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-fixation dur: 0.235
-fixation_xy: -137 +441
-avg_blink_dur: 0,329
-eye eccentricity: 5.137
-veh_velocity: 37.05
-road_surface: 0.972
-road_edge: 0.085
-road_grade: ©.357
-road_curve: 0.238
-traffic_density: light
-hands on wheel: 1.0
-posture: relaxed
-vigilance_thresh: 25 mins
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Summary

Problem Statement

The World Health Organization recognizes road crashes as a public health epidemic with daily
fatalities averaging over 100 in the USA and more than 3,000 worldwide. In the search for
underlying causes to address, human error (particularly that of inadequate attention) is commonly
identified as a principal culprit. Consequently, today’s automotive industry and its safety advocates
are very keen on advancing an automated/autonomous vehicle (AV) agenda to transform the
domain. However, a human factors complication arises by releasing AV technology onto publics
roads in an evolving manner: the continuous driving task changes to a monitor and fallback for
driving automation. Generally, human operators are expected to face challenges for sustaining
attention in particular for the transitionary stages of the SAE levels of driving automation: whether
they are end-consumers serving as full-time supervisors (SAE level 2) or on-call backups (SAE level
3), or hired test drivers over-seeing the development of autonomous vehicles (SAE level 4+).

Thesis Aim and Approach

Within a larger Human Factors of Automated Driving project (HFAuto, PITN-GA-2013-605817), the
objective of this thesis was: ‘to develop a system that is able to monitor the driver’s vigilance’. With
an Oxford English Dictionary definition of ‘the action or state of keeping careful watch for possible
danger or difficulties’, vigilance is thus entailed in all kinds of driving. However, because driving
does not actually require full-time and undivided conscious attention (despite contrary casual
assumptions), practical problems immediately appear when attempting to operationalize ‘careful’,
‘danger’, and/or ‘difficulty’ and especially for driver monitor systems (DMS) where unnecessary
alerts degrade end-user trust, acceptance, and adherence to the system (‘the cry-wolf effect’).
More knowledge of specific driving attentional requirements (i.e., how much under what
circumstances) is expected to produce better assessments of the readiness of drivers across levels
of driving automation.

The selected approach to meet the given thesis objective was to investigate vigilance from a
cognitive systems engineering approach (ecological perspective). Instead of restricting the concept
of vigilance to be some kind of internal state/property of a driver, this thesis treated vigilance as a
state/property of a system (i.e., the relationship between a driver and a driving scene/situation). To
differentiate from the traditional status quo, this thesis purposefully prepends the qualifier
‘situated’ to describe cognition, vigilance, and/or DMS, etc. that directly takes into account present
circumstances (the driving scene) in conjunction with conventional driver-centric
measures/constructs.

Methods

Recently, video recording and processing technology have undergone exponential gains in
capability with reduced form factors and costs. Thus, camera-based physiological and
environmental measures (esp., eye and scene tracking/segmentation) should be increasingly useful
research application areas to support a cognitive systems engineering approach of situated
vigilance monitoring for driving. Increasing levels of AV control diminish hands-on and feet-on
activity as sources of information about a driver’s present behaviors, so videos (and eye tracking)
remain as viable sources for driver assessment. Research/application questions progress from the
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Summary

like of ‘What is the driver’s attention/vigilance level?’ to concerns more akin to ‘Is the driver
engagedy/vigilant enough for the present demands?’ by simultaneously considering filmed aspects
of the driving scene (and relating task contents and demands). Upon detecting imbalances, a
situated driver monitor system functions to restore nominal balance between driver and scene
demands via various kinds of DMS involvement, whether of information (notices, warnings, alarms,
etc.) and/or actions (deceleration, transition of control, etc.).

Because accurate representations of real-life work domains and ecological constraints are essential
to cognitive systems engineering approaches, this thesis recorded and related different eye
measurements of both nominal and aberrant visual control, under a variety of high/low demand
driving conditions from both in the lab and out on the road. Thus, the present thesis included a
range of low, medium, and high fidelity methods to investigate situated applications of driver eye
measurement towards issues of vigilance assessment. Across the thesis, theoretical and empirical
research was used in the form of literature survey/review, non-intrusive eye-tracking measures,
dash-cam driving scene film recordings, crowdsourced driving scene content categorizations, on-
road measurements and a driving simulator.

Results and Connections

This thesis consists of five parts; the first part introduces relevant background theory and the
framework underlying the thesis and the last part discusses major conclusions. Parts 2-4 focus on
reviews for driver vigilance (Part 2), experiments to relate driving scenes and driver eyes (Part 3),
and the integration of eye-based DMS with adaptive driving automation in a driving simulator (Part
4).

Chapter 2.1 aimed to characterize vigilance tasks applied in driving research, in terms of
instructions/conditions, signal types/rates, and work component features in comparison to the
classic vigilance literature. The review supported the importance of vigilance tasking details (i.e., 18
are provided in Table 2.1.1) that are lacking for predicting/managing conventional driving vigilance
decrement situations: specific consensus definitions of conventional driving signal(s), noise, and
required responses. However, for supervising automated driving, properties in common with classic
vigilance decrement theory were discussed as increasing the likelihood of problems: temporal and
spatial uncertainty of intermittent/rare signals requiring time critical response, within prolonged
task durations and increased monotony. Conclusions from Chapter 2.1 thus recommended caution
and suggested (re)design opportunities for deploying automated driving.

Chapter 2.2 proposed six solution area themes to problems of vigilance decrements in human
supervision over automation. Generally, the first three themes described avoidance strategies
either in a hard sense or different versions of a soft stance: objective or subjective supervisory
control task reductions. The latter three themes were based from general learning theory
paradigms in a chronological order: behaviorism, cognitivism, and ecological constructivism.
Specifically, the solution areas were enumerated, labeled, and exemplified as follows. Solution Area
(1): Avoid the role of sustained human supervision of automation (i.e., suspend/repeal/skip levels of
automation requiring human oversight and backup). Solution Area (2): Reduce the supervising role
along an objective dimension (i.e., change the amount of time or envelope of automated
operations). Solution Area (3): Reduce the supervising role along a subjective dimension (i.e., share
responsibilities and/or alter the end user experience and impressions). Solution Area (4): Support



the supervising role from the behaviorism paradigm (i.e., condition the desired target behaviors
through training and/or selection). Solution Area (5): Support the supervising role from the dyadic
cognitivism paradigm (i.e., inform designs to support cognitive processes and mental models).
Solution Area (6): Support the supervising role from the triadic ecological paradigm (i.e., inform
designs to leverage external environment contexts and/or task considerations).

Results from Chapter 2.2 showed that independent raters were able to reliably apply the themes to
categorize recommendations from influential human-automation interaction research. The most
common solution areas to the problem of keeping attention while supervising automation included
those focused on internal cognitive states, followed by those with a broader situational
(task/ecological) perspective.

Taken together, the studies of Part 2 emphasize the importance of cognitive and situational themed
approaches for managing vigilance issues in general, but a lacking of available practical details (i.e.,
what driving scene features and driver eye measurements) with which one might proceed to build a
situated DMS. Thus, applied driver eye and driving scene measurement studies were conducted in
Part 3.

Chapter 3.1 produced a broad yet efficient driving scene content categorization scheme for feature
presence/absence (Appendix 3.1.B) e.g., type and locations of other road users, vehicular behavior
such as lane changes and turns, and infrastructural details like road-markings, signage, and road
curvature, etc. Chapter 3.1 confirmed relatively high levels of accuracy and reliability in
crowdsourced annotations using that scheme. Because external crowdworkers completed the
scene categorizations about ten times faster than conventional internal confederate researchers
without degradation in the quality of that work, crowdsourcing is considered to offer compelling
potential to situational driving safety research. Overall, measurement of driving scene aspects was
nailed down in a concrete and viable manner which suggest that contextualized driving information
is not to nebulous/arduous to collect and capture.

Chapter 3.2 determined specific driving scene features (i.e., road curvature and traffic) to be of
importance to perceived driving effort ratings and associated behavioral, rather than cognitive, eye
movements (i.e., saccade amplitude). The high volume of annotated scene segments in Chapter 3.1
(~12,862 scenes from around 50 different driving videos) enabled a selection of stimulus material
that contained a sufficient degree of resolution to perform predictive regression analyses in
Chapter 3.2 (i.e., continuous scaled independent variables to match continuous scaled dependent
variable constructs). For example, one of the resultant equations represents the amount of
perceived effort to expect in the presence of specific amounts of driving scene contents, while
another, the consequential amount of saccade amplitude. Notably, the lower level eye movement
measurements showed stronger (more reliable) relations with perceived effort and visible scene
contents (lateral/longitudinal conflicts) than the higher level representation (and eye
measurement) aspects of information uptake (fixation duration) and increased cognitive processing
(pupil size).

Chapter 3.3 measured both on-road eye movements and driving scene aspects. ‘Out-of-the-loop’
eyes generally exhibited greater off-center movement distances across entire trips. However, the
off-center distances of ‘in-the-loop’ eyes were observed to periodically rise and fall with
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respectively low and high driving scene demands (as operationalized by steering angle, traffic
count, and speed).

Taken together, the studies of Part 3 emphasize the viability of measuring relations between driver
eyes and driving scenes at a behavioral level. An applicable situated DMS conclusion was that
specific measureable (visible) scene demand features of road curvature and traffic count could
reliably be represented in low-level pre-cognitive eye movement measurements. Next, the studies
of Part 4 executed simulator proof-of-concept design validations of various integrations of real-time
vigilance DMS and driving automation.

Chapter 4.1 implemented a driving simulator proof-of-concept real-time DMS and driving
automation integration (i.e., where the automation backs up a driver that looks away too long) that
showed safety and acceptance improvements over an emulated concept of present-day on-market
functional allocations of automated driving (i.e., where the automation de-activates itself upon
detecting distraction).

Chapter 4.2 extended the successful proof-of-concept from Chapter 4.1. Inattention problems with
supervising driving automation were evidenced (but also reduced from a condition requiring one
hand be kept on the wheel). Situated and implicit DMS integration designs of adaptive-backup
control showed user interaction and performance improvements.

Taken together, the studies of Part 4 emphasize problems with presently released driving
automation designs where humans supervise without continuous physical involvement
requirements. Most importantly, the Part 4 studies confirm viability of real-time eye-based DMS
integration with driving automation towards practical user experience and safety advantages not
only when deployed in an adaptive-backup directionality for transition of control, but also as from a
situated version of DMS specifically.

Conclusions, Recommendations, and Impact

It can be concluded from this thesis, that to develop DMS of driving vigilance, eye measurements
(especially of movement distances) and scene contents (especially road curvatures and collision
hazards) are important and relatable factors. Furthermore, it is concluded that these factors are
obtainable in viable ways for future research and development application efforts. Specifically, the
present thesis studies suggest means for DMS to be targeted to protect and maintain the lower
foundational level or inner-most loop of driving attention at a behavioral level (rather than
interactive implicit cognitive layers and representational experiences that can be added on top).

To achieve automatic DMS contributing to transportation safety we need to include human-like
intelligence in DMS assessments of human beings across levels of driving automation. Humans are
an adaptive and social species that take/expect situated information and judgments as a given (esp.
when they are being criticized as being negligent). While retaining meaningful specificity that avoids
misses, perceived false alarms from end-users should be reduced by DMS use of lower-level
behavioral (visuomotor) assessments of eyes and scene features taken together in relation to each
other. Practical recommendations for future research fall under two general categories: (1) greater
fidelity/complexity in driving simulations (e.g., more traffic, intersections, and real-life secondary

Xi



tasks should provide greater generalizability of naturalistic driver adaption to driving scene
demands) and (2) greater instrumentation technology in on-road vehicles (e.g., better knowledge
of the driving scene contents and eye movement behaviors with improved measurement
capabilities). Additionally, driving video recordings are recommended as a growing research
resource that offers a hybrid of enhanced stimulus/behavioral fidelity towards on-road applications
that also allows for laboratory levels of repeatability and control.

A situated approach is expected to better avoid cognitive ambiguity/dilemmas, and so serves to
make more acceptable DMS more tractable. Otherwise, as a result of DMS over-alerting, people
may not heed safety warnings (SAE Level 0), may become upset with unexpected steering or brake
adjustments (SAE Level 1), may misuse driving automation by not returning their attention when
prompted (SAE Level 2), may reject and/or not be ready during control transition requests (SAE
Level 3), and may miss out on important inferences of their trust/satisfaction with autonomous
driving behavior (SAE Level 4-5).

Very commonly, experimental research results are caveated as depending on the situation/context.
This thesis supplies ways to better know the specifics of driving scenes and driver readiness. By
knowing how much eye movement is appropriate for a specific set of visible demands, the burdens
of sustained driving attention and/or supervisory oversight of driving automation can be alleviated
via reduction of unnecessary DMS alerts. Additionally, from the same relational/situated
knowledge, driver support can be more judiciously administered and fine-tuned on an as-needed
basis (e.g., adaptive back-up control) rather than in a gross sweeping way that propagates catch-22
ironies (supervising automation that purports to replace human activity) for as long as such support
falls short of full-time 100% perfection and true autonomy.
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Samenvatting

Samenvatting

Probleemstelling

De Wereldgezondheidsorganisatie erkent verkeersongevallen als een volksgezondheidsepidemie
met dagelijks gemiddeld meer dan 100 doden in de VS en meer dan 3.000 wereldwijd. In de
zoektocht naar onderliggende oorzaken, worden menselijke fouten (met name die van
onvoldoende aandacht) vaak als een hoofdschuldige geidentificeerd. Daarom zijn de hedendaagse
auto-industrie en haar voorvechters op het gebied van veiligheid erg geinteresseerd in het
bevorderen van geautomatiseerde / autonome voertuigen (AV) om zich te transformeren. Een
complicatie van menselijke factoren ontstaat echter door AV-technologie op evoluerende manieren
toe te passen op openbare wegen: de continue rijtaak verandert in een taak van toezicht houden
en tussenkomen in geval van nood voor de automatisering van de besturing. Over het algemeen
wordt verwacht dat menselijke operatoren met uitdagingen zullen worden geconfronteerd, met
name voor de overgangsfasen van de SAE-niveaus van automatisering van de besturing: ongeacht
of zij eindgebruikers zijn die als voltijdse opzichters (SAE-niveau 2) of als soort van
veiligheidssysteem ingrijpen en op afroep werken (SAE niveau 3), of gehuurde testrijders die de
ontwikkeling van autonome voertuigen overzien (SAE level 4+).

Thesis Doel en Aanpak

Binnen een groter project op het vlak van menselijke factoren bij geautomatiseerd autorijden
(HFAuto, PITN-GA-2013-605817), was het doel van dit proefschrift: 'een systeem ontwikkelen dat de
waakzaamheid van de bestuurder kan bewaken'. Met een Oxford English Dictionary-definitie van
'de actie of toestand van het nauwlettend in de gaten houden voor mogelijk gevaar of
moeilijkheden', is waakzaamheid dus betrokken bij allerlei soorten autorijden. Omdat autorijden
echter geen volledige en onverdeelde aandacht vereist (ondanks tegenovergestelde gemakzuchtige
aannames), treden er praktische problemen op van zodra men probeert de concepten 'voorzichtig',
'gevaar' en / of 'problemen' te operationaliseren en in het bijzonder voor systemen om de
bestuurder onder toezicht te houden (DMS) waar onnodige waarschuwingen het vertrouwen van
eindgebruikers, de aanvaarding en de naleving van het systeem aantasten (het zogenaamde ‘cry-
wolf-effect'). Meer kennis van specifieke aandachtsbehoeften (d.w.z. in welke omstandigheden) zal
naar verwachting resulteren in betere beoordelingen van de paraatheid van bestuurders hoe om te
gaan met verschillende niveaus van automatisering van de besturing.

De geselecteerde benadering om te voldoen aan de doelstelling van het proefschrift was het
onderzoeken van de waakzaamheid vanuit een cognitieve benadering van de systeemtechniek
(ecologisch perspectief). In plaats van het concept van waakzaamheid te beperken tot een soort
interne staat / eigenschap van een bestuurder, behandelde dit proefschrift de waakzaamheid als
een staat / eigenschap van een systeem (d.w.z. de relatie tussen een bestuurder en een rijscene /
situatie). Om te differentiéren ten opzichte van de traditionele status-quo, plaatst dit proefschrift
doelbewust de kwalificatie 'situated' om cognitie, waakzaamheid en / of DMS, enz. te beschrijven
die direct rekening houdt met de huidige omstandigheden (de rijstijl) in combinatie met
conventionele, op de bestuurder gerichte maatregelen.
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Methoden

Onlangs heeft video-opname- en verwerkingstechnologie een exponentiéle sprong voorwaarts
gemaakt met behulp van gereduceerde vormfactoren en kosten. Aldus moeten cameragebaseerde
fysiologische en omgevingsmaatregelen (in het bijzonder het volgen van oogbewegingen en
straatbeelden / segmentatie) in toenemende mate bruikbare onderzoekstoepassingsgebieden zijn
ter ondersteuning van een cognitieve systeemtechnische benadering van ‘situated’
waakzaamheidbewaking voor het besturen van voertuigen. Toenemende niveaus van AV-controle
verminderen de handen-op-stuur en voet-op-pedaal activiteiten als informatiebronnen over het
huidige gedrag van een bestuurder, dus video's (en het volgen van oogbewegingen) blijven over als
bruikbare bronnen voor de beoordeling van chauffeurs. Vragen voor onderzoek / toepassing lopen
uiteen van 'Wat is het aandachts- / waakzaamheidsniveau van de bestuurder?' Naar vragen die
meer lijken op 'Is de bestuurder betrokken / waakzaam genoeg voor de huidige eisen?' Door
tegelijkertijd gefilmde aspecten van de rijstijl te overwegen (en met betrekking tot de taakinhoud
en -eisen). Bij het detecteren van disproporties functioneert een ‘situated’ stuurprogramma-
monitorsysteem voor het herstellen van het nominale evenwicht tussen stuurprogramma- en
scenevereisten via verschillende soorten DMS-betrokkenheid, of het nu gaat om informatie
(mededelingen, waarschuwingen, alarmsignalen enz.) En / of acties (vertraging, overgang van
besturing, enz.).

Omdat nauwkeurige voorstellingen van echte werkdomeinen en ecologische beperkingen
essentieel zijn voor cognitieve systeemtechnische benaderingen, heeft dit proefschrift verschillende
oogmetingen van zowel nominale als afwijkende visuele besturing, onder een verscheidenheid van
veeleisende en gemakkelijke rijomstandigheden zowel in het lab als in de praktijk opgetekend en
gerelateerd. De huidige thesis omvat daarom een reeks methoden van hoge, middelmatige en lage
betrouwbaarheid om ‘situated’ toepassingen van oogmeting van de bestuurder te onderzoeken in
de richting van kwesties van de evaluatie van de waakzaamheid. In het proefschrift wordt
theoretisch en empirisch onderzoek gebruikt in de vorm van literatuurstudie, discrete metingen van
de oogbewegingen, filmopnames van straatbeelden met een boordcamera, groeperen van
straatbeelden via publieksraadpleging, metingen op de weg en een rijsimulator.

Resultaten en Verbindingen

Dit proefschrift bestaat uit vijf delen; het eerste deel introduceert de relevante achtergrondtheorie
en het raamwerk dat ten grondslag ligt aan het proefschrift en het laatste deel bespreekt de
belangrijkste conclusies. Onderdelen 2-4 richten zich op beoordelingen voor waakzaamheid van de
bestuurder (Deel 2), experimenten om straatbeelden en bestuurdersogen te relateren (Deel 3), en
de integratie van ooggebaseerde DMS met adaptieve stuurautomatisering in een rijsimulator (Deel
4).

Hoofdstuk 2.1 is gericht op het karakteriseren van waakzaamheidstaken die worden toegepast in
het stimuleren van onderzoek, in termen van instructies / voorwaarden, signaaltypen / snelheden
en werkcomponentkenmerken in vergelijking met de klassieke literatuur op het vlak van de
waakzaamheid. De beoordeling ondersteunt het belang van bewakingsdetails voor waakzaamheid
(dat zijn er 18 in Tabel 2.1.1) die ontbreken voor het voorspellen / beheren van conventionele
rijpewustheidsafname-situaties: specifieke consensusdefinities van conventionele
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Samenvatting

besturingssignalen, ruis en vereiste reacties. Echter, voor het toezicht op geautomatiseerd rijden,
worden eigenschappen zoals de klassieke rijbewustheidsafname theorie besproken als het
vergroten van de kans op problemen: temporele en ruimtelijke onzekerheid van intermitterende /
zeldzame signalen die tijdkritische respons vereisen, binnen langdurige tijdspannes voor het
uitvoeren van een taak en verhoogde eentonigheid. De conclusies uit Hoofdstuk 2.1 bevelen dus
aan tot voorzichtigheid en suggereren (her-)ontwerpmogelijkheden voor het inzetten van
geautomatiseerd rijden.

Hoofdstuk 2.2 stelt zes thema's voor oplossingsgebieden voor om problemen met de afname van
de waakzaamheid bij het menselijke toezicht op automatisering op te lossen. Over het algemeen
beschrijven de eerste drie thema's vermijdingsstrategieén ofwel in een harde betekenis ofwel
verschillende versies van een zachte houding: objectieve of subjectieve vereenvoudigingen van
taken op het vlak van toezicht houden. De laatste drie thema's zijn gebaseerd op algemene
leertheorie-paradigma's in een chronologische volgorde: gedragspsychologie, cognitivisme en
ecologisch constructivisme. In het bijzonder worden de oplossingsgebieden als volgt opgesomd,
benoemd en geillustreerd. Oplossingsgebied (1): vermijd de rol van langdurig menselijk toezicht op
automatisering (d.w.z. opschorten / opheffen / overslaan van automatiseringsniveaus die menselijk
toezicht en een tussenkomst in geval van nood vereisen). Oplossingsgebied (2): reduceer de
toezichthoudende rol langs een objectieve dimensie (dat wil zeggen, verander de duur of omvang
van geautomatiseerde operaties). Oplossingsgebied (3): verminder de toezichthoudende rol langs
een subjectieve dimensie (d.w.z. deel verantwoordelijkheden en / of verander de
eindgebruikerervaring en -indrukken). Oplossingsgebied (4): ondersteun de superviserende rol
vanuit het gedragspsychologie-paradigma (d.w.z. conditioneer het gewenste doelgedrag door
middel van training en / of selectie). Oplossingsgebied (5): ondersteuning van de toezichthoudende
rol vanuit het dyadische cognitivisme-paradigma (d.w.z. ontwerpen informeren ter ondersteuning
van cognitieve processen en mentale modellen). Oplossingsgebied (6): ondersteuning van de
toezichthoudende rol vanuit het triadische ecologische paradigma (d.w.z. ontwerpen informeren
om gebruik te maken van externe omgevingscontexten en / of taakoverwegingen).

Resultaten uit Hoofdstuk 2.2 tonen aan dat onafhankelijke beoordelaars de thema's op een
betrouwbare manier konden toepassen om aanbevelingen te categoriseren uit invloedrijk
onderzoek naar interactie tussen mens en automatisering. De meest voorkomende
oplossingsgebieden voor het probleem om de aandacht erbij te houden tijdens het toezicht houden
op automatisering omvatten degene die gericht zijn op interne cognitieve toestanden, gevolgd door
diegene met een breder situationeel (taak / ecologisch) perspectief.

Alles bij elkaar genomen, benadrukken de studies van Deel 2 het belang van cognitieve en situatie-
afhankelijke themabenaderingen voor het beheersen van waakzaamheidsproblemen in het
algemeen, maar tonen ook een gebrek aan beschikbare praktische details (dat wil zeggen, welke
eigenschappen van straatbeelden en oogmetingen van de bestuurder) waarmee men zou kunnen
doorgaan met het bouwen van een ‘situated” DMS. Aldus werden toegepaste oogmetingen van de
bestuurder en straatbeelden uitgevoerd in Deel 3.

Hoofdstuk 3.1 presenteert een breed maar efficiéent schema voor de categorisering van de rijscene-
inhoud voor aan- / afwezigheid van een functie (Bijlage 3.1.B), bijvoorbeeld type en locaties van
andere weggebruikers, voertuiggedrag, zoals rijstrookwisselingen en bochten, en details van de
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infrastructuur zoals wegmarkeringen, bewegwijzering, en wegkromming, enz. Hoofdstuk 3.1
bevestigt relatief hoge niveaus van nauwkeurigheid en betrouwbaarheid in aantekeningen via
publieksraadpleging met behulp van dat schema. Omdat externe deelnemers aan de
publieksraadpleging de scénecategorisaties ongeveer tien keer sneller hebben voltooid dan
conventionele intern verbonden onderzoekers, zonder degradatie van de kwaliteit van dat werk,
wordt publieksraadpleging beschouwd als een interessant potentieel voor situatie-afhankelijk
rijveiligheidsonderzoek. Al met al werd de meting van aspecten van rijscénes vastgelegd op een
concrete en haalbare manier, wat suggereert dat gecontextualiseerde rij-informatie niet te vaag /
lastig te verzamelen en vast te leggen is.

Hoofdstuk 3.2 bepaalt specifieke kenmerken van het rijscenario (d.w.z. de wegkromming en het
verkeer) om van belang te zijn voor de waargenomen rijprestaties en het bijbehorende gedrag, in
plaats van cognitieve oogbewegingen (d.w.z. grootte van de oogsprong). Het grote aantal van
aantekeningen voorziene scenesegmenten in Hoofdstuk 3.1 (~ 12.862 scénes uit ongeveer 50
verschillende rijvideo's) maakte een selectie mogelijk van stimulusmateriaal met voldoende
resolutie om voorspellende regressieanalyses uit te voeren in Hoofdstuk 3.2 (dat wil zeggen,
continu geschaalde onafhankelijke variabelen om continu geschaalde afhankelijke variabelen te
evenaren). Een van de resulterende vergelijkingen vertegenwoordigt bijvoorbeeld de hoeveelheid
waargenomen inspanning die kan worden verwacht in de aanwezigheid van specifieke
hoeveelheden inhoud van de rijscene, terwijl een andere, de resulterende grootte van de
oogsprong. Met name de metingen van oogbewegingen op lager niveau vertoonden sterkere
(betrouwbaardere) relaties met waargenomen inspanningen en zichtbare scene inhoud (laterale /
longitudinale conflicten) dan de hoger niveau weergave (en oogmetingen) aspecten van
informatieopname (fixatieduur) en toegenomen cognitieve verwerking (pupilgrootte).

In Hoofdstuk 3.3 worden zowel oogbewegingen op de weg als aspecten van de rijstijl gemeten.
'Out-of-the-loop'-ogen vertoonden over het algemeen grotere excentrische bewegingsafstanden
over hele reizen. Er werd echter waargenomen dat de excentrische afstanden van 'in-the-loop'-
ogen periodiek stijgen en dalen met respectievelijk lage en hoge rijscene-vereisten (zoals
geoperationaliseerd door stuurhoek, aantal verkeerssituaties en snelheid).

Alles bij elkaar genomen, benadrukken de studies van Deel 3 de levensvatbaarheid van het meten
van relaties tussen ogen van de bestuurder en autoraces op gedragsniveau. Een toepasselijke
‘situated’ conclusie van DMS was dat specifieke meetbare (zichtbare) scénevereiste-kenmerken van
wegkromming en verkeerstelling betrouwbaar konden worden voorgesteld in pre-cognitieve
oogbewegingsmetingen op laag niveau. Vervolgens voerden de studies van Deel 4
ontwerpvalidaties van een simulator proefmodel uit van verschillende integraties van real-time
waakzaamheid DMS en aanstuurautomatisering.

Hoofdstuk 4.1 implementeert een real-time DMS voor het rijsimulator-proefmodel en de
automatisering van de rijdynamiek (dwz waarbij de automatisering dient als ‘back-up’ voor een
bestuurder die te lang wegblijft) die verbeteringen toont in de veiligheid en de acceptatie ten
opzichte van een geémuleerd concept van de huidige functionele toewijzingen van
geautomatiseerd rijden (dat wil zeggen, waarbij de automatisering zichzelf deactiveert bij het
detecteren van afleiding).
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Hoofdstuk 4.2 breidt het succesvolle proefmoel uit Hoofdstuk 4.1 uit. Onoplettendheidsproblemen
met het toezicht op de automatisering van de auto werden bewezen (maar ook verminderd ten
opzichte van een toestand waarbij één hand op het stuur werd gehouden). ‘Situated’ en impliciete
DMS-integratieontwerpen van adaptieve reservecontrole toonden gebruikersinteractie en
prestatieverbeteringen.

Alles bij elkaar genomen, benadrukken de studies van Deel 4 problemen met momenteel
uitgebrachte automatiseringsontwerpen voor auto's waar mensen toezicht houden zonder aan
voortdurende fysieke betrokkenheidseisen te voldoen. Het belangrijkste is dat de studies in Deel 4
de haalbaarheid van real-time ooggebaseerde DMS-integratie bevestigen met automatisering van
de besturing in de richting van praktische gebruikerservaring en veiligheidsvoordelen, niet alleen bij
de inzet in een directionele richting met adaptieve reserve voor de overgang van besturing, maar
ook vanaf een ‘situated’ versie van DMS specifiek.

Conclusies, Aanbevelingen en Impact

Uit dit proefschrift kan worden geconcludeerd dat het ontwikkelen van DMS voor waakzaamheid,
oogmetingen (met name van bewegingsafstanden) en scénes (met name wegkrommingen en
botsingsgevaren) belangrijke en relateerbare factoren zijn. Bovendien wordt geconcludeerd dat
deze factoren op haalbare manieren kunnen worden verkregen voor toekomstige inspanningen op
het gebied van onderzoek en ontwikkeling. Specifiek suggereren de huidige thesisonderzoeken
middelen voor DMS om gericht te zijn op het beschermen en onderhouden van het lagere
fundamentele niveau of de meest innerlijke lus van rij-aandacht op gedragsniveau (in plaats van
interactieve impliciete cognitieve lagen en representatieve ervaringen die erbovenop aan kunnen
worden toegevoegd).

Om een automatische DMS te bereiken die bijdraagt aan de transportveiligheid, moeten we
menselijke intelligentie opnemen in DMS-beoordelingen van mensen in verschillende
automatiseringsniveaus. Mensen zijn een adaptieve en sociale soort die ’situated’ informatie en
beoordelingen als gegeven beschouwt / verwacht (vooral wanneer ze als nalatig worden
bekritiseerd). Met behoud van een betekenisvolle specificiteit die missers vermijdt, moeten
vermeende valse alarmsignalen van eindgebruikers worden verminderd door DMS-gebruik van
gedragsgerichte (visuomotorische) beoordelingen van ogen en scénefuncties samengenomen in
relatie tot elkaar. Praktische aanbevelingen voor toekomstig onderzoek vallen onder twee
algemene categorieén: (1) grotere betrouwbaarheid / complexiteit in rijsimulaties (bijv. meer
verkeer, kruispunten en reéle secundaire taken moeten de generaliseerbaarheid van naturalistische
aanpassing van de bestuurder aan de eisen van de draaicirkel vergroten) en 2) grotere
instrumentatietechnologie in voertuigen op de weg (bijv. betere kennis van de inhoud van de rijstijl
en oogbewegingsgedrag met verbeterde meetmogelijkheden). Bovendien wordt het besturen van
video-opnames aanbevolen als een groeiende onderzoeksbron die een hybride biedt van
verbeterde stimulus / gedragsgetrouwheid ten opzichte van praktijktoepassingen op de weg die
ook laboratoriumniveaus van herhaalbaarheid en controle mogelijk maakt.

Van een ‘situated’ benadering wordt verwacht dat deze cognitieve ambiguiteit / dilemma's beter
vermijdt en dient om een acceptabeler DMS beter hanteerbaar te maken. Zoniet, als gevolg van
DMS-overwaarschuwing, zouden mensen mogelijkerwijs geen rekening meer houden met
veiligheidswaarschuwingen (SAE Niveau 0), kunnen ze overstuur raken door onverwachte stuur- of
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remaanpassingen (SAE Niveau 1), waardoor automatisering mogelijk niet wordt gereactiveerd
wanneer daarom wordt gevraagd (SAE Niveau 2), kunnen ze afwijzen en / of niet gereed zijn tijdens
controle-overgangsaanvragen (SAE Niveau 3), en kunnen ze belangrijke gevolgtrekkingen missen
van hun vertrouwen / tevredenheid met autonoom rijgedrag (SAE Niveau 4-5).

Zeer vaak zijn experimentele onderzoeksresultaten onder voorbehoud afhankelijk van de situatie
en/of context. Dit proefschrift biedt manieren om de bijzonderheden van rijtaferelen en paraatheid
van de bestuurder beter te leren kennen. Door te weten hoeveel oogbeweging geschikt is voor een
specifieke set van zichtbare eisen, kunnen de lasten van aanhoudende rij-aandacht en / of
supervisie-toezicht op automatisering van de bestuurder worden verminderd door het aantal
onnodige DMS-waarschuwingen te verminderen. Bovendien kan vanuit dezelfde relationele /
‘situated’ kennis ondersteuning van de bestuurder beter worden beheerd en afgestemd op een
‘indien nodig’ basis (bijv. adaptieve achteruitrijcontrole) in plaats van op een ruwe allesomvattende
manier die hopeloze dilemma’s voortbrengt (toezicht houden op automatisering die beweert
menselijke activiteiten te vervangen) zolang deze ondersteuning niet volstaat voor 100% perfectie
en ware autonomie.

- vertaald door "Google Translate" en Dr. ir. T. Lombaerts, Senior Aerospace Research Engineer en een
goede vriend bij NASA Ames Research Center. Bedankt Thomas!
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1. Background
1.1 Problems — Traffic Safety Costs

The current automotive driving domain presents formidable adverse costs for both physical and
fiscal health. Nantulya and Reich (2002) have compared consequences of road traffic injuries to a
worldwide societal epidemic. Within the single year of 2013, there were 32,893 motor vehicle
traffic crash fatalities in the USA (NHTSA, 2018) and 1.25 million road traffic deaths across the
entire world (WHO, 2018). Again within the year of 2013 in the USA, there were an approximate
1.10 fatalities per 100 million vehicle miles traveled (NHTSA, 2018) and with an estimated 2.99
trillion miles driven that year (FHA, 2018), reflects an average of about 90 people dying on the
roads every single day. Beyond loss of life, other losses from car crashes can be substantial for a
country’s economy, including: property damage, lost earnings, medical costs, emergency services,
travel delays, lost time at work, quality of life and/or legal fees. In the USA in 2010, highway
accidents alone produced $836 billion of costs, representing equivalencies of an annual expense of
$2,708 per person if spread evenly across the entire population of 308.7 million people, 5.6 percent
of the $14.96 trillion real USA Gross Domestic Product, and an estimated realized total tax payer
cost of $18 billion which approximates $156 of additional taxes paid by every household (Blincoe et
al., 2015).

1.2 Causes — Supposed Human Culprits

Human errors have been predominately blamed for vehicle traffic fatalities and accidents. The USA
Department of Transportation Secretary has declared that ‘the major factor in 94 percent of all
fatal crashes is human error’ (NHTSA, 2017). Compared to vehicle factors and road/atmosphere
conditions, drivers have been implicated in a vast majority of causes for crashes with cited
problems including: inadequate surveillance, distraction, and inattention (NHTSA, 2008). Crash data
from 2010 showed that 17 percent (an estimated 899,000 crashes) of all police-reported crashes
involved some type of driver distraction (NHTSA, 2013). In a 50 year review of driving safety
research, Lee (2008) relates that crashes are often caused by drivers failing to look ‘at the right
thing at the right time’ and cites supporting evidence showing that even short glances away
increase crash risk (Klauer et al., 2006).

