 2014; Beggiato et al., 2015) and theoretical accounts (Beggiato et 
al., 2015; Li et al., 2012). De Waard et al. (1999) were concerned with reduced driver alertness and 
attention in the monotonous supervision of automated driving. They found emergency response 
complacency errors in about half of their participants, and advocated providing feedback warnings 
pertaining to automation failures (e.g., clear and salient status indicators). Strand et al. (2014) 
appealed to an account of situation awareness to explain their findings of higher levels of non-
response as well as decreased minimum times to collision when simulated driving automation was 
increased from an ACC to an ACC plus automatic steering system. Beggiato et al. (2015) used both a 
driving simulator study (post-trial questionnaires and interviews as well as eye gaze behaviour) and 
an expert focus group to investigate information needs between SAE Levels 0, 2, and 3, where they 
found the second level to be more exhausting than the other conditions due to the continuous 
supervision task. Beggiato et al. (2015) concluded that in contrast to manual driving where needs 
are more oriented around driving-task related information, for partially and highly automated 
driving requested information is primarily focused on status, transparency, and comprehensibility 
of the automated system. Li et al. (2012) conducted a survey of recent works on cognitive cars and 
proposed a staged/levelled alignment of automation functions (e.g., perception enhancement, 
action suggestion, and function delegation) with driver-oriented processes (stimuli sensation, 
decision making, and action execution) (cf. Parasuraman et al., 2000; Eriksson et al., in press). 

 

2.1.6. Solution Area (6): Support the role from the triadic ecological paradigm  

A broad ecological systems view is represented by solution area (6). This perspective relates 
vigilance problems to an artificial separation of naturally coupled observation-action-environment 
ecologies. As an extension to information processing approaches, the chapter ‘A Meaning 
Processing Approach’ of Bennett and Flach (2011) described a semiotics model dating back to work 
of Charles Peirce (1839-1914) that widens a dyadic human-computer paradigm into a triadic 
paradigm of human-computer-ecology with functionally adaptive rather than symbolically 
interpretive behaviour. Flach (2018) observed that minds tend to be situated, in the sense that they 
adapt to the constraints of situations (like the shape of water within a glass). Gibson (1979) 
promoted a theory of affordances not as properties of objects but as direct perception of ecological 
relations and constraints. Particularly in the chapter ‘Locomotion and Manipulation’, Gibson (1979) 
suggested that the dichotomy of the “mental” apart from the “physical” is an ineffective fallacy. 
Gibson promotes units of direct perception to be not of things, but of actions with things. Moreover 
he conveys that such affordances are not available equally in some universal manner, but instead 
are relatively bounded in a holistic manner. Wickens and Kessel (1979) accounted for a manual 
control superiority because of a task ecology of continual sensing and correcting of errors together 
(active adaptation) where additional information (i.e., physical forces) is provided beyond those 
available from prolonged sensing alone without continual action. Neisser (1978) dismissed accounts 
of humans as passive serial information processors and instead promoted an indivisible and cyclic 
account of simultaneous processes. Thus, from such a point of view, vigilance tasks could be 
considered as problematic because of artificial assumptions and attempts to separate perception 
and action (i.e., thinking before acting, perceiving without acting, etc.) and to unnaturally isolate a 
state of knowledge at a singular specific point in time or sensory modality. 
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Such ecological approaches that emphasize the importance of direct perception and informed 
considerations of adaptation to specific work domains (tasks and situations) are evident in common 
across multiple human factors and psychological theories: cognitive systems engineering 
(Rasmussen et al., 1994), situation awareness design (Endsley et al., 2003), ecological psychology 
(Vicente and Rasmussen, 1990), situated cognition (Suchman, 1987), embodied minds (Gallagher, 
2005), the embedded thesis (Brooks, 1991; O’Regan, 1992), and the extension thesis (Clark & 
Chalmers, 1998; Wilson, 2004). Flach (1990) promoted the importance of ecological considerations 
by emphasizing that humans naturally explore environments, and thus models of human control 
behaviour have been limited by the (frequently impoverished) environments under which they 
were developed. He relayed that an overly simple laboratory tracking task ‘turns humans into a 
trivial machine’ and that real natural task environments (of motion, parallax, and optic arrays, etc.) 
are comparatively information rich with relevant ‘invariants, constraints, or structure’. Chiappe et 
al. (2015) supported a situated approach by observing that ‘operators rely on interactions between 
internal and external representations to maintain their understanding of situations’  in contrast to 
traditional models that claim ‘only if information is stored internally does it count as SA’. Mosier et 
al. (2013) provided examples that the presence of traffic may affect the extent to which pilots 
interact with automation and the level of automation they choose and operational features such as 
time pressure, weather, and terrain may also change pilots’ automation strategies as well as 
individual variables such as experience or fatigue. They found that vignette descriptions of different 
situational configurations of automation (clumsy vs. efficient), operator characteristics (professional 
vs. novice), and task constraints (time pressure, task disruptions) led pilots to different predictions 
of other pilots’ behaviours and ratings of cognitive demands. Hutchins et al. (2013) promoted an 
integrated software system for capturing context through visualization and analysis of multiple 
streams of time-coded data, high-definition video, transcripts, paper notes, and eye gaze data in 
order to break through an ‘analysis bottleneck’ regarding situated flight crew automation 
interaction activity. In an UAV vigilance and threat detection task, Gunn et al. (2005) recommended 
sensory formats and advanced cuing interfaces and accounted for the reduced workload levels they 
obtained via a pairing of detections to immediately meaningful consequential actions in a simulated 
real-world setting (i.e., shooting down a target in a military flight simulation) rather than responses 
devoid of meaning.  

 

Leveraging external contextual information can be found in several recent driving automation 
theory and experimental studies. Lee and Seppelt (2009) convey that feedback alone is not 
sufficient for understanding without proper context, abstraction, and integration. Although 
technically an SAE Level 1 system, ACC also contains supervisory control aspects (i.e., monitoring of 
automated longitudinal control), and Stanton & Young (2005) concluded that ACC automation 
designs should depart from conventions that report only their own status, by offering predictive 
information that identifies cues in the world and relations of vehicle trajectories. Likewise, Seppelt 
and Lee (2007) promote and found benefits of an ecological interface design that makes limits and 
behaviour of ACC visible via emergent displays of continuous information (time headway, time to 
collision, and range rate) that relates the present vehicle to other vehicles across different 
dynamically evolving traffic contexts. In terms of an SAE Level 2 simulation, participants in Price et 
al. (2016) observed automated lateral and longitudinal control where vehicle capability was 
indicated via physically embodied lateral control algorithms (tighter/looser lane centre adherence) 
as opposed to via typical visual and auditory warnings. Consequentially, drivers’ trust was found to 
be sensitive to such a situated communication of automation capability. Pijnenburg (2017) 
improved vigilance and decreased mental demand in simulated supervisory control of SAE Level 2 
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driving automation via a naturalistic interface that avoided arbitrary and static icon properties in its 
visual design. A recent theory of driving attention proposed not to assume distraction from the 
identification of specific activities alone but instead underscored a definition that requires relation 
in respects to a given situation (Kircher & Ahlstrom, 2017). After conducting several driver 
monitoring system (DMS) studies, a concluding recommendation from a work package deliverable 
of a human factors of automated driving consortium project was to ‘incorporate 
situated/contextualized aspects into DSM systems’ (Cabrall et al., 2017). 

 

2.2. Literature Survey Aims 

In the previous section, a qualitative grouping framework of six solution areas was introduced to 
identify trends and group proactive approaches towards human engagement while supervising 
automated processes. The aim of the following literature survey was to investigate whether the 
proposed solution areas might be represented in best practice recommendations and conclusions 
of influential and relevant works from a variety of human operator domains. Additionally, we aimed 
to identify trends between the solution areas: would some be more commonly found than others?; 
which might be more/less favoured by different domains? 

 

3. Methods of Literature Survey 

3.1. Inclusion Criteria 

A scholarly research literature survey was conducted concerning the topic of keeping prolonged 
operator attention. In line with the terminology results of the automotive on-market survey (Table 
2.2.1), our search terms were crafted to diminish potentially restrictive biases: of preferential 
terminology (vigilance, situation awareness, signal detection theory, trust, etc.), of 
operationalisation of performance (response/reaction time, fixations, etc.), of state (arousal, 
distraction, mental workload, etc.), or of specific techniques/applications (levels of automation, 
autonomous systems, adaptive automation, etc.). Instead, a more general Google Scholar search 
was performed with two presumably synonymous terms ‘engagement’ and ‘attention’. The 
proactive term (i.e., ‘keeping’) was included at the front of the queries to attempt to focus the 
literature survey away from reactive research/applications (e.g., concerning measurement 
paradigms. 

(1) keeping engagement in supervisory control 

(2) keeping attention in supervisory control 

Google Scholar was used to reflect general access to semantically indexed returns from a broad set 
of resources as sorted for relevancy and influence in an automatic way. Literal search strings within 
more comprehensive coverage of specific repository resources were not presently pursued because 
the present survey was aimed initially for breadth and accessibility rather than database depth or 
prestige. Comparisons to a more traditional human-curated database (i.e., Web of Science) have 
concluded that Google Scholar has seen substantial expansion since its inception and that the 
majority of works indexed in Web of Science are available via Google Scholar (De Winter et al., 
2014). Across various academic and industry research contexts, not all stakeholders might share 
equivalent repository reach, whereas Google Scholar is purposefully engendered as a disinterested 
and more even playing field. For such a democratic topic of driving safety risks while monitoring 
driving automation (i.e., that have already been released onto public roadways and might pose 
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dangers for everyone in general), organization of accessible guideline knowledge collectible from a 
broad-based Google Scholar resource seemed an appropriate first place methodological motivation 
ahead of future studies that might make use of more specific in-depth databases. 
 

The 100 titles and abstracts of the first 50 results per each of the 2 search terms were reviewed to 
exclude work not pertaining to human-computer/automation research. Furthermore, several 
relevant and comprehensive review works that were returned in the search (e.g., Sheridan, 1992; 
Chen et al., 2011; Merat & Lee, 2012; etc.) were not included for categorization on the basis that 
their coverage was much wider than the present purposes of organizing succinct empirical 
recommendations. Exclusions were also made for works that appeared to focus more on promoting 
or explaining supervisory control levels or models of automation rather than concluding design 
strategies to the problem of operator vigilance while monitoring automated processes. One final 
text was excluded where raters had trouble applying a solution area on the basis that it dealt with 
remote human operation of a physical robotic manipulator. The research did not seem to share the 
same sense of human-automation supervisory control as seen in the other texts. The remaining set 
of 34 publications are listed in Appendix A by reverse chronological order. 

 

3.2. Solution Area Categorizations via Numeric Theme Codes 

To investigate the reliability of organizing the body of published literature with the proposed 
solution areas, confederate researchers (i.e., human factors PhD student (co-) authors on the 
present paper) were tasked as raters to independently categorize the conclusions of the retrieved 
research papers. For the sake of anonymity, the results of the three raters are reported with 
randomly generated pseudonym initials: AV, TX, and CO. Raters were provided an overview of the 
solution areas with numeric theme codes (i.e., Theme 1-6) and tasked with assigning a single top 
choice code for each of the publications of the inclusion set. The task was identified to the raters as 
“to assign a provided theme code number to each of the provided publications texts based on what 
you perceive the best fit would be in regards to the authors’ conclusions (e.g., solution, strategy, 
guideline, recommendation)”. Raters were also instructed to rank order any additional theme codes 
as needed. A survey rather than a deep reading was encouraged, where the raters were asked to 
sequentially bias their reading towards prioritized sections and continue via an additional as-
needed basis (e.g., abstract, conclusions, discussion, results, methods, introduction, etc.) in order to 
determine the solution area that the author(s) could conceivably be most in favour of. A frequency 
weighting-scoring system per each theme code was devised where 1 point would be assigned for 
first choice responses, 0.5 points for second choice responses, and 0 points otherwise.  

 

4. Results of Rater Categorizations 

4.1. Inter-rater Reliability  

First and second choice (where applicable) theme codes from each rater for each publication are 
presented in Appendix B. For first choice theme codes, statistical inter-rater Kappa agreement was 
computed via the online tool of Lowry (2018) with standard error computed in accordance with the 
simple estimate of Cohen (1960). The Kappa between AV and TX was 0.25, with a standard error of 
0.11. The Kappa between AV and CO was 0.23, with a standard error of 0.11. The Kappa between 
TX and CO was 0.21, with a standard error of 0.09. Such Kappa statistic results (i.e., in the range of 
0.21-0.40) may be interpreted as representing a ‘fair’ strength of agreement when benchmarked by 
the scale of Landis and Koch (1977) which qualitatively ranges across descriptors of ‘poor’, ‘slight’, 
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‘fair’, ‘moderate’, ‘substantial’, and ‘almost perfect’ for outcomes within six different possible 
quantitative ranges of Kappa values. 

 

Initially suggestive of a low level of percentage agreement, only 6 out of the 34 publications 
received the same first choice coded theme categorization across all three raters. However, 
randomization functions were used to generate 3 chance response values (i.e., 1-6) for each of the 
34 publications and repeated 100 different times. Thus, it was determined that the chance 
probability of achieving full way agreement for 6 or more publications was less than 1%. In 
comparison, random chance full agreement was observed for 0 publications to be 40%, for 1 
publication to be 37%, for 2 publications to be 15%, for 3 publications to be 6%, for 4 publications 
to be 1%, for 5 publications to be 1%, and for 6 or more publications to be < 1%. Simulations with 
up to 1 million repetitions verified such a range of chance performance across 0 to 6 publications: 
38%, 37%, 18%, 5%, 1%, < 1%, 0%. 

 

Furthermore, matched categorizations between any 2 rather than all 3 of the raters was 
considered. As such, 27 out of the 34 publications received the same first choice coded theme 
categorization between at least 2 raters. As with the preceding full agreement analyses, random 
chance probabilities of two-way agreement were also computed from 100 sets of 3 random values 
for each of the 34 publications. The chance probability of achieving two-way categorization 
agreement for 27 or more publications was also determined to be less than 1%. In comparison, 
random chance two-way agreement was observed for between 31-34 publications to be less than 
1%, for 26-30 publications to be less than 1%, for 21-25 publications to be 5%, for 16-20 
publications to be 42%, for 11-15 publications to be 46%, for 6-10 publications to be 7% and for 5 
or fewer publications to be less than 1%. Simulations with up to 50,000 repetitions verified such 
chance performance across the ranges of 31-34, 26-30, 21-25, 16-20, 11-15, 6-10, and 0-5 
respectively as 0%, < 1%, 3%, 41%, 50%, 5%, and < 1%. 

 

4.2. Theme Frequency  

Weighted frequency scores (i.e., from aggregated first and second choice responses across raters) 
for each theme code and per each publication are listed in reverse chronological order in Table 
2.2.2. Theme 5 appears to be the most common solution area, followed closely by 2 and 6. In 
contrast, Theme 1 appears to be the rarest, followed by Theme 3. While the majority of 
publications received heavy score weightings distributed across several themes, a highest likelihood 
single theme was recognizable for 28 of the 34 references (82%), as a result of the first and second 
choice rater aggregation scoring scheme. Theme 2 of objective reduction of amounts of human 
supervisory control of automation was found to be the most frequent first choice solution area 
labelled by 2 out of the 3 raters (i.e., AV and CO), whereas TX most often identified Theme 5 
pertaining to support of internal cognitive processes and mental models. Theme 5 was also the 
most frequent second choice for TX and AV. Theme 6 regarding the use of external contexts and 
task considerations was the most frequent second choice of CO. 
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Table 2.2.2. Weighted frequency scores for aggregated first and second choices by each inter-rater for each publication 
reference. Lower/higher weights are lighter/heavier shaded. Highest weights per publication are outlined. 

Ref ID 
Weight of 
Theme 1 

Weight of 
Theme 2 

Weight of 
Theme 3 

Weight of 
Theme 4 

Weight of 
Theme 5 

Weight of 
Theme 6 

1 0.0 2.0 0.0 0.0 2.0 0.0 

2 0.0 1.0 0.0 0.0 0.5 2.5 

3 0.0 2.0 0.0 1.0 0.5 0.5 

4 0.0 1.5 0.0 0.0 0.5 2.5 

5 0.0 0.0 0.0 2.0 1.5 0.5 

6 0.0 0.5 0.0 1.5 1.0 1.0 

7 0.0 0.0 0.0 3.0 0.5 0.0 

8 0.0 2.0 0.0 0.5 1.0 0.0 

9 0.0 2.5 0.0 0.5 1.5 0.0 

10 0.0 2.5 0.0 0.0 1.0 0.0 

11 1.0 1.0 0.0 0.0 1.0 0.0 

12 0.0 2.0 0.0 0.0 0.5 1.0 

13 0.0 0.0 0.0 1.0 1.5 2.0 

14 0.0 2.5 0.0 0.0 0.0 2.0 

15 0.0 3.0 0.5 0.0 0.0 0.5 

16 0.0 0.0 0.0 3.0 0.0 0.5 

17 0.0 0.0 0.0 0.5 1.0 3.0 

18 0.0 2.0 0.0 0.0 1.0 0.5 

19 0.0 1.0 0.0 0.0 1.0 1.0 

20 0.0 0.0 1.0 0.0 1.0 2.0 

21 0.0 2.0 0.5 0.0 1.0 0.5 

22 0.0 0.0 1.5 0.0 1.0 1.5 

23 0.0 1.0 0.0 2.0 0.5 0.0 

24 2.0 2.5 0.0 0.0 0.0 0.0 

25 0.0 1.0 0.0 2.0 0.5 0.0 

26 0.0 0.0 0.0 0.5 2.0 1.5 

27 0.0 0.0 0.0 3.0 0.5 0.5 

28 0.0 0.0 0.0 0.0 1.0 2.5 

29 0.0 0.0 1.0 0.0 0.5 2.0 

30 0.0 0.0 0.0 1.0 3.0 0.0 

31 0.0 0.0 1.0 0.0 1.5 1.0 

32 0.0 1.0 0.0 0.0 1.5 1.5 

33 0.0 0.0 0.0 0.0 2.0 1.5 

34 0.0 0.5 0.0 2.0 2.0 0.0 

  
     

  

Total: 3.0 33.5 5.5 23.5 34.0 32.0 
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All publications of the included thematic analysis set were informally organized into primary 
operational domain(s) of concern (i.e., what job or service was the human supervisory control of 
automation investigated in). Most likely solution areas from weighted raters’ first and second 
choice applied theme codes were determined per publication. Domains and most likely themes are 
combined in reverse chronological order in Table 2.2.3. In general, it can be observed that for the 
included publications, the domain areas have shifted over the decades from more general 
laboratory and basic research and power processing plants towards more mobile vehicle/missile 
applications and most recently especially with remotely operated vehicles. Although of limited 
sample size, some general domain trends might be observed. For example, it appears that 
uninhabited aerial vehicle (UAV) operations predominately favoured Theme 2 with also some 
consideration for Theme 6. In contrast, uninhabited ground vehicle (UGV) operations presently 
indicated only Theme 4. Earlier work with space, power plants, and general basic research showed 
a mix mostly of Themes 5 and 6. Aviation areas with pilots and air traffic control had a split of 
Themes 4 and 5. Missile air defence consisted of Theme 4 and Theme 2. Lastly, two automobile 
studies were present in the returned results: the first involving a fairly abstracted driving decision 
task (with a resulting likely categorization of Theme 2), and the second evidencing a split categorical 
rating assignment between Theme 2 and Theme 5. 
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Table 2.2.3. Primary operator domains of publications with identified likely thematic solution 
category from aggregate inter-rater first and second choice weighted scores. U(x)V = uninhabited 

vehicles, robots; UAV = uninhabited aerial vehicles; UGV = uninhabited ground vehicles; USV = uninhabited surface 
vehicles, ships; UUV = uninhabited underwater vehicles; Pilot = flight-deck, cockpit; ATC = ground-based air traffic 
control; Missile = air defense command and control; Automobile = automotive cars, trucks, etc.; Naval vessel = 
battleship, aircraft carrier, etc.; Space = spacecraft, satellites, etc.; Power plant = hydro, nuclear, electric, gas, oil, etc.; 
General = laboratory, basic research; Radar = military asset defence of airfield, ship, etc.; ComCon = general military 
command/control, tactical operations 
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2  6              

3 2 2   2           

4 6               

5   4             

6   4             

7       4         

8 2 2  2            

9 2 2   2           

10  2              

11  1/2/5              

12        2        

13  6              

14  2              

15  2           2   

16        4        

17  6              

18 2 2              

19 2/5/6               

20               6 

21 2 2              

22       3/6      3/6   

23             4   

24         2       

25      4          

26      5          

27        4        

28            6    

29       6   6    6  

30      5          

31            5 5   

32             5/6   

33           5     

34             4/5   
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5. Discussion 

5.1. Evolution of Cross Domain Concern  

With a proliferation of automation also comes an increase in human supervision of automation 
(Sheridan,1992) because automation does not simply replace but changes human activity. Such 
changes often evolve in ways unintended or unanticipated by automation designers and have been 
predominately regarded in a negative sense as in ‘misuse’, ‘disuse’, and ‘abuse’  (Parasuraman & 
Riley, 1997) and/or as ‘ironies’ (Bainbridge, 1983). Whether or not significant human supervisory 
problems will manifest in a proliferation commiserate with automation propagation is likely to be a 
function of the automation’s reliability in the handling of the problems inherent in its’ domain area. 
Human supervisors of automation are needed not only because a component might fail (e.g., 
electrical glitch) but also because the situation might exceed the automatic programming. 
Originally, computers and their programs were physically much larger and constrained to 
determinable locations within predictable and enclosed environments. As computers have become 
physically smaller their automated applications could be more practically incorporated into 
vehicles. Vehicles, however literally move across time and space and hence are subject to many 
environmental variants. Advances in supervisory control automation have been originally 
appropriate and suitable to vast expanse domains (outer space, the oceans, the sky) because they 
are difficult for humans to safely and commonly inhabit. Thus, such domains typically suffer from 
impoverished infrastructures and are subject to signal transmission latencies where automation 
must close some loops itself. Such automatic closures are benefited further by the absence of 
masses of people because compared to machines, people create a lot of noise and uncertainty with 
many different kinds of unpredictable and/or imprecise behaviours.  

 

Likewise, driving automation was first showcased on highly structured freeways (Ellingwood, 1996), 
out in the desert and within a staged urban environment on a closed air force base (DARPA, 2014) 
before progressing towards more open operational design domains. Subsequently, driving 
automation market penetration has tended to begin first within more closed campus sites and 
scenarios with lower levels of uncertainty (e.g., interstate expressways) before proceeding into 
other contexts of increasing uncertainty and/or complexity (e.g., state highways, rural roads, and 
urban areas). Thus, while the present search terms for keeping attention/engagement in 
supervisory control returned only two studies in the automotive area, more might be expected in 
the future to the extent that 1) automated vehicles continue to need human supervisors (e.g., how 
structured and predictable vs. messy and uncertain are the areas in which they drive) and 2) how 
much attention/engagement of human supervisors of automated driving might be expected to 
wane or waver. 

 

5.2. Convergence and Contribution 

When restricted to a single choice, seemingly few applied theme codes were found to be in 
common agreement across all three independent raters. However, non-chance agreement was still 
obtained both in terms of standard inter-rater reliability Kappa statistics and percentage agreement 
analyses. Furthermore, thematic categorization agreement was enhanced by the allowance of rater 
second choices, which seems plausible, as empirical research conclusions can of course be of 
compounding nature. For example, Stanton et al. (2001) address the design of future ADAS by 
advocating for future research that ‘could take any of the following forms: not to automate, not to 
automate until technology becomes more intelligent, to pursue dynamic allocation of function, to 
use technology to monitor and advise rather than replace, to use technology to assist and provide 
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additional feedback rather than replace, to automate wherever possible’. Saffarian et al. (2012) 
proposed several design solution areas for automated driving: shared control, adaptive automation, 
improved information/feedback, and new training methods. Specifically for the topic of SAE Level 2 
‘partially automated driving’, Casner et al. (2016) lament their expectations for vigilance problems 
in their conclusions that ‘Today, we have accidents that result when drivers are caught unaware. 
Tomorrow, we will have accidents that result when drivers are caught even more unaware’. 
Furthermore, they anticipate dramatic safety enhancements are possible when automated systems 
share the control loop (such as in backup systems like brake-assist and lane-keeping assistance) or 
adaptively take it as needed from degraded driver states (i.e., distraction, anger, intoxication). 
Casner et al. (2016) also conclude that designers of driver interfaces will not only have to make 
automated processes more transparent, simple, and clear, they might also periodically involve the 
driver with manual control to keep up their skills, wakefulness, and/or attentiveness. Lastly, Seppelt 
and Victor (2016) suggest new designs (better feedback and environment attention-orienting cues) 
as well as ‘shared driving wherein the driver understands his/her role to be responsible and in 
control for driving’ and/or fully responsible driving automation that operates without any 
expectation that the human driver will serve as a fall-back.  

 

The proposed solution areas overlap with many of the compounded review conclusions above from 
Stanton et al. (2001), Saffarian et al. (2012), Casner et al. (2016), and Seppelt and Victor (2016). 
From the present literature survey, what is added is a grouping framework that might more fully 
encapsulate the conclusions of empirical results from both the broad body of human factors, 
ergonomics, and learning theory as well as human driving automation interaction research. 
Furthermore, the solution areas were purposefully organized in a hopefully digestible and 
memorable way. The first three themes describe avoidance either in a hard sense or different 
versions of a soft stance: objective or subjective reductions. The latter three themes describe 
solutions under familiar learning theory paradigms in chronological order: behaviourism, 
cognitivism, and ecological constructivism. 

 

Identifying a ‘best’ or ‘preferred’ theme of proactive strategy is not expected to be a discretely 
resolvable answer. Instead, the relative advantages and disadvantages should probably best be 
reflected upon in light of contextual considerations. Furthermore, due to their qualitative nature, 
the themes are not directly orthogonal from one another. Themes 2 and 3 could be conceived of as 
softer avoidance versions of a stricter skip-over stance of Theme 1. Theme 6 can be seen to expand 
from Theme 5 not as an opposing contrast but as an elevating extension that can still subsume 
cognitive and human-centred concepts. Themes 5, 2, and 6 were the top three most common 
solution areas found in the present survey.   

 

5.2.1. Solution Area (1): Avoid the role of human supervision of automation 

For Theme 1, it might be easier to hold close to a viewpoint of avoiding supervisory control of 
automation in theoretical or laboratory-oriented research. A sizeable body of human factors and 
ergonomics science literature supports such a standpoint that human bias and error is not 
necessarily removed via the introduction of automation, but instead, humans can generally be 
shown to be poor monitors of automation. However, industry examples also exist of both 
traditional and start-up automotive manufacturers (i.e., Ford and Waymo) opting to skip mid-level 
driving automation where a human is required to continuously supervise the processes (Ayre, 2017; 
Szymkowski, 2017). The low coverage of this theme in the present survey (see Table 2.2.2) is 
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probably more an artefact of the present survey rather than evidence of its unimportance or non-
viability—more discussion is provided in a separate limitations section. 
 

5.2.2. Solution Area (2): Reduce the role along an objective dimension 

Regarding Theme 2, temporal restrictions based upon scheduled durations of automation use 
might be a practical starting place to initially implement mechanisms to reduce the objective 
amount of human supervision of driving automation. For combatting fatigue associated with 
conventional driving control during long trips, many modern day vehicles come equipped with 
timing safety features. Such rest reminders function by counting the elapsed time and/or distance 
of a single extended trip (e.g., hours of continuous operation since ignition on) and consequently 
warn/alert the driver for the sake of seeking a break or rest period. Because time on task has been 
traditionally identified as a major contributing factor to vigilance problems (Mackworth, 1948; 
Teichner, 1974; Greenlee et al., 2018), time-based break warnings and/or restrictions as with 
general driving fatigue countermeasures, might be practically worthwhile to apply on scales specific 
for human supervisory monitoring of SAE Level 2 driving automation. Compared to other 
contributing components to vigilance decrements (cf. Cabrall et al., 2016), the duration of watch 
period is expected to be an attractive dimension for human-automation interaction system 
designers due to its intuitive and simplistic operationalization even in spite of its potential to 
interact with other vigilance factors. 

 

5.2.3. Solution Area (3): Reduce the role along a subjective dimension 

Theme 3 of altering the perception towards increased danger or uncertainty and thus necessitating 
greater care from end-users could be problematic for automotive manufacturers that would 
reasonably expect to maintain positive rather than negative attributions of their products and 
services. However, an altered experience might carefully be crafted to direct attribution of 
uncertainty away from the vehicle and towards aspects of the environment or others (see Norman, 
2007, pp. 83-84). For example, advanced driving automation of SAE Level 2 (simultaneous lateral 
and longitudinal control) might operate on an implicit level to support a driver who believes that 
he/she alone has control authority/responsibility (e.g., in line with how previous lower level driver 
assistance systems such as electronic stability control have been successfully deployed in the 
background). Discussion of its relatively low amount of coverage in the present survey (see Table 
2.2.2) is provided in a separate limitations section. 

 

5.2.4. Solution Area (4): Support the role from the behaviourism paradigm  

Theme 4 is perhaps the most widely known in the general population and especially that 
behaviouristic aspect of manipulating or shaping behaviour through rewards and punishments. 
Caution, however, is warranted, as effects have been previously shown to be limited in lasting 
power and reach. For example, Parasuraman & Giambra (1991) found that while training and 
experience can help to reduce vigilance decrements, its benefits were not as observable in older 
populations: practice alone is insufficient to eliminate age differences. Notably, elderly populations 
are commonly regarded as primary users and beneficiaries of automated/autonomous ADAS (cf. 
Hawkins 2018). Furthermore, the practical viability of Theme 4 should be noted with consideration 
of the fact that a large proportion of the vigilance decrement phenomena exhibited in historic 
experiments was undertaken by young, highly trained, and motivated operators. By comparison, 
the present literature survey was concerned with uncovering proactive knowledge further 
generalizable and applicable to laypeople who might not be used to or amenable to rigours of 
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professional training when it comes to driving (e.g., recurrent training, reading of documentation, 
attention to help resource media/material, etc.).  

 

5.2.5. Solution Area (5): Support the role from the dyadic cognitivism paradigm 

Theme 5 cognitive science approaches have become prominent and favoured over the last few 
generations. Established human-automation research guideline approaches are on the rise (i.e., 
information processing models, awareness/attention, user/human centred design, etc.) alongside 
the popular success of companies like Google that promote their top maxim as ‘Focus on the user 
and all else will follow’ (Google, 2018). With the launch of a subsidiary company called “Ford 
Autonomous Vehicles LLC”, the Ford Motor Company is self-reportedly embedding a deeper 
product-line focus where ‘the effort is anchored on human-centered design’ (Ford, 2018).  

 

5.2.6. Solution Area (6): Support the role from the triadic ecological paradigm 

Theme 6 pertaining to leveraging and augmenting information in the environment and task itself 
(e.g., situated, ecological, extended cognition, etc.) is expected to gain traction commensurate with 
technological progress of increased access to ambient data that might have been previously too 
cost-prohibitive in previous decades. For example, more recent times have seen an acceleration of 
accessibility from the miniaturization of recording equipment and availability of ubiquitous sensing 
and computing power. As automation applications continue to grow into new operational areas and 
expand beyond closed control system process considerations (especially as with vehicles which by 
definition move from one place to another), recognition of environmental and task dependencies 
are also expected to grow. 

 

5.3. Limitations 

The presently proposed framework to group answers to the potential problems of degraded driver 
engagement while monitoring driving automation were not derived from a formal and systematic 
procedure. Instead, the themes were construed in an abductive reasoning manner while trying to 
organize and relate timely operational concerns (monitoring responsibilities in SAE Level 2 driving 
automation) with both established and more recently emergent research literature. Assimilation of 
these solution areas was desirable, considering the long-standing history of general vigilance issues 
of prolonged human supervisory attention over any automated processes. However, such a 
framework cannot claim to be the only one conceivable, and the identified themes could be argued 
to reflect only idiosyncratic knowledge, reasoning, and partial/imperfect readings of a more full 
body of literature. For example, Themes 1 and 3 were scarcely used categorizations by any of the 
raters within the present literature survey. Besides clear challenges presented by such a small 
sample size of only 34 publications, other explanations are also available as to the absence of 
Themes 1 and 3 among the rater responses. As foreshadowed first by Billings (1991) and repeated 
by Endsley and Kiris (1995), the rapid release and continual roll-out of automation (then for 
aviation, now for automotive applications) might obviate a so-called ‘too academic’ position of 
strict avoidance (i.e., Theme 1). Thus, it is conceivable how an approach area as Theme 1 might be 
under-represented in the literature as being both either too obvious and/or too obsolete. For 
example, the proactive literature search terms (e.g. of keeping engagement/attention in 
supervisory control) might reasonably not be expected to return publications that are 
predominately oriented towards the first solution area of avoiding the supervisory role. In contrast, 
Theme 3 might be too abstract or unusual (or even arguably unethical as a feature of deception) to 
be directly arrived at and associated with the terms of ‘supervisory control’. While shared control 



 
 

80 

and backup automation are far from being alien concepts, the logical complement of changing a 
subjective experience with automation (Theme 3) to that of changing an objective amount of 
automation (Theme 2) might be for some too unfamiliar as a grouping umbrella perspective. 
Furthermore, because humans are still humans whether supervising automated processes or 
performing other kinds of vigilance and/or sustained attention work, it should be noted that, 
although presently left out of scope, many of the other literature search returns regarding 
proactive solutions to human attention/engagement in supervisory or monitoring control/work 
might be expected to transfer interesting lessons learned even if from non-operator domains: 
educational classrooms, business offices, creative work, medical hospitals, geriatric care, etc.  

 

6. Conclusions 
A wealth of literature suggests categorical approaches to proactive strategies for addressing 
potential degradation of driver monitoring performance in human supervisory control of driving 
automation. A qualitative framework of six themes to group solutions have been presently 
proposed in order to answer a research question of ‘how do we keep people engaged while 
supervising (driving) automation’. These themes were motivated from human factors and 
psychological learning theory literature and found to be recognizably applied by raters to categorize 
empirically grounded human automation interaction research recommendations. The present 
themes were devised as short-hand formulations that might be easy to remember. Such abstracted 
organization frameworks are expected to be useful in order to more easily draw comparisons both 
within and across domains. For example, as a sort of lay of the land overview, the solution areas 
might serve like a map for automation research/design practitioners to locate where their present 
approaches (i.e., to human vigilance in supervising driving automation) currently reside and what 
other alternative areas might be interesting to explore. Additionally, underlying concepts can also 
thus be more easily entertained to provide common groundwork benefits across seemingly 
disparate themes. 

 

6.1. General Lessons Learned  

The body of literature has much to say regarding supervisory control of automation. We encourage 
readers towards broader review work in general (Sheridan, 1992), for unmanned robot-vehicle 
systems (Chen et al., 2011), and for evolving driving roles specifically (Merat & Lee, 2012). Across 
these review works (and across the six presently identified themes), a consensus benefit would 
appear to be meta-information requirements to combat uncertainty regarding human involvement 
in supervising automation (e.g., information about control utility, situated automation capability, 
performance predictions, etc.). Specific findings from these publications are highlighted below to 
substantiate this position. 

 

Sheridan (1992) provides a definitive reference for supervisory control that brings together a 
variety of theories and technologies across decades of his experimental research within the area. In 
his concluding chapter, he warns of alienation of operators from their work/responsibilities as an 
underlying cause and concern to be combatted through designs that allow an operator to retain 
her/her sense of responsibility and accountability. He considers the future of supervisory control in 
relation to the task entropy (i.e., the complexity or unpredictability of task situations to be dealt 
with). He offers a way forward through an assumption that humans know best when the 
automation should apply based on how readily the required information can be modelled.  
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‘The human decision maker is necessary for the information that is not explicitly 
modelable … Some, perhaps most, decision situations the human operator will encounter 
require only information that is modelable. She will make mistakes in such decisions, and 
can benefit from a decision aid for these cases, and in such cases the decision aid can be 
validated … Assume the human can properly decide when the situation includes elements 
the decision aid can properly assess, and for which elements the decision aid should be 
ignored’ (p. 359).  

 

Chen et al. (2011) cover a multitude of related research concerning human performance issues 
(e.g., multitasking performance, trust in automation, situation awareness, and operator workload) 
and innovative technologies designed to reduce potential performance degradations surrounding 
human supervisory control of automated robot-vehicles. They review interface/tool design 
developments of multimodal display/controls, planning, visualization, attention management, trust 
calibration, adaptive automation, and intelligent agent and human-robot teaming. Chen et al. 
(2011) relay sub-roles within supervisory tasks from Sheridan (2002) that append aspects of 
planning and learning to bookend monitoring and intervening. Such surrounding aspects of gaining 
experience with when/where to moderate attention strategies in the application of supervisory 
control echoes those discussed above by Sheridan (1992).  

 

Complicating interactive challenges reviewed by Chen et al. (2011) include inaccuracies in meta-
knowledge that contribute to issues of both automation disuse and over-reliance. On the one hand, 
humans commonly overestimate the cognitive/perceptual abilities of themselves and others (e.g., 
metacognitive errors such as change blindness blindness, verbal and visual hindsight bias, self-
confirmation bias, cognitive dissonance, etc.) which inflate their sense of necessity for human 
involvement. On the other hand, to the extent that operators anthropomorphize 
hardware/software into human-like teammates could then likewise exacerbate expectations of 
capability, encourage complacency and produce over-reliance on automated processes. At the 
heart of the issue is the concept of trust calibration where ‘during a supervisory control task, 
operators intervene only when they have reason to believe their own decisions (od) are superior to 
the automated system’s decisions (ad)’ (Chen et al., 2011, p. 437). Within their review of calibrating 
human trust of automation, Chen et al. (2011) suggest from Lee and See (2004) that ‘the 
capabilities and limitations of the automated systems be conveyed to the operator, when feasible’ 
because previous research has shown that ‘when operators were aware of the context-related 
nature of automation reliability, their detection rate of automation failures increased significantly’ 
(e.g., Bagheri & Jamieson, 2004). Beyond aspects of proneness towards false alarms or misses, they 
suggest additional dimensions of trust: utility, predictability, and intent. 

 

Merat and Lee (2012) include a review of driver automation interaction research to guide future 
designs. Their results include identification of two general design philosophies for automation: 
substitution vs. support. They conclude that assumptions towards substitution are not seamlessly 
simple to meet and instead argue that successful designs will depend on recognizing and 
supporting the new roles for drivers. Merat and Lee (2012) provide scenario-based warnings both 
of conflicting timescales: ‘Automation may require drivers to intervene on a scale of milliseconds, 
but reentering the control loop may take seconds’ (p. 683), as well as of ironies of automation that 
‘…can accommodate the least demanding driving situations—encouraging drivers to disengage 
from driving—but then calls on the driver to address the most difficult situations … Periods when 
drivers are most likely to fully rely on automation—highway driving—also require the most rapid re-
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entry of drivers into the control loop.’ (p. 683-684). In consideration of such scenarios, it becomes 
apparent that interactive meta-information (of humans, vehicles/automation, and the driving task 
environments) would be essential for forming expectations of how well drivers will perform their 
monitoring duties. 

 

In summary, a general lesson for common benefit to all solution areas would appear to be further 
characterizations of driving situations towards understanding which are more complex from those 
that are more routine (i.e., for both humans and for machines). Such kind of information would 
support designers and end-user expectations in meta-supervisory mental model knowledge of 
when/where the automation they are tasked with supervising might better/worse perform and why 
(and likewise for the monitoring performance/requirements of the human supervisor). To the 
extent that the driving is able to be handled entirely within perfectly formulated sets of rules and 
logic, then automated processes should excel and consequences for human oversight would 
reasonably be diminished. On the other hand, to the extent that driving involves complex socio-
cultural norms and violations that are not mathematically well-described and highly interactive with 
un-modelled context dependencies, then human engagement in monitoring becomes more crucial. 
For example, as relayed by Merat and Lee (2012): ‘Even now, the role of the person behind the 
wheel is often not that of a driver but that of an office worker on a conference call, a mother caring 
for a child, or a teen connecting with friends (Hancock, 2017b)’. As more mutually informed tests 
are conducted of SAE Level 2 driving automation, between laboratory and on-road research and 
development, such experiences should serve to provide clearer details, specifics, and evidence in 
place of assumptions. Positive progress towards specific details relevant for human monitoring of 
driving automation can be recognized from the California Department of Motor Vehicles. The CA 
DMV has begun to publically share documentation of annual collision and disengagement reports 
from autonomous vehicle (test) operations within its jurisdiction (California DMV, 2018) — 95 
collision reports are available between 2015-2018, and 2308 disengagements for the 2017 
reporting period. More than just a requirement to enumerate problems, the disengagement 
documentation also begins an attempt to standardize a communication of circumstances (e.g., who 
initiated the disengagement, on what kind of road, with a description of facts causing the 
disengagement). Future research might make use of such details to further inform targeted studies 
surrounding the topic of human attention in supervision of driving automation. As more 
information becomes available, such information can be used in line with the first three of our 
presently identified solution area themes to avoid (1) and/or reduce (2-3) the operational design 
domains of partial automation that requires human supervision, or by the last three solution area 
themes to support its operations via e.g., enhanced training (4), feedback and mental models (5), 
and/or task environment relations (6).  
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Appendix A. Literature Survey List 
 

Inclusion set of categorised human-automation literature conclusions from search for keeping engagement/attention in 
supervisory control. 
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Year First Author Title 
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differences 

6 2012 Chen Supervisory control of multiple robots in dynamic tasking environments 
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8 2010 Cummings Modeling the impact of workload in network centric supervisory control settings 

9 2010 Hart Assessing the impact of low workload in supervisory control of networked unmanned 
vehicles 

10 2010 Shaw Evaluating the benefits and potential costs of automation delegation for supervisory 
control of multiple UAVs 

11 2007 Cummings Operator scheduling strategies in supervisory control of multiple UAVs 

12 2007 Cummings Developing operator capacity estimates for supervisory control of autonomous vehicles 

13 2007 Cummings Automation architecture for single operator-multiple UAV command and control 

14 2007 Johnson Testing adaptive levels of automation (ALOA) for UAV supervisory control 

15 2007 Miller Designing for flexible interaction between humans and automation: Delegation 
interfaces for supervisory control 
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Ref 
ID 

Year First Author Title 
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29 1992 Gersh Cognitive engineering of rule-based supervisory control systems: Effects of concurrent 
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Appendix B. Category Ratings 
 

First and second choice (where applicable) thematic category as identified by each rater for each publication reference. 
First choice overlap agreement by at least 2 raters is shaded and full agreement is outlined. 