1.3 Solutions — Automated/Autonomous Vehicle Technology

The automotive industry has previously deployed advanced driver support systems (ADAS) that
have saved many lives yet still see slow market uptake (Kyriakidis et al., 2015). Furthermore, the
industry is also now developing automated/autonomous vehicles (AVs). Various DARPA multi-
million dollar driving challenges (i.e., 2004 Grand Challenge, 2005 Grand Challenge, and 2007 Urban
Challenge) (Wikipedia:DARPA Grand Challenge, 2018) have served as significant catalysts. In 2009,
Google embraced winning participants from those challenges to lead and develop its own ‘self-
driving car project’ (Wikipedia:Waymo, 2018). Thus, the so-called ‘Google Car’ became a uniquely
positioned front-runner, given not only its DARPA head start, but also its Google-backed world-
wide-web sphere of influence and potential to captivate audiences everywhere. Envisioned
automotive AV benefits have since included aspects of increasing traffic efficiency (Van Arem et al.,
2006), reducing pollution (Spieser et al., 2014), and eliminating traffic accidents and/or fatalities
(Gao et al., 2014). By now, nearly every automobile manufacturer is investing in research,
development and deployment of various forms of AVs. However, autonomous vehicles have also
been placed along an emerging technology hype cycle (Panetta, 2017) where there are risks of
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‘inflated expectations’ and a ‘trough of disillusionment’ before a slow ‘slope of enlightenment’ can
be climbed towards an eventual ‘plateau of productivity’.

1.4 Complications — Continual Evolution of Imperfect AVs

AVs are continuing to evolve within and between different stages of release and development. In
order to anticipate and understand potential issues of vigilance, misuse, and monitoring
requirements (e.g., complacency), critical looks are required at the evolving ‘state of the art’.
Concern about companies’ readiness for widespread deployment of AVs (esp. while lacking a
stronger regulatory leadership role from NHTSA) has been expressed by a human-automation
interaction expert in a congressional testimony (Cummings, 2016). From a RAND Corporation
report, Kalra & Paddock (2016) calculated that self-driving cars need to drive 275 million miles
without a fatality in order to verify them to be as safe as human drivers (and sometimes hundreds
of billions of miles would be needed to demonstrate their reliability). Publically available
information regarding reliability performance of AVs should reasonably be expected to constitute a
critical causal factor in developing calibrated trust and end-user expectations in order to support
appropriate interactions with AVs. Recently, Hancock et al. (2019) offered recommendations to
address such AVs challenges:

‘Two vital elements here concern calibrated operator trust and communicated transparency.
For the former, design processes should seek to design explicitly for appropriate levels of
trust by human occupants in light of the known reliability of the automation ... This goal is
difficult, but achieving it is critical. It is difficult because we are still finding our way in
understanding the contextual reliability of differing forms of automation and
semiautomation offered by various manufacturers. It is critical, because if there is
insufficient human trust in autonomous and semiautonomous systems, there will be both
little usage and chronic misuse ..."

Despite their envisioned collective success and eventual impact (e.g., by October 2018 Waymo has
logged more than 10 million miles driving in autonomous mode on public roads since 2009), even
back in the sparse desert environments, or relatively controlled conditions of the urban air force
base courses, the DARPA competition AVs were far from perfect. For example, in the first 2004
competition no AVs finished the 150 mile route, and instead the furthest distance achieved was
only about 7.32 miles. In 2005, only 5 of the 23 AVs completed a 132 mile course. In 2007, 6 out of
11 AV finalists completed a 60 mile urban area course in the allotted 6 hour timeframe. Additionally
in 2007, the contest also featured both robot collisions (with each other, pillars, and abandoned
buildings) as well as robot traffic jams (Markoff, 2007).

About a decade later, the California Department of Motor Vehicles (CA-DMV) reported that there
were 61 autonomous vehicle testing permit holders operating on the public roads of California (as
of January 2, 2019). Consequently, CA-DMV has been evolving standardized reporting requirements
for issues such vehicles are facing in terms of both disengagement and collision reports. Thus, in
California, the rate of disengagement incidents for autonomous cars driven on public roads can be
observed to average about one for every 716 miles (Bhuiyan, 2017a, Bhuiyan 2017b) when
averaging across eight different companies testing AVs (Max: 5000 miles, Min: 0.68 miles). More
formally, Favaro et al. (2018) computed cumulative disengagements as a function of cumulative
reported autonomous miles and after learning effects were shown to exponentially decrease rates
in the first 1 million miles, an average ‘steady-state’ frequency was determined to be at around one



disengagement per around 210 miles. While disengagements can be caused by a multitude of
reasons, range in terms of severity, and come from various sources such as the vehicle or the
driver/supervisor (as detailed in Favaro et al., 2018), the accident rates of AVs have also been
computed by Favaro et al. (2017) to be one order of magnitude worse when compared to
conventionally driven vehicles ‘with a mean mileage before a crash for conventional vehicles of
about 500,000 miles, compared to 42,017 miles for AVs'.

Within a climate of a technological automotive arms-race and consumer expectations, the on-road
automated driving committee of the International Society of Automotive Engineers (SAE) produced
a widely adopted standard J3016 in 2014 (SAE, 2014). It has been revised twice already (SAE, 2016;
SAE, 2018a), and its most renowned chart another time still in December 2018 (SAE 2018b, Fig.
1.1.), to describe operational definitions to support a common language for discussion and
development within the AVs community. In their words, the J3016 was issued, in part, ‘to speed the
delivery of an initial regulatory framework and best practices to guide manufacturers and other
entities in the safe design, development, testing, and deployment of highly automated vehicles
(HAVs) (SAE 2018b). Akin to Sheridan and Verplank’s seminal (1978) ‘Levels of Automation’, the
SAE ‘lLevels of Driving Automation’ extend beyond a simplistic all-or-none notion of
manual/autonomous control, by providing a graded approach that conveys a sequence of
progressive steps of increased automation involvement in the dynamic driving task.

SE SE SE
LEVELO J LEVEL1 J LEVEL2

You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
W:at does ::e you are not steering “the driver’s seat”
uman in the
river” ) .
dha“',ee ,‘osjgl You must constantly supervise these support features; When the feature These automated driving features
§ you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving
These are driver support features These are automated driving features
These features These features These features These features can drive the vehicle This feature
are limited provide provide under limited conditions and will can drive the
to providing steering steering not operate unless all required vehicle under
erlat‘do th:sg, warnings and OR brake/ AND brake/ conditions are met all conditions
eatures do: momentary acceleration acceleration
assistance support to support to
the driver the driver
*automatic *lane centering | *lane centering | e traffic jam *local driverless | *same as
emergency OR ) chauffeur taxi level 4,
braking «pedals/ but feature
Example «blind «adaptive cruise | * adaptive cruise Dt 5/ can drive
Features ind spot control control at the steering everywhere

warning

wheel may or
may not be
installed

same time inall

*lane departure conditions

warning

Figure 1.1. SAE J3016 levels of driving automation. Adopted from SAE (2018b).

A dangerous dilemma found within such an evolutionary approach regarding AVs appears in the
middle levels of imperfect driving autonomy (i.e., ‘automation’) which while allowing for hands and
feet free operations, either requires continuous active human supervision (i.e., SAE Level 2) or
readiness for automation initiated return of control to manual involvement (i.e., SAE Level 3). Banks
et al. (2014) argued that incrementally increased vehicle automation (along the way to full
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autonomy) may contribute to safety concerns rather than overcome them via an increased
pressure put on drivers to monitor both the driving environment and the behavior of vehicle sub-
systems. Notably, such concerns also holds for more advanced autonomy levels (SAE level 4 and
higher) which are still undergoing iterative on-road test and development with required human
supervision and intervention (i.e., safety/test engineers).

Decades of research from the discipline of human factors has suggested problems and ironies in
putting humans into positions where they must monitor and/or back up automated processes. The
highly cited study of Norman Mackworth (1948) exposed a vigilance decrement in the performance
of military personnel in simulated radar detection tasks. Hancock (1991, 2013) argues that the
human operator is ‘magnificently disqualified’ for a particular form of sustained attentive response
and that there ‘can be little doubt that human beings have been aware of the putative failings of
personnel engaged in long but uneventful period on watch’. Additionally, while vigilance problems
are often regarded as a case of under-arousal associated with undemanding assignments,
alternative perspectives have found the opposite to explain vigilance tasks as being highly
demanding (i.e., effortful and stressful) on human mental resources (Warm et al., 2008).
Parasuraman & Riley (1997) has warned that ‘it has become evident that automation does not
supplant human activity; rather, it changes the nature of the work that humans do, often in ways
unintended’. Likewise, Bainbridge (1983) introduces ironies where automation is used to resolve
human error and humans are consequentially tasked to supervise that automation (which is not
perfect)—the humans are then susceptible to further errors of manual and cognitive de-skilling that
come as a result from lack of rehearsal and direct involvement.

2. Driver Monitoring Systems

While perfect AVs are not yet available to fully replace the human driver responsibility, automatic
attention monitors present a reasonable solution to help mitigate consequences of inadequate
surveillance problems from both the original crash causes in more traditional vehicles as well as the
anticipated challenges regarding human oversight of mid-level AVs. In essence, a driver monitoring
system (DMS) is concerned with detections of aberrant driver states or behavior and thus equally
applicable in assessing engagement whether the observed human’s driving role is that of manual
control (SAE Level 0), assisted control (SAE Level 1), supervisory control (SAE Level 2) or
automation-backup upon request (SAE Level 3) because all entail normative requirements for driver
vigilance (e.g., readiness to respond to danger) and thus some attention to the driving
environment/scene. While previous DMS could rely on measures of drivers through their hand and
feet activity (e.g., steering and pedal manipulation) and consequences on vehicle motions (e.g.,
lateral lane position and longitudinal accelerations) these will be reduced or absent as driver
inference resources as the level of driving automation is increased and driver responsibility
becomes more hands- and feet- free.

In driving hands- and feet- free, the use of eye-tracking technology is in general expected to help
address driver distraction problems and improve traffic safety. Camera and computation
technologies have recently been progressing through reduced commodity costs (smaller, cheaper)
without compromise on quality (resolution, capability). Human-centered intelligent vehicles often
include video based head/eye-tracking as a major system component (Ohn-Bar & Trivedi, 2016).
Hecht et al. (2019) conclude that overall, (with EEG lacking practicality and subjective measures
being prone to misjudgment), ‘eye tracking is the technology with the most potential’, due to its



‘possibility of non-intrusive measurements and the multitude of information about the driver state’,
but also retains further developmental needs to increase its reliability. Furthermore, Hecht et al.
(2019) suggested an apparent consensus problem result of their review that ‘driver state and the
different constructs lack a common definition’.

Historically, the most common form of DMS has been focused around issues of driver underload
with related terms including: ‘drowsiness’, ‘sleepiness’, ‘fatigue’, ‘arousal’, etc. (Haworth & Vulcan,
1991; Barr et al., 2009; Rau, 2005; Hanowski et al., 2008; Blanco et al., 2009; Aidman et al., 2015).
However, and especially from the onset of omnipresent mobile/smartphones and growing
commonality of various in-vehicle infotainment options (navigation, audio media, web applications,
etc.), the use of DMS has been shifting to also include the topic of driver distraction (McGehee et
al., 2007; Hickman & Hanowski., 2011).

2.1 DMS with relatively lower success

Haworth and Vulcan (1991) performed laboratory tests of various fatigue monitors in the form of
eye closures from a pair eye glasses, a head nod device worn over the ear, and a reaction time
measure to a red dashboard light. Upon detection of an aberrant state (eye glasses and ear-piece),
or lack of timely response (dashboard light), each device produced a consequential warning in the
form of an audible alarm or a loud physical buzzing. The authors reported that ‘the devices showed
an ability to detect fatigue in some cases but were not able to maintain alertness and thus prevent
performance deterioration’. In summary of their findings, Haworth and Vulcan (1991) stated that:
‘none of the devices used resulted in fewer or shorter periods of eye closure than when no device
was used’ (p.13), and ‘performance after the warning signal was not markedly different to before’
(p.17).

Barr et al. (2009) performed a review of 10 different commercially available and research
drowsiness detection devices that were evaluated against a set of proposed design guidelines, thus
resulting in a 10 (device) x 18 (criteria) assessment table. The device meeting the highest amount of
criteria only met half of the criteria set. Criteria met in common across all drowsiness detection
devices included aspects of being non-invasive, operating in real-time, requiring minimum training,
and not distracting from driving tasks/other safety devices. Criteria missing (i.e., requiring more
data than presently available) from all devices included a minimization of missed events and false
alarms, normal maintenance/replacement costs, proficiency of use, functional awareness,
perceived safety benefit, intent to purchase, willingness to recommend to others, and susceptibility
to behavioral adaptations.

A field operational test of a drowsy detection and warning system for heavy vehicle commercial
truck operators was conducted from a partnership of the Virginia Polytechnical and State University
Transportation Institute (VTTI), and the Federal Department of Transportation’s Volpe Center (Rau,
2005; Hanowski et al., 2008; Blanco et al., 2009). The detection/warning system comprised of a
dashboard camera that used a percentage eye closure (PERCLOS) measure to trigger visual/audio
alerts to seek rest or increase alertness. General conclusions reported included that drivers in the
test group were less drowsy compared to baseline, drivers with favoring opinions of systems had an
increase in safety benefits, and early prototypes of the device had an overall positive impact on
driver safety. However, a first set of their major research questions (over 50 were included in all)
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also reported showing either no practical differences (in frequency of alerts decreasing over time)
or no statistical differences as follows:

e No significant difference—impact on post-alert behavior

e No significant difference—influence drivers to get more sleep

e No significant difference—driver achievement of better quality of sleep
e No significant difference—involvement in safety critical events

e No significant difference—involvement in at-fault safety-critical events

e Speculative results—fewer episodes of drowsy driving that were regarded as inconclusive due to
rather large numbers of false alerts.

2.2 DMS with relatively higher success

Australian army reservists in an at-risk drowsiness population regarding on-the-job duty vehicle
commutes were investigated by Aidman et al. (2015). Their system comprised of a set of worn
glasses that measured blink velocity to generate continuous drowsiness scores (between 0 and 10
points with one decimal point precision) at 1-minute intervals that were displayed via a
monochrome dashboard LCD along with an audio alert. Significant effects of the feedback
conditions were found regarding lower average drowsiness scores, as well as reductions in peak
amplitudes and durations of drowsiness scores. Subjective report results included significantly
perceived differences of maintaining safer driving distances and feelings of being less drowsy.

Vehicle video recordings with external coaching from human authority figures produced
significantly beneficial results with teenage novice drivers (McGehee et al., 2007) and commercial
truck drivers (Hickman & Hanowski, 2011). Both studies made use of vehicle acceleration trigger
events (i.e., specified g-force threshold criteria exceedances) to save both forward exterior driving
scene and interior cabin facing camera footage and automatically transmit these events to parents
in the case of the teenage participants and to management personnel in the case of the truckers. In
either case, the incidents were reviewed with the participants by the authority figure and resulted
in significant reductions in safety-related events.

In summary of the above evaluated DMS applications, what appears to be most important is
favorable end-user opinion/experiences, internal and external vehicle scene/situation capture,
human assessments with human review/follow-up as well as continuous assessments with
interval/ratio measures. In contrast, problems and difficulties are implicated in terms of binary
lights or audio beeps and challenges regarding high numbers of false alerts.

3. Theoretical Framework

Collectively, the above evaluations showed mixed results of both problems and success with
different sorts of DMS. Towards the previously introduced issues of inadequate surveillance for
both traditional vehicles and future AVs, a scientific underpinning to account for such differences
should be useful to characterize and design future DMS. Several DMS-relevant doctoral theses have
been recently published regarding the related topics of maintaining/measuring adequate visual
attention in driving and for such challenges specifically as posed by automated driving. Presently
relevant major take-away points can be summarized as: a combination of looking away from the



road with the occurrence of unexpected events in the driving scene is very dangerous (Victor,
2005); SAE Level 2 driving automation does not necessarily facilitate the execution of other tasks,
but even the opposite which contradicts public expectations (Solis-Marcos, 2018); and physiological
driver state assessment should be combined with ‘data from outside the vehicle (information
regarding the vehicle environment; e.qg., surrounding traffic, traffic signs, and other geo-specific
information)’ (Van Leeuwen, 2019, p. 173).

In their textbook ‘Display and Interface Design’, Bennett and Flach (2011) promote a paradigm shift
inspired from and akin to the cognitive systems engineering of Norman (1986), Rasmussen et al.
(1994), and Vicente (1999) as well as the ecological interface design work of Rasmussen and
Vicente (1989, 1990), and Vicente and Rasmussen (1990). Therein, Bennett and Flach proposed a
triadic framework to supersede the presently reigning dyadic perspective in regards to semiotics
(i.e., the study of signs and symbols and their interpretation or use).

The roots of the presently reigning dyadic approach to interface design are traced to Ferdinand
Saussure (1857—-1913) considered by many as a principal influencer of the science of cognitive
psychology that would later gain credence around the 1950s. Saussure framed the semiotic
problem as that of interpretive mappings between signifiers (e.g., symbolic language) and that
which is signified (e.g., mental concepts). Such a framework fits well with metaphors and goals of
modern linguistics and computer science (i.e., matching symbols to concepts). In contrast, the work
of Charles Sanders Peirce (1839 — 1914) framed semiotics in the context of relational links of
objects and experiences within an ecological surround. Figure 1.2 compares and contrasts the
dyadic and triadic models of semiotics from Saussure and Peirce respectively.

Peirce’s Model

Meaning Interpretation

Ecology Signified Signifier
(Work Domain) (Concept) (Representation)

Saussure’s Model

Figure 1.2. A comparison of Saussure’s dyadic model of semiotics with Peirce’s triadic model. Adapted from Bennet and
Flach (2011), Figure 2.1, p. 18.

Beyond information processing, the triadic framework is concerned with meaning processing,
where meaning (as understood to refer to the relation between the ecology and the signifier or
representation) is the unit of interest. Such a focus, as from Bennet and Flach (2011), is in accord
with James J. Gibson’s notion of the direct perception of affordances that are not properties of
objects or of mind but a relation of constraints/opportunities between a specific action of a specific
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actor in a specific situation. For example, an affordance of walking across a sheet of ice covering a
frozen lake depends on both the thickness of the ice (in reality) and the weight of the would-be
walker (e.g., an ant vs. a human vs. an elephant). In other words, formulations of internal
representations and resources are essentially devoid of functional meaning if not specified in
relation and respects to external situations.

The situated meaning processing conceptualization of Bennet and Flach (2011), as shown in Figure
1.3, differentiates from conventional information processing approaches in several important ways.
First, it is not framed in terms of processes in the head, but in terms of dynamics occurring between
an actor, an information medium, and an ecology. Second, it does reflect a serial progression of
processes, but an intimate coupling and parallel operation of perception and action (or control and
observation). Lastly, none of the elements in Figure 1.3 is uniquely associated with either the
individual or the environment — the ecology reflects the constraints scaled with respect to the
organism (i.e., affordances). Bennet and Flach (2011) describe their approach of cognitive systems
engineering and ecological interface design in terms of being problem-driven (as opposed to user-
or technology-driven with goals of designing interfaces that (1) are tailored to specific work
demands, (2) leverage the powerful perception-action skills of humans, and (3) use powerful
interface technologies wisely. In other words, a principal differentiation comes from the direct
treatment of situation/context which basic experimental scientists tend to want strip away as noise,
but which is instead recognized as a meaningfully informative piece of the puzzle (e.g., situated
cognition/action of Suchman, 1987).

Consequences/ Intention/
Observations Expectation
Ecology Medium Belief
Problem Representation Mental Model
Work domain Interface Knowledge
Performatory Action/ Error/
Exploratory Action Surprise

Figure 1.3. The dynamics of meaning processing involve interactions between a cognitive system (on the right) and an
ecology (on the left) as mediated via an interface (in the middle). Perception and action observations are dynamically
coupled in parallel with each other (terminology colored in green) and also include parallel control loops operating
between consequences of actions and updates to referent-goals based from errors (terminology colored in black).
Adapted from Bennet & Flach (2011), Figure 2.3, p. 32.



In terms of DMS reliability and ultimately effectiveness, these can thus be considered at different
levels. From a dyadic perspective, the reliability of the DMS might be evaluated in terms of its
ability to specify the monitored signal (e.g., an eye closure distance) as being present amidst
measurement noise and whether those measurements might be interpreted as reflecting a
construct of interest (e.g., sleepiness). From a triadic perspective, the same signals can further be
evaluated in terms of meaning by consideration of the task and the environment. Using broader
aspects and relational information, it is able to address ambiguities such as:

(1) “Is the person awake enough for the present heavily trafficked urban intersections he/she is
driving through?”

(2) “Is the eye closure because the person is sleepy or because he/she is squinting under direct
sunlight?”

Presumably, aspects of both the driving situation/scene and the driver change in continuous and
dynamic ways and this then could be considered inconsistent with binary representations of a too-
simplistic beep or buzz. More continuous value assessments would then plausibly be easier to
understand, trust, and accept (cp. Aidman et al.,, 2015). Not only were vehicle dynamics and
external scenes captured in the successful DMS intervention programs of McGehee et al (2007) and
Hickman & Hanowski (2011), the assessments also included human-human discussions and
elaborations of meaningfulness of the automatically triggered events in the form of reviews with an
authority figure.

People expect many different kinds of benefits from different levels of AVs. However, automation
benefits are easily undermined by negative user experiences and poor human-computer
interactions if not designed well enough. If DMS alerts are triggered too often out-of-context (i.e.,
perceived false alarms), then so-called ‘cry-wolf effects can decrease driver trust and acceptance
with consequences ranging between not heeding a warning to actively seeking to defeat safety
measures they deem annoying/unnecessary. For example, frustrated drivers might de-activate the
DMS or not use (appropriately or at all) the driving assistance and/or automation it coincides with.
Thus, the approach of this thesis was to try to understand driving vigilance issues from a situated
cognition perspective of a triadic meaning processing rather than a dyadic information processing
perspective (i.e., in line with the Bennett & Flach, 2011 framework). The assumption here is that a
system that takes situations into account (more akin to how humans naturally do in nearly
everything they do) would be more familiar and better accepted as something that is more
‘smart/sophisticated’ than a closed computational model of assessment that might be too easily
dismissed as ‘simplistic/robotic’. The following two example questions emphasize this subtle yet
prominent difference in approach.

(1) “How to detect and correct low levels of attention in a driver by measuring his/her eyes?”
(information processing)

(2) “Is the observed eye behavior appropriate for the present driving task demands and what
can be changed to restore a balance?”
(meaning processing)
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Dyadic information processing perspectives construe meaning as an interpretation between
concepts to be signified (e.g., latent internal cognitive processes) and representations that act as
signifiers (e.g., physiological/behavioral measures) while then tending to avoid situations as
confounding noise or difficult to interpret interactions of main effects. Unfortunately, by literally
moving between contexts (across time and space) the tasks of driving (across levels of driving
automation) clearly take place under a variety of demands that are hard to ignore from scientific
and applied investigations that seek meaningful impact. Driving is clearly not one thing nor a task
that can be cleanly separated and analyzed independent of its surrounding situations (Figure 1.4).

Figure 1.4. Different driving scene situations: high density intersection traffic in a rainy urban environment (left) and low
density straight interstate freeway travel under sunny blue skies (right). Adopted from
https.//youtu.be/KnGAEpmM1SMs?t=43 (left), https://voutu.be/zT BIPx6qdQ?t=33 (right).

Effective assessment of driver attention adequacy is hard to imagine without consideration of what
is happening around the driver and the vehicle. Thus, it is assumed and pursued in this thesis that
safety (i.e., from driver vigilance) depends not solely on measurements of latent internal driver
states (arousal, attention, workload) but measureable actions (eye movements) able to be assessed
relative to measureable situations (components of different driving contexts) that eyes are
supposed to be adaptively working and appropriating within. The doctoral thesis of Victor (2005)
reflects such motivations in the concept of ‘vision-for-action’ and the Victor (2003) patent
application ‘System and method for monitoring and managing driver attention loads’ suggested that
‘If control task intrusion is detected during secondary task glance behavior, during different road
types or different demand levels, then a corresponding warning is issued‘. However, Victor (2003)
did not offer further details regarding how such scene-dependencies might be practically achieved
and so it is taken as a motivating research gap to which this thesis aims to contribute.

4. Thesis Aims

Across levels of driving automation, there are risks involved whenever humans become aberrant in
the adequacy of their required surveillance/readiness. Automatic assessments of driver visual
attention in DMS can help mitigate such risks, and eye trackers present a compelling piece of
equipment that has seen massive reductions in form-factor, costs, and intrusiveness since previous
generations.

This thesis was initiated in an early stage researcher (ESR) position within the Human Factors of
Automated Driving (HFAuto) Initial Training Network (ITN) Seventh Framework Programme (FP7)
funded by the European Commission Research Executive Agency (project number: 605817). The
issued project objective was to ‘answer crucial human-factors questions, such as: how should
human-machine-interfaces (HMI) be designed to support transitions between automated and
manual control? how can the automation understand the driver’s state and intentions?...”
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The objective of this thesis was to develop a system that is able to monitor the driver’s vigilance.

The selected approach to meet that objective, was to investigate vigilance from a cognitive systems
engineering approach (i.e., situated cognition/ecological perspective) by including detailed
considerations of driving scenes/situations within which to relate assessments of
drivers/supervisors.

5. Thesis Structure
This thesis consists of five Parts; the current part (Part 1) introduces relevant background theory
and the framework underlying the thesis and the last part (Part 5) discusses major conclusions
drawn across the related research. In between, Parts 2-4 focus on reviews for the topic of driver
vigilance (Part 2), experiments to relate driving scenes and driver eyes (Part 3), and the integration
of eye-based DMS with adaptive driving automation in a driving simulator (Part 4). Several
developed driving research tools are further documented and detailed alongside the research
studies (as Appendices) and include: a driving scene content coding scheme (3.1.B.1), a library and
interface for selecting clips with specific driving scene contents (3.1.B.2), an inexpensive apparatus
for capturing on-road driving video footage (3.2.A.1), a MATLAB function for automatically clipping
segments out of larger video files (3.2.A.2), a driving automation-integrated driver monitor system
(4.2.A.1-2) and a programmable visual n-back GUI secondary task (4.2.A.3).

(1) In Part 1, Introduction, a brief background picture has been painted of the human-
automation interaction problems that might be expected as AV technology continues to
evolve (e.g., inadequate visual attention from drivers/supervisors). Consequently, eye-
based DMS was motivated as a relevant area for research and development, and in
particular, a situated approach was introduced.

(2) In Part 2, Driver Vigilance Review, literature surveys/reviews (Chapters 2.1, 2.2) are
conducted to cover what has been known and done before regarding driving vigilance both
before and upon the advent of AVs.

(3) In Part 3, Driving Scenes and Driver Eyes, several experiments investigate driving scene
content categorizations (Chapter 3.1) and scene-situated assessments of driver eye
measures (Chapters 3.2, 3.3).

(4) In Part 4, Adaptive Driving Automation, two driving simulator experiments were used to
investigate various adaptive automation implementations of integrating an eye-based DMS
with automated driving functionality (Chapters 4.1, 4.2).

(5) In Part 5, Discussion, the results from the individual studies are re-summarized towards
drawing and discussing the main conclusions across the related research at a higher level
and in convergence with both broader attentional theories and recent emergent empirical
evidence.

As depicted in Figure 1.5, this thesis presumes a descriptive framework model of driving monitoring
systems (DMS) that serve to restore nominal balance in the face of aberrant risks. Thus, the eyes of
a human supervisor within a vehicle with driving automation (or a conventional vehicle without AV
technology) are presumed observable for assessment in terms of being balanced (or not) against a
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given set of contextualized driving demands (traffic, signage, rules, obstacles, scenery, roadway,
infrastructure, etc.). The DMS may employ alternatively heavy and/or light-handed corrections
along a spectrum of automatically triggered involvement consequences (e.g., between warning
information and/or driving control modification/functionality). Also Figure 1.5 is used to convey
how the different publication chapters of this thesis (each with their own separate sub-goals) can
approximately be represented to fit together in a comprehensive manner. This figure and
summative tie-in text is re-used at the front of each journal publication chapter to serve as a re-
orientation guide for the relevancy of that previously and separately published piece of research
towards the overall thesis big picture.

Accurate representations of real-life work domains and ecological constraints are essential to
cognitive systems engineering approaches. Thus, the present thesis includes a range of low,
medium, and high fidelity methods to investigate application of driver eye movement behavior and
measures towards issues of driver vigilance across levels of driving automation. Across the thesis,
theoretical and empirical research was used in the form of literature survey/review, non-intrusive
eye-tracking measures, dash-cam driving scene film recordings, crowdsourced content
categorizations, on-road measurements and a driving simulator.

Control Warning
Modifications Information

21, 2.2

Figure 1.5. Relational mapping of publication chapters within the shared holistic coverage thesis aims to relate driver
eyes, automotive vehicle automation, and driving scenes. The literature survey/review of chapters 2.1-2.2 serve as a
foundation for understanding the topic of driver vigilance with and without driving automation. The investigations of
chapters 3.1-3.3 orient around driving scene contents and measurable driver eye dependencies on those scene
characteristics. The studies of 4.1-4.2 explore different real-time implementations and integrations of driving
automation with driver monitoring systems (DMS).
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Chap. 2.1) From Mackworth’s Clock to the Open
Road: A literature review on driver vigilance task
operationalization

Control Warning
Modifications Information

2.1,

In regards to the overall thesis big picture, this literature review serves as a foundation
for understanding the topic of driver vigilance. One of its central questions is what are
drivers actually required to be vigilant of (beyond anecdotal accounts or general
recommendations). As a result of the review, it appears there are not well-specified
consensus answers in driving vigilance research that suggest likely vigilance decrement
problems in a majority of driving tasks (i.e., little definitive overlap with classical vigilance
decrement situational features). This appears to be the case as driving is recognized to be
a highly variable, rather than unitary activity. However, it is also observed herein that
some present designs of automated driving overlap more with classic vigilance
decrement features (e.g., increasingly rare and subtle signals to which fall-back drivers
must perform required responses in a consistent and time-critical manner, etc.) and thus
unfortunately point towards likely vigilance problems in automated driving.

Adapted from:

Cabrall, C.D.D., Happee, R., & de Winter, J.C.F. (2016). From Mackworth’s clock to the open road: A literature review
on driver vigilance task operationalization. Transportation Research Part F: Traffic Psychology and Behaviour, vol. 40,
pgs. 169-189.
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Abstract

Objective: This review aimed to characterize tasks applied in driving research, in terms of
instructions/conditions, signal types/rates, and component features in comparison to the classic
vigilance literature. Background: Driver state monitoring is facing increased attention with
evolving vehicle automation, and real-time assessment of driver vigilance could provide
widespread value across various levels (e.g., from monitoring the alertness of manual drivers to
verifications of readiness in transitions of control between automated and manual driving).
However, task requirement comparisons between the classic vigilance research and vigilance in
car driving have not to date been systematically conducted. Methods: This study decomposed the
highest-cited vigilance literature of each full decade since the 1940s for the situational features of
the renowned vigilance decrement phenomenon originating from Mackworth (1948). A consensus
set of 18 different situational features was compiled and included for example an (1) isolated (2)
subject ... perceiving (3) rare (4) signals ... against (10) frequent (11) noise ... in a (17) prolonged
(18) task. Next, we reviewed 69 experimental vigilance task operationalizations (i.e., required
signal detection and response) within 39 publications concerned with driving vigilance. All vigilance
tasks were coded as “driving vigilance tasks” or “non-driving vigilance tasks” based on the
perceptual signal and response action both belonging to normal driving activity or not. Presence,
absence, and unreported presence/absence of each of the 18 features was rated for each task
respectively as “overlap”, “contrary”, and “unspecified”. In conjunction,
instructions/environmental conditions, signal definitions, signal rates, and summaries of the
experimental vigilance tasks were extracted. Results: A majority of driving vigilance tasks was
performed in simulators (69%) compared to on-road (28%) and watching videos (3%) along with
large differences in task conditions. Participants had to maintain fixed speed/lane positions in the
simulators in higher proportion (74%) than on the road (36%) where they had only to drive
“normally” and/or by loose conventions like “according to the law” more often (55% versus 15%).
Additionally, presence of other traffic was found more often on-road (91%) than in simulators
(48%). A specification of signals to detect and react to was found present within/for driving less
often (59%) than alongside/in conjunction with driving (100%). Likewise, rates of signals (i.e.,
frequency of signal occurrence) were reported more often for non-driving vigilance tasks (80%)
than in driving vigilance tasks (21%). For driving vigilance tasks, the highest overlap was 12 of the
18 features present (67%). On average, results showed relatively low levels of classic feature
overlap (36%) with high rates of unspecified feature presence (46%) for driving vigilance tasks
compared to non-driving vigilance tasks with higher classic feature overlap (64%) and fewer
features unspecified (13%). Conclusion and application: There is little overlap between the well-
known and often cited vigilance decrement phenomenon and published experimental tasks of
driving vigilance. Major differences were also found in the instructions/environmental conditions
of simulator versus on-road experimental driving vigilance tasks. What driving vigilance practically
is in the real-world thus remains a promising area for future research. We recommend that
researchers apply approaches which account for more real-world driving features to better expose
and address uncertainty regarding driving and vigilance.
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Chapter 2.1: Driving Vigilance Task Operationalization

1. Introduction
1.1. Timely value of vigilance operationalization for advancing driving automation

Automobile accidents have severe costs in terms of both personal safety and financial
consequence. For example, from motor vehicle crashes in the United States in 2010, there were 3.9
million non-fatal injuries, 32,999 fatalities, and economic costs totalled around $242 billion
(Blincoe, Miller, Zaloshnja, & Lawrence, 2015). Between 2005 and 2007, critical reasons for pre-
crash events from a total of 5,361 analyzed crashes in a National Motor Vehicle Crash Causation
Survey have been attributed to the driver in an overwhelming majority (95%) compared to vehicles
(2%) and to roadway/atmospheric conditions (3%), where 48% of driver causes involved adverse
driver readiness states like inadequate surveillance, distraction, inattention (e.g., daydreaming,
etc.), following too closely, overcompensation, panic/freezing and/or being asleep (NHTSA, 2008).
Presently researchers and industry stakeholders are rapidly progressing technological solutions
within vehicles to support safer driving. Developments span a wide range of conceptual and
deployed products of manufacturers and suppliers, research consortiums/initiatives, as well as
information technology companies and service providers. These automotive technology
developments involve a large range of categories such as driver warnings, active control assistance,
and temporary or even complete relief of driving authority/responsibility. Encapsulating these
developments, the German Federal Highway Institute (BASt), the United States National Highway
Traffic Safety Administration (NHTSA) and the International Society of Automotive Engineers (SAE)
have each produced scales for distinguishing and categorizing various levels of vehicle driving
automation technology ranging from none to full (Gasser & Westhoff, 2012; NHTSA, 2013; SAE,
2014). Crucially, issues and value of knowing how to measure driver vigilance can be found
throughout these aspirations and technologies in all except the absolute highest automation levels
(i.e., with no human involvement at all). Definitions of vigilance are provided next before
elaborating on this point.

Colloquially, the adjective ‘vigilant” might only evoke images of dutiful security positions ranging
from the sentinels in front of Buckingham Palace to anyone’s own local neighbourhood watch
program. More formally but also more broadly, Merriam-Webster and Dictionary.com respectively
define vigilant as “alertly watchful especially to avoid danger” and ‘“keenly watchful to detect
danger; wary . . . ever awake and alert; sleeplessly watchful” fitting many more situations, that is,
seemingly any involving purposeful watching with some adverse consequence at stake. Most well
cited (and maintaining a broad coverage area), the seminal operational research definitions of
vigilance classically stem from the British scientist Norman Mackworth. Within his classic WWII
radar era article “The breakdown of vigilance during prolonged visual search” subjects were tasked
to watch an experimental clock hand for specific sized movements (Mackworth, 1948). Mackworth
first cites the usage of the term vigilance from the esteemed neurologist Sir Henry Head as “both a
physiological and psychological readiness to react.” Immediately after which, Mackworth then
treats vigilance as “a useful word to adopt, particularly in describing a psychological readiness to
perceive and respond, a process which, unlike attention, need not necessarily be consciously
experienced” (Mackworth, 1948, p. 6). Thus, the present analysis follows in broadly treating
vigilance tasks as any involving the ability to meet required perception and response demands.

In the context of driving, difficulties in drivers meeting required perception and response demands
may be influenced from a variety of overlapping effects and mechanisms, such as widely
investigated and closely related constructs of driver fatigue, driver distraction and hazard
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perception. Fatigue can be characterized both as a physiological sleepy or drowsy state of a driver
detectable from signature activities regarding the eyes, head, and face (Ji, Zhu, & Lan, 2004), as a
psychological state of subjectively experienced disinclination to continue performing the task at
hand (Brown, 1994), or relating to both physiological and psychological processes reflecting a
general decreased capacity to perform (Thiffault & Bergeron, 2003). Definitions of driver distraction
include not only shifts of attention away from driving stimuli/tasks (Steff & Spradlin, 2000) but also
incorporate aspects of consequence (i.e., impact/effect), sources internal/external to the vehicle
(i.e., activity/event/object/person) and modality types (i.e., auditory, biomechanical, cognitive,
visual, or a combination) (Pettitt et al., 2005; Young & Regan, 2007). Hazard perception is a natural
combination of both dangerous situations on the road ahead (Horswill & McKenna, 2004) as well as
a skill developed through experience for recognizing and responding to such hazards in decreasing
amounts of time (Wetton et al., 2010). Whether these constructs (and even more like workload,
attention, arousal, stress, etc.) are considered independent/orthogonal, e.g., drivers may exhibit
reduced vigilance (distraction) even in non-fatigued states (fully awake) and suffer performance
decrements in states of both over- and underload or whether they are dependently tied, e.g.
vigilance decrement as direct effect of fatigue/sleepiness is an open area of relational
representation (Heikoop et al., 2015; Stanton & Young, 2000) beyond the scope of this review.
However, regardless of the specific boundaries drawn by different terminology usage, such
constructs (including the present topic of vigilance) all share extended consideration and coverage
of both endogenous factors (i.e., emanating from within) of both physiological and psychological
processes as well as exogenous factors (i.e., originating from outside).

Accurate accounts of driving demands are prerequisite to designing roles and responsibilities for
various automated and/ or human driving agents. The value vigilance stands to contribute across
driving and automation is detailed next by taking a step-by-step account of the NHTSA levels of
vehicle automation as specific example. In the NHTSA Definitions of Levels of Vehicle Automation
(NHTSA, 2013), the categories begin with Level 0 — No Automation (e.g., lane departure warning)
and progress through four more levels: Level 1 — Function-Specific Automation (e.g., electronic
stability control), Level 2 — Combined Function Automation (e.g., adaptive cruise control in
combination with lane centering), Level 3 — Limited Self-Driving Automation (e.g., the 2012 Google
car with human override), Level 4 — Full Self-Driving Automation (e.g., the 2014 Google car with no
steering wheel, gas pedal, or brake pedal).

Starting with Level 0, a distinction is made that regardless of the presence/absence of various
warnings (e.g., forward collision, lane departure, blind spot) or automated secondary controls (e.g.,
wipers, headlights, turn signals, hazard lights, etc.) the driver is in complete and sole command of
the primary vehicle controls (brake, steering, throttle, and motive power) at all times and
responsible for monitoring the roadway and safe operation of all vehicle controls (NHTSA, 2013).
Clearly, responsibility is explicitly given to the driver for watching many aspects of both control
devices and the roadway in this level and so safety checks of readiness in these duties of watching
could be useful.

In Level 1, automation is function-specific (and independent in the case of multiple functions
operating simultaneously) where the driver has overall control but can choose to cede limited
authority over a primary control, the vehicle can automatically assume limited authority over a
primary control, or provide added control in certain normal driving or crash- imminent situations;
all of which occur without replacing driver vigilance and assuming driving responsibility from the
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driver (NHTSA, 2013). Explicitly, vigilance is identified as a requirement of the driver not intended to
be relieved from the use of the automation and hence, presumably would benefit from real-time
verification that the driver is not over-relying on the automation and is sustaining appropriate levels
of vigilance.

In Level 2, automation of controls can work in unison (i.e., hands off the steering wheel and foot off
the pedal at the same time) however the driver is still responsible for monitoring the roadway and
safe operation and expected to be available for control at all times (i.e., short notice, no advanced
warning) (NHTSA, 2013). When a driver is expected for short and no- notice transitions of control,
the real-time assessment of his/her readiness could be critical for safe operations to avoid
startle/upset and/or loss of control.

In Level 3, the driver is no longer expected to constantly monitor the roadway while driving but
instead to rely heavily on the vehicle to monitor for changes with the driver available only for
occasional control and with sufficiently comfortable transition times (NHTSA, 2013). If only called
upon occasionally for driving control, a driver’s level of preparedness to react and respond can be
expected to vary within a pre-determined allotted transition time depending on how far removed
or closely tied to the driving situation the driver may or may not be.

Lastly, in Level 4 the driver is excused from an expectation of availability of control for an entire
trip. While continual driver readiness to perceive and respond then is not a direct requirement,
vigilance may still be useful to assess against risks of driver initiated control actions under
inappropriate levels of readiness.

Generally, across any driving automation hierarchy and functional allocation framework, there may
be value from accurate driver vigilance operationalization in recognizable ways. For more manual
control levels, a driver might fall behind driving task demands for many reasons (e.g., falling asleep,
becoming angry, day dreaming, inexperience, stimulus overload, etc.). Early detections of
mismatches of driver watchfulness and preparedness to respond to events could be vital precursors
to actual performance decrements and hence promote active safety through prevention rather
than merely passive safety through mitigation. For partially automated situations where the driver
maintains responsibility in case of automation inadequacy (or even for nominal transitions of
control) and he/she is tasked to observe, the driver is expected to be ready to uptake control.
Methods for actively verifying this preparedness could add value by obviating the vulnerability of
merely assuming watchful readiness. Lastly, from partial and into more highly automated
situations, a real-time qualification and quantification of driver vigilance can provide practical
information regarding how close/far away a driver might be from the driving task demands
(especially when they are allowed/encouraged to uptake additional tasks) and so can support
requirements for assuring drivers back into the control loop in safe and appropriate ways. All of
these aspirations for improved driving safety through none to some levels of automation entail
grounding knowledge and operationalization of driving vigilance (i.e., specifically what and how
drivers need to be watchful and ready for) and would be expected to be informed by established
literature on human capabilities for vigilance in general.
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1.2. Classic general vigilance literature

As a starting point for reconciling the above interests and values in the advancing domain of driving
task responsibility evolution, the current review seeks to first look back towards classic human
factors knowledge regarding the heavily researched vigilance decrement phenomenon
(Mackworth, 1948), before progressing forward with future driving vigilance operationalization. We
consider a summary of knowledge of the factors contributing to decreases of vigilance in general to
support practical extrapolation of previously learned lessons to driving tasks specifically.

As described above, the automation of human control tasks can create problems in operational
practice in addition to its intended benefits. This observation is supported by and established within
the classic human factors literature. For example, Lisanne Bainbridge’s seminal work “Ironies of
Automation” introduces and discusses the ways in which ‘automation of industrial processes may
expand rather than eliminate problems with the human operator’ (Bainbridge, 1983). Specifically,
she laments that within an automated system, a former operator may be recast to a monitoring
role under which he is expected to take-over if things do not operate correctly. This is a problem
because manual control skills that preclude against unstable or imprecise control all degrade
without direct practice and use. Furthermore, cognitive strategies for appropriate control in novel
or unusual situations rely on sufficient prior exposure and experience with nominal operations, and
this exposure is typically remote or occluded with the provision of automated processes. Bainbridge
continues by citing Mackworth stating that “we know from many ‘vigilance’ studies (Mackworth,
1950) that it is impossible for even a highly motivated human being to maintain effective visual
attention towards a source of information on which very little happens” (Bainbridge, 1983, p. 776).

Given the potential for grave danger and adverse safety consequences, it should not be surprising
that Bainbridge was not alone in these observations and interests. By the 1980s, reviews indicated
that there were already at least around one thousand published reports in the literature on the
topic of vigilance since WWII (Craig, 1984, Wiener, 1987). Furthermore, concerns were expressed
as early as 1962 that with investigators of vigilance behaviour “spread over several continents and
publishing under the sponsorship of numerous military, industrial and academic organizations, it
has become a major problem to keep up with the technical literature” (Frankmann & Adams, 1962,
p. 257). As a quick and current confirmatory check only of the topic’s proliferation, a Google Scholar
search (March, 2015) was made of titles since Mackworth in 1948 and revealed 8,140 results for
vigilance and 1,540 results for its synonym sustained attention in the title only; the sum together of
which (minus double-counts for appearances of both terms in the title) stood remaining at 9,652
total results. Indeed by 1987, enough material and interest had amassed on the topic of vigilance
and sustained attention that a full special issue of the Journal of the Human Factors and
Ergonomics Society was centralized around this topic only; an initiative itself in commemoration of
the end already, of at least one entire career spent in pursuit of the same (Warm & Parasuraman,
1987). For example, the recent review of Chan (2008) provides an encompassing account of
theoretical aggravators (e.g., lack of reinforcement feedback, inaccurate estimations of signal
probability, irregular spatial/temporal and successive presentation of signals and events, etc.) and
alleviators (e.g., increase in signal rate, self-paced tasks, greater signal intensity, etc.) of the
vigilance decrement. The lessons learned in classic vigilance literature often revolve around general
theoretical terminology regarding signals. To apply their solutions to vigilance assessment and
decrements in driving, it is then pre-requisite to identify in driving, what exactly constitutes such
signals and other relevant and potentially interacting factors or features.
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1.3. Vigilance and signal stimuli concerns in the driving literature

In research publications, it is common to see driving vigilance expressed as interest/aim in many
different ways. Among others, examples include: labelling driving in part or whole as some kind of
vigilance task/test (Inkeri, 2010, Mets et al., 2008, Thiffault and Bergeron, 2003), vigilance as a
contributing or critical factor for driving safety (CARRS-Q, 2013, Michael and Meuter, 2006, Vrignon
and Rakotonirainy, 2007), driving as including/requiring large amounts of vigilance
behaviour/demands (Bloomer, 1962, Boverie et al., 2008, Mackie and O’Hanlon, 1977) or driving as
being comparable to/resembling a vigilance task (Atchley and Chan, 2011, Chan, 2008, Schmidt et
al., 2007). Notably, consideration has also been raised to the unambiguous application of vigilance
literature to specific driving scenarios like driver supervision of ACC control (Ervin, Bogard, &
Fancher, 2000), the absence of regular engagements and distractions that are available on a normal
highway/normal road versus in a tunnel (Jayakumar, Novak, Faber, & Bouchner, 2014) and to the
relevancy of focus of vigilance problems on straight roads rather than in curves, where it is highly
unlikely for someone to fall asleep (Giusti, Zocchi, & Rovetta, 2009).

It is been previously underscored that no reliable methods yet exist for defining a priori what a
driver should be attending to (Hancock, Mouloua, & Senders, 2008). Instead, what (signal-
processing) activities are critical for safe driving is seen as an unresolved issue in traffic safety
(Regan, Hallett, & Gordon, 2011). Some insights and progress may be gained through retrospective
analyses of crash and incident data. However, working backwards through reports and naturalistic
driving video footage and coding some information processing activities more critical/correct than
others still presents many ambiguous situations (Regan et al., 2011). One area where both
ambiguity of driving signals as well as definitions of functional driving vigilance might be expected
to be explicitly handled and resolved is under the highly controlled conditions and detailed
documentation of experimental research and reporting.

1.4. Research aim and questions of the current literature review

Our review of vigilance tasks in driving vigilance experiments was undertaken to answer to the
following questions.

(1) What are (un)common experimental instructions and environmental conditions of driving
vigilance tasks?

(2) What are the types of signals operationalized in driving vigilance experiments?
(3) What are the rates of those signals?

(4) How much overlap resides between consensus features of classic vigilance tasks and
experimental operationalizations of driver vigilance?

(5) Where overlap is or is not found, what are the most common classic features
present/absent?

(6) What other circumstances (additional to the classic features) surround those tasks with the
highest amount of overlap?
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With answers to these questions, transportation researchers can use knowledge of driver vigilance
to achieve better automation designs and hopefully greater levels of driving safety. Knowledge
about the degree of overlap between classic vigilance tasks and experimental operationalizations of
driver vigilance would allow us to infer when/how we can proceed in an informed manner. Degrees
of contradiction and un-specification, on the other hand, would uncover gaps of knowledge to be
addressed in future driving research.

2. Methods
2.1. Multi-decade consensus features of classic vigilance tasks

To utilize the findings and conclusions of prior research for applications to a new specific problem
(in this case, of driving and driving automation), it is necessary to define shared components and
characteristics between the prior and the current problem. A relevant first question becomes: what
specific circumstances surround vigilance decrements so that we may make best use of already
identified solutions? Returning to the seminal work of Mackworth (1948), the author devotes an
entire section entitled “The Specific Problem” (p. 7) to introduce and emphasize the careful control
of situational features surrounding the task of interest.

Thus, using Google Scholar, we retrieved the highest cited research with the terms ‘vigilance’ or
‘sustained attention’ in the title from each full decade inclusively since and that cites Mackworth in
order to establish vetted consensus situational features of the now classic vigilance decrement (i.e.,
Davies and Parasuraman, 1982, Frankmann and Adams, 1962, Holland, 1958, Mackworth, 1948,
Parasuraman, 1979, Sarter et al.,, 2001, Warm et al., 1996). Distal research domains outside of
human factors and/or engineering psychology, such as from medicine or predator/prey animal
behaviour were thus intentionally left out of scope. Common components were found to
sufficiently relate a consensus in features namely involving (1) a subject/perceiver who between (2)
signals/targets versus (3) noise/non-signifying events had (4) the work/task of perceiving and
responding appropriately. In addition to mere presence/absence of these four feature object-
nouns, 14 mutually exclusive descriptors were found to modify such objects, that is, feature
modifier-adjectives. These were hence compiled in a chronologically additive manner to result in a
present day composite of multi-decade theoretical features of vigilance tasks in general (Table
2.1.1).

Table 2.1.1. Present day composite of multi-decade consensus theoretical features of vigilance decrement situations as
feature object-nouns and feature modifier-adjectives extracted from review of top-cited vigilance works of each full
decade since Mackworth (1948).

Code Feature

1 subject (a.k.a. participant, watcher, perceiver)

Ia isolated (a.k.a. alone)

2 signal (a.k.a. stimulus, target)

2a few (a.k.a. infrequent, occasional, rare)

2b temporally uncertain, (a.k.a. unpredictable, probability not influenced by subject, random)
2c difficult to perceive (a.k.a. small, near perceptual threshold)

2d clearly perceptible when alerted (a.k.a. detectable, defined, unambiguous)
2e short lasting (a.k.a. glimpse, transient)

2f spatially uncertain

3 noise (a.k.a. events, neutral, not meaningful, do not signify)

3a very similar to signals
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Chapter 2.1: Driving Vigilance Task Operationalization

Code Feature

3b frequent, (a.k.a. constantly encountered, high quantity, often)

4 task (a.k.a. performance, work, assignment)

4a long duration (a.k.a. sustained, extended, prolonged, lengthy, continuous, in a series)
4b lacking objective feedback of subject’s own performance

4c monotonous (a.k.a. same, consistent)

4d successive presentations of signal and noise (a.k.a. a burden to or loading on memory)
4e required response (a.k.a. action to take)

Note. Feature object-nouns are in bold and feature modifier-adjective are in italics.

2.2. Search criteria, filtering, and scope reduction

Given finite resources, it would be untenable to aspire to an exhaustive review of every published
driving vigilance operationalization. Instead, the goal of the present search was to gather a
representative sample for detailed analysis from which to generalize. Accessing Google Scholar
through Harzing’s Publish or Perish scholarly citation software, a search of publications between
the years 1948 and 2014 was conducted where the title had at least one word from a set of
“vigilance” terms (vigilance, sustained attention, vigil, vigilant) in combination with at least one
word from a set of “driving” terms (driving, driver, drivers, motorist, motorists, automobile,
automobiles, car, cars, vehicle, vehicles, road, roads, motorway, motorways). Again, such a search
was not engineered to return all relevant papers, but instead to ensure with greater chance that
the returned sample would retain relevancy on the assumption that presence of target terms in the
title connotes importance of that term to the research and hence would be a point for elaboration
and description within the text.

Search results of 248, 8, 3, and 11 titles were returned respectively for “vigilance”, “sustained
attention”, “vigil”, and “vigilant” in combination with one of the “driving” terms. A total of 181 titles
remained rising in frequency over the years (Fig. 2.1.1) after 89 exclusions were made from
manually reading the title and/or abstract for those that were written in a language other than
English (27), were duplicates within the same year (25) and across different years (14), were written
about trains (9), did not actually have the search terms in the title (4), used vigilance regarding
criminal theft (3), used driving as a verb of causality/influence and not locomotion (2), used road
but did not involve driving (1), were about aerial vehicles (1), were about the vigilance of physicians
of car accident victims (1), were about the deaths of children in trunks of cars (1), and described a

macroscopic level vehicle traffic congestion/flow system (1).
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Figure 2.1.1. Publication search returns by year between 1948 and 2014 where the title had both a “vigilance” and a
“driving” term in the title and did not meet exclusion criteria.

Proceeding through each of these 181 publication title returns, an approximate two-thirds majority
(n = 110) were retrieved in full text and assessed manually for the aim of isolating experimental
driving vigilance tasks. The exclusion criteria previously applied to the title/abstracts was re-applied
now in greater resolution in review of full texts, and 28 more removed. Additionally, 43 were set
aside that involved either algorithm/prototype validation, naturalistic observational methods or
otherwise lacked explicit description of driving task experimental conditions and controlled
manipulations. Where multiple experimental tasks were involved under the same title, these were
expanded (30 times). Consequentially, a remaining total of 69 experimental vigilance tasks (across
39 different publications, Table 2.1.2) were eligible for analysis within the present review of
sampling empirical driving vigilance task operationalizations for overlap with consensus theoretical
vigilance set ups.

Table 2.1.2. Publication list of present analysis with shorthand “Ref #” index code for use in subsequent tables.

Ref # Year First Author Title
1 2014 Chuang Kinesthesia in a sustained-attention driving task
2 2014 Correa Effects of chronotype and time of day on the vigilance decrement during
simulated driving
2014 Jayakumar Driver Vigilance Monitoring—Impact of the Long Tunnels
2014 Lin Wireless and Wearable EEG System for Evaluating Driver Vigilance
2013 Amato Effects of three therapeutic doses of codeine/paracetamol on driving

performance, a psychomotor vigilance test, and subjective feelings

6 2013 Pei Effect of Driving Duration and Work Schedules on Vigilance Level and
Driving Performance of Bus Drivers

7 2013 Ruiz Measuring the three attentional networks in a vigilance context and their
relationship with driving behaviour
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Ref # Year First Author Title

8 2011 Atchley Potential Benefits and Costs of Concurrent Task Engagement to Maintain
Vigilance

9 2011 Schmidt The short-term effect of verbally assessing drivers' state on vigilance
indices during monotonous daytime driving

10 2010 Inkeri Fatigue while driving in a car simulator: effects on vigilance performance
and autonomic skin conductance

11 2009 Giusti A noninvasive system for evaluating driver vigilance level examining both
physiological and mechanical data

12 2009 Schmidt Drivers’ misjudgement of vigilance state during prolonged monotonous
daytime driving

13 2009 Tippin Visual vigilance in drivers with obstructive sleep apnea syndrome

14 2009 Ueno An analysis of saccadic eye movements and facial images for assessing
vigilance levels during simulated driving

15 2008 Chan Benefits and cost of dual-tasking in a vigilance task: A laboratory and
driving simulator investigation

16 2008 Mets Effects of Seasonal Allergic Rhinitis on Driving Ability, Memory
Functioning, Sustained Attention, and Quality of Life

17 2008 Preece Are individuals recovering from mild traumatic brain injury vigilant
drivers?

18 2007 Vrignon impact of subjective factors on driver vigilance: a driving simulator study:
in driver behaviour and training volume 3 chapter 29

19 2007 Dalton Effects of sound types and volumes on simulated driving, vigilance tasks
and heart rate

20 2007 Howard The interactive effects of extended wakefulness and low-dose alcohol on
simulated driving and vigilance

21 2007 Schmidt Assessing driver’s vigilance state during monotonous driving

22 2006 Bonnefond Behavioural reactivation and subjective assessment of the state of
vigilance—Application to simulated car driving

23 2006 Desai Vigilance monitoring for operator safety: A simulation study on highway
driving

24 2006 Michael Sustained attention and hypovigilance: The effect of environmental
monotony on continuous task performance and implications for road
safety

25 2005 Lo The impact of shift, circadian typology, and bright light exposure on
sleepiness, vigilance, and driving performance in hong kong taxi drivers

26 2004 Campagne Correlation between driving errors and vigilance level: influence of the
driver's age

27 2003 Santana Driver vigilance monitoring - new developments within the AWAKE project

28 2003 Thiffault Monotony of road environment and driver fatigue: a simulator study

29 2002 Lucidi The effects of sleep debt on vigilance in young drivers: an
education/research project in high schools

30 2002 Roge Alteration of the useful visual field as a function of state of vigilance in
simulated car driving

31 2001 Brice The effects of caffeine on simulated driving, subjective alertness and
sustained attention

32 2001 Roge Variations of the level of vigilance and of behavioural activities during
simulated automobile driving

33 1998 O'Hanlon Venlafaxine's effects on healthy volunteers' driving, psychomotor, and

vigilance performance during 15-day fixed and incremental dosing
regimens
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Ref # Year First Author Title

34 1995 Findley Vigilance and automobile accidents in patients with sleep apnea or
narcolepsy

35 1995 Wyon The effects of negative ionisation on subjective symptom intensity and
driver vigilance in a moving vehicle

36 1996 Wyon The effects of moderate heat on driver vigilance in a moving vehicle

37 1978 Guillerman Effects of carbon monoxide on performance in a vigilance task
(automobile driving)

38 1976 Boadle Vigilance and simulated night driving

39 1967 Brown Measurement of control skills, vigilance, and performance on a subsidiary

task during 12 hours of car driving

Notably, not all vigilance task operationalizations of the “driving” plus “vigilance” titled experiments
were defined as belonging within nominal driving activity. For comparable and meaningful analysis,
we found it necessary to further sub-divide and classify the 69 experimental vigilance tasks into
mutually exclusive driving vigilance tasks (n = 39) versus non-driving vigilance tasks (n = 30). This
division was made on the basis of whether both the perceptual elements to perceive and the
required response actions of the task were nominally within the realm of driving or not. A
representative example of each cell of this 2 x 2 decision matrix is given next for clarification of this
classification judgement and also depicted in Table 2.1.3. Furthermore, such a division provided a
baseline set of data to compare against instead of just comparing driving vigilance
operationalization versus the composite consensus alone.

(1) InInkeri (2010) drivers were instructed to maintain a speed of 120 km/h and a central lane
position and so were presumably watchful for deviations that they should correct through
use of acceleration or deceleration and steering. In the present analysis, this vigilance task
was classified as a driving vigilance task because both the perceptual targets and response
actions reside within the notional activity of driving.

(2) In Wyon, Wyon, and Norin (1995) driver attention was measured towards essential sources
of information of varying degrees of priority within the driving task namely, indications and
abnormal execution of most of the instruments, warning lamps, controls as well as auditory
horn signals, noises from the engine or a near a rear wheel, and/or blue flashing (police)
lights in any of the mirrors. However, the sole response required of the driver was to
depress the foot switch, await an audible tone and report at leisure while holding down the
foot switch and then releasing it. In the present analysis, this vigilance task was classified as
a non-driving vigilance task due to the response action.

w

In Tippin, Sparks, and Rizzo (2009) drivers had to watch for small light targets appearing
along the horizon at seven discrete locations and responded with clicking of the high beam
control as soon as they detected the target. In the present analysis, this vigilance task was
classified as a non-driving vigilance task due to the arbitrary perceptual targets.

=

In Schmidt et al. (2007), drivers were required to detect an auditory tone of 500 Hz and
respond by pressing a button fitted to their right thumb. In the present analysis, this
vigilance task was classified as a non-driving vigilance task due to the arbitrary nature of
both perceptual target and response action.
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Table 2.1.3. Experimental vigilance task division in driving research into driving vigilance tasks (++) and non-driving
vigilance tasks (+-,-+,--) based on vigilance task perceptual elements and required response actions both belonging to
notional activity of driving or not.

Experimental Driving response action (+) Non-driving response action (-)
Vigilance Tasks

Driving percept (+) Example, Ref # 10: Example, Ref # 35:
watch for deviations from la'speed of 120 pay attention indications and abnormal
km/h and central lane position (percept, +) execution of most of the instruments,

correct dgwatmns W'th_ _ _ warning lamps, controls, as well as
acceleration/deceleration/steering (action, +) auditory horn signals, noises from the

driving vigilance task (++) engine or near a rear wheel, and/or
Full Set, Ref #s: blue flashing (police) lights in any of the
1,2,3,4,5,6,8,9,10, 11, 12, 13, 14, 15,16,  mirrors (percept, +)
17,18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, depress a footswitch and make a verbal
31, 32, 33, 34, 35, 36, 37, 38, 39 report at leisure (action, -)

non-driving vigilance task (+-)

Full Set, Ref #s:

8, 35, 36, 38, 39
Non-driving percept (-) Example, Ref # 13: Example, Ref # 21:
watch for small light targets along horizon at  detect an auditory tone of 500 hz
seven discrete locations (percept, -) (percept, -)
click the high beam control lever (action, +) press a button fitted to the right thumb
non-driving vigilance task (-+) (action, -)
Full Set, Ref #s: non-driving vigilance task (--)
13, 19, 25, 30, 37 Full Set, Ref #s:
2,5,7,9,10, 12, 15, 16, 18, 19, 20, 21,
24,29, 31,33

2.3. Manual coding and annotation

Each of the 69 tasks was manually reviewed by the first author and rated against a simple ternary
coding scheme for the presence, absence or unreported presence/absence of each of the 4 feature
object-nouns and 14 feature modifier-adjectives seen in the multi-decade consensus circumstance
composite (Table 2.1.1). Per each task, percentages of “overlap”, “contrary”, and “unspecified”
were calculated by summing the number of features present (true/consistent), absent
(false/contradictory), and not reported in enough detail to determine presence/absence
(unreported/uncertain) respectively and dividing each sum by the total feature set size of 18 and
multiplying by 100%. Furthermore, such ratings were cross-validated with 5 additional volunteer
raters who redundantly and independently coded a sub sample of 4 tasks each for a total of 20
(approximately 30% of the full set of 69). A strong positive correlation was obtained between the
calculated overlap percentages of these tasks rated by the additional volunteers and with those of
the original rater on the same tasks (r = .83, Fig. 2.1.2).
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Figure 2.1.2. Correlation ( r = .83) between the original rater and five other volunteer raters for 20 experimental vigilance
tasks regarding that task’s overlap with the multi-decade consensus aspects/qualifiers (Table 2.1.2).
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Additional aspects of feature details and environmental conditions of the experiment were also
manually reviewed and annotated for each experimental task. Specifically, the present analysis
involved a qualitative identification of what the signal of interest was and a quantification of its rate
of presentation scaled over one hour. Environmental conditions recorded included whether the
experimental tasks took place within a simulator versus a real road; with instructions to hold fixed
(or within a fixed range) a specified lateral lane position and/or longitudinal speed value; with
instructions to drive “normally” and/or by some established convention/law; with the presence or
absence of other vehicle traffic; and during clear visibility conditions (e.g., day time) versus
deteriorated visibility (e.g., night time, fog, etc.).

3. Results

3.1. Coverage of experimental instructions and environmental conditions for
driving vigilance tasks

Instructions and environmental conditions of the analyzed driving vigilance experimental tasks are
presented in Table 2.1.4. Overall, a greater majority of experimental driving vigilance research was
found to take place with simulators (27 of 39; 69%) compared to real-life roads (11 of 39; 28%) or
use of video footage (1 of 39; 3%). Participants of the simulator studies were more often explicitly
tasked with maintaining a fixed position (or a position within a fixed range) for longitudinal control
(20 of 27; 74%) and/or lateral control (17 of 27; 69%) than were participants of experimental on-
road tasks where lateral positions (4 of 11; 36%) and longitudinal positions (2 of 11; 18%) were
mandated to be held. Contrastingly, use of more flexible instructional guidance such as “drive
normally” and/or by abiding to commonly established norms, laws, and conventions was found to
be higher in on road driving vigilance tasks (6 of 11; 55%) compared to simulator tasks (4 of 27;
15%). Furthermore, presence of other traffic (i.e., at least one other vehicle) was found in higher
proportion in on-road (10 of 11; 91%) than in simulated tasks (13 of 27; 48%). Lastly, reporting of
on-road driving vigilance tasks was found to primarily be of daytime/clear-visibility conditions (9 of
11; 82%) with lower amounts of consensus features unspecified (2 of 11; 18%). Simulator driving
vigilance tasks however, were more evenly split between daytime/clear visibility (8 of 27; 30%) and
night-time/reduced visibility (7 of 27; 26%) with higher amounts of consensus features unspecified
(12 of 27; 44%).

33



Table 2.1.4. Instructions and environmental conditions of driving vigilance experimental tasks.

Ref # Road Sim. Video Lat. Long. Normally Alone  Traffic Day Night
1 1 1 1 ? 1 1
4 1 1 1 ? 1 1
3 1 ? ? ? 1 1

5b 1 1 1 ? 1 1

8a 1 1 1 ? 1 ? ?
8b 1 1 1 ? 1 ? ?
14 1 1 1 ? ? ? ? ?
15¢ 1 1 1 ? 1 ? ?
15d 1 ? 1 ? 1 ? ?
18b 1 1 ? ? 1 1

19b 1 ? ? ? ? ? ? ?
20a 1 1 1 ? 1 1
22 1 1 1 ? 1 1
25b 1 1 1 ? 1 1

25c 1 1 1 ? 1 1

31b 1 ? 0 1 1 ? ?
34 1 1 1 ? ? ? ? ?
38a 1 1 1 ? 1 1
2b 1 1 1 ? 1 1

10a 1 1 1 ? 1 ? ?
13a 1 1 1 ? 1 ? ?
11 1 1 ? ? ? ? ? ?
23 1 ? ? ? 1 1

26 1 ? 0 1 ? ? 1
30a 1 1 ? ? 1 1
32 1 ? ? 1 1 ? ?
28 1 1 0 1 ? ? 1

6 1 ? ? 1 1 1

9b 1 ? ? 1 1 1

12a 1 ? ? 1 1 1

17 1 0 0 ? 1 ? ?
16a 1 1 1 ? 1 1

21a 1 ? ? ? 1 1

27 1 1 ? ? 1 1

33a 1 1 1 ? 1 ? ?
35a 1 ? ? 1 1 1

36a 1 ? ? 1 1 1

37a 1 1 ? ? 1 1
39a 1 ? 0 1 1 1

Note. Column header indications: “Road” — driving task took place on real life road; “Sim.” — driving
task took place within a simulated environment; “Video” — driving task took place with videos of
driving; “Lat.” — subject required to maintain a fixed lane position or hold steady in a set range;
“Long.” — subject required to maintain a fixed speed or hold steady in a set range; “Normally” —
subject asked to drive as normal/usual, by regulation, convention, law, standard, etc.; “Alone” — no
other traffic present in driving task situation; “Traffic” — at least one other vehicle present in driving
task situation; “Day” — daytime, clear visibility; “Night” — nighttime, fog, reduced visibility. Coding
of “1” = true; “0” = false; “?” = unreported.
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3.2. Types of signals

Signal type categorization of driving and non-driving vigilance experimental tasks are shown in
Table 2.1.5a, Table 2.1.5b, respectively. Across the 69 vigilance tasks from the driving vigilance
literature, there were 53 specified signals in total together from Table 2.1.5a, Table 2.1.5b. Fewer
signals from within the driving vigilance tasks were found specified (23 signals from 39 tasks; 59%)
compared to those of the non-driving vigilance tasks (30 signals from 30 tasks; 100%). The 23
identified driving vigilance signals were found to align under mutually exclusive categories in the
following amounts and proportions: lateral or longitudinal deviation (12 of 23 signals; 52%),
obstacles (9 of 23 signals; 39%), and light sources (2 of 23 signals; 9%). Contrastingly, the 30
identified non-driving vigilance signals were found to align under modality categories of visual (23
of 30 signals; 77%), auditory (5 of 30 signals; 17%), and multi-modal (2 of 30 signals; 7%). Further
detailed descriptions follow for signal types of both the driving and non-driving vigilance tasks.
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Table 2.1.5a. Signal type specification and sub-categorization of driving vigilance experimental tasks.

Ref #

Specified

Lane

Deviations
Speed Wind

Pull-out

Obstacles
Lead Ped.

Hazard

?

Mirror

Light
Intersect.