Ref ID 
AV 

1
st

 Choice 
TX 

1
st

 Choice 
CO 

1
st

 Choice 
AV 

2
nd

 Choice 
TX 

2
nd

 Choice 
CO 

2
nd

 Choice 

1 5 5 2 2 2 - 

2 6 6 2 - 5 6 

3 2 2 4 - 5 6 

4 6 6 2 5 2 6 

5 4 5 4 5 6 - 

6 6 5 4 4 2 - 

7 4 4 4 - 5 - 

8 2 5 2 - 4 - 

9 2 5 2 4 2 5 

10 2 5 2 - 2 - 

11 1 5 2 - - - 

12 2 2 6 - 5 - 

13 5 6 4 6 5 6 

14 2 6 2 6 2 6 

15 2 2 2 3 6 - 

16 4 4 4 - 6 - 

17 6 6 6 5 4 5 

18 2 5 2 - 6 - 

19 6 5 2 - - - 

20 3 6 6 5 5 - 

21 2 5 2 6 - 3 

22 5 6 3 6 3 - 

23 2 4 4 - 5 - 

24 2 1 2 1 2 1 

25 2 4 4 - 5 - 

26 5 5 6 6 - 4 

27 4 4 4 5 6 - 

28 5 6 6 6 - - 

29 6 6 3 - 5 - 

30 5 5 5 4 - 4 

31 6 5 3 5 - - 

32 6 5 2 5 6 - 

33 6 5 5 - 6 - 

34 5 5 4 4 4 2 

       

Mode: 2 5 2 5 5 6 
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Chap. 3.1) Validity and Reliability of Naturalistic 
Driving Scene Categorization Judgments from 
Crowdsourcing 
(2018) Accident Analysis & Prevention 

 
In regards to the overall thesis big picture, this research serves as a direct exploration of 
the viability of capturing and categorizing driving scenes for applied research at more 
efficient scales (larger volumes but while retaining satisfactory levels of validity and 
reliability). An annotation scheme was designed to deliver potentially relevant 
information about scene contents but without undue burden to human annotators to 
execute. On average, raters took around 70-75 seconds to complete an annotation of a 3-
second driving video clip (e.g., where binary annotation items were pre-sorted by 
expected frequency likelihoods). By the power of crowdsourcing, 12,892 categorizations 
were completed in about 1½ days by 200 external workers from 46 different countries. 
Through volunteer collaboration 1,002 annotation categorizations were completed in 
about two weeks by six internal confederate workers. The results suggest that large 
libraries of real-life driving situation visual demands might now be available to generate 
and organize by recognizable and standardized constituent components. Driving video 
recording resources could be a real hybrid stimulus boon to driving (vigilance) research 
such as reviewed in Chap. 2.1 that were found to typically rely on driving environments 
that are virtual (i.e., simulator studies) or are less controllable/repeatable (i.e., on-road 
studies). Consequently, an example interface application that allows a researcher to look-
up and save a driving video clip by its specified contents is provided in Appendix 3.1.B.2. 
Video annotations from Chap 3.1 were used to source stimuli for Chap 3.2. 

 

Adapted from: 

Cabrall, C.D.D., Lu, Z., Kyriakidis, M., Manca, L., Dijksterhuis, C., Happee, R., & de Winter, J.C.F. (2018). Validity and 
reliability of naturalistic driving scene categorization judgments from crowdsourcing. Accident Analysis & Prevention, 
vol. 114, pgs. 25-33.  
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Abstract 
A common challenge with processing naturalistic driving data is that humans may need to 
categorize great volumes of recorded visual information. By means of the online platform 
CrowdFlower, we investigated the potential of crowdsourcing to categorize driving scene features 
(i.e., presence of other road users, straight road segments, etc.) at greater scale than a single 
person or a small team of researchers would be capable of. In total, 200 workers from 46 different 
countries participated in 1.5 days. Validity and reliability were examined, both with and without 
embedding researcher generated control questions via the CrowdFlower mechanism known as 
Gold Test Questions (GTQs). By employing GTQs, we found significantly more valid (accurate) and 
reliable (consistent) identification of driving scene items from external workers. Specifically, at a 
small scale CrowdFlower Job of 48 three-second video segments, an accuracy (i.e., relative to the 
ratings of a confederate researcher) of 91% on items was found with GTQs compared to 78% 
without. A difference in bias was found, where without GTQs, external workers returned more 
false positives than with GTQs. At a larger scale CrowdFlower Job making exclusive use of GTQs, 
12,862 three-second video segments were released for annotation. Infeasible (and self-defeating) 
to check the accuracy of each at this scale, a random subset of 1,012 categorizations was validated 
and returned similar levels of accuracy (95%). In the small scale Job, where full video segments 
were repeated in triplicate, the percentage of unanimous agreement on the items was found 
significantly more consistent when using GTQs (90%) than without them (65%). Additionally, in the 
larger scale Job (where a single second of a video segment was overlapped by ratings of three 
sequentially neighboring segments), a mean unanimity of 94% was obtained with validated-as-
correct ratings and 91% with non-validated ratings. Because the video segments overlapped in full 
for the small scale Job, and in part for the larger scale Job, it should be noted that such reliability 
reported here may not be directly comparable. Nonetheless, such results are both indicative of 
high levels of obtained rating reliability. Overall, our results provide compelling evidence for 
CrowdFlower, via use of GTQs, being able to yield more accurate and consistent crowdsourced 
categorizations of naturalistic driving scene contents than when used without such a control 
mechanism. Such annotations in such short periods of time present a potentially powerful 
resource in driving research and driving automation development. 
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1. Introduction 
Further knowledge specifically of (background) driving scene contexts could benefit transportation 
research and ultimately road safety. This study presents and evaluates a new method using 
crowdsourcing to provide content characterizations of natural driving video footage. Brief 
descriptions of both topics are provided in the following introductory sections.   

 

1.1. Naturalistic driving and driving videos 

Naturalistic driving studies (NDS) have been growing in popularity with much success over the last 
few decades. NDS offer advantages with respect to other traditional driving safety research 
methods such as eye witness recall (often being inaccurate or unavailable) within crash data 
evidence approaches and driving simulators (often causing artificial participant behavior) (Regan et 
al., 2012). However, a lack of experimental control (where extraneous variables except that of 
manipulative interest are held constant), has been a commonly recognized detriment to NDS. Thus, 
the accurate annotation of the situational aspects and conditional characteristics that freely vary in 
NDS becomes all the more important for the identification and understanding of potential causal 
factors. Augmented by accelerating developments in audio-visual technology, computing, and 
networking resources, blended research designs are emerging wherein stimuli can be naturally 
sourced from the real world, reproduced, and mixed with more controlled laboratory conditions.  

 

Due to reductions both in size and costs of cameras, real life driving video is an increasingly 
accessible data resource that may allow recordings at a large scale and could help enrich other 
sources of data with otherwise missed contextualized information. However, so much video data 
might be recorded in naturalistic driving research and field operational tests that research 
resources are often overwhelmed to process such data libraries through pre-requisite rounds of 
organization and labeling (e.g., data reduction) towards fuller potentials of use. For example, 
challenges can arise regarding the availability of confederate researchers for laborious manual 
annotation or transcription tasks. Unfortunately for driving safety research, the use of real-life 
driving video footage has remained a relatively low-tapped exception (e.g., Crundall, Underwood, & 
Chapman, 1999; Chapman et al., 2007; Borowsky, Shinar, & Oron-Gilad, 2010) rather than a 
common resource, despite inherent strengths in face validity and generalizability of results. 

 

1.2 Crowdsourcing 

Compared to less than 1% in 1995, about 48% of the world population has an Internet connection 
to date, placing the approximate number of Internet users in excess of 3.5 billion people 
(www.InternetLiveStats.com/internet-users/). Online crowdsourcing services make use of this 
extensive connectivity to create an on-call global workforce to complete large projects in small 
chunks (a.k.a., micro-task workers). Gosling and Mason (2015) review a broad and growing use of 
Internet resources in recent psychological research. They conclude that harnessing large, diverse, 
and real-world data sets presents new opportunities that can increase the societal impact of 
psychological research. In the automated driving domain, research has recently begun to emerge 
utilizing crowdsourcing resources through global survey initiatives to capture large scale 
international public opinion (Bazilinskyy & De Winter, 2015; Kyriakidis, Happee, & De Winter, 2015). 
In regards to crowdsourcing as a research method, investigation into the differences between 
laboratory participants versus crowdworkers has found faster responses but higher false alarms 
with crowdsourcing (Smucker & Jethani, 2011). Additional methodological research has revolved 
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around the assurance of quality from the quick and inexpensive results typically returned by 
crowdsourcing and have recommended predetermined answer sets for use both in the screening of 
unethical workers as well as for the effective training of ethical workers (Le et al., 2010; Soleymani 
& Larson, 2010). 

 

1.3. Present study 

Real-world driving datasets come with large labor challenges in terms of data reduction like manual 
annotation and categorization. Pairing together expansive datasets of naturalistic driving video 
footage with crowdworkers may be a powerful method for progressing driving safety research. As a 
prototypical example of the power of crowdsourcing, the online platform known as CrowdFlower 
can accomplish routine categorization work at relatively low cost and at high speed by distributing 
the work around the world, taking advantage of both differences in time zones and hourly wages. 
However, such new methods require an investigation of validity and reliability to ensure 
trustworthy results might still be retained when scaling up beyond a single researcher or small 
research team. The present study investigated the use of CrowdFlower in the categorization of 
large amounts of videos with diverse driving scene contents (i.e., presence of another vehicle, 
straight road segments, etc.) through manipulation of one of its central quality control mechanisms 
to ascertain the quality and capability of such a method.   

 

2. Methods 

2.1. Quality control settings 

Within its documentation, the CrowdFlower system promotes Gold Test Questions (GTQ) as its 
most important quality control mechanism. By configuring this setting, we enforced that a set of 
categorizations with known answers (i.e., given by the experimenters) were randomly intermixed 
with the experimental categorizations of interest. Thresholds of performance on these GTQs were 
set in an attempt to reduce the amount of indiscriminate responses that may occur within the 
results due to the remotely distributed nature of work under unsupervised conditions.    

 

2.2. Participants/Workers 

Participants in this research consisted of external micro-task workers from the online CrowdFlower 
contributor community. From this network, workers were prescreened by a number of criteria 
selectable within the CrowdFlower interface. Specifically, within CrowdFlower, performance levels 
are automatically awarded based on CrowdFlower’s criteria of accuracy across a variety of different 
Job types. We selected a performance setting of Level 2 workers from a three-level scale, 
representing the midpoint between anchors of “highest speed” (Level 1) and “highest quality” 
(Level 3). Moreover, across all 51 of its current possible Channels for sourcing external workers (e.g. 
BitcoinGet, ClixSense, CoinWorker.com, etc.), CrowdFlower was set to include workers only from 
those retaining a ratio of Trusted to Untrusted Judgments greater or equal to 80% (39 Channels 
were left toggled on and 12 set to off). All countries were permitted within the Geography setting, 
and no additional Language Capability requirements were selected.Table 3.1.1 lists the countries 
and source Channels of workers obtained across different sets of categorizations performed within 
the present study along with distributions of unique worker IP addresses and CrowdFlower worker 
IDs while Fig. 3.1.1 depicts the country distribution of the workers. For external crowdworkers, 
identification of country was determined by CrowdFlower based on IP address. 
  



Chapter 3.1: Crowdsourced Driving Scene Content Categorization 
 

99 

Table 3.1.1. Overview of the five different sets of categorizations. These sets included differences in the amount of video 
segments to be categorized (C1 = 48 segments, C2 = 12,862 segments), the use of Gold Test Questions (C1b had none) 
and the relation of the annotators to the research (external =  CrowdFlower workers; internal = confederate research 
team). 

Condition Countries (ISO 3166-1 
alpha-3) 

Channels Unique 
IP’s 

Unique 
ID’s 

 
 

C1a 
 
 

15 = AUT, BEL, COL, DEU, 
ESP, GBR, GRC, IND, MKD, 
PHL, PRT, ROU, RUS, SRB, 

TUR 

5 = clixsense, 
coinworker, elite, 

prodege, 
tremorgames 

18 18 

 
 

C1b 
 
 

9 = DNK, GRC, IND, MDA, 
PAK, PHL, SRB, TUR, VNM 

3 = clixsense, elite, 
tremorgames 

13 13 

 
C1c 

 
1= NLD 1 = n/a (internal) 1 1 

 
 
 
 
 
 
 
 

C2a 
 
 
 
 
 
 
 
 

46 = ARG, AUS, AUT, BEL, 
BGD, BGR, BIH, BRA, CAN, 
CHL, CZE, DEU, ESP, FIN, 

FRA, GBR, GRC, HRV, HUN, 
IDN, IND, ISR, ITA, JAM, 
LKA, MAR, MDA, MEX, 

MKD, MYS, PER, PHL, POL, 
PRT, ROU, RUS, SAU, SRB, 

SWE, TUR, TWN, UKR, 
URY, USA, VEN, VNM 

16 = clixsense, 
coinworker, 

fusioncash, gifthulk, 
hiving, 

indivillagetest, 
instagc, personaly, 
pocketmoneygpt, 

points2shop, 
prodege, 

superrewards, 
surveymad, 

tremorgames, 
yute_jamaica, 

zoombucks 

247 200 

 
C2c 

 
1  = NLD n/a (internal) 12 7 

Note. Country abbreviations are according to ISO 3166-1 alpha-3. 

 

2.3. Apparatus and stimuli 

To support projects oriented around the human factors of automated driving (i.e., exposing 
participants to various HMI/functional research concepts, measuring constructs of vigilance, 
situation awareness, mental models, reaction time, eye tracking behavior, etc.), a set of stimulus 
material was desired that had both qualities of high visual realism and controllable levels of 
uncertainty in repetition, freeze-ability, etc. Initial searches of YouTube with the keyword “dash 
cam” were conducted to compile a sample database of naturalistic driving video footage. Videos 
had to feature relatively high and consistent visual quality, a large and consistent field of view, and 
uninterrupted driving in order to be included. Candidate videos were selected from the search 
results in order to acquire nominal driving footage (i.e., excluding violations and crashes). We 
collected a set of 10 freely available YouTube videos ranging between 1 minute and 1 hour duration 
(but of bimodal typicality of about 3 or 13 minutes length) for a total of 6,934 seconds of driving 
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footage. The countries in which the recordings were filmed were not known, but driving was always 
on the right hand side. Audio was removed from the videos.  

 

 
Figure 3.1.1. Annotator country locations by condition. 

 

Subsequently, new self-recorded dash cam driving recordings (6,026 seconds) were filmed in the 
United States and saved as 39 different files (typically less than 3 minutes in length, but ranging up 
to 15 minutes). This complemented the videos collected from YouTube in order to exhibit a broader 
range of real-life and experimentally interesting driving situations. These additional recordings 
included driving at night, on mostly empty desert roads, in a visually complex metropolis, and via 
multi-lane freeways, as well as at different driving speeds.  

 

Driving videos from both sources were uploaded as 49 new private link-only access YouTube videos 
(M = 264 seconds duration) with an aggregate of 12,960 seconds of near driver point-of-view video 
footage. Through a combination of MATLAB script and an online tool from www.tech-tipsforall.com 
(ttfaloopandrepeat.appspot.com), auto-cueing URL links were generated to access each of the 
12,862 possible 3-second segments from each of these 49 video. These URL links were embedded 
as text only in our CrowdFlower surveys with one URL per Judgment. The video segments 
overlapped in a manner such that a randomly selected worker categorized seconds one to three 
from video 1, another randomly selected worker categorized seconds two to four from video 1, a 
third randomly selected worker categorized seconds three to five from video 1, etc., for all videos 1 
through 49. Example screenshots from the driving video segments are shown in Figs. 3.1.2a, 3.1.2b, 
and 3.1.2c. 
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Figure 3.1.2. Example screenshots from driving video segments a) recorded from within a publically posted dash cam 
YouTube video, b) recorded by the experimenters within a visually complex metropolis (i.e., Las Vegas strip), and c) 
recorded by the experimenters in a visually simple environment (i.e., Nevada desert backroad). Video resolution/quality 
here is only approximately representative as that initially made available to participants because differences in devices 
and browsers, full-screen viewing, etc. were not controlled for in the online survey. 

 

A coding scheme was created wherein each video segment categorization (i.e., Judgment) 
contained two groups of questions. The first group consisted of 21 checkbox items pertaining to the 
non-mutually exclusive presence of others, namely, (1) cars/trucks/vans/buses, (2) 
motorcycles/scooters/mopeds, (3) bicycles, and (4) pedestrians. Each of these four categories 
contained additional possible sub-specification of their position/direction of travel, namely, (5–8) 
leading, (9–12) oncoming, (13–16) passing or being passed, and (17–20) crossing; all relative to the 
present point-of-view vehicle. Additionally, there was a checkbox item which should be ticked for 
(21) no one else was present. 
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The second group consisted of 10 checkbox items pertaining to presence of miscellaneous 
infrastructural elements and aspects of vehicle behavior. These were: (1) straight road, (2) more 
than one lane per direction of travel, (3) signs/signals facing the driver, (4) road surface markings 
other than lane boundaries (e.g., crosswalks, arrows, writing, etc.), (5) lane change by this driver, 
(6) lane change by another vehicle, (7) turning by this driver, (8) turning by another vehicle, (9) this 
driver slowing to a stop, and (10) none of the above. In the second round of categorizations (C2, 
see Tables 3.1.1 & 3.1.2), the coding scheme was extended to include a position/direction item 
across all road user categories (i.e., of being parked/stationary), plus a miscellaneous item for overt 
video edits/alterations. Consequently, these extensions (for further data enrichment value) raised 
the total checkbox count per video segment to 36. The full coding scheme of annotation items (as 
well as the specific full training instructions given to annotators) is provided in Appendix A. 

 

2.4. GTQ video segments: multiple purposes and representative examples  

GTQ videos were selected from the full pool of video segments under the criteria to serve as 
effective screening and training devices. For the purpose of screening indiscriminate respondents, 
some of the easiest and most unambiguous scenes were selected, as for example a video segment 
where only an empty desert road is shown: 

(1)  https://www.youtube.com/embed/eS79DG08idY?start=12&end=15 

 

For the purpose of explicating various annotation labels (e.g., surface paint markings, signage facing 
the driver), video segments were selected that contained certain items of interest, such as a 
segment where a railroad crossing sign appears on the side of the road as well as surface markings 
in the lane of travel: 

(2)  https://www.youtube.com/embed/vA5AiKbzIww?start=82&end=85 

 

2.5. Conditions 

Three different external CrowdFlower Jobs were conducted in two different rounds (C1 and C2), as 
shown in Table 3.1.2. In the first round, C1, a set of 48 unique three-second long video segments 
(randomly selected from the larger full dataset of collected video footage) were categorized by 
external CrowdFlower workers with GTQs either turned on (C1a) or turned off (C1b). In C1a and 
C1b, the default triplicate redundancy setting in CrowdFlower was kept on and so the Job ran until 
three Judgments were collected for each video segment. Additionally, the same 48 segments were 
categorized offline by an individual internal worker (i.e., a confederate researcher) in C1c. 

  

In the second round, C2, Judgments were performed on CrowdFlower across all 12,862 possible 3-
second video segments of the full video dataset via external CrowdFlower workers (C2a) and over a 
subset of these video segments by an internal worker team comprised of multiple confederate 
researchers (C2c) using the same CrowdFlower structure as the external workers. Within the C2c 
round of internal team ratings, one team member accomplished a high volume of Judgments (n = 
638) under two separate CrowdFlower accounts such that 38 different Judgments of the same 
driving scene segment from the same person were available to establish intra-rater reliability.   

 

The required set of Judgments ordered for each CrowdFlower Job was specified at Job launch and 
included a redundancy option through a multiplier setting (x3 was used in C1, x1 was used in C2). 

 

https://www.youtube.com/embed/eS79DG08idY?start=12&end=15
https://www.youtube.com/embed/vA5AiKbzIww?start=82&end=85
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Table 3.1.2. Categorization conditions. 

Condition Workers 
Video 

segments 
categorized 

Redundancy 
Gold 
Test 

Questions 

Video 
segments  
per Page 

Worker 
payment 
per Page 

Total 
CrowdFlower 

Cost 

C1a external 48 3 12 10 $0.50 $10.80 
C1b external 48 3 0 10 $0.50 $9.00 
C1c internal 48 1 12 n/a n/a n/a 
C2a external 12,862 1 53 11 $0.25 $349.32 
C2c internal 1,012 1 42 11 n/a n/a 

Note. The total worker payment differs from the total CrowdFlower costs because CrowdFlower retained a margin of 
about 20%. Video segments per Page refers to the amount of videos the worker was assigned at a time (i.e., stacked 
vertically, with a scrollbar); total Pages completed varied between workers. A single Page consisted of 10 (C1) or 11 (C2) 
Judgments, that is, different driving video segments to be annotated. 

 

2.6. Analyses 

In the investigation of the utility of CrowdFlower for annotating driving video content, multiple 
analyses from two different rounds of Jobs (Table 3.1.1) were undertaken to cover the separate but 
related psychometric aspects of validity (i.e., accuracy) as well as reliability (i.e., consistency). 

 

In terms of validity, we ascertained to what extent categorizations returned from external 
CrowdFlower workers reflect what is actually visible in a given driving video segment. At an initial 
reduced Job scale, the same set of video segments was repeated with and without GTQs (Table 
3.1.1, C1a vs. C1b) and compared to a reference set of categorizations of these same segments 
generated by a confederate researcher (C1c). For subsequent accuracy analyses at the greater Job 
scale (where GTQs were retained), ground truth was created by a team of internal confederates for 
a random subset due to the infeasibility (and self-defeating purpose) of checking the accuracy of 
each annotation at this scale.   

 

In terms of reliability, we assessed how consistent categorizations of the driving video segments 
were when repeatedly administered. Supporting this aim, three analyses were conducted. First, 
from the second round of confederate categorizations (C2c) one internal team member was given a 
subset to categorize in duplicate to himself (i.e., randomly intermixed among his other 
categorizations, see 2.5 Conditions). Second, at the small scale Job (C1), each video segment was 
rated by three different external CrowdFlower workers (both in C1a and in C1b). Third, the full 
dataset categorizations of C2a provided an account of consistency due to the fact that the video 
segments overlapped such that any second of driving video footage was categorized three times. 
That is, for any second “x” bounded by start/end points [start, end] there existed a first segment: [x, 
x+2], a second segment: [x−1, x+1], and a third segment: [x−2, x].  

 

2.7. Procedure 

All workers were provided with a set of instructions and examples regarding the driving video 
segment categorization coding scheme that remained available for consultation throughout their 
work (Appendix A). A single Judgment consisted of a set of 31 (C1) or 36 (C2) checkboxes pertaining 
to features visible within a randomly selected 3-second long driving video segment (Section 2.3). A 
single Page consisted of 10 (C1) or 11 (C2) Judgments, that is, different driving video segments to 
be annotated.  
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In the conditions where GTQs were active (C1a, C2a, C2c), task workers were first given a single 
page of Quiz Mode GTQs Judgments to complete. Because of constraints of CrowdFlower, a GTQ 
Judgment had to be answered perfectly in order to be scored as correct, with no partial credit given 
(i.e., all 31 or 36 checkboxes had to be checked correctly against predetermined answers 
constructed by the experimenters). If workers achieved a threshold correctness Trust Score on 
these GTQs of 70% [i.e., 7 out of 10 Judgements] in C1, and 25% [i.e., 3 out of 11 Judgments] in C2, 
then workers were automatically allowed by CrowdFlower to continue through as many more 
Pages of Work Mode as they would like. Through trial and error, the set threshold was lowered 
from 70% in C1 to 25% in C2, because it turned out to be often highly difficult to obtain a perfect 
answer on each of the checkboxes of a Judgment. Additionally, in C2, participants were supported 
with further detailed feedback explaining the correct answers. For an incorrect answer to any 
checkbox item of a GTQ during Quiz Mode, workers were shown the correct answers of all 
checkboxes for that Judgment along with a brief justification. Each Page of Work Mode had one 
new not-yet-seen GTQ randomly presented within the other Judgments such that a worker was 
unable to identify which Judgments had a priori answers that their own answers would be scored 
against. As long as workers maintained a running average Trust Score above the set threshold (i.e., 
70% in C1, 25% in C2), and there were still GTQs remaining that they had not yet seen, they were 
allowed to continue.  

 

In the CrowdFlower condition without GTQs (C1b), workers were allowed to enter Work Mode 
straightaway without real-time screening criteria barring them from submitting Judgments. On a 
first-come-first-serve (optionally screened) basis, Jobs in CrowdFlower are run until a pre-
determined amount of Judgments are completed by an indeterminate amount of workers.  

 

In summary, the GTQ condition included further screening and training to enhance the responses 
of task workers than the condition without GTQs.  

 

3. Results 
The utility of the crowdsourcing platform CrowdFlower in the content categorization of naturalistic 
driving video footage was investigated through multiple analyses concerning both validity and 
reliability. Overall, the supposed utility of CrowdFlower in the present tasks was found to be 
supported (see Table 3.1.3). Results were indicative of significantly increased utility both in terms of 
validity and reliability in the presence of GTQs as compared to without GTQs. Results were obtained 
both in the preliminary round of a reduced scale (C1: 48 video segments) and in the subsequent 
round conducted at a larger scale (C2: 12,862 video segments). 

 

Table 3.1.3. Summary of analyses. 

Section 
Analysis  

aim 

Relative  

Job size 
Analysis outcome 

3.1.1 Validity Small The GTQ condition yielded more accurate Judgments than the No GTQs 

condition. Accuracy was assessed by using the Judgments of a single internal 

confederate rater as ground truth. 

3.1.2 Validity Large The GTQ condition yielded accurate Judgments. Accuracy was assessed by using 

the Judgments of a small team of internal confederate raters as ground truth.  
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Section 
Analysis  

aim 

Relative  

Job size 
Analysis outcome 

3.2.1 Reliability Small A single confederate rater was found to be consistent to himself. 

3.2.2 Reliability Small The GTQ condition yielded more consistent Judgments than the No GTQ 

condition, for full Judgments and at the item level. 

3.2.3 Reliability Large The GTQ condition yielded Judgments of high inter-rater consistency for 

overlapping video segments. Consistency was assessed for known-to-be-

accurate Judgments. 

3.2.4 Reliability Large The GTQ condition yielded high inter-rater consistency for overlapping video 

segments. Consistency was assessed for unknown-to-be-accurate Judgments. 

 

3.1. Validity 

3.1.1. 48 Judgments, comparing GTQ with no GTQ 

Results showed that there were 35 of 144 (24%) and 6 of 144 (4%) exact matches from C1a (with 
GTQs) and C1b (without GTQs) respectively, relative to C1c (taken as a measure of ground truth). 
Results thus indicated inaccuracies in the Judgments from both C1a and C1b (Fig. 3.1.3).  

 

 
Figure 3.1.3. Distribution of the number of errors per Judgment at the smaller C1 Job scale of 144 Judgments (with and 
without GTQs) and for a subset of 995 Judgments from the larger C2 Job scale (with GTQs). Errors were determined 

against known answers (C1c or C2c). A score of 0 signifies a perfectly correct Judgment. 

 

However, these inaccuracies occurred in different specificity/sensitivity biases. Phi correlation 
coefficients were computed between each full Judgment (i.e., an array of 31 binary checkboxes) 
from a condition (C1a or C1b) against the ground-truth Judgment returned by an internal 
confederate rater (C1c) matched for a specific video segment. The median across all 144 (48 x 3) 
correlation coefficients of the GTQ condition (C1a; r = 0.78) was significantly higher than for the No 
GTQ condition C1b (r = 0.39) (Mann-Whitney U = 3756, n1 = n2 = 144, p < 0.001 two tailed).  
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Furthermore, greater total item accuracy across all 4,464 (31 x 48 x 3) categorized items was found 
in C1a (4,051 = 91%) than in C1b (3,504 = 78%).  

 

Among the 4,464 categorized items in C1b (i.e., without GTQs), there were 396 false positives (i.e., 
items marked present but which were absent in the video segment according to the confederate 
researcher), yielding a false positive rate of 11% (396/3,519). Furthermore, there were 564 misses 
(i.e., items marked absent that were present in the video segment according to the confederate 
researcher), yielding a miss rate of 60% (564/945). In C1a (with GTQs), the false positive rate was 
1.6% (57/3,519) and the miss rate was 38% (356/945). In other words, GTQs contributed to a 
reduction of both false positives and false negatives.  

 

3.1.2. 1,012 Judgments, comparing external versus internal workers 

The confederate research team (C2c) performed 995 Judgments of video segments (17 video 
segments were removed due to video playback errors) which were randomly selected from C2a. 
Results showed that there were 257 (26%) exact matches between the Judgments from C2a and 
C2c. Phi correlations with the ground truth for both the smaller scale Job (correlation between C1a 
and C1c: median r = 0.78, see also Section 3.2.1) and the larger scale Job (correlation between C2a 
and C2c: median r = 0.80) were not found to significantly differ (Mann-Whitney U = 65298.5, n1 = 
144, n2 = 995, p = 0.083).  

 

From the 35,820 C2a items re-rated within C2c (995 Judgments x 36 items per Judgment) the false 
positive rate was 2.1% (682/31,564) and the miss rate was 27.6% (1,176/4,256).  

 

3.2. Reliability 

3.2.1. 38 Judgments, comparing confederate to himself 

In condition C2c, one confederate performed 638 Judgments about evenly split under two different 
CrowdFlower  accounts, with an approximate 10% subset of his Judgments from each account 
coded in duplicate (n = 38). Intra-individual test-retest reliability results for this same rater using the 
same software settings but across different sessions were: 34 (89%) exact matches, an average phi 
correlation of 0.98 across the 38 Judgments, and an overall item accuracy of 99.5% (i.e., 1,361 out 
of 1,368). 

 

3.2.2. 48 Judgments, comparing GTQ versus no GTQ 

During C1a and C1b, each video segment collected three external worker Judgments and so 
allowed for a consistency measure of how many categorization ratings (both for full Judgments 
and/or across items within Judgments) were returned identically between external CrowdFlower 
task workers. Unanimous agreement on all 31 items of a Judgement was found in 7 of 48 
Judgments in C1a (with GTQs) and in 1 of 48 Judgments in C1b (without GTQs). Per item, the 
unanimous agreement percentage across the 48 Judgments was computed, and was found to be 
significantly higher for C1a (M = 90%, SD = 13) than for C1b (M = 65%, SD = 19, n1 = n2 = 31, t(60) = 
5.85, p < 0.001). 
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3.2.3. 257 Judgments, comparing ratings by unanimous voting 

For the correct 257 Judgments in C2 (see Section 3.1.2), a reliability analysis was conducted by 
comparing overlapping categorizations across sequential seconds of video footage. For example, 
the correct true/false answer provided for an item in a video segment that began at time x, was 
compared with the answer received for that same item by another external worker whose video 
segment began at time x−1 and additionally by another external worker whose video segment 
began at time x−2. It should be noted that some variation between overlapping video segments 
would be expected to exist (e.g., a car seen only in the last second of a segment that starts at x = 0 
might not be visible in the previous videos x−1 and x−2). Due to such uncertainty, somewhat less 
than perfect reliability may be expected even from perfectly reliable raters. This necessitates 
consideration of proportional consistency analysis across the entire array of 36 items contained 
within a Judgment. In other words, it is assumed that while one or a few aspects might vary 
between overlapping videos, the majority of aspects should remain the same.  

  

Results showed that 74 of 257 correct Judgments (29%) received the same true/false rating across 
all 36 items by three different external workers who rated overlapping video segments.  Figure 
3.1.4 shows a distribution of the 257 Judgments according to the number of items yielding 
unanimous agreement. Judgments always had more than two-thirds (i.e., at least 25 out of 36 
items) unanimous agreement, and the mean number of items yielding unanimous agreement was 
33.9 out of a possible 36.  

 

 
Figure 3.1.4. Frequency of validated (i.e., 257 fully correct) and all returned Judgments (originally 12,862) from C2a 
according to number of items yielding unanimous agreement from three independent raters. 

 

3.2.4. 12,862 Judgments, comparing ratings by unanimous voting 

For all 12,862 Judgments, a reliability analysis of unanimous answers was conducted with 
overlapping sequential seconds again as in Section 3.2.3, but now for the full dataset. The first and 
last two Judgments of each video required removal due to a logical lack of full overlap, resulting in a 
total of 12,670 Judgments (12,862 − 4 x 48).  
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Regarding unanimity of full Judgments, 1,129 of 12,670 answers (9%) received the same true/false 
value across all 36 items by the three different external workers. The mean number of items with 
unanimous agreement per Judgment was 32.6 out of 36 possible.  

 

The distributions of Judgments in Figure 3.1.4 shows that disagreement existed in the 
categorizations of overlapping sequential seconds of video footage; this occurred most frequently 
for two items.  

 

4. Discussion, Conclusions and Recommendations 
The CrowdFlower crowdsourcing platform may present great potential for driving research by 
bringing task workers from across the world to categorize a rapidly growing resource of naturalistic 
driving video data. Due to its inherently distributed structure, CrowdFlower and online tools of 
similar kind may be more susceptible to fraudulent or non-discriminating responses as compared to 
locally administered and more tightly controlled traditional methods. Specifically, the utility of 
CrowdFlower with (and without) its self-purported most important quality control mechanism of 
GTQs was investigated in the objective categorization of driving video contents via binary 
presence/absence flagging of pre-specified driving items of interest both at a preliminary reduced 
and a subsequently increased Job scale.  

 

Exhibiting credible signs of validity and reliability (Table 3.1.3), the potential for the method of 
crowdsourcing the categorization of driving video contents can be considered in a meaningful and 
valuable way. For example, as a result of our settings in the present study, 12,862 CrowdFlower 
annotation categorizations were completed in about one and a half days by 200 external workers 
from 46 different countries working at an hourly rate of 1.09 USD each (total cost of about 349.32 
USD inclusive of a 20% transaction fee) with an average of 75 seconds per Judgment. Through 
volunteer confederate collaboration, 1,002 annotation categorizations were completed in about 
two weeks by six internal confederate workers from the Netherlands working between/around 
their other work duties at a conservative estimated hourly rate around $20.25 USD each (total cost 
estimate of about $394.54 with an average of 70 seconds per Judgment). Thus, for the same 
approximate costs, the external workers returned categorizations about ten times faster. 

 

Several limitations exist within the present study and are worth mentioning. The first and foremost, 
is that the GTQ mechanism is explicitly designed to work with objective tasks where there are clear 
and definable right and wrong answers and so it may not be suitable for many otherwise desirable 
subjective judgments from a distributed task worker network. A GTQ is constructed in CrowdFlower 
to require pre-defined correct answers with as minimal ambiguity as possible as well as detailed 
and documentable justification/motivation of that answer (similar to how both annotator screening 
and training is used in more controlled laboratory experiments). It should be noted that the design 
of the present study does not lend itself towards some other research questions that might be 
addressed from pairing crowdsourcing to naturalistic driving data for example for purposes of 
investigating the general human ability in perception/annotation of various aspects of driving 
scenes (inter-item research questions) and/or the bearing of universal/local driving cultures on 
driving scene interpretation (inter-cultural research questions). Instead, the present study aimed to 
eliminate ambiguities on an equal par between conditions to test the principle manipulation of 
interest: the use or not of GTQs.  
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Nonetheless, some of our requested annotation items appear to have contributed to some 
confusion between some raters. The worst three annotation items, both in terms of accuracy and 
reliability, pertained to identification of fully straight roads, signage/signals facing the driver, and 
number of lanes per direction of travel. Overall, performance with these items averaged around 
63% (reliability) and 79% (accuracy) compared to averages taken across all the remaining items of 
93% (reliability) and 96% (accuracy). Without proper hypotheses/controls in place, we cannot 
propose these as particularly systematic nor meaningful results in human perception or suitability 
to crowdsourcing beyond our own inabilities to more thoroughly formulate such desired details for 
our driving video data library into more fully objective definitions/terms (see Appendix A). For 
example, while relative decreases in miss rates were obtained through use of GTQs, the absolute 
levels of miss rates (38% and 28%, in C1a and C2a respectively) might be indicative of annotation 
items requiring further scrutiny and/or ease in task criteria definition. Our annotation task 
contained a combination of both demanding visual search and items with low ground truth base 
rates. Thus, it would be logical or even possibly more natural for a rater to adopt a conservative 
strategy when faced with annotation uncertainty (i.e., not checking a box unless they have explicitly 
seen something). Relatedly, the high miss rates may reflect a bias due to the fact that all items were 
by default unchecked (absent) requiring checking as needed, rather than being checked (present) 
requiring unchecking as needed. Indeed, complexities in universal instructions, clear coding rule 
descriptions, and controlled balancing of default absence/presence question valences could be a 
relevant concern in crowdsourcing annotations from large, diverse, and remote participant 
populations without local remediation of a real-time physically present experimenter. However, it 
should be noted that we did not use any CrowdFlower geography/language settings and thus kept 
this aspect equally random across our external worker conditions so as not to confound our relative 
evaluations regarding potential benefits of GTQs.  

 

Secondly, the specific items of the coding scheme created and used in the present study may be 
challenged further than issues of clarity towards aspects of organization and inter-item 
independence. The item checkboxes within a Judgment were pre-tested and arranged by probable 
frequencies of occurrence such that categorization speeds might benefit from predictable and likely 
emergent patterns of responses. Thus, the repetitive and non-random ordering of items may be a 
source of bias towards consistency (although, again it should be noted that the same structure was 
presented to both GTQ and non-GTQ condition groups).  

 

Lastly, several dependency relations existed between items which may degrade the power of some 
of the analyses of the present study. For example, several items pertained to the identification of 
object classes (cars, motorcycles, bicycles, and pedestrians, respectively) that upon selection, each 
expanded with sub-item location information (i.e., leading, oncoming, passing, crossing, parking). 
For cases where only one object from the class was present, the sub-item location information thus 
became mutually exclusive rather than independent. As another example, items pertaining to 
actions of other vehicles such as “Lane change by another vehicle” and “Turning on/off between 
this and any other road by another vehicle” logically depend on presence of another vehicle and 
thus retain relations to ratings of item vehicle class identification.  

 

More traditional and established methods for interrater reliability (e.g. Cohen’s/Fleiss’ kappa) were 
not pursued. The reason for that is the difficulty of determining a chance agreement for our 
Judgments that contained a composite of yes/no decisions with inter-item dependencies as 
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described above. Instead, simpler measures of consistency, such as the phi coefficient and the 
proportion of unanimous Judgments, were used. Further studies with CrowdFlower more specific 
to questions of validity and reliability might limit such complexities in advance, sacrificing some 
annotation meaning in favor of stricter control, standard analyses, and afforded reflection 
regarding the broader annotation literature. Additionally, further assessments of the ground truth 
reliability of our internal rating team (beyond the single rater repetitions of the analysis in 3.2.1) 
would be desirable in future work. For now, the reliability agreements observed in our approach 
(Fig. 3.1.4) appear qualitatively consistent with levels from previous image annotation work (Nowak 
& Ruger, 2010; containing 53 annotations per image across a set of 99 without presuming the 
existence of two persons that annotated the whole set of images). Specifically, in comparison to the 
average identical accuracy they obtained of 0.906, following their Equation 2, we computed our 
own average unanimous annotation accuracies respectively as 0.941 (section 3.2.3, Fig. 3.1.4) and 
0.906 (section 3.2.4).  

 

Multiple ethical and privacy concerns can be raised in consideration of methods that employ 
crowdworkers with human annotation of naturalistic driving video data. Some of these may not be 
new and include attempting to anonymize video data in the sense that specific combinations of 
sensitive information are not presented in combination to result in personably identifiable 
information from both aspects of the drive (time, date, location, etc.) along with aspects of driver 
identity (name, face, home/work address, etc.). A major difference between the present method 
and the classical way of annotating naturalistic driving data is that in the present method the task is 
outsourced to crowdworkers who are themselves anonymous and residing in different countries, 
while in the classical way the annotation is done by trained team members who are typically local 
and known/approved by the principal investigator(s). Aside from the annotation integrity 
(accuracy/consistency) concerns specifically addressed in the experimental design and results of 
the present study, other new challenges are worth discussing such as legal requirements of the 
handling of data. In the present study, the video data were obtained from public sources, which is 
uncommon within traditional NDS approaches. Thus, any terms and conditions regarding data 
sharing, ownership, and viewership restrictions put in place a priori by the responsible parties 
would need to be considered and respected so as not to be violated. Additionally, the regulations 
and policies pertaining to the online reproduction/distribution of (video) data specific to each 
country or online hosting community should be adhered to, and this includes the presentation of 
potentially disturbing images such as might be the case with automobile crashes/accidents or illegal 
driving behavior.  

 

A few positive privacy points regarding the present method are interesting to consider as well. 
Because the annotating work is distributed across many crowdworkers in distal locations, a 
relatively small amount of the total data is restrictively released to single/isolated persons at a time. 
For example, in the present study, only random 3-second clips from randomly different drives and 
randomly different drivers were distributed. Accordingly, it becomes much less likely that a 
crowdworker can come to recognize a driver’s travel patterns or other aspects that may pose risks 
to privacy. This compares favorably in contrast to a classical annotation perspective where a single 
or smaller group of annotators may more likely become familiar with the travel patterns contained 
within the data. Additionally, the present study does not propose to share all data (e.g., geospecific, 
CANBUS, etc.) as may be accessible to classical annotators in naturalistic research but to selectively 
distribute only pieces of the full dataset (i.e., herein only video annotation was outsourced and only 
that of forward facing cameras from public roads where filming is allowed). Lastly, crowdworkers 
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themselves are employed under certain terms of service to which they must accept and abide (e.g., 
https://www.crowdflower.com/legal/). If crowdworkers were to violate such terms (e.g., share 
proprietary data) they would be subject to consequences not limited to but including the likes of 
losing their worker privileges such as payment, membership, etc.  

 

An increasing amount of real-life driving videos are being recorded both within naturalistic driving 
studies as well as from public channels of user generated content. For example, at the start of 
conducting the current research, there were approximately 795,000 returns for the term 
“dashcam” on YouTube (November 19, 2015). Upon presenting this work at the international 
conference for Road Safety on Five Continents (May 19, 2016), there were 1.13 million returns for 
the same search (i.e., +42% increase in about half a year), and by the time of manuscript revisions 
(August 8, 2017), a total of 4.26 million were available (i.e., +436% increase in less than 2 years’ 
time). Categorizing such expansive data sets can be a costly and time-consuming manual process. 
One solution is to train automated algorithms to conduct coding tasks such as in machine learning 
and classification. However, such algorithms themselves often require some diligently pre-labeled 
examples for their own accuracy and only through diverse training sets may overcome common 
challenges of overfitting. Under the correct circumstances (e.g., open-access data) and quality 
control settings (i.e., the construction and use of GTQs), Crowdsourcing tools like CrowdFlower 
appear to have the potential for delivering equivalent accuracy and reliability utility as locally 
trained humans. It is therefore recommended that future driving research and ultimately driving 
safety itself might benefit from exploiting increasingly large scale and publically available data sets 
through embracing and channeling a growing global pool of human resources.  
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Appendix A. Coding Instructions/Training Material 
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Appendix B. Developed Driving Research Tools 

 

B.1. Driving scene content annotation 

In order to supply certain categories of driving situations for future research experiments (e.g., 
Chapter 3.2), and to validate the accuracy and reliability of driving situation categorizations from 
online crowdsourced workers (i.e., Chapter 3.1), it was necessary to devise and employ a driving 
scene content coding scheme (Figure 3.1.B.1). Goals of the coding scheme were that it be fairly 
comprehensive in regards to potentially interesting driving scene factors on a prototypical level, 
that the items would be objectively understandable to identify, and that items would be arranged 
in a manner such as to facilitate fast annotations with minimal effort. Two major groups of 
probabilistically ordered binary checkboxes were implemented. The first major group was in 
regards to various kinds of road-users (with expandable position/direction of travel details) while 
the second major group pertained to more miscellaneous infrastructural or behavioral aspects. 
Resulting average annotation durations were approximately 75 seconds each for a 3-second long 
driving video clip. 

 

 
Figure 3.1.B.1. Driving scene content categorization coding scheme of binary checkboxes. Item arrangement included a 
first major grouping of road user entities that included an automatically expanding set of items for detailing their 
respective positions/directions of travel, and a second major grouping of miscellaneous infrastructure and behavior 
aspects.  
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B.2. Driving video clip selector 

Ratings from the experiment of 3.1 generated 12,766 driving video segments with content 
annotations. Rather than storing each of these 3-second long video clips individually, a GUI (Figure 
3.1.B.2) was devised and implemented from which to automatically parse (play/save) segments 
from any of the original 49 source videos in accordance to specified items contained in a hard-
coded library of annotations. The standalone executable and source code files have been made 
freely available within the online repository of Zenodo at:  

 

(1) http://doi.org/10.5281/zenodo.2542314 (github software release)  

 

(2) http://doi.org/10.5281/zenodo.2542275 (repository for the 49 source videos) 

 

 
Figure 3.1.B.2. A standalone GUI for retrieving driving scenes of specified contents (i.e., here as annotated as 3-second 
duration video clips within the experiment of 3.1 from a driving video library of 49 separate videos).  
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Chap. 3.2) Estimating Driver Readiness from 
Situated Eye Movements: Prediction of workload 
and attention requirements from quantification 
of driving scene components 
(under review) T.B.D. 
 