1
2b
4
Sb
8b
10a
13a
14
11
17
16a
15c
15d
20a
22
25b
25c
30a
28
33a
34
37a
38a

9a
8a
12a
18b
19b
21a
23
26
27
31b
32
35a
36a
39a

1
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Note. Column header indications: “Specified ” — driving vigilance task signal definition/description
specified within the text; “Lane” — a deviation from lateral lane position; “Speed” —a deviation from a

longitudinal speed; “Wind” — the deviation included encouragement from an external perturbation, e.g.
wind gust; “Pull-out” —a vehicle that pulls out in front of and cutting off subject vehicle; “Lead” —a
vehicle the subject vehicle is following,; “Ped.” — a pedestrian; “Hazard” — described at general level as

“a potentially dangerous traffic situation

n, ann
P

—an obstacle without description; “Mirror” — a light

source in rear view mirror; “Intersect” — a traffic intersection light. Coding of “1” = true; “?” = not

specified.
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Table 2.1.5b. Signal type specification and sub-categorization of non-driving vigilance experimental tasks.
Multi- Audio Visual
Modal Object

Property
Spec
Ref# | ified Hz Length | Stim. Light Char. | Shape Bboard | Spat. pos. Color
2a 1 1
7a
7b
7d
5a
9a
8c
10b
13b
12b
16b
15a
15b
18a
30b
30c
37b
38b
39%
19a
19¢
21b
20b
24
25a
29
31a
33b
35b 1
36b 1
Note. Column header indications: “Specified ” — non-driving vigilance task signal definition/description specified
within the text; “Multi-Modal” — multiple modalities; “Hz” — specific tone frequency; “Length — specific tone
duration; “Stim.” — a visual stimulus without description; “Light” — a source of light; “Char.” — an alpha, numeric,
or symbolic character ; “Shape” — a simple shape e.g. circle/square, etc.; “Bboard” — a billboard; “Spat. pos.” —
specific spatial position; -“Color” — specific color. Coding of “1” = true.
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Regarding the driving vigilance task signals, where the signal to detect was a deviation from
maintenance of a prescribed fixed longitudinal speed (or speed range) (9 of 12 fixed position tasks;
75%) a correspondent deviation from a required fixed lateral position was also simultaneously given
as a signal (12 of 12 fixed position tasks; 100%). Additionally, externally forced perturbations (e.g.,
lateral wind gusts) were employed in a few cases (3 of 12 tasks; 25%): once with lateral position
holding only and twice with both lateral and longitudinal holding. Obstacles of different kinds were
used as driving vigilance signals in the following groups and amounts from greatest to least: vehicle
continuously leads ahead (3 of 9 signals; 33%); vehicle with discrete pull out or cut in ahead (2 of 9
signals; 22%); unspecified obstacles (2 of 9 signals; 22%); pedestrian leaves curb (1 of 9 signals;
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11%,), and examples of hazards pictured in driving scenes but not detailed in explicit description (1
of 9 signals; 11%). Lastly, in regards to the driving vigilance signals as light sources, one involved a
light in a rear view mirror (1 of 2 signals; 50%) and the other a traffic signal light (1 of 2 signals,
50%).

Regarding the non-driving vigilance tasks, purely visual signals most frequently included shapes like
circles or squares (8 of 23 signals; 35%); followed by sources of light (7 of 23 signals; 30%) and
alpha, numeric, or symbolic characters (6 of 23 signals; 26%); with a single instance of a real life
object, that is, a billboard (1 of 23 signals; 4%). Furthermore, only a handful of these included a
discrimination of color in defining the signal (4 of 23 signals; 17%). For purely auditory signals, most
were of a specified frequency (4 of 5 signals; 80%) with a single instance of signal definition based
on duration (1 of 5 signals; 20%). Lastly, existing elements of a vehicle were rarely used and
spanned multiple modalities (2 of 30 signals, 7%).

3.3. Rates of signals

Rates of signals for general and classic vigilance tasks have been already identified and discussed at
length in the literature. For example by 1971, in his extensive 100+ page monograph “Vigilance: The
problem of sustained attention”, road and motor vehicle traffic safety researcher Carl Stroh reviews
over 35 different publications on the topic of signal frequency and concludes “when signal
frequency is raised beyond a reasonable level (60-90 per hour), performance might be improved,
but then it is doubtful that we are still dealing with a true vigilance situation” (Stroh, 1971, p. 8).
Taking his upper bounds as the present analysis” lower bound, signal rates less than and including
90 per hour were considered presently “few” and those greater than 90 per hour were considered
absently “few” and hence not matching in terms of the infrequency of signal characteristic found
within the multi-decade consensus composite (Table 2.1.1, Feature 2a). Signal rate categorization
and quantifications of driving and non-driving vigilance experimental tasks are shown in Table
2.1.6a, Table 2.1.6b, respectively. A larger amount of unspecified feature adherence/contradiction
was found regarding the reported rate of signal presentation for driving vigilance (31 reported
signal rates from 39 tasks; 79%) than for non-driving vigilance (6 reported signal rates from 30
tasks; 20%). Where signal rates were specified in driving vigilance, slightly more than half were
found to match the aforementioned frequency of “few” (5 of 8 specified signal rates; 63%). In
comparison, where signal rate was more often specified in non-driving vigilance tasks, a lower
proportion were found to be “few” (7 of 24 specified signal rates; 29%). A comparative depiction of
proportional signal rates between the driving and non-driving vigilance tasks as well as breakouts
for rates not found to be “few” is given in Fig. 2.1.3.
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Table 2.1.6a. Signal presentation rates per hour of driving vigilance experimental tasks.

Ref # Few Rate(hr)
1 ? ?
2b ? ?
4 0 133.33
Sb ? ?
8b ? ?
10a ? ?
13a ? ?
14 ? ?
11 1 4.8
17 ? ?
16a ? ?
15c ? ?
15d ? ?
20a ? ?
22 ? ?
25b ? ?
25¢ ? ?
30a 1 4.8
28 ? ?
33a ? ?
34 ? ?
37a 1 20
38a ? ?
3 ? ?
6 1 60
9a 1 60
8a ? ?
12a ? ?
18b ? ?
19b ? ?
21a ? ?
23 0 360
26 ? ?
27 ? ?
31b 0 1560
32 ? ?
35a ? ?
36a ? ?

Note. Column header indications: “Few” — less than or equal to 90 presentations per hour; “Rate(hr)” = number of
presentations per hour. Coding of “1” = true; “0” = false; “?” = not reported
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Table 2.1.6b. Signal presentation rates per hour of non-driving vigilance experimental tasks.

Ref # Few Rate(hr)
2a 0 600
7a 0 219.43
7b 0 219.43
7d 0 219.43
5a 0 360
9a 0 102.86
8c 1 12.24
10b ? ?
13b 1 60
12b 0 102.86
16b ? ?
15a 0 348.84
15b 0 120
18a ? ?
30b 1 34.47
30c 0 159.6
37b ? ?
38b 1 30
39b 1 20
19a 1 60
19¢ 0 540
21b 0 120
20b 0 600
24 0 345
25a 0 200
29 0 144
31a 0 480
33b 1 40
35b ? ?

Note. Column header indications: “Few” — less than or equal to 90 presentations per hour; “Rate(hr)” = number of
presentations per hour. Coding of “1” = true; “0” = false; “?” = not reported
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Driving Vigilance Tasks

133/hr, 3%

360/hr, 3%

1560/hr, 3%

Non-Driving Vigilance Tasks

103/hr, 7%
120§hr, 7%
4/nr, ?
%Bﬁ: i
219/hr, 10%
Hor, 3%
it ?
7t 3%
600/hr, 7%

Figure 2.1.3. Specification of signal rates in driving vigilance versus non-driving vigilance tasks and stacked bar
delineation for proportions of specific rates when in excess of “true vigilance situations” (i.e., >90/hr) (Stroh, 1971, p. 8).
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3.4. Percentages of overlap with classic/general vigilance tasks

An overlap percentage was computed from the number of the multi-decade features (Table 2.1.1)
that were present within each of every vigilance task operationalization. On average, less than half
of the consensus features were found to be present overall (M = 48%, n = 69) with an average
amount of unspecified features of 32%. Averaging separately, however, revealed a lower average
overlap for the driving vigilance tasks (m = 36%, n = 39) with higher amounts unspecified (M = 46%)
compared to the non-driving tasks (M = 64%, n = 30) with lower amounts unspecified (M = 13%) as
seen in Fig. 2.1.4.

Driving Vigilance Tasks

Non Driving Vigilance Tasks

Figure 2.1.4. Averages of classic consensus feature overlapping presence, contrary absence, and unspecified
presence/absence for driving vigilance tasks (n = 39) versus non-driving vigilance tasks (n = 30).
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3.5. Most common features of overlap, contrary, and unspecified

For both the driving and non-driving vigilance tasks and each multi-decade consensus feature
(Table 2.1.1), separate sums of the ratings of overlap, contrary, and unspecified were computed
(Table 2.1.7) to determine what of classic vigilance tasks were most held in common, in
contradiction or in uncertain terms. In the driving vigilance tasks, the most common feature
overlapping with the classic features was that regarding a lengthy duration (i.e., half an hour or
longer, Feature 4a) (28 of 39; 72%). In the non-driving vigilance tasks the most common feature in
overlap was a tie between the detection of a signal (Feature 2) and the requirement of making a
specified response (Feature 4e) (30 of 30; 100%). Regarding contrary features, the most common
feature absent and in contradiction for the driving vigilance tasks was the successive presentation
of signal and noise (i.e., a burden of memory of the distinction between these provided their non-
simultaneous/overlapping occurrences, Feature 4d) (20 of 39; 51%). For the non-driving vigilance
tasks the most common feature absent and in contradiction was a tie between the signals being
few in frequency (i.e., <90 per hour, Feature 2a) and the signals occurring in spatially uncertain
locations (Feature 2f) (17 of 30; 57%). Lastly for unspecified feature presence/absence, the
provision of objective feedback of a subject’s own task performance (Feature 4b) was the feature
most often rated as unspecified in both driving vigilance (35 of 39; 90%) and non-driving vigilance
tasks (20 of 30; 67%).

Table 2.1.7. Counts of classic vigilance features (Table 2.1.1) for driving and non-driving vigilance experimental tasks

" " "o "o 7 v
Feature Driving Non-Driving Driving Non-driving Driving Non-driving
Code (39 tasks) (30 tasks) (39 tasks) (30 tasks) (39 tasks) (30 tasks)

1 25 27 0 3 14 0

Ila 14 10 14 9 11 11
2 23 30 0 0 16 0
2a 5 7 3 17 31 6
2b 14 29 9 0 16 1
2c 0 6 18 15 21 9
2d 15 26 3 1 21 3
2e 8 21 13 0 18 9
of 3 10 16 17 20 3
3 17 18 4 11 18 1
3a 17 18 4 11 18 1
3b 14 17 6 11 19 2
4 25 29 1 0 13 1

4a 28 17 8 13 3 0

4b 2 8 2 2 35 20
4c 25 27 2 0 12 3
4d 1 15 20 14 18 1
4e 20 30 0 0 19 0

Note. Column header indications: “1” = feature presence; “0” = feature absence; “?” = not reported feature
presence/absence. Feature counts exceeding half of the full set of tasks are in bold as “common” and the highest
count is in bold and in italics as “most common”.
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3.6. Task summaries of the highest amount of overlap

Finally, additional task summaries of those experimental driving vigilance tasks with the highest
amount of overlap with the classic consensus general vigilance features are next presented in a
four-way tie of 67% overlap each. First, with the lowest amount of unspecified features (6%),
drivers were asked to immediately steer back to the center of the original lane once perturbed by
random forced departure events while on a simulated night time roadway with no other traffic and
cruising at a constant speed of 100 km/h (Lin et al., 2014). Second, with the next lowest unspecified
consensus features of 11%, participants steered towards randomly left/right deviating red tail lights
projected at a constant distance ahead “as if following it along a country road at night” while
seated in a stationary car cabin but with a forward projection of a moving road of random dot
patterns on an extended table surface ahead of their cabin, whose progression was coupled to the
input of their accelerator pedal (Boadle, 1976, p. 220). Lastly, in two separately coded driving
vigilance tasks from the same publication (Lo, 2005) and both with 17% of the consensus features
unspecified, participants had to step on a brake pedal as response to encountering either a
pedestrian stepping away from the sidewalk into the driving lane or a traffic light that changed from
green to red. These participants were occupational taxi drivers who performed the test while
seated in their own stationary real-life taxi with a 15" laptop displaying a simulated 80 km/h flowing
view of a monotonous road lacking any other traffic or lateral control.

4, Discussion

This review aimed to characterize experimental driving vigilance tasks in terms of common
instructions/conditions, signal types/rates, and component features for comparison to the classic
vigilance literature. From sampling experimental literature principally concerning both driving and
vigilance, we found task operationalizations that were not highly similar with the full set of multi-
decade consensus situational features surrounding the vigilance decrement. The overall results
support critical (re)evaluation of driving tasks as being construed as vigilance tasks in the classic
sense.

4.1. Coverage of experimental instructions and environmental conditions for
driving vigilance tasks

Our results revealed large and informative differences between the common instruction/conditions
used in experimental driving vigilance research, especially along the dimension between the use of
simulators or real roads. First, and perhaps unsurprisingly, simulator studies were about twice as
common as real-world settings. Furthermore, simulator studies were found to more commonly
restrict the driving task into maintaining a specific speed and lane position and hence driving
vigilance arises as the perception and response to deviations from such mandates. When
operationalized on real roads, drivers were more often flexibly tasked with only general adherence
to legal/social conventions for driving. The driving vigilance here, might then be differently
construed as the perception and response to deviations from safety or normality. Additionally, a
large component of driving safety can reasonably be expected to include the presence/absence of
other vehicles, which was about twice as commonly available in the real-world versus the simulator
studies. Real-world studies, however, were seen to more commonly be restricted to conditions of
near perfect visibility compared to simulator studies which more evenly exposed driving
participants to both day/clear and night/fog environment.
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4.2. Types of signals

Similar challenges for the topic of driving vigilance were found from the analysis of signal types in
experimental driving vigilance tasks. First, explicit descriptions of the driving specific signals a
participant should be ready to perceive and respond to with a driving action were not found in over
a third of what were coded as driving vigilance tasks. This shared difficulty alone suggests a
decomposition of driving and assessment of driving vigilance to be potentially problematic.
Potential solutions may include direct manipulations of instructions and/or stricter documentation
of the specific instructions given to participants of driving vigilance experiments along with the
avoidance of instructions which may be susceptible to generalities/assumptions such as to drive
“safely”, “as you normally would”, “according to the law”, etc. Furthermore, clear consensus was
not found between driving vigilance signal operationalizations, with a relatively even split between
obstacles and speed/lane deviations and with only a few light signal sources. Unfortunately, as
discussed earlier, deviations from prescribed speed or lateral positions might not be as realistic a
concern of driving vigilance as the perception and avoidance of obstacles (i.e., especially other
traffic). Additionally, a relative scarcity of light source signals (i.e., 2 of 23 driving vigilance signals)
seems problematically disproportionate, given a large prevalence of visual light signals in real-world
driving (e.g., intersection lights, caution lamps, turn signals, headlights, etc.) as well as in automated
warnings/indicators (e.g., dashboard, heads up displays, etc.). Considering the possible modalities
all of these driving vigilance signals might manifest through (as in the non-driving vigilance signals),
additionally suggests a potential mismatch of focus. At present, a gap can be seen surrounding the
use of real-life and multi-modal types of signals for experimental driving vigilance assessment and
investigation.

4.3. Rates of signals

More problems for an informed identification and alleviation of vigilance decrements were found in
the lack of reported signal rate/frequencies when describing the driving task specific signals and
responses. This same level of unspecified signal rates (79%) was not evidenced in non-driving
vigilance tasks (20%) and suggests in the least difficulty in reporting, and possibly even a gap in
knowledge or approach regarding frequencies of driving vigilance signals. While more than half of
specified signal rates in the driving vigilance tasks were indeed within the range of a “true vigilance
situation” (Stroh, 1971, p. 8) these are at a minority against the disproportionate unspecified of the
majority. Thus for the accurate prediction and alleviation of vigilance decrements, the present
review reveals an unfortunate lack of articulation of a presumably prudent direct
consideration/exploration of exactly how rare and/or how much influence drivers might have on
the signals they must respond to while driving. Generally, whenever signal-response approaches
are used, it is recommended to include precise documentation of the rate of signal presentation
and especially for investigations of vigilance to also include stipulations surrounding any influences
a participant might have on that rate or on its being predictable for the participant.

4.4. Percentages of overlap with classic/general vigilance tasks

All the vigilance tasks of the analysis averaged together showed a weak overlap with the multi-
decade consensus vigilance theory situational features (less than half on average), thus suggesting
some misalignment of operationalization between theory and practice. Splitting this overlap
comparison revealed less theoretical overlap for driving vigilance tasks (36%) versus non-driving
vigilance tasks (64%). Additionally, the unspecified consensus aspect/qualifier presence or absence
was higher for the driving vigilance tasks (46%) and lower for the non-driving vigilance tasks (13%).
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In the least, it is evident then and convergent with the prior results of the present analysis, that
describing driving as a vigilance task and tackling its potential for detrimental vigilance performance
is not straightforward and the lessons learned thus far from vigilance theory therefore might not be
readily applied. Extensions of classical definitions of vigilance to situated definitions of driving
vigilance, especially pertaining to anticipated or requisite characteristics (e.g., features) may
provide a way forward. Moreover, such definitions might attempt to identify features that are
essential throughout all driving vs. specific to particular driving contexts or scenarios.

4.5. Most common features of overlap, contrary, and unspecified

The present analysis extended beyond the identification of a lack of consensus overlap (i.e.,
between shared features of classic vigilance circumstances and experimental driving vigilance
operationalization), to help reveal why this might be the case. Perhaps unsurprisingly, driving
vigilance tasks and non-driving vigilance tasks had similar overlap with consensus vigilance features
regarding the presence of a perceiver tasked to respond to signals over a prolonged period in a
consistent/unchanging standard of performance. More informatively, however, the current analysis
showed features that are not commonly reported for driving vigilance tasks but which are
commonly reported in non-driving vigilance tasks. These features of large quantities of non-
meaningful noise events which are highly similar to target signals where the target signals
themselves are not predictable and not subject to any driver influence on the probability or
duration of occurrence are lacking specification in driving vigilance operationalization. Such a
lacking presents direct challenges of practically matching driving vigilance problems to general
classic vigilance theory. Furthermore, the successive and memory burdening presentation of signals
separate from noise was found to be absent in more than half of the driving vigilance tasks where
instead signals emerged from or simultaneously overlapped with their noise (e.g., a pedestrian
stepping away from a curb, or lateral heading drifting away from lane center, etc.).

4.5.1. Task summaries of the highest amount of overlap

Those few tasks with the highest amount of consensus feature overlap may shed light on
circumstances research could focus on for safeguarding against classic vigilance decrements. In
summary of the cases with an approximate two-thirds overlap with consensus classic vigilance
circumstances, decrements of vigilance might be predicted for drivers alone at night attempting to
follow precise lateral positions at constant speeds, in performing correct braking responses to red
traffic signal lights and errant pedestrians, or in other conceivability similar circumstances. As an
example of applied vigilance solutions then, deviations from a prescribed lane canter could be
made more salient by auditory and visual alerting with Lane Departure Warnings. In addition to
increasing the predictable/regular occurrence of encounter of pedestrians and/or traffic lights (e.g.,
crosswalks, intersections, etc.) such signals might be highlighted or emphasized by advanced
recognition software such as with heads-up displays. However, two-thirds (while the highest found)
is by definition only partial overlap and those elements missing might also be the ones crucial to or
interactive with other aspects for performance in that specific situation. Until these are better
understood from additional research and investigation, the driver vigilance support solutions may
prove inadequate at best and inappropriately applied at worst.

4.5.2. Highest amount of overlap in highly automated driving?

Decrements and problems of vigilance may be expected to arise in future driver assistance and
automated driving systems to the extent that circumstances of their use cases might resemble the
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classic vigilance situational feature set. While the driving tasks of the present analysis did not often
explicitly identify themselves as operating within an automated driving paradigm, some task
conditions did automate lateral and/or longitudinal control in their experimental methods and so
could be seen as reflecting a NHTSA Level of Vehicle Automation 1 and/or 2. Moreover, a body of
driving vigilance concerns are emerging from BASt- and NHTSA-like definitions of automated driving
where a driver is required to respond to an automated system take-over request provided no/short
notice and/or a pre-established length of time (Gasser and Westhoff, 2012, NHTSA, 2013). While
initially out of the scope of the present analysis because the title did not use the terminology of
“vigilance” or “sustained attention” in its title, the take-over request (TOR) automated driving
simulator experiment of Gold, Dambock, Lorenz, and Bengler (2013) maintains relevance to the
present discussion as many of its theoretical and experimental task features could be considered in
overlap with the classic vigilance feature set.

In Gold et al. (2013), subjects were tasked with a pre-occupying secondary task while the car drove
itself until an auditory and visual alert prompted them to take-over to avoid an accident ahead of
them either through braking or swerving to another lane. In their methods, 50% of the set of
features of classic vigilance tasks are present with a subject watching/listening for an infrequent,
temporally uncertain, unambiguous, time-critical signal that they must perform a required response
to in a consistent/routine manner. However, a much higher overlap around 83% (and highest yet of
any of the tasks of the present analysis) is conceivable for TORs when adding to the specific
reported methods of Gold et al. (2013) features likely within TOR in general. These additional
features might include an isolated driver required to respond during prolonged periods of inactivity
to imperfect automation through which the driver must make asynchronous discriminations
between noise (i.e., false alarm/missed events) that is highly similar to valid signals. The classic
vigilance decrement features of time criticality (i.e., short lasting signals) and lack of feedback on
driving response in TOR, while respectively present and unspecified present/absent in Gold et al.
(2013), however should not and does not necessarily hold true in all future real-world TOR
implementations. Further research and investigation is thus seen as especially needed in regards to
the specific potential for decrements of vigilance provided higher levels of driving automation
surrounding the situational features entailed by design, implementation and actual driver use.

5. Summary and Limitations

From reviewing experimental driving vigilance task operationalizations, the results of the present
analysis have shown the topic to be of great concern but a challenge for specific consensus
definition and treatment. The results are by strict definition limited to the narrow selection of
literature from specific inclusion/exclusion criteria, yet may generalize beyond the use of
“vigilance”/”sustained attention” and “driving” in the title. The general results of uncertainty
surrounding driving vigilance operationalization might also be considered an artifact of the feature
set and coding schemes undertaken. However, the marked differences observable from the non-
driving vigilance tasks using these same methods serve to provide relative confirmation. Moreover
subjectively, the same difficulty of complexity and articulation in driving vigilance can be
appreciated merely from asking oneself which and to what extent any of the circumstances
described above may or not be present when people actually drive in normal day-to-day situations.
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6. Directions for Future Research

Concerns in the literature over the real-world applicability of findings from laboratory/simulator
vigilance experimental tasks span multiple decades of criticism and review (Kibler, 1965, Craig,
1984, Mackie, 1984, Wiener, 1987) to the near present day (Hancock, 2013a) and are equally
shared by driving safety researchers seeking theoretical transfer (Rosenbloom & Wolf, 2001).

Raising such discussion and concern in the transportation research literature can help protect
against prohibitions regarding driving task requirements (i.e. perceptual targets and response
actions) while these requirements are still uncertain and supports the introduction of new
theoretical accounts. In concert with the accelerating development and applications of
microprocessors that “have demanded not less but more of the human monitor” and “those who
believe that just one more chip needs to be invented to automate the human out of the system”
(Wiener, 1987, p. 735), a volume of tools are also growing for observation and data collection in
instrumented vehicles, field operational studies, and naturalistic driving (Dingus et al., 2006, Eenink
et al., 2014, McGehee et al., 2007, Regan et al., 2012, Stutts et al., 2005, Tivesten and Dozza, 2014,
Victor et al., 2010). Collectively, such studies could begin to provide exactly the wealth of real-world
operational knowledge needed to bridge theory and practice (e.g., Wiener, 1987). Furthermore,
they typify and support emerging theoretical perspectives, that is, situated cognition, that posit
knowledge as inseparable from doing by being situated in activity bound to social, cultural, and
physical contexts (Robbins & Aydede, 2008).

Interestingly, with accelerating advances in computation (Moore, 1965), telecommunication, and
Internet connectivity technology, nothing should inherently prohibit such real-world data from
entering into laboratories and like areas of greater control and manipulation. For example,
augmented reality and other blended designs might be an appealing approach (Hancock &
Sheridan, 2011, chap. 4) as well as widely publically available and diverse driving video data sets
(e.g., YouTube DashCam videos). Overall, in parallel with a growing popularity of debunking myths
of “good” and “bad” drivers (Arnstein & Arnstein, 2005), future driving vigilance research efforts
might benefit from following lines of cognitive and work domain analyses well used by many other
domains (Rasmussen et al., 1994, Vicente, 1999), along with critical re-consideration of
fundamental driving attention and distraction paradigms (Hancock, 2013b, Kircher and Ahlstrom,
2015) and direct consideration of real-world conditions and constraints typically under-represented
in simulator studies, including the allowance of terminating/modulating vigilance task performance
at one’s own intrinsic will rather than external compulsion that fixes down attention otherwise left
free to vary (Hancock, 2013a, Scerbo, 2001).

From naturalistic driving studies, evidence is only recently emerging that safety risks associated
with cell-phone use are considerably smaller than previously believed (Fisher, Caird, Rizzo, & Lee,
2011, chap. 1) by distinguishing between talking/listening vs. reaching/dialing cell-phone aspects
and by comparing relative to other higher risk factors like drowsiness and specific environmental
situations like intersections and increased traffic densities (Klauer, Dingus, Neale, Sudweeks, &
Ramsey, 2006). Future studies may even begin to address the possibility of cell-phone use as a
benefit, for example, as voluntary countermeasure to reduced alertness (Victor et al., 2015). The
constant maintenance of some prescribed and pre-determined level of driving vigilance may itself
also be worth challenging or in the least worth re-visiting provided more specific detailing of the
situational features included in actual driving activity. Indeed, the lack of consensus from the
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present analysis of driver vigilance operationalization may be viewed as support for reversals or at
least re-examinations regarding assumptions or requirements of how drivers should, and/or how
they actually do perceive and respond while driving.
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Chapter 2.2: Supervisory Engagement with Driving Automation

Chap. 2.2) How to Keep Drivers Engaged while
Supervising Driving Automation? A literature
survey and categorization of six solution areas

Control Warning
Modifications Information

2.2

In regards to the overall thesis big picture, this literature survey serves as a foundation for
organizing previously proposed solutions to the problem of keeping the engagement of
supervisors of automation (i.e., in general such that their lessons learned might be
applied to the automated driving domain). The survey work generated six solution area
themes with which independent raters exhibited better than chance agreement when
tasked to apply the themes to categorize the conclusions found in 34 publications. The
first three themes describe avoidance either in a hard sense or different versions of a soft
stance: objective or subjective reductions in the supervisory control task. The latter three
themes describe solutions under familiar learning theory paradigms in chronological
order: behaviourism, cognitivism, and ecological constructivism. Cognitive followed by
ecological themed solutions appear to be the most commonly proposed.

Adapted from:

Cabrall, C.D.D., Eriksson, A., Dreger, F., Happee, R., & de Winter, J.C.F. (2019). How to keep drivers engaged while
supervising driving automation? A literature survey and categorization of size solution areas. Theoretical Issues in
Ergonomics Science, vol. 20(3), pgs. 332-365.
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Abstract

This work aimed to organize recommendations for keeping people engaged during human
supervision of driving automation, encouraging a safe and acceptable introduction of automated
driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory
was used to propose solution areas to human supervisory control problems of sustained attention.
Driving and non-driving research examples were drawn to substantiate the solution areas.
Automotive manufactures might (1) avoid this supervisory role altogether, (2) reduce it in
objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles
such as with gamification and/or selection/training techniques, (5) support internal driver
cognitive processes and mental models and/or (6) leverage externally situated information
regarding relations between the driver, the driving task, and the driving environment. Second, a
cross-domain literature survey of influential human-automation interaction research was
conducted for how to keep engagement/attention in supervisory control. The solution areas (via
numeric theme codes) were found to be reliably applied from independent rater categorizations of
research recommendations. Areas (5) and (6) were addressed by around 70% or more of the
studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around
20% and 5% respectively. The present contribution offers a guiding organizational framework
towards improving human attention while supervising driving automation.
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1. Background
1.1. Addressing human driving errors with automation technology

Traffic safety literature has predominately implicated human behaviour and cognition as principal
factors that cause motor vehicle crashes and fatalities. Treat et al. (1979) performed 2,258 on-site
and 420 in-depth accident investigations and found that human errors and deficiencies were a
cause in at least 64% of accidents, and were a probable cause in about 90-93% of the investigated
accidents. Treat et al. (1979) identified major human causes as including aspects such as improper
lookout, excessive speed, inattention, improper evasive action, and internal distraction. The
National Highway Traffic Safety Administration (NHTSA, 2008) conducted a nationwide survey of
5,471 crashes involving light passenger vehicles across a three year period (January 2005 to
December 2007). NHTSA (2008) determined the critical reason for pre-crash events to be
attributable to human drivers for 93% of the cases. Critical reasons attributed to the driver by
NHTSA (2008) included recognition errors (inattention, internal and external distractions,
inadequate surveillance, etc.), decision errors (driving aggressively, driving too fast, etc.), and
performance errors (overcompensation, improper directional control, etc.).

Consequentially, Advanced Driving Assistance Systems (ADAS) and Automated Driving Systems
(ADS) are commonly motivated as solutions to address transportation safety problems of human
errors (Kyriakidis et al., 2015; Gao et al., 2014; NHTSA, 2017). The Society of Automotive Engineers
International (SAE) originally released a standard J3016_ 201401 (SAE, 2014) that conveyed an
evolutionary staged approach of five successive levels of driving automation ranging from ‘no
automation’ to ‘full automation’ (herein referred to as SAE Level 0-5). While the SAE standard has
been revised several times to its most current version available as of June 2018 (SAE, 2018), its
principal levels have been retained and continue to be a common reference point for the
automotive automated/autonomous vehicles (AVs) research domain. Automotive manufacturers
have already begun to release various SAE Level 2 ‘Partial Automation’ systems within their on-
market vehicles, which allow combined automatic execution of both lateral and longitudinal vehicle
control under specific operational design domains. At SAE Level 2, drivers are still expected to
complete object and event detection and response duties while retaining full responsibility as a fall-
back to the driving automation (SAE, 2018).

1.2. New roles, new errors: Supervisors of mid-level driving automation

A complicating issue along the path to fully autonomous self-driving cars exists for the SAE Level 2
partial automation systems in regards to a state of driver supervisory engagement and retention of
responsibility. Owners’ manuals, manufacturer websites, and press releases of recent on-market
SAE Level 2 systems were collected as background material to understand how the industry is
presently addressing this issue. A sample of recently released SAE Level 2 driving automation
system terminology and Human Machine Interfaces (HMI) regarding human disengagement is
organized in Table 2.2.1. Notably, such concerns appear mostly in arguably passive (e.g.,
instructional guidelines and warnings), indirect (e.g., surrogate sensing of attention/involvement),
and/or reactive (e.g., post-incident alerting) manners.

Most manufacturers kept their descriptions of driver engagement responsibilities and requirements
during use of their SAE Level 2 systems at a higher level than commonly found in research
communities (e.g., specifications of aberrant driver state terminology such as drowsiness,
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distraction, inebriation). Instead, manufacturer examples included abstracted aspects like always
being aware of and acting appropriately in traffic situations or being ‘in control’. Some notable
specifics for the remaining driver responsibility include Mercedes’ detailing of vehicle speed,
braking, and staying in the lane (Mercedes-Benz, 2017, p. 177), a few statements from BMW that
hands must be kept on the steering wheel (BMW, 2017), and repetitive remarks from Tesla
regarding their hands-on requirements (Tesla, 2017, p. 73), including an entire sub-section entitled
‘Hold Steering Wheel’ (Tesla, 2017, p. 74).

Table 2.2.1. Partially automated driving releases (~ 201 7)#

" Engagement Engagement Inattention
Terms for driver state of gag gag

Make Model System engagement Input® Outputb escalation
modality modality intervals
Volvo Cars  XC90 Pilot Assist Il attention, judgment Via AU 0
S90, V90 VLn VMsc VI
TOC
GM, CT6 Driver attention, awareness, VI AU >1
Cadillac Attention supervision, engagement Vi
System TA
(Super Cruise) TOC
Tesla Model S Autopilot Tech  alert, safely, in control, Via AU 5
Model X Package v. 8.0 hands-on, mindful, VI
determine appropriate, TOC

be prepared

Audi A4, Q7 Traffic Jam be in control, ready, V0La VMsc AU >1
Assist responsible, assessing, VI
attention TOC
BMW 750i Active Driving be in control, responsible, Vlia AU 1
7 series Assistant Plus correctly assess traffic Vi
situation, adjust the (TA)
driving style to the traffic TOC

conditions, watch traffic
closely, actively intervene,

attentively
Infiniti Q50S Active Lane be alert, drive safely, keep (VLa) (AU) -1
Control vehicle in traveling lane, (v

control of vehicle, correct
the vehicle’s direction

Daimler, S65 AMG  Distronic Plus adapt, aware, ensure, V0La VMsc AU 1
Mercedes- with Steering control, careful \i
Benz and Active observation, be ready, (TA)

Lane-Keeping maintain safety TOC

Assist
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® Input modalities (vehicle from driver):
e Vla = vehicle lateral, steering, etc.
e VLn =vehicle longitudinal, brake, gas, etc.
e VMsc = vehicle misc., seat buckle, wait, door lock, etc.

e Output modalities (vehicle to driver):
e AU =audio
e TA =tactile/haptic/vestibular
e Vl=visual
e TOC = transition of control, change in functionality/level, etc.

# sources of information
e Volvo Cars
o http://volvornt.harte-hanks.com/manuals/2017/S90 OwnersManual MY17 en-US TP22301.pdf
o  http://volvo.custhelp.com/app/answers/detail/a_id/9769/~/new-features-available-as-of-
november-2016
e GM, Cadillac
o http://media.gm.com/media/us/en/cadillac/news.detail.html/content/Pages/news/us/en/2017/apr/
0410-supercruise.html
o https://www.youtube.com/watch?v=Shm3GY JG-w
e Tesla
o https://www.tesla.com/sites/default/files/model s owners manual north america_en us.pdf
e Audi

http://ownersmanual.audiusa.com/
http://www.audi.com/en/innovation/piloteddriving/assistance systems.html
https://www.youtube.com/watch?v=T8ESfICGnAc
https://www.youtube.com/watch?v=RMj4H4ybEkc

[e]
o
[e]
[e]

e BM
https://www.bmwusa.com/owners-manuals.html
http://www.bmw.com/en/topics/fascination-bmw/connected-drive/driver-assistance.html
https://www.youtube.com/watch?v=RKAE-ANKIBY
https://www.youtube.com/watch?v=7fgXJcscjzw

OOOOE

e Infiniti
o https://owners.infinitiusa.com/content/manualsandguides/Q50/2017/2017-Q50-owner-manual-
and-maintenance-info.pdf
e Daimler, Mercedes-Benz
o https://www.mbusa.com/mercedes/service and parts/owners manuals#lyear=20178&class=S-
Sedan
o http://techcenter.mercedes-benz.com/en/distronic_plus steering assist/detail.html
o  http://techcenter.mercedes-benz.com/en ZA/steering-pilot/detail.html
e  Unofficial demonstration/review reports
o https://www.youtube.com/watch?v=RjvI57BIDp0
o https://www.caranddriver.com/features/semi-autonomous-cars-compared-tesla-vs-bmw-
mercedes-and-infiniti-feature-2016-bmw-750i-xdrive-page-4
o https://www.youtube.com/watch?v=isZ3fSbE pg
o https://www.youtube.com/watch?v=C7xV9rMajNo

Across the various inputs that are interpreted as aberrant driver engagement/readiness (e.g.,
inadequate braking levels, unbuckled seatbelts, open doors, and driver facing cameras), the most
common classification was that of measures associated with lateral vehicle control (i.e., steering
wheel touch/torque and/or lane position). GM/Cadillac currently stands out as the only one so far
to use a visual modality of a driver-facing camera to ascertain driver inattention. The consequential
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https://owners.infinitiusa.com/content/manualsandguides/Q50/2017/2017-Q50-owner-manual-and-maintenance-info.pdf
https://www.mbusa.com/mercedes/service_and_parts/owners_manuals#!year=2017&class=S-Sedan
https://www.mbusa.com/mercedes/service_and_parts/owners_manuals#!year=2017&class=S-Sedan
http://techcenter.mercedes-benz.com/en/distronic_plus_steering_assist/detail.html
http://techcenter.mercedes-benz.com/en_ZA/steering-pilot/detail.html
https://www.youtube.com/watch?v=RjvI57BIDp0
https://www.caranddriver.com/features/semi-autonomous-cars-compared-tesla-vs-bmw-mercedes-and-infiniti-feature-2016-bmw-750i-xdrive-page-4
https://www.caranddriver.com/features/semi-autonomous-cars-compared-tesla-vs-bmw-mercedes-and-infiniti-feature-2016-bmw-750i-xdrive-page-4
https://www.youtube.com/watch?v=isZ3fSbE_pg
https://www.youtube.com/watch?v=C7xV9rMajNo
https://www.youtube.com/watch?v=C7xV9rMajNo

output modalities of auditory, visual, and transitions of control (ToC) were found to be used by all
manufacturers in their reactive HMI strategies. One manufacturer officially mentioned use of a
tactile modality alert (GM/Cadillac) while a few others (Mercedes, BMW) were found in unofficial
reports (MercBenzKing, 2016; Sherman, 2016).

By counting stages beyond a first warning (i.e., escalation intervals), Tesla was found to use the
highest number of escalations in their reactive HMI. At least five escalations were observable from
online Tesla owner videos (e.g., Black Tesla, 2016; Super Cars, 2017). Descriptions and
approximated timings of the following escalations are in regards to coming after the initial warning
of a grey filled textbox with wheel icon and ‘Hold Steering Wheel'’ message at the bottom of the
dashboard instrument cluster.

(1) +2 seconds after first warning - dashboard instrument cluster border pulses in white with
an increasing rate

(2) +15 seconds after first warning - one pair of two successive beeps

(3) +25 seconds after first warning - two pairs of two successive beeps

(4) +30 seconds after first warning - at the bottom of the instrument cluster, a red filled
textbox plus triangle exclamation point icon with two line written messages of ‘Autosteer
Unavailable for the Rest of This Drive’ on line one, and ‘Hold Steering Wheel to Drive
Manually’ on line two in smaller font, along with a central image of two red forearm/hands
holding a steering wheel that replaces the vehicle’s lane positioning animation, the same
previous pairs of successive beeps are repeated in a continuous manner; the vehicle
gradually reduces speed

(5) +37 seconds after first warning — all alerts from previous level remain, two yellow dots are
added at the beginning of each forearm; the vehicle hazard blinkers are activated

A few manufacturers could be determined as having more than one escalation (GM/Cadillac, Audi),
a few others as exactly one escalation (BMW, Daimler/Mercedes-Benz), and Volvo appeared to
have a single first level/stage warning with no further escalation. Infiniti appeared to have no HMI
reactive to driver disengagement/misuse of their Level 2 system (Active Lane Control). All but one
manufacturer (Infiniti) were found to use at least the visual modality in their first stage of warning
against driver disengagement.

2. Introduction of Solution Grouping Framework
2.1. Proactive solution strategies for human engagement in supervisory control

To complement the passive, indirect, and/or reactive approaches presently available in the
aforementioned on-market industry examples, a set of proactive solution strategies towards human
engagement in supervisory control might be helpful. Longstanding human factors and ergonomics
principles have previously suggested risks in relying on humans as monitors of automated (e.g.,
invariant, predictable, monotonous, etc.) processes over extended periods (Greenlee et al., 2018;
Hancock, 2017a; Molloy & Parasuraman, 1996; Bainbridge, 1983; Mackworth, 1950). Thus, it was
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expected that many solutions might exist across the academic literature and could benefit from a
qualitative framework for organizing trends and patterns in their recommendations.

A natural starting point to the difficulties in human supervisory control of driving automation is to
avoid the supervisory role outright (e.g., skip SAE Level 2). Logically, softer versions of such a hard
stance might also be realizable in either objective or subjective ways. Objectively, the amount of
time or envelope of automated functionality could be reduced. Subjectively, the supervisory
experience of responsibility could be refashioned with altered perceptions of the human’s role
towards shared or even fully manual authority. Furthermore, extensive research conducted under
multiple paradigms of psychological theory might suggest approaches out of different schools of
thought. The behaviourism paradigm centres around conditioning learning theories and suggests
associative stimuli and/or stimulus-response pairing principles to promote the desired behaviour
and discourage that which is undesirable. The cognitivism paradigm focuses on internal information
processes and advises ways to support limited mental resources, representations, and awareness.
Lastly, ecological approaches emphasize inclusion of external considerations of the task and the
environment surrounding the worker/learner towards enhanced relational performance from a
broader systems-level view. In summary, a grouping framework of six proactive solution areas is
proposed to help answer the question ‘How do we keep people engaged while supervising (driving)
automation?’ In each case, the solution areas are introduced first in a general manner of various
automation domains, before exemplifying relevancy specifically for engagement in supervisory
control of driving automation.

Solution Area (1): Avoid the role of sustained human supervision of automation
e Suspend/repeal/skip levels of automation requiring human oversight and backup
o ‘justdon’tdo it

Solution Area (2): Reduce the supervising role along an objective dimension
e Change the amount of time or envelope of automated operations
o ‘don’tdo it as much’

Solution Area (3): Reduce the supervising role along a subjective dimension
e Share responsibilities and/or alter the end user experience and impressions
o ‘do it without drivers having to know about it’

Solution Area (4): Support the supervising role from the behaviourism paradigm
e Condition the desired target behaviours through training and selection
o ‘make or find drivers who do it better’

Solution Area (5): Support the supervising role from the dyadic cognitivism paradigm
e Inform designs to support cognitive processes and mental models
o ‘focus on internal mental constructs’

Solution Area (6): Support the supervising role from the triadic ecological paradigm

e Inform designs to leverage external environment contexts and task considerations

o ‘focus on external task/environment factors’
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2.1.1. Solution Area (1): Avoid the role of human supervision of automation

The most parsimonious proactive solution could be to avoid subjecting drivers to the unnatural
requirement of monitoring automated processes. Decades of human factors and ergonomics
research have echoed that this is not something humans do well. A resounding result from Norman
Mackworth (1948) was that despite instruction and motivation to succeed in a sustained attention
task (used as an analogy to the critical vigilance of WWII radar operators watching and waiting for
enemy target blips on their monitor screens), human detection performance dropped in relation to
time-on-task. Thousands of reports have since been published on the challenges of human
vigilance, also known as ‘sustained attention’ (Frankmann & Adams, 1962; Craig, 1984; Cabrall et
al., 2016). Bainbridge (1983) observed the irony that human supervisory errors are expected when
operators are left to supervise an automated process put in place to resolve manual control errors.
Humans were described as deficient compared to machines in prolonged routine monitoring tasks,
as seen in the MABA-MABA (Men Are Better At — Machines Are Better At) list by Fitts (1951), and
such characterizations persist today (De Winter & Dodou, 2011). In a review of automation-related
aircraft accidents, Wiener and Curry (1980) suggested that it is highly questionable to assume that
system safety is always enhanced by allocating functions to automatic devices rather than human
operators. They instead consider first-hand whether a function should be automated rather than
simply proceeding because it can be.

Driver responses have been found to be negatively impacted when having to respond to simulated
automation failures while supervising combined automatic lateral and longitudinal driving control
(De Waard et al., 1999; Stanton et al.,, 2001; Strand et al.,, 2014). From elaborated operator
sequence diagram models, Banks et al. (2014) indicated that far from reducing driver workload,
additional sub-system tasks associated with monitoring driving automation actually would increase
cognitive loads on a driver. Banks et al. (2018) analysed on-road video observations of participants
operating a Tesla Model S in Autopilot mode (i.e., SAE Level 2 driving automation). Their analysis
suggested that ‘drivers are not being properly supported in adhering to their new monitoring
responsibilities and instead demonstrate behaviour indicative of complacency and over-trust’.
Accordingly, Banks et al. (2018) discussed a possibility that certain levels of driving automation (DM,
driver monitoring) need not be implemented even if they are feasible from a technical point of
view, and that a simplified set of roles of only DD (driver driving) and DND (driver not driving) could
be preferred from a human factors role/responsibility point of view.

"..it seems more appropriate at the time to accept that the DD and the DND) roles are the
only two viable options that can fully protect the role of the human within automated
driving systems. This in turn means that either the human driver should remain in control
of longitudinal and/or lateral aspects of control (i.e., one of the other) or they are removed
entirely from the control-feedback loop (essentially moving straight to SAE 4)’. (p. 144).

2.1.2. Solution Area (2): Reduce the role along an objective dimension

In the mid-1990s, several key studies suggested a less strict avoidance approach in the human
supervision of automation. Various schemes for alternating periods of manual and automated
control were investigated (Parasuraman et al., 1996; Scallen et al., 1995; Endsley & Kiris, 1995). In
Parasuraman et al. (1996), adaptive control conditions where control was temporally returned to a
human operator showed subsequent increases in monitoring performance compared to a non-
adaptive full automated condition. In Scallen et al. (1995), adaptive switching between manual and
automated control was investigated at short time scale intervals (i.e., 15, 30, and 60 seconds).
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Objective performance data indicated better performance with shorter rather than longer cycles.
However, such benefits were associated with increased workload during the shorter cycle durations
(i.e., the participants did better only at the cost of working harder and prioritizing a specific sub
task). Thus, the authors concluded that if the goal of the operator is to maintain consistency ‘on all
sub-tasks, at all times’ then the performance immediately following episodes of short automation
warrants particular concern: i.e., ‘the results support the contention that excessively short cycles of
automation prove disruptive to performance in multi-task conditions’. In Endsley and Kiris (1995)
the level of automated control was investigated. Rather than manipulating the length of time of
automated control, a shift from human active to passive processing was deemed responsible for
decreased situation awareness and response time performance. Manual control response times
immediately following an automation failure were observably slower compared to baseline manual
control periods. However, the effect was less severe under partial automation conditions compared
to the full automation condition.

In Merat et al. (2014), a motion-based driving simulator experiment study was conducted with
adaptive automation. They compared a predictable fixed schedule for triggering ToC to manual
control with a real-time criterion which switched to manual based on durations of drivers looking
away from the forward roadway. The authors concluded that better vehicular control performance
was achieved when the automated to manual ToC was ‘predictable and based on a fixed time’.

2.1.3. Solution Area (3): Reduce the role along a subjective dimension

Rather than altering the objective amount of automated aid as in solution area (2), automation
system design can also focus on the driver’s psychological subjective experience or perception of
responsibility and/or capability. In other words, manual human operator behaviour is not replaced
in solution area (3) but augmented, extended, and/or accommodated. Such subjective shaping
might take the form either as help (e.g., automatic backup) or even as hindrance (e.g., to provoke
positive adaptive responses). Schutte (1999) introduced the concept of ‘complemation’ to describe
technology that is designed to enhance humans by augmenting their innate manual control skills
and abilities rather than to replace them. With such complementary technology, ‘many of the tasks
that could be automated (i.e., performed solely by technology) are deliberately not automated so
that the human remains involved in the task. This involvement must be meaningful rather than
simply “doing something” or “busy work™ (Schutte, 1999, p. 116., emphasis added). Flemisch et al.
(2016) relayed similar theoretical concepts and design approaches where both the human and the
machine should act together at the same time under a ‘plethora’ of names, such as shared control,
cooperative control, human-machine cooperation, cooperative automation, collaborative control,
co-active design, etc. Young & Stanton (2002) proposed a Malleable Attentional Resources Theory
positing that the size of relevant attentional resource pools can temporally adapt to changes in task
demands (within limits). Thus, cognitive resources may actually be able to shrink/grow to
accommodate various decreases/increases in perceived demands (e.g., even while retaining
objective protections in the background).

Janssen (2016) evaluated simulated automated driving as a backup and found improved lateral
performance and user acceptance (workload and acceptance) compared to adaptive automated-to-
manual ToC. Mulder et al. (2012) improved safety performance and decreased steering variation in
a fixed-base driving simulator through the use of haptic shared control. By requiring and retaining
some level of active control from the human driver (i.e., amplification of a suggested torque), the
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shared control model was expected by Mulder et al. (2012) to maintain some levels of engagement,
situation awareness, and skill as compared to the supervisory control of automation.

A concept of promoting increased care in driving from the end-user by a seemingly reductive or
even counter-productive human automation interface design can be found in Norman (2007). In
order to keep human drivers informed and attentive, the proposition suggested that more
requirements for human participation might be presented than is really needed. In other words, an
automated driving system can encourage more attention from the human supervisor by giving an
appearance of being less capable, of doing less, or even doing the wrong thing. Norman (2007)
exemplified this framework of ‘reverse risk compensation’ by reference to Hans Monderman (1945-
2008) and then to Elliot et al. (2003). In Monderman’s designs, the demarcations, rules, and right of
ways of a designed traffic system are purposefully diminished/removed in favour of shared spaces.
The idea is to provoke end-users (drivers, pedestrians, cyclists, etc.) to collectively combat
complacency and over-reliance on rules/assumptions by being forced to look out for themselves
(and one another). Norman (2007) cited results from Elliot et al. (2003) where artificial increases in
perceived uncertainty resulted in driver adoption of safer behaviours such as increased information
seeking and heightened awareness. In sum, Norman (2007) described an interesting potential of
designed automated processes in futuristic cars where there could be an approach of shaping
psychological experiences.

‘...we can control not only how a car behaves but also how it feels to the driver. As a
result, we could do a better job of coupling the driver to the situation, in a natural manner,
without requiring signals that need to be interpreted, deciphered, and acted upon ... The
neat thing about smart technology is that we could provide precise, accurate control, even
while giving the driver the perception of loose, wobbly controllability’. (p. 83).

2.1.4. Solution Area (4): Support the role from the behaviourism paradigm

A historical psychological perspective on shaping people to behave as desired can be traced back to
the early 1900s behaviourism learning models of Ivan Petrovich Pavlov (‘classical conditioning’) and
Burrhus Frederic Skinner (‘operant conditioning’). Broadbent and Gregory (1965) attributed
prolonged watch detriments to a shift in response criterion whereby operators might be better
persuaded towards reacting to doubtful signals (e.g., manipulation of payoff). More recently, the
term ‘gamification’ has been defined as the ‘use of game design elements in non-game contexts’
(Groh, 2012) and was recognized in positive and negative ways to exemplify conditional learning
aspects (Terry, 2011). In gamification, interface designs utilize the mechanics and styles of games
towards increased immersion. Related approaches include an emphasis on skills either acquired
over practice (e.g., training focus) and/or from innate pre-dispositions (e.g., personnel selection,
individual differences, etc.). Neuro-ergonomic approaches in Nelson et al. (2014) improved
vigilance task performance via transcranial direct current stimulation. Parasuraman et al. (2014)
identified a genotype associated with higher skill acquisition for executive function and supervisory
control. Sarter and Woods (1993, p. 118) advised directions to support awareness through ‘new
approaches to training human supervisory controllers’, and Gopher (1991) suggested potential
promise via the enhancement of ‘skill at the control of attention’.

Behaviouristic dispositions are also observable in the automotive domain concerning increased
driver vigilance with ADAS. Similar to the aforementioned investigations of selection interest (e.g.,
neurological disposition for enhanced cognitive executive control), automotive research
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recommendations have included the implementation of training programs and/or gamified
concepts. This solution area aims to enhance operators without enough attentive skills, or
executive control for sustained focus, to instead obtain such skill/focus via extra practice,
immersion, and/or motivation. Diewald et al. (2013) reviewed ‘gameful design’ and saw promise for
its use for in-vehicle applications (e.g., navigation, safety, and fuel efficiency). For driving safety,
virtual money/points and virtual avatar passengers were identified as rewards/punishments tied to
onboard diagnostics of driving styles. In Lutteken et al. (2016), a simulated highly automated
highway driving vehicle performed longitudinal and lateral control while the human driver
controlled lane changes as a manager of consent. A gamified concept consisting of partner teaming,
virtual currency points that could be earned/spent, and time scores was found to motivate and
increase the desired cooperative driver behaviours. In a test-track study, Rudin-Brown and Parker
(2004) found increased response times to a hazard detection task while using adaptive cruise
control (ACC). Rudin-Brown and Parker (2004) concluded that response times to the ACC failure
were related to drivers’ locus of control and suggested driver awareness training as a potential
preventive strategy that could minimize negative consequences with using novel ADAS. The TRAIN-
ALL (European Commission co-funded) project had the objective to develop training schemes and
scenarios for computer-based training in the use of new ADAS (Panou et al., 2010). Panou et al.
(2010) evaluated various ADAS training simulations so that trainees would learn how to optimally
use ADAS without overestimating their functionality and maintain appropriate knowledge of their
limitations.

2.1.5. Solution Area (5): Support the role from the dyadic cognitivism paradigm

The internal human mind is the focus of solution area (5). The chapter ‘The Human Information-
Processer’ of Card et al. (1983) described a model of communication and information processing
where ‘Sensory information flows into Working Memory through the Perceptual Processor’,
‘Working Memory consists of activated chunks in Long-Term Memory’, and ‘The basic principle of
operation’ consists of cycles of recognizing and acting (e.g., resulting in commands to a motor
processor). In accord with this seminal work, cognitive user-centric interface design theory and
practices (e.g., Johnson, 2010) have generally used metaphors and constructs to align content,
structure, and functions of computerized systems with content, structure, and functions of human
minds: attention (Sternberg, 1969; Posner, 1978), workload (Ogden et al., 1979, Moray, 1982),
situation awareness (Endsley, 1995), (mental-spatial) proximity compatibility principle (Wickens &
Carswell, 1995), and multiple (modality) resource theory (Wickens, 1980, 1984). Similar mentally
focused accounts persist for the topic of sustained attention and monitoring. Parasuraman (1979)
concluded that loads placed on attention and memory are what drive decrements in vigilance. See
et al. (1995) argued for the addition of a sensory-cognitive distinction to the taxonomy of
Parasuraman (1979), where it was emphasized that target stimuli that are (made to be) more
cognitively familiar would reduce vigilance decrement consequences. Olson and Wuennenberg
(1984) provided information recommendations for user interface design guidelines regarding
supervisory control of Unmanned Aerial Vehicles (UAVs) in a list that covered cognitive topics of
transparency, information access cost minimisation, projections, predictions, expectations, and
end-user understanding of automation. Sheridan et al. (1986) described the importance of mental
models in all functions of supervisory control, including aspects for monitoring (e.g., sources of
state information, expected results of past actions, and likely causes of failures) and intervening
(options and criteria for abort and for task completion). Lastly, the highly cited human trust of
automation theory from Lee and See (2004) underscored arriving at appropriate trust via cognitive
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aspects of users” mental models of automation: understandable algorithms, comprehensible
intermediate results, purposes aligned to user goals, expectancies of reliability, and user intentions.

The importance of mental process components is shared by SAE Level 2 simulator studies (De
Waard et al., 1999; Strand et al., 2014; Beggiato et al., 2015) and theoretical accounts (Beggiato et
al., 2015; Li et al., 2012). De Waard et al. (1999) were concerned with reduced driver alertness and
attention in the monotonous supervision of automated driving. They found emergency response
complacency errors in about half of their participants, and advocated providing feedback warnings
pertaining to automation failures (e.g., clear and salient status indicators). Strand et al. (2014)
appealed to an account of situation awareness to explain their findings of higher levels of non-
response as well as decreased minimum times to collision when simulated driving automation was
increased from an ACC to an ACC plus automatic steering system. Beggiato et al. (2015) used both a
driving simulator study (post-trial questionnaires and interviews as well as eye gaze behaviour) and
an expert focus group to investigate information needs between SAE Levels O, 2, and 3, where they
found the second level to be more exhausting than the other conditions due to the continuous
supervision task. Beggiato et al. (2015) concluded that in contrast to manual driving where needs
are more oriented around driving-task related information, for partially and highly automated
driving requested information is primarily focused on status, transparency, and comprehensibility
of the automated system. Li et al. (2012) conducted a survey of recent works on cognitive cars and
proposed a staged/levelled alignment of automation functions (e.g., perception enhancement,
action suggestion, and function delegation) with driver-oriented processes (stimuli sensation,
decision making, and action execution) (cf. Parasuraman et al., 2000; Eriksson et al., in press).

2.1.6. Solution Area (6): Support the role from the triadic ecological paradigm

A broad ecological systems view is represented by solution area (6). This perspective relates
vigilance problems to an artificial separation of naturally coupled observation-action-environment
ecologies. As an extension to information processing approaches, the chapter ‘A Meaning
Processing Approach’ of Bennett and Flach (2011) described a semiotics model dating back to work
of Charles Peirce (1839-1914) that widens a dyadic human-computer paradigm into a triadic
paradigm of human-computer-ecology with functionally adaptive rather than symbolically
interpretive behaviour. Flach (2018) observed that minds tend to be situated, in the sense that they
adapt to the constraints of situations (like the shape of water within a glass). Gibson (1979)
promoted a theory of affordances not as properties of objects but as direct perception of ecological
relations and constraints. Particularly in the chapter ‘Locomotion and Manipulation’, Gibson (1979)
suggested that the dichotomy of the “mental” apart from the “physical” is an ineffective fallacy.
Gibson promotes units of direct perception to be not of things, but of actions with things. Moreover
he conveys that such affordances are not available equally in some universal manner, but instead
are relatively bounded in a holistic manner. Wickens and Kessel (1979) accounted for a manual
control superiority because of a task ecology of continual sensing and correcting of errors together
(active adaptation) where additional information (i.e., physical forces) is provided beyond those
available from prolonged sensing alone without continual action. Neisser (1978) dismissed accounts
of humans as passive serial information processors and instead promoted an indivisible and cyclic
account of simultaneous processes. Thus, from such a point of view, vigilance tasks could be
considered as problematic because of artificial assumptions and attempts to separate perception
and action (i.e., thinking before acting, perceiving without acting, etc.) and to unnaturally isolate a
state of knowledge at a singular specific point in time or sensory modality.
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Such ecological approaches that emphasize the importance of direct perception and informed
considerations of adaptation to specific work domains (tasks and situations) are evident in common
across multiple human factors and psychological theories: cognitive systems engineering
(Rasmussen et al., 1994), situation awareness design (Endsley et al., 2003), ecological psychology
(Vicente and Rasmussen, 1990), situated cognition (Suchman, 1987), embodied minds (Gallagher,
2005), the embedded thesis (Brooks, 1991; O’Regan, 1992), and the extension thesis (Clark &
Chalmers, 1998; Wilson, 2004). Flach (1990) promoted the importance of ecological considerations
by emphasizing that humans naturally explore environments, and thus models of human control
behaviour have been limited by the (frequently impoverished) environments under which they
were developed. He relayed that an overly simple laboratory tracking task ‘turns humans into a
trivial machine’ and that real natural task environments (of motion, parallax, and optic arrays, etc.)
are comparatively information rich with relevant ‘invariants, constraints, or structure’. Chiappe et
al. (2015) supported a situated approach by observing that ‘operators rely on interactions between
internal and external representations to maintain their understanding of situations’ in contrast to
traditional models that claim ‘only if information is stored internally does it count as SA’. Mosier et
al. (2013) provided examples that the presence of traffic may affect the extent to which pilots
interact with automation and the level of automation they choose and operational features such as
time pressure, weather, and terrain may also change pilots’ automation strategies as well as
individual variables such as experience or fatigue. They found that vignette descriptions of different
situational configurations of automation (clumsy vs. efficient), operator characteristics (professional
vs. novice), and task constraints (time pressure, task disruptions) led pilots to different predictions
of other pilots” behaviours and ratings of cognitive demands. Hutchins et al. (2013) promoted an
integrated software system for capturing context through visualization and analysis of multiple
streams of time-coded data, high-definition video, transcripts, paper notes, and eye gaze data in
order to break through an ‘analysis bottleneck’ regarding situated flight crew automation
interaction activity. In an UAV vigilance and threat detection task, Gunn et al. (2005) recommended
sensory formats and advanced cuing interfaces and accounted for the reduced workload levels they
obtained via a pairing of detections to immediately meaningful consequential actions in a simulated
real-world setting (i.e., shooting down a target in a military flight simulation) rather than responses
devoid of meaning.

Leveraging external contextual information can be found in several recent driving automation
theory and experimental studies. Lee and Seppelt (2009) convey that feedback alone is not
sufficient for understanding without proper context, abstraction, and integration. Although
technically an SAE Level 1 system, ACC also contains supervisory control aspects (i.e., monitoring of
automated longitudinal control), and Stanton & Young (2005) concluded that ACC automation
designs should depart from conventions that report only their own status, by offering predictive
information that identifies cues in the world and relations of vehicle trajectories. Likewise, Seppelt
and Lee (2007) promote and found benefits of an ecological interface design that makes limits and
behaviour of ACC visible via emergent displays of continuous information (time headway, time to
collision, and range rate) that relates the present vehicle to other vehicles across different
dynamically evolving traffic contexts. In terms of an SAE Level 2 simulation, participants in Price et
al. (2016) observed automated lateral and longitudinal control where vehicle capability was
indicated via physically embodied lateral control algorithms (tighter/looser lane centre adherence)
as opposed to via typical visual and auditory warnings. Consequentially, drivers’ trust was found to
be sensitive to such a situated communication of automation capability. Pijnenburg (2017)
improved vigilance and decreased mental demand in simulated supervisory control of SAE Level 2
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driving automation via a naturalistic interface that avoided arbitrary and static icon properties in its
visual design. A recent theory of driving attention proposed not to assume distraction from the
identification of specific activities alone but instead underscored a definition that requires relation
in respects to a given situation (Kircher & Ahlstrom, 2017). After conducting several driver
monitoring system (DMS) studies, a concluding recommendation from a work package deliverable
of a human factors of automated driving consortium project was to ‘incorporate
situated/contextualized aspects into DSM systems’ (Cabrall et al., 2017).

2.2. Literature Survey Aims

In the previous section, a qualitative grouping framework of six solution areas was introduced to
identify trends and group proactive approaches towards human engagement while supervising
automated processes. The aim of the following literature survey was to investigate whether the
proposed solution areas might be represented in best practice recommendations and conclusions
of influential and relevant works from a variety of human operator domains. Additionally, we aimed
to identify trends between the solution areas: would some be more commonly found than others?;
which might be more/less favoured by different domains?

3. Methods of Literature Survey

3.1. Inclusion Criteria

A scholarly research literature survey was conducted concerning the topic of keeping prolonged
operator attention. In line with the terminology results of the automotive on-market survey (Table
2.2.1), our search terms were crafted to diminish potentially restrictive biases: of preferential
terminology (vigilance, situation awareness, signal detection theory, trust, etc.), of
operationalisation of performance (response/reaction time, fixations, etc.), of state (arousal,
distraction, mental workload, etc.), or of specific techniques/applications (levels of automation,
autonomous systems, adaptive automation, etc.). Instead, a more general Google Scholar search
was performed with two presumably synonymous terms ‘engagement’ and ‘attention’. The
proactive term (i.e., ‘keeping’) was included at the front of the queries to attempt to focus the
literature survey away from reactive research/applications (e.g., concerning measurement
paradigms.

(1) keeping engagement in supervisory control

(2) keeping attention in supervisory control

Google Scholar was used to reflect general access to semantically indexed returns from a broad set
of resources as sorted for relevancy and influence in an automatic way. Literal search strings within
more comprehensive coverage of specific repository resources were not presently pursued because
the present survey was aimed initially for breadth and accessibility rather than database depth or
prestige. Comparisons to a more traditional human-curated database (i.e., Web of Science) have
concluded that Google Scholar has seen substantial expansion since its inception and that the
majority of works indexed in Web of Science are available via Google Scholar (De Winter et al.,
2014). Across various academic and industry research contexts, not all stakeholders might share
equivalent repository reach, whereas Google Scholar is purposefully engendered as a disinterested
and more even playing field. For such a democratic topic of driving safety risks while monitoring
driving automation (i.e., that have already been released onto public roadways and might pose
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dangers for everyone in general), organization of accessible guideline knowledge collectible from a
broad-based Google Scholar resource seemed an appropriate first place methodological motivation
ahead of future studies that might make use of more specific in-depth databases.

The 100 titles and abstracts of the first 50 results per each of the 2 search terms were reviewed to
exclude work not pertaining to human-computer/automation research. Furthermore, several
relevant and comprehensive review works that were returned in the search (e.g., Sheridan, 1992;
Chen et al., 2011; Merat & Lee, 2012; etc.) were not included for categorization on the basis that
their coverage was much wider than the present purposes of organizing succinct empirical
recommendations. Exclusions were also made for works that appeared to focus more on promoting
or explaining supervisory control levels or models of automation rather than concluding design
strategies to the problem of operator vigilance while monitoring automated processes. One final
text was excluded where raters had trouble applying a solution area on the basis that it dealt with
remote human operation of a physical robotic manipulator. The research did not seem to share the
same sense of human-automation supervisory control as seen in the other texts. The remaining set
of 34 publications are listed in Appendix A by reverse chronological order.

3.2. Solution Area Categorizations via Numeric Theme Codes

To investigate the reliability of organizing the body of published literature with the proposed
solution areas, confederate researchers (i.e., human factors PhD student (co-) authors on the
present paper) were tasked as raters to independently categorize the conclusions of the retrieved
research papers. For the sake of anonymity, the results of the three raters are reported with
randomly generated pseudonym initials: AV, TX, and CO. Raters were provided an overview of the
solution areas with numeric theme codes (i.e., Theme 1-6) and tasked with assigning a single top
choice code for each of the publications of the inclusion set. The task was identified to the raters as
“to assign a provided theme code number to each of the provided publications texts based on what
you perceive the best fit would be in regards to the authors’ conclusions (e.g., solution, strategy,
guideline, recommendation)”. Raters were also instructed to rank order any additional theme codes
as needed. A survey rather than a deep reading was encouraged, where the raters were asked to
sequentially bias their reading towards prioritized sections and continue via an additional as-
needed basis (e.g., abstract, conclusions, discussion, results, methods, introduction, etc.) in order to
determine the solution area that the author(s) could conceivably be most in favour of. A frequency
weighting-scoring system per each theme code was devised where 1 point would be assigned for
first choice responses, 0.5 points for second choice responses, and 0 points otherwise.

4. Results of Rater Categorizations
4.1. Inter-rater Reliability

First and second choice (where applicable) theme codes from each rater for each publication are
presented in Appendix B. For first choice theme codes, statistical inter-rater Kappa agreement was
computed via the online tool of Lowry (2018) with standard error computed in accordance with the
simple estimate of Cohen (1960). The Kappa between AV and TX was 0.25, with a standard error of
0.11. The Kappa between AV and CO was 0.23, with a standard error of 0.11. The Kappa between
TX and CO was 0.21, with a standard error of 0.09. Such Kappa statistic results (i.e., in the range of
0.21-0.40) may be interpreted as representing a ‘fair’ strength of agreement when benchmarked by
the scale of Landis and Koch (1977) which qualitatively ranges across descriptors of ‘poor’, ‘slight’,
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‘fair’, ‘moderate’, ‘substantial’, and ‘almost perfect’ for outcomes within six different possible
quantitative ranges of Kappa values.

Initially suggestive of a low level of percentage agreement, only 6 out of the 34 publications
received the same first choice coded theme categorization across all three raters. However,
randomization functions were used to generate 3 chance response values (i.e., 1-6) for each of the
34 publications and repeated 100 different times. Thus, it was determined that the chance
probability of achieving full way agreement for 6 or more publications was less than 1%. In
comparison, random chance full agreement was observed for O publications to be 40%, for 1
publication to be 37%, for 2 publications to be 15%, for 3 publications to be 6%, for 4 publications
to be 1%, for 5 publications to be 1%, and for 6 or more publications to be < 1%. Simulations with
up to 1 million repetitions verified such a range of chance performance across 0 to 6 publications:
38%, 37%, 18%, 5%, 1%, < 1%, 0%.

Furthermore, matched categorizations between any 2 rather than all 3 of the raters was
considered. As such, 27 out of the 34 publications received the same first choice coded theme
categorization between at least 2 raters. As with the preceding full agreement analyses, random
chance probabilities of two-way agreement were also computed from 100 sets of 3 random values
for each of the 34 publications. The chance probability of achieving two-way categorization
agreement for 27 or more publications was also determined to be less than 1%. In comparison,
random chance two-way agreement was observed for between 31-34 publications to be less than
1%, for 26-30 publications to be less than 1%, for 21-25 publications to be 5%, for 16-20
publications to be 42%, for 11-15 publications to be 46%, for 6-10 publications to be 7% and for 5
or fewer publications to be less than 1%. Simulations with up to 50,000 repetitions verified such
chance performance across the ranges of 31-34, 26-30, 21-25, 16-20, 11-15, 6-10, and 0-5
respectively as 0%, < 1%, 3%, 41%, 50%, 5%, and < 1%.

4.2. Theme Frequency

Weighted frequency scores (i.e., from aggregated first and second choice responses across raters)
for each theme code and per each publication are listed in reverse chronological order in Table
2.2.2. Theme 5 appears to be the most common solution area, followed closely by 2 and 6. In
contrast, Theme 1 appears to be the rarest, followed by Theme 3. While the majority of
publications received heavy score weightings distributed across several themes, a highest likelihood
single theme was recognizable for 28 of the 34 references (82%), as a result of the first and second
choice rater aggregation scoring scheme. Theme 2 of objective reduction of amounts of human
supervisory control of automation was found to be the most frequent first choice solution area
labelled by 2 out of the 3 raters (i.e., AV and CO), whereas TX most often identified Theme 5
pertaining to support of internal cognitive processes and mental models. Theme 5 was also the
most frequent second choice for TX and AV. Theme 6 regarding the use of external contexts and
task considerations was the most frequent second choice of CO.
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Table 2.2.2. Weighted frequency scores for aggregated first and second choices by each inter-rater for each publication
reference. Lower/higher weights are lighter/heavier shaded. Highest weights per publication are outlined.