 
In regards to the overall thesis big picture, this experiment serves to relate driver 
perceived workload estimates and common eye movement measures with specific 
quantifiable visual properties of various driving scenes. The corpus of video annotations 
from Chap 3.1 supplied a range of driving scene contents/demands to be used as stimuli 
for Chap 3.2. Compared to the on-road Chap 3.3 study, conditions/measurements could 
be manipulated with a higher level of precision and control. Results showed road angle 
curvature to consistently be the strongest predictor of workload and eye movements, 
and amount of other road users likely to be of next greatest importance (when compared 
to other visible driving scene aspects like signage/symbols, buildings, etc). Saccadic 
amplitude was found to be the most sensitive eye measure (in comparison to fixation 
duration and pupil size) for representing workload demands of driving scenes. Such 
relational knowledge supplies predictive regression models and data to support fitness-
to-drive driver monitoring systems. Thus, assessments are enabled towards determining 
if a person’s eyes are moving appropriately enough provided the measurable contents 
(visual demands) of a specific scene they are driving within or when about to receive 
driving control from an automated/autonomous driving system (e.g., regardless of which 
human or computer agent initiates the request for the transition of control).  

 

Adapted from: 

Cabrall, C.D.D., Happee, R., & de Winter, J.C.F. (under review). Estimating driver readiness from situated eye 
movements: Prediction of workload and attention requirements from quantification of driving scene components.  
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Abstract 
The designs of higher levels of driving automation include times where drivers will uptake (upon 
request or voluntarily) some increased amount of driving responsibility while the vehicle is in 
motion. Thus, a key research and application development question concerns quantifying what 
impact contents of different driving task environments might be expected to have in establishing a 
driver’s readiness to drive. This paper investigated predictability of nominal driver workload and 
attention while viewing and rating driving scenes with differing amounts of visible scene 
components: road curvature, road surface area, road users, signs/symbols, 
buildings/infrastructure, and vegetation/trees. We presented 60 randomly ordered dash cam 
video clips (3 s duration) and recorded the eyes of 15 participants who were tasked to provide 
ratings between 0 and 100 to the question of “how much effort for you to take control and drive 
within that segment?”. Multiple linear regression models were derived and found to significantly 
improve prediction of workload ratings and eye movements from differently weighted 
combinations of the visible scene component factors. Road angle curvature was consistently the 
strongest predictor of workload and eye movements, and amount of other road users appeared to 
be of second greatest importance. From workload and driving scene components, the highest 
amount of explainable variance in eye measures was found in saccadic amplitude as compared to 
fixation duration and pupil size. In conclusion, the present regression equations establish 
quantifiable relations between how much workload and attention different driving scenes might 
require. In future driver monitoring systems, such knowledge can help inform road-facing and 
driver-facing cameras to jointly establish and verify the adequacy of a driver’s level of engagement. 

 

 

 

 
  



Chapter 3.2: Prediction of Workload and Eye Measures from Driving Scene Contents 
 

135 

1. Introduction 

1.1 Background motivation 

With the advent of driving automation systems (SAE, 2018), new human factors road safety 
challenges exist for assessing driver states due to their altered roles and responsibilities. With SAE 
Level 3 ‘Conditional Driving Automation’ and SAE Level 4 ‘High Driving Automation’ drivers will be 
removed from sustained involvement in the driving task until either being called back in, or at a 
point of voluntary uptake. As seen in Fig. 3.2.1 (from Petermeijer et al., 2016), a so-called ‘Take 
Over’ process involves a transitional phase, where attentional shifts and cognitive processing are 
expected to occur over a period of time, prior to increased conventional driver control activities. 
Conceptually, there can exist a buffer between eyes on road and the start of manual driving. 

 

 
Figure 3.2.1. The take-over process from highly automated to manual driving, adopted from Petermeijer et al. (2016). 

 

From a safety system assurance perspective, it is reasonable to expect that a Driving Monitoring 
System (DMS) layer could provide oversight during such a transition (e.g., assumptions of requests 
ought to be tested). Such a verification could transpire whether the direction of take over request 
transpires from Automation-Initiation towards Driver-Control or from Driver-Initiation towards 
Driver-Control (i.e., AIDC and DIDC respectively from Lu et al., 2016). For comprehensive 
consideration, it is important to note that neither of such AIDC/DIDC transitions necessarily 
connotes an emergency situation but might each be further classifiable as either nominal or critical 
with subsequent corresponding differences in aspects of typical task timing, events, and 
environmental characteristics. 

 

A recently emerging body of literature has focused on establishing the timing requirements of  
transitions of control from automated driving systems to human drivers.  Standards regarding AIDC 
transitions of control (aka. take over requests, dynamic driving task fallback, requests to intervene, 
etc.) have suggested that the human should be allotted some phase of fair lead-in time: ‘with 
notice’ (NHTSA, 2017), ‘sufficiently comfortable transition time’ (NHTSA, 2013), ‘with a certain time 
buffer’ (BASt, 2012), ‘At level 3, an ADS is capable of continuing to perform the DDT for at least 
several seconds after providing the fallback-ready user with a request to intervene’ (SAE, 2018).  By 
reviewing automated to manual driving transition timings across 25 papers, Eriksson and Stanton 
(2017) determined that an average allotment period (until a critical event) was around 6 seconds 
and that an average reaction time (to take back vehicular control) was around 3 seconds. Their own 
empirical measurements with non-critical transitions (with and without secondary tasks) found 
substantially increased timing requirements up to 25.75 seconds to resume control from 
automated driving in normal conditions. In their discussion, Eriksson and Stanton (2017) 
recommend a case for adaptive automation that modulates a take over request lead time by 
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detection of driver gaze, such that for example, a few additional seconds might be provided to a 
driver ahead of resuming control. 

 

Obtainment of situation awareness (cf. Endsley, 1995) is intuitively presumed as a requisite target 
threshold for establishing driver readiness, however specifics of the cognitive constituents of that 
construct can be problematic and might be beyond what is necessary for some initial practical 
application benefits. Mok et al. (2015) argue that accidents may result if drivers do not sufficiently 
assess the situation prior to taking control. Lu et al. (2016) propose that the demands on the timing 
of the automated driving technology transitions are set by how much time drivers need for gaining 
situation awareness. For example, from viewing and then reconstructing portions of simulated 
driving scenes (i.e., after periods of inattentiveness), situation awareness for positions of other 
vehicles reached saturation between 7 and 12 seconds and for their velocities at a range beyond 20 
seconds (Lu et al., 2016). Such assumptions and results, however, can raise questions of how good 
is good enough when it comes to defining a complete mental grip and/or what parts of the 
situation are relevantly necessary for establishing adequate levels of awareness (cf. the MiRA 
theory in Kircher & Ahlstrom, 2016). A standard situation awareness measurement is the Situation 
Awareness Global Assessment Technique (SAGAT) (Endsley, 1988) with a body of literature 
evidencing positive association with performance (Salmon et al., 2009; Gardner et al., 2017; Prince 
et al., 2007; Gugerty, 1997; McGowan & Banbury, 2004; Loft et al., 2015; O’Brien & O’Hare, 2007). 
However, the practical utility of the SAGAT has also seen contentious results concerning its 
predictive validity with performance (Durso et al., 2006; Durso et al., 1998; Pierce et al., 2008; 
Strybel et al., 2008; Cummings and Guerlain, 2007; Ikuma et al., 2014), and has been criticized for 
its reliance on memory (Gutzwiller et al., 2013) and on explicit representations amongst other 
limitations (Stanton et al., 2015; De Winter et al., in press).  

 

An earlier emotive impression before conscious expression might be more accessible/practical as a 
cognitive construct that would be useful in modeling driver readiness assessments for uptake of 
driving control. Stanton and Young (2000) developed and proposed a psychological model of driving 
automation in which situation awareness is the last in a chain of cognitive constructs and with a 
mental workload construct feeding into it. More recently, Heikoop et al. (2015) updated that model 
from a systematic literature search of driving automation papers and a subsequent quantification 
of reported links between psychological constructs. Notably, the updated Heikoop et al. (2015) 
model maintains the same directional relation of a later positioned situation awareness that is fed 
from an earlier positioned mental workload (with a newly interceding construct of attention). A 
widely adopted standardized measurement of mental workload is the NASA TLX (Hart & Staveland, 
1988) and in essence consists of high/low scales for subjectively rating demands. In contrast, the 
situation awareness of the SAGAT (as previously introduced above), consists of presumably later or 
higher levels of conscious representation and recall. Moreover, malleable attention resources 
theory (MART) from Young and Stanton (2002) has posited a nominal human ability to 
muster/diminish attentional pools in an adaptive manner thereby shaping information processing 
capacities to match and meet present demands. Thus, in modelling a transition from automated to 
manual driving control, presumed driving effort appears to be a reasonable starting place to 
parameterize as a construct from which attention and situation awareness would be expected to 
follow. 
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1.2 Driver eyes, workload, and scene relations  

Measurements of the eyes of drivers might reasonably contain important precursor information 
towards assessing a driver’s readiness to drive. The information that drivers use is predominantly 
considered to be visual and could benefit from enhanced quantitative frameworks (Sivak, 1996). In 
a review of 50 years of driving safety research, Lee (2008) concluded that most accidents occur 
because ‘drivers fail to look at the right thing at the right time’. Senders et al. (1967) empirically 
investigated the amount of visual attention requested from human drivers for different roadways 
via an inverse occlusion technique to develop values of some of the parameters of a mathematical 
model of attentional demand. Subsequent driver visual workload studies have continued to employ 
such occlusion techniques to scientifically evaluate driving safety requirements  (Van der Horst, 
2004) and persist to present day methodological studies where they are advocated for use in 
combination with think aloud protocols and eye tracking (Kicher & Ahlstrom, 2018). According to a 
strong form of an eye-mind hypothesis, gaze direction is a perfect correlate of cognitive activity 
(Just & Carpenter, 1980). According to Moray (1990, 1993), information acquisition while driving is 
limited by eye movement characteristics, and attentional changes in dynamic real environments are 
equivalent, in operative terms, to changes in eye fixations. Thus, it should be theoretically possible 
to identify cognitive processes from eye movements if the environment is known and the task 
constrained. 

 

Eye tracking parameters are often used as correlates of mental workload (Ries et al. 2018) and have 
been reviewed specifically for the case of drivers (Marquart et al., 2015). In contrast to mixed 
results regarding blink rates (Table 3.2.1), the eye measures of pupil size, fixation duration, and 
saccade amplitude show an apparent consensus of directional consistency in driving studies 
regarding mental workload and thus are introduced in turn below and taken as candidates for the 
present modeling purposes.  

 

Table 3.2.1. Relation of eye-related physiological measures and drivers’ mental workload  
(adapted from Marquart et al., 2015) 

Measure Mental workload (+) 

Blinks Rate + / − 

Pupils 
Dilation + 

ICA + 

Fixations Duration + 

Saccades Gaze variability − 

Note. ICA = Index of Cognitive Activity (Marshall 2000, 20002). 

 

1.2.1. Pupil Size  

In a driving simulator study, Palinko et al. (2010) found increased pupil dilation diameters to be 
positively associated with increased driver cognitive loads and decreased driver performance. 
Hence, Palinko et al. (2010) concluded that pupillometry shows promise as a measure for changes 
in driver cognitive load in line with the seminal phenomenon of a task evoked pupillary response 
(TEPR) of Beatty (1982) where pupils dilate when people are faced with challenging cognitive tasks. 
For example, Ahern (1978) found increased pupil diameters with increasingly difficult mental 
multiplication problems and these results have been recently replicated with more modern day 
equipment by Marquart & De Winter (2015). In a simulated driving task, Schwalm et al. (2008) has 
applied an index of cognitive activity (ICA) that is based on changes in pupil dilation from Marshall 
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(2000, 2002) and found that ICA increases in situations with higher mental demand on the driver 
i.e., when performing a lane change maneuver or an additional secondary task.  

 

1.2.2. Fixation Duration 

In actual on-road driving, the complexity of the traffic environment produced a latency in eye 
movement suggesting a deeper processing at each fixation point (Miura, 1990) and Recarte & 
Nunes (2000) found longer fixations during spatial-imagery tasks. Older drivers (e.g., who 
presumably suffer degraded information processing capabilities and thus greater cognitive effort) 
compared to younger drivers, were found to exhibit increased fixation durations while viewing 
safety related areas of interest in pictures of real-life traffic scenes (Maltz & Shinar, 1999). 
Underwood et al. (2011) reviewed a series of driver hazard perception studies and found an 
increase in fixation durations akin to a weapon/threat focus of  Loftus et al. (1987). In between a 
fixation and a saccade exists an eye measure known as a saccadic intrusion where the eye makes 
small shifts away and then back to the original fixation in a fast and jerky manner, thus an increase 
in saccadic intrusions is consistent with an increase in fixation durations and a decrease in saccadic 
amplitudes. Tokuda et al. (2011) measured saccadic intrusions where participants were instructed 
to examine pictures of a highway driving scene while completing a cognitively loading N-back task: 
higher mental workload was found to produce an a greater number of saccadic intrusions.  

 

1.2.3. Saccade Amplitude 

In controlled laboratory investigations of free viewing (not requiring any specific fixation or 
tracking), increased cognitive demands (i.e., of an auditory tone counting task) consistently 
decreased saccadic amplitude ranges across four separate experiments (May et al., 1990). In a 
driving simulator study, Tsai et al. (2007) found evidence of reduced ranges of scanning when 
subjects were dually tasked with driving and an auditory addition task.  Increased mental demands 
for on-road drivers in instrumented vehicles were found to produce spatial gaze constriction via 
decreased gaze variances (Recarte & Nunes, 2000, 2003; Reimer, 2009). Using both an on-road 
instrumented vehicle and a driving simulator, Victor et al. (2005), found a decrease in standard 
deviation of gaze angle/position in the presence of an additional auditory task and on roadways of 
increased driving task complexity (curved over straight sections, rural over motorway roads, and 
on-road over simulator). Furthermore, Victor et al. (2005) found that higher visual demands (i.e., of 
an in-vehicle secondary task) increased gaze variance (i.e., away from the road). 

 

In the updated psychological model of driving automation from Heikoop et al. (2015), task demands 
were found to positively affect mental workload and published driving theory presents both 
challenges and potential for predictive applications. It is reasonable to expect that some driving 
scenes might nominally be more or less difficult than others, even beneath/before consideration of 
additional complicating cases of emergency or safety critical scenarios. Road safety research may 
often include driving conditions of varyingly low/high complexity, but quantifications of their 
differences are more easily eschewed for intuitive qualitative characterization. In lessons learned 
from developing driving research scenes and scenarios, Papelis et al. (2003) argue that ‘Often times, 
specifications about the characteristics of the ambient traffic or ambient environment are missing or 
incomplete. ... it is often the case that variations in these ambient characteristics of a scenario can 
make a drastic difference on how participants perceive the scenario.’ When it comes to detailed and 
specific accounts of driving task demands, examples from the theoretical literature may both 
problematically appear either considerably vague: ‘road surface conditions, road infrastructure 
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layout, visibility and the behaviour of other road users’, ‘normal conditions (e.g., daylight, dry road 
surface, sparse traffic, wide lane)’ – Engstrom et al. (2013) or overly anecdotal ‘when a driver sees 
two cars approaching on a two-lane road and the rear car swings out to pass with the intention of 
cutting in before the various paths meet’ – Gibson and Crooks (1938). However, Michon (1979, 
1985) conveyed and then elaborated upon a model of driving that has become widely adopted 
where complexity involves aspects of strategy - issues of overall trip planning/goals and risk 
acceptance; of tactical maneuvers - management of risk probabilities through negotiations like 
speeding up, slowing down, turning, and overtaking; and of operational control - the basic skills of 
steering and braking for lateral and longitudinal positioning. Under Michon’s driving complexity 
categories, visible scene components might be categorized accordingly and expected to impact 
perceived driver mental workload: buildings/destinations and/or nature-scenic routes as strategic 
aspects; signage/symbology that govern rights of way priority and predict traffic behaviour 
interactions as tactical maneuver aspects; and lateral course and longitudinal collision conflicts 
(road curvature and traffic, respectively) as operational control aspects. 

 

Previous empirical investigations show promise for ascertaining effects of driving scenes on drivers’ 
mental workload.  In the dissertation of De Waard (1996), the road environment and traffic 
demands were identified as complexity factors contributing to driver workload and trends were 
evidenced between baseline and loaded conditions in the predicted direction but did not obtain 
statistical significance. The road conditions included for environmental complexity considerations of 
De Waard (1996) were sections with and without motorway entrance and exits, sections with and 
without adjacent noise barrier walls, and rural roads through forests or open moorland. Steyvers et 
al. (1994) argued that driving is a well-defined task which has to be executed in an environment 
that is readily describable and has a clearly identifiable task context and thus approached their 
study of driving behaviour as an activity which could benefit from a computational approach. 
Participants were shown recordings (about 80s each) filmed from behind the windshield of a 
moving car, and with instructions to presume they were driving the car from which the film was 
recorded, were tasked with providing evaluations of experience. Driving films (of two lighting and 
two traffic conditions) were selected from two different roads with previously recorded 
lower/higher incidence of accidents: a more visually simplistic polder road (flat horizon with open 
fields of uniform vegetation size and density) and another rural road but with more varied visuals 
(contoured horizon of groups of bushes and forests with other segmented vegetation). From a 
reduction of qualitative attributes into subjective factor labels (i.e., ‘hedonic value’, ‘activational 
value’, and ‘perceptual variation’) Steyvers et al. (1994) concluded that a combination of conditions 
and experiences accounted for previously unexplained single vehicle accidents on different kinds of 
roads.  

 

For determining a direct relationship between driving scenes and the eyes of drivers, it is important 
to recognize that a competition or compromise of exogenous (bottom-up) and endogenous (top-
down) factors has been a common and longstanding topic for the psychology of perception in 
general. In a treatise on active vs. passive visual search Tsotsos (1992) relayed that while a concept 
of active perception might have been relatively new to computer vision at the time, Helmholtz 
(1910) believed in perceptual hypotheses, the derivation of best interpretations given evidence, 
and in attentional mechanisms that guide processing even without eye movements. Some of the 
earliest evidence was obtained from Buswell (1935), where participants were asked to look at 
different types of artwork and as a result fixation positions were found to be highly regular and 
related to information in the pictures (e.g., preferences for people rather than backgrounds) and 
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thus by extension to perceptual and cognitive processing of the scene. Classic and widely cited 
scene viewing eye tracking work of Yarbus (1967) evidenced diverse scan patterns in the presence 
of different goal-directed instructions (e.g., give the age of a person, estimate their wealth, 
remember the positions and details of everything in the picture, etc.). Yarbus (1967) found similar 
but non identical eye movement patterns in free-viewing without any instructions and saw 
preference for particular areas/items of a scene (e.g., a face) and/or sub-parts of a face (eyes, nose, 
and mouth). Underwood and Radach (1998) have concluded that ‘eye guidance appears as low-
level as needed and as cognitive as possible for a given set of circumstances’. Henderson & 
Hollingworth (1998) provide a comprehensive overview of literature surrounding eye movements 
during scene viewing and conclude with their saliency map framework wherein initial movements 
of the eyes are controlled by stimulus rather than cognitive features and after which saliency 
weights are modified to reflect relative cognitive interest of those regions (e.g., needs of perceptual 
and cognitive analysis of a region). A continuing debate about relative contributions of low- and 
high-level factors in targeting eye movements during scene viewing is given by Tatler (2009). 
Furthermore, Tatler et al. (2011) observed that the dominant framework regarding gaze allocation 
in scene viewing has been of image salience but that based on new principles of selection, 
frameworks of reward maximization and uncertainty reduction are also emerging. Blended visual 
sampling accounts can be found across highly cited work of Senders (1964, 1983), the Saliency-
Effort-Expectancy-Value (SEEV) model introduced by Wickens et al. (2003), and a recent replication-
extension study of  Eisma et al. (2018).  

 

1.3 Automated Driver Readiness Assessment Framework  

Recently developed driving automation systems entail transitions of control back to human drivers 
in the middle of driving and thus present novel challenges of assessing driver readiness as 
introduced in the background motivation. From the reviewed literature above, the eyes of drivers 
appear to be reliably influenced from both cognitive aspects such as mental workload as well as 
from driving scene components. Recent reviews of empirical investigations for advanced driving 
automation (c.f. Ohn-bar & Trivedi, 2016) indicate trends towards automated vehicles utilizing 
cameras that point both outward at the driving scene as well as inward towards a vehicle’s 
occupants. These vehicle cameras will likely come equipped with various increasingly available 
computer/machine vision capabilities, e.g., MathWorks (2018) and Krzywinski (2018), that through 
recent advances in the layered disciplines artificial intelligence, machine learning, and deep learning 
can be applied to automatically segment driving scenes e.g., Cityscapes Dataset (2018) as well as 
the interiors of vehicles, e.g., Eyeris (2018) and eyeSight (2018), which include tracking of the body, 
head, face, and eyes, etc. of different vehicle occupants, esp. for example, that of a current or 
would-be driver.  

 

Thus, an adaptive control framework (Fig. 3.2.2) appears plausible and is proposed as a timely 
solution inspired by Wickens & Hollands (2000) for the present problem of estimating fitness-to-
drive to modulate the transitional phases preceding a return of control to a human driver (cf. Fig. 
3.2.1). Different measures may be taken from would-be drivers in real-time and the eyes are 
commonly presumed as a reliable indicator of attention under nominal circumstances. Such online 
measures can be compared against target reference eye measure predictions collected (again 
under nominal circumstances) as from environmental driving scene components directly (observed) 
and/or in conjunction with mental workload effort ratings (indirectly presumed). Mental workload 
can be assumed to be an earlier emotive psychological state adjacent to meeting driving task 
demands than fully conscious situation awareness, and hence a better choice for establishing 
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reference levels of situated fitted-ness. However, even if relatively more immediately accessible 
than situation awareness, mental workload (just as with any psychological construct) must 
ultimately be indirectly mediated, and thus potentially available only in partial manner, and/or 
influenced by other cognitive drivers (e.g., additional cognitive states and/or secondary tasks, etc.). 
Fitting into the lower right corner of the broader framework (and highlighted in green in Fig. 3.2.2), 
linear regression models are the subject of the analyses of the present paper: between visible 
driving scene contents and mental workload (Model A), between mental workload and eye 
measures (Model B) and between visible driving scene contents and eye measures (Model C). 
Present aims thus include whether and which factors, as previously introduced in the above 
literature, might be reliably related between: 

 

(1) Driving scene components (road curvature, traffic, signage, buildings, road surface, and vegetation) 

(2) Driver mental workload (subjective perceived effort) 

(3) Driver eye measures (pupil size, fixation duration, saccade amplitude) 

 

The overall purpose of the present study can be conceived as a singular research question:  

 

(1) During returning attention to a driving task prior to taking control, what do the eyes look like from a 
person who thinks/feels that the driving will be more/less difficult or easy? 

 

 
Figure 3.2.2. Based on a current driver’s eye measures and reference eye predictions, a fitness-to-drive estimator model 
can supply driving readiness scores as communication/feedback or input to a task manager (entity or process) that can 
modulate transitions of driving control between human and automated agents. The overall design is modeled after a 
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framework of adaptive automation in Wickens & Hollands (2000, fig. 13.14, p. 547). The interior brain box is modeled 
after directional relations of several cognitive constructs from Heikoop et al. (2015, fig. 3, p. 9) where MW = Mental 
Workload, Fa = Fatigue, St = Stress, At = Attention, MM = Mental Models, and SA = Situation Awareness, while allowing 
for etc. = other mental states. Various computational models (A, B, C) are proposed and investigated within the present 
paper to predict eye measures from driving environment states (Xi, X..., Xn) directly and/or in combination with Mental 

Workload.       

 

2. Methods 
We implemented an empirical approach to investigate the effects of various visible driving scene 
characteristics on human perceived effort ratings and corresponding eye behavior. 

 

2.1 Participants and apparatus  

Written informed consent was obtained from all participants, and the research was approved by 
the Human Research Ethics Committee of the Delft University of Technology under the title ‘Driving 
video ratings’ (16 December 2015). The experiment was completed by 15 participants (six female, 
nine male) aged between 18 and 36 (M = 26.60, SD = 4.26) with an average driving experience of 
around seven years since obtaining the driver’s license (M = 7.20, SD = 4.20).  

 

The experiment apparatus consisted of an isolating partition, a stimulus display monitor, eye 
tracker camera with integrated IR source and dedicated head/chin rest mount, as well as a gaming 
steering wheel (Fig. 3.2.3). The display was a 24 inch (diagonal) BenQ XL2420T-B monitor with a 
resolution of 1920 x 1080 pixels and a display area of 531 x 298 mm. The display was positioned 
about 95 cm in front of the participant and about 35 cm behind the eye tracking camera/IR source. 
The boundaries of the stimulus display area subtended approximately 31/18 degrees of 
horizontal/vertical viewing angle per the setup ranges required by guidelines of the SR Research 
Eyelink 1000 Plus eye tracker. Eye behavior data were recorded after individual participant 
calibration. The eye event parser was set according to the default psychophysical configuration 
recommended by the manual for research containing smooth pursuit movements and containing 
measurements of saccadic amplitude: saccade velocity threshold of 22 deg/s, saccade acceleration 
threshold of 3800 deg/s2, and saccade motion onset delay threshold of 0 deg.  

 

The gaming steering wheel was a Logitech G27 but was not connected to anything and along with 
the isolating partition was used to facilitate driving video stimulus immersion. Participants made 
use of a standard USB desktop mouse to input effort ratings on the stimulus display monitor. 
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Figure 3.2.3. Diagram of experiment apparatus components and arrangement. 

  

2.2 Procedure  

Participants were encouraged to sit up straight and the height of the head/chin rest mount was 
adjusted to each participant to reduce potential neck/shoulder strain. Participants kept their heads 
stationary within the mount throughout the experiment except for voluntary rest breaks made 
available to them around every five minutes across about 15 minutes of driving video viewing and 
rating trials. Each trial began with an online drift correction dot in the center of the screen to which 
participants needed to fixate and click the mouse at the same time to begin. A 3 second long driving 
video clip was then played during which participants were tasked to move their hands to the wheel 
while imagining that they were taking over control (i.e., from automated driving) and that they 
must drive within that scene.  

 

2.3 Stimuli and measurements 

Stimuli consisted of a randomly ordered set of 60 dash cam video clips (Fig. 3.2.4) each of 3 seconds 
duration selected across a multi-level grouping extended from a semantic content categorization 
scheme developed in Cabrall et al., (2018) to ensure a variety of different driving scene 
circumstances. The duration of 3 seconds is on par with an average human reaction time for taking 
back control from an automated driving system found across a review of 25 papers in Eriksson and 
Stanton  (2017). Driving scene content components were manually outlined and color coded (cf. 
CityScapes Dataset 2018)  into five separate categories: (1) road surface area, (2) actual/potential 
road users (vehicles, bicycles, pedestrians), (3) signs/symbols (stop signs, cross walks, roadway 
writing, billboard advertisements, etc.), (4) buildings/infrastructure (houses, light poles, fences, 
etc.), and (5) vegetation (trees, bushes, hedges, etc.). A free online image processing tool 
(Krywinski, 2018) was used to determine a percentage of the windshield view that a specific 
category covered in terms of pixelated area. A transparent protractor overlay was used to 
approximate the curvature of the road of travel from the present lane position of the vehicle to the 
furthest distance point down the road.  
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Figure 3.2.4. Segmentation of a driving video into quantifiable factor component predictors (road area, road users, 
signs/symbols, buildings/infrastructure, vegetation/trees, road curvature) and regression paths to outcome variables of 

workload (effort ratings) and eye measures (pupil size, fixation duration, saccadic amplitude).  
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All data were recorded to be analyzed at the level of a single driving video clip. For driving scene 
content description data (degree of road curvature and amounts of categorized pixel area 
coverage), a single representative frame was selected from the approximate middle of the video 
clip.  All eye measures were likewise averaged across the entire video clip duration. Lastly, effort 
ratings were recorded from each participant for each video clip before being averaged across all 
participants (n = 15) for each one of the 60 different video clips. 

 

After the clip finished and disappeared, an effort rating scale (“How much effort for you to take 
control and drive within that segment?”) was presented on the upper half of the screen, and 
participants moved a vertical mouse cursor to click on the scale to input their answer from between 
“Very Low” to “Very High”. Cursor click horizontal positions were divided by the pixel length of the 
scale and rounded to a single point resolution from 0 to 100. The presented horizontal effort scale 
contained 21 equally spaced demarcations from left to right following from those described within 
the seminal NASA TLX (Task Load Index) subscales (Hart & Staveland, 1988)  and widely adopted 
across driver workload assessment research (see Fig. 3.2.5). 

 

 
Figure 3.2.5. Driving effort response scale and cursor used to position on top of scale. 

 

 

3. Results 
Multiple rounds of linear regression models were applied to ascertain predictive power relations 
between several sets of independent variables (IV) and dependent variables (DV): 

 

3.1. Model A: Driving scene contents (IV) and driver workload effort ratings (DV) 

 

3.2. Model B: Driver workload effort ratings (IV) and driver eye measures (DV) 

 

3.3. Model C: Driving scene contents (IV) and driver eye measures (DV) 
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First, pairwise correlations between the driving scene content independent variables were 
conducted to test for the presence of multicollinearity. All correlations between predictors were 
found to be well below a conventionally considered problematic threshold of r  = 0.80  (Table 3.2.2, 
top).   Second, the correlations of each driving scene content component with driver workload 
effort ratings and the eye measures were computed  (Table 3.2.2, bottom). Furthermore, 
correlations and linear best fit lines for eye measures and scene content/characteristic by an index 
of video driving difficulty (wherein videos were grouped in accordance with the top, middle, and 
bottom third of ranked average video effort ratings) are depicted in Figure 3.2.6. Approximated 
degree of road curvature and pixelized area coverage amounts of signage, road users, and 
buildings/infrastructure all evidenced significantly positive correlations with driver workload effort 
ratings. None of the driving scene content components were found to significantly correlate with 
the pupil-size measure. Road curvature and signage showed significantly negative correlations with 
fixation durations. Road curvature, road users, buildings, and signage evidenced significantly 
positive correlations with saccade amplitude. For each eye measure, road curvature showed the 
highest correlative association.   

 

Table 3.2.2. Correlations between  driving scene contents, workload effort ratings, and driver eye measures. N = 60 video 
segments.  

IVs ↓, IVs → 
Road- 

Curve 

Road- 

Users 
Buildings 

Road- 

Surface 
Signs 

Trees- 

Vegetation 

Road- 

Curve 
1 - - - 

- - 

Road- 

Users 

0.35*; 

(p = 0.006) 
1 - - 

- - 

Buildings 
0.21; 

(p = 0.117) 

0.45*;  

(p < 0.001) 
1 - 

- - 

Road- 

Surface 

0.02; 

(p = 0.906) 

-0.18;  

(p = 0.157) 

0.31*;  

(p = 0.016) 
1 

- - 

Signs 
0.41*; 

(p = 0.001) 

0.51*;  

(p < 0.001) 

0.41*;  

(p = 0.001) 

0.20;  

(p = 0.129) 

1 - 

Trees- 

Vegetation 

-0.01; 

(p = 0.959) 

-0.08;  

(p = 0.545) 

-0.09;  

(p = 0.479) 

-0.06;  

(p = 0.660) 

-0.07;  

(p = 0.616) 

1 

DVs ↓, IVs → 
Road- 

Curve 

Road- 

Users 
Buildings 

Road- 

Surface 
Signs 

Trees- 

Vegetation 

Workload- 

Effort 

0.66*; 

(p < 0.001) 

0.53*;   

(p < 0.001) 

0.50*;  

(p < 0.001) 

0.18;  

(p = 0.169) 

0.55*;  

(p < 0.001) 

0.06;  

(p = 0.616) 

Pupil- 

Size 

0.19; 

(p = 0.158) 

-0.05;  

(p = 0.698) 

-0.19;  

(p = 0.153) 

-0.18;  

(p = 0.172) 

-0.12;  

(p = 0.376) 

0.24;  

(p = 0.070) 

Fixation- 

Duration 

-0.55*; 

(p < 0.001) 

-0.25;  

(p = 0.051) 

-0.20;  

(p = 0.118) 

0.22;  

(p = 0.093) 

-0.43*;  

(p = 0.001) 

0.19;  

(p = 0.144) 

Saccade- 

Amplitude 

0.67*; 

(p < 0.001) 

0.61*;  

(p < 0.001) 

0.41*;  

(p = 0.001) 

0.05;  

(p = 0.696) 

0.59*;  

(p < 0.001) 

-0.20;  

(p = 0.126) 

* Correlation is significant at the 0.05 level (2-tailed) 
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Figure 3.2.6. Correlations between independent variable driving scene content or characteristic (‘x’) and dependent eye 
measure (‘y’) by ranked video effort rating grouping (easy, medium, difficult). 
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3.1 Prediction of driver workload from driving scene contents 

A multiple linear regression was conducted with all of the driving scene content component factors 
(road curvature, road users, buildings/infrastructure, road surface, signs/symbols, and 
vegetation/trees) entered as the predictor variables and with driver workload (effort ratings) as the 
outcome variable. The resulting equation (Eq. 1) was found to be statistically significant (F(6,53) = 
15.85, p < 0.001) indicating that the combined driving scene factors taken together significantly 
improved the prediction of workload compared to the intercept model alone. Model summary 
statistics indicated around 64% of the variance in workload rating response scores were accounted 
for by the full set of driving scene content factors with a standardized error estimate of 7.6 (Table 
3.2.3). The predictor factors of road curve angle, road users, and buildings/infrastructure were 
found to provide significant individual contribution to the amount of explained variance while 
controlling for the other predictor variables. Restriction of the model to only these predictors 
produced a lower variance accounted for (around 60%) and higher standard error estimate (around 
7.8). 

 

Table 3.2.3.Model summary statistics for prediction of driver workload from driving scene contents.  

Model (Eq. 1) Ŷ = 10.398 + 0.202Xi + 90.232Xii + 27.897Xiii + 42.528Xiv + 64.266Xv + 8.646Xvi 

F(6,53) = 15.85, p < 0.001 

 

 r r
2
 r

2
 adjusted σest 

 0.80 0.64 0.60 7.6 

Predictor(s) Std. Error β t p 

Xi  Road-Curve 0.039 0.480 5.232 0.000* 

Xii  Road-Users 43.648 0.235 2.067 0.044* 

Xiii  Buildings 13.749 0.210 2.029 0.047* 

Xiv  Road-Surface 30.964 0.134 1.373 0.175 

Xv  Signs 64.266 0.123 1.158 0.252 

Xvi  Trees-Vegetation 8.646 0.118 1.426 0.160 

 

3.2 Prediction of driver eye measures from driver workload 

Several linear regressions were conducted with driver workload (effort ratings) entered as the 
predictor variable with each eye measure (pupil size, fixation duration, saccade amplitude) taken in 
turn as a single outcome variable. Of the resulting equations (Eq. 2, Eq. 3, and Eq. 4) only those for 
fixation duration (F(1,58) = 4.94, p = 0.030) and saccade amplitude (F(1,58) = 34.66, p < 0.001) were 
found to be statistically significant, while significant difference was not obtained for pupil size 
(F(1,58) = 1.08, p = 0.303. Less than 1% of the variance in pupil size was found to be explainable 
from the workload ratings (Table 3.2.4). Model summary statistics indicated around 6% of the 
variance in fixation durations was accounted for by the workload ratings with a standardized error 
estimate of 71.3 ms (Table 3.2.5), and that around 36% of the variance in saccade amplitude was 
accounted for by the workload ratings with a standardized estimate of 0.5 degrees (Table 3.2.6).   
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Table 3.2.4. Model summary statistics for prediction of driver pupil size from driver workload.  

Model (Eq. 2) Ŷ = 4134.718 + 0.682Xi 

F(1,58) = 1.08, p = 0.303 

 

 r r2 r2 adjusted σest 

 0.14 0.02 0.001 60.6 

Predictor(s) Std. Error β t p 

Xi  Workload-Effort 0.656 0.135 1.040 0.303 

 

 

Table 3.2.5. Model summary statistics for prediction of driver fixation durations from driver workload.  

Model (Eq. 3) Ŷ = 478.973 + -1.717Xi 

F(1,58) = 4.94, p = 0.030 

 

 r r2 r2 adjusted σest 

 -0.28 0.08 0.06 71.3 

Predictor(s) Std. Error β t p 

Xi  Workload-Effort 0.773 -0.280 -2.222 0.030* 

 

 

Table 3.2.6. Model summary statistics for prediction of driver saccade amplitude from driver workload.  

Model (Eq. 4) Ŷ = 0.929 + 0.34Xi 

F(1,58) = 34.66, p < 0.001 

 

 r r
2
 r

2
 adjusted σest 

 0.61 0.38 0.36 0.5 

Predictor(s) Std. Error β t p 

Xi  Workload-Effort 0.006 0.612 5.888 < 0.001* 

 

3.3 Prediction of driver eye measures from driving scene contents 

Several multiple linear regressions were conducted with all of the driving scene content component 
factors (road curvature, road users, buildings/infrastructure, road surface, signs/symbols, and 
vegetation/trees) entered as the predictor variables with each eye measure (pupil size, fixation 
duration, saccade amplitude) taken in turn as a single outcome variable. Of the resulting equations 
(Eq. 5, Eq. 6, and Eq. 7) only those for fixation duration (F(6,53) = 9.216, p < 0.001) and saccade 
amplitude (F(6,53) = 18.171, p < 0.001) were found to be statistically significant, while significant 
difference was not obtained for pupil size (F(6,53) = 1.681, p = 0.144. Around 7% of the variance in 
driver pupil size was found to be explainable from the driving scene content factors (Table 3.2.7). 
Model summary statistics indicated around 46% of the variance in driver fixation durations was 
accounted for by the driving scene content factors with a standardized error estimate of 54.4 
(Table 3.2.8), and around 64% of the variance in driver saccade amplitude was accounted for by the 
driving scene content factors with a standardized error estimate of 0.4 (Table 3.2.9). For fixation 
durations, the predictor factors of road curve angle, road surface, signs, and road users were found 
to provide significant individual contribution to the amount of explained variance while controlling 
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for the other predictor variables. For saccade amplitudes, the predictor factors of road curve angle 
and road users were found to provide significant individual contributions to the amount of 
explained variance while controlling for the other predictor variables.       
 

Table 3.2.7. Model summary statistics for prediction of driver pupil size from driving scene contents.  

Model (Eq. 5) Ŷ = 4142.455 + 0.588Xi + 77.18Xii + -182.965Xiii + -335.847Xiv + -81.233Xv + -63.807Xvi 

F(6,53) = 1.68, p = 0.144 

 

 r r
2
 r

2
 adjusted σest 

 0.40 0.16 0.07 58.6 

Predictor(s) Std. Error β t p 

Xi  Road-Curve 0.299 0.277 1.970 0.054 

Xii  Trees-Vegetation 46.859 0.209 1.647 0.105 

Xiii  Road-Surface 239.220 -0.144 -0.765 0.448 

Xiv  Signs 428.773 -0.128 -0.783 0.437 

Xv  Buildings 106.217 -0.121 -0.765 0.448 

Xvi  Road-Users 337.210 -0.033 -0.189 0.851 

 

Table 3.2.8. Model summary statistics for prediction of driver fixation duration from driving scene contents.  

Model (Eq. 6) Ŷ = 400.83 + -1.179Xi + 824.614Xii + -1196.586Xiii + 653.48Xiv + -158.252Xv + 86.068Xvi 

F(6,53) = 9.22, p < 0.001 

 

 r r2 r2 adjusted σest 

 0.72 0.51 0.46 54.4 

Predictors Std. Error β t p 

Xi  Road-Curve 0.277 -0.457 -4.257 < 0.001* 

Xii  Road-Surface 221.958 0.423 3.715 < 0.001* 

Xiii  Signs 397.832 -0.375 -3.008 0.004* 

Xiv  Road-Users 312.876 0.278 2.089 0.042* 

Xv  Buildings 98.553 -0.194 -1.606 0.114 

Xvi  Trees-Vegetation 43.478 0.192 1.980 0.053 

 

Table 3.2.9. Model summary statistics for prediction of driver saccade amplitude from driving scene contents.  

Model (Eq. 7) Ŷ = 1.395 + 0.011Xi + 6.471Xii + 5.673Xiii + -0.612Xiv + 0.571Xv + 0.512Xvi 

F(6,53) = 18.17, p < 0.001 

 

 r r2 r2 adjusted σest 

 0.82 0.67 0.64 0.4 

Predictors Std. Error β t p 

Xi  Road-Curve 0.002 0.463 5.280 0.000* 

Xii  Road-Users 2.318 0.304 2.791 0.007* 

Xiii  Signs 2.948 0.196 1.925 0.060 

Xiv  Trees-Vegetation 0.322 -0.150 -1.900 0.063 

Xv  Buildings 0.730 0.077 0.782 0.438 

Xvi  Road-Surface 1.645 0.029 0.312 0.757 



Chapter 3.2: Prediction of Workload and Eye Measures from Driving Scene Contents 
 

151 

4. Discussion 

4.1 Using driving scenes to predict driver workload 

The design of our experiment exposed participants to multiple driving scenes, which varied in the 
amount of ‘stuff’ visible in the scene, and a range of experienced workload effort ratings was 
captured. Specifically, the average workload ratings per video ranged between 4.67 and 55.87 on 
the provided 0 to 100 point scale. As expected, this indicates that our non-critical/non-hazardous 
driving scene stimuli represented a range of perceived difficulties even while collectively residing on 
the lower portion of a scale for anticipated driving effort. Moreover, the workload ratings were 
found to vary in a reliable way in accordance with the identified driving scene components, 
accounting for approximately 60.2% of the variance of the workload effort ratings which can be 
interpreted as a ‘moderately strong’ relation in accordance with the 5-level general guide provided 
by Brewer (2003). A standard error estimate of around 7 points on a 100 point workload scale is 
expected to be practically useful (even without being perfectly precise) in adaptive aiding and 
driver monitoring systems, for example as depicted within Fig. 3.2.2. 

 

Such results are consistent with general practices of road safety research to factorize driving task 
scenarios into more/less easy conditions, and in particular are convergent with the results of 
Steyver et al. (1994) where differently experienced appreciations were found by tasking 
participants to imagine having to drive on various roads via use of previously recorded video 
footage. For causal effects from scene components to workload, the previously introduced and 
reviewed research has been purposefully constrained to a limited number of conditions with 
controlled variations in combinations of different hypothesized factors of interest (e.g., day/night, 
presence/absence of traffic,  homogeneous/heterogeneous vegetation, presence/absence highway 
merging, presence/absence of roadside barriers, etc.) and thus participants had been typically 
exposed to only a handful of different road scenes. As an extension to such research, and through 
use of modern day image processing technology, the present computational approach was able to 
employ 60 different videos with continuous rather than discrete quantities of scene components 
while collecting human judgments of effort on a continuous scale inspired by the standardized and 
widely adopted NASA-TLX workload measure.  