Ref ID Weight of Weight of Weight of Weight of Weight of Weight of
Theme 1 Theme 2 Theme 3 Theme 4 Theme 5 Theme 6

1 0.0 2.0 | 0.0 0.0 2.0 0.0

2 0.0 1.0 0.0 0.0 0.5 2.5 |
3 0.0 0.0 1.0 0.5 0.5

4 0.0 15 0.0 0.0 0.5
5 0.0 0.0 0.0 2.0 15 0.5

6 0.0 0.5 0.0 1.5 1.0 1.0

7 0.0 0.0 0.0 3.0 0.5 0.0

8 0.0 2.0 0.0 0.5 1.0 0.0

9 0.0 2.5 0.0 0.5 15 0.0

10 0.0 2.5 0.0 0.0 1.0 0.0

11 1.0 1.0 0.0 0.0 0.0

12 0.0 2.0 0.0 0.0 0.5 1.0

13 0.0 0.0 0.0 1.0 15
14 0.0 2.5 0.0 0.0 0.0 2.0

15 0.0 3.0 0.5 0.0 0.0 0.5

16 0.0 0.0 0.0 0.0 0.5

17 0.0 0.0 0.0 0.5 1.0
18 0.0 2.0 0.0 0.0 1.0 0.5

19 0.0 1.0 0.0 0.0 | 1.0 1.0

20 0.0 0.0 1.0 0.0 1.0 2.0

21 0.0 2.0 0.5 0.0 1.0 0.5

22 0.0 0.0 15 0.0 1.0
23 0.0 1.0 0.0 2.0 | 0.5 0.0

24 2.0 0.0 0.0 0.0 0.0

25 0.0 1.0 0.0 | 2.0 0.5 0.0

26 0.0 0.0 0.0 0.5 2.0 1.5

27 0.0 0.0 0.0 | 3.0 0.5 0.5

28 0.0 0.0 0.0 0.0 1.0 2.5

29 0.0 0.0 1.0 0.0 0.5 2.0

30 0.0 0.0 0.0 1.0 3.0 0.0

31 0.0 0.0 1.0 0.0 1.5 1.0

32 0.0 1.0 0.0 0.0 1.5 1.5

33 0.0 0.0 0.0 0.0 2.0 1.5

34 0.0 0.5 0.0 2.0 2.0 0.0

Total: 3.0 33.5 5.5 235 34.0 32.0
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All publications of the included thematic analysis set were informally organized into primary
operational domain(s) of concern (i.e., what job or service was the human supervisory control of
automation investigated in). Most likely solution areas from weighted raters’ first and second
choice applied theme codes were determined per publication. Domains and most likely themes are
combined in reverse chronological order in Table 2.2.3. In general, it can be observed that for the
included publications, the domain areas have shifted over the decades from more general
laboratory and basic research and power processing plants towards more mobile vehicle/missile
applications and most recently especially with remotely operated vehicles. Although of limited
sample size, some general domain trends might be observed. For example, it appears that
uninhabited aerial vehicle (UAV) operations predominately favoured Theme 2 with also some
consideration for Theme 6. In contrast, uninhabited ground vehicle (UGV) operations presently
indicated only Theme 4. Earlier work with space, power plants, and general basic research showed
a mix mostly of Themes 5 and 6. Aviation areas with pilots and air traffic control had a split of
Themes 4 and 5. Missile air defence consisted of Theme 4 and Theme 2. Lastly, two automobile
studies were present in the returned results: the first involving a fairly abstracted driving decision
task (with a resulting likely categorization of Theme 2), and the second evidencing a split categorical
rating assignment between Theme 2 and Theme 5.
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Table 2.2.3. Primary operator domains of publications with identified likely thematic solution
category from aggregate inter-rater first and second choice weighted scores. U(x)V = uninhabited
vehicles, robots; UAV = uninhabited aerial vehicles; UGV = uninhabited ground vehicles; USV = uninhabited surface
vehicles, ships; UUV = uninhabited underwater vehicles; Pilot = flight-deck, cockpit; ATC = ground-based air traffic
control; Missile = air defense command and control; Automobile = automotive cars, trucks, etc.;, Naval vessel =
battleship, aircraft carrier, etc.; Space = spacecraft, satellites, etc.; Power plant = hydro, nuclear, electric, gas, oil, etc.;
General = laboratory, basic research; Radar = military asset defence of airfield, ship, etc.; ComCon = general military
command/control, tactical operations
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5. Discussion

5.1. Evolution of Cross Domain Concern

With a proliferation of automation also comes an increase in human supervision of automation
(Sheridan,1992) because automation does not simply replace but changes human activity. Such
changes often evolve in ways unintended or unanticipated by automation designers and have been
predominately regarded in a negative sense as in ‘misuse’, ‘disuse’, and ‘abuse’ (Parasuraman &
Riley, 1997) and/or as ‘ironies’ (Bainbridge, 1983). Whether or not significant human supervisory
problems will manifest in a proliferation commiserate with automation propagation is likely to be a
function of the automation’s reliability in the handling of the problems inherent in its’ domain area.
Human supervisors of automation are needed not only because a component might fail (e.g.,
electrical glitch) but also because the situation might exceed the automatic programming.
Originally, computers and their programs were physically much larger and constrained to
determinable locations within predictable and enclosed environments. As computers have become
physically smaller their automated applications could be more practically incorporated into
vehicles. Vehicles, however literally move across time and space and hence are subject to many
environmental variants. Advances in supervisory control automation have been originally
appropriate and suitable to vast expanse domains (outer space, the oceans, the sky) because they
are difficult for humans to safely and commonly inhabit. Thus, such domains typically suffer from
impoverished infrastructures and are subject to signal transmission latencies where automation
must close some loops itself. Such automatic closures are benefited further by the absence of
masses of people because compared to machines, people create a lot of noise and uncertainty with
many different kinds of unpredictable and/or imprecise behaviours.

Likewise, driving automation was first showcased on highly structured freeways (Ellingwood, 1996),
out in the desert and within a staged urban environment on a closed air force base (DARPA, 2014)
before progressing towards more open operational design domains. Subsequently, driving
automation market penetration has tended to begin first within more closed campus sites and
scenarios with lower levels of uncertainty (e.g., interstate expressways) before proceeding into
other contexts of increasing uncertainty and/or complexity (e.g., state highways, rural roads, and
urban areas). Thus, while the present search terms for keeping attention/engagement in
supervisory control returned only two studies in the automotive area, more might be expected in
the future to the extent that 1) automated vehicles continue to need human supervisors (e.g., how
structured and predictable vs. messy and uncertain are the areas in which they drive) and 2) how
much attention/engagement of human supervisors of automated driving might be expected to
wane or waver.

5.2. Convergence and Contribution

When restricted to a single choice, seemingly few applied theme codes were found to be in
common agreement across all three independent raters. However, non-chance agreement was still
obtained both in terms of standard inter-rater reliability Kappa statistics and percentage agreement
analyses. Furthermore, thematic categorization agreement was enhanced by the allowance of rater
second choices, which seems plausible, as empirical research conclusions can of course be of
compounding nature. For example, Stanton et al. (2001) address the design of future ADAS by
advocating for future research that ‘could take any of the following forms: not to automate, not to
automate until technology becomes more intelligent, to pursue dynamic allocation of function, to
use technology to monitor and advise rather than replace, to use technology to assist and provide
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additional feedback rather than replace, to automate wherever possible’. Saffarian et al. (2012)
proposed several design solution areas for automated driving: shared control, adaptive automation,
improved information/feedback, and new training methods. Specifically for the topic of SAE Level 2
‘partially automated driving’, Casner et al. (2016) lament their expectations for vigilance problems
in their conclusions that ‘Today, we have accidents that result when drivers are caught unaware.
Tomorrow, we will have accidents that result when drivers are caught even more unaware’.
Furthermore, they anticipate dramatic safety enhancements are possible when automated systems
share the control loop (such as in backup systems like brake-assist and lane-keeping assistance) or
adaptively take it as needed from degraded driver states (i.e., distraction, anger, intoxication).
Casner et al. (2016) also conclude that designers of driver interfaces will not only have to make
automated processes more transparent, simple, and clear, they might also periodically involve the
driver with manual control to keep up their skills, wakefulness, and/or attentiveness. Lastly, Seppelt
and Victor (2016) suggest new designs (better feedback and environment attention-orienting cues)
as well as ‘shared driving wherein the driver understands his/her role to be responsible and in
control for driving’ and/or fully responsible driving automation that operates without any
expectation that the human driver will serve as a fall-back.

The proposed solution areas overlap with many of the compounded review conclusions above from
Stanton et al. (2001), Saffarian et al. (2012), Casner et al. (2016), and Seppelt and Victor (2016).
From the present literature survey, what is added is a grouping framework that might more fully
encapsulate the conclusions of empirical results from both the broad body of human factors,
ergonomics, and learning theory as well as human driving automation interaction research.
Furthermore, the solution areas were purposefully organized in a hopefully digestible and
memorable way. The first three themes describe avoidance either in a hard sense or different
versions of a soft stance: objective or subjective reductions. The latter three themes describe
solutions under familiar learning theory paradigms in chronological order: behaviourism,
cognitivism, and ecological constructivism.

Identifying a ‘best’ or ‘preferred’ theme of proactive strategy is not expected to be a discretely
resolvable answer. Instead, the relative advantages and disadvantages should probably best be
reflected upon in light of contextual considerations. Furthermore, due to their qualitative nature,
the themes are not directly orthogonal from one another. Themes 2 and 3 could be conceived of as
softer avoidance versions of a stricter skip-over stance of Theme 1. Theme 6 can be seen to expand
from Theme 5 not as an opposing contrast but as an elevating extension that can still subsume
cognitive and human-centred concepts. Themes 5, 2, and 6 were the top three most common
solution areas found in the present survey.

5.2.1. Solution Area (1): Avoid the role of human supervision of automation

For Theme 1, it might be easier to hold close to a viewpoint of avoiding supervisory control of
automation in theoretical or laboratory-oriented research. A sizeable body of human factors and
ergonomics science literature supports such a standpoint that human bias and error is not
necessarily removed via the introduction of automation, but instead, humans can generally be
shown to be poor monitors of automation. However, industry examples also exist of both
traditional and start-up automotive manufacturers (i.e., Ford and Waymo) opting to skip mid-level
driving automation where a human is required to continuously supervise the processes (Ayre, 2017;
Szymkowski, 2017). The low coverage of this theme in the present survey (see Table 2.2.2) is
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probably more an artefact of the present survey rather than evidence of its unimportance or non-
viability—more discussion is provided in a separate limitations section.

5.2.2. Solution Area (2): Reduce the role along an objective dimension

Regarding Theme 2, temporal restrictions based upon scheduled durations of automation use
might be a practical starting place to initially implement mechanisms to reduce the objective
amount of human supervision of driving automation. For combatting fatigue associated with
conventional driving control during long trips, many modern day vehicles come equipped with
timing safety features. Such rest reminders function by counting the elapsed time and/or distance
of a single extended trip (e.g., hours of continuous operation since ignition on) and consequently
warn/alert the driver for the sake of seeking a break or rest period. Because time on task has been
traditionally identified as a major contributing factor to vigilance problems (Mackworth, 1948;
Teichner, 1974; Greenlee et al., 2018), time-based break warnings and/or restrictions as with
general driving fatigue countermeasures, might be practically worthwhile to apply on scales specific
for human supervisory monitoring of SAE Level 2 driving automation. Compared to other
contributing components to vigilance decrements (cf. Cabrall et al., 2016), the duration of watch
period is expected to be an attractive dimension for human-automation interaction system
designers due to its intuitive and simplistic operationalization even in spite of its potential to
interact with other vigilance factors.

5.2.3. Solution Area (3): Reduce the role along a subjective dimension

Theme 3 of altering the perception towards increased danger or uncertainty and thus necessitating
greater care from end-users could be problematic for automotive manufacturers that would
reasonably expect to maintain positive rather than negative attributions of their products and
services. However, an altered experience might carefully be crafted to direct attribution of
uncertainty away from the vehicle and towards aspects of the environment or others (see Norman,
2007, pp. 83-84). For example, advanced driving automation of SAE Level 2 (simultaneous lateral
and longitudinal control) might operate on an implicit level to support a driver who believes that
he/she alone has control authority/responsibility (e.g., in line with how previous lower level driver
assistance systems such as electronic stability control have been successfully deployed in the
background). Discussion of its relatively low amount of coverage in the present survey (see Table
2.2.2) is provided in a separate limitations section.

5.2.4. Solution Area (4): Support the role from the behaviourism paradigm

Theme 4 is perhaps the most widely known in the general population and especially that
behaviouristic aspect of manipulating or shaping behaviour through rewards and punishments.
Caution, however, is warranted, as effects have been previously shown to be limited in lasting
power and reach. For example, Parasuraman & Giambra (1991) found that while training and
experience can help to reduce vigilance decrements, its benefits were not as observable in older
populations: practice alone is insufficient to eliminate age differences. Notably, elderly populations
are commonly regarded as primary users and beneficiaries of automated/autonomous ADAS (cf.
Hawkins 2018). Furthermore, the practical viability of Theme 4 should be noted with consideration
of the fact that a large proportion of the vigilance decrement phenomena exhibited in historic
experiments was undertaken by young, highly trained, and motivated operators. By comparison,
the present literature survey was concerned with uncovering proactive knowledge further
generalizable and applicable to laypeople who might not be used to or amenable to rigours of
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professional training when it comes to driving (e.g., recurrent training, reading of documentation,
attention to help resource media/material, etc.).

5.2.5. Solution Area (5): Support the role from the dyadic cognitivism paradigm

Theme 5 cognitive science approaches have become prominent and favoured over the last few
generations. Established human-automation research guideline approaches are on the rise (i.e.,
information processing models, awareness/attention, user/human centred design, etc.) alongside
the popular success of companies like Google that promote their top maxim as ‘Focus on the user
and all else will follow’' (Google, 2018). With the launch of a subsidiary company called “Ford
Autonomous Vehicles LLC”, the Ford Motor Company is self-reportedly embedding a deeper
product-line focus where ‘the effort is anchored on human-centered design’ (Ford, 2018).

5.2.6. Solution Area (6): Support the role from the triadic ecological paradigm

Theme 6 pertaining to leveraging and augmenting information in the environment and task itself
(e.g., situated, ecological, extended cognition, etc.) is expected to gain traction commensurate with
technological progress of increased access to ambient data that might have been previously too
cost-prohibitive in previous decades. For example, more recent times have seen an acceleration of
accessibility from the miniaturization of recording equipment and availability of ubiquitous sensing
and computing power. As automation applications continue to grow into new operational areas and
expand beyond closed control system process considerations (especially as with vehicles which by
definition move from one place to another), recognition of environmental and task dependencies
are also expected to grow.

5.3. Limitations

The presently proposed framework to group answers to the potential problems of degraded driver
engagement while monitoring driving automation were not derived from a formal and systematic
procedure. Instead, the themes were construed in an abductive reasoning manner while trying to
organize and relate timely operational concerns (monitoring responsibilities in SAE Level 2 driving
automation) with both established and more recently emergent research literature. Assimilation of
these solution areas was desirable, considering the long-standing history of general vigilance issues
of prolonged human supervisory attention over any automated processes. However, such a
framework cannot claim to be the only one conceivable, and the identified themes could be argued
to reflect only idiosyncratic knowledge, reasoning, and partial/imperfect readings of a more full
body of literature. For example, Themes 1 and 3 were scarcely used categorizations by any of the
raters within the present literature survey. Besides clear challenges presented by such a small
sample size of only 34 publications, other explanations are also available as to the absence of
Themes 1 and 3 among the rater responses. As foreshadowed first by Billings (1991) and repeated
by Endsley and Kiris (1995), the rapid release and continual roll-out of automation (then for
aviation, now for automotive applications) might obviate a so-called ‘too academic’ position of
strict avoidance (i.e., Theme 1). Thus, it is conceivable how an approach area as Theme 1 might be
under-represented in the literature as being both either too obvious and/or too obsolete. For
example, the proactive literature search terms (e.g. of keeping engagement/attention in
supervisory control) might reasonably not be expected to return publications that are
predominately oriented towards the first solution area of avoiding the supervisory role. In contrast,
Theme 3 might be too abstract or unusual (or even arguably unethical as a feature of deception) to
be directly arrived at and associated with the terms of ‘supervisory control’. While shared control
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and backup automation are far from being alien concepts, the logical complement of changing a
subjective experience with automation (Theme 3) to that of changing an objective amount of
automation (Theme 2) might be for some too unfamiliar as a grouping umbrella perspective.
Furthermore, because humans are still humans whether supervising automated processes or
performing other kinds of vigilance and/or sustained attention work, it should be noted that,
although presently left out of scope, many of the other literature search returns regarding
proactive solutions to human attention/engagement in supervisory or monitoring control/work
might be expected to transfer interesting lessons learned even if from non-operator domains:
educational classrooms, business offices, creative work, medical hospitals, geriatric care, etc.

6. Conclusions

A wealth of literature suggests categorical approaches to proactive strategies for addressing
potential degradation of driver monitoring performance in human supervisory control of driving
automation. A qualitative framework of six themes to group solutions have been presently
proposed in order to answer a research question of ‘how do we keep people engaged while
supervising (driving) automation’. These themes were motivated from human factors and
psychological learning theory literature and found to be recognizably applied by raters to categorize
empirically grounded human automation interaction research recommendations. The present
themes were devised as short-hand formulations that might be easy to remember. Such abstracted
organization frameworks are expected to be useful in order to more easily draw comparisons both
within and across domains. For example, as a sort of lay of the land overview, the solution areas
might serve like a map for automation research/design practitioners to locate where their present
approaches (i.e., to human vigilance in supervising driving automation) currently reside and what
other alternative areas might be interesting to explore. Additionally, underlying concepts can also
thus be more easily entertained to provide common groundwork benefits across seemingly
disparate themes.

6.1. General Lessons Learned

The body of literature has much to say regarding supervisory control of automation. We encourage
readers towards broader review work in general (Sheridan, 1992), for unmanned robot-vehicle
systems (Chen et al., 2011), and for evolving driving roles specifically (Merat & Lee, 2012). Across
these review works (and across the six presently identified themes), a consensus benefit would
appear to be meta-information requirements to combat uncertainty regarding human involvement
in supervising automation (e.g., information about control utility, situated automation capability,
performance predictions, etc.). Specific findings from these publications are highlighted below to
substantiate this position.

Sheridan (1992) provides a definitive reference for supervisory control that brings together a
variety of theories and technologies across decades of his experimental research within the area. In
his concluding chapter, he warns of alienation of operators from their work/responsibilities as an
underlying cause and concern to be combatted through designs that allow an operator to retain
her/her sense of responsibility and accountability. He considers the future of supervisory control in
relation to the task entropy (i.e., the complexity or unpredictability of task situations to be dealt
with). He offers a way forward through an assumption that humans know best when the
automation should apply based on how readily the required information can be modelled.
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‘The human decision maker is necessary for the information that is not explicitly
modelable ... Some, perhaps most, decision situations the human operator will encounter
require only information that is modelable. She will make mistakes in such decisions, and
can benefit from a decision aid for these cases, and in such cases the decision aid can be
validated ... Assume the human can properly decide when the situation includes elements
the decision aid can properly assess, and for which elements the decision aid should be
ignored’ (p. 359).

Chen et al. (2011) cover a multitude of related research concerning human performance issues
(e.g., multitasking performance, trust in automation, situation awareness, and operator workload)
and innovative technologies designed to reduce potential performance degradations surrounding
human supervisory control of automated robot-vehicles. They review interface/tool design
developments of multimodal display/controls, planning, visualization, attention management, trust
calibration, adaptive automation, and intelligent agent and human-robot teaming. Chen et al.
(2011) relay sub-roles within supervisory tasks from Sheridan (2002) that append aspects of
planning and learning to bookend monitoring and intervening. Such surrounding aspects of gaining
experience with when/where to moderate attention strategies in the application of supervisory
control echoes those discussed above by Sheridan (1992).

Complicating interactive challenges reviewed by Chen et al. (2011) include inaccuracies in meta-
knowledge that contribute to issues of both automation disuse and over-reliance. On the one hand,
humans commonly overestimate the cognitive/perceptual abilities of themselves and others (e.g.,
metacognitive errors such as change blindness blindness, verbal and visual hindsight bias, self-
confirmation bias, cognitive dissonance, etc.) which inflate their sense of necessity for human
involvement. On the other hand, to the extent that operators anthropomorphize
hardware/software into human-like teammates could then likewise exacerbate expectations of
capability, encourage complacency and produce over-reliance on automated processes. At the
heart of the issue is the concept of trust calibration where ‘during a supervisory control task,
operators intervene only when they have reason to believe their own decisions (od) are superior to
the automated system’s decisions (ad)’ (Chen et al., 2011, p. 437). Within their review of calibrating
human trust of automation, Chen et al. (2011) suggest from Lee and See (2004) that ‘the
capabilities and limitations of the automated systems be conveyed to the operator, when feasible’
because previous research has shown that ‘when operators were aware of the context-related
nature of automation reliability, their detection rate of automation failures increased significantly’
(e.g., Bagheri & Jamieson, 2004). Beyond aspects of proneness towards false alarms or misses, they
suggest additional dimensions of trust: utility, predictability, and intent.

Merat and Lee (2012) include a review of driver automation interaction research to guide future
designs. Their results include identification of two general design philosophies for automation:
substitution vs. support. They conclude that assumptions towards substitution are not seamlessly
simple to meet and instead argue that successful designs will depend on recognizing and
supporting the new roles for drivers. Merat and Lee (2012) provide scenario-based warnings both
of conflicting timescales: ‘Automation may require drivers to intervene on a scale of milliseconds,
but reentering the control loop may take seconds’ (p. 683), as well as of ironies of automation that
‘..can accommodate the least demanding driving situations—encouraging drivers to disengage
from driving—but then calls on the driver to address the most difficult situations ... Periods when
drivers are most likely to fully rely on automation—highway driving—also require the most rapid re-
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entry of drivers into the control loop.” (p. 683-684). In consideration of such scenarios, it becomes
apparent that interactive meta-information (of humans, vehicles/automation, and the driving task
environments) would be essential for forming expectations of how well drivers will perform their
monitoring duties.

In summary, a general lesson for common benefit to all solution areas would appear to be further
characterizations of driving situations towards understanding which are more complex from those
that are more routine (i.e., for both humans and for machines). Such kind of information would
support designers and end-user expectations in meta-supervisory mental model knowledge of
when/where the automation they are tasked with supervising might better/worse perform and why
(and likewise for the monitoring performance/requirements of the human supervisor). To the
extent that the driving is able to be handled entirely within perfectly formulated sets of rules and
logic, then automated processes should excel and consequences for human oversight would
reasonably be diminished. On the other hand, to the extent that driving involves complex socio-
cultural norms and violations that are not mathematically well-described and highly interactive with
un-modelled context dependencies, then human engagement in monitoring becomes more crucial.
For example, as relayed by Merat and Lee (2012): ‘Even now, the role of the person behind the
wheel is often not that of a driver but that of an office worker on a conference call, a mother caring
for a child, or a teen connecting with friends (Hancock, 2017b)’. As more mutually informed tests
are conducted of SAE Level 2 driving automation, between laboratory and on-road research and
development, such experiences should serve to provide clearer details, specifics, and evidence in
place of assumptions. Positive progress towards specific details relevant for human monitoring of
driving automation can be recognized from the California Department of Motor Vehicles. The CA
DMV has begun to publically share documentation of annual collision and disengagement reports
from autonomous vehicle (test) operations within its jurisdiction (California DMV, 2018) — 95
collision reports are available between 2015-2018, and 2308 disengagements for the 2017
reporting period. More than just a requirement to enumerate problems, the disengagement
documentation also begins an attempt to standardize a communication of circumstances (e.g., who
initiated the disengagement, on what kind of road, with a description of facts causing the
disengagement). Future research might make use of such details to further inform targeted studies
surrounding the topic of human attention in supervision of driving automation. As more
information becomes available, such information can be used in line with the first three of our
presently identified solution area themes to avoid (1) and/or reduce (2-3) the operational design
domains of partial automation that requires human supervision, or by the last three solution area
themes to support its operations via e.g., enhanced training (4), feedback and mental models (5),
and/or task environment relations (6).
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Appendix A. Literature Survey List

Inclusion set of categorised human-automation literature conclusions from search for keeping engagement/attention in
supervisory control.

IRDe f Year First Author  Title

1 2016 Banks Keep the driver in control: Automating automobiles of the future

2 2014 Clauss Implications for operator interactions in an agent supervisory control relationship

3 2013  Cummings Boredom and distraction in multiple unmanned vehicle supervisory control

4 2012 Breda Supervisory Control of Multiple Uninhabited Systems-Methodologies and Enabling
Human-Robot Interface Technologies (Commande et surveillance de multiples ...

5 2012 Chen Supervisory control of multiple robots: Effects of imperfect automation and individual
differences

6 2012 Chen Supervisory control of multiple robots in dynamic tasking environments

7 2012 Pop Using engagement to negate vigilance decrements in the NextGen environment

8 2010 Cummings Modeling the impact of workload in network centric supervisory control settings

9 2010 Hart Assessing the impact of low workload in supervisory control of networked unmanned
vehicles

10 2010 Shaw Evaluating the benefits and potential costs of automation delegation for supervisory
control of multiple UAVs

11 2007 Cummings Operator scheduling strategies in supervisory control of multiple UAVs

12 2007 Cummings Developing operator capacity estimates for supervisory control of autonomous vehicles

13 2007 Cummings Automation architecture for single operator-multiple UAV command and control

14 2007 Johnson Testing adaptive levels of automation (ALOA) for UAV supervisory control

15 2007  Miller Designing for flexible interaction between humans and automation: Delegation
interfaces for supervisory control

16 2006 Hawley Training for effective human supervisory control of air and missile defense systems

17 2006 Scott Assisting interruption recovery in supervisory control of multiple UAVs

18 2005 Parasuraman A flexible delegation-type interface enhances system performance in
human supervision of multiple robots: Empirical studies with RoboFlag

19 2003 Parasuraman Human control of multiple robots in the RoboFlag simulation environment

20 2002 Blasch JDL Level 5 fusion model: user refinement issues and applications in group tracking

21 2002 Ruff Human interaction with levels of automation and decision-aid fidelity in the supervisory
control of multiple simulated unmanned air vehicles

22 2000 Hoc From human-machine interaction to human-machine cooperation

23 1999 Manly The absent mind: further investigations of sustained attention to response

24 1995 Endsley The out-of-the-loop performance problem and level of control in automation

25 1995 Pope Biocybernetic system evaluates indices of operator engagement in automated task

26 1995 Sarter How in the world did we ever get into that mode? Mode error and awareness
in supervisory control

27 1993 Lockhart Automation and supervisory control: A perspective on human performance, training, and

performance aiding
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Fs f Year  First Author  Title

28 1992 Ackerman Understanding supervisory systems

29 1992 Gersh Cognitive engineering of rule-based supervisory control systems: Effects of concurrent
automation

30 1992 Sarter Mode error in supervisory control of automated systems

31 1987 Gaushell Supervisory control and data acquisition

32 1986 Norman Attention to action: Willed and automatic control of behavior

33 1986 Sheridan Human supervisory control of robot systems

34 1984  Sheridan Research and modeling of supervisory control behavior. Report of a workshop
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Appendix B. Category Ratings

First and second choice (where applicable) thematic category as identified by each rater for each publication reference.
First choice overlap agreement by at least 2 raters is shaded and full agreement is outlined.

Ref ID « AV' « TX ’ « CO' nd AV ' nd X . nd CcO '
1" Choice 1" Choice 1" Choice 2" Choice 2" Choice 2" Chaice

1 5 5 2 2 2 -
2 6 6 2 - 5 6
3 2 2 4 - 5 6
4 6 6 2 5 2 6
5 4 5 4 5 6 -
6 6 5 4 4 2 -
7 4 4 4 - 5 -
8 2 5 2 - 4 -
9 2 5 2 4 2 5
10 2 5 2 - 2 -
11 1 5 2 - - -
12 2 2 6 - 5 -
13 5 6 4 6 5 6
14 2 6 2 6 2

15 2 2 2 3 6 -
16 4 4 4 - 6 -
17 6 6 6 5 4 5
18 2 5 2 - 6 -
19 6 5 2 - - -
20 3 6 6 5 5 -
21 2 5 2 6 - 3
22 5 6 3 6 3 -
23 2 4 4 - 5 -
24 2 1 2 1 2 1
25 2 4 4 - 5 -
26 5 5 6 6 - 4
27 4 4 4 | 5 6 -
28 5 6 6 6 - -
29 6 6 3 - 5 -
30 5 5 5 | 4 : 4
31 6 5 3 5 - -
32 6 5 2 5 6 -
33 6 5 5 - 6 -
34 5 5 4 4 4 2
Mode: 2 5 2 5 5 6
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PART 3: Driving Scenes and
Driver Eyes






Chapter 3.1: Crowdsourced Driving Scene Content Categorization

Chap. 3.1) Validity and Reliability of Naturalistic
Driving Scene Categorization Judgments from
Crowdsourcing

Control Warning
Modifications Information

In regards to the overall thesis big picture, this research serves as a direct exploration of
the viability of capturing and categorizing driving scenes for applied research at more
efficient scales (larger volumes but while retaining satisfactory levels of validity and
reliability). An annotation scheme was designed to deliver potentially relevant
information about scene contents but without undue burden to human annotators to
execute. On average, raters took around 70-75 seconds to complete an annotation of a 3-
second driving video clip (e.g., where binary annotation items were pre-sorted by
expected frequency likelihoods). By the power of crowdsourcing, 12,892 categorizations
were completed in about 1% days by 200 external workers from 46 different countries.
Through volunteer collaboration 1,002 annotation categorizations were completed in
about two weeks by six internal confederate workers. The results suggest that large
libraries of real-life driving situation visual demands might now be available to generate
and organize by recognizable and standardized constituent components. Driving video
recording resources could be a real hybrid stimulus boon to driving (vigilance) research
such as reviewed in Chap. 2.1 that were found to typically rely on driving environments
that are virtual (i.e., simulator studies) or are less controllable/repeatable (i.e., on-road
studies). Consequently, an example interface application that allows a researcher to look-
up and save a driving video clip by its specified contents is provided in Appendix 3.1.B.2.
Video annotations from Chap 3.1 were used to source stimuli for Chap 3.2.

Adapted from:

Cabrall, C.D.D., Lu, Z., Kyriakidis, M., Manca, L., Dijksterhuis, C., Happee, R., & de Winter, J.C.F. (2018). Validity and
reliability of naturalistic driving scene categorization judgments from crowdsourcing. Accident Analysis & Prevention,
vol. 114, pgs. 25-33.
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Abstract

A common challenge with processing naturalistic driving data is that humans may need to
categorize great volumes of recorded visual information. By means of the online platform
CrowdFlower, we investigated the potential of crowdsourcing to categorize driving scene features
(i.e., presence of other road users, straight road segments, etc.) at greater scale than a single
person or a small team of researchers would be capable of. In total, 200 workers from 46 different
countries participated in 1.5 days. Validity and reliability were examined, both with and without
embedding researcher generated control questions via the CrowdFlower mechanism known as
Gold Test Questions (GTQs). By employing GTQs, we found significantly more valid (accurate) and
reliable (consistent) identification of driving scene items from external workers. Specifically, at a
small scale CrowdFlower Job of 48 three-second video segments, an accuracy (i.e., relative to the
ratings of a confederate researcher) of 91% on items was found with GTQs compared to 78%
without. A difference in bias was found, where without GTQs, external workers returned more
false positives than with GTQs. At a larger scale CrowdFlower Job making exclusive use of GTQs,
12,862 three-second video segments were released for annotation. Infeasible (and self-defeating)
to check the accuracy of each at this scale, a random subset of 1,012 categorizations was validated
and returned similar levels of accuracy (95%). In the small scale Job, where full video segments
were repeated in triplicate, the percentage of unanimous agreement on the items was found
significantly more consistent when using GTQs (90%) than without them (65%). Additionally, in the
larger scale Job (where a single second of a video segment was overlapped by ratings of three
sequentially neighboring segments), a mean unanimity of 94% was obtained with validated-as-
correct ratings and 91% with non-validated ratings. Because the video segments overlapped in full
for the small scale Job, and in part for the larger scale Job, it should be noted that such reliability
reported here may not be directly comparable. Nonetheless, such results are both indicative of
high levels of obtained rating reliability. Overall, our results provide compelling evidence for
CrowdFlower, via use of GTQs, being able to yield more accurate and consistent crowdsourced
categorizations of naturalistic driving scene contents than when used without such a control
mechanism. Such annotations in such short periods of time present a potentially powerful
resource in driving research and driving automation development.
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Chapter 3.1: Crowdsourced Driving Scene Content Categorization

1. Introduction

Further knowledge specifically of (background) driving scene contexts could benefit transportation
research and ultimately road safety. This study presents and evaluates a new method using
crowdsourcing to provide content characterizations of natural driving video footage. Brief
descriptions of both topics are provided in the following introductory sections.

1.1. Naturalistic driving and driving videos

Naturalistic driving studies (NDS) have been growing in popularity with much success over the last
few decades. NDS offer advantages with respect to other traditional driving safety research
methods such as eye witness recall (often being inaccurate or unavailable) within crash data
evidence approaches and driving simulators (often causing artificial participant behavior) (Regan et
al., 2012). However, a lack of experimental control (where extraneous variables except that of
manipulative interest are held constant), has been a commonly recognized detriment to NDS. Thus,
the accurate annotation of the situational aspects and conditional characteristics that freely vary in
NDS becomes all the more important for the identification and understanding of potential causal
factors. Augmented by accelerating developments in audio-visual technology, computing, and
networking resources, blended research designs are emerging wherein stimuli can be naturally
sourced from the real world, reproduced, and mixed with more controlled laboratory conditions.

Due to reductions both in size and costs of cameras, real life driving video is an increasingly
accessible data resource that may allow recordings at a large scale and could help enrich other
sources of data with otherwise missed contextualized information. However, so much video data
might be recorded in naturalistic driving research and field operational tests that research
resources are often overwhelmed to process such data libraries through pre-requisite rounds of
organization and labeling (e.g., data reduction) towards fuller potentials of use. For example,
challenges can arise regarding the availability of confederate researchers for laborious manual
annotation or transcription tasks. Unfortunately for driving safety research, the use of real-life
driving video footage has remained a relatively low-tapped exception (e.g., Crundall, Underwood, &
Chapman, 1999; Chapman et al.,, 2007; Borowsky, Shinar, & Oron-Gilad, 2010) rather than a
common resource, despite inherent strengths in face validity and generalizability of results.

1.2 Crowdsourcing

Compared to less than 1% in 1995, about 48% of the world population has an Internet connection
to date, placing the approximate number of Internet users in excess of 3.5 billion people
(www.InternetLiveStats.com/internet-users/). Online crowdsourcing services make use of this
extensive connectivity to create an on-call global workforce to complete large projects in small
chunks (a.k.a., micro-task workers). Gosling and Mason (2015) review a broad and growing use of
Internet resources in recent psychological research. They conclude that harnessing large, diverse,
and real-world data sets presents new opportunities that can increase the societal impact of
psychological research. In the automated driving domain, research has recently begun to emerge
utilizing crowdsourcing resources through global survey initiatives to capture large scale
international public opinion (Bazilinskyy & De Winter, 2015; Kyriakidis, Happee, & De Winter, 2015).
In regards to crowdsourcing as a research method, investigation into the differences between
laboratory participants versus crowdworkers has found faster responses but higher false alarms
with crowdsourcing (Smucker & Jethani, 2011). Additional methodological research has revolved
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around the assurance of quality from the quick and inexpensive results typically returned by
crowdsourcing and have recommended predetermined answer sets for use both in the screening of
unethical workers as well as for the effective training of ethical workers (Le et al., 2010; Soleymani
& Larson, 2010).

1.3. Present study

Real-world driving datasets come with large labor challenges in terms of data reduction like manual
annotation and categorization. Pairing together expansive datasets of naturalistic driving video
footage with crowdworkers may be a powerful method for progressing driving safety research. As a
prototypical example of the power of crowdsourcing, the online platform known as CrowdFlower
can accomplish routine categorization work at relatively low cost and at high speed by distributing
the work around the world, taking advantage of both differences in time zones and hourly wages.
However, such new methods require an investigation of validity and reliability to ensure
trustworthy results might still be retained when scaling up beyond a single researcher or small
research team. The present study investigated the use of CrowdFlower in the categorization of
large amounts of videos with diverse driving scene contents (i.e., presence of another vehicle,
straight road segments, etc.) through manipulation of one of its central quality control mechanisms
to ascertain the quality and capability of such a method.