 

Not all visual information in the scene was found to be correlated with the effort rating responses 
(i.e., trees/vegetation and road surface were not statistically significant) ahead of the regression 
model. The driving scene features and objects that were found to be significantly correlated with 
effort rating responses (i.e., amounts of road curvature, road users, signs, and buildings) appear as 
a group to be those that are perhaps more semantically meaningful to the task of receiving driving 
control. While increased amounts of buildings and trees both present additional obstacles a driver 
must be wary of avoiding, the former is conceivably more likely to entail presence of other people 
and vehicles and hence signs/symbols for negotiating rules governing their interactions. Within the 
regression model, it remains to be seen why specifically the individual contribution of 
signage/symbols to driving effort ratings is reduced given the presence of the predictors. For now, a 
plausible interpretation is that signs not only co-exist with, but are often designed specifically as 
warnings for curved roads, potential presence of other road users, and identification of buildings, 
etc. Such a notion is supported by our observed co-variance matrix (Table 2, top) and hence why 
the individual explanatory power of signage might be diminished given the presence of the other 
significantly contributing features.  
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4.2 Using driver workload to predict driver eye measures 

Given first considerations of the previously reviewed research on driver eye measure correlates of 
workload, it would appear as though our eye measurement results are lacking at best and 
contradictory at worse. From increases in workload effort ratings: pupil sizes did not systematically 
increase, fixations durations were longer rather than shorter, and saccade amplitudes increased 
rather than decreased. Limitations for not obtaining increased pupil sizes with increased workload 
in our study might be considered as stemming from a lack of strict measurement and control over 
luminance effects from the varying driving video clips (e.g., some might have been systematically 
brighter/dimmer than others irrespective of effort related factors). The pupil is well-known to be 
more dynamically susceptible in terms of size changes due to adaptive responses to lighting rather 
than cognitive states. Indeed, pupillometry in driving applications has been criticized by such real 
world limitations as recognized for vehicles that physically traverse natural environments of varying 
light and shadow, etc. without recompense to increased differentiating resolutions from 
sophisticated compensatory technology and/or costly patented algorithms. 

 

However, more reasonable and practical interpretations of our seemingly problematic results are 
derivable following a similar argument logic as used by Recarte et al (2008) and Gerhard et al. 
(2015) to rectify the  mixed results regarding driver workload and driver blink rates (cf. Kramer, 
1990). The mixed results regarding blink rate (cf. Kramer, 1990) have previously been deemed 
explainable due to situational aspects (i.e., visual demands) and the theoretical (non)differentiation 
of such confounds whereby visual and mental workload may produce eye measure results in 
opposite directions (Recarte et al., 2008; Marquart et al., 2015). Furthermore, consensus 
interpretations could be better served by direct consideration of what is expected to be an intrinsic 
or extrinsic component of nominal primary driving task demands. For example, Recarte et al., 2008 
found an increase in blink rate during all their secondary cognitive tasks (listening, talking, and 
calculating). Hence, it might be initially generalized and expected for example that more complex 
driving scenarios like urban areas should be associated with increased blink rates. However, Recarte 
et al. 2008 also found a decrease in eye blink rate for more visually demanding tasks when 
compared to less visually demanding tasks.  Now another perspective might expect, for example, 
dense urban areas to entail increased visual demands such as from traffic lights, road signs, road 
markings, and buildings, etc. and thus serve to reduce blink rate as the observer prolongs looking 
exposures to take in and process the large amount of visual information.  

 

Reasonably, mental driving effort does not necessarily follow from an increase in only visual 
information, per se, as drivers may not, in fact, be tasked to take in all information but instead 
prioritize along subsets of the most meaningful aspects (e.g., as relevant to their driving task). In 
other words, not all information (whether visual or mental) necessarily presents itself as a demand 
(i.e., of primary driving task relevancy). Although other eye measures of mental workload have 
conventionally been interpreted to show more directional consistency than blink rate (Table 3.2.1), 
the application and interpretation of eye behavior data in driving may warrant reconsideration 
when taking into account such situated aspects (i.e., consideration and comparison of general 
visual information versus those specific to effortful mental driving demands). Of those previously 
introduced and reviewed research that found eye results in counter direction to our own at 
present, eye measurements were often taken under circumstances to purposefully induce extra 
mental workload or account for spare capacity via secondary tasks (e.g., auditory recall, cell phone 
conversations, etc.) and/or to elevate urgency as with safety-critical driving scenarios (e.g., 
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hazards). Thus, a sourcing explanation and research focus for driver mental workload is deemed 
most appropriate at present.  

 

In the recently updated psychological construct model for driving automation by Heikoop et al. 
(2015), mental workload can be attributed (among other interactive cognitive states) to be 
impacted by task demands before in turn impacting attention and eventually situation awareness. 
Logically, task demands for a driver can come from primary driving tasks as well as secondary tasks 
(e.g., driving unrelated). Additionally, primary task demands can both be considered across a full 
spectrum of nominal and off-nominal conditions. Our present research purposes were to 
computationally model and establish reference eye measures (presumably of mental workload) to 
inform assessments of a driver-getting-ready-to-drive under different (mathematically describable) 
driving scene circumstances. As a starting point, and for a probabilistically high proportion of 
impact to driving operations, nominal and non-critical transitions of driving control away from 
automation towards increased human driving responsibility were selected for investigation. In our 
modeling of non-critical levels of driving control workload effort within nominal driver eye 
measures (i.e., without additional secondary tasks or while evaluating hazards), we have found a 
lacking of significance for our workload ratings to be positively associated with pupil sizes, while 
negative and positive relations reached significance for fixation durations and saccade amplitudes, 
respectively. Per the guidelines of Brewer (2003), the obtained correlatively explained variances of  
around < 1%, 6%, and 36% for pupil size, fixation duration, and saccade amplitude might be 
appropriately interpreted as ‘none’, ‘weak’, and  ‘mild/modest’ respectively. The obtained standard 
error estimates of around 71 ms (for fixation durations) and half a degree of gaze angle (for saccade 
amplitude) are expected to be of sufficient resolution to be practically useful as predicted targets to 
represent some component of mental workload within the eye measures of would-be drivers. 

 

4.3 Using driving scenes to predict driver eye measures 

Irrespective of any precisely captured cognitive state, the design of our study was able to 
successfully capture systematic predictions of eyes movements as a function of different 
compositions of driving scenes. Generally, the correlative directions of amount of scene content 
impact on fixation duration (negative) and saccade amplitude (positive) are consistent with 
previous driver eye tracking research that separately controlled for road type visual complexity vs. 
aspects of danger. Chapman and Underwood (1998) found that when nominally safe road types are 
compared along a dimension of rising visual complexity such as with rural, suburban, and urban 
roads, then average fixation durations present a decreasing pattern of 437, 420, and 389 ms 
respectively, while average saccade lengths exhibit an increasing pattern of 1.71, 1.99, and 2.16 
degrees respectively. While an opposing direction is presented by elevating the danger of a driving 
situation (increase in fixation durations, and decrease in saccade lengths), by comparing across 
road types within a collapsed condition of dangerous situations, then the same previous directional 
eye movement patterns persist again (decrease in fixation durations, and increase in saccade 
lengths) as a function of increasing roadway visual complexity. 

 

However, as with the interpretation of our workload ratings in 4.1, not all visual information in the 
driving scene was found to be significantly correlated with the eye measure outputs of fixation 
durations and saccade amplitudes. Ahead of the regression models, only degree of road curvature 
and amount of signage/symbols were significantly correlated with fixation durations (both in a 
negative direction), whereas road curvature, road users, buildings, and amount of signs were 



 
 

154 

significantly correlated with saccade amplitudes (all in a positive direction). Conversely, an 
association in either direction of amount of road surface area and  amount of vegetation did not 
obtain significant correlation with either fixation duration or saccade amplitude. In pretending to 
initially receive driving control and assess a scene ‘in medias res’ for its required driving effort, the 
eyes of our participants appeared to be motivated to move more quickly and further around 
especially as related to increased degree of road curvature and presence of signage/symbols (as 
both items were significantly correlated for both fixation durations and saccade amplitude). Within 
the regression models, the strongest contributing factor predictive of either fixation duration or 
saccade amplitude eye movements was degree of road curvature. Approximately 7%, 46% and 64% 
of the variance explained in pupil size, fixation duration, and saccade amplitude from the driving 
scene component factors represents associations that by the labels of Brewer (2003) would be 
considered ‘weak’, ‘moderate’, and ‘moderately strong’, respectively. Obtained  standard estimates 
of around 54 ms (for prediction error of fixation durations) and around 0.4 degrees (for prediction 
error of  saccade amplitude) are expected to be of sufficient resolution to be practically useful as 
eye movement targets to represent nominal driving scene evaluation processes.  

 

As with the general scene viewing literature reviewed in our introduction, we expect a blend of 
exogenous and endogenous influence on eye movements. However, for our participants and the 
target application area of transitioning control to human drivers, the relevant visual sampling task is 
not an open one of free exploratory viewing or a closed one of searching for a particular 
item/feature but instead a purposeful time limited assessment is assumed to transpire during the 
transitional phase of getting ready to drive. Thus, the initial movements of the eyes before re-
uptake of driving control are most likely driven both by scene stimulus saliency factors (amounts of 
visual information) but can quickly mediate and ignore irrelevant visual complexities (e.g., 
trees/vegetation) and mediate gaze patterns instead by semantic relevancy to specifics of driving 
task demands on a higher cognitive level regarding where/how to look around (reduction of lateral 
and longitudinal conflict risks; adherence to governing rule/regulations; and  negotiation of 
potential interactions with other road users).  

 

4.4 Potential Applications 

As previously introduced, the most relevant application areas for the findings of the present 
investigation, its produced regression model equations, and the proposed adaptive control 
framework depicted in Fig. 3.2.2, are envisioned to be within the transitional phases between 
automated and human driving control as depicted in the middle of Fig. 3.2.1. Ahead of being given 
full control of a vehicle, the eyes of the would-be driver can be compared against stored predicted 
values as per the present situation of the given driving scene components. As the person 
him/herself begins to assess the driving scene and ascertain how much the task demands will 
require of their mental effort, attentional resources, and ultimately situation awareness, an 
automatic driver monitoring system safety layer can provide oversight and correct as needed. If the 
driving scene is one where moderate/high amounts of driving workload effort are expected (e.g., 
containing a sizeable amount of other road users, a large road curvature degree, many signs and 
symbols to read and interpret, etc.) but the driver’s eyes are moving slower and with shorter 
distances than that has been previously computationally predicted (e.g., they are still mentally 
fixated on that last email they were composing), then any number of different adjustments might 
be made in terms of automated warnings and/or vehicular control to modulate the potential risks 
of the transition. One example interface solution might be to begin to highlight relevant missed 
parts of the driving scene until the driver is able to unlock full manual control by gazing at these, 
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but of course there are many alternative design solutions. In any case, a real-time assessment of 
driver fitness to drive within the present scene situation would be desirable and the present study 
represents a starting point method and resulting model for generating such information. Note, on 
account of all the models (A, B, and C) outlined in Fig. 3.2.2, the solution framework need not be 
limited to a strictly behavioristic or cognitive perspective but is amenable to either or a blend of 
both.  

 

4.5 Limitations 

There are important considerations in common across our measures that should be taken into 
account. All obtained effect sizes were taken into account only after an averaging of multiple 
exposures rather than a single video viewing where the effect sizes would be expectedly reduced. 
Additionally (due to difficulties in valid/reliable manual human annotation), a potentially 
confounding effect of ego-vehicle speed in the driving video segments was not yet 
controlled/characterized, and we recommend such an aspect as an interesting mediating or 
independent factor to investigate in future studies. Eye measurements were taken while viewing a 
previously filmed driving video rather than in full fidelity environment where additional fields of 
view might be expected to be present and relevant (e.g., mirrors and peripheral). Eye tracking and 
scene identification will be limited by the cost and availability of technological software and 
hardware components (e.g., computer vision and machine learning)  although these have been 
recently undergoing rapid advancements. Additional model components of other non-intrusive 
physiological measures and cognitive  

construct interactions would be expected to complement the present envisioned adaptive control 
model provided in Fig. 3.2.2. As with all models, more data is expected to improve the presently 
provided regression equations – the current framework could be extended via additional videos of 
greater variety and increased sets of classifiable items and/or greater resolutions of bounding 
boxes.  

  

5. Conclusions 
In conclusion, the present study contributes new regression model equations that are statistically 
significant improvements by including their identified predictor variable factors over simple 
intercept only counter-parts for each of the following relations of interest: for predicting driver 
mental workload from visible driving scene contents, for predicting driver eye movements from 
driver  mental workload, and for predicting driver eye movements directly from driving scene 
contents.  Such models are applicable during transitions of control away from automated driving 
that would involve an initial human viewing of a driving scene for the purpose of evaluating the 
amount of effort that might would be needed for uptake of conventional manual driving control. 
Automated support can be designed in a variety of circumstances in cases of mis-matches between 
eyes of drivers and driving scene contents. For example, eyes measured as exhibiting too low 
saccadic amplitudes for too long in a driving scene of high complexity contents might indicate an 
unawares driver (a.k.a., “looking but not seeing”) thus suggesting a prolonged involvement of an 
automated driving agent if possible, or ultimately safe-stop procedure if available. On the other 
hand, eyes measured as over-expressing a nominal level of driving scene complexity in a more 
simplistic scene might be useful for facilitative training aids for novice or otherwise overwhelmed 
drivers. 
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Appendix A. Developed Driving Research Tools 

 

A.1. Driving Scene Capture 

To create visual driving recording stimulus materials (e.g., such as used in Chapters 3.1 and 3.2) 
there are many options with different associated costs, conveniences, and resultant fields of view. 
Mounts for filming equipment are a first underlying consideration. Some in-car camera mounts are 
affixed to windows and/or dashboards and can come at professional grade costs if needed. Here, a 
fast, simple, and effective design was implemented with a budget of only a few US dollars. Figure 
3.2.A.1. shows my specific arrangement of three compact cameras affixed via standard ¼” machine 
screws to 2” x 4” wooden support bars that were drilled to fit within the existing head reset mount 
interlock system. Thus, forward facing and periphery views were able to be captured by a single 
robust setup. Future studies could extend such an apparatus to hold various cameras at differently 
desired angles for multiple data collection purposes (e.g., in-vehicle occupant monitoring, capture 
of the driving scene from different passenger points of view, etc.). 
 

 
Figure 3.2.A.1. Low-cost driving scene video generation solution implemented to augment online videos collected and 
analyzed in the present chapters 3.1 and 3.2. 
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A.2. Automatic Clipping of Videos 

After driving video recordings are collected, they may need to be parsed in various ways before 
being applied in an experimental research setting. For the studies in Chapter 3.1 and 3.2, it was 
desirable that different people would see not only different videos but across a set of exposures, 
comprehensive coverage of a single video could be enabled. Thus, a MATLAB function (included as 
copy/paste text below) was composed to automatically segment a longer duration video down into 
smaller clips of a specified length. Each video segment was set to start 1 second after the previous 
to ensure overlap within the dataset (i.e., for repeated measures reliability purposes). Note: this 
feature can be changed by adjusting the last number of ‘while loop’ iteration statement (e.g., 3rd to 
last line of code) to whatever the desired output video segment spacing might be (i.e., changing the 
iteration computation from ‘i = i + 1’ to ‘i = i + (input_2)’ would produce contiguous non-
overlapping segments). 
 
 
function vidChopperFun(input_1,input_2) 

%Automatic segments of .mov video as overlapping clips of set size. 

% input_1 = a video file, input_2 = desired segment size (secs)  

% Each video segment starts 1 second after the previous. 

% The first/last second of the full video is not included. 

% Clip size must be at least 2 seconds less than full video length. 

%Initialize limits 

vidIn=VideoReader(input_1); input_2=input_2+1;  

limit=round(vidIn.Duration,0)-(input_2); 

i=1; 

while i<=limit 

    %Read in specific frames [start end] 

    vidFrms=read(vidIn,[(i*vidIn.FrameRate) ((i+input_2)*vidIn.FrameRate)]); 

    %Create a MATLAB movie struct from the video frames 

    for k=1 : input_2*vidIn.FrameRate 

        mov(k).cdata=vidFrms(:,:,:,k); mov(k).colormap=[]; 

    end 

    %Prepare and open the new file 

    vidOut=VideoWriter(num2str(i)); vidOut.FrameRate=vidIn.FrameRate; 

    open(vidOut); 

    %Write each frame to the file 

    for k=1 : input_2*vidIn.FrameRate 

        writeVideo(vidOut,mov(k)); 

    end 

    %Close the file 

    close(vidOut); 

    %Provide progress feedback 

    disp(strcat('completed.',num2str(i),'.',num2str(input_2-1),... 

'-sec.clips.out.of.',num2str(limit),'.possible')); 

    %Iterate to next whole second available from original video 

    i=i+1; 

end %End of while loop 

end %End of function 
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Chap. 3.3) On-road Driver vs. Passenger Eye 
Eccentricity in a Conventional Car for In- vs. Out-
of-the-loop “Drivenger” Monitoring in 
Automated Vehicles 
(under review) T.B.D. 

 
In regards to the overall thesis big picture, this experiment serves to relate eye 
measurements with aspects of the on-road driving scenes/situational demands from 
which they were captured for the purposes of reducing the potential of driver monitor 
systems subjecting drivers/AV supervisors to unnecessary levels of over-alerting. Within 
an on-road study environment, Chap 3.3. investigates a different characterization of eye-
scene relations than was able to be determined in the laboratory environment of Chap 
3.2 (where scene demands could be more precisely measured and safely manipulated). 
Eye movements of drivers are contrasted with eye movements of passengers because 
while both are naturally in the same vehicle in the same driving environment, they are 
artificially divided in their responsibilities, and hence possess and represent different 
imposed attentional task demands (drivers being by definition in the control loop of 
driving, and passengers being by definition out of the control loop of driving). A 
continuous percentage distance eye eccentricity measure (ECC) discriminated at the level 
of momentary events, better at the level of individual participants and with longer 
measurement windows, and best when situated aspects such as vehicle speed and traffic 
count were also taken into account. Importantly, the eye eccentricity of all drivers safely 
rose (including prolonged periods of looking off-road) and fell across the driven trips 
where real-world driving scene task demands also naturally varied between relatively 
higher and lower demands. 

 

Adapted from: 

Cabrall, C.D.D., Petrovych, V., de Winter, J.C.F., & Happee, R. (under review). On-road driver vs. passenger eye 
eccentricity in a conventional car for in- vs. out-of-the-loop “drivenger” monitoring in automated vehicles.  
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Abstract 
Objective: To detect an out-of-the-loop driver state using eye-based criteria.  Background: Many 
automated vehicles (AVs), whether released as SAE Level 2 or developing via on-road testing as 
SAE Level 3/4, require mentally ‘in-the-loop’ human supervisors despite removing continuous 
hands/feet involvement. Driver monitor systems (DMS) can trigger when attention deviates from 
conventional in-control driver levels towards being more passenger-like (i.e., a ‘drivenger’). 
However, too many false alarms can undermine human trust, reliance, and acceptance of 
automatic alerts.  Methods: Drivers and passengers simultaneously wore eye-tracking glasses on 
32 on-road driving trips. An eye eccentricity (ECC) measure was computed as a mean percentage 
distance whenever eyes left a window-calibrated coordinate center gaze point. Impact of window 
size/levels and situated aspects (speed, steering angle, traffic count) on DMS alerting performance 
were assessed via ROC curves.  Results: ECC was significantly higher for passengers. ECC 
discriminated between drivers and passengers both at the level of individual participants (based 
on the participant’s average ECC score) and at the level of events (based on the momentary 
eccentricity score of an off-center looking event). ECC-based driver/passenger detection 
discrimination performance was improved by longer measurement window periods and 
consideration of vehicle speed (for windows shorter than 1 minute) and traffic count with vehicle 
speed (for windows longer than 1 minute).  Conclusion: Our introduced measure differentiates in- 
vs. out-of-control eyes. For DMS, we recommend use of relative moving window averages and 
situated criteria to reduce false alarms.  Application: Passengers in conventional vehicles can help 
refine measures for AV driver vigilance. 
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1. Introduction 

1.1. Background 

Classic driver distraction problems suggest a turn towards driving automation to serve as an 
impactful safety solution. Crash data from 2010 showed that 17 percent (an estimated 899,000 
crashes) of all police-reported crashes in the U.S. involved some type of driver distraction (NHTSA, 
2013a). In a 50 year review of driving safety research, Lee (2008) relates that crashes are often 
caused by drivers failing to look ‘at the right thing at the right time’ and cites evidence suggesting 
that even short glances away increase crash risk (Klauer et al., 2006). Meanwhile, automated 
vehicles (AV) are recently emerging in terms of on-market automotive features (Mays, 2018) as well 
as on-road tests and developments (CA DMV, 2018). AV technology is often motivated by safety 
claims to address human errors (e.g., NHTSA, 2017) such as the above distraction issues. For 
example, NHTSA (2008) (where aberrant driver states and behaviors were found associated in a 
majority of fatal crashes) is frequently cited attributing 90% or more of causal blame towards the 
human rather than the vehicle or the environment. However, vehicles that range between being 
able to do some or almost all of the driving inherently lack a full authority and thus require human 
oversight and back-up. Recent tests from Euro NCAP (2018) concluded that ‘cars, even those with 
advanced driver assistance systems, need a vigilant, attentive driver behind the wheel at all times’. 
Likewise, AAA (2018) expressed a cautionary sentiment towards consumers becoming disengaged 
during partially automated driving. Inadequate safety-driver supervision was implicated in the first 
widely reported pedestrian fatality of an autonomous vehicle (Coppola & Frank, 2018). 

 

1.2. Automation-induced ‘out-of-the-loop’ concerns 

New kinds of inattention issues may arise when humans are required to monitor driving 
automation. Historically, a wide body of human factors research has suggested expectations for 
problems in placing people in this sort of role. Endsley and Jones (2012, Chapter 10) summarize 
hindrances to situation awareness while supervising automation due to issues of complacency, 
passive processing of information, and quality of system feedback. Concerns surrounding limited 
human vigilance in supervising automated processes can be traced back to Mackworth (1948) and 
have been observed to exist for both simple and more complex kinds of monitoring tasks 
(Parasuraman, 1987). Across several studies, the situation awareness of air traffic controllers has 
been commonly observed to suffer when only monitoring rather than actively controlling aircraft 
(Endsley et al., 1997; Endsley & Rodgers, 1998; Metzger & Parasuraman, 2001). Adaptive 
automation concepts have been shown to effectively close feedback loops towards enhanced 
operator engagement (Parasuraman et al., 1996). In practice, a range of adaptively triggered 
functional outcomes can vary between differently designed alert-notification-warnings and/or 
transitions of control.   

 

Recent studies suggest empirical evidence of a human deficiency in monitoring specifically for 
driving automation (Greenlee et al., 2018; Banks et al., 2018) while others contain eye tracking of 
AV drivers (Merat et al., 2014; Louw et al., 2016; Louw & Merat, 2017; Pampel et al., 2018) and so 
represent an apparent interest towards the topic of driver visual vigilance within AVs. By removing 
traditional in-the-loop motor control activities of hands and feet, and especially where remaining 
engagement is characterized as for exceptional rather than nominal circumstances, AVs might 
paradoxically prime drivers towards familiar passive passenger levels of attention akin to ‘along-for-
the-ride’ responsibility even if some may technically require full and active alertness. Thus, a 
collective interest is observed centered around the topic of catching and protecting against 
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‘drivenger’ states (i.e., where traditional levels of driving visual control might stray from active 
conventional drivers towards more passive passengers) as a newly introduced susceptibility 
resultant from what Banks & Stanton (2017) have dubbed the ‘Driver Not Driving’ role in the 
automotive domain (e.g., an analog to the ‘Pilot Not Flying’ role in aviation). 

 

1.3. Driver Monitoring Systems (DMS) for both conventional vehicles and AVs 

Monitoring activity by drivers is inherent across multiple levels of conventional driving as well as 
driving automation: for operational functions of lateral/longitudinal movements, for tactical 
functions of object/event detection, and for strategic functions of navigation (see Merat et al., 
2018, esp. Fig. 2). Thus, meta-monitoring from driver monitoring systems (DMS) is expected to be 
valuable on account of the prevalence of what Merat et al. (2018) refer to as ‘in/on-the-loop’ 
activity. DMS may utilize various behavioral, subjective, and physiological measures (see Dong et al., 
2011, for a review). Behavioral measures such as steering movements are popular in on-market 
systems, but from a perspective of active safety, might be regarded as relatively ‘reactive’ rather 
than ‘proactive’ by their measurement of consequences rather than predictive indices. Subjective 
measures can be difficult to incorporate in real-time DMS and carry risks of inaccurate 
introspection—Schmidt et al. (2009) found a lack of ability in the self-assessment of vigilance after 
continuous monotonous driving. Physiological measures vary along a dimension of equipment 
obtrusiveness such as between electrodes (EEG, ECG, skin conductance), pressure transducers 
(respiratory responses) and cameras (eye, face, and body tracking). Previously, state-of-the-art 
releases of DMS for inattention while supervising driving automation had thus far in the majority 
relied on steering measures indicative of hand placement (e.g., Tesla’s ‘Autopilot’, Volvo’s ‘Pilot 
Assist II’, Audi’s ‘Adaptive Cruise Assist’, BMW’s ‘Active Driving Assistant Plus’, Daimler’s ‘Distronic 
Plus’). Recently, however, gaze/head based camera DMS are now beginning to reach the AV 
functionality market as well (e.g.,  GM’s ‘Driver Attention System’, Subaru’s ‘Driver Focus’, Audi’s 
‘zFAS’) ahead of reports (e.g., Yoshida, 2018) of increased demands and roadmap releases from 
Euro NCAP targeting (presumably camera-based) DMS as a primary safety standard by 2020. 

 

In particular, eye-tracking technology in DMS for inattention in supervising driving automation is 
expected to show promise for many reasons. It maintains face validity benefits where overt 
fixations are generally assumed to indicate attention in the sense of information uptake (e.g., Just & 
Carpenter, 1980; Shojaeizadeh, et al., 2016). In accordance with a model of directional relations 
between cognitive constructs (i.e., Heikoop et al., 2015), a state of attention is expected to occur 
later in a chain of related states and is thus a more preferable measurement construct than earlier 
states that it presumably subsumes (i.e., fatigue and/or workload). Furthermore, driving 
performance decrements from distraction appear more capable of being resolved in comparison to 
recovering from fatigue (Hancock, 2013). Lastly, a wide body of research has previously established: 
a pre-dominant importance of visual information for driving (Sivak, 1996), the expected frequencies 
with which drivers look to specific objects (Gordon, 1966; Serafin, 1994; Green, 2001), scene-
situated variations in gaze such as with route familiarity (Mourant & Rockwell, 1970), curvy 
roadways (Land & Lee, 1994), car following (Tijerina et al., 2004), overtaking (Gray & Regan, 2005), 
intersection negotiation (Romoser, 2013), and general increased cognitive task complexity (Reimer, 
2009), the modeling of driver visual sampling (Senders et al., 1967; Salvucci & Gray, 2004) and 
distraction behavior (Sheridan, 2004; Liang et al., 2012), as well as multiple eye-based DMS 
developmental applications (Dinges et al., 1998; Smith et al., 2000; Ji & Yang, 2001; Ohn-Bar & 
Trivedi, 2016). 
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1.4. Situating eye measures of aberrant driver attention 

A conceptual complication and conflict for the eye-tracking of drivers is suggested from the top-
most fundamental principle from U.S. federal guidelines regarding driver distraction (NHTSA, 
2013b) where it is seen that not all looking around behavior is necessarily bad: ‘the driver’s eyes 
should usually be looking at the road ahead’ (emphasis added). Klauer et al. (2006) seem to agree 
from their own conclusions that ‘short, brief glances away from the forward roadway for the 
purpose of scanning the driving environment are safe and actually decrease near-crash/crash risk’.  
Ultimately, however, the challenge of ambiguity in good vs. bad driver visual behavior is 
downplayed by Klauer et al. (2006) by their proposition of a hard and fast rule they relate as 
‘glances totaling more than 2 seconds for any purpose increase near-crash/crash risk by at least two 
times that of normal, baseline driving’ (emphasis added). Hence, such a 2 second rule (cp. Rockwell, 
1988) has been since adopted in the NHTSA guidelines regarding the amount of time that the 
driver’s eyes are drawn away from the roadway during the performance of a task (NHTSA, 2013b). 

 

An absolute and fixed criterion based only on timing seems inconsistent with a variety of research 
practices and foci around different scene-dependent factors in driving: day/night, straight/curved 
roads, young/old drivers, familiarity/novelty, presence/absence of lead car and/or other traffic, etc. 
that can be observed across a 6 decade span of research regarding how long and where drivers 
look around (Table 3.3.1). Victor et al. (2005) lament that ‘It seems unnecessarily restrictive that 
evidence of a single glance longer than two seconds by a single subject could create a fail situation’. 
Furthermore, visual occlusion techniques have shown both durations longer than 2 seconds ‘away’ 
and many other situation dependencies. Averaged voluntary occlusion periods evidenced in 
Godthelp et al. (1984) ranged from 2.5 to 5.5 seconds where it was concluded that drivers use a 
relative basis of time available (i.e., including aspects of lane position and vehicle velocity) to 
determine their visual information needs rather than some constant amount of time. Furthermore, 
Victor et al. (2005) relate the classic findings of Senders et al. (1967) as ‘drivers dramatically 
increase eyes-off-road-times as speed is reduced. This result indicates that glance duration as a 
measure must be considered in relation to the driving demand imposed by the situation, for example 
speed.’ Extensions from classical control theory (error/uncertainty nullification) perspectives posit 
prominence of mental models to decide on contextualized probabilities/expectancies and effort 
(Sheridan, 2004) to serve information bandwidth models such as theorized from the likes of 
Senders et al. (1967), Wierwille (1993), Mourant & Ge (1997) and Courage et al.(2000) to drive 
periodic visual sampling in automobile control. Kircher & Ahlstrom (2017) introduced a theory of 
minimum required attention (MiRA) that accounts for adaptive human visual behavior where ‘a 
driver is considered attentive when sampling sufficient information to meet the demands of the 
system’. 

 

Table 3.3.1. Aspects of measuring where and for how long drivers look around while driving to inform definitions of 
nominal and off-nominal looking. *Sub-set concerning daytime straight road driving. 

Year 
First Author, 
Last Name 

Looking Time  
Definition Aspects 

Looking Distance  
Definition Aspects 

 

1967 

 

Senders 

 

300 second window periods: 
self-chosen occlusion intervals 

 

Discrete; Binary; 

Visual occlusion device in front of the eyes. Open or 
shut. 

    

1975* Rackoff 30 second window periods Discrete; AOI set; (6) 
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Year 
First Author, 
Last Name 

Looking Time  
Definition Aspects 

Looking Distance  
Definition Aspects 

(6 exterior, 0 interior, 0 other); Ahead = 3 by 6 
degrees around the focus of expansion; Manual 

annotation 

    

1977* Shinar Unspecified window period:  
two straight segments among 22 

curves across 34 km 

Discrete; AOI set; (4) 

(2 exterior, 2 interior, 0 other), Ahead = 1.6 degrees 
to the right and 0.7 degrees above the focus of 

expansion; 

Manual annotation 

    

1984 Godthelp 450 second window periods: 

self-chosen occlusion intervals 

Discrete; Binary; 

Visual occlusion device in front of the eyes. Open or 
shut. 

    

1989* Olson 30 second window periods:  
based on total run distance of 1 mile 
long for 120 seconds and reported 
0.25 mile of the straight segment 

Discrete; AOI set; (8) 

(6 exterior, 1 interior, 1 other), Ahead = 3 different 
possible AOIs:  

center of road, lead car, far field; 

Manual annotation 

    

1994* Serafin 50 second window periods: 

based on posted speed limit of 50 
mph, and distance of about 0.7 mile of 

the straight segment 

Discrete; AOI set; (15) 
(9 exterior; 4 interior; 2 other), Ahead = 2 different 

possible AOIs:  
right lane, far field; 

Software annotation 

    

2000 Recarte 30 second window periods Continuous; 

Standard deviation of gaze position (angle) relative 
to focus of expansion; 

Software annotation 

    

2005 Victor 30 second window periods 

Percentage of gaze samples in a 
defined road center area 

 

 

 

Discrete; Binary; AOI set; (2) 

(0 exterior; 0 interior; 2 other), Ahead = a circle of 
16 degrees surrounding a modal (most frequent) 

gaze angle position; 

Software annotation 

    

2006 Zhang 60 second window periods Discrete; AOI set; (4) 
(1 exterior; 3 interior; 1 other), Ahead = ; 

both vertical and horizontal gaze angles were 
between+12 and -12 degrees at the focus of 

expansion on the horizon line;  
Software annotation 

    

2007 Donmez 3 second window period: 
degree of distraction as a function of 

current off-road glance duration 

Discrete; Binary; AOI set; (2) 
(1 exterior; 1 interior; 0 other), Ahead = ; 

‘at the road’;  
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Year 
First Author, 
Last Name 

Looking Time  
Definition Aspects 

Looking Distance  
Definition Aspects 

compared to total off-road glance 
duration during the last 3 seconds 

Software annotation 

    

2008 Reyes 60 second window periods Continuous; 

Standard deviation of gaze position (angle) relative 
to focus of expansion; 

Software annotation 

 

Discrete; Binary; AOI set; (2) 

(2 exterior; 0 interior; 0 other) 

Ahead = less than 5 degrees either direction of 
mode horizontal fixation 

Right side = greater than or equal to 5 degrees to 
the right of the mode horizontal fixation; 

Software annotation 

    

2008 Zhang Variable up to 30 second window 
period: The time window was re-

configurable within the range of 1-30 
secs, i.e., implemented a 4.3 second 

window 

 

Discrete; Binary; AOI set; (2) 

(1 exterior; 1 interior; 0 other) 

Ahead = +/-24 degree horizontal,  
+/- 24 degree vertical,  

rectangular forward area;  
Software annotation 

    

2009 Kircher 2 second window period: 
2 sec time buffer starts to deplete 

upon moving gaze away from Ahead; 
0.1 sec latency in returning gaze 

Ahead before refilling the time buffer; 
1 sec latency in moving gaze away 

from Ahead but to speedometer or a 
mirror 

Discrete; AOI set; (6) 

(2 exterior; 4 interior; 0 other) 

Ahead = +/- 45 degrees horizontal, 
+45/-22.5 degrees vertical; 

Software annotation 

    

2010 Weller 1 second window periods based from 
subsections of 25 meters (i.e., 90 

km/h) 

Continuous; 

Standard deviation of gaze position 

(pixel distances); 

Software annotation 

    

2014 Merat 10 second window period: 
If driver looked away from ‘road 

centre’ for 10 secs or more. 

 

 

 

 

5 and 60 second window periods: 
PRC data were plotted at 5 sec 

intervals, for the first 60 secs after 
disengagement of driving controllers. 

Discrete; Binary; AOI set; (2) 

(0 exterior; 0 interior; 2 other),  
Ahead = ellipse with a 10 degree major and 6 degree 

minor radius; 
Software annotation 

 

Discrete; Binary; AOI set; (2) 

(0 exterior; 0 interior; 2 other), Percentage of gaze 
samples in a defined road center area, Ahead = a 

circle of 6 degrees surrounding a modal (most 
frequent) gaze angle position; 

Software annotation 
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Year 
First Author, 
Last Name 

Looking Time  
Definition Aspects 

Looking Distance  
Definition Aspects 

    

2015 Vicente 0.033 second (30hz) instantaneous as 
well as 10 second window evaluation 

period: 

If the intersection point lies outside of 
the defined on-the-road area, an 

alarm is triggered; as well as a 
percentage of frames correctly 

predicted in terms of eyes on/off-the-
road during ten second periods 

Discrete; Binary; AOI set; (2) 

(1 exterior; 1 interior; 0 other),  
Ahead = windshield plane; 

Software annotation 

 

    

2016 Louw 1 second time window periods across 
3 consecutive seconds; 

Percentage of gaze samples in a 
defined road center area 

 

Discrete; AOI set; (5) 

(5 exterior; 0 interior; 0 other),  
Ahead = a circle of 6 degrees surrounding a modal 

(most frequent) gaze angle position; 
Software annotation 

    

2017 Louw Varying time window periods: 

100 seconds, 30 seconds,  
8 seconds, 3 seconds 

Continuous; 

Standard deviation of horizontal and vertical gaze 
positions (angle); 

Software annotation 

    

2018 Pampel 5 and 60 second window periods: by 
splitting the one-minute period into 

5.0-second time bins; From the 
previous 10 seconds to the future 10 

seconds 

 

Percentage of gaze samples in a 
defined road center area 

 

 

Discrete; AOI set; (2) 

(1 exterior; 1 interior; 0 other),  
Ahead = Within 20 degrees horizontal and 15 

degrees vertical around the mean fixation point; 
Software annotation 

 

Continuous; 

Standard deviation of horizontal gaze positions 
(angle); 

Software annotation 

    

 

Specific nuances of measurement and application still remain an open point of research for DMS 
algorithms and systems integration alerting criteria. While Klauer et al. (2006) used manual 
reductionist methods (i.e., human annotators), a real-time DMS would require an a-priori 
computerized definition of what constitutes ‘looking ahead’ vs. ‘glancing away’ in terms of 
boundary definitions in both time and space. As seen in Table 3.3.1, components of time and 
distance in defining driver distraction present relatively more variability than definitive consensus in 
how to directly proceed with functional criteria for building a real-time DMS system. Timing 
measurement aspects vary in window size and number (i.e., sub-windows) while distance 
measurement aspects vary by nature of being continuous or discrete (and if discrete, then in the 
number of defined boundaries). In general, a popular approach appears to typically discretize pre-
defined areas of interest – AOIs (e.g., percentage road center – PRC, AttendD, etc.). 
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1.5. A new distance-based measure of eye eccentricity (ECC) 

In principle, the previous measures are distance agnostic and bound to pre-defined central focus 
area boundaries. However, previous research suggests that eyes of drivers might frequently change 
their points of reference—with different sized cars and turn radiuses (Olson, 1964); in the presence 
of a lead vehicle (Mourant et al., 1969), and situational demands of signage, other vehicles, and 
road edge markings (Mourant & Rockwell, 1970); while approaching and transiting curves (Laya, 
1992; Land & Lee, 1994), with varying levels of experience across rural, suburban, and expressway 
roads (Crundall & Underwood, 1998); and between near and (differing) far points (Salvucci & Gray, 
2004); as well as to scan a number of off-center driving-related areas/objects (e.g., an assumption 
of Kircher and Ahlstrom, 2009). While AOI-based measures can provide foundational detections of 
overt distraction (e.g., looking too long at a secondary task on an in-vehicle display or mobile 
device), they are challenged to account for more covert inattention issues such as ‘looked-but-
failed-to-see’ (Herslund & Jorgensen, 2003) errors where driver eyes can fall within the normative 
AOI bounds(and/or for the normative durations) but with a disconnect to perceptual/cognitive 
processes.     

 

Eye movement measures can also be defined in ways that do not require labeled AOI boundaries 
which can be complicated by the diversity of vehicle interiors, driving scene exteriors, and 
growing/shrinking AOIs from near/far 3D movements. Thus, AOI-based driver eye behavior 
measures stand to be complemented and extended with applications that incorporate continuous 
gaze location/extent (e.g., standard deviation of gaze - SDG) as another dimension of eye-
movement resolution. For example, Louw & Merat (2017) used a remote eye tracker mounted on 
the dashboard of a driving simulator and found an increase in horizontal gaze dispersion via SDG 
measures for conditions of automated vs. manual driving. Like SDG, an eye eccentricity – ECC 
measure (i.e., from a head-mounted eye tracker without a 3D world model) might be defined and 
used to capture continuous distances of eye movements beyond discrete bounded thresholds. 
Unlike conventional static AOI methods, ECC can make use of a central tendency coordinate point 
(average gaze location over a measurement/period of interest) from which to relatively compute a 
dynamically calibrated off-center distance. In sum, a new ECC measure could extend previous eye 
measures by relatively moving around with and as the head and eyes move around, with less 
restrictive absolute definitions. Thus, ECC could be a kind of DMS measure that can differentiate ‘in-
the-loop’ eyes that are up, on the road, and moving around versus ‘out-of-the-loop’ eyes that are 
also up, on the road, and moving around but in different manner (i.e., different distances). 

 

 

1.6. Present multi-phase study motivations and aims 

 

1.6.1 Phase 1: Replication of driver-passenger eye differences and validation of ECC 

A multi-algorithmic study of Liang et al. (2012), hypothesized to obtain an eye-distance-based effect 
in crash-risk prediction performance (from a naturalistic dataset), but ultimately attributed a lack of 
obtained differences to their estimated location data from manually coded video data, while 
suggesting further investigations with more precise measures of visual angle derived from eye-
tracking data. Using electrooculogram (EOG) techniques (i.e., electrical potential measurements 
from near-eye electrodes), Takeda et al. (2016) found a difference between in-the-loop drivers and 
out-of-the-loop passengers in terms of the number of small/large sized saccadic eye movements 
(i.e., some distance based differences). 
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In Phase 1, we aimed to define and validate a new inattention construct via on-road measurements 
to differentiate ‘in-the-loop’ eye movements versus ‘out-of-the-loop’ eye movements. Analyses 
from the drivers versus passengers study of Takeda et al. (2016) were replicated to ensure similar 
attentional differences existed between our own set of drivers and passengers before applying our 
new measure of off-center eye eccentricity (ECC). A preliminary analysis of the present data is 
provided by Cabrall et al. (2017). 

 

1.6.1 Phase 2: Hypothetical application of DMS using ECC 

As an alerting agent, a DMS bears a burden beyond its objective detection performance towards 
establishing credibility with the driver. Trust is a major component for effective human-automation 
interaction (e.g., Lee & See, 2004) and its constituent components of reliance and compliance have 
been identified by Parasuraman and Wickens (2008) to be determined by the thresholds that 
designers use to balance automation misses and false alarms. The negative subjective experience of 
over-alerting has been commonly referred to as a ‘cry-wolf’ effect that diminishes trust and 
detracts from warning compliance. Automation mistakes on tasks deemed easy for humans are 
particularly detrimental to trust development (Madhaven et al., 2006). Thus, counterproductive 
effects could be expected if a driver is automatically assessed as being inattentive when they 
believe otherwise (e.g., while looking away from the road while at a red light). Such considerations 
suggest a purely human-centric DMS (i.e., that responds only to physiological/behavioral measures 
of a person) could be less useful than a situated DMS (i.e., that also accounts for aspects of the 
situation the person presently resides within).  

 

In Phase 2, the aim was to explore implementation criteria of a hypothetical DMS to reduce 
perceived false alarms of that DMS. For the second aim, effects of using ECC under different 
threshold levels of eccentric events and aggregation levels (at the level of individual events vs. at 
the level of individual drivers) and of accounting for common (automated) vehicle telemetry items 
(i.e., vehicle speed, steering angle, presence of lead vehicles) were all examined, with a focus on 
the trade-off between misses and false alarms. 

 

2. Methods 

2.1 Participants  

The experiment was completed in November 2016 by 16 pairs of participants (78% male, 22% 
female, mean age = 27.3, SD age = 2.4) recruited from the Delft University of Technology. Written 
informed consent was obtained under the approval of a Human Research Ethics Committee (On 
Road In Vehicle Eye Tracking: Drivers and Passengers, 26 September 2016). Each participant had 
normal or corrected-to-normal vision and reported having obtained their initial driver’s license for 
at least more than one year prior to the experiment. Participant pairs were formed around a quasi-
experimental variable of familiarity, such that half of the pairs knew one another well, whereas with 
the other half, participants were not known to one another in advance. analyses pertaining to this 
aspect, however, remain to be pursued in future follow-on studies.  

 

2.2 Driving route and procedures 

The driving route began from Leeghwaterstraat 21 and proceeded across campus via Jaffalaan and 
Mekelweg/Christiaan Huygensweg, then continued southbound on Schoemakerstraat, westward 
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along Kruithuisweg, joined the A4 highway northbound until exit 12 for route N211, at which point 
the route crossed over the highway and returned along the same roads in reverse direction (Figure 
3.3.1). The route was selected to contain a wide variety of driving situations (e.g., road geometry, 
traffic, signage). The full route was completed as one trip of about 20.0 km and around 30 minutes 
on average, and repeated per pair with a switching of driver/passenger role, for a total of 32 trips. 