2. Methods
2.1. Quality control settings

Within its documentation, the CrowdFlower system promotes Gold Test Questions (GTQ) as its
most important quality control mechanism. By configuring this setting, we enforced that a set of
categorizations with known answers (i.e., given by the experimenters) were randomly intermixed
with the experimental categorizations of interest. Thresholds of performance on these GTQs were
set in an attempt to reduce the amount of indiscriminate responses that may occur within the
results due to the remotely distributed nature of work under unsupervised conditions.

2.2. Participants/Workers

Participants in this research consisted of external micro-task workers from the online CrowdFlower
contributor community. From this network, workers were prescreened by a number of criteria
selectable within the CrowdFlower interface. Specifically, within CrowdFlower, performance levels
are automatically awarded based on CrowdFlower’s criteria of accuracy across a variety of different
Job types. We selected a performance setting of Level 2 workers from a three-level scale,
representing the midpoint between anchors of “highest speed” (Level 1) and “highest quality”
(Level 3). Moreover, across all 51 of its current possible Channels for sourcing external workers (e.g.
BitcoinGet, ClixSense, CoinWorker.com, etc.), CrowdFlower was set to include workers only from
those retaining a ratio of Trusted to Untrusted Judgments greater or equal to 80% (39 Channels
were left toggled on and 12 set to off). All countries were permitted within the Geography setting,
and no additional Language Capability requirements were selected.Table 3.1.1 lists the countries
and source Channels of workers obtained across different sets of categorizations performed within
the present study along with distributions of unique worker IP addresses and CrowdFlower worker
IDs while Fig. 3.1.1 depicts the country distribution of the workers. For external crowdworkers,
identification of country was determined by CrowdFlower based on IP address.
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Table 3.1.1. Overview of the five different sets of categorizations. These sets included differences in the amount of video
segments to be categorized (C1 = 48 segments, C2 = 12,862 segments), the use of Gold Test Questions (C1b had none)
and the relation of the annotators to the research (external = CrowdFlower workers; internal = confederate research
team).

Condition Countries (ISO 3166-1 Channels Unique Unique
alpha-3) IP’s ID’s
15 = AUT, BEL, COL, DEU, 5 =clixsense,
ESP, GBR, GRC, IND, MKD, coinworker, elite,
cla PHL, PRT, ROU, RUS, SRB, prodege, 18 18
TUR tremorgames

9 =DNK, GRC, IND, MDA, 3 = clixsense, elite,

Cib PAK, PHL, SRB, TUR, VNM tremorgames 13 13
Clc 1=NLD 1 =n/a (internal) 1 1
16 = clixsense,
coinworker,
46 = ARG, AUS, AUT, BEL, fusioncash, gifthulk,
BGD, BGR, BIH, BRA, CAN, hiving,
CHL, CZE, DEU, ESP, FIN, indivillagetest,
FRA, GBR, GRC, HRV, HUN, instagc, personaly,
IDN, IND, ISR, ITA, JAM, pocketmoneygpt,
c2a LKA, MAR, MDA, MEX, points2shop, 247 200
MKD, MYS, PER, PHL, POL, prodege,
PRT, ROU, RUS, SAU, SRB, superrewards,
SWE, TUR, TWN, UKR, surveymad,
URY, USA, VEN, VNM tremorgames,
yute_jamaica,
zoombucks
C2c 1 =NLD n/a (internal) 12 7

Note. Country abbreviations are according to ISO 3166-1 alpha-3.

2.3. Apparatus and stimuli

To support projects oriented around the human factors of automated driving (i.e., exposing
participants to various HMI/functional research concepts, measuring constructs of vigilance,
situation awareness, mental models, reaction time, eye tracking behavior, etc.), a set of stimulus
material was desired that had both qualities of high visual realism and controllable levels of
uncertainty in repetition, freeze-ability, etc. Initial searches of YouTube with the keyword “dash
cam” were conducted to compile a sample database of naturalistic driving video footage. Videos
had to feature relatively high and consistent visual quality, a large and consistent field of view, and
uninterrupted driving in order to be included. Candidate videos were selected from the search
results in order to acquire nominal driving footage (i.e., excluding violations and crashes). We
collected a set of 10 freely available YouTube videos ranging between 1 minute and 1 hour duration
(but of bimodal typicality of about 3 or 13 minutes length) for a total of 6,934 seconds of driving
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footage. The countries in which the recordings were filmed were not known, but driving was always
on the right hand side. Audio was removed from the videos.

Cia (15) e C1b (9)

C2a (46) C1c/C2¢ (1)

Figure 3.1.1. Annotator country locations by condition.

Subsequently, new self-recorded dash cam driving recordings (6,026 seconds) were filmed in the
United States and saved as 39 different files (typically less than 3 minutes in length, but ranging up
to 15 minutes). This complemented the videos collected from YouTube in order to exhibit a broader
range of real-life and experimentally interesting driving situations. These additional recordings
included driving at night, on mostly empty desert roads, in a visually complex metropolis, and via
multi-lane freeways, as well as at different driving speeds.

Driving videos from both sources were uploaded as 49 new private link-only access YouTube videos
(M = 264 seconds duration) with an aggregate of 12,960 seconds of near driver point-of-view video
footage. Through a combination of MATLAB script and an online tool from www.tech-tipsforall.com
(ttfaloopandrepeat.appspot.com), auto-cueing URL links were generated to access each of the
12,862 possible 3-second segments from each of these 49 video. These URL links were embedded
as text only in our CrowdFlower surveys with one URL per Judgment. The video segments
overlapped in a manner such that a randomly selected worker categorized seconds one to three
from video 1, another randomly selected worker categorized seconds two to four from video 1, a
third randomly selected worker categorized seconds three to five from video 1, etc., for all videos 1
through 49. Example screenshots from the driving video segments are shown in Figs. 3.1.2a, 3.1.2b,
and 3.1.2c.
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Figure 3.1.2. Example screenshots from driving video segments a) recorded from within a publically posted dash cam
YouTube video, b) recorded by the experimenters within a visually complex metropolis (i.e., Las Vegas strip), and c)
recorded by the experimenters in a visually simple environment (i.e., Nevada desert backroad). Video resolution/quality
here is only approximately representative as that initially made available to participants because differences in devices
and browsers, full-screen viewing, etc. were not controlled for in the online survey.

A coding scheme was created wherein each video segment categorization (i.e., Judgment)
contained two groups of questions. The first group consisted of 21 checkbox items pertaining to the
non-mutually exclusive presence of others, namely, (1) cars/trucks/vans/buses, (2)
motorcycles/scooters/mopeds, (3) bicycles, and (4) pedestrians. Each of these four categories
contained additional possible sub-specification of their position/direction of travel, namely, (5-8)
leading, (9—12) oncoming, (13—16) passing or being passed, and (17-20) crossing; all relative to the
present point-of-view vehicle. Additionally, there was a checkbox item which should be ticked for
(21) no one else was present.
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The second group consisted of 10 checkbox items pertaining to presence of miscellaneous
infrastructural elements and aspects of vehicle behavior. These were: (1) straight road, (2) more
than one lane per direction of travel, (3) signs/signals facing the driver, (4) road surface markings
other than lane boundaries (e.g., crosswalks, arrows, writing, etc.), (5) lane change by this driver,
(6) lane change by another vehicle, (7) turning by this driver, (8) turning by another vehicle, (9) this
driver slowing to a stop, and (10) none of the above. In the second round of categorizations (C2,
see Tables 3.1.1 & 3.1.2), the coding scheme was extended to include a position/direction item
across all road user categories (i.e., of being parked/stationary), plus a miscellaneous item for overt
video edits/alterations. Consequently, these extensions (for further data enrichment value) raised
the total checkbox count per video segment to 36. The full coding scheme of annotation items (as
well as the specific full training instructions given to annotators) is provided in Appendix A.

2.4. GTQ video segments: multiple purposes and representative examples

GTQ videos were selected from the full pool of video segments under the criteria to serve as
effective screening and training devices. For the purpose of screening indiscriminate respondents,
some of the easiest and most unambiguous scenes were selected, as for example a video segment
where only an empty desert road is shown:

(1) https://www.youtube.com/embed/eS79DG08idY?start=12&end=15

For the purpose of explicating various annotation labels (e.g., surface paint markings, signage facing
the driver), video segments were selected that contained certain items of interest, such as a
segment where a railroad crossing sign appears on the side of the road as well as surface markings
in the lane of travel:

(2) https://www.youtube.com/embed/vA5AiKbzlww?start=82&end=85

2.5. Conditions

Three different external CrowdFlower Jobs were conducted in two different rounds (C1 and C2), as
shown in Table 3.1.2. In the first round, C1, a set of 48 unique three-second long video segments
(randomly selected from the larger full dataset of collected video footage) were categorized by
external CrowdFlower workers with GTQs either turned on (Cla) or turned off (Clb). In Cla and
Clb, the default triplicate redundancy setting in CrowdFlower was kept on and so the Job ran until
three Judgments were collected for each video segment. Additionally, the same 48 segments were
categorized offline by an individual internal worker (i.e., a confederate researcher) in Clc.

In the second round, C2, Judgments were performed on CrowdFlower across all 12,862 possible 3-
second video segments of the full video dataset via external CrowdFlower workers (C2a) and over a
subset of these video segments by an internal worker team comprised of multiple confederate
researchers (C2c) using the same CrowdFlower structure as the external workers. Within the C2c
round of internal team ratings, one team member accomplished a high volume of Judgments (n =
638) under two separate CrowdFlower accounts such that 38 different Judgments of the same
driving scene segment from the same person were available to establish intra-rater reliability.

The required set of Judgments ordered for each CrowdFlower Job was specified at Job launch and
included a redundancy option through a multiplier setting (x3 was used in C1, x1 was used in C2).
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Table 3.1.2. Categorization conditions.

Video Gold Video Worker Total
Condition  Workers segments Redundancy Test segments payment CrowdFlower
categorized Questions per Page per Page Cost
Cla external 48 3 12 10 $0.50 $10.80
Clb external 48 3 0 10 $0.50 $9.00
Clc internal 48 1 12 n/a n/a n/a
C2a external 12,862 1 53 11 $0.25 $349.32
C2c internal 1,012 1 42 11 n/a n/a

Note. The total worker payment differs from the total CrowdFlower costs because CrowdFlower retained a margin of
about 20%. Video segments per Page refers to the amount of videos the worker was assigned at a time (i.e., stacked
vertically, with a scrollbar), total Pages completed varied between workers. A single Page consisted of 10 (C1) or 11 (C2)
Judgments, that is, different driving video segments to be annotated.

2.6. Analyses

In the investigation of the utility of CrowdFlower for annotating driving video content, multiple
analyses from two different rounds of Jobs (Table 3.1.1) were undertaken to cover the separate but
related psychometric aspects of validity (i.e., accuracy) as well as reliability (i.e., consistency).

In terms of validity, we ascertained to what extent categorizations returned from external
CrowdFlower workers reflect what is actually visible in a given driving video segment. At an initial
reduced Job scale, the same set of video segments was repeated with and without GTQs (Table
3.1.1, Cla vs. Clb) and compared to a reference set of categorizations of these same segments
generated by a confederate researcher (Clc). For subsequent accuracy analyses at the greater Job
scale (where GTQs were retained), ground truth was created by a team of internal confederates for
a random subset due to the infeasibility (and self-defeating purpose) of checking the accuracy of
each annotation at this scale.

In terms of reliability, we assessed how consistent categorizations of the driving video segments
were when repeatedly administered. Supporting this aim, three analyses were conducted. First,
from the second round of confederate categorizations (C2c) one internal team member was given a
subset to categorize in duplicate to himself (i.e., randomly intermixed among his other
categorizations, see 2.5 Conditions). Second, at the small scale Job (C1), each video segment was
rated by three different external CrowdFlower workers (both in Cla and in Clb). Third, the full
dataset categorizations of C2a provided an account of consistency due to the fact that the video
segments overlapped such that any second of driving video footage was categorized three times.
That is, for any second “x” bounded by start/end points [start, end] there existed a first segment: [x,
x+2], a second segment: [x-1, x+1], and a third segment: [x-2, x].

2.7. Procedure

All workers were provided with a set of instructions and examples regarding the driving video
segment categorization coding scheme that remained available for consultation throughout their
work (Appendix A). A single Judgment consisted of a set of 31 (C1) or 36 (C2) checkboxes pertaining
to features visible within a randomly selected 3-second long driving video segment (Section 2.3). A
single Page consisted of 10 (C1) or 11 (C2) Judgments, that is, different driving video segments to
be annotated.

103



In the conditions where GTQs were active (Cla, C2a, C2c), task workers were first given a single
page of Quiz Mode GTQs Judgments to complete. Because of constraints of CrowdFlower, a GTQ
Judgment had to be answered perfectly in order to be scored as correct, with no partial credit given
(i.e., all 31 or 36 checkboxes had to be checked correctly against predetermined answers
constructed by the experimenters). If workers achieved a threshold correctness Trust Score on
these GTQs of 70% [i.e., 7 out of 10 Judgements] in C1, and 25% [i.e., 3 out of 11 Judgments] in C2,
then workers were automatically allowed by CrowdFlower to continue through as many more
Pages of Work Mode as they would like. Through trial and error, the set threshold was lowered
from 70% in C1 to 25% in C2, because it turned out to be often highly difficult to obtain a perfect
answer on each of the checkboxes of a Judgment. Additionally, in C2, participants were supported
with further detailed feedback explaining the correct answers. For an incorrect answer to any
checkbox item of a GTQ during Quiz Mode, workers were shown the correct answers of all
checkboxes for that Judgment along with a brief justification. Each Page of Work Mode had one
new not-yet-seen GTQ randomly presented within the other Judgments such that a worker was
unable to identify which Judgments had a priori answers that their own answers would be scored
against. As long as workers maintained a running average Trust Score above the set threshold (i.e.,
70% in C1, 25% in C2), and there were still GTQs remaining that they had not yet seen, they were
allowed to continue.

In the CrowdFlower condition without GTQs (Clb), workers were allowed to enter Work Mode
straightaway without real-time screening criteria barring them from submitting Judgments. On a
first-come-first-serve (optionally screened) basis, Jobs in CrowdFlower are run until a pre-
determined amount of Judgments are completed by an indeterminate amount of workers.

In summary, the GTQ condition included further screening and training to enhance the responses
of task workers than the condition without GTQs.

3. Results

The utility of the crowdsourcing platform CrowdFlower in the content categorization of naturalistic
driving video footage was investigated through multiple analyses concerning both validity and
reliability. Overall, the supposed utility of CrowdFlower in the present tasks was found to be
supported (see Table 3.1.3). Results were indicative of significantly increased utility both in terms of
validity and reliability in the presence of GTQs as compared to without GTQs. Results were obtained
both in the preliminary round of a reduced scale (C1: 48 video segments) and in the subsequent
round conducted at a larger scale (C2: 12,862 video segments).

Table 3.1.3. Summary of analyses.

. Analysis Relative )
Section } : Analysis outcome
aim lob size
3.1.1 Validity Small The GTQ condition yielded more accurate Judgments than the No GTQs
condition. Accuracy was assessed by using the Judgments of a single internal
confederate rater as ground truth.
3.1.2 Validity Large The GTQ condition yielded accurate Judgments. Accuracy was assessed by using

the Judgments of a small team of internal confederate raters as ground truth.
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i Analysis Relative .
Section R . Analysis outcome
aim lob size

3.2.1 Reliability Small A single confederate rater was found to be consistent to himself.

3.2.2 Reliability Small The GTQ condition yielded more consistent Judgments than the No GTQ
condition, for full Judgments and at the item level.

3.2.3 Reliability Large The GTQ condition yielded Judgments of high inter-rater consistency for
overlapping video segments. Consistency was assessed for known-to-be-
accurate Judgments.

324 Reliability Large The GTQ condition yielded high inter-rater consistency for overlapping video

segments. Consistency was assessed for unknown-to-be-accurate Judgments.

3.1. Validity
3.1.1. 48 Judgments, comparing GTQ with no GTQ

Results showed that there were 35 of 144 (24%) and 6 of 144 (4%) exact matches from Cla (with
GTQs) and Clb (without GTQs) respectively, relative to Clc (taken as a measure of ground truth).
Results thus indicated inaccuracies in the Judgments from both Cla and Cl1b (Fig. 3.1.3).

T T T T T T T T T T T T T T T T S — ———— —— — —
[ C1a - External with Gold Test Questions - 48 x 3
I C1b - External without Gold Test Questions - 48 x 3
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Number of incorrect items in a Judgment

Figure 3.1.3. Distribution of the number of errors per Judgment at the smaller C1 Job scale of 144 Judgments (with and
without GTQs) and for a subset of 995 Judgments from the larger C2 Job scale (with GTQs). Errors were determined

against known answers (Clc or C2c). A score of O signifies a perfectly correct Judgment.

However, these inaccuracies occurred in different specificity/sensitivity biases. Phi correlation
coefficients were computed between each full Judgment (i.e., an array of 31 binary checkboxes)
from a condition (Cla or Clb) against the ground-truth Judgment returned by an internal
confederate rater (Clc) matched for a specific video segment. The median across all 144 (48 x 3)
correlation coefficients of the GTQ condition (Cla; r = 0.78) was significantly higher than for the No
GTQ condition Clb (r = 0.39) (Mann-Whitney U = 3756, n1 = n2 = 144, p < 0.001 two tailed).
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Furthermore, greater total item accuracy across all 4,464 (31 x 48 x 3) categorized items was found
in Cla (4,051 = 91%) than in C1b (3,504 = 78%).

Among the 4,464 categorized items in Clb (i.e., without GTQs), there were 396 false positives (i.e.,
items marked present but which were absent in the video segment according to the confederate
researcher), yielding a false positive rate of 11% (396/3,519). Furthermore, there were 564 misses
(i.e., items marked absent that were present in the video segment according to the confederate
researcher), yielding a miss rate of 60% (564/945). In Cla (with GTQs), the false positive rate was
1.6% (57/3,519) and the miss rate was 38% (356/945). In other words, GTQs contributed to a
reduction of both false positives and false negatives.

3.1.2. 1,012 Judgments, comparing external versus internal workers

The confederate research team (C2c) performed 995 Judgments of video segments (17 video
segments were removed due to video playback errors) which were randomly selected from C2a.
Results showed that there were 257 (26%) exact matches between the Judgments from C2a and
C2c. Phi correlations with the ground truth for both the smaller scale Job (correlation between Cla
and Clc: median r = 0.78, see also Section 3.2.1) and the larger scale Job (correlation between C2a
and C2c: median r = 0.80) were not found to significantly differ (Mann-Whitney U = 65298.5, nl =
144, n2 = 995, p = 0.083).

From the 35,820 C2a items re-rated within C2c (995 Judgments x 36 items per Judgment) the false
positive rate was 2.1% (682/31,564) and the miss rate was 27.6% (1,176/4,256).

3.2. Reliability
3.2.1. 38 Judgments, comparing confederate to himself

In condition C2c, one confederate performed 638 Judgments about evenly split under two different
CrowdFlower accounts, with an approximate 10% subset of his Judgments from each account
coded in duplicate (n = 38). Intra-individual test-retest reliability results for this same rater using the
same software settings but across different sessions were: 34 (89%) exact matches, an average phi
correlation of 0.98 across the 38 Judgments, and an overall item accuracy of 99.5% (i.e., 1,361 out
of 1,368).

3.2.2. 48 Judgments, comparing GTQ versus no GTQ

During Cla and Clb, each video segment collected three external worker Judgments and so
allowed for a consistency measure of how many categorization ratings (both for full Judgments
and/or across items within Judgments) were returned identically between external CrowdFlower
task workers. Unanimous agreement on all 31 items of a Judgement was found in 7 of 48
Judgments in Cla (with GTQs) and in 1 of 48 Judgments in Clb (without GTQs). Per item, the
unanimous agreement percentage across the 48 Judgments was computed, and was found to be
significantly higher for Cla (M = 90%, SD = 13) than for C1b (M = 65%, SD = 19, n1 = n2 = 31, t(60) =
5.85, p < 0.001).
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3.2.3. 257 Judgments, comparing ratings by unanimous voting

For the correct 257 Judgments in C2 (see Section 3.1.2), a reliability analysis was conducted by
comparing overlapping categorizations across sequential seconds of video footage. For example,
the correct true/false answer provided for an item in a video segment that began at time x, was
compared with the answer received for that same item by another external worker whose video
segment began at time x-1 and additionally by another external worker whose video segment
began at time x-2. It should be noted that some variation between overlapping video segments
would be expected to exist (e.g., a car seen only in the last second of a segment that starts at x=0
might not be visible in the previous videos x-1 and x-2). Due to such uncertainty, somewhat less
than perfect reliability may be expected even from perfectly reliable raters. This necessitates
consideration of proportional consistency analysis across the entire array of 36 items contained
within a Judgment. In other words, it is assumed that while one or a few aspects might vary
between overlapping videos, the majority of aspects should remain the same.

Results showed that 74 of 257 correct Judgments (29%) received the same true/false rating across
all 36 items by three different external workers who rated overlapping video segments. Figure
3.1.4 shows a distribution of the 257 Judgments according to the number of items vyielding
unanimous agreement. Judgments always had more than two-thirds (i.e., at least 25 out of 36
items) unanimous agreement, and the mean number of items yielding unanimous agreement was
33.9 out of a possible 36.

30
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Figure 3.1.4. Frequency of validated (i.e., 257 fully correct) and all returned Judgments (originally 12,862) from C2a
according to number of items yielding unanimous agreement from three independent raters.

3.2.4. 12,862 Judgments, comparing ratings by unanimous voting

For all 12,862 Judgments, a reliability analysis of unanimous answers was conducted with
overlapping sequential seconds again as in Section 3.2.3, but now for the full dataset. The first and
last two Judgments of each video required removal due to a logical lack of full overlap, resulting in a
total of 12,670 Judgments (12,862 - 4 x 48).
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Regarding unanimity of full Judgments, 1,129 of 12,670 answers (9%) received the same true/false
value across all 36 items by the three different external workers. The mean number of items with
unanimous agreement per Judgment was 32.6 out of 36 possible.

The distributions of Judgments in Figure 3.1.4 shows that disagreement existed in the
categorizations of overlapping sequential seconds of video footage; this occurred most frequently
for two items.

4. Discussion, Conclusions and Recommendations

The CrowdFlower crowdsourcing platform may present great potential for driving research by
bringing task workers from across the world to categorize a rapidly growing resource of naturalistic
driving video data. Due to its inherently distributed structure, CrowdFlower and online tools of
similar kind may be more susceptible to fraudulent or non-discriminating responses as compared to
locally administered and more tightly controlled traditional methods. Specifically, the utility of
CrowdFlower with (and without) its self-purported most important quality control mechanism of
GTQs was investigated in the objective categorization of driving video contents via binary
presence/absence flagging of pre-specified driving items of interest both at a preliminary reduced
and a subsequently increased Job scale.

Exhibiting credible signs of validity and reliability (Table 3.1.3), the potential for the method of
crowdsourcing the categorization of driving video contents can be considered in a meaningful and
valuable way. For example, as a result of our settings in the present study, 12,862 CrowdFlower
annotation categorizations were completed in about one and a half days by 200 external workers
from 46 different countries working at an hourly rate of 1.09 USD each (total cost of about 349.32
USD inclusive of a 20% transaction fee) with an average of 75 seconds per Judgment. Through
volunteer confederate collaboration, 1,002 annotation categorizations were completed in about
two weeks by six internal confederate workers from the Netherlands working between/around
their other work duties at a conservative estimated hourly rate around $20.25 USD each (total cost
estimate of about $394.54 with an average of 70 seconds per Judgment). Thus, for the same
approximate costs, the external workers returned categorizations about ten times faster.

Several limitations exist within the present study and are worth mentioning. The first and foremost,
is that the GTQ mechanism is explicitly designed to work with objective tasks where there are clear
and definable right and wrong answers and so it may not be suitable for many otherwise desirable
subjective judgments from a distributed task worker network. A GTQ is constructed in CrowdFlower
to require pre-defined correct answers with as minimal ambiguity as possible as well as detailed
and documentable justification/motivation of that answer (similar to how both annotator screening
and training is used in more controlled laboratory experiments). It should be noted that the design
of the present study does not lend itself towards some other research questions that might be
addressed from pairing crowdsourcing to naturalistic driving data for example for purposes of
investigating the general human ability in perception/annotation of various aspects of driving
scenes (inter-item research questions) and/or the bearing of universal/local driving cultures on
driving scene interpretation (inter-cultural research questions). Instead, the present study aimed to
eliminate ambiguities on an equal par between conditions to test the principle manipulation of
interest: the use or not of GTQs.
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Nonetheless, some of our requested annotation items appear to have contributed to some
confusion between some raters. The worst three annotation items, both in terms of accuracy and
reliability, pertained to identification of fully straight roads, signage/signals facing the driver, and
number of lanes per direction of travel. Overall, performance with these items averaged around
63% (reliability) and 79% (accuracy) compared to averages taken across all the remaining items of
93% (reliability) and 96% (accuracy). Without proper hypotheses/controls in place, we cannot
propose these as particularly systematic nor meaningful results in human perception or suitability
to crowdsourcing beyond our own inabilities to more thoroughly formulate such desired details for
our driving video data library into more fully objective definitions/terms (see Appendix A). For
example, while relative decreases in miss rates were obtained through use of GTQs, the absolute
levels of miss rates (38% and 28%, in Cla and C2a respectively) might be indicative of annotation
items requiring further scrutiny and/or ease in task criteria definition. Our annotation task
contained a combination of both demanding visual search and items with low ground truth base
rates. Thus, it would be logical or even possibly more natural for a rater to adopt a conservative
strategy when faced with annotation uncertainty (i.e., not checking a box unless they have explicitly
seen something). Relatedly, the high miss rates may reflect a bias due to the fact that all items were
by default unchecked (absent) requiring checking as needed, rather than being checked (present)
requiring unchecking as needed. Indeed, complexities in universal instructions, clear coding rule
descriptions, and controlled balancing of default absence/presence question valences could be a
relevant concern in crowdsourcing annotations from large, diverse, and remote participant
populations without local remediation of a real-time physically present experimenter. However, it
should be noted that we did not use any CrowdFlower geography/language settings and thus kept
this aspect equally random across our external worker conditions so as not to confound our relative
evaluations regarding potential benefits of GTQs.

Secondly, the specific items of the coding scheme created and used in the present study may be
challenged further than issues of clarity towards aspects of organization and inter-item
independence. The item checkboxes within a Judgment were pre-tested and arranged by probable
frequencies of occurrence such that categorization speeds might benefit from predictable and likely
emergent patterns of responses. Thus, the repetitive and non-random ordering of items may be a
source of bias towards consistency (although, again it should be noted that the same structure was
presented to both GTQ and non-GTQ condition groups).

Lastly, several dependency relations existed between items which may degrade the power of some
of the analyses of the present study. For example, several items pertained to the identification of
object classes (cars, motorcycles, bicycles, and pedestrians, respectively) that upon selection, each
expanded with sub-item location information (i.e., leading, oncoming, passing, crossing, parking).
For cases where only one object from the class was present, the sub-item location information thus
became mutually exclusive rather than independent. As another example, items pertaining to
actions of other vehicles such as “Lane change by another vehicle” and “Turning on/off between
this and any other road by another vehicle” logically depend on presence of another vehicle and
thus retain relations to ratings of item vehicle class identification.

More traditional and established methods for interrater reliability (e.g. Cohen’s/Fleiss’ kappa) were
not pursued. The reason for that is the difficulty of determining a chance agreement for our
Judgments that contained a composite of yes/no decisions with inter-item dependencies as
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described above. Instead, simpler measures of consistency, such as the phi coefficient and the
proportion of unanimous Judgments, were used. Further studies with CrowdFlower more specific
to questions of validity and reliability might limit such complexities in advance, sacrificing some
annotation meaning in favor of stricter control, standard analyses, and afforded reflection
regarding the broader annotation literature. Additionally, further assessments of the ground truth
reliability of our internal rating team (beyond the single rater repetitions of the analysis in 3.2.1)
would be desirable in future work. For now, the reliability agreements observed in our approach
(Fig. 3.1.4) appear qualitatively consistent with levels from previous image annotation work (Nowak
& Ruger, 2010; containing 53 annotations per image across a set of 99 without presuming the
existence of two persons that annotated the whole set of images). Specifically, in comparison to the
average identical accuracy they obtained of 0.906, following their Equation 2, we computed our
own average unanimous annotation accuracies respectively as 0.941 (section 3.2.3, Fig. 3.1.4) and
0.906 (section 3.2.4).

Multiple ethical and privacy concerns can be raised in consideration of methods that employ
crowdworkers with human annotation of naturalistic driving video data. Some of these may not be
new and include attempting to anonymize video data in the sense that specific combinations of
sensitive information are not presented in combination to result in personably identifiable
information from both aspects of the drive (time, date, location, etc.) along with aspects of driver
identity (name, face, home/work address, etc.). A major difference between the present method
and the classical way of annotating naturalistic driving data is that in the present method the task is
outsourced to crowdworkers who are themselves anonymous and residing in different countries,
while in the classical way the annotation is done by trained team members who are typically local
and known/approved by the principal investigator(s). Aside from the annotation integrity
(accuracy/consistency) concerns specifically addressed in the experimental design and results of
the present study, other new challenges are worth discussing such as legal requirements of the
handling of data. In the present study, the video data were obtained from public sources, which is
uncommon within traditional NDS approaches. Thus, any terms and conditions regarding data
sharing, ownership, and viewership restrictions put in place a priori by the responsible parties
would need to be considered and respected so as not to be violated. Additionally, the regulations
and policies pertaining to the online reproduction/distribution of (video) data specific to each
country or online hosting community should be adhered to, and this includes the presentation of
potentially disturbing images such as might be the case with automobile crashes/accidents or illegal
driving behavior.

A few positive privacy points regarding the present method are interesting to consider as well.
Because the annotating work is distributed across many crowdworkers in distal locations, a
relatively small amount of the total data is restrictively released to single/isolated persons at a time.
For example, in the present study, only random 3-second clips from randomly different drives and
randomly different drivers were distributed. Accordingly, it becomes much less likely that a
crowdworker can come to recognize a driver’s travel patterns or other aspects that may pose risks
to privacy. This compares favorably in contrast to a classical annotation perspective where a single
or smaller group of annotators may more likely become familiar with the travel patterns contained
within the data. Additionally, the present study does not propose to share all data (e.g., geospecific,
CANBUS, etc.) as may be accessible to classical annotators in naturalistic research but to selectively
distribute only pieces of the full dataset (i.e., herein only video annotation was outsourced and only
that of forward facing cameras from public roads where filming is allowed). Lastly, crowdworkers
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themselves are employed under certain terms of service to which they must accept and abide (e.g.,
https://www.crowdflower.com/legal/). If crowdworkers were to violate such terms (e.g., share
proprietary data) they would be subject to consequences not limited to but including the likes of
losing their worker privileges such as payment, membership, etc.

An increasing amount of real-life driving videos are being recorded both within naturalistic driving
studies as well as from public channels of user generated content. For example, at the start of
conducting the current research, there were approximately 795,000 returns for the term
“dashcam” on YouTube (November 19, 2015). Upon presenting this work at the international
conference for Road Safety on Five Continents (May 19, 2016), there were 1.13 million returns for
the same search (i.e., +42% increase in about half a year), and by the time of manuscript revisions
(August 8, 2017), a total of 4.26 million were available (i.e., +436% increase in less than 2 years’
time). Categorizing such expansive data sets can be a costly and time-consuming manual process.
One solution is to train automated algorithms to conduct coding tasks such as in machine learning
and classification. However, such algorithms themselves often require some diligently pre-labeled
examples for their own accuracy and only through diverse training sets may overcome common
challenges of overfitting. Under the correct circumstances (e.g., open-access data) and quality
control settings (i.e., the construction and use of GTQs), Crowdsourcing tools like CrowdFlower
appear to have the potential for delivering equivalent accuracy and reliability utility as locally
trained humans. It is therefore recommended that future driving research and ultimately driving
safety itself might benefit from exploiting increasingly large scale and publically available data sets
through embracing and channeling a growing global pool of human resources.
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Appendix A. Coding Instructions/Training Material

Watching Very Short Videos And Marking
Yes/no Checkboxes Confeds

Instructions «

Overview

Watch short driving video segments (3 seconds each) and select the elements that can be
seen in the video segment. This should be a simple and easy objective job task and not
much if any subjectivity, matter of opinion, or "thinking" involved at all.

We are trying to train a computer to recognize things in these videos and match like driving
situations to each other but first we need to label what is actually in them so we are trying
to use crowdsourced human eyes to objectively say what is there or not.

Each video categorization has been previously measured to take people about 1.5 minutes
or less on average.

We provide
URL links to specific driving video segments ("Play Video" button)

Lists of true/false items (checkboxes)

Process/Procedure

Watch and review the video segment provided (3 seconds each) FULL SCREEN IS
RECOMMENDED. Replay and pause video as often as you need. This is NOT a memory
test. Check all that apply.

For the first half of the questions (1 through 7), we would like categorizations of what
other vehicles/pedestrians are present within that driving video segment based on 5
different possible locations (directions of travel) relative to the driver whose vehicle the
video was filmed from. Click on the check boxes to denote various vehicle/pedestrian
presence by its location/position/direction-of-travel.

a) in front of and in the same lane

b) traveling in an oncoming/opposite direction

c) traveling in the same direction whether alongside or ahead

d) traveling at any different angles

e) parked, parking, un-parking
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For the second half of the questions (8a through 8k), we would like categorizations of
other miscellaneous aspects within that same video segment. Click on the checkboxes to
indicate which elements are "Obviously Visible" within that video segment.This may
include things the vehicles of the videos do not actually reach or complete, but which you
don't have to squint for under a magnifying glass.

Please note:

- "8b... Just straight road (no angles/bends/curves in the entirety of the visible road of
travel)" applies not only to the portion of the road driven but also that which is "Obviously
Visible" anywhere within that video segment including the road ahead.

- Lane changes or turns don't have to be complete to count.
- Categorizations should span the full 3 seconds of the segment (watch out for things that
are there in the first moments even if they shortly disappear due to motion of the video)

***Disclaimer***: Unfortunately some peaple cheat by clicking randomly or using computer
programs to complete jobs. Please **ALWAYS*** check the check box to confirm you are a
diligent human contributor (it is located at the end of the "other vehicles/pedestrians”
section). Also, please ***NEVER*** check any boxes that ask you to leave them empty, off,
or unchecked (these occur at the beginning of each section and in the middle of the first
section underneath group 3). Don't worry, these will be very very obvious! However, if too
many are missed you will be excluded and not paid, so please no random clicking!

Steps

a) check all that apply ...

b= F0&et =938 vId= SHiyvkkejruAdd=ye shinf=1000000& ap=no

3] **“HEVER thuech anry

o R . driving wid
lements are contained in THIS driving video segment :

b) check all that apply, including sub statements as they appear...
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20&et~1238vId=BAZirVeEENOSI~yesSInf~ 1000000&3p

% Slle € Pedestriens m eh erme
NN one else presenc. this driver Is akne
W 7) " ALWAYS check this betx to confirm yeu ae & tman contribut < I
) ich s cont
e & Y

Tips

The URL link may appear broken across multiple lines, so be sure to copy/paste the entire
URL link all the way from “http://ttfa...” and ending with “...&”" if needed

Use "full screen" to see the video in a larger view.
If you miss any in QUIZ mode, please read the provided answers and reasoning

carefully as it should help clarify what we mean/expect by our various categorization items.
Also refer to Extended Sample Set below as needed for visual examples of various items.