 

 
Figure 3.3.1. The route covered mixed urban and highway roads. Representative screenshots are provided for various 
route segments at number-labeled points on the map. 

 

Drivers were given no instructions other than to drive as they normally would (i.e., in a safe 
manner). Passengers also began without any instructions to deviate from their normal behaviors, 
but at the turnaround point they were given a piece of paper to covertly assign an experimental 
manipulation: ‘Please imagine that you are doing the driving. So try to pay attention and behave 
with your eyes as if you are currently driving. You do not need to move your hands/feet like a driver’. 
In lieu of naturalistic observation motivations for any role, no restrictions were expressed per 
conversation, use of electronic devices, etc.   
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2.3 Apparatus and measurements 

Both passenger and driver participants wore UV shielded eye-tracking glasses from SensoMotoric 
Instruments (SMI) coupled by a single USB cable each to their own dedicated Samsung Galaxy 
smartphone running only the eye-tracking software and were held by ride-along experimenters in 
the backseats (Figure 3.3.2). The car driven was a 2014 Toyota Prius Hybrid passenger vehicle with 
automatic transmission without use of any cruise control and was equipped with driving research 
telemetry for vehicle state and control input data.  

 

 
Figure 3.3.2. Passenger and driver wearing minimally invasive eye-tracking glasses. 

 

The glasses recorded eye measurement samples (60 Hz), with gaze data indexed by a 960 x 780-
pixel coordinate grid in respects of a viewing plane of the forward facing camera above the nose 
bridge of the glasses. The eye-tracking software used virtual geometrical dimensions of the viewing 
plane to automatically compute and log its gaze coordinates as if on top of such a screen: 960 mm 
(wide) x 780 mm (tall) with a depth location of 145 mm (in-front). Missing data (e.g., due to blinks) 
or data points out of the screen bounds were removed and subsequently linearly interpolated.  

 

Driver and passenger ECC scores were computed based on the distance to a calibrated center 
region:  

 

(1) The median x and y gaze coordinates of a measurement/analysis period were subtracted 
from the original x and y gaze coordinates, to obtain a calibrated value of the gaze 
coordinates around (0,0).  

 

(2) The Euclidean distance was computed from each gaze sample location to the central   
coordinate point (0,0), and divided by 600 (and multiplied by 100) to result in a percentage 
of distance from the center. 

 

(3) The eccentricity score for a particular period of interest is the mean of the distance scores in 
a selected period of interest. 
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2.4 Analyses 

For the first phase analyses, three periods of interest were applied that varied in duration and 
expected driving situational demands. 

  

(1a)/(1b) “Post/Pre Task”, each about 100 seconds. The first period revolved around a transition 
from a naturalistic passenger to an (enacted) driver role as the portion of time for the few 
minutes immediately before compared against the time period immediately after the 
passenger task instruction presentation (with 20 seconds before/after the task start 
removed to exclude reading/processing of task instructions). For the passengers, ‘post-task’ 
data are regarded as ‘pseudo drivers’ attempting to represent visual control whereas the 
‘pre-task’ data of the passengers are regarded still as natural (untasked) freely varying 
passenger eye data.   

 

(2) “Entering A4”, about 45 seconds. The second period involved entering and merging onto a 
highway. The first highway on-ramp and merging period where it was assumed a driver 
would be likely to prioritize and evidence high levels of dedicated driving control visual 
behavior. Both driver and passenger eye data are included.  

 

(3) “Gate to Task”, about 950 seconds. The third period was an extended period to capture the 
entire first half of the drive, from the start of the trip (leaving the parking lot gate) up until 
the start of the passenger task manipulation.   

  

Because eye-tracking data are susceptible to missing values which might affect data validity, we 
removed participant pairs if more than 20% of data were missing or out of the forward-facing 
screen bounds for either driver or passenger.  

 

3. Results 
Equipment errors resulted in complete eye tracking data loss from 2 drivers and 2 passengers. 
Furthermore, for 2 drivers and 2 passengers, more than 20% of the gaze data were missing. Thus, 
eye-tracking data were available for 28 of 32 drivers, and for 28 of 32 passengers. 

 

A distribution of the eccentricity values showed clear differences between drivers and passengers 
(Figure 3.3.3). Drivers were more likely to look ahead (< 13%), while passengers were more likely to 
look away from their central point (> 13%). 
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Figure 3.3.3. Distribution of eccentricity values at the sample level (60 Hz) for the “gate to task” period (about 950 s of 
driving per trip). The distribution was calculated for each driver and passenger separately, and subsequently averaged 
across the drivers/passengers. The eccentricity values were divided into 100 one-percent bins. The two density curves 
have been normalized so that the sum of the 100 data points equals 1.  

 

Mean eccentricity scores were computed for drivers and passengers (Figure 3.3.4). Independent-
samples t-tests showed that passengers had statistically higher eccentricity scores as compared to 
drivers for three of the four conditions shown in Figure 3.3.4, t(54) = 4.59, p < 0.001, t(54) = 3.55, p 
< 0.001, t(54) = 4.78, p < 0.001, t(54) = 1.59, p = 0.118, respectively. Thus, passengers exhibited 
significantly higher eccentricity scores than drivers, except in the post-task period where 
passengers had the task to look as if they were a driver. 

 

 
Figure 3.3.4. Average eccentricity scores for drivers and passengers. Error bars run from the mean +/- 1 standard 
deviation. The means and standard deviations were calculated for 28 drivers and 28 passengers. 
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The gray line in Figure 3.3.5 is the ROC curve for the eccentricity scores at the level of the drivers (n 
= 28) and passengers (n = 28) for the gate to task period. It can be seen that reasonable 
discrimination is achieved, e.g., for a hit rate of 82% (i.e. detecting that the passenger is indeed a 
passenger), there is a false alarm rate of 36% (i.e., falsely detecting that the driver is a passenger). 
Figure 3.3.5 also shows the ROC curve at the sample level in green. More specifically, we calculated 
the true positive rate versus false positive rate for all individual eccentricity samples of the 
experiment (n = 1,611,825 for drivers, n = 1,611,383 for passengers). It can be seen that 
discrimination between driver and passenger at the sample level is less strong than at the 
participant level. This means that there is poor discrimination between drivers and passengers 
based on the eccentricity of a single sampling instance. Figure 3.3.5 also shows that the 
discrimination between drivers and passenger becomes better when applying a moving average on 
the eccentricity scores. That is, when aggregating eccentricity data for a minute or five minutes, it 
becomes reasonably possible to distinguish drivers from passengers. 

 
Figure 3.3.5. Receiver operating characteristic (ROC) curves for a hypothetical driver monitoring system which issues a 
warning when eccentricity exceeds a threshold level. The ROC curve is provided at the level of measurement samples and 
at the level of trips. The figure is based on the gate to task period.  
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One explanation for the poor discrimination for individual samples is illustrated using Figures 3.3.6–
9. In these figures, evidence is suggested that shows that the eccentricity level was situation-
dependent. For a first example, when taking a turn (recognizable by low speed and a high steering 
angle) with elevated potential for interactions with other traffic, eccentricity scores of drivers and 
passengers were high (i.e., first inset of each Figures 3.3.6-9). As a second example, in a situation 
when driving scene demands were more predictable/stable (recognizable by high speed, low 
steering angle, and low traffic count), eccentricity scores of drivers also rose several times to 
overlap with passenger levels (i.e., second inset of each Figures 3.3.6-9). These findings suggest that 
a DMS should be context-dependent, by taking into account the viewing demands of the situation. 

 

A possible solution for improving the accuracy of the classifier is to discard (e.g., refrain from 
potentially over-alerting during) situations where off-center looking might be expected to increase 
as natural/safe adaptation to relative extremities of high/low (visual) driving scene task demands. 
Figure 3.3.10 illustrates that classification becomes better when excluding moments where the 
vehicle was driving slower than 20 km/h, when the traffic count was less than or equal to 1, and 
best overall when accounting for both sources of information. In particular, for moving window 
average sizes of around 1 minute or less, speed constraints had the largest benefit to discrimination 
performance while for larger window sizes, traffic count constraints provided additional benefits in 
conjunction with speed constraints. 

 

 
Figure 3.3.6. Vehicle speed as a function of travelled distance for 30 trips (2 trips were excluded because the driver took 
a wrong turn and so the total travelled distance different from the others).The black lines represent the speed of the 30 
individual trips, whereas the red line represents the average of the 30 trips. The figure is based on the gate to task 
period.  
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Figure 3.3.7. Steering wheel angle (left = positive, right = negative) as a function of travelled distance for 30 trips (2 trips 
were excluded because the driver took a wrong turn and so the total travelled distance different from the others).The 
black lines represent the steering angles of the 30 individual trips, whereas the red line represents the average of the 30 
trips. The figure is based on the gate to task period.  

 

 

 
Figure 3.3.8. Approximated traffic count as a function as a function of travelled distance for 30 trips (2 trips were 
excluded because the driver took a wrong turn and so the total travelled distance differed from the others). The black 
lines represent the approximated traffic count of the 30 individual trips, whereas the red line represents the average of 
the 30 trips. The figure is based on the gate to task period. 
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Figure 3.3.9. Mean eccentricity scores as a function of travelled distance of 27 drivers and 26 passengers (2 trips were 
excluded because the driver took a wrong turn and so the total travelled distance different from the others). The figure is 
based on the gate to task period. 

 

 

 
Figure 3.3.10. Area under the ROC curve (%) for different moving average time windows of the eccentricity values for all 
samples (corresponding to the ROC curves in Figure 3.3.5) and for all samples for which the vehicle drove faster than 20 
km/h and 1 or more vehicles were determined to be present (from automatic visual detection) in the driving scene. 

 

4. Discussion 
In Phase 1, our aim was similar to Takeda et al. (2016) of detecting possible ‘drivenger’ like lapses 
attention of supervisors of future AVs via eye measurement differences between in-control drivers 
and not-in-control passengers in a conventional vehicle. We replicated results of Takeda et al. 
(2016) in finding passengers (as compared to drivers) to exhibit a higher variance of gaze as 
significantly higher levels of ECC were found in passengers compared to drivers. With more precise 
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measurement of visual orientation (e.g., increased resolution of automatic continuous coordinates 
rather than manual annotations of inside/outside of AOIs) we obtained an effect of distance 
consistent with the (unattained) hypothesis from Liang et al. 2012, i.e., greater visual distances 
associated with less driving control. On account of safety (and face validity) concerns we did not 
attempt to measure the eyes of drivers while they were tasked towards inattention out on the 
open roads (i.e. overt distraction). Instead we took semi-naturalistic observations of both drivers 
and passengers, and included an experimental tasking period for passengers to act with their eyes 
as if they were driving for baseline directional verification. Without the availability or safety 
implication issues of using actual AVs to investigate concerns for lapses in supervisory driver 
attention, drivers and passengers in conventional vehicles are appealing comparison cases of 
sometimes near but definitively “out-of-the-loop” visual control (i.e., covert inattention) that can 
evidently produce significantly different eye movement behavior results. Regarding ECC as a 
distance-based off-center eye measure, the eyes of drivers exhibited greater focus around a central 
area while the eyes of passengers were more liberal in exploration.  

 

For Phase 2, better signal detection discrimination performance (i.e., increased rates of true 
positives with decreased rates of false positives), as previously suggested as critical for effective 
human automation interaction (Lee & See, 2004; Parasuraman & Wickens, 2008), was obtained via 
accounting for situated driving aspects for a hypothetical DMS. By such an approach, lower 
amounts of driving-eye data (i.e., smaller windows down to sample level) were observably more 
susceptible (decreased discriminability between in- vs. out-of-the-loop) to particular driving 
events/scenarios. This can be seen in our data to occur for both exceedingly high/low driving task 
demands. On the one hand, increases in driver ECC were seen during an “urban” like driving 
scenario involving low-speed high-degree turns amidst high amounts of potential traffic conflicts. 
Here, looking around more (at greater off-center distances) might be considered a beneficial 
adaptive consequence of bandwidth-driven sampling to obtain/maintain a situation awareness 
across aspects that are (potentially) rapidly changing/fleeting (i.e., information decay). On the other 
hand, some increases in driver ECC towards levels of out-of-the-loop passengers were seen during a 
more “rural” like driving segment involving high-speed flat steering angles and low/no amount of 
other vehicles. Here, looking around more (at greater off-center distances) might also be 
considered a beneficial (rather than mal-adaptive) consequence. Increased road/infrastructure 
affordances can be considered to effectively protect/contribute increased driving 
control/predictability (i.e., this portion of our route involved an elongated relatively straight 
dedicated/segregated expressway off-ramp) and thus the driver could prioritize his/her visual 
activity/energy to seek additional relevant off-center information (e.g., from signage) or 
appropriately schedule involvement in a secondary task from left-over/untapped resources (e.g., 
risk homeostasis). In either case (i.e., our first and second situated insets in Figures 3.3.6-9), such 
increases in driver ECC could be considered safe/innocuous ipso facto as we completed all 32 trips 
without any perceptible increases in risk of corrective actions, near-crashes, and/or crashes (i.e., 
definitional components of distraction according to subject matter experts such as described in 
Hedlund et al., 2006). 

 

If alerts are defined in too absolute rather than relative terms, they run the risk of being overly 
triggered (i.e., out of context). Too many triggers without actual (or even perceived) necessity for 
such alerting contributes to false alarms in a ‘cry wolf effect’ and may diminish the effectiveness of 
a DMS through lowered end-user trust and acceptance.  In developing evaluation protocols of 
emerging DMS technologies, NHTSA (2013b) concluded that ‘perhaps the most important outcome 
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of this analysis is an understanding that distraction and its detection cannot be considered 
independent of the driving environment’ while recognizing dependencies between false alarms and 
acceptance, ‘false alarms might either disrupt drivers’ attention to the road or undermine their 
acceptance of the mitigation system’.  

 

4.1 Limitations 

Our results regarding eccentricity should be taken with several considerations. In our present 
analyses, the “pre-task” passenger eye data may have included reading the instructions for some 
participants as only a gross/generalized cut-off of 20s was applied rather than individually derived. 
Furthermore, if a driver more fully concentrated on a secondary task to the point of becoming a 
primary task, it might be expected that eccentricity would decrease rather than increase. Without 
world knowledge, the eccentricity measure is agnostic as to what specifically is being concentrated 
on, but instead reflects more only the presence/absence of visual concentration/control. Thus our 
ECC measure is proposed as only an additional tool to complement AOI-based measures that might 
supply detections of such overt distraction (e.g., head down and/or eyes directed towards the 
interior of the vehicle, non-driving related display surfaces, etc.). Future studies should examine the 
attentional impact of our present situated measures in greater fidelity/detail. For example, vehicle 
count data was presently determined only by out-of-the-box computer vision emulations provided 
in MATLAB R2017b Automated Driving System Toolbox via their annotation tool ‘Ground Truth 
Labeler’ strictly by pre-existing automatic processes (ACF Vehicle Detector) without any manual 
adjustment or deep-learning training modifications. In other words, our vehicle count data is not 
reflective of state-of-the-art object detection, automated driving scene semantic segmentation, 
and/or direct-time-of-flight detection (e.g., sonar, radar, lidar, etc.) that might be better situational 
measurement candidates in future studies. Thus, presently such data should be interpreted for 
relative precision (repeatability) utility rather than absolute accuracy (validity).Additionally, further 
contextual aspects of the driving scene for example such as the presence of vulnerable road users 
(VRU) or real life driving pressures (e.g., driving in haste and/or while in a compromised affectual 
state) for a more holistic picture of adaptive visual behavior and driving task demands. Lastly, it 
should be noted that the coordinate frame moved as the participant moved his /her head and it 
remains for us later outside the scope of the present study to further (re)analyze our data in a 
rectified/resolved 3D world model as needed. 

 

5. Application 
A substantial need for effective DMS is suggested by NHTSA’s (2008) crash causation findings 
primarily consisting of inadequate surveillance, distraction, and inattention. Recent AV 
developments bring into focus the vigilance dilemmas of drivers turned into supervisors of 
imperfect self-driving vehicles. In the wake of the first widely reported Tesla Autopilot fatality of 
Joshua Brown (May 17, 2016 in Florida), the U.S. National Transportation Safety Board (NTSB) 
issued new safety recommendations on September 12, 2017 for manufacturers to ‘develop 
applications to more effectively sense the driver’s level of engagement and alert the driver when 
engagement is lacking while automated vehicle control systems are in use’. Meanwhile, accidents 
with human supervision of so-called ‘self-driving’ vehicles have continued to occur. On January 30, 
2018 in California, a modified Hyundai Genesis by Phantom AI was driving in a supervised autonomy 
mode and crashed into a lead vehicle in spite of on-board test and press personnel. On March 18, 
2018 in California, Elaine Herzberg was killed while walking across the road by an Uber Volvo XC90 
while it was driving in an autonomous mode and being supervised by an on-board safety driver. 
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Many real-time eye tracking DMS algorithms have been developed that can determine if eyes are 
on/off the road and how frequently the eyes fall within a specified ahead road center region or not. 
But how ‘more effective’ (per the recommendations of NTSB in 2017) both previously developed 
and released on-road systems may become are often complicated by phenomena such as ‘looked-
but-failed-to-see’ phenomenon (e.g., in Table 2 of Najm et al., 1994; Hills, 1980; Herslund & 
Jorgensen, 2003). A Motor Trend review by Hong (2018) characterizes this complication with the 
camera-based attention monitor of GM’s automated driving Super Cruise system as: ‘If your eyes 
are looking forward, but you aren’t paying attention …, this can really catch you out’. The present 
analyses have shown how an ECC eye measure can detect visual control aberrance while eyes are 
still looking up through the windshield. In other words, ‘in-the-loop’ vs. ‘out-of-the-loop’ eyes of 
drivers and/or driving automation supervisors can be differentiated from off-center lingering even 
when the center is not necessarily measured as the road center. Furthermore, reductions in 
potentially perceived false alarms (e.g.,. where a DMS might trigger an alert against someone who 
does not feel distracted as they let their eyes wander during a red light)  should help advance the 
state of the art in DMS towards  greater levels of future acceptance and effectiveness. 
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Key points 
 We have proposed a measure of eye eccentricity (ECC) that uses median focus areas to 

calculate off-center looking behavior as a continuous distance-based measure, and it is 
been shown capable of differentiating eye movements that are “in-the-loop” of driving vs. 
those that are not. 

 

 ECC discrimination between driver and passenger eyes was enhanced by increased 
amounts of data: breadth-wise through longer moving average windows, as well as depth-
wise from increased knowledge and consideration of contextual constraints (i.e., vehicle 
speed, steering angle, presence of other vehicles).  
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Chap. 4.1) Adaptive automation: Automatically 
(dis)engaging automation during visually 
distracted driving 
(2018) PeerJ Computer Science 
 

 

 
In regards to the overall thesis big picture, this driving simulator experiment serves to 
provide initial validations of integrating a real-time eye-based driver monitoring system 
with driving automation system functionality. As a result, lateral performance was 
observably improved in a visual distraction induced backup driving automation system 
compared to conventional/manual controlled driving with the same visual distractions. 
Eye tracking was used here on an applications basis but not investigated as a primary 
research factor of interest. Instead, the adaptive directionality of automatic 
consequential vehicular control transfer was varied to either end up with the human or 
the automation upon detection of visual distraction. Participants performed better with 
(less lateral error) and better appreciated (lower workload and higher acceptance ratings) 
the backup concept. Chap. 4.2 extended the successful backup driving automation of 
Chap. 4.1 with enhanced simulation visual/behavioral fidelity as well as an investigation of 
further design aspects of the DMS integration to address potential human interaction 

drawbacks of over-alerting and over-reliance.  

 

 

 

Adapted from: 

Cabrall, C.D.D.*, Janssen, N.M.*, & de Winter, J.C.F. (2018). Adaptive automation: Automatically (dis)engaging 
automation during visually distracted driving. PeerJ Computer Science, 4:e166, https://doi.org/10.7717/peerj-cs.166  
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Abstract 
Background: Automated driving is often proposed as a solution to human errors. However, fully 
automated driving has not yet reached the point where it can be implemented in real traffic. 
This study focused on adaptively allocating steering control either to the driver or to an 
automated pilot based on momentary driver distraction measured from an eye tracker.  
Methods: Participants (N = 31) steered a simulated vehicle with a fixed speed, and at specific 
moments were required to perform a visual secondary task (i.e., changing a CD). Three 
conditions were tested: (1) Manual driving (Manual), in which participants steered themselves. 
(2) An automated backup (Backup) condition, consisting of manual steering except during 
periods of visual distraction, where the driver was backed up by automated steering. (3) A 
forced manual drive (Forced) condition, consisting of automated steering except during periods 
of visual distraction, where the driver was forced into manual steering. In all three conditions, 
the speed of the vehicle was automatically kept at 70 km/h throughout the drive.  Results: The 
Backup condition showed a decrease in mean and maximum absolute lateral error compared to 
the Manual condition. The Backup condition also showed the lowest self-reported workload 
ratings and yielded a higher acceptance rating than the Forced condition. The Forced condition 
showed a higher maximum absolute lateral error than the Backup condition.  Discussion: In 
conclusion, the Backup condition was well accepted, and significantly improved performance 
when compared to the Manual and Forced conditions. Future research could use a higher level 
of simulator fidelity and a higher-quality eye-tracker. 
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1. Introduction 

1.1. Automated driving 

Over the last couple of decades, researchers have been studying the viability of automated driving 
for commercial use. However, automation research has not yet reached the point where fully 
autonomous driving can be implemented with the promise of a perfect system. Current designs of 
automated driving systems often focus on applying partial, conditional, or high automation (SAE 
International, 2016), where the human tasks are that of a supervisor. This supervisory role has 
brought about other human factor issues, including loss of vigilance, varying workload, fatigue, and 
loss of situation awareness (Casner, Hutchins & Norman, 2016; De Winter et al., 2014; Matthews, 
2016; Parasuraman & Riley, 1997). 

 

1.2. The potential of adaptive automation 

Adaptive automation has been proposed as a solution to maximize human-machine cooperation 
(e.g.,  De Visser & Parasuraman, 2011; Hancock, 2007; Inagaki, 2003; Kaber & Endsley, 
2004; Parasuraman, 2000). In adaptive automation, control functions change to a lower or higher 
level of automation depending on predetermined criteria, such as momentary workload or 
situation awareness of the human operator. For example, if during the automated execution of a 
task the human is measured to be inattentive, the algorithm could switch the automation to a 
lower level or even turn over control entirely to the human operator to engage the human. 
Alternatively, if high human workload is detected during a manually-executed task, some or all of 
the control might automatically be switched to the automation. 

 

1.3. Types of adaptive automation 

Algorithms that define how and when automation is invoked and terminated differ 
greatly. Sheridan & Parasuraman (2005) (see also Parasuraman et al., 1992; Inagaki, 2003) describe 
five types of methods for implementing adaptive automation: (1) critical-event logic, (2) operator 
performance measurements, (3) modeling, (4) operator physiological measurements, and (5) 
hybrid methods, combining multiple of these methods. 

 

Physiological measurements offer the advantage that they can be obtained continuously regardless 
of whether the automation is active or inactive (Parasuraman et al., 1992; Scerbo et al., 2001). 
There are different physiological measures that provide information on the human operator state, 
including heart rate, skin conductance, and eye movements. For this research study, the focus lies 
on eye movements because they can be measured non-obtrusively and provide specific 
information regarding where the driver attends to, as opposed to other physiological indexes which 
provide a more general index of attentional/arousal. How drivers distribute their visual attention is 
relevant in driving safety research, as the information relevant to driving is likely to be 
predominantly visual (Sivak, 1996). 

 

1.4. Backup automation 

Fundamentally, there are two approaches towards adaptive automation using eye movements. The 
first approach is backup or background automation, which “allows the driver to drive the vehicle, 
but watches over them in case of trouble” (Kyriakidis et al., in press). For example, it is possible to 
let the driver control the car manually, and invoke automation if the driver is distracted. This 
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approach may be beneficial for safety, as off-road glances are associated with decrements in 
performance and safety. For example, a naturalistic driving study found significant associations 
between eyes-off-road time and standard deviation of lateral position (Peng, Boyle & Hallmark, 
2013). 

Backup automation is similar to real-time distraction-mitigation feedback which alerts drivers based 
on their off-road eye glances (Donmez, Boyle & Lee, 2007). However, alerts alone may not always 
be effective, as drivers may decide to ignore warning systems (e.g., Parasuraman & Riley, 1997). 

 

1.5. Forced manual driving 

The second and opposite approach (‘foreground automation’; Kyriakidis et al., in press) would be to 
let the car drive automatically, and force the driver to take over if he or she is distracted 
(i.e., negligent in their responsibility for monitoring the dynamic driving task). 

 

The notion of forced manual driving might seem odd due to its apparent unsafe nature. However, it 
is not odd in the sense that it roughly corresponds to a path being followed by the automotive 
industry. As a result of an investigation into the first fatal crash with Tesla’s Autopilot and a truck in 
May 2016, the National Transportation Safety Board (NTSB) has issued recommendations to 
“develop applications to more effectively sense the driver’s level of engagement” and to 
“incorporate system safeguards that limit the use of automated vehicle control systems to those 
conditions for which they were designed” (NTSB, 2017). Other than a warning based on hands-on-
wheel sensing, one such safeguard could be to automatically activate a functional transition from 
the automated mode towards manual driving, see the case of Cadillac Super Cruise, which uses 
head tracking software that “helps make sure your eyes are on the road, and alerts you when you 
need to pay more attention or take back control” (Cadillac, 2018). In current level 2 automated 
driving, the car performs lateral and longitudinal control, and the system penalizes the inattentive 
supervisor with a transition of control back to the driver. In an overview of 2017 models from 
vehicle manufacturers with level 2 driving automation systems, transitions of control back to the 
driver were found to be a commonly employed strategy for reacting to insufficient supervisory 
driver attention (C Cabrall, A Eriksson, F Dreger, R Happee & JCF De Winter, 2018, unpublished 
data). Accordingly, the forced manual driving may be a useful strategy to prevent overreliance on 
automation. 

 

1.6. The present study 

In summary, transitions in adaptive automation could occur in two directions. While driving 
manually, detection of visual distraction could trigger a transition from manual driving control to 
automated control (Backup automation). In the other direction, visual distraction could trigger a 
transition from automated to manual driving (Forced manual driving). At present, it is unknown 
whether background automation or foreground automation with forced manual driving is preferred 
in terms of safety and driver acceptance. 

 

The present experiment was performed with three different conditions (1) Manual driving 
(Manual), (2) An automated backup (Backup) condition, consisting of manual driving except during 
periods of visual distraction, where the driver was backed up by an automated pilot that was 
automatically initiated, and (3) A forced manual drive (Forced) condition, consisting of automated 
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driving except during periods of visual distraction, where the driver was forced back into the 
manual control loop. 

 

An expected result was that the automated backup condition would yield better lane-keeping 
performance during visual distraction because the automation is programmed to keep lane center 
better than what humans are capable of. Additionally, it was of interest to see whether people 
accepted this condition, in which control was taken away from them. For the forced manual drive 
condition, it was expected that lateral driving performance would deteriorate as compared to the 
manual drive condition during such moments because visual attention is a prerequisite for being 
able to keep the car in the lane (Senders et al., 1967). 

2. Methods 

2.1. Ethics statement and Participants 

This research was approved by the Human Research Ethics Committee (HREC) of the Delft 
University of Technology (TU Delft). All participants provided written informed consent. Thirty-one 
people participated, of which 25 were male and six female. The mean age was 26.4 years (SD = 
4.5 years). Participation criteria were having a driver’s license, and not having to wear glasses to see 
properly. Participants were offered €5 compensation for their time (approx. 30 min). 

 

2.2. Equipment 

A SmartEye DR120 remote eye tracker was used to record the participant’s gaze direction while 
seated and viewing a desktop monitor (Figure 4.1.1). Data were collected at a frequency of 60 Hz. 
The experiment took place in a room with standard office lighting and lowered window blinds. A 
24-inch monitor was used to display the simulated environment. The distance between the monitor 
and the participant differed between participants but was limited by the DR120 eye tracker, which 
was able to measure in the range 50–80 cm from the cameras. A Logitech G27 steering wheel was 
used to control the simulated vehicle. PreScan software (TASS International, Helmond, The 
Netherlands) was used to create the simulation environment. MATLAB/Simulink was used along 
with PreScan to control the simulated vehicle and to log data. A stack of CDs and a small boom box 
to the right of the monitor and steering wheel were used to present a secondary task that evokes 
visual distraction similar to that which might commonly occur while driving (e.g., using a route 
navigation device, tuning the radio, texting). 
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Figure 4.1.1. The experimental setup. 

 

2.3. Simulated environment 

The environment consisted of a two-lane road with a lane width of 5 m. The road had five straight 
segments and four 10° bends (Figure 4.1.2). The participant was shown the dashboard of a vehicle 
(BMW X5) as well as the road in front of them (Figure 4.1.3). A bar on the dashboard indicated the 
state of the automation. A green bar indicated that the automation was on, a yellow bar indicated 
that the automation was still on but that the participant was about to regain lateral control, and a 
red bar indicated that the automation was off (i.e., manual lateral control). The automation was 
designed in such a way that when it was switched on, it would quickly drive the car towards the 
center of the right lane and keep it there. 

 

https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-1-2x.jpg
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Figure 4.1.2. Top-down perspective of the road. The markers indicate the six moments when a 1-s beep was presented, 
signaling that the participant could start the secondary task. 

 

 

 
Figure 4.1.3. Photo from the participant’s perspective. The eye-tracker cameras are connected to the bottom of the 
monitor.  

https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-2-2x.jpg
https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-3-2x.jpg
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2.4. Experimental conditions 

A within-subject design was used, and the order of the conditions was counterbalanced across the 
participants. The counterbalancing was done by presenting the six possible orders of the Manual 
(1), Backup (2), and Forced (3) conditions, in the following manner to the first six participants: 1-2-
3, 3-2-1, 2-3-1, 2-1-3, 1-3-2, 3-1-2. These orders were repeated for Participants 7–12, 13–18, 19–
24, and 25–30, and Participant 31 was presented with the 1-2-3 order. During the entire 
experiment, the vehicle speed was constant at 70 km/h, and thus no longitudinal control actions 
were required. This speed was chosen to simulate driving on rural roads. No infrastructure 
(buildings, signage, vegetation) nor any other traffic were simulated. Three experimental conditions 
were used: 

 

(1) Manual condition (Manual). In the Manual condition, the participant performed the steering 
without help from an automated system. 

 

(2) Automated backup condition (Backup). In this condition, the automated system assumed 
lateral control when visual distraction was measured. Otherwise, the participant performed 
manual steering. Visual distraction was defined by the consecutive eyes-off-monitor time 
being greater than 1.5 s. The secondary task was placed to the right of the steering wheel, 
and when the participant turned the head to look at it, it sometimes became difficult for 
the eye tracker to record the eyes. When the eye tracker was not able to record the eyes, it 
reported this as null values, and the algorithm treated these as off-monitor measurements. 
Automation termination was also performed based on eye measurements: the participant 
would regain lateral control if (s)he focused on the monitor for 4.5 s. The yellow status bar 
switched on 1.4 s before the transition to manual took place. The 1.5 s and 4.5 s thresholds 
were based on pilot studies (see https://data.4tu.nl/repository/uuid:49d87edc-07a6-4f07-
a5e6-0b699705881b). The 1.5 s threshold for Backup automation is in approximate 
agreement with the literature, which suggests that off-road glances of 2.0 s and longer are 
risky (Klauer et al., 2006; Ryu, Sihn & Yu, 2013). Recently, Liang, Lee & Horrey 
(2014) concluded that “frequent off-road glances longer than 1.7 s present a high-risk 
glance pattern in the seconds preceding a safety-critical event and that the 2.0 second-
threshold that is frequently cited in defining dangerously long off-road glances might be a 
liberal estimation”. 

 

(3) Forced manual drive condition (Forced). The Forced condition can be described as being 
opposite to the Backup condition in the sense of control transition directionality. The 
automation had lateral control of the car while the participant was assessed as being 
visually attentive, and initiated a control transition to manual driving if visual distraction 
was measured. If the gaze was directed away from the monitor for 1.5 consecutive seconds, 
the automation switched off, and the participant would be forced to drive manually. The 
status bar switched from green to yellow 0.75 before the transition to manual would take 
place. The algorithm would wait until 4.5 on-monitor seconds were measured and then the 
automation would switch on. 

 

In the Manual and Backup conditions, the first 3.5 s of each trial were driven with automation 
enabled, and between 3.5 and 5 s, the status bar was yellow. This ensured that the participant 
started smoothly with zero lateral error. 

 

https://data.4tu.nl/repository/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
https://data.4tu.nl/repository/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
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During automated driving, the steering wheel (i.e., the physical angle of the Logitech steering 
wheel) was decoupled from the simulated steering angle, and so not necessarily centered. When 
regaining manual control, the virtual steering angle would make a discrete jump from the previous 
steering angle determined by the automation towards the steering angle at which the physical 
steering wheel angled at that moment. 

 

It is noted that the above-mentioned descriptions of the Backup and Forced conditions are 
simplifications of the actual algorithms (see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-
a5e6-0b699705881b for source code). One detail is that, to prevent effects of eye blinks and rapid 
glances between the secondary task and the monitor, the algorithms featured a filter regarding the 
transition back to the nominal state (i.e., manual driving in the Backup condition and automated 
driving in the Forced condition). This means that the driver did not have to look to the monitor for 
4.5 s consecutively to induce a transition. Specifically, the algorithm of the Backup condition was 
programmed in such a way that if the eye tracker measured 1.5 consecutive off-monitor seconds, 
the on-monitor counter would reset to zero. In other words, if a cumulative total of 4.5 on-monitor 
seconds were measured (i.e., without 1.5 consecutive off-monitor seconds in between), the 
participant automatically regained lateral control. For the Forced condition, on the other hand, the 
on-monitor counter would reset after 0.33 consecutive off-monitor seconds. There was no specific 
purpose for these differences between the Backup and Forced conditions, but these differences 
were the consequence of adjustments during pilot testing. 

 

2.5. Secondary task 

The participant was given a secondary task intended to cause a visual distraction. In this secondary 
task, the participant was required to perform a sequence of physical actions involving the stack of 
CDs and a CD-player (see Horberry et al., 2006), who reported that this type of task degrades 
driving performance). 

The sequence of steps consisted of keeping the left hand on the steering wheel and using the right 
hand to (1) press stop on the CD-player, (2) open the CD-player, take out the CD, and put it on top 
of the stack of CDs, (3) take out the bottom CD from the stack, put it in the CD-player, and close the 
lid, (4) press play on the CD-player, (5) put the stack of CDs back in their original position, and (6) 
place the right hand back on the steering wheel. The sequence of steps was designed to encourage 
visual distraction and thus trigger an automatic transition of control. Note that the volume of the 
CD-player was set to zero. 

 

The participant was told to keep the left hand on the steering wheel at all times. Furthermore, the 
participant was instructed to look at the secondary task (CDs, CD-player) when performing the 
secondary task. In other words, the participant was not supposed to look towards the monitor and 
simultaneously perform the secondary task based on peripheral vision or touch. This requirement 
was included to ensure that the participant was visually distracted from the driving due to 
performing the secondary task. 

 

At six moments during the drive (after 15 s, 65 s, 115 s, 165 s, 225 s, and 275 s), the participant was 
alerted that he/she was required to perform the secondary task by a long (1 s) beep. To encourage 
secondary task engagement, the participant was scored by the experimenter on a scale from 0 to 
10. The participant could get up to 6 points for performing the task steps correctly and up to 4 
points depending on how quickly the task was completed. The scoring was done by the 

https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b


 
 

200 

experimenter by looking at the participant and an on-screen timer that was visible on the 
experimenter’s computer. The precise scoring criteria are provided 
in https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b. If the task was not 
completed within 25 s, the participant would only get points for the steps finished at that time. The 
total score was the average of the six secondary tasks per driving trial. At the end of each driving 
trial and before they started with the questionnaires, the experimenter orally told the participant 
what the secondary task score was, rounded to 1 decimal point. 

 

Additionally, for the Manual and Backup conditions, a short (0.25 s) beep was produced 25 s after 
the long beep, to mark the end of the secondary task period. In the Forced condition, the short 
beep was produced when the automation had made a transition from manual to automated driving 
or 25 s after the long beep (whichever came first). For the Forced condition, the short beep was 
presented right after the manual-to-automation transition to signal to the participant that the 
secondary task was over. 

 

The instructions form mentioned that “a long beep will indicate the start of the task, a short beep 
will indicate that you can stop the task if you are not already finished.” Furthermore, the form 
stated that lane keeping was the primary task, “Your primary task is to focus on staying in the 
center of the right lane as accurately as you can. This should always be the most important task. 
Safety first!”. The form also clarified that changing the CD was the secondary task, and that the 
participant should attempt to score as high as possible while still driving safely. 

 

2.6. Procedure 

After reading and signing the consent form, which mentioned the goal of the experiment and the 
workings of the three conditions, each participant was asked to fill out a personal information 
questionnaire. They were also required to read the instructions form 
(see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b). 

 

Next, the participant was asked to sit in front of the eye tracker and focus on four fixed points on 
the monitor to perform a gaze calibration. If the calibration could not be completed, the participant 
was asked to sit differently so that the cameras could record their eyes better before performing 
another calibration. 

 

For each of the three conditions, the participant was asked to drive the simulated vehicle in the 
environment described above, using the steering wheel for lateral control. Additionally, for each of 
the three conditions, at fixed intervals during driving, the participant was required to perform the 
CD-player secondary task. 

 

After each driving trial, the participant was asked to complete a NASA Task Load Index (TLX) 
questionnaire (Hart & Staveland, 1988). Following the Backup and Forced conditions, the 
participant was required to fill out an acceptance scale of in-vehicle technology (Van der Laan, 
Heino & De Waard, 1997). The participants were not required to complete this questionnaire for 
the Manual condition, because the scale asks to rate a specific vehicle technology. At the end of the 
experiment, the participant was asked to complete a questionnaire where they could state which 

https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b


Chapter 4.1: Directionality of Eye-Based Transitions of Driving Control 
 

201 

session they preferred as well as give general comments (for all the questionnaires used in this 
study, see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b ). 

 

The participant performed a 185 s training run before each of the driving trials to become familiar 
with each condition. These training runs were driven on the same track as the actual experimental 
runs, and included three secondary task periods. After the training run, the participant drove the 
full track, which took 350 s for each driving trial and included six secondary task periods. 

 

2.7. Dependent variables 

The following measures and measurements were assessed across the 10.0 s and 349.5 s of elapsed 
time per driving trial of a particular condition. The first 10 s were discarded because this period was 
regarded as settling time for participants. 

 

Lateral performance: 

(1) Mean Absolute Lateral Error (meanALE) (m). This was the mean of the absolute difference in 
lateral position between the vehicle’s position and the lane center. The meanALE is an 
index of overall lane keeping performance and includes both periods where the lateral 
driving automation is active (and so the lateral error is 0) and periods of manual driving. 

 

(2) Mean Absolute Lateral Error during Manual Driving (meanMALE) (m). This was the mean of 
the absolute difference in lateral position between the vehicle’s position and the lane 
center, only for moments when the participant was driving manually. 

 

(3) Maximum Absolute Lateral Error (maxALE) (m). maxALE is the maximum of the absolute 
difference in lateral position between the vehicle’s position and the lane center in meters, 
and can be regarded as an index of safety. 

 

Furthermore, the following measures were extracted from the self-reports, for each of the three 
driving conditions. 

 

Secondary task performance: 

(4) The secondary task score (0–10) was computed as the mean of the full set of six secondary 
tasks of a driving trial. 

 

Workload: 

(5) NASA-TLX (%), ranging from 0% to 100% with steps of 5%. This questionnaire was used to 
assess subjective workload on six different categories: (1) Mental demand, (2) Physical 
demand, (3) Temporal demand, (4) Performance, (5) Effort, and (6) Frustration (Hart & 
Staveland, 1988). The items were answered on a 21-point scale ranging from ‘very low’ 
(‘perfect’ for the performance item) to ‘very high’ (‘failure’ for the performance item). A 
composite score was obtained by taking the mean of the six different sub-category scores 
(Byers, Bittner Jr & Hill, 1989). 

 

 

 

https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
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System acceptance: 

(6) Acceptance scale, ranging between +2 and −2, with steps of 1. The acceptance scale was 
used to assess the drivers’ opinion on the Usefulness and the Satisfaction of the systems 
they tested. This questionnaire consisted of nine sub-scale items, presented in order as (1) 
useful-useless, (2) pleasant-unpleasant, (3) bad-good, (4) nice-annoying, (5) effective-
superfluous, (6) irritating-likeable, (7) assisting-worthless, (8) undesirable-desirable, (9) 
raising alertness-sleep inducing. 

 

(7) Preference. The participant was also asked which condition they preferred the most in a 
final questionnaire after they had performed all of the conditions. The question they were 
asked was “Which session did you prefer?”. The possible answers were “session 1”, 
“session 2” “session 3”, and “no difference”. 

 

2.8. Statistical analyses 

Non-parametric tests were used because some of the performance measures were non-normally 
distributed among participants. For example, maxALE represents the maximal deviation during the 
entire drive and so is sensitive to a single road excursion. Differences between pairs of conditions 
were compared using the Wilcoxon signed rank test. Corresponding effect sizes were calculated 
as Z/N0.5. A significance level of .005 was used (Benjamin et al., 2017). 

 

3. Results 

3.1. Automation functionality 

First, we assessed whether the Backup and Forced conditions worked as 
intended. Figure 4.1.4 shows the proportion of participants with automation on at any time for the 
Backup and Forced conditions. It can be seen that about 90% of the participants in the Backup 
condition drove automatically about 10 s after the task initiation beep was presented. The 10 s 
comprises the minimum 1.5 s required to initiate a transition, plus individual differences in eye-
response time (or the fact that participants may have used frequent scanning back and forth 
scanning rather than a direct re-allocation of gaze in a binary manner). Similarly, about 90% of the 
participants were issued manual driving control status in the Forced condition about 10 s after the 
beep. Figure 4.1.4 also shows that some of the participants experienced control transitions outside 
of the secondary task periods. This could be due to eye tracker imperfections, as faulty 
measurements could result in 1.5 s off monitor glancing. Summarizing, the results in Figure 
4.1.4 show that the Backup and Forced conditions worked in opposite ways, as intended. 
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Figure 4.1.4: The proportion of participants with automation turned on as a function of elapsed time. The magenta 
vertical lines represent the secondary task initiation beeps. The overall percentage of automated driving time was 0%, 
22%, and 76% for the Manual, Backup, and Forced conditions, respectively. 

 

3.2. Lane-keeping performance 

Figure 4.1.5 shows results of the absolute lateral errors for every participant, and of all participants 
averaged. Differences between conditions are evident in the lateral position while performing a 
secondary task (i.e., up to about 20 s following each magenta line, cf. Figure 4.1.4). In the Backup 
condition, the absolute lateral error drops to near-zero after participants were notified to perform 
the secondary task. In the Manual condition, however, the absolute lateral error increases with 
evidently higher peak values compared to periods without the secondary task. During the Forced 
condition, the absolute lateral error is near-zero before the secondary task periods (i.e., when 
automation is on) but increases substantially when the automation is disengaged. 

 

 
Figure 4.1.5: Absolute lateral position as a function of elapsed time. The magenta vertical lines represent the secondary 
task initiation beeps. The results of individual participants (N = 31, in each condition) are shown in gray. The mean of 
participants is shown in black. 

 

https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-4-2x.jpg
https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-5-2x.jpg
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Figure 4.1.6 shows the results for the three lane-keeping performance measures. Concerning the 
first measure (meanALE), the Backup condition yielded better lane-keeping performance than the 
Manual condition. Specifically, the meanALE of the Manual condition (Med = 0.54 m, IQR = 0.25 m) 
was higher than for the Backup condition (Med = 0.33 m, IQR = 0.12 m), Z = 4.62, r = .83, p < .001. 
The meanALE of the Forced condition (Med = 0.18 m, IQR = 0.20 m) was significantly lower than 
that of both the Manual condition (Z = 4.78, r = .86, p < .001) and the Backup condition 
(Z = 3.02, r = .54, p = .003). 

 

 
Figure 4.1.6: (A) The mean absolute lateral position (meanALE), (B) the mean absolute lateral position during manual 
driving (meanMALE), and (C) the maximum absolute lateral position (maxALE). maxALE is presented on a logarithmic 
scale. For each box, thick red the horizontal line is the median, and the edges of the box are the 25th and 75th 
percentiles. The markers represent scores for individual participants, with a horizontal offset to prevent overlap. 

 

Concerning the second measure (meanMALE), which compares only the portions of manual driving, 
the median value for the Backup condition was 0.42 m (IQR = 0.14 m), which was significantly lower 
than the Manual condition (Med = 0.55 m, IQR = 0.25 m), Z = 3.94, r = .71, p < .001. The Forced 
condition yielded a significantly higher meanMALE (median = 0.71 m, IQR = 0.81 m) than the 
Manual condition (Z = 3.88, r = .70, p < .001) and the Backup condition (Z = 4.66, r = .84, p < .001). 
In summary, average lane positioning during periods of manual control with adaptive transitions of 
control was improved in the Backup condition compared to full manual control and was worsened 
in the Forced condition. 

 

Finally, concerning the third measure (maxALE), the Manual condition yielded poorer performance 
(Med = 2.49 m, IQR = 1.74 m) than the Backup condition (Med = 1.67 m, IQR = 0.70 
m), Z = 3.51, r = .63, p < .001. Furthermore, the maxALE of the Forced condition (Med = 3.14 m, IQR 
= 2.67) was significantly higher than that of the Backup condition, Z = 4.23, r = .76, p < .001, 
whereas the difference in maxALE between the Forced and Manual conditions was not statistically 
significant, Z = 2.02, r = .36, p = .044. In summary, maximum lane deviations were lowest in the 
Backup condition. 

 

https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-6-2x.jpg
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3.3. Driver attention and secondary task performance 

Figure 4.1.7 shows the percentage of participants glancing at the monitor as a function of elapsed 
time for the three conditions. It can be seen that participants in the Backup condition were more 
likely to look away from the monitor (between about 3 and 12 s after the task initiation beep) than 
participants in the other two conditions. Participants apparently used the available backup to 
concentrate on the secondary task, whereas in the Manual and Forced conditions, participants had 
to periodically check the road to keep the vehicle in the lane. This was also reflected in the average 
number of points earned across the six sessions, with median values of 8.50, 9.00, and 8.67 on the 
scale from 0 to 10, for the Manual, Backup, and Forced conditions, respectively (Figure 4.1.8). The 
score for Backup was significantly higher than for the Manual (Z = 3.02, r = .54, p = .003) and Forced 
condition (Z = 3.23, r = .58, p = .001). The difference between the Manual and Forced conditions 
was not significant (Z = 0.58, r = .10, p = .562). 

 

 
Figure 4.1.7: The percentage of participants glancing at the monitor as a function of elapsed time.Filtering with an 
interval of 0.25 s was applied, and the data for the six secondary tasks were averaged. Missing data (e.g., the eye 
tracker not tracking the eyes because the participant is performing a blink or performing the secondary task) were coded 
as an off-monitor glance. The thick magenta vertical line represents the secondary task initiation beep. 

 

https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-7-2x.jpg
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Figure 4.1.8: Points scored on the secondary task. The participant’s score is the average of six tasks. For each box, thick 
red the horizontal line is the median, and the edges of the box are the 25th and 75th percentiles. The markers represent 

scores for individual participants, with a horizontal offset to prevent overlap. 

 

3.4. Self-reported workload 

The results of the NASA-TLX questionnaires per item are shown in Figure 4.1.9. Generally, the 
Backup condition yielded lower workload ratings than the Manual and Forced conditions for each 
of the six items. Regarding composite workload (i.e., the mean across the six items), the medians 
across participants for Manual, Backup, and Forced were 46.7%, 31.7%, and 46.7%, respectively. 
The composite workload of the Backup condition was significantly lower than both the Manual 
condition (Z = 3.98, r = .71, p < .001) and the Forced condition (Z = 3.95, r = .71, p < .001). The 
difference between the Forced and Manual conditions was not statistically 
significant, Z = 1.09, r = .20, p = .275. 

https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-8-2x.jpg
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Figure 4.1.9: Results for the six items of the self-reported workload (NASA-TLX) per condition. For each box, thick red the 
horizontal line is the median, and the edges of the box are the 25th and 75th percentiles. The markers represent scores 
for individual participants, with a horizontal offset to prevent overlap. The items were answered on scale ranging from 0 
= ‘very low’ (‘perfect’ for the performance item) to 100 = ‘very high’ (‘failure’ for the performance item). 

 

3.5. Self-reported driver acceptance 

The results of the acceptance scale per item are shown in Figure 4.1.10. Participants reported 
significantly higher acceptance scores on all items (p < .001) for the Backup condition as compared 
to the Forced condition, except for the Raising alertness –Sleep-inducing item. 

 

 
Figure 4.1.10: Mean ratings on the acceptance scale for each of the nine items.The semantic differential scale runs from 
−2 to 2. The figure also shows the p values and effect sizes of a Wilcoxon signed-rank test comparing the Backup 
condition with the Forced condition per item. 

 

At the end of the experiment, each participant completed a form where they were asked which 
session they liked most. Out of the 31 participants, 22 (71%) selected the Backup condition as their 
preferred condition, eight (26%) selected the Manual condition, and one (3%) participant selected 

https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-9-2x.jpg
https://dfzljdn9uc3pi.cloudfront.net/2018/cs-166/1/fig-10-2x.jpg
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the Forced condition. A final optional comments section was provided through which 13 
participants provided responses (see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-
0b699705881b). Three participants reported that they would prefer to change control manually. 
Furthermore, three participants commented on the automation status bar, which was perceived as 
annoying, useless, and/or interfering with the working of the systems. 

 

4. Discussion 
This research aimed to design and investigate a distraction-mitigation system that automatically 
invoked a control transition based on distraction measurements and to see how it would affect 
performance, workload, and acceptance. Triggers were designed and implemented under two 
essentially opposite approaches to eye-based adaptive driving automation to examine different 
directional consequences upon detection of distraction: a transition from manual to automated 
control vs. a transition from automated to manual control. 

 

4.1. Lane-keeping performance 

4.1.1. Backup vs. manual 

Lane-keeping performance was assessed via three complementary measures: meanALE, 
meanMALE, and maxALE. All three performance indices were significantly better for the Backup 
condition compared to the Manual condition. The substantially lower meanALE and maxALE are a 
direct result of the secondary task that induced visual distraction and triggered the lane centring 
driving automation. For the meanMALE measure, the enhanced lateral driving performance during 
periods of manual driving could be explained by a ‘staging’ benefit in the sense that the automated 
agent positioned the car in the center of the lane before returning manual control to the driver. 
However, it could also be because drivers felt more at ease and confident during manual driving, 
knowing that they had an automated driving agent to support them. 

 

4.1.2. Forced vs. manual 

Regarding the Forced condition, improved lane-keeping performance compared to the Manual 
condition was found only for the overall performance of meanALE, whereas a performance 
detriment was found for meanMALE. The superior meanALE of the Forced condition can be 
explained because automated steering was enabled for the majority (76%) of the driving time. 

 

The fact that the Forced condition yielded lower meanALE but higher meanMALE than the Manual 
condition indicates that a trade-off exists between automation use (i.e., more automation is better, 
as automation yields zero lateral error, thereby contributing to low meanALE) and automation 
reliability (i.e., if drivers are required to take over, as in the Forced condition, large performance 
errors can result). This cost-benefit trade-off resembles the lumberjack effect, where automation 
has benefit for routine system performance, but a negative impact when the human has to take 
over (Onnasch et al., 2014). 

 

Whether the driver is constantly in control of steering or whether he or she is occasionally forced to 
take control when looking away from the forward road, the maxALE did not obtain significant 
difference. An explanation for the observably large maxALE during the Forced condition could be 
that the steering wheel was not always centered during an automation-to-manual transition 
(see https://doi.org/10.4121/ 

https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
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uuid:49d87edc-07a6-4f07-a5e6-0b699705881b for steering angle results). Whether or not a 
steering wheel should be decoupled during automated driving has been a topic of debate 
(Kerschbaum, Lorenz & Bengler, 2014). Our results suggest that a decoupled steering wheel is 
associated with increased lateral positioning variability if the decoupled steering wheel is not 
centered at the moment of transferring control back to the human driver. 

 

4.2. Workload 

The Backup condition received the lowest self-reported workload ratings. During the Forced 
condition, drivers were monitoring what the automated pilot was doing, until they were forced 
back into control during periods of visual distraction. In other words, drivers initially experienced a 
state of low task demands and were forced into high task demands. This was not the case for the 
Backup condition, where adaptive automation was applied to help the human when task demands 
increased. 

 

It should be noted that low workload ratings are not necessarily desirable, because low workload, 
or ‘underload’, may be associated with fatigue and loss of vigilance (Hancock & Parasuraman, 
1992; Young & Stanton, 2007). Parasuraman (2003) argued that ‘clumsy automation’ can be an 
issue, whereby (adaptive) automation inadvertently adds workload (e.g., via new task demands like 
supervising or re-programming the automation) during already high periods of demand and do little 
to regulate workload during low periods of demands (i.e., during routine operation of the 
automation). In the end, an ‘optimal’ and balanced workload level should be aimed for. Within the 
current study, it is believed that the Backup condition supported such a balanced workload during 
driving because the presently 100% reliable automated steering did not require attention from the 
driver when it became active and it counteracted degraded lateral performance that would 
otherwise occur due to the uptake of the non-driving task. 

 

4.3. System acceptance 

The Backup condition was rated more favorably than the Forced condition on nearly all items, 
except for the Raising Alertness–Sleep-inducing item where results were mixed and inconclusive. 
The task demands in the Forced condition provide an explanation of its negative acceptance 
ratings. Before the transition of control, participants experienced simultaneous demands to both 
monitor the automated driving and undertake the secondary task. Likewise, after the transition of 
control, participants were still involved in the secondary task when manual control was returned to 
them. 

 

The results in Figure 4.1.7 showed that participants looked away in higher proportions in the 
Backup condition than in the Manual condition. This suggests that the participants trusted that the 
automation would assume control and were more inclined to keep their focus on the secondary 
task. One of the intended goals of the Forced condition was to prevent drivers from misusing 
driving automation that requires their active oversight and mental involvement (SAE Level 2 
automation). However, the Forced condition appeared to show slightly more off-road glancing than 
the Manual condition. This is contrary to what was intended and expected with the Forced 
condition design as it was meant to return driver attention to the road. Apparently, in manual 
driving, participants are more conservative with their off-road glances than when automation is 
present (whether backup or forced). This may be because, in the former, there is one driving agent 
in the system whereas in the latter there are two driving agents. 

https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b
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When asked to complete a form at the end of the experiment, a majority of participants (22 of 31) 
preferred the Backup condition, which supports the results from the acceptance scale. These 
preferences add to the promise of the Backup condition in real-world applications. However, these 
preferences might also be because the automation lasts for as long as the driver keeps the eyes off 
the road, and so allows for unrestricted secondary task engagement. A driving simulator study 
by Jamson et al. (2013) found results which suggested that “drivers are happy to forgo their 
supervisory responsibilities in preference of a more entertaining highly-automated drive”, whereas 
a test-track study by Llaneras, Salinger & Green (2013) showed that, when using reliable 
automation, drivers are likely to increase the frequency of secondary task interactions and engage 
in tasks that cause extended glances away from the road. In a review by De Winter et al. (2014), it 
was found that relative to manual driving (100%), highly automated driving resulted in 261% of the 
number of tasks completed on an in-vehicle display. These findings suggest that the Backup 
condition might be preferred because it has the potential (whether intended or not by designers) to 
allow for increased end-user involvement in non-driving tasks. 

 

4.4. Limitations and generalizability 

4.4.1. Driving task simplicity 

The track that the participants experienced was designed to be short-lasting (350 s per drive) and 
easy: no obstacles, other road users, or emergency situations were implemented. Furthermore, 
participants were instructed to keep the center of the lane and there was also no active penalty 
involved with an unintended lane crossing or large lateral position errors, and there was a reward 
for performing the secondary task well (in the form of a post-trial feedback score which was 
determined by the experimenter while the participant was performing the task). These factors may 
have caused participants to focus on the secondary task more than they would do in real life. 
Future research should establish how the adaptive automation would function in more naturalistic 
driving conditions. 

 

4.4.2. Eye-tracker capabilities 

The eye tracker sometimes lost sight of the eyes of the driver and thus reported a null value for the 
gaze direction. The tracker appeared to have more difficulty with some drivers when compared to 
others. For our research we used a simple binary criterion to assess visual distraction: does the 
participant look at the monitor or not? This criterion was combined with a filter of 1.5 and 4.5 s 
interval (see ‘Experimental conditions’), which accounted for short data gaps due to e.g., blinking. 
Based on the results in Figure 4.1.4, sensitivity of the on-monitor attention algorithms must have 
been high, as the percentage of participants for whom the automation was ‘on’ in the Backup 
condition was mostly zero when participants were supposed to look at the road (i.e., in between 
the secondary task periods). There were a few participants for whom the automation turned on 
during such periods in the Backup condition; we were unable to determine whether these were 
due to data losses of the eye-tracker or whether participants were actually looking away from the 
screen (e.g., exploring whether the Backup system was working properly). Specificity must also be 
high because it would be unlikely for the eye tracker to measure that a participant is looking at the 
monitor (which subtends a relatively small angular area in the participant’s field of view) when 
he/she is looking instead at the CD-player. In summary, there were a few unexpected control 
transitions in between the secondary task periods, but these were infrequent and probably did not 
have a significant influence on the performance results. 
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The eye tracker used during this study had to be calibrated for every participant and sometimes still 
had trouble discerning the correct gaze direction. If the eye tracker were to calibrate itself and 
become more sensitive to gaze direction and less sensitive to confounding factors such as ambient 
lighting, this would increase the possibilities for real-world applications. Similar conclusions were 
drawn by Pohl, Birk & Westervall (2007) who also performed a study on distractions leading to lane 
departures. 

4.4.3. Realism of the steering wheel 

The steering wheel that was used was smaller than an actual steering wheel and was designed 
without any force feedback. Some participants mentioned that this lack of force feedback was 
annoying. Another comment some of the participants made was that it was difficult for them to 
follow the instructions, which stated to completely focus on what they were doing with their hands. 
They were told that they were not allowed to perform any part of the secondary task blindly, to 
prevent a situation where they could just keep looking at the monitor and still finish the secondary 
task in time. This, understandably, might have felt unrealistic for the task of switching a CD in the 
CD-player (i.e., a task people may have sufficient practice with, and which could in principle be 
completed without continuous visual attention). Nonetheless, this approach was implemented to 
ensure that control transitions did take place and to simulate situations where long consecutive 
eyes-off-road periods did occur. 

 

4.4.4. Capabilities of the distraction detection algorithm 

The initiation and termination threshold criteria for automatic transitions of control between the 
human and the automated driving were established based on pilot studies. However, these times 
are not necessarily generalizable, and would have to be determined again for experiments that use 
a different setup. For example, some drivers kept looking back and forth between the secondary 
task and the primary task at a high frequency. Due to this behavior, the algorithms never counted 
enough samples of looking away from the monitor which prevented the system from automatically 
initiating a control transition. A follow-up experiment could focus on discovering recommended 
initiation and termination times, or perhaps even incorporate an algorithm for using variable times. 

 

The difference between safe and unsafe glances was defined by looking at the monitor or away 
from the monitor, respectively. In real-world driving situations, this would have to be defined more 
clearly. For example, further experiments might focus on what is considered as a safety region in 
the visual field. Perhaps it might be better to define a gradient where looking at the road directly in 
front of the car is or at task-relevant objects is considered to be 100% safe, whereas looking to the 
sides is less safe. Using such a gradient, the amount of time after which automation engages might 
also be varied so that, for example, a ‘10% safety area’ uses a shorter initiation time than an ‘80% 
safety area’. It should also be noted that no mirrors were used during this experiment. Drivers 
usually look at the mirrors, and an improved algorithm should not classify mirror usage as a visual 
distraction. 

 

Definitions of driver distraction (see Pettitt, Burnett & Stevens, 2005) are important for reliable 
driver monitoring and cross-study comparisons. Driver distraction can be separately categorized as 
visual, auditory, biomechanical, and cognitive (Ranney et al., 2000). It should be noted that the 
Backup and Forced systems detected visual distraction, not other types of distraction. For example, 
cognitive distraction is regarded as an important contributor to crashes, yet is a concept that is 
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hard to define (Young, 2012). Cognitive distraction in driving (Strayer et al., 2013) has been 
discussed in different guises, including daydreaming (Galéra et al., 2012), mind wandering (Yanko & 
Spalek, 2013), looked-but-failed-to-see errors (Sabey & Staughton, 1975; Staughton & Storie, 
1977; Labbett & Langham, 2006), cognitive tunneling (Reimer, 2009), attention focusing (Chapman 
& Underwood, 1998), loss of covert/peripheral attention via diminished functional field of view 
(Crundall, Underwood & Chapman, 1999), and highway hypnosis (Wertheim, 1978). We reiterate 
here that our Backup and Forced concepts cannot detect all forms of driver aberration: in reality, 
drivers may drive in an unsafe manner or crash into objects even when their eyes are on the road 
(Victor et al., 2018), and one should therefore not expect that the present Backup automation is a 
remedy to all types of driver distraction. However, given the predominant importance of visual 
information for driving (Sivak, 1996), the generally presumed eye-mind hypothesis where gaze 
direction is a strong correlate of cognitive activity (Just & Carpenter, 1980), and a substantial 
history of driving visual occlusion research (e.g., Senders et al., 1967; Van der Horst, 2004), adaptive 
automation based on visual attention alone could reasonably be expected to offer a beneficial 
contribution. 

 

4.4.5. Realism of the secondary task 

The secondary task of changing a CD during this study was chosen because it was assumed to 
involve similar visual-manual loads as a number of common and risky in-vehicle tasks (e.g., texting, 
reaching for a dropped object, searching within a bag or purse, handling cables of charging devices, 
etc.). Participants were periodically forced to perform this secondary task at pre-defined moments 
during driving. This might have felt unnatural to some of the drivers because normally, a driver 
might choose a moment during driving before he or she would start a secondary task, whereas 
during this study these moments were forced. 

 

4.4.6. Mode errors and human machine interface 

Because of the automatic and dynamic switching of driving task responsibility between the driver 
and the automated driving system, the Backup and Forced conditions could be susceptible to mode 
confusions, a well-known problem in human-automation interaction (e.g., Feldhütter, Segler & 
Bengler, 2017; Sarter & Woods, 1995). A mode confusion occurs when the driver believes that the 
automation is on while it is off, or vice versa (see Janssen et al., in press for a framework of mode 
confusions in automated driving). 

 

In our study, the status of the automation was communicated visually to the driver by means of a 
status bar in the middle of the dashboard. However, because the secondary task imposed a visual 
distraction, it was difficult for the driver to know whether the automation had taken control or not, 
as predicted by the multiple resource theory (Wickens, 2002). In more complex driving tasks, where 
the driver performs many head movements (e.g., looking over the shoulder, looking in mirrors), the 
driver may be susceptible to mode confusion, as such conditions could cause the Backup 
automation to enable itself without the driver being aware of this. 

 

A proper human-machine interface is essential to prevent such confusions and facilitate trust in the 
adaptive system. Donmez et al. (2006) found that display modality of a distraction-mitigation 
feedback system had a strong effect on driver acceptance and trust. Future research could be 
focused on how to best communicate the automation status to a visually distracted driver and 
whether the existence of backup automation needs to be communicated at all. For example, if the 
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automated driving functions are implemented in an innocuous manner (e.g., small accelerations, 
minor corrections, blended inputs, etc.), automation status might even be best hidden to avoid 
confusion or misuse. That is, perhaps the driver does not need to know that the automation exists 
at all or when it is functioning (cf. electronic stability control, emergency enhanced braking power, 
etc.). 

 

5. Conclusions and Recommendations 
In conclusion, the Backup condition shows the potential to increase safety when compared to 
manual driving. A system that forces manual control back upon the driver appeared to be less safe 
than normal manual driving and less accepted than a backup system. 

 

The current systems were designed to be simple and will need to be tested in more realistic long-
lasting studies before any definitive conclusions can be drawn about the safety implications during 
real-world driving, and see Kalra & Paddock (2016) for calculations indicating that hundreds of 
millions of kilometers need to be driven in order to prove that automated driving technology is 
safe. Further testing might focus on expanding the simulation and the algorithm to account for 
other traffic, objects, emergency situations and increase fidelity by including car mirrors, and a 
more realistic car interior. 

 

Finally, we note that the Backup and Forced conditions rest on different philosophies. That is, the 
Backup automation is a form of background automation (Kyriakidis et al., in press), where 
automation is engaged only when the driver is measured to be distracted. The assumption here is 
that, even though the automated driving system may be imperfect, automation is still better than a 
visually impaired human. The Forced automation system is a form of foreground automation, 
where the automation is active for most of the time but needs a human supervisor at all times. In 
the Backup condition, participants could devote themselves more to the secondary task than in the 
Forced condition. This difference result could be interpreted as good (because a given secondary 
task is completed sooner) or bad (because it affords the ability to devote attention to the secondary 
task), depending on the context of operations. 

 

It may take many decades of technological progress until fully automated (i.e., autonomous) driving 
is commercially viable (Shladover, 2016). Until that time, foreground and background automation 
strategies are viable candidates to be further researched developed before wide-market 
deployment on public roads. 
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Chap. 4.2) Redesigning Today’s Driving 
Automation Towards Adaptive Backup Control 
with Situated and Implicit Interfaces 
(under review) T.B.D. 
 

 
In regards to the overall thesis big picture, this driving simulator experiment serves to 
provide initial explorations of different variations on adaptive backup driving automation 
(i.e., which triggers on/off upon detection of visual distraction/attention). Eye tracking 
was used here on an applications basis but not investigated as a primary research factor 
of interest Firstly, problems were confirmed for supervisors of driving automation where 
more non-response errors were made to unexpected hazards than by those with full 
conventional/manual control. Such results substantiate a motivating interest in 
alternative functional allocations of driving automation than those conceptually similar to 
what is presently being released in the automotive market. Instead adaptive backup 
driving automation was seen to improve lateral control compared to manual driving 
(consistent as with Chap. 4.1) and with lower levels of visual distraction and fewer non-
response errors compared to supervised automated driving. Using a scene-tied 
implementation of inattention (i.e. situated) effectively reduced the number of 
unnecessary alerts (i.e., without safety impact) compared to a condition where distraction 
was based only on looking away. Furthermore, to mitigate potential over-reliance and 
automation misuse (e.g., becoming distracted because you expect the automation to 
back you up), the status display of backup automation was removed without any negative 
impact on any of the present measures of safety, efficiency, performance or acceptance. 

 

 

Adapted from: 

Cabrall, C.D.D., Stapel, J.C.J., Happee, R. & de Winter, J.C.F. (under review). Redesigning today’s driving automation 
towards adaptive backup control with situated and implicit interfaces.  
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Abstract 
Objective: We investigated adaptive backup designs for distracted drivers via a driver monitoring 
system (DMS). Background: Combined lateral/longitudinal driving automation backup may be an 
effective redesign of roles compared to assumption of human supervision of continuous 
automation. However, such backup control concepts pose complications: distrust of distraction 
assessment and/or misuse via over-reliance. Methods: 91 participants were assigned between-
subjects to conditions of supervised automated driving and conventional driving with different 
forms of DMS-based adaptive backup control. We compared supervision with and without a hand-
on-steering-wheel requirement, an ‘eyes-only’ DMS detecting visual distraction against an ‘eyes-
plus-situation’ DMS requiring the additional presence of a course/collision conflict, and an ‘explicit’ 
backup providing display of automation status against an ‘implicit’ backup without notification or 
driver awareness of the automation. All participants performed an NDRT (visual N-back) for the 
entire driving trial  Results: Automated driving increased visual distraction and non-responses to 
hazards compared to backup and conventional driving. A hand-on-the-wheel requirement 
improved response generation compared to no-hands-on-the-wheel. Across an entire driving trial, 
the backup improved lateral performance compared to conventional driving. Without negatively 
impacting safety, the eyes-plus-situation DMS reduced amounts of unnecessary automated 
control compared to the eyes-only DMS conditions. Eyes-only assessment produced low 
satisfaction ratings, whereas eyes-plus-situation satisfaction was on par with automated driving. 
Removing indication of driving automation made no appreciable difference.  Conclusions: We 
evidenced the preliminary feasibility of driving automation to serve as a situated and implicit 
backup safety system.  Application: Redesigns of driving automation with eye-based DMS can 
enable adaptive control benefits. 
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1. Introduction 

1.1. Fatal firsts, conflicting expectations, and potential re-starts in the race to self-
driving 

The present experiment explores the human factors problem of expecting people to effectively 
supervise iterative levels of automated/autonomous vehicles (AVs) (e.g., SAE 2018) with several 
solutions. Given the controversial nature of anticipated  AVs benefits (e.g., De Winter, in press; 
Bhuiyan, 2018), we take it upon ourselves to not only motivate and test our proposed solutions 
(situated, implicit, adaptive backup driving control), but to first motivate and test our problem 
expectations (inattention in human supervision of driving automation) as well as others’ status quo 
solutions (keeping a hand on the steering wheel while supervising). So first, brief clarification of 
problems with the current way forward is needed and substantiated as motivation of the present 
counter-position detour.  

 

News reports of the first people killed in AV crashes illustrate new levels of inattention risks while 
driving (Fung, 2017; Coppola & Frank, 2018). Because general AI technology to replace human 
driver flexibility is not yet proven despite contrary public opinion (e.g., Euro NCAP, 2018 highlights 
‘stark contrasts’), it is likely that the public will become too complacent in their supervision over 
AVs. Furthermore, instructions to monitor AV technology are inconsistent with observed would-be 
consumer behaviors (Carsten et al., 2012; Jamson et al., 2013; Large et al., 2017) and value 
proposition/preference (Cyganski et al., 2014; Bertoncello & Wee, 2015). Even if people wanted to 
supervise driving automation, many decades of human factors research, from Mackworth (1950) to 
Hancock (2017), have suggested risks when humans monitor automated (e.g., monotonous, self-
regulating, removed, etc.) processes over extended periods of mostly successful operation. Such 
risks have recently been substantiated by reviews specific to the driving domain (e.g., Cabrall et al., 
2016a; Goncalves et al., 2017). A potential reason why ironies of automation may expand rather 
than eliminate problems with human operators (e.g., Strauch, 2017), is that humans are prone to 
unconscious switching/trading of attention rather than the even-handed attentional sharing desired 
for supervisors of automation. Instead, cost-free multi-tasking has been generally ousted as a 
‘myth’ (Loukopoulos et al., 2009; Rosen, 2008).  

 

For human-machine teaming, there can be more rational “first-steps” than full-time driving 
automation that must only assume human supervisory oversight. Driver monitor systems (DMS) can 
warn against supervisory inattention and/or trigger transitions of control (ToC) in new adaptive 
function allocation designs (e.g., Petermeijer, et al., 2015; Cabrall et al., 2018a). Generally, human 
errors in driving (e.g., the often repeated over 90% of fatal accidents statistic from NHTSA, 2008) 
should be recognized as exception cases (because accidents, and fatal ones at that, are by 
definition exception cases already) and to thus motivate more targeted solutions (i.e., at periodic 
events of degraded human driver attention) rather than full system re-hauls of unknown 
consequences and extra risks. The present introduction proposes a reversal of AV technology away 
from continuous operation and towards DMS-triggered adaptive backup. In the remainder of the 
paper, we extend previous research with experimental comparisons of various interface designs for 
how that adaptive backup system might be conceived.  We compare regular eye-tracking-based 
DMS assessments of distraction (‘eyes-only’) to scene-tied DMS (‘eyes-plus-situation’) taking driving 
conditions into account. We compare ‘explicit’ DMS informing drivers when backup is activated to 
‘implicit’ DMS without notification or driver knowledge of the automated system. 
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1.2. Driver monitor system (DMS) solutions 

The U.S. National Transportation Safety Board (NTSB) issued new safety recommendations on 
September 12, 2017 (NTSB, 2017) for manufacturers to ‘develop applications to more effectively 
sense the driver’s level of engagement and alert the driver when engagement is lacking  while  
automated  vehicle  control  systems  are  in  use’.  

 

1.2.1. Hand placement 

As a basic first form of DMS in SAE Level 2 AVs, many manufacturers require the driver to maintain 
hand contact with the wheel (Audi, BMW, Mercedes, Tesla, and Volvo). From voluntary safety self-
assessments collected by NHTSA (2018), multiple ‘fully’ autonomous driving vehicles  (Apple, Ford, 
GM, and Uber) can also be seen to currently require safety-driver hand placement on/near the 
wheel during on-road test/development. Beyond faster responses from having closer positioning, 
hand-on-wheel placement may yield risk detection and memory benefits underlying the successful 
generation of a response. Positioning of hands-on-the-wheel has been associated with risk 
perception rather than only fatigue or personal style preferences (Walton & Thomas, 2005). In 
physical rehearsal of movements (e.g., sports, dance, etc.), memory is tightly coupled to motor 
processes: ‘Motor practice is associated with the formation of elementary motor memories’ (Stefan 
et al., 2008). The primary motor cortex has been shown to hold short-term representations of 
recently practiced movements with encoded kinematic details (Classen et al., 1998, 1999; Butefisch 
et al., 2000).  

 

1.2.2. Adaptive backup control 

Previous human factors research has suggested an industrial self-affliction of vigilance problems 
where humans must supervise automation: Hancock (2013, 2017) described the problem as 
‘iatrogenic’ and Parasuraman and Riley (1997) called it an ‘abuse’ by creators of automation. Thus, 
with more effectively designed DMS, it is worth considering alternatives to the controversial 
function allocation that seeks to recast human drivers into supervisors of full-time automated 
driving. Given that the majority of human driving is successful and safe, a more rational step would 
be to support periods of degraded human driver attention in a selective manner. The general 
notion for the reversal of continuous driving automation implementations towards event-driven 
backup is supported by prior human factors research that addresses degraded human vigilance in 
supervision of automation by use of shorter durations of supervision and schemes of adaptive 
control (e.g., Parasuraman & Wickens, 2008; Sheridan & Parasuraman, 2005; Parasuraman et al., 
1996; Scallen et al., 1995). In particular for driving, Petermeijer et al. (2015) found benefits of 
event-driven backup (bandwidth feedback) to avoid negative aftereffects compared to continuous 
shared-control automation when automation is unexpectedly removed. Furthermore, a driving 
simulator study of Cabrall et al. (2018a) found that, in the presence of a distraction activity, a 
backup automation system performed the best (decreased lateral errors, lower self-reported 
workload, and higher levels of acceptance) in comparison with conventional driving control and a 
full-time driving automation system that automatically disengaged itself upon detecting driver 
distraction (e.g., a concept consistent with current forms of on-market systems).  

 

The simulation visuals of Cabrall et al. (2018) was minimalistic (i.e., only road and grass) and hence 
the present experiment aims to replicate adaptive backup control benefits with increased 
environmental complexities and to explore further system design opportunities. Monotonous 
environments may aggravate inattention issues in supervision over automation: with less in the 
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driving environment (especially compared to real life), participants might be inclined towards 
greater amounts of non-driving related task (NDRT) engagement. Next, we describe additional 
functional and interface design considerations to avoid human-automation interaction trust issues 
that might likely arise within such a concept of adaptive distraction-induced backup driving 
automation. 

 

1.2.3. Situated assessments of distraction 

An assessment of driver distraction is expected to be insufficient by looking only at the driver, as 
such approach may yield false alarms and ‘cry-wolf’ effects. Distraction assessment should not be 
limited to an internal human-centric focus but could extend its perspective by looking outward of 
the vehicle for relevant contextual considerations. Accordingly, we propose a more conservative 
implementation strategy for classifying distraction (called ‘situated’ adaptive automation). This 
approach is not yet common in the automotive AV market but is not without precedent (see Hof, 
2016; Simonite, 2017). In addition to diversion of attention away from driving, the driver distraction 
definition of Hedlund et al. (2006) included resource competition and increases in risk, and 
highlighted their implication that ‘distractions are affected by driving conditions and situations’. 
Beyond interrogating if a driver is looking away from the road to an NDRT, a DMS might ask if the 
driver is looking away too much given the present circumstances (cf., Minimum Required Situation 
Awareness, Kircher & Ahlstrom, 2017). This paper extends theoretical recommendations with an 
applied research investigation for benefits and operational feasibility of situated assessments in a 
distraction-induced driving automation backup concept. Immediate lateral and longitudinal control 
demands form the inner-core of descriptive hierarchical driving models (e.g., Merat et al., 2019; 
Michon, 1978, 1985), and so seem a reasonable level to implement practical situated assessments 
of attention. 

 

1.2.4. Implicit backup operations 

If people believe the system will back them up, they may allow themselves to become distracted 
more often with expectation for backup from the automation (i.e., misuse through over-reliance). 
While the notion of appropriate feedback has been a mainstay constituent of good human factors 
design (e.g., Norman, 1990) and for advanced driver assistance systems (Seppelt & Lee, 2007), it 
does not necessarily imply that feedback is needed for all things at all times. An avenue for reducing 
operator over-reliance on SAE Level 2 driving automation might be to make its operation less 
apparent (i.e., ‘implicit’ adaptive automation) rather than providing ‘explicit’ information of system 
existence/activation. Reasonably, it is harder to misuse something (e.g., Parasuraman & Riley, 1997) 
that you do not know is there. Furthermore, explicit DMS information during a period of detected 
operator distraction may increase workload and unwanted visual behaviors especially if the HMI is 
confusing or unwanted/un-trusted. Jaguar Land Rover’s head of safety, Phil Glyn-Davies, has 
proposed in Bird (2018) that ‘the best active safety system is one where you’re not even aware of its 
presence’. 

 

1.3. Research questions and aim 

In summary, background evidence suggests healthy skepticism for the capabilities of current on-
market AVs and of human supervisors of continuous driving automation. Tempting new 
opportunities for increased levels of distraction (e.g., with highly engaging/demanding NDRTs) are 
likely and can have fatal consequences. We assume distraction to be dangerous when it reaches 
levels that degrade safe vehicular control such as an ability to respond to hazards and to stay within 
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a target lane of travel. Thus, the present paper seeks to assess joint system outcomes in terms of 
human behavior and vehicle performance when DMS and driving automation components are 
given a different human system integration (i.e., via various designs of event-driven periodic backup 
support).  

 

SAE Level 2 AV technology (simultaneous automatic lateral and longitudinal control) as exists today 
might be re-branded and re-implemented more towards a safety rather than a convenience 
feature—in other words, away from ‘automation always/mostly replaces the human driver’ and 
towards ‘automation backs up the human driver as needed’. In order to do so, new functional and 
interface design considerations are needed and worth exploring. The present paper addresses 5 
related research questions (RQ) embedded within a single experiment.  

 
(1) RQ1 – Are drivers susceptible to dangerous levels of distraction with SAE Level 2? 

 
(2) RQ2 – Does placing a hand on the wheel improve driver supervision of automation? 

 
(3) RQ3 – Is adaptive backup a safe and acceptable alternative to continuous automated driving? 

 
(4) RQ4 – Can situated criteria safely reduce driver state monitoring from over- triggering? 

 
(5) RQ5 – Is the status of backup driving automation necessary to display to drivers? 

 

2. Methods 

2.1. Participants 

The experiment was completed by 91 university students (26 female, 65 male) aged between 21 
and 34 years (M = 23.51, SD = 2.17) with a majority (73%) indicating a driving frequency between a 
weekly and monthly basis. Overall, participants had a driving license for about four and a half years 
(M = 4.48, SD = 2.70). This research complied with the American Psychological Association Code of 
Ethics and was approved by the Human Research Ethics Committee of the TU Delft. Informed 
consent was obtained from each participant.  

 

2.2. Apparatus 

The driving simulation hardware consisted of the Logitech G27 USB gaming steering wheel and 
pedals. The software was programmed within MathWorks Simulink (2017b) model-based design 
environment and TASS International PreScan simulation (release version 7.4) which is ‘a physics-
based platform that is used in the automotive industry for the development of Advanced Driver 
Assistance Systems (ADAS) that are based on sensor technologies such as radar, laser/lidar, camera 
and GPS’ (TASS International, 2019). The simulated driving visuals were displayed on an NEC 
MultiSync EA 243wm monitor with a 52 cm x 33 cm viewable image at 1920 x 1200-pixel resolution 
that was placed approximately 65 cm from participants’ eyes. A SmartEye DR120 remote eye 
tracker was used with its cameras concealed behind a black bar beneath the simulation display 
monitor. Figure 4.2.1 depicts the overall apparatus.  
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Figure 4.2.1. Driving simulator arrangement including a gaming steering wheel attached to the edge of the table 
(bottom), floor pedals (not shown), driving simulation visuals displayed on a monitor (middle), and secondary task on a 
laptop with an external mouse (right). 

 

2.3. Simulated level of driving automation 

A version of SAE Level 2 driving automation was implemented in the driving simulator. The software 
kept the vehicle in the middle of the right lane at a constant speed of 70 km/h. Additionally, the 
vehicle automatically reduced its speed to maintain spacing as needed behind a slower lead vehicle, 
and returned to the target speed of 70 km/h when that slower lead vehicle moved away from the 
lane of travel. The driving automation included a stipulation that the participant must monitor and 
correct the automated driving for any dangers/errors. 

 

2.4. Driver monitoring system using eye-tracking 

Individual MathWorks Simulink architectures were built and deployed on different computers to 
model the driving simulation with its automated control functions separately from the DMS. These 
two systems were integrated for real-time operation by use of standard UDP communication 
channels. The DMS was designed to function by receiving participant gaze direction and eyelid 
opening information as inputs from the eye tracker to assess several driver states of distraction, 
drowsiness, and/or cognitive overload across different time period criteria specific to each state 
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and towards an elevated state of ‘aberrance’ (Cabrall et al., 2016b). For the purposes of this 
experiment, the DMS was used to continuously assess whether the participant was looking at the 
screen or not (as with Cabrall et al., 2018). Classification of visual distraction was implemented by 
similar mechanisms as in Cabrall et al. (2018). A prior state of attentive/distracted held until the 
threshold was met to change that state: consequently, the participant was always classified as 
either being attentive or distracted at any given point in time across the full driving trial. The 
distraction threshold approximated a 2-second criterion which has generally been accepted from 
the results of widely-cited driver distraction research (Klauer et al., 2006; NHTSA, 2013) and 
consequently frequently corroborated (e.g., Ryu et al., 2013). For example, Rockwell (1988, p. 322) 
states: ‘For years researchers studying car following and eye movements have found a 2 second rule, 
i.e., drivers are loath to go without roadway information for more than 2 seconds (and rightly so)’. In 
the present study, distraction states were applied after 3 consecutive seconds of looking away from 
the simulation display monitor (with a reset after 4 consecutive seconds of looking forward again). 
It should be noted that these thresholds were intended to be half as large, to be around the same 
levels as suggested by previous research (Kircher & Ahlstrom, 2009; Seaman et al., 2017; Seppelt et 
al., 2017), but a system integration error transpired where the downscaling of the eye-tracker 
measurement frequency (120 Hz) as limited by the driving simulation resolution (60 Hz) was not 
properly accounted for in the classification algorithm. 

 

It should also be noted that previous research suggests that exact durations of off-road glances for 
classifying distraction could be variable and might not actually be as problematic as is an increase in 
the frequency of longer duration glances (see Liang et al., 2014). For example, Rockwell (1988, p. 
324) states that drivers ‘will pay the price in more glances but not longer glances’. Attentional 
buffers of between 2.5 and 5.5 seconds for off-road glances are suggested by results of Godthelp et 
al. (1984), and between 2 and 4+ seconds of on-road glances from Samuel and Fisher (2015) and 
Glaser et al. (2016), and even upwards of between 7 and 12 or beyond 20 seconds for establishing 
aspects of roadway situation awareness from Lu et al. (2017). Furthermore, our  methodological 
error in the timing of visual distraction/attention classification should not invalidate our present 
results, as our results are presently analyzed in a conservative manner in terms of relative 
comparisons between conditions (e.g., percentage) rather than in an absolute number of seconds. 

 

2.5. Adaptive transitions of control (automated control as “Backup”) 

Two types of adaptive driving automation backup were evaluated via an experimental DMS. In one 
case (‘eyes-only’), detections of driver visual distraction directly activated automated driving control 
functions (i.e., lateral control via steering the vehicle to the center of the right lane, and 
longitudinal control by gradually slowing down). In the other case (‘eyes-plus-situation’), the 
operating routine required both the detection of driver distraction and simultaneous 
course/collision conflict predictions to activate the automated control functions. In either operating 
case, conventional driving control (human operation of steering wheel, throttle, and brake) was re-
activated when all criteria for automated driving control was no longer met. 

 

Course/collision conflict predictions were assessed with simulated radars for road departure or 
collision with an object. The simulated lateral and longitudinal radars each interrogated a fixed 
distance ahead of the vehicle (approximately 20 and 100 meters, respectively) to determine a 
binary state of course/collision conflict. Assuming a traveling speed of 70 km/h (a typical speed 
targeted in our simulation), the look-ahead positioning of these radars represented time budgets of 
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approximately 1 and 5 seconds for course and collision conflicts respectively. The present conflict 
predictions were not yet capable of dynamically adjusting their ranges based on actual driven speed 
fluctuations. With only a fixed look-ahead distance, actual speeds slower/faster than 70 km/h 
respectively increased/decreased the time budgets, and diminished/inflated the frequency of 
alerting and thus also the potential for backup automated driving control. 

 

If the automatic transition of control (ToC) status was displayed (i.e., in the automated driving and 
explicit backup conditions), it appeared on the right side of a virtual dashboard and read either as 
‘Normal Driving’ (green background) or ‘Auto Backup Control’ (red background). In the implicit 
backup conditions, the automation status was not shown, and participants were led to believe that 
they were driving conventionally only (see Table 4.2.1). 

 

 

Table 4.2.1. Experimental conditions (n = 13 per group). 

Condition Automation functionality Task instructions 

EXP1. Continuous  automation  

– no hands  
https://youtu.be/hTH0bqyHKSI 

 

Automated simultaneous longitudinal 
and lateral control for the entire drive. 

Automated Driving: No hands 
needed on the wheel, no feet are 
needed on the pedals, but you must 
monitor and correct the automated 
driving for any dangers/errors 

EXP2. Continuous automation  

– one hand  
https://youtu.be/7ulfPk5Do_Y 

 

Automated simultaneous longitudinal 
and lateral control for the entire drive. 

Automated Driving: One hand 
needed on the wheel (just to touch, 
not to steer), no feet are needed on 
the pedals, but you must monitor 
and correct the automated driving 
for any dangers/errors 

EXP3A. Backup  

– eyes plus situation assessment with 
explicit automation status  
https://youtu.be/SlUPseabxwU 

 

Backup simultaneous longitudinal and 
lateral control if the participant was 
visually distracted and the situation 
was deemed unsafe (detected 
course/collision conflict prediction). 

Manual Driving: but driving 
automation (collision avoidance, 
middle of right lane) may 
automatically turn on and off 
periodically to help you (it decides 
when/where/how long and how 
much). It does this from looking at 
the road situation and at your eyes. 
The automation is not perfect, so it 
cannot be relied upon to do all of the 
driving. Automation status is shown 
on screen in green=off/red=on. 