Thank You!

Your help on this task is greatly appreciated!

Extended Sample Set (reference as needed)

Note: more than one item may apply within the same video segment (always check all that
apply). In these examples, we have used highlights only to show some of the possible clues
or cues that should help you know to mark the current specific check box item as true.

1a) Car/Van/Truck/Bus ...they are traveling in the same direction in the same lane ahead
(leading)
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1b) Car/Van/Truck/Bus ... they are traveling in the opposite direction (oncoming)
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1c) Car/Van/Truck/Bus ... they are traveling in the same direction (passing, being passed,
pass-able)

1d) Car/Van/Truck/Bus ... they are traveling on a road that intersects (crossing)
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1e) Car/Van/Truck/Bus ... they are parked, parking, pulling out/unparking

2e) Motorcycles/Scooters/Mopeds ... they are parked, parking, pulling out/unparking
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4c¢) Bicycles ... they are traveling in the same direction (passing, being passed, pass-able)

5b) Pedestrians ... they are traveling in the opposite direction (oncoming)
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5c¢) Pedestrians ... they are traveling in the same direction (passing, being passed, pass-able)
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5d) Pedestrians ... they are traveling on a road that intersects (crossing

6) None of the above. No external vehicle/pedestrian present. This driver is alone.
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8B) ... Just straight road (no angles/bends/curves in the entirety of the visible road of
travel)

8C) ... More than one lane per either direction of travel

Please note that some lane division markings may vary (white/yellow) between different
roads. However, please mark 8c only if there is little to no ambiguity in the multi lane
situation. For example, inmediately above in the images of "8b)" at different times with
other vehicles present or not, or even with and without a visible dividing lane line at all, it
might be hard to tell if it should be considered either a single lane of travel in both
directions (8c would not apply = false) or two lanes in the direction of travel of the driver
(8¢ would apply = true). Please assume that the later second to be a very RARE CASE and
you might only expect it when there is another parallel roadway for the other direction of
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travel (i.e. a "divided highway" situation). Furthermore if the road has no lane division
markings then it has no "lanes” and so 8c = false. Please, reserve the marking of 8c = true
for clearly obvious and unambiguous multiple lanes per either direction of travel (see
below with lanes counted out in green numbers ascending from the edge to the center of
the road separately per direction of travel).

8D) ... Any signs/signals facing driver (road signs, billboards, traffic lights, building names,
ads, etc.)

Note: if you can make out colors, text, symbols, pictures, etc. on the sign/signal then for our
purposes here it is "facing the driver"” even if it is not 100% legible; the only ones you don't
count are those that are just the backs of signs (e.g. facing the opposite direction, oncoming
traffic).
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8E) ... Painted communication on any visible road surface (includes crosswalks, arrows, etc.
but NOT lane boundary/edge info
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8F) ... Lane change by this driver

8G) ... Lane change by another vehicle
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8H) ... Turning on/off between this and any other road by THIS driver
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8l) ... Turning on/off between this and any other road by another vehicle

8J) ... This driver is slowing to a stop, is stopped, or pulling away from a stop.
Note: The red crosses here are meant as possible places you might notice deceleration or
other motion patterns indicative of this item. The green circles are other possible/probable
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clues of stopping contexts in common driving situations.

8K) ... Editing alterations in the video file (discontinuity, added text, pauses, slow motion,
sped up sections, etc.)

8L) ... None of these miscellaneous elements are present in this video segment
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Thank you.

http://ttfaloopandrepeat.appspot.com/showVideo.html|?
st=90&et=93&vId=5HiykkcjruA&l=yes&Inf=1000000&ap=no

Play Video (http://ttfaloopandrepeat.appspot.com/showVideo.html?
st=90&et=93&vId=5HiykkcjruA&l=yes&Inf=1000000&ap=no)

***NEVER check this checkbox: leave it unchecked/empty/off***

“ 1) can see one or more Cars/Trucks/Vans/Buses in this video segment....

1)
1a ... they are traveling in the same direction in the same lane ahead (leading)
1b ... they are traveling in the opposite direction (oncoming)
1c... they are traveling in the same direction (passing, being passed, pass-able)
1d ... they are traveling on a road that intersects (crossing)
1e ... they are parked (parking, or un-parking/pulling out)

@ 2) | can see one or more Motorcycles/ScootersMopeds in this video segment ...

2)
2a ..they are traveling in the same direction in the same lane ahead (leading)
2b ...they are traveling in the opposite direction (oncoming)
2c ... they are traveling in the same direction (passing, being passed, pass-able)
2d ... they are traveling on a road that intersects (crossing)
2e ... they are parked (parking, or un-parking/pulling out)

3) ***NEVER check any checkboxes in group 3: leave this one and its sub parts all
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unchecked/empty/off***
L) 4) | can see one or more Bicycles in this video segment ...
L) 5) | can see one or more Pedestrians in this video segment ...
L) 6) None of the above. No external vehicle/pedestrian present. This driver is alone
@& 7) **ALWAYS check this box to confirm you are a diligent human contributor***

8) Which elements are contained in THIS driving video segment?

L) 8a .. ***NEVER check this checkbox: leave it unchecked/empty/off***

) 8b... Just straight road (no bends/curves in the entirety of the visible road of travel)
L) 8c... More than one lane per either direction of travel

L) 8d ... Any signs/signals facing driver (road signs, billboards, traffic lights, building names,
ads, etc.)

) 8e ... Painted communication on any visible road surface (includes crosswalks, arrows,
etc. but NOT lane boundary/edge info)

(] 8f...Lane change by this driver

[J 8g ... Lane change by another vehicle

L) 8h... Turning on/off between this and any other road by THIS driver

L) 8i... Turning on/off between this and any other road by another vehicle

L] 8j... This driver slowing to a stop, is stopped, or pulling away from a stop

[J 8k ... Editing alterations in the video file (discontinuity, added text, pauses, slow motion,
sped up sections, etc.)

L) 8l... None of these miscellaneous elements are present in this video segment

Comments?

http://ttfaloopandrepeat.appspot.com/showVideo.html|?
st=29&et=102&vId=Ge0a27WR6WI&I=yes&Inf=1000000&ap=no

Play Video (http://ttfaloopandrepeat.appspot.com/showVideo.htmi?
st=99&et=102&vId=Ge0a27WREWI&I=yes&Inf=1000000&ap=no)

() **NEVER check this checkbox: leave it unchecked/empty/off***
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Appendix B. Developed Driving Research Tools

B.1. Driving scene content annotation

In order to supply certain categories of driving situations for future research experiments (e.g.,
Chapter 3.2), and to validate the accuracy and reliability of driving situation categorizations from
online crowdsourced workers (i.e., Chapter 3.1), it was necessary to devise and employ a driving
scene content coding scheme (Figure 3.1.B.1). Goals of the coding scheme were that it be fairly
comprehensive in regards to potentially interesting driving scene factors on a prototypical level,
that the items would be objectively understandable to identify, and that items would be arranged
in @ manner such as to facilitate fast annotations with minimal effort. Two major groups of
probabilistically ordered binary checkboxes were implemented. The first major group was in
regards to various kinds of road-users (with expandable position/direction of travel details) while
the second major group pertained to more miscellaneous infrastructural or behavioral aspects.
Resulting average annotation durations were approximately 75 seconds each for a 3-second long
driving video clip.

Road user entities Position/direction of travel
B !
O  cars/trucks/vans/buses T I O leadingahead 1
N I I
: |
ad motorcycles/scooters/mopeds \\\ : O oncomingtowards |
AN 1 1
Ay
O  bicycles \\ : O passing or being passed :
AN 1 1
a pedestrians \\\ : O crossing :
N I
a no one else present I [ parked/stationary !
N I
O  Straightroad
a More than one lane per direction of travel
O  signs/signalsfacing the driver
Miscellaneous a Road surface marks other than lane boundaries
infrastructure O Lanechange by this driver
and behavior a Lane.change by another vehlc.le .
O Turning on/off the road by this driver
aspects O Turning on/off the road by another vehicle
O This driver slowingto a stop
(N | None of the above
a Overt video edits/alterations

Figure 3.1.B.1. Driving scene content categorization coding scheme of binary checkboxes. Item arrangement included a
first major grouping of road user entities that included an automatically expanding set of items for detailing their
respective positions/directions of travel, and a second major grouping of miscellaneous infrastructure and behavior
aspects.
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B.2. Driving video clip selector

Ratings from the experiment of 3.1 generated 12,766 driving video segments with content
annotations. Rather than storing each of these 3-second long video clips individually, a GUI (Figure
3.1.B.2) was devised and implemented from which to automatically parse (play/save) segments
from any of the original 49 source videos in accordance to specified items contained in a hard-

coded library of annotations. The standalone executable and source code files have been made

freely available within the online repository of Zenodo at:

(1) http://doi.org/10.5281/zen0do.2542314 (github software release)

(2) http://doi.org/10.5281/zenod0.2542275 (repository for the 49 source videos)

<« DrivingVidClipSelector vO1 . s me s e
Driving Video Clip Selector
(from 38,298 seconds of driving footage as annotated by around 200 crowdworkers from 46 countries)

Road Users

CLEAR

Cars/Vans/Buses/Trucks
Leading Oncoming Passing Crossing Parking
) )
/
Pedestrians Bicycles Motorcyﬁl)e:eggooters/
B (u] @
[Py |
.............. > | LGETVIDEQCLIPA| o>
i "Single String" of Selected Scene Content Options:

Road/Infrastructure Behavior T

CLEAR CLEAR

Ego Other Source Vid: Start Second: End Second:
Curve in road v Veh. Veh. g
v35.avi 133 136

Single lane road 4] Lane change 0 @]
Signage/Symbols Turn on/off road | B SAVE
Road markings Slowing down

Figure 3.1.B.2. A standalone GUI for retrieving driving scenes of specified contents (i.e., here as annotated as 3-second
duration video clips within the experiment of 3.1 from a driving video library of 49 separate videos).
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Chapter 3.2: Prediction of Workload and Eye Measures from Driving Scene Contents

Chap. 3.2) Estimating Driver Readiness from
Situated Eye Movements: Prediction of workload
and attention requirements from quantification
of driving scene components

Control Warning
Modifications Information

In regards to the overall thesis big picture, this experiment serves to relate driver
perceived workload estimates and common eye movement measures with specific
quantifiable visual properties of various driving scenes. The corpus of video annotations
from Chap 3.1 supplied a range of driving scene contents/demands to be used as stimuli
for Chap 3.2. Compared to the on-road Chap 3.3 study, conditions/measurements could
be manipulated with a higher level of precision and control. Results showed road angle
curvature to consistently be the strongest predictor of workload and eye movements,
and amount of other road users likely to be of next greatest importance (when compared
to other visible driving scene aspects like signage/symbols, buildings, etc). Saccadic
amplitude was found to be the most sensitive eye measure (in comparison to fixation
duration and pupil size) for representing workload demands of driving scenes. Such
relational knowledge supplies predictive regression models and data to support fitness-
to-drive driver monitoring systems. Thus, assessments are enabled towards determining
if a person’s eyes are moving appropriately enough provided the measurable contents
(visual demands) of a specific scene they are driving within or when about to receive
driving control from an automated/autonomous driving system (e.g., regardless of which
human or computer agent initiates the request for the transition of control).

Adapted from:

Cabrall, C.D.D., Happee, R., & de Winter, J.C.F. (under review). Estimating driver readiness from situated eye
movements: Prediction of workload and attention requirements from quantification of driving scene components.
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Abstract

The designs of higher levels of driving automation include times where drivers will uptake (upon
request or voluntarily) some increased amount of driving responsibility while the vehicle is in
motion. Thus, a key research and application development question concerns quantifying what
impact contents of different driving task environments might be expected to have in establishing a
driver’s readiness to drive. This paper investigated predictability of nominal driver workload and
attention while viewing and rating driving scenes with differing amounts of visible scene
components:  road curvature, road surface area, road users, signs/symbols,
buildings/infrastructure, and vegetation/trees. We presented 60 randomly ordered dash cam
video clips (3 s duration) and recorded the eyes of 15 participants who were tasked to provide
ratings between 0 and 100 to the question of “how much effort for you to take control and drive
within that segment?”. Multiple linear regression models were derived and found to significantly
improve prediction of workload ratings and eye movements from differently weighted
combinations of the visible scene component factors. Road angle curvature was consistently the
strongest predictor of workload and eye movements, and amount of other road users appeared to
be of second greatest importance. From workload and driving scene components, the highest
amount of explainable variance in eye measures was found in saccadic amplitude as compared to
fixation duration and pupil size. In conclusion, the present regression equations establish
quantifiable relations between how much workload and attention different driving scenes might
require. In future driver monitoring systems, such knowledge can help inform road-facing and
driver-facing cameras to jointly establish and verify the adequacy of a driver’s level of engagement.
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1. Introduction

1.1 Background motivation

With the advent of driving automation systems (SAE, 2018), new human factors road safety
challenges exist for assessing driver states due to their altered roles and responsibilities. With SAE
Level 3 ‘Conditional Driving Automation” and SAE Level 4 ‘High Driving Automation’ drivers will be
removed from sustained involvement in the driving task until either being called back in, or at a
point of voluntary uptake. As seen in Fig. 3.2.1 (from Petermeijer et al., 2016), a so-called ‘Take
Over’ process involves a transitional phase, where attentional shifts and cognitive processing are
expected to occur over a period of time, prior to increased conventional driver control activities.
Conceptually, there can exist a buffer between eyes on road and the start of manual driving.

Take-over request Eyes on road Hands on steering wheel

Highly automated driving Transition phase

__Reaction time |
Take-over time

Time

Figure 3.2.1. The take-over process from highly automated to manual driving, adopted from Petermeijer et al. (2016).

From a safety system assurance perspective, it is reasonable to expect that a Driving Monitoring
System (DMS) layer could provide oversight during such a transition (e.g., assumptions of requests
ought to be tested). Such a verification could transpire whether the direction of take over request
transpires from Automation-Initiation towards Driver-Control or from Driver-Initiation towards
Driver-Control (i.e., AIDC and DIDC respectively from Lu et al.,, 2016). For comprehensive
consideration, it is important to note that neither of such AIDC/DIDC transitions necessarily
connotes an emergency situation but might each be further classifiable as either nominal or critical
with subsequent corresponding differences in aspects of typical task timing, events, and
environmental characteristics.

A recently emerging body of literature has focused on establishing the timing requirements of
transitions of control from automated driving systems to human drivers. Standards regarding AIDC
transitions of control (aka. take over requests, dynamic driving task fallback, requests to intervene,
etc.) have suggested that the human should be allotted some phase of fair lead-in time: ‘with
notice’ (NHTSA, 2017), ‘sufficiently comfortable transition time’ (NHTSA, 2013), ‘with a certain time
buffer (BASt, 2012), ‘At level 3, an ADS is capable of continuing to perform the DDT for at least
several seconds after providing the fallback-ready user with a request to intervene’ (SAE, 2018). By
reviewing automated to manual driving transition timings across 25 papers, Eriksson and Stanton
(2017) determined that an average allotment period (until a critical event) was around 6 seconds
and that an average reaction time (to take back vehicular control) was around 3 seconds. Their own
empirical measurements with non-critical transitions (with and without secondary tasks) found
substantially increased timing requirements up to 25.75 seconds to resume control from
automated driving in normal conditions. In their discussion, Eriksson and Stanton (2017)
recommend a case for adaptive automation that modulates a take over request lead time by
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detection of driver gaze, such that for example, a few additional seconds might be provided to a
driver ahead of resuming control.

Obtainment of situation awareness (cf. Endsley, 1995) is intuitively presumed as a requisite target
threshold for establishing driver readiness, however specifics of the cognitive constituents of that
construct can be problematic and might be beyond what is necessary for some initial practical
application benefits. Mok et al. (2015) argue that accidents may result if drivers do not sufficiently
assess the situation prior to taking control. Lu et al. (2016) propose that the demands on the timing
of the automated driving technology transitions are set by how much time drivers need for gaining
situation awareness. For example, from viewing and then reconstructing portions of simulated
driving scenes (i.e., after periods of inattentiveness), situation awareness for positions of other
vehicles reached saturation between 7 and 12 seconds and for their velocities at a range beyond 20
seconds (Lu et al., 2016). Such assumptions and results, however, can raise questions of how good
is good enough when it comes to defining a complete mental grip and/or what parts of the
situation are relevantly necessary for establishing adequate levels of awareness (cf. the MiIRA
theory in Kircher & Ahlstrom, 2016). A standard situation awareness measurement is the Situation
Awareness Global Assessment Technique (SAGAT) (Endsley, 1988) with a body of literature
evidencing positive association with performance (Salmon et al., 2009; Gardner et al., 2017; Prince
et al., 2007; Gugerty, 1997; McGowan & Banbury, 2004; Loft et al., 2015; O’Brien & O’Hare, 2007).
However, the practical utility of the SAGAT has also seen contentious results concerning its
predictive validity with performance (Durso et al., 2006; Durso et al., 1998; Pierce et al., 2008;
Strybel et al., 2008; Cummings and Guerlain, 2007; lkuma et al., 2014), and has been criticized for
its reliance on memory (Gutzwiller et al., 2013) and on explicit representations amongst other
limitations (Stanton et al., 2015; De Winter et al., in press).

An earlier emotive impression before conscious expression might be more accessible/practical as a
cognitive construct that would be useful in modeling driver readiness assessments for uptake of
driving control. Stanton and Young (2000) developed and proposed a psychological model of driving
automation in which situation awareness is the last in a chain of cognitive constructs and with a
mental workload construct feeding into it. More recently, Heikoop et al. (2015) updated that model
from a systematic literature search of driving automation papers and a subsequent quantification
of reported links between psychological constructs. Notably, the updated Heikoop et al. (2015)
model maintains the same directional relation of a later positioned situation awareness that is fed
from an earlier positioned mental workload (with a newly interceding construct of attention). A
widely adopted standardized measurement of mental workload is the NASA TLX (Hart & Staveland,
1988) and in essence consists of high/low scales for subjectively rating demands. In contrast, the
situation awareness of the SAGAT (as previously introduced above), consists of presumably later or
higher levels of conscious representation and recall. Moreover, malleable attention resources
theory (MART) from Young and Stanton (2002) has posited a nominal human ability to
muster/diminish attentional pools in an adaptive manner thereby shaping information processing
capacities to match and meet present demands. Thus, in modelling a transition from automated to
manual driving control, presumed driving effort appears to be a reasonable starting place to
parameterize as a construct from which attention and situation awareness would be expected to
follow.
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1.2 Driver eyes, workload, and scene relations

Measurements of the eyes of drivers might reasonably contain important precursor information
towards assessing a driver’s readiness to drive. The information that drivers use is predominantly
considered to be visual and could benefit from enhanced quantitative frameworks (Sivak, 1996). In
a review of 50 years of driving safety research, Lee (2008) concluded that most accidents occur
because ‘drivers fail to look at the right thing at the right time’. Senders et al. (1967) empirically
investigated the amount of visual attention requested from human drivers for different roadways
via an inverse occlusion technique to develop values of some of the parameters of a mathematical
model of attentional demand. Subsequent driver visual workload studies have continued to employ
such occlusion techniques to scientifically evaluate driving safety requirements (Van der Horst,
2004) and persist to present day methodological studies where they are advocated for use in
combination with think aloud protocols and eye tracking (Kicher & Ahlstrom, 2018). According to a
strong form of an eye-mind hypothesis, gaze direction is a perfect correlate of cognitive activity
(Just & Carpenter, 1980). According to Moray (1990, 1993), information acquisition while driving is
limited by eye movement characteristics, and attentional changes in dynamic real environments are
equivalent, in operative terms, to changes in eye fixations. Thus, it should be theoretically possible
to identify cognitive processes from eye movements if the environment is known and the task
constrained.

Eye tracking parameters are often used as correlates of mental workload (Ries et al. 2018) and have
been reviewed specifically for the case of drivers (Marquart et al.,, 2015). In contrast to mixed
results regarding blink rates (Table 3.2.1), the eye measures of pupil size, fixation duration, and
saccade amplitude show an apparent consensus of directional consistency in driving studies
regarding mental workload and thus are introduced in turn below and taken as candidates for the
present modeling purposes.

Table  3.2.1.  Relation of eye-related  physiological — measures and  drivers’ mental  workload
(adapted from Marquart et al., 2015)

Measure Mental workload (+)
Blinks Rate +/-
. Dilation +
Pupils
ICA +
Fixations Duration +
Saccades Gaze variability -

Note. ICA = Index of Cognitive Activity (Marshall 2000, 20002).

1.2.1. Pupil Size

In a driving simulator study, Palinko et al. (2010) found increased pupil dilation diameters to be
positively associated with increased driver cognitive loads and decreased driver performance.
Hence, Palinko et al. (2010) concluded that pupillometry shows promise as a measure for changes
in driver cognitive load in line with the seminal phenomenon of a task evoked pupillary response
(TEPR) of Beatty (1982) where pupils dilate when people are faced with challenging cognitive tasks.
For example, Ahern (1978) found increased pupil diameters with increasingly difficult mental
multiplication problems and these results have been recently replicated with more modern day
equipment by Marquart & De Winter (2015). In a simulated driving task, Schwalm et al. (2008) has
applied an index of cognitive activity (ICA) that is based on changes in pupil dilation from Marshall
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(2000, 2002) and found that ICA increases in situations with higher mental demand on the driver
i.e., when performing a lane change maneuver or an additional secondary task.

1.2.2. Fixation Duration

In actual on-road driving, the complexity of the traffic environment produced a latency in eye
movement suggesting a deeper processing at each fixation point (Miura, 1990) and Recarte &
Nunes (2000) found longer fixations during spatial-imagery tasks. Older drivers (e.g., who
presumably suffer degraded information processing capabilities and thus greater cognitive effort)
compared to younger drivers, were found to exhibit increased fixation durations while viewing
safety related areas of interest in pictures of real-life traffic scenes (Maltz & Shinar, 1999).
Underwood et al. (2011) reviewed a series of driver hazard perception studies and found an
increase in fixation durations akin to a weapon/threat focus of Loftus et al. (1987). In between a
fixation and a saccade exists an eye measure known as a saccadic intrusion where the eye makes
small shifts away and then back to the original fixation in a fast and jerky manner, thus an increase
in saccadic intrusions is consistent with an increase in fixation durations and a decrease in saccadic
amplitudes. Tokuda et al. (2011) measured saccadic intrusions where participants were instructed
to examine pictures of a highway driving scene while completing a cognitively loading N-back task:
higher mental workload was found to produce an a greater number of saccadic intrusions.

1.2.3. Saccade Amplitude

In controlled laboratory investigations of free viewing (not requiring any specific fixation or
tracking), increased cognitive demands (i.e., of an auditory tone counting task) consistently
decreased saccadic amplitude ranges across four separate experiments (May et al., 1990). In a
driving simulator study, Tsai et al. (2007) found evidence of reduced ranges of scanning when
subjects were dually tasked with driving and an auditory addition task. Increased mental demands
for on-road drivers in instrumented vehicles were found to produce spatial gaze constriction via
decreased gaze variances (Recarte & Nunes, 2000, 2003; Reimer, 2009). Using both an on-road
instrumented vehicle and a driving simulator, Victor et al. (2005), found a decrease in standard
deviation of gaze angle/position in the presence of an additional auditory task and on roadways of
increased driving task complexity (curved over straight sections, rural over motorway roads, and
on-road over simulator). Furthermore, Victor et al. (2005) found that higher visual demands (i.e., of
an in-vehicle secondary task) increased gaze variance (i.e., away from the road).

In the updated psychological model of driving automation from Heikoop et al. (2015), task demands
were found to positively affect mental workload and published driving theory presents both
challenges and potential for predictive applications. It is reasonable to expect that some driving
scenes might nominally be more or less difficult than others, even beneath/before consideration of
additional complicating cases of emergency or safety critical scenarios. Road safety research may
often include driving conditions of varyingly low/high complexity, but quantifications of their
differences are more easily eschewed for intuitive qualitative characterization. In lessons learned
from developing driving research scenes and scenarios, Papelis et al. (2003) argue that ‘Often times,
specifications about the characteristics of the ambient traffic or ambient environment are missing or
incomplete. ... it is often the case that variations in these ambient characteristics of a scenario can
make a drastic difference on how participants perceive the scenario.” When it comes to detailed and
specific accounts of driving task demands, examples from the theoretical literature may both
problematically appear either considerably vague: ‘road surface conditions, road infrastructure
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layout, visibility and the behaviour of other road users’, ‘normal conditions (e.g., daylight, dry road
surface, sparse traffic, wide lane)’” — Engstrom et al. (2013) or overly anecdotal ‘when a driver sees
two cars approaching on a two-lane road and the rear car swings out to pass with the intention of
cutting in before the various paths meet’ — Gibson and Crooks (1938). However, Michon (1979,
1985) conveyed and then elaborated upon a model of driving that has become widely adopted
where complexity involves aspects of strategy - issues of overall trip planning/goals and risk
acceptance; of tactical maneuvers - management of risk probabilities through negotiations like
speeding up, slowing down, turning, and overtaking; and of operational control - the basic skills of
steering and braking for lateral and longitudinal positioning. Under Michon’s driving complexity
categories, visible scene components might be categorized accordingly and expected to impact
perceived driver mental workload: buildings/destinations and/or nature-scenic routes as strategic
aspects; signage/symbology that govern rights of way priority and predict traffic behaviour
interactions as tactical maneuver aspects; and lateral course and longitudinal collision conflicts
(road curvature and traffic, respectively) as operational control aspects.

Previous empirical investigations show promise for ascertaining effects of driving scenes on drivers’
mental workload. In the dissertation of De Waard (1996), the road environment and traffic
demands were identified as complexity factors contributing to driver workload and trends were
evidenced between baseline and loaded conditions in the predicted direction but did not obtain
statistical significance. The road conditions included for environmental complexity considerations of
De Waard (1996) were sections with and without motorway entrance and exits, sections with and
without adjacent noise barrier walls, and rural roads through forests or open moorland. Steyvers et
al. (1994) argued that driving is a well-defined task which has to be executed in an environment
that is readily describable and has a clearly identifiable task context and thus approached their
study of driving behaviour as an activity which could benefit from a computational approach.
Participants were shown recordings (about 80s each) filmed from behind the windshield of a
moving car, and with instructions to presume they were driving the car from which the film was
recorded, were tasked with providing evaluations of experience. Driving films (of two lighting and
two traffic conditions) were selected from two different roads with previously recorded
lower/higher incidence of accidents: a more visually simplistic polder road (flat horizon with open
fields of uniform vegetation size and density) and another rural road but with more varied visuals
(contoured horizon of groups of bushes and forests with other segmented vegetation). From a
reduction of qualitative attributes into subjective factor labels (i.e., ‘hedonic value’, ‘activational
value’, and ‘perceptual variation’) Steyvers et al. (1994) concluded that a combination of conditions
and experiences accounted for previously unexplained single vehicle accidents on different kinds of
roads.

For determining a direct relationship between driving scenes and the eyes of drivers, it is important
to recognize that a competition or compromise of exogenous (bottom-up) and endogenous (top-
down) factors has been a common and longstanding topic for the psychology of perception in
general. In a treatise on active vs. passive visual search Tsotsos (1992) relayed that while a concept
of active perception might have been relatively new to computer vision at the time, Helmholtz
(1910) believed in perceptual hypotheses, the derivation of best interpretations given evidence,
and in attentional mechanisms that guide processing even without eye movements. Some of the
earliest evidence was obtained from Buswell (1935), where participants were asked to look at
different types of artwork and as a result fixation positions were found to be highly regular and
related to information in the pictures (e.g., preferences for people rather than backgrounds) and
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thus by extension to perceptual and cognitive processing of the scene. Classic and widely cited
scene viewing eye tracking work of Yarbus (1967) evidenced diverse scan patterns in the presence
of different goal-directed instructions (e.g., give the age of a person, estimate their wealth,
remember the positions and details of everything in the picture, etc.). Yarbus (1967) found similar
but non identical eye movement patterns in free-viewing without any instructions and saw
preference for particular areas/items of a scene (e.g., a face) and/or sub-parts of a face (eyes, nose,
and mouth). Underwood and Radach (1998) have concluded that ‘eye guidance appears as low-
level as needed and as cognitive as possible for a given set of circumstances’. Henderson &
Hollingworth (1998) provide a comprehensive overview of literature surrounding eye movements
during scene viewing and conclude with their saliency map framework wherein initial movements
of the eyes are controlled by stimulus rather than cognitive features and after which saliency
weights are modified to reflect relative cognitive interest of those regions (e.g., needs of perceptual
and cognitive analysis of a region). A continuing debate about relative contributions of low- and
high-level factors in targeting eye movements during scene viewing is given by Tatler (2009).
Furthermore, Tatler et al. (2011) observed that the dominant framework regarding gaze allocation
in scene viewing has been of image salience but that based on new principles of selection,
frameworks of reward maximization and uncertainty reduction are also emerging. Blended visual
sampling accounts can be found across highly cited work of Senders (1964, 1983), the Saliency-
Effort-Expectancy-Value (SEEV) model introduced by Wickens et al. (2003), and a recent replication-
extension study of Eisma et al. (2018).

1.3 Automated Driver Readiness Assessment Framework

Recently developed driving automation systems entail transitions of control back to human drivers
in the middle of driving and thus present novel challenges of assessing driver readiness as
introduced in the background motivation. From the reviewed literature above, the eyes of drivers
appear to be reliably influenced from both cognitive aspects such as mental workload as well as
from driving scene components. Recent reviews of empirical investigations for advanced driving
automation (c.f. Ohn-bar & Trivedi, 2016) indicate trends towards automated vehicles utilizing
cameras that point both outward at the driving scene as well as inward towards a vehicle’s
occupants. These vehicle cameras will likely come equipped with various increasingly available
computer/machine vision capabilities, e.g., MathWorks (2018) and Krzywinski (2018), that through
recent advances in the layered disciplines artificial intelligence, machine learning, and deep learning
can be applied to automatically segment driving scenes e.g., Cityscapes Dataset (2018) as well as
the interiors of vehicles, e.g., Eyeris (2018) and eyeSight (2018), which include tracking of the body,
head, face, and eyes, etc. of different vehicle occupants, esp. for example, that of a current or
would-be driver.

Thus, an adaptive control framework (Fig. 3.2.2) appears plausible and is proposed as a timely
solution inspired by Wickens & Hollands (2000) for the present problem of estimating fitness-to-
drive to modulate the transitional phases preceding a return of control to a human driver (cf. Fig.
3.2.1). Different measures may be taken from would-be drivers in real-time and the eyes are
commonly presumed as a reliable indicator of attention under nominal circumstances. Such online
measures can be compared against target reference eye measure predictions collected (again
under nominal circumstances) as from environmental driving scene components directly (observed)
and/or in conjunction with mental workload effort ratings (indirectly presumed). Mental workload
can be assumed to be an earlier emotive psychological state adjacent to meeting driving task
demands than fully conscious situation awareness, and hence a better choice for establishing
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reference levels of situated fitted-ness. However, even if relatively more immediately accessible
than situation awareness, mental workload (just as with any psychological construct) must
ultimately be indirectly mediated, and thus potentially available only in partial manner, and/or
influenced by other cognitive drivers (e.g., additional cognitive states and/or secondary tasks, etc.).
Fitting into the lower right corner of the broader framework (and highlighted in green in Fig. 3.2.2),
linear regression models are the subject of the analyses of the present paper: between visible
driving scene contents and mental workload (Model A), between mental workload and eye
measures (Model B) and between visible driving scene contents and eye measures (Model C).
Present aims thus include whether and which factors, as previously introduced in the above
literature, might be reliably related between:

(1) Driving scene components (road curvature, traffic, signage, buildings, road surface, and vegetation)
(2) Driver mental workload (subjective perceived effort)
(3) Driver eye measures (pupil size, fixation duration, saccade amplitude)

The overall purpose of the present study can be conceived as a singular research question:

(1) During returning attention to a driving task prior to taking control, what do the eyes look like from a
person who thinks/feels that the driving will be more/less difficult or easy?

Driving Automation

Automotive Vehicle

Task Demands/
Environment States

Driving Etc. p”‘
Readiness Measures E. Mdl .
Scores i c/: e :

. prareneann,
**+A* Model :

i B i
.llll:llll.

Eye H H
Observ. :

S IR e e P PP P PP PP Y PP PP EEP PR PP,

Eye Predictions

Fitness-to-Drive
Estimator Model

A

Figure 3.2.2. Based on a current driver’s eye measures and reference eye predictions, a fitness-to-drive estimator model
can supply driving readiness scores as communication/feedback or input to a task manager (entity or process) that can
modulate transitions of driving control between human and automated agents. The overall design is modeled after a
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framework of adaptive automation in Wickens & Hollands (2000, fig. 13.14, p. 547). The interior brain box is modeled
after directional relations of several cognitive constructs from Heikoop et al. (2015, fig. 3, p. 9) where MW = Mental
Workload, Fa = Fatigue, St = Stress, At = Attention, MM = Mental Models, and SA = Situation Awareness, while allowing
for etc. = other mental states. Various computational models (A, B, C) are proposed and investigated within the present
paper to predict eye measures from driving environment states (Xi, X..., Xn) directly and/or in combination with Mental
Workload.

2. Methods

We implemented an empirical approach to investigate the effects of various visible driving scene
characteristics on human perceived effort ratings and corresponding eye behavior.

2.1 Participants and apparatus

Written informed consent was obtained from all participants, and the research was approved by
the Human Research Ethics Committee of the Delft University of Technology under the title ‘Driving
video ratings’ (16 December 2015). The experiment was completed by 15 participants (six female,
nine male) aged between 18 and 36 (M = 26.60, SD = 4.26) with an average driving experience of
around seven years since obtaining the driver’s license (M = 7.20, SD = 4.20).

The experiment apparatus consisted of an isolating partition, a stimulus display monitor, eye
tracker camera with integrated IR source and dedicated head/chin rest mount, as well as a gaming
steering wheel (Fig. 3.2.3). The display was a 24 inch (diagonal) BenQ XL2420T-B monitor with a
resolution of 1920 x 1080 pixels and a display area of 531 x 298 mm. The display was positioned
about 95 cm in front of the participant and about 35 cm behind the eye tracking camera/IR source.
The boundaries of the stimulus display area subtended approximately 31/18 degrees of
horizontal/vertical viewing angle per the setup ranges required by guidelines of the SR Research
Eyelink 1000 Plus eye tracker. Eye behavior data were recorded after individual participant
calibration. The eye event parser was set according to the default psychophysical configuration
recommended by the manual for research containing smooth pursuit movements and containing
measurements of saccadic amplitude: saccade velocity threshold of 22 deg/s, saccade acceleration
threshold of 3800 deg/s?, and saccade motion onset delay threshold of 0 deg.

The gaming steering wheel was a Logitech G27 but was not connected to anything and along with
the isolating partition was used to facilitate driving video stimulus immersion. Participants made
use of a standard USB desktop mouse to input effort ratings on the stimulus display monitor.

142



Chapter 3.2: Prediction of Workload and Eye Measures from Driving Scene Contents
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eye tracker camera o
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head/chin rest mount ﬁ

steering wheel

Figure 3.2.3. Diagram of experiment apparatus components and arrangement.

2.2 Procedure

Participants were encouraged to sit up straight and the height of the head/chin rest mount