EXP3B. Backup  

– eyes only assessment with explicit 
automation status 
https://youtu.be/6BS1w5uVtHk 

 

Backup simultaneous longitudinal and 
lateral control if the participant was 
visually distracted. 

Manual Driving: but driving 
automation (collision avoidance, 
middle of right lane) may 
automatically turn on and off 
periodically to help you (it decides 
when/where/how long and how 
much). It does this from looking only 
at your eyes. The automation is not 
perfect, so it cannot be relied upon 
to do all of the driving. Automation 
status is shown on screen in 
green=off/red=on. 

EXP4A. Backup 

 – eyes plus situation assessment 

Backup simultaneous longitudinal and 
lateral control if the participant was 

This is a manual driving condition 
with eye tracking that we need to 

https://youtu.be/hTH0bqyHKSI
https://youtu.be/7ulfPk5Do_Y
https://youtu.be/SlUPseabxwU
https://youtu.be/6BS1w5uVtHk
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Condition Automation functionality Task instructions 

with implicit automation status  
https://youtu.be/p1ly_S4YlZ8 

 

visually distracted and the situation 
was deemed unsafe (detected 
course/collision conflict prediction). No 
automation status was shown on the 
screen. 

use as a comparison against other 
subjects who use automation. 

EXP4B. Backup  

– eyes only assessment with implicit 
automation status 
https://youtu.be/SrxcPauPyXE 

 

Backup simultaneous longitudinal and 
lateral control if the participant was 
visually distracted. No automation 
status was shown on the screen. 

Same as 4A 

EXP4C. Conventional driving 

 – No automation 
https://youtu.be/gwrr5796EVI 

No automation; manual driving only. 
No automation status was shown on 
the screen. 

Same as 4A 

 

2.6. N-back secondary task 

Our NDRT shared the expressed motivations of automotive research from Mehler et al. (2011): ‘to 
induce varying levels of demand so that the impact on participants can be observed’ (p. 3). We 
aimed to place the participant in a dual-tasking state whereby he/she would be challenged to 
balance engagement in an activity unrelated to driving in competition with driving activity and 
responsibility. Because distractions involving reaching and searching have been implicated as some 
of the most detrimental in naturalistic vehicular safety studies (Hickman, 2015), our specific 
implementation of the N-back task was in a graphical user interface (GUI) format (see Figure 4.2.2) 
to add visual-manual demands to conventional cognitive demands (which have previously been 
induced most conventionally along only the auditory channel). It was also felt that this modification 
of the N-back task might better resemble real-life attentional demands such as with continuous 
time-response critical visual-manual tasks (e.g., mobile phone instant-messaging) but in a 
controllable manner and with empirical research precedence. Through pilot studies, it was 
determined that an immediate ‘zero-overlap’ response level of N-back in the GUI was sufficient to 
impose resource competitions on driving performance in our simulator while participants were still 
able to achieve near perfect scores when performing that N-back in an isolated training session. It 
should be noted that for translation purposes, it was easier to explain and label the task as a ‘1-
back’ for our non-native English speaking participants although the task was the conceptual analog 
of the ‘0-back’ as described within Mehler et al. (2011). 

 

Our visual N-back application is available online (Cabrall, 2017). Demonstration videos by an 
experimenter are available from URLs in Table 4.2.1. As shown in Figure 4.2.1, the placement of the 
N-back GUI was to the right (about 35-45 degrees) and slightly below the dashboard of the driving 
simulator by a few inches and within arms-reach (e.g., in rough positional correspondence to a 
center-console display, although participants used a mouse to input their responses). The pacing 
involved an equivalently matched target display and response allotment time that randomly varied 
between 1 and 2.25 seconds (at 0.25-second resolution). The same scripted set of pre-randomized 
timings was used for every participant. The participants were informed that they would be scored 
on the N-back task with correct answers receiving +1 point and incorrect/missed answers receiving 
-1 point. Auditory feedback included a ‘beep’ for a correct answer, a ‘buzz’ for an incorrect answer, 
and silence for a missed answer. Otherwise, scores were not displayed or communicated. 
Participants were not told what they should prioritize, other than that they should do their best to 

https://youtu.be/p1ly_S4YlZ8
https://youtu.be/SrxcPauPyXE
https://youtu.be/gwrr5796EVI
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simultaneously balance both their driving/supervision responsibilities (see Table 4.2.1) along with 
the N-back task. 

 

 
Figure 4.2.2. A modified N-back task was used as a secondary task presented via a graphical user interface (GUI). 

 

2.7. Conditions and procedures 

A between-subjects experiment was conducted. Participants were randomly allocated to one of 
seven experimental conditions, as shown in Table 4.2.1. Upon examination of the results, two 
participants were removed from the analyses. A participant from EXP3A was removed because his 
experimental condition was mistakenly inconsistent with his provided instructions (i.e., wrong 
condition). A participant from EXP4C was excluded due to an inability to maintain nominally 
sufficient driving control in the simulator. Demographic details per experimental condition are 
provided in Table 4.2.2. Across the randomly assigned groups, a large degree of demographic 
similarity was obtained (except for condition 4C where a lower proportion of females was 
represented).  
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Table 4.2.2. Overview of demographics per experimental condition (after one participant exclusion each from EXP3A and 
EXP4C). 

Condition Male Female Average 
age 

Average driving 

frequency
#
 

Average age 

first license 

EXP1: continuous automation – no hands 8 5 23.46 3.85 18.97 

EXP2: continuous automation – one hand 9 4 23.31 4.08 18.71 

EXP3A: backup automation,  

     eyes + situation, explicit 8 4 23.17 4.36 18.55 

EXP3B: backup automation,  

     eyes only, explicit 9 4 23.92 4.17 18.90 

EXP4A: backup automation,  

     eyes + situation, implicit 9 4 23.08 4.00 18.76 

EXP4B: backup automation,  

     eyes only, implicit 10 3 23.46 3.46 18.73 

EXP4C: conventional driving, no automation 11 1 24.25 3.75 18.50 
# 1 = every day, 2 = four to six days a week, 3 = one to three days a week, 4 = once a week to once a month, 5 = less than 
once a month, 6 = never.  

 

Separate training exposure periods (about three minutes) were given for the driving simulation and 
the N-back task before simultaneous tasking was required in the experimental drive. After 
completion of the experimental drive, participants were presented with an on-screen response 
sheet that probed the participant’s self-perception of the success and effort spent regarding 
aspects of safety, efficiency, and the N-back task, of the full driving trial, as well as (if applicable) 
satisfaction with the driving automation. The specific spatial layout and instructions of the 
subjective response sheet items are presented in Figure 4.2.3. 

 

 
Figure 4.2.3. On-screen post-trial subjective questionnaire.  
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2.8. Driving route, timing and hazards 

All experimental drives lasted about 2m45s. The route featured a straight road segment (0–40 s), a 
left curve (40–50 s), a straight road segment (50–70 s), a right curve (70–80 s), a straight road 
segment (80–120 s), a right curve (120–130 s), and a straight road segment (130–165 s). To test 
driver attentional engagement in the driving task, in each drive two surprise stationary obstacles 
were presented. The automation was programmed to drive through these objects as simulated 
detection errors. The objects had the form of a fallen tree and a stalled motorcycle (see Figure 
4.2.4) presented at around 75 and 133 seconds, with response time-budgets of approximately 5 
and 2 seconds, respectively. All of the aforementioned time descriptions are drawn from EXP1/2, in 
which the speed was computer-controlled (see Table 4.2.1); otherwise, speed variations affected 
the timing of route progress. The simulation had to be manually terminated because the driving 
automation implementation would not function beyond its scripted nominal trajectory time-series. 
A common data measurement cut-off point was established at 147.75 seconds (8865th frame at 60 
Hz) for all seven conditions as this was the earliest point the simulation was manually terminated by 
the experimenter (i.e., participant 61 in EXP4A). 

 
Figure 4.2.4. Stationary obstacles in the driving simulation appearing first as a fallen tree (left) after around 1 minute of 

driving and second as a stalled motorcycle (right) after around 2 minutes of driving. 

 

2.9. Measures  

Measures taken at the discrete hazards events. In EXP1/2, plots of steering and brake inputs were 
manually inspected for conventional driving activity (e.g., non-constant values) within the period 
between obstacle appearance and contact. In EXP3A/3B/4A/4B, the experimenter took subjective 
note of participant awareness of the obstacle within the same period, and the objective status of 
automation (on/off) and participant eye position (on/off screen) were recorded at the point of any 
contact.  

 

Measures taken continuously across full trial. Visual distraction was measured as the percentage of 
time the DMS classified a state of visual distraction, registering a “1” for distracted after 3 
consecutive seconds of looking off the driving simulation screen and a “0” for attentive after 4 
consecutive seconds of looking on the driving simulation screen. NDRT performance was taken as a 
percentage of an aggregate final score at the end of a driving trial divided by the number of shown 
targets during that trial; one point was given for each correct response, and one point was 
subtracted for each incorrect or missed response. Automated driving status was measured as the 
percentage of time the vehicle was under automated control. Lateral performance was assessed as 
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road departures whenever the front left and/or right corner of the car was positioned above the 
grass area alongside the roadway. The car was 5.20 meters long and 2.03 meters wide, and the 
road was 6.4 meters wide with two lanes of 3.1 meters and two shoulders of 0.1 meters. 
Longitudinal route progress was calculated in meters traveled along the driving route. Perceptions 
of success (on a scale from 1 to 5) and effort (on a scale from 0 to 10) were each probed separately 
and in regards to the aspects of safety, travel efficiency (time/speed), and the N-back task 
performance at the end of each driving trial (Figure 4.2.3). Lastly, for all conditions containing a 
visible status display of automated control, participants were asked to rate their satisfaction on a 
scale from 0 to 10 (Figure 4.2.3). 

 

2.10. Comparisons for each Research Question 

Generally, the dependent measures could be captured and applied across the different research 
question comparisons (RQ1-5). However there were exceptions where certain measures would not 
make sense to apply, and some key measures had higher conceptual relevancy within a particular 
comparison than for others. For example, because the automation was active for the entirety of 
EXP1, measures of lateral and longitudinal control, as well as the proportion of time with activated 
driving automation, were not meaningful for this condition. Similarly, satisfaction with the 
automation could not be assessed for EXP4C (because this condition did not have any automation) 
or for EXP4A/4B (because participants were not told that this condition had any automation). 

 

For RQ1, ‘Are drivers susceptible to dangerous levels of distraction with SAE Level 2?’ the conditions 
EXP1 (Automation – no hands) and 4C (Conventional Driving – No Automation) were compared. The 
key objective measure here was the generation of a response to the hazardous obstacles, and the 
key subjective measures were perceived effort for time/speed efficiency of travel and perceived 
success with the N-back task. Supporting measures included the amount of objective visual 
distraction and N-back task performance.  

 

For RQ2, ‘Does placing a hand on the wheel improve driver supervision of automation?’ an 
improvement from EXP1 was sought by comparing EXP2 (Automation – one hand) with EXP1 
(Automation – no hands). The key measures were thus the same as RQ1. Satisfaction with 
automation was also of interest regarding a potential detriment to end-user experience for having 
to keep one hand on the wheel. 

 

For RQ3, ‘Is adaptive backup a safe and acceptable alternative to continuous automated driving?’ a 
combination of all adaptive backup driving automation conditions (EXP3A/3B/4A/4B) was compared 
against a combination of all continuous automation conditions (EXP1/2), as well as against 
conventional driving (EXP4C). Key objective measures of interest included amounts of visual 
distraction and N-back task performance between EXP1/2 vs. EXP3A/3B/4A/4B, and the lateral 
performance measure of road departures between EXP3A/3B/4A/4B and EXP4C. Key subjective 
measures included perceptions of success/effort with the N-back task and perceived safety 
success/effort. Supporting measures included a measure of satisfaction with the automation, 
perceived success/effort spent on efficiency, and hazard collisions.  

 

For RQ4, ‘Can situated criteria safely reduce driver state monitoring from over-triggering?’ the set of 
situated adaptive automation conditions (EXP3A/4A) were compared against the set of human-
centric adaptive automation conditions (EXP3B/4B). The key objective measure was the amount of 
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automated driving control and its consequential impact regarding efficient travel (longitudinal 
progress) in conjunction with safety (road departures). Key subjective measures were perceptions 
of success/effort for both safety and efficiency and satisfaction with the automation. Supporting 
objective measures included NDRT scores, amount of visual distraction, and hazard collisions, as 
well as subjective perceptions of success/effort on the NDRT.  

 

For RQ5, ‘Is the status of backup driving automation necessary to display to drivers?’ the set of 
implicit adaptive automation status conditions (EXP4A/4B) was compared to the set of explicit 
status conditions (EXP3A/3B). Visual distraction, NDRT performance, and proportion of automated 
control were key objective measures of over-reliance. Road departures and hazard collisions were 
key objective measures of safety. Trade-offs in perceptions of success/effort for safety vs. the NDRT 
were key subjective measures. Supporting measures included longitudinal progress performance 
and perceptions of success/effort for efficiency. 

 

3. Results 
Overall, our present experimental design included six objective dependent measures and seven 
subjective dependent measures and seven conditions as previously described. Data summaries of 
the measures across conditions are provided in Table 4.2.3, Table 4.2.4, Figure 4.2.5, and Figure 
4.2.6. All inferential statistics are given in Table 4.2.5 for one-way ANOVA comparisons between 
EXP1 (no hands), EXP2 (one hand), and EXP4C (conventional driving); in Table 4.2.6 for t-test 
analyses to compare adaptive backup driving conditions as a set (EXP3A/3B/4A/4B) against 
continuous supervised automation conditions as a set (EXP1/2); and in Table 4.2.7 for two-way 
ANOVA comparisons between the different levels of backup design: assessment criteria (eyes-only 
vs. eyes-plus-situation) and interface display (explicit automation states vs. implicit automation 
status). 

 
Table 4.2.3. Overview of responses made to hazard obstacles in the EXP1 and EXP2 conditions 

n Condition 
 

Hazard Order, Content, 
Elapsed time 

No 
response 

 

Response: 
Steer  
only 

Response: 
Brake  
only 

Response: 
Steer & 
brake 

13 EXP1: Automation – no hands 1st, tree, 60s 10 2 0 1 
13 EXP1: Automation – no hands 2nd, motorcycle, 120s 2 7 1 3 
13 EXP2: Automation – one hand 1st, tree, 60s 2 11 0 0 
13 EXP2: Automation – one hand 2nd, motorcycle, 120s 2 10 0 1 

Note: Non-response events were presently ambiguous in all experimental conditions containing some level of 
conventional control inputs due to inability to isolate steering and/or pedal inputs specifically intended for hazard 
avoidance (i.e., EXP3A/ 3B/4A/4B/4C). 
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Table 4.2.4. Overview of collisions and circumstances with hazard obstacles in the EXP3A, 3B, 4A, 4B, 4C conditions 

n Condition 
 

Hazard Order, 
Content, 

Elapsed time 

Collision 
 

Conventional  
control 

(automation 
off) 

Eyes 
Away 
(off-

screen
) 

Not 
Tryin

g 
to 

Avoid
#
 

12 EXP3A: backup, eyes + situation, explicit 1st, tree, 60s 11 2 1 2 
12 EXP3A: backup, eyes + situation, explicit 2nd, motorcycle, 120s 6 4 0 0 
13 EXP3B: backup, eyes only, explicit 1st, tree, 60s 4 0 4 0 
13 EXP3B: backup, eyes only, explicit 2nd, motorcycle, 120s 2 1 0 0 
13 EXP4A: backup, eyes + situation, implicit 1st, tree, 60s 9 1 2 1 
13 EXP4A: backup, eyes + situation, implicit 2nd, motorcycle, 120s 7 5 2 0 
13 EXP4B: backup, eyes only, implicit 1st, tree, 60s 6 2 3 0 
13 EXP4B: backup, eyes only, implicit 2

nd
, motorcycle, 120s 0 n.a. n.a. n.a. 

12 EXP4C: conventional driving,  
     no automation 1st, tree, 60s 0 n.a. n.a. n.a. 

12 EXP4C: conventional driving,  
     no automation 2nd, motorcycle, 120s 0 n.a. n.a. n.a. 

# as per experimenter notes via subjective observation.  
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Figure 4.2.5. Objective results with means (‘x’), medians (‘—’), inner quartiles (‘░’ ), and individual data points (‘○’) per 
condition for the measures of a) classified visual distraction, b) N-back NDRT performance, c) lateral performance, d) 
longitudinal performance, and e) amount of automated driving control. The numbers next to the boxplot represent the 
mean values. 
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Figure 4.2.6. Subjective results with means (‘x’), medians (‘—’), inner quartiles (‘░’ ), and individual data points (‘○’) per 
condition for the measures a) safety success, b) safety effort, c) efficiency success, d) efficiency effort, e) N-back NDRT 
success, f) N-back NDRT effort, and g) satisfaction with automation. The numbers next to the boxplot represent the 
mean values.
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3.1. RQ1  

‘Are drivers susceptible to dangerous levels of distraction with SAE Level 2?’ 

No collisions occurred in the conventional driving condition (EXP4C) for either the first or the 
second obstacle (Table 4.2.4). With automation without any hands on the wheel (EXP1), 10 out of 
13 participants (77%) did not make any response to the first obstacle and 2 out of 13 participants 
(15%) made no response to the second obstacle (Table 4.2.3). Bonferroni-corrected alpha showed 
that perceived effort spent on travel time/speed was not significantly lower in EXP1 than in EXP4C 
(Table 4.2.5). Perceived success on the NDRT was not significantly higher in EXP1 than in EXP4C 
(Table 4.2.5). Objectively, participants exhibited significantly higher levels of visual distraction and 
improved NDRT scores in EXP1 than in EXP4C (Table 4.2.5). 

 

3.2. RQ2  

‘Does placing a hand on the wheel improve driver supervision of automation?’ 

For the initial hazard, there were 10 non-responses in EXP1 (no hands) compared to 2 non-
responses in EXP2 (one hand) (Table 4.2.3). However, non-responses to the second hazard were 
equally frequent (2 non-responses each) in the EXP1 and EXP2 conditions (Table 4.2.3). Perceived 
effort spent on travel time/speed and perceived success on the NDRT were not significantly 
different in EXP2 than in EXP1 (Table 4.2.5). Objective amounts of visual distraction and NDRT 
performance scores were also not found to differ significantly between EXP2 and EXP1 (Table 
4.2.5). Satisfaction with the automation did not significantly differ between EXP2 and EXP1 (Table 
4.2.6).  

 

3.3. RQ3  

‘Is adaptive backup a safe and acceptable alternative to continuous automated 
driving?’ 

Visual distraction and NDRT performance scores were significantly lower in the set of adaptive 
backup conditions (EXP3A/3B/4A/4B) in comparison to the set of continuous supervised automated 
driving conditions (EXP1/2) (Table 4.2.6). Road departures were also significantly lower in 
EXP3A/3B/4A/4B compared to conventional driving (EXP4C) (Table 4.2.6). Participants in 
EXP3A/3B/4A/4B reported significantly lower effort and success with the NDRT compared to 
EXP1/2 (Table 4.2.6). Significant differences were not found between EXP3A/3B/4A/4B and EXP1/2 
in regards to perceived safety effort, perceived safety success, or satisfaction with the automation 
(Table 4.2.6). For perceived travel time/speed, EXP3A/3B/4A/4B participants reported significantly 
higher effort and significantly lower success than EXP1/2 (Table 4.2.6). 

 

Compared to the rate of non-response errors to hazards in EXP1/2 (16 of 52 possible, 31%) (Table 
4.2.3), a lower rate was observed of participants not noticing or not trying to respond to the 
hazards in EXP3A/3B/4A/4B (3 out of 102 possible, 3%) (Table 4.2.4). Five hazard collisions occurred 
in the adaptive backup conditions with unobserved participant awareness. 37 other hazard 
collisions occurred in the adaptive backup conditions but with explainable causes rather than being 
attributable to complacency errors: 19 when the participant was observed to be actively trying to 
avoid the hazard (i.e., unsuccessful in regaining control from the automation), and 18 due to 
simulation artifacts of DMS-control malfunctions where there was an automatic system mismatch 
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between states of system-classified distraction and system-generated control authority (i.e., 
conventional driving allowed while being classified as distracted, or automated control retention 
while being classified as non-distracted). 

 

3.4. RQ4  

‘Can situated criteria safely reduce driver state monitoring from over-triggering?’ 

In the eyes-plus-situation inattention assessment conditions (EXP3A/4A), the proportion of 
triggered automated backup control was significantly less than in eyes-only conditions (EXP3B/4B) 
(Table 4.2.7). Consequently, longitudinal progress was significantly greater in EXP3A/4A than in 
EXP3B/4B (Table 4.2.7). Objectively, no significant increase was observed for road departures in 
EXP3A/4A vs. EXP3B/4B (Table 4.2.7). Perceived success for travel time/speed was significantly 
higher with EXP3A/4A vs. EXP3B/4B without significant difference in terms of subjective effort for 
this aspect (Table 4.2.7). Participants in EXP3A reported significantly higher automation satisfaction 
than those in EXP3B (Table 4.2.6). Perceptions of effort for safety and success of safety did not 
significantly differ between EXP3A/4A and EXP 3B/4B (Table 4.2.7). Additionally, no significant 
differences were observed between EXP3A/4A vs. EXP 3B/4B in terms of the amount of visual 
distraction, NDRT performance scores, or perceived success/effort on the NDRT (Table 4.2.7). For 
hazard collisions where the participant was definitively observed as not trying to avoid the obstacle, 
all events transpired within the situated (EXP3A/4A) rather than the non-situated assessment 
conditions (EXP3B/4B) but were overall generally rare as an occurrence (i.e., 3 collisions out of 102 
total exposures for EXP3A/4A and EXP3B/4B) (Table 4.2.4). 

 

3.5. RQ5  

‘Is the status of backup driving automation necessary to display to drivers?’ 

In regards to objective measures suggestive of expected overreliance, visual distraction was not 
found to be significantly higher in the explicit adaptive status display conditions (EXP3A/3B) than in 
the implicit adaptive backup conditions (EXP4A/4B) (Table 4.2.7). NDRT performance scores, 
proportion of automated control, and longitudinal progress also were not found to be significantly 
higher with EXP3A/3B vs. EXP4A/4B (Table 4.2.7). Between EXP3A/3B and EXP4A/4B, no significant 
difference was found for the safety measure of road departures (Table 4.2.7) and no discernable 
patterns in evidently rare occurrences of hazard collisions where the participant was observed not 
to be not attempting to avoid the obstacle (i.e., 2 in an explicit condition: EXP3A, and 1 in an 
implicit condition: EXP4A) (Table 4.2.4). No significant differences were observed to evidence trade-
offs between perceptions of success/effort for safety, travel time/speed efficiency, or the NDRT 
performance between EXP4A/4B and EXP3A/3B.  

 

4. Discussion 

4.1. Supervisory problems and design-level solutions  

4.1.1. RQ1  

‘Are drivers susceptible to dangerous levels of distraction with SAE Level 2?’ 

Firstly, ahead of the investigated automation re-design aspects, a confirmation of problems was 
sought. The results from the conventional driving control condition (EXP4C) baselined a relative 
level of visual distraction from our N-back task (e.g., an average of around 53.3%) associated with 
poor lateral performance in our simulated setup (e.g., an average of around 7.4% time spent off-
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road). From such a level of classified visual distraction, significant increases in both of our simulated 
SAE Level 2 driving automation conditions were evidenced: up to an average of 73.7% (EXP2 – one 
hand on the wheel) and 75.6% (EXP1 – no hands on the wheel). This increase in secondary task 
involvement (i.e., a significant improvement was also found in N-back scores between EXP4C and 
either EXP1 or EXP2), most likely accounts for our evidenced results of inadequate supervision, 
where 46.2% of our participants with continuous driving automation made no corrections to an 
unannounced hazardous automation failure. The subjective results for EXP1 compared to EXP4C, 
and for EXP2 compared to EXP4C suggest a prioritization of  participants towards viewing the 
driving automation as convenience commodity (significant decrease in perceived travel time/speed 
effort with significant increase in perceived travel time/speed success; significant increase/trend in 
perceived secondary task success) rather than safety aid (mixed results regarding safety 
success/effort).  

 

4.1.2. RQ (2) 

‘Does placing a hand on the wheel improve driver supervision of automation?’ 

RQ2 aimed to provide evidence for whether a requirement for hand placement might begin to 
address the above-identified problems in SAE Level 2 driving automation supervision. With a hand-
on requirement, participants committed fewer non-response errors to first and second hazards 
(15%, 4 of 26) than those without hand placement stipulation (46%, 12 of 26). These results are in 
contrast with Naujoks et al. (2015), where significant performance differences were not found 
during critical events between hands-on and hands-off supervised driving automation conditions. 
However, Naujoks et al. (2015) reported a majority of drivers in their hands-off condition (120s 
interval allowed hands-free) had actually kept contact with the steering wheel. Notably, our EXP2 
did not produce significant differences from EXP1 in terms of visual distraction, NDRT scores, or 
perceptions of success/effort, which suggests improved hazard awareness from hand-on 
requirements to be produced by mechanisms other than NDRT involvement or subjective value 
proposition (as seen between EXP1 and EXP4C). Physical hand-wheel contact might represent 
linked mind-body benefits that remind/prime a human operator towards conventional driving 
responsibility and steering activity. This explanation is consistent with our observation of steering to 
be the majority response (i.e., compared to braking) when responses were made. 

 

4.1.3. RQ (3)  

‘Is adaptive backup a safe and acceptable alternative to continuous automated driving?’ 

Ironically, the requirement for humans to continuously supervise driving automation implies 
humans to have a greater capacity, across a larger operational envelope, which suggests humans 
are better fit for a majority driving role and should be periodically supported only as needed rather 
than replaced. RQ3 sought to replicate and extend benefits of the adaptive concept investigated in 
Cabrall et al. (2018) where humans drive conventionally with periodic automated backup support 
(e.g., when distracted). Our combined set of adaptive backup conditions (EXP3A/3B/4A/4B) 
evidenced significantly lower visual distraction and NDRT performance compared to the supervised 
continuous automation conditions (EXP1/2), and with significantly fewer road departures compared 
to conventional driving (EXP4C). Compared to EXP1/2, the subjective results suggest adaptive 
backup worked as intended by drawing participants back into the driving task (significantly lower 
perceptions of success with higher levels of effort in terms of travel time/speed efficiency) and 
away from the NDRT (significantly lower perceptions of success with lower levels of effort in NDRT 
performance). Additionally, satisfaction ratings with the simulated short exposure sessions of 
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driving automation were not found to be significantly lower (between-subjects) with 
EXP3A/3B/4A/4B compared to EXP1/2.  

 

Some engineering issues were observed for eye-based re-claim of control from the automation 
during critical responses. Our unintentionally longer implemented requirements (on-road glance 
duration of 4 rather than 2 seconds) for establishing readiness of visual attention (see Methods 
section 2.4) is a likely explanation. Nevertheless, these results raise further design trade-off 
considerations (not investigated by the present paper). More/less strict ToC attention duration 
requirements might function in relation to the respective absence/presence of hazard(s). The 
circumstances of DMS ToC blocking of a hazard-aware human (although present in our simulation) 
would be conceptually rare in the real world as a combination of other rare events: driver 
distraction to a level requiring back-up, hazard presence, and false negative automation error. In 
contrast, continual human supervision of automated driving is expected to increase risks by a 
combination of increased likelihoods: operational duration of automated control, hazard exposure 
rate, vigilance decrement, and (illicit) uptake of NDRT with attentional capture. Overall then, in 
consideration of the discussed risks, adaptive automated backup appears to be a better conceptual 
driving automation choice than continually human supervised driving automation from a purely 
probabilistic perspective.  

 

4.1.4. RQ (4)  

‘Can situated criteria safely reduce driver state monitoring from over-triggering?’ 

Our DMS was designed with an intended negative consequence for end-user inattention – where 
others on-market (e.g., Tesla Autopilot or GM Super Cruise) have used alarms or feature lockout, 
ours included an impedance to forward driving progress (i.e., slowing down). The human-centric 
eyes-only DMS conditions (EXP3B/4B) had significantly greater proportions of automated control 
and consequently more longitudinal impedance compared to the eyes-plus-situation DMS 
conditions (EXP4A/4B).  Correspondently, participants expressed negative subjective experiences 
with significantly lower ratings on perceived travel time/speed success (EXP3B/4B) and automation 
satisfaction (EXP3B). Importantly, the conservative shift towards less automatic DMS triggers did 
not detract from safety: the perceived success of safety did not significantly decrease and lateral 
performance errors (i.e., road departures) did not significantly increase. In other words, the 
situated criteria functioned as hypothesized to reduce false alarms (e.g., avoid the ‘cry-wolf’ effect) 
while also not (dangerously) increasing misses with an overly strict criterion level.   

 

4.1.5. RQ (5)  

‘Is the status of backup driving automation necessary to display to drivers?’ 

In conjunction with the potential rebranding and redesign of driving automation to serve as a 
punctuate safety rather than continual convenience commodity, there is an ethical manufacturer 
responsibility to attempt to deter potential end-user misuse. With aims to reduce risks of  
automation misuse such as from behavioral adaptation (see Martens & Jenssen, 2012) or mode 
confusion (Sarter & Woods, 1995), the lack of end-user awareness of backup automaton 
existence/status in implicit backup conditions (EXP4A/4B) was not seen here to carry additional 
consequences (i.e., no significant detraction from positive measures nor significant addition to 
negative measures). Even though our short-duration simulated trials did not obtain direct positive 
evidence (e.g., significantly decreased visual distraction in EXP4A/4B), it is reasonable to expect (as 
motivated in the introduction section) that people might allow themselves to become distracted 
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more often, for longer periods of time, expecting that the vehicle can always successfully back 
them up. Promisingly, our results do suggest that the notification of backup driving automation and 
detected distraction events might not be necessary from a DMS and so can practically remain in the 
background.  

 

4.2. Limitations 

In terms of external validity, we wish to emphasize first that all exposure sessions in our experiment 
were targeted as fairly short (no more than a few minutes) distraction stress periods to evaluate 
different consequences of automation and DMS design concepts. Thus, multi-tasking challenges 
were assumed (as motivated in the introduction) and purposely induced by our procedures. Our 
present experimental results are thus only suggestive, with more naturalistic vigilance, with more 
rich/complex driving scene environments, and longer-term effects remaining to be investigated 
further elsewhere for replication, validation, and generalizability purposes.  

 

It should also be noted that the present DMS-based adaptive backup driving automation concept 
was limited by some implementation problems in terms of computer network delays with the eye 
tracking as well as some rapid oscillations with the situated transitions of control. This means that if 
a participant was visually distracted, the automation recognized this sometimes several seconds 
later than intended. Thus, although participants who were visually distracted received backup 
support as intended (i.e., there was a strong correlation between the percentage of time that 
participants were visually distracted and the total time that the automation was ‘on’ in the eyes-
only conditions, r = 0.98, n = 26 for the EXP3B and EXP4B conditions combined), participants in the 
explicit eyes-only EXP3B backup condition might not have been able to directly predict/understand 
when the backup automation turned on or off. Furthermore, indicative of unevenly distributed ToC, 
the average number of conventional driving to automation ToC events was actually higher in the 
situated assessment conditions (EXP3A/4A, M = 51.7) than in the eyes-only conditions (EXP3B/4B, 
M = 7.2) although being shorter lived with lower durations of applied distracted status (i.e., 
automation sustained as ‘on’).  

 

Additionally, it should be cautioned that our driving simulation and NDRT are only artificial analogs 
(i.e., limited field of view, lack of realistic force feedback in steering, lack of vestibular motion 
feedback, etc.) of their real-life constituent representations – the simulated vehicle handling was 
anecdotally characterized as ‘slippery’ and the N-back task might be more demanding/compelling 
than a real-life distraction such as a mobile phone chat message. Moreover, perceptions of risk 
(and hence risk-taking behaviors) are rarely commensurate between driving simulators and real-life 
roads.  

 

The ecological validity of specific single off-road glance duration thresholds (e.g., around two 
seconds) is a controversial driver distraction topic, and research has suggested that further studies 
should be open to investigating more elaborated measures such as frequencies of repeated glances 
off-road (Liang et al., 2014), as well as in relation to durations of on-road glances (Kircher & 
Ahlstrom, 2009; Seppelt et al., 2017).  

 

For all of the above reasons, the presently reported results should be interpreted in relative terms 
(ordinal comparisons between conditions) rather than absolute numeric values. 
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4.3. Conclusions 

The present investigation demonstrated attentional susceptibilities in drivers tasked to supervise 
simulated full-time driving automation in the presence of a compelling NDRT. A requirement to 
maintain one hand on the wheel provided some benefit but still exhibited problematic rates of 
visual distraction and non-responses to hazards. Although the NDRT was tasked rather than 
voluntary, the depth of involvement was left free to each participant’s own behavioral discretion. 
Consequently, we evidenced dangerous levels of distraction rather than uncompromised multi-
tasking. Our results exhibited such automation over-reliance problems as possible for occurring in 
as short of time as a single minute.  

 

Instead of focusing or leaving the problem as one of innate human limitations to attempt to 
correct, the present paper motivated an ecological approach for ‘changing-the-machine-to-fit-the-
man’ via redesign allocations of the same technology as adaptive backup. Overall, decreases in 
distraction (with the same NDRT) and consequential improvements to driving safety were 
evidenced from the adaptive backup conditions. Situated DMS criteria reduced unnecessary 
automatic assessments of distraction, and implicit automation status removed unnecessary risks for 
human misuse of automation (e.g., over-reliance).  

 

Under controlled between-subject comparisons, we have shown preliminary feasibility without 
significantly reduced levels of acceptance compared to status-quo counterparts of supervised 
continuous automated driving and eyes-only distraction assessment (i.e., our new designs did not 
materialize evident conceptual deal-breakers). Our rather homogenized participant groupings were 
randomly assigned between conditions where very little presumably varied other than the 
manipulations of interest. However, further studies of within-subjects design, would strengthen a 
claim of achieved levels acceptance of our concepts and more targeted survey studies might best 
assess comparative acceptance/satisfaction at a broader level (e.g., intent to purchase). 

 

4.4. Application 

Our presently explored problems and solutions are germane to ongoing real-world automation 
design directions and decisions. Beyond the widely reported first AV fatality, there continue to be 
potential ‘procrustean bed’ issues of ‘fitting-the-man-to-the-machine’ which ironically can be 
obscured as user errors rather than system design drawbacks. For example, over two years later in 
June 2018, a safety driver of a Waymo autonomous vehicle caused an accident when he fell asleep 
and inadvertently activated a transition back to manual control (Griswold, 2018) — this incident 
was recorded with the CA DMV authority as a ‘conventional mode’ rather than an ‘autonomous 
mode’ accident. 

 

A redesign concept for automated driving control, from continuous to backup, aims to support 
momentary irregular human errors rather than grossly replace all human driving authority (both 
responsible and reckless together) with technology that is still evolving rather than matured. If 
adaptive driving automation is pursued, further design considerations should involve how much 
information a DMS uses in its assessments and how much the driver needs to know about the 
system. Additional vehicle sensors (e.g., forward/side facing cameras and/or radar) can help DMS 
defer to driving scene contexts (i.e., of present collision and course deviation risks) prior to 
ascertaining driver states like distraction and consequential triggers for alerts and/or transitions of 
control. Such a layer is expected to provide a more situated human-like or graceful interaction style 
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through reduced false alarms and drops in perceived value by the driver. In terms of anticipated 
benefits of implicit driving automation applications, several safety systems already set a precedence 
of event-driven occurrence without explicit status indications or any knowledge required from the 
driver. With reduced risks of driver over-reliance, example background automotive safety functions 
include the priming of automated emergency braking, seatbelt tensioners, and electronic stability 
control systems. 

 

Key points 
 Complacency effects can occur with automated driving systems in as short as one minute of 

time. This may occur in spite of direct instruction requiring drivers to ‘monitor and correct 
the automated driving for any dangers/errors’ and a recently experienced automated 
driving error. 

 

 The provision to keep one hand on the wheel had a positive impact on generating a 
response to the first obstacle. However, non-responses to the second follow-on obstacle 
were equally present in both the no-hands and the one-hand-on-the-wheel automated 
driving conditions. 

 

 All presently investigated backup driving automation conditions (whether with trigger 
criteria of eyes-only or eyes respective of driving scene/situations; and whether with hidden 
or overt transitions of control) were successful in reducing the amount of time spent off the 
road in comparison to a conventional driving control condition.  

 

 An implicit backup automated driving system is expectedly harder to misuse than one with 
an explicit interface, and situated alerts have the potential to reduce negative impacts of 
false alarms such as reduced perceptions of self-success and overall satisfaction.   
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Appendix A. Developed Driving Research Tools 

A.1. Driver Monitor System: Interface Layout 

Driving automation can be integrated with driver monitoring systems (DMS) to produce real-time 
adaptive and automatic transitions of control (ToC) (i.e., reducing human-machine interface 
requirements on manual button presses, gesture generation/recognition, vocal commands, etc., as 
well as relatively late cognitive processing requirements such as conscious human awareness of a 
need for a ToC). Many DMS can respond to different physiological driver measurements (heart, 
breath, sweat, brain, hands, head/face, body, etc.). Particular promise, however, is presumed from 
the measurement of eyes based on accounts of the importance of visual information demands in 
driving (cf. Sivak, 1996), as well as a continued reduction in form factors of cameras, which is 
favorable towards practical instrumentation considerations of decreasing intrusiveness and cost.  

 

Eye-based DMS have been developed with different eye measure attribute states, but few combine 
several measurements and state classifications in a parallel hybrid manner, and fewer still towards 
direct integration aspects with adaptive driving automation ToCs. The DMS referenced in the 
present Chapter 4.2 has been shared as a Simulink model in an open-source repository at 
http://doi.org/10.5281/zenodo.893325 and functions by processing eye-behavior data through 
three separate analysis streams to detect non-mutually exclusive sub-states of driver distraction, 
drowsiness, and/or cognitive overload (Figure 4.2.A.1). The classification parameters within each 
stream were derived from eye-tracking driving research but are purposefully grouped and arranged 
so as to facilitate easy visual programming for adjustments per different research needs.  
Furthermore, Figure 4.2.A.2 shows how feedback was directly incorporated in the model to visually 
overview in real-time how the system is arriving at its classifications of distraction, mental overload, 
and/or fatigue based on the currently defined parameters (i.e., values and time windows). 
 

 
Figure 4.2.A.1. Beginning with UDP eye tracker inputs on the left, three separate yet parallel eye behavior analysis 
streams (from top to bottom: distraction, cognitive overload, fatigue) flow through the middle to the right where binary 
switch gates can be toggled to include consideration of the classified states towards an abstracted level of aberrance 
that can be transmitted via UDP as a single value for incorporation in an adaptive driving automation system’s decision 

logic.  

http://doi.org/10.5281/zenodo.893325


 
 

250 

 

Figure 4.2.A.2. Additional direct visual feedback provided (e.g. for researcher/operator) for an overview of the currently 
defined classification parameters per the different state attributes (distracted, overloaded, fatigued) towards labelling 
the eyes of a driver as either aberrant or nominal. 
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A.2. Driving Automation Integration: Interface Layout 

Packaged with the DMS model, is a Simulink model developed in conjunction with TASS 
International’s PreScan physics-based driving simulation platform (see Figure 4.2.A.3). As an 
extension to the pre-existing automated driving control logic (top-middle) of lane center-ing at a set 
speed via linkages between vehicle states (middle-left) and vehicle dynamics (middle right), 
additional grouped block areas were self-implemented and organized to incorporate experimental 
control over adaptive lateral sensors for course conflict resolutions (top-left), adaptive longitudinal 
sensors for collision conflict resolutions (top-right), manual control (bottom-middle), data output 
(bottom-right) and functional allocation switches (middle-middle). For future studies, such a design 
facilitates direct manual experimenter control, in a pre-set or real-time fashion (via the circled 
binary switches) for what transitions of which driving control are (in)active and/or automatically 
driven by incoming eye classification data (bottom-left of middle-middle). The Simulink model is 
freely available within the online repository at http://doi.org/10.5281/zenodo.893325   

   

 
 

Figure 4.2.A.3. Extension of PreScan-Simulink model of driving automation platform for incorporation of automatic 
adaptive transition of control aspects towards facilitated experimenter/researcher control over the integration or 
isolation of different system components: automated lane centering and cruise control, manual steering and pedal 
inputs, lateral sensor triggers, longitudinal sensor triggers (with adaptive cruise control via acceleration suppression 
outputs), and/or eye-based classifications. 

 

  

http://doi.org/10.5281/zenodo.893325


 
 

252 

A.3. Visual N-Back GUI 

A flexible programmable secondary task is provided as a modified version of N-Back. This GUI allows 
the experimenter to setup a visual manual N-back task that requires participants to key in 
responses when presented with a prompt “?????” asking them what was the target number seen 1 
time, 2 times, or 3 times ago. Automatic scoring and auditory feedback is pre-programmed for 
correct and incorrect responses. The experimenter can customize the target values, intervals 
between targets, and amount of targets, and/or pre-load a provided set. Various display 
information items can be toggled on/off including: a running score, the last number the user 
responded with, the correct answer (whether from 1, 2, or 3 times ago), the table of target 
intervals and target values. From such customizable features, this N-Back secondary task can be 
adjusted in terms of difficulty/ease as needed (e.g., with more or less burden on memory). The 
Standalone executable and source code files are freely available within the online repository at 
http://doi.org/10.5281/zenodo.891531 

 

 

 

 
 
 
 
 
 
 

http://doi.org/10.5281/zenodo.891531
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Discussion chapter structure 

This discussion chapter progresses the impact of the present thesis work first with an imperative 
and overview section. Subsequently, a summary of conclusions from each chapter is drawn out as a 
logical progression of individual studies and grouped part relations. The next section provides 
validating convergence of the present thesis study results with those from a few other recent 
theoretical, simulator, and on-road studies (that were all published in the years following 
completion of the present studies). A penultimate section provides a higher and lower level 
discussion regarding the bigger picture framework this thesis advances as well as where it 
specifically fits in for DMS applications. The discussion chapter concludes with a section pertaining 
to future research recommendations.   

 

1. Thesis Imperatives and Impact Overview 
 

Since the start of this thesis project in 2014, the consequences of overly simplistic conventions for 
assessing driver engagement have recently become all too real and deadly. In the wake of the first 
widely reported Tesla Autopilot fatality of Joshua Brown (May 17, 2016 in Florida), the U.S. National 
Transportation Safety Board (NTSB, 2017) issued new safety recommendations on September 12, 
2017 for manufacturers to ‘develop applications to more effectively sense the driver’s level of 
engagement and alert the driver when engagement is lacking while automated vehicle control 
systems are in use’. While crossing the street as a pedestrian, Elaine Herzberg was killed on March 
18, 2018 in Tempe, Arizona, by an Uber ‘self-driving’ test car equipped with a human safety driver 
who local police have reported was distracted by a streaming television program at the time 
(Plungis & Barry, 2018). Meanwhile, a recent National Safety Council public opinion poll (NSC, 2017) 
has found that drivers are actively disabling or otherwise defeating built-in safety features because 
they are either confusing, irritating, or susceptible to false alarms (Cichowski, 2017). Advanced 
driving assistance systems that rely on assessing driver attention through (periodic) steering wheel 
inputs have been subject to low-tech hacks from objects as common as an orange or a water bottle 
(Stumpf, 2018). Moreover, such defeat devices are even being openly sold as commercial products, 
e.g., the ‘Autopilot Buddy ®’ from Dolder, Falco and Reese (2018). 

 

What can be done about the deaths that are presently occurring on our roadways both from before 
and even still with driving automation? Improved human interactions with automatic driver 
monitor systems (DMS) should foster mutual calibrations of trust and ultimately benefit traffic 
safety through increased public adherence and appropriate use of its designed safety systems.  

 

The aim of this thesis was ‘to develop a system that is able to monitor the driver’s vigilance’ and the 
approach taken was inspired by cognitive systems engineering (ecological perspectives). In-depth 
reviews of vigilance (Part 2) made it clear that situational knowledge would be crucial for 
understanding vigilance whether in general, for driving, or for monitoring driving automation. 
Furthermore, specific practical details with which to proceed to build a situated vigilance driver 
monitoring system (DMS) were found to be lacking. Thus, measurement studies (Part 3) were 
undertaken to better know the relevant details of driving scenes to which driver attention should 
appropriately relate. Amount of road curvature, traffic, and eye movement distances were 
identified as important and relatable factors.  
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Lastly, proof-of-concept integration studies in a driving simulator (Part 4) were deployed both with 
and without scene-tied assessment constraints. In the first version, control was taken away from 
human drivers and the vehicle slowed down whenever they looked away from the road too long; in 
the second version, looking away too long was tolerated by the system so long as no lateral or 
longitudinal conflicts were present. Benefits were obtained for both versions, but the situated DMS 
included a reduction of unnecessary alerts with improved primary and secondary task performance 
as well as enhanced participant acceptance ratings. In other words, the situated DMS respected 
natural human adaptive behavior (e.g., more secondary task involvement during less demanding 
driving) allowing them to better manage conflicting competition for attention.    

 

Consequently, this thesis has succeeded in its approach to the stated objective and on-market DMS 
across levels of driving automation stand to be improved by incorporation of eyes and scenes taken 
together as a unified assessment. Beyond developing a single situated DMS, outputs of this thesis 
also were deliberately designed as several inroads towards extensibility for future research and 
development. When paired with AV technology, situated DMS will reduce unnecessary alerts to 
every instance of inadvertent supervisory attention over driving automation – instead focusing only 
on those that meaningfully matter such as when there are high visual demands presented by 
roadway curvature and/or increased traffic volumes. Thus, DMS can reach a level of social 
interaction intelligence that humans commonly expect when dealing with authority figures they 
more readily will comply with rather than reject or seek to undermine. When more people are able 
to use more driver monitoring and AV technology more appropriately more often, then road safety 
should reasonably be expected to increase. 

 

2. Summary and Connection of Thesis Study Conclusions 

 

Chapter 2.1: Driving vigilance task operationalization  

Chap. 2.1 suggests the importance of vigilance tasking details (i.e., 18 are provided in Table 2.1.1) 
that are lacking for predicting/managing driving vigilance situations: specific consensus definitions of 
conventional driving signal(s), noise, and required response. Even with that same uncertainty, 
common visions for supervision of driving automation present greater risks of vigilance problems 
through an increase in overlap with other classic vigilance decrement features: temporal and spatial 
uncertainty (i.e., from manual de-skilling) of intermittent/rare signals (i.e., from growing reliability 
evolving automation) requiring time critical response (i.e.., from take-over requests), within 
prolonged task durations (i.e., from enabling longer commutes/trips) and increased monotony (i.e., 
from computerized consistency in operation).  

Vigilance is a pervasive topic. There were already around one thousand published reports on the 
topic by the mid 1980’s (i.e., over 30 years ago). So a first place concern was to understand what 
has been known to cause vigilance decrements. Top-cited theory from across seven decades 
evidenced a list of around a dozen classic situational features (Table 2.1.1.) that were found to be 
highly contrived/constrained: as in consisting of specific signals (that must be few, temporally 
uncertain, short lasting, spatially uncertain, etc.), noise (that must be frequent and very similar to 
signals), and tasks (that must be long in duration, monotonous, and have required responses, etc.). 
Such artificial conditions evidenced as producing vigilance decrements is convergent with the titular 
‘iatrogenic’ argument made by Hancock (2013) that ‘locates the origin of the phenomenon and the 
onus for practical improvements ... with designers rather than apportioning blame for performance 
decrements to the operator ... (and) ... reinforces the recognition of ... the often unrecognized 
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external arbiter ... and the extrinsically imposed imperative to sustain attention’.  In other words, if 
vigilance decrements were to be taken as a kind of disease it is arguably one that appears to be 
self-inflicted by design (i.e., by the specific operationalization of the vigilance task).  

 

In prognosis of driving vigilance decrement issues, trying to map classic vigilance decrement 
situational features to the case of driving was determined to be a difficult, near impossible, 
endeavor. Too much uncertainty was present in reports of driving vigilance task operationalizations 
or else the signals, noise, and responses most commonly investigated were alongside of, rather 
than strictly belonging to driving percepts/actions (e.g., press a button upon hearing a 600 Hz but 
not a 500 Hz sinus tone). The difficulty in finding consensus operationalization of driving 
requirements at a specific/detailed level is probably best explainable upon reflecting that driving 
success (in the real-world) can be achieved in many different sufficient/satisficing rather than 
strictly optimized ways. However, even if specific definitions of driving signals, noise, and responses 
still remain unknown for operations involving supervising driving automation (just as with 
conventional driving), the overall supervisory task more closely approaches classic vigilance 
degradation situations by way of increased work constraints/pressures and reductive processes. 
What once was a complex/uncertain continuous task for the human driver, becomes a more 
simple/contrived intermittent task for the human supervisor of driving automation with: temporal 
and spatial uncertainty of intermittent/rare signals requiring time critical response, prolonged task 
durations, and increased monotony. Conclusions from Chapter 2.1 thus recommended caution and 
suggested (re)design opportunities against the status quo vision for deploying automated driving. 

 

Chapter 2.2: Supervisory engagement with driving automation 

Chap. 2.2 shows that the most common solution areas to the problem of keeping attention while 
supervising automation include those focused on internal cognitive states, followed by those with a 
broader situational (task/ecological) perspective.  

Outside of recent developments in driving automation, increases in automation have been 
changing human roles/responsibilities from lower-level operators to higher-level supervisors in 
variety of domains for an extended period of time already. Consequently, there is a substantial 
body of human-automation interaction literature with concerns and suggested solutions for 
keeping up engagement/attention of human supervisors of automation. Chap 2.2. developed a 
categorization scheme of six themes to group the solutions into recognizable areas such that 
frequencies and trends analysis could be supported and applied. The first three themes describe 
supervisory control avoidance either in a hard sense or different versions of a soft stance: objective 
or subjective reductions in the supervisory control task. The latter three themes describe solutions 
under familiar learning theory paradigms in chronological order: behaviourism, cognitivism, and 
ecological constructivism. Results from Chapter 2.2 showed that independent raters were able to 
reliably apply the themes to categorize recommendations from influential human-automation 
interaction research. Cognitive followed by ecological themed solutions appeared to be the most 
commonly proposed in influential human-automation interaction literature conclusions. 
Additionally, less common but still evident areas suggested either avoiding the supervision task 
outright or ways to reduce it 

 

Part 2: Driver Vigilance Review – take-away  

Taken together, the studies of Part 2 emphasize the importance of cognitive and situational themed 
conclusions for managing vigilance issues in general, but a lacking of available practical details (i.e., 
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what driving scene features and driver eye measurements) with which one might proceed to build a 
situated DMS. Thus, applied driver eye and driving scene measurement studies were conducted in 
Part 3. 

 

Chapter 3.1: Crowdsourced driving scene content categorization 

Chap. 3.1 produced a broad yet efficient driving scene content categorization scheme and confirmed 
relatively high levels of accuracy and reliability in crowdsourced annotations using that scheme. Thus, 
measurement of driving scene aspects was nailed down in a concrete and viable manner. 

After the review work of Part 2, we faced the question of how driving scenes could be 
measured/described with a balance of comprehensive coverage and efficient annotation. Traffic 
safety literature suggests that driving scene situational features of general interest might fall under 
three categories of road users (and their locations), their behavior, and road/infrastructure details. 
For ease of annotation, items were strictly operationalized as only binary values for 
presence/absence (check boxes) and ordered in a probabilistically prioritized manner (more likely - 
first, less likely - later). Consequently, a single driving scene annotation of around 36 scene features 
took on average 37 seconds to complete. Several relatively easy/unambiguous driving scenes were 
pre-categorized and used as explicit training material as well as mixed in (in places unknown to 
crowdsourced annotators) as implicit screening devices to remove indiscriminate/incorrect 
responders. A robust (valid and reliable) driving scene library was thus able to be constructed 
consisting of about 38,298 seconds of dash-cam driving footage with their contents annotated by 
around 200 crowdworkers from 46 countries in about 1 ½ days’ time. 

 

Chapter 3.2: Prediction of workload, attention and eyes from driving scene 
contents 

Chap. 3.2 determined specific driving scene features (i.e., road curvature and traffic) to be of 
importance to perceived driving effort ratings and associated eye movements (i.e., saccade 
amplitude). 

Because some driving scenes are easier/harder than others, a situated DMS should be able to know 
how much attention to expect from a driver’s eyes relative to such present demands to be more 
conservative/judicious in its vigilance assessments and involvement. So the measurement study of 
Chap 3.2. sought to determine what driving scene features would be associated with what eye 
measures (and in accordance with a range of perceived effort that drives those eye behaviors). The 
high volume of annotated scene segments in Chapter 3.1 (~12,862 scenes from around 50 different 
driving videos) enabled a selection of stimulus material that contained a sufficient degree of 
resolution to perform predictive regression analyses in Chapter 3.2 (i.e., continuous scaled 
independent variables to match continuous scaled dependent variable constructs). Specifically, 60 
video clips were selected to represent a range of low/high driving scene demands with different 
scene features.  

 

The most powerful relations were found for effort ratings as predicted from road curvature and 
traffic; saccade amplitude as predicted by effort ratings; and saccade amplitude as predicted from 
road curvature and traffic. More/less road angle curvature (and more/less traffic) was associated 
with more/less effort and more/less saccade amplitudes. Thus, the lower level eye movement 
measurements showed stronger (more reliable) relations with perceived effort and visible scene 
contents (lateral/longitudinal conflicts) than the higher level representation (and eye 
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measurement) aspects of information uptake (fixation duration) and increased cognitive processing 
(pupil size). 

 

Chapter 3.3: On-road out-of-the-loop drivenger eyes 

Chap. 3.3 measured both on-road eye movements and driving scene aspects. ‘Out-of-the-loop’ eyes 
generally exhibited greater off-center movement distances across entire trips. However, the off-
center distances of ‘in-the-loop’ eyes were observed to periodically rise and fall with respectively low 
and high driving scene demands (as operationalized by steering angle, traffic count, and speed). 

Within an on-road study environment, Chap 3.3. investigated a different characterization of eye-
scene relations than was able to be determined in the laboratory environment of Chap 3.2 (where 
scene demands could be more precisely measured and safely manipulated). An eye-measurement 
difference was captured between the variant role/responsibilities of on-road drivers (who, by 
definition, are in control of the driving) vs. on-road passengers (who, by definition, are not in 
control of the driving). Benefits of this innovative approach included increased safety and 
naturalism when compared to more common research methods of imposing artificial distraction 
tasks to ensure the driving participant becomes ‘out-of-the-loop’ (i.e., for the sake of making 
measurements at such points). An additional benefit was that paired participants served as 
comparative controls for one another in terms of being in the same vehicle as it moved between 
varying driving scene demands (traffic, weather, road-infrastructures, etc.).  

 

Both driver and passenger eyes moved substantial distances on/off road center and around/across 
the driving scene. Across a driving trip as a whole, passenger eye eccentricity typically exceeded 
driver eccentricity (by about 25%). However, when driving scene demands were higher (increases in 
steering angles, traffic, and/or speed) discrimination performance weakened because driver eye 
eccentricity adaptively increased to meet those increased demands whereas passenger eye 
eccentricity was more free to vary in such situations. Driver eye eccentricity also rose during low 
demand situations where they became (like passengers) more free to vary. In conclusion, 
recommendations were made to discard DMS alerts to increased driver eye movements that reflect 
natural/safe adaption to relative extremities of high/low (visual) demands. 

 

Part 3: Driving scenes and driver eyes – take-away  

Taken together, the studies of Part 3 emphasize the viability of measuring relations between driver 
eyes and driving scenes at a behavioral level. An applicable situated DMS conclusion was that 
specific measureable (visible) scene demand features of road curvature and traffic count could 
reliably be represented in low-level pre-cognitive eye movement measurements. Next, the studies 
of Part 4 executed driving simulator proof-of-concept design validations of various integrations of 
real-time vigilance DMS and driving automation. 

 

Chapter 4.1: Directionality of eye-based transitions of driving control 

Chap. 4.1 implemented a driving simulator proof-of-concept real-time DMS and driving automation 
integration (i.e., where the automation backs up a driver that looks away too long) that showed 
safety and acceptance improvements over an emulated concept of present-day on-market functional 
allocations of automated driving (i.e., where the automation de-activates itself upon detecting 
distraction). 
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As discussed in the literature reviews/surveys of Chap 2.1 and Chap 2.2, there are evident human 
factors concerns with a level of driving automation that requires human supervision (as backup/fall-
back). Nevertheless, such systems have been released on public roads and the most popular 
conceptual instantiations are trending towards attempts to manage supervisory driver inattention 
issues by automatically disengaging themselves if driver engagement assessments are negative 
(‘forced-manual control’). The experiment of Chap 4.1 investigated safety implications of such an 
integration implementation against a role reversed concept (‘adaptive-backup control’) where the 
driving automation instead backs up the human driver upon inattention assessments.  

 

Peak absolute lateral error was higher with the forced-manual control condition compared to the 
adaptive-backup control condition. The adaptive-backup control condition showed lower self-
reported workload ratings and yielded higher acceptance ratings than the forced-manual control 
condition. Thus, driving performance and experiences were improved by reversing the 
directionality of the adaptive transition of control, i.e., keeping the majority/continuity of driving 
control with human drivers and backing them up with automated driving control when they 
become distracted. 

 

Chapter 4.2: Situated/Implicit backup driving control 

Chap. 4.2 extended the successful proof-of-concept from Chap 4.1 within another driving simulator 
study. Inattention problems with supervising driving automation were evidenced (but also reduced 
from a condition requiring one hand be kept on the wheel). Situated and implicit DMS integration 
designs of adaptive-backup control showed user interaction and performance improvements. 

First, Chap 4.2 confirmed previously assumed inattention issues with supervision of driving 
automation by showing higher incidences of non-response errors to unexpected road hazards (as 
compared to a condition with full-time manual control and several versions of adaptive-backup 
control). Requirements with a low-level physical tie-in (i.e., keep one hand on the wheel) 
significantly improved hazard response generation.  

 

Second, Chap 4.2. examined different versions of the successful implementation from Chap. 4.1 in 
order to examine further design improvements aimed at potential drawback issues of over-alerting 
and driver over-reliance (misuse) as might be problematic for adaptive-backup control. Situated 
DMS backup control (off-road looking with present lateral and/or longitudinal conflicts) generated 
higher perceptions of success, while reducing over-alerting without impacting safety from its 
lowered amount of involvement compared to non-situated DMS (off-road looking only). The 
implicit design where adaptive backup control status indication was removed/hidden did not 
produce any disadvantages. 

 

Part 4: Adaptive driving automation – take-away  

Taken together, the studies of Part 4 emphasize problems with presently released driving 
automation designs where humans supervise without continuous physical activity involvement 
requirements. Most importantly, the Part 4 studies confirm viability of real-time eye-based DMS 
integration with driving automation towards practical user experience and safety advantages not 
only when deployed in an adaptive-backup directionality for transition of control, but also as from a 
situated version of DMS specifically. 
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3.  Recently Convergent Research  
 

Since the completion of the design and conduct phases of the enclosed thesis work, an appreciable 
volume of publications within the last couple of years (2017 and 2018) have meanwhile emerged 
that appear to be in agreement with the present thesis topic, theoretical aims, methods, and/or 
results. A few of such are taken as examples for discussion in this section pertaining to validating 
convergence of my thesis research with the research of others.  

 

3.1  Predicted problems and solution directions 

Automation-related concerns have been a main-stay in human-machine research for decades 
before and are predicted to continue. Strauch (2018) indicated that ironies such as introduced from 
Bainbridge (1983) are remaining rather than resolved even while automation is proliferating well 
beyond the professional operator settings of previous generations (e.g., now ubiquitous in 
unregulated public arenas as with smartphones and automobiles rather than nuclear power 
processing plants). In the driving automation domain, he cited driving simulator research indicating 
delayed reaction times and reduced attention of vehicle operators in highly automated driving 
compared to manual control. From the present thesis, Chapter 2.1 concluded with design features 
of driving automation systems (e.g., prolonged periods with low-frequency signals, signals that are 
similar to noise, lack of feedback on performance, etc.) that suggest an increased likelihood of 
classic vigilance problems.  

 

In terms of recommendations, Strauch (2018) suggested further research that examines how 
drivers can retain skills enabling them to effectively recognize and respond to critical situations. 
Strauch suggested systems that retain the features of automation (safety, reliability, accuracy, 
economy) while at the same time optimizing human drivers’ vigilance and retention of manual and 
cognitive operating skills. Presently, Chapters 4.1 and 4.2 have found benefits from using driving 
automation as a backup to humans (e.g., a reverse of the typically promoted proportions of 
human/automation driving control), an approach that may maximize the safety strengths of 
automation while retaining operator manual driving skills. Furthermore, Strauch endorsed a 
solution from Bainbridge as ‘worthwhile’, where operators are given opportunities to practice 
manual control during actual system operations, and if not possible, by providing similar 
experiences in system simulators (e.g., consistent with theme #2 of the present Chapter 2.2). He 
concluded with an emphasis on provisions of training to meet the additional technology (e.g., 
consistent with theme #4 of the present Chapter 2.2), which he argued is important given the 
problem of increases in automation in non-professional domains (e.g., automotive). 

 

3.2 Performance and attention measures in driving automation simulator studies 

Greenlee et al. (2018) tasked participants to press a button on the steering wheel upon detection 
of low probability (5%) roadway hazards (i.e., vehicles encroaching upon the lane of travel) without 
feedback while supervising an automated driving vehicle for trips of about 40 minutes under foggy 
conditions. Across subsequent 10 minutes periods of watch, correct detections declined in number 
(i.e., more than 30%) with a significant drop evidenced onward from the 10-20 minute time-on-task 
period. Likewise, reaction times were found to significantly increase after the first period of watch. 
Post-drive workload self-ratings descriptively showed above scale mid-point average ratings for 
mental demand, temporal demand, effort, and frustration and a significantly higher than mid-level 
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global demand. Pre- and post-drive self-reported stress ratings indicated significantly decreased 
engagement and significantly increased distress. Comparably, Stapel et al. (2019) found on-road 
automated driving to reduce perceived workload, but monitoring duties therein to increase 
cognitive workload when compared to conventional/manual driving.  

 

The vigilance task operationalization of Greenlee et al. (2018) appears highly in overlap with the 
composite multi-decade vigilance decrement set of features identified in the present chapter 2.1 
(e.g., rare and difficult to perceive signals that are similar to frequent noise in a prolonged 
monotonous task without feedback, etc.). Recommended augmentative strategies to researchers 
and developers of vehicle automation strategies included breaks from the monitoring duties and 
use of physiological monitoring to continually assess and adaptively respond to measured driver 
vigilance. Both of these recommendations are consistent with theme #2 of the present chapter 2.2 
and are supported by the eye tracking measures of Chapter 3.2 and 3.3 as well as the incorporated 
DMS development and application in chapters 4.1 and 4.2. In Chapter 4.2, human vigilance 
inadequacies in supervising driving automation were found in time periods as short as 1 minute 
(and even upon following a recent automation failure) when exacerbated by a compelling 
secondary task. 

 

3.3 Real-world driver SA and behavior issues with released on-road driving 
automation  

Endsley (2017) conducted a 6 month longitudinal study of personal naturalistic experiences with 
the driving autonomy features of her own Tesla Model S. While SA (as measured from real-time 
knowledge probes) was not found to be significantly higher or lower on average than a control 
period, her observation was that it was still problematically consequential for increased accident 
risk in being more variable and hence susceptible to being gone when it might be needed. Endsley 
(2017) perceived her reaction times to be slower: ‘I was surprisingly slow to react … it took extra 
seconds to realize that the automation was not going to handle the situation’. With a secondary 
task, significantly increased visual distraction and significant non-responses to automation failure 
events were found in the driving simulator study of the present chapter 4.2 that emulated driving 
automation conditions similar to the use of Tesla Autopilot features (i.e., simultaneous automated 
driving lateral and longitudinal control with stipulations for visual/mental involvement and some 
variation in hands-on requirements).  

 

Endsley (2017) also experienced false alarm problems with warnings that occurred ‘frequently in 
error, causing significant frustration’ and stated dissatisfaction with a lack of face-validity in 
vigilance assessment: ‘having one’s hands on the wheel, is not the same as having one’s mind on the 
road’. Present thesis results contributed to the reduction of potential false alarms (Chapter 3.3.) 
and their consequences (Chapter 4.2) in assessment of driver engagement and constructs of driver 
SA through eye-based measures (Chapters 3.2, 3.3, 4.1 and 4.2) rather than steering wheel input 
sensors. However, it should be noted that the experiment of the present chapter 4.2 also 
contributed counter-evidence that one-hand on the wheel in fact increased the likelihood of 
generating a response to driving automation failures compared to no-hands on the wheel. Endsley 
(2017) summarily states that the autopilot mode of Tesla ‘is likely to provide a good backup’ and is 
consistent with the designs investigated in the present chapters 4.1 and 4.2. Lastly, Endsley (2017) 
advocated for increased driver training to address the new responsibilities with driving automation 
(consistent with the present chapter 2.2 theme #4) and also proposed many improvements of her 
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identified system design/interface issues towards supporting drivers’ mental models and 
understanding of the automation (theme #5). 

 

Banks et al. (2018) analyzed video observations they collected during an on-road study using a Tesla 
Model S being operated in Autopilot mode (i.e., 12 participants, approximately 40-minute driving 
trips each). Only one participant was observed to remain ‘hands-on’ throughout their use of the 
Autopilot features (note: Tesla documentation states ‘Autosteer is a hands-on feature. You must 
keep your hands on the steering wheel at all times.’). Multiple warnings from the remaining drivers 
resulted in periods in excess of 75 seconds of ‘hands free’ driving, which the authors lament as a 
substantial time period that could enable non-driving related secondary tasks to be taken up and 
might have ‘disastrous consequences’ if at the same point in time an operational design domain 
(ODD) breach were to occur (e.g., an automation failure/error). Banks et al. (2018) cited (NHTSA, 
2017) where the infamous Tesla Autopilot fatality (Joshua Brown) was attributed to a prolonged 
period of distracted driving. With both, one and no hands, on the steering wheel (and a compelling 
secondary task), the present chapter 4.2 found significantly increased instances of visual distraction 
when participants were supposed to be monitoring simulated SAE level 2 driving automation as 
compared to manual driving (also with the same secondary task). Furthermore, the emulated SAE 
level 2 conditions of Chapter 4.2 produced non-responses to simulated driving automation errors 
(i.e., driving into a fallen tree and through a motorcyclist) while participants were just so visually 
distracted as warned above by Banks et al. (2018).  

 

Banks et al. (2018) observed substantial issues with mode confusion, visual human machine 
interface status displays, and false alarms. The present chapter 4.2 included system integration 
designs for combining human and driving automation to reduce the first two via implicit backup 
driving automation and the last via the incorporation of more situated automatic DMS assessments. 
Banks et al. (2018) concluded that either the human driver should remain in control of at least one 
of the control aspects (longitudinal and/or lateral) or they are removed entirely from the control-
feedback loop thus skipping the middle SAE levels of driving automation involving supervisory 
driver control. Such a recommendation is consistent with the present chapter 2.2 theme #1.  

 

3.4. Convergence summary    

In recently published research of the last couple of years (2017 and 2018) problems have been 
identified for driver engagement (attention, vigilance, SA, etc.) and its assessment across various 
levels of driving automation. Suggested detailed understandings of the underlying issues are 
consistent with those identified in the literature review of the present Chapter 2.1 and offered 
solutions are convergent with themes discussed in Chapter 2.2. Additionally, continuous eye-based 
measures are being proposed and pursued both from information processing frameworks (e.g., 
internal focus on interpreting cognitive states of individual drivers) as well as in relation to broader 
external contexts. The present Chapters 3.2, 3.3, 4.1, and 4.2 all provide viable inroads to making 
use of eye-tracking data, while relations to driving scene situations were more directly considered 
in Chapters 3.2, 3.3, and 4.2. Furthermore, Chapter 4.2 contributed an integration design and 
implementation platform that could be useful for further researchers of similar interests which 
allows for preliminary/prototypical investigations of adaptive driving automation by means of a 
easily re-configurable DMS and driving control (i.e., via GUI toggle switches and/or numeric entry 
fields). 
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4. Thesis Research and Development Implications 
 

4.1 Ecological theory framework  

The research within the present thesis substantiates triadic theoretical paradigms (work domains, 
humans, technology). When applied to driver vigilance, an assessment would be considered 
meaningless (i.e., within a meaning processing account), without consideration of the concurrent 
contextual aspects surrounding the assessment of the driver. The recently introduced driver 
attention theory dubbed ‘Minimum Required Attention’, proposes that ‘a driver should only be 
considered inattentive when information sampling is not sufficient’ to the demands of the situation, 
‘regardless of whether the driver is executing an additional task or not’ (Kircher & Ahlstrom, 2017). 
In other words, observed behavior alone is not enough for assessments of distraction until placed in 
relation to situational/system demands. For example, typing a text message into a mobile phone 
while merging onto a busy commute highway connotes a different meaningful assessment of 
vigilance than the same actions while stopped at a red light in a rural town.  

 

As opposed to presumed fixed-limits resource theories (cf. Wickens 1984, 1992), Malleable 
Attentional Resources Theory (Young & Stanton, 2002) has asserted that human attentional 
capacity naturally varies as a function of situational task demands (i.e., mental workload). In other 
words and observed by Hancock (2017): 

 ‘As the preeminent global adaptive species, humans readily learn and change their behavior 
in accordance with the constraints and opportunities of their ambient environment … When 
we create boring, marginal, uninvolving interfaces to uninteresting tasks, we design boring, 
marginal, uninvolved and uninterested people. We cannot, in all good judgment, simply 
machine the mind to mind the machine.’  

Thus, more consideration and measurement of the situations surrounding the driver are warranted 
to relate with those tools aimed with a human focus, as well as to design more meaningful 
interfaces to those relations. 

 

Ecological approaches to driving safety can be traced to seminal work of Gibson and Crooks (1938). 
Their principles are re-advocated recently by Delucia and Jones (2017) such as: that organism-
environment relations are the proper unit of analysis, that perception and action are continuous 
and cyclic, and that natural human perception is of relational affordances rather than object 
properties, etc. Situationally adaptive and appropriated understandings of driver distraction issues 
are no different. A technical task force of expertise from both European and US intelligent 
transportation systems researchers published a recent conceptual framework and taxonomy 
(Engstrom et al., 2013) that proposed a situated action-oriented view of attention and 
conceptualized driver inattention as ‘mismatches between the driver’s current resource allocation 
and that demanded by activities critical for safe driving, rather than in terms of attentional failures 
of the driver’. Within Engstrom et al (2013), attentional allocations are viewed as adaptive 
functional processes regulating balances between benefits and costs where compensatory behavior 
emerges in regards to contexts (e.g., more attention in anticipation of demanding or uncertain 
situations such as complex intersections, focusing on detecting vehicles potentially appearing 
behind a blind corner, and/or uptake of non-driving activities when bored and/or sleepy).  
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4.2 DMS application fit  
The present thesis provides results regarding relatable demands from specific driving scene 
features of road curvature (lateral course conflicts) and/or traffic volume (longitudinal collision 
conflicts) with specific eye measurements of movement (saccades, eccentricity, etc.). These results 
suggest a lower-level target for DMS applications to support the foundational core monitoring 
activity of driving: attentiveness in visuomotor control (whether of oneself under conventional 
driving circumstances or of another entity as with supervision over driving automation).  
 
As discussed above, the driving task is clearly seen to be more than one thing, and monitoring 
activity (i.e., selective information input to action output mappings) is pervasive throughout. In 
formal research and engineering terms, hierarchical models are often employed to 
decompose/describe human driving performance along a framework of relational orderings. To 
clarify where the present thesis conclusions fit in and to what implications, it is helpful first to 
briefly overview a few of such models from Rasmussen (1983) and Parasuraman et al. (2000) for 
human cognitive information processing performance in general, and from Michon (1985), Merat 
et al. (2018), and Victor (2005) for driving problems specifically. The resulting overarching theme is 
one of consensus recognition and treatment of information that flows both fully and/or partially 
(semi-independently) through earlier/lower/faster and later/higher/slower mechanisms as typically 
mediated by experience/familiarity.  
 
For all kinds of human operator performance and man-machine interface system designs, 
Rasmussen (1983) arranged what is known as the SRK framework with ‘skill-based behavior' (SBB) 
on the bottom, followed by ‘rule-based behavior’ (RBB) next, and with ‘knowledge-based behavior’ 
(KBB) on top. SBB involves a direct mapping between sensory input feature forms to automated 
sensori-motor pattern action outputs. At the RBB level, information proceeds through stages of 
recognition, association and rule retrieval as intercedents between sensory inputs and action 
outputs. At the KBB level, further intermediaries between sensory inputs and action outputs 
include identification, decisions, and planning.  
 
Parasuraman et al (2000) adopted a simple four-stage view of human information processing 
proceeding in turn first from sensory processing, to perception/working memory, to decision 
making, and ultimately to response selection. In terms for modeling functions of automation they 
described these successive stages as information acquisition, information analysis, decision 
selection, and action implementation. Notably, they described such stages as capable of being 
considered as coordinated together in ‘perception-action’ cycles (e.g., Gibson’s (1979) affordance 
relations) rather than always in a strict serial sequence from stimulus to response. Similar accounts 
of information flow, with similar discussion of digressions off a singular path, are seminally 
represented by Endsley’s (1995) three levels of situation awareness (perception, comprehension, 
and projection) as well as the how-what-why triads within abstraction hierarchies of cognitive work 
analysis from Vicente (1999) as explained within McIlroy & Stanton (2011) and in particular, the 
notional movement and shortcuts for information in control tasks across a ‘decision ladder’ where: 
 

‘... although the diagram displays information processing in a linear fashion, different actors 
are likely to take different routes from the entry point to the end point. More specifically, 
novice workers are expected to follow the linear sequence while expert actors are often able 
to take shortcuts. For example, in certain situations the diagnosis of the system state may 
lead directly to the execution of a set procedure’ (p. 363).  
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For driving specifically, Michon (1985) represents the problem solving tasks with three levels of skill 
and control that build cognitively upwards as a nested hierarchy with operational (control) on the 
bottom, tactical (maneuvering) in the middle, and lastly strategical (planning) on top. At the lowest 
level, environmental inputs are processed directly into automatic action pattern outputs in the 
timeframe of milliseconds, e.g., for threat coping aims to avoid acute, perceived danger consisting 
of the basic handling skills of steering and braking. In the middle, maneuvers produce controlled 
action patterns on the order of seconds, e.g., to negotiate merges, turns, and overtaking. At the 
top, strategies invoke general plans under a longer time constant, e.g., overall trip goals, route and 
modal choices. 
 
Merat et al. (2018) adopted and extended the model of Michon (1985), merging it together with 
the levels of driving automation from SAE (2016), specifically for the conceptualization of ‘out-of-
the-loop’ in the automated driving problem domain. Therein a multi-level control of driving is 
depicted with continuous (ms – s), intermittent (s – min), and infrequent (min. – hrs.) monitoring 
activity inherent across driving control. For the innermost loop, the monitoring of 
lateral/longitudinal movements is tied in as ‘basic vehicle motion control’ e.g., ‘prediction of the 
movement of one’s vehicle relative to other vehicles and within the lane ahead’.  
 
In his doctoral dissertation on roadway inattention, Victor (2005) emphasizes the criticality of the 
active vision approach that was argued to be ‘relatively unknown to traffic researchers and human 
factors specialists developing in-vehicle information and communication systems and advanced 
driver assistance systems’ (p. 10).  He introduced and explained a guiding principle of vision from 
Ungerleider and Mishkin (1982) consisting of two semi-independent cortical streams with foveal 
ocular time-sharing constraints: ‘vision-for-action’ and ‘vision-for-identification’ as in accordance 
with faster/basic ventral-stream processing compared to slower/abstracted dorsal-stream 
processing (see also ‘System 1’ and ‘System 2’ respectively in Kahneman, 2011). Such parallel 
division of labor of attentional processing allows for human drivers to move their eyes/attention 
both for fast and spatially accurate processing as visuomotor action control (e.g., immediate lateral 
and longitudinal protections) while at the same time for more conscious, representational, and 
goal-setting purposes (e.g., reading road signs and monitoring in-vehicle displays, etc). When 
coordination breaks down through competition for resources, the disruption of the lower 
attentional mechanism is explained via over-taxation from the higher attentional mechanism. In 
other words, thinking too heavily on a higher level (e.g., fixating too long on identifying/classifying 
an object or concept) detracts from vision-for-action loops of path- and headway-control. 
 
The results and conclusions from the present thesis studies showed that not only are driving 
situations important for DMS assessments, but also suggest the level at which DMS could be 
promisingly targeted. The results evidenced that eye movement measurements (i.e., saccade 
amplitude, eccentricity, off-road glances) can be (beneficially) related to specific visual demands 
(i.e., amount of road curvature, amount of traffic). These measurements, of both eyes and scenes, 
reflect aspects of lateral and longitudinal spatial motion management — described by Michon 
(1985) and Merat et al. (2018) as operational functions/control and explained by Victor (2005) in 
terms of vision-for-action. Thus, on the whole, the present thesis studies suggest means for DMS to 
be targeted to protect and maintain the lower foundational level or inner-most loop of driving 
attention (rather than interactive implicit layers and representational experiences that can be added 
on top). The situated DMS affords an ability for the intelligent vehicle to be more judicious in its 
assessments and to conservatively refrain from alerting/reacting to simply whenever any 
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‘secondary’ higher cognitive tasking is presently detected (e.g., eye movement consequences of 
text reading or phone conversations, etc.). Instead, more (situationally) meaningful behavioral-
based causes for caution/correction comes from situationally restricting DMS involvement to 
whenever the (measurable) eyes cannot (measurably) keep up with the (measurable) present visual 
demands for the most basic level of driving: safe/critical lateral and longitudinal vehicular control.  
 

The power of the situated DMS comes from its protective involvement when a driver’s thoughts 
have been decoupled from actions to such an extent that the (vision-for-action) eyes consequently 
suffer to keep up their basic lower level visuomotor control tasks of moving enough to match the 
visual demands of the present driving scene. In particular, because supervision of driving 
automation artificially splits the naturally adaptive perception-action cycle (i.e., Neisser, 1976) by 
asking for driving control perceptions from the human without his/her control actions, needs for 
DMS support are expected to be greater at such a level. As a composite homeostatic biological 
system, the vision-for-identification neural streams in the brain might be expected to overly 
dominate foveal occupations with diminished rehearsal requests from the vision-for-action neural 
streams which themselves then should reasonably carry metabolic and temporal ‘start-up’ costs 
upon recall from periods of inactivity (like putting force on a muscle that has ‘fallen asleep’ after 
sustained disuse). Thus, the earlier adaptive visual attention activity that is pre-cognitive in the 
sense that it sits before/below comprehension/awareness is expected to be where the results of 
the presently devised situated DMS might best fit in.  

 

5. Future Research and Recommendations 
 

The present thesis studies also provided new avenues in terms of automotive research methods.  

 

Specifically, further descriptions and URLs for specific tools that were developed and felt potentially 
useful to future researchers (but were not otherwise available from the publications themselves) 
have been included directly as appendices to chapters, 3.1, 3.2, and 4.2. and are presently 
discussed in terms of extensibility.  

 

Because future researchers and designers will ultimately be afforded and/or limited by their own 
available resources, a range of  ways to know driving eyes and to know driving scenes are provided 
as contributions from the work of this thesis. For example, Chap 3.2 provides not only a theoretical 
corrective feedback loop ‘big picture’ but also implementable regression equations that establish 
quantifiable relations between how much workload and attention different high/low driving scenes 
might be expected to require. For extensibility purposes, the situated DMS integration with driving 
automation of Chap 4.2 was designed with standard UDP communication protocols that separated 
customizable DMS classification states from consequential driving automation control actions that 
also included an abstraction layer for definition of course and/or collision conflict (e.g., all of which 
might differ between various automotive suppliers or research projects). Thus, it can be concluded 
from this thesis taken as a whole, that to develop DMS of driving vigilance, not only are eye 
measurements (esp. of movement distances) and scene contents (esp. road curvatures and 
collision hazards) important factors but they are obtainable in practical ways for future research 
and development applications.  
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Recommendations for future research fall under two general categories: (1) greater 
fidelity/complexity in driving simulations (e.g., more traffic, intersections, and real-life secondary 
tasks should provide greater generalizability of naturalistic driver adaption to driving scene 
demands) and (2) greater instrumentation technology in on-road vehicles (e.g., better knowledge 
of the driving scene contents and eye movement behaviors with improved measurement 
capabilities). Specifically out on the road, the presently available forward facing driving scene 
cameras had relatively low resolution and moved whenever the head of the participant moved thus 
obscuring/degrading recorded visual inputs for automatic computerized content segmentation let 
alone accurate pixel area coverage calculations. In its present form, the computational resources 
available to our driving simulator visualizations struggled with the additional scenery, sporadic 
oncoming traffic, and more than a single lead vehicle programmed to follow a specific trajectory 
within even the short 2-3 minute duration scenario which included only continuous traffic flow 
characteristics: no stop signs, intersections, merges, or turns. 

 

More generally, initiative for broader areas of innovative driving research resources used in this 
thesis are summarized below, including the use of dashcam driving videos, crowdsourcing, and 
parallel eye-tracking.  

 

5.1 Dash cam driving video recordings 

In the conduct of research in the driving domain, it is easy to take for granted just how diverse 
driving can be. People commonly relate concepts to their own experiences and so it is a natural 
fallacy to disproportionately represent roads and driving conditions that are most familiar and 
available from one’s own driving history and personal environment. Additionally, driving video 
recordings are growing research resources that offer a hybrid of enhanced stimulus/behavioral 
fidelity towards on-road applications that also allow for laboratory levels of repeatability and 
control. 

 

Thus, in attempting an ecological approach to assessing driver eyes in context, a foundational 
interest of this thesis involved probing readily available sources of what driving really looks like. 
Casual observations across the last few years show a fairly steady increase in the number of dash 
cam driving video recordings publically posted and shared on YouTube, now currently totaling in 
excess of 5 million (Figure 5.1). Notably, by appending search terms such as ‘extreme’ or ‘fail’, many 
unusual, and often times dangerous, recordings of driving situations can be exploited in controlled 
and repeatable ways for various research purposes (e.g., which visual scene precursors to a 
hazardous driving event would occupants of an automated/autonomous car notice both with and 
without various kinds of infotainment and/or control interfaces).   
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Figure 5.1. Recent growth in the number of publically available dash cam driving videos posted to YouTube 

Furthermore, the automotive artificial intelligence (AI) community has long been actively 
contributing open source image data sets to advance the training and application of their machine 
learning computer vision models. Recently, dash cam driving video data sets have also been added 
to the community research pool. In June 2018, UC Berkeley teamed up with the AI dash cam 
company Nexar to release the BDD100K dataset containing 100,000 videos that include telemetry 
information like GPS locations, IMU data, and timestamps, as well as annotations such as object 
bounding boxes, lane marking identification, and indications of drivable areas.   

 

5.2 Crowdsourcing for driving 

The conventional driving transportation system has been built up over the last century by and for 
humans. From traffic engineers to city regulatory officials and drivers, humans design and consume 
the materials of the automotive system, so much in fact that driving skills (or knowledge of driving 
domain aspects) has become perhaps nearly on par with walking and talking. Meanwhile, across 
the world there is a growing community of online micro-task workers that through the Internet 
complete services in parallel with significant reductions in time and cost. Such crowd work 
continues to be a popular way of collecting subjective online survey data (esp. for aspects of 
innovative products not yet widely released such with various levels of driving automation). In the 
present chapter 3.1, objective work (i.e., naturalistic driving scene interpretation and content 
labeling) was newly explored and validated specifically in the traffic safety research domain. In a 
future of ever greater computer and car connectivity, it is conceivable that such a resource pool of 
in-common skills may further become useful to advance driving research and transportation service 
applications (e.g., tele-operated remote driving).   
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5.3 Parallel passenger eye-tracking comparisons 

Much of the history of eye-tracking has had a lens focus towards measurements of a single 
individual, and across a pool of participants in separate sessions and typically in an enclosed 
laboratory environment. However, with massive recent reductions in cost, weight and size of 
camera and computing technology, eye-tracking equipment has evolved towards field studies and 
applications that involve the real world. Benefiting from the same goals and advances regarding 
reduced size and cost, the eye-tracking devices are increasingly prepared to undertake 
simultaneous measurements from multiple individuals. In the shared data collection methods of 
the present Chapter 4.1 and 4.2, comparisons of eye measures across a driving responsibility role of 
being in/out-of-the-loop were enabled in a real-world driving environment, with its many potential 
situational confounds of time, place, traffic conditions, weather, etc., held constant between the 
two roles of investigatory interest. With increasing driving automation, end-user research will 
correspondingly progress with topics involving non-driving vehicle participants (e.g., as everyone 
becomes a passenger interacting with an automated/autonomous driving agent). Simultaneous 
eye-tracking of multiple in-vehicle occupants allows for internal manipulations (e.g., different 
human machine interface designs) while controlling external conditions (all in the same vehicle at 
the same time and place) yet while retaining ecological real-world exposures of relevant driving 
scene situations. 

 

    6. Conclusion 
 

Primary contributions of the present thesis regarding human factors of monitoring driving 
automation via eyes and scenes include: the critical importance of driving scene/situations (part 1); 
practically associated measurement constructs (part 2); and DMS-driving automation integration 
designs (part 3). Overall, it can thus be concluded that driver eyes adaptively move in relation to 
driving scene/situations and that details of both are measurable, such that situated DMS can be 
built and deployed with promising potential. Specifically, improved DMS are expected to improve 
human-automation interaction in terms of calibrated trust, enhanced acceptance, and more 
frequent and appropriate adherence. Consequently, road safety should reasonably be expected to 
increase and alleviate damaging societal costs.  
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Propositions Belonging to the PhD Thesis 
 

 

These propositions are regarded as lending themselves to opposition and as defendable, and have 
been approved as such by the promotors prof. dr. F.C.T. van der Helm, dr. ir. J.C.F. de Winter, and dr. 
ir. R. Happee. 

 

(1) Human remote driving is safer than automated driving, and easier to achieve than 
autonomous driving. 

 

(2) Tesla set an irresponsible and unethical precedent by using end consumers to beta 
test their ‘Autopilot’ advanced driving assistance system on public roads. 

 

(3) The full replacement of human driving control with autonomous processes is an 
inappropriate aim for driving problems caused by human attentional errors.  

 

(4) Vigilance decrements occur more often in automated driving than in conventional 
driving. 

 This proposition pertains to this dissertation (Chaps. 2.1)  

 

(5) Eye tracking measures now enable adaptive transitions of driving control where 
backing up the human with automated driving control is safer than forcing a return 
to manual control. 

This proposition pertains to this dissertation (Chaps. 4.1, 4.2) 

 

(6) For driver monitor systems, measurements of how people look around are stronger 
determinants of being ‘in-the-loop’ than where/what drivers look at. 

This proposition pertains to this dissertation (Chaps. 3.2, 3.3) 

 

(7) Cognitivism has done a great disservice to applied human factors. Behaviorism 
deserves and is already mounting a come-back. 

 

(8) More focus is warranted on the first rather than second word in the ubiquitously 
adopted Situation Awareness construct. 

 

(9) Non-interactive real-life driving videos are under-realized transportation safety research 
resources that provide more generalizability than driving simulators and more control than 
on-road studies. 

This proposition pertains to this dissertation (Chaps.3.1, 3.2 ) 

 

(10) Human error is not something in need of being resolved 
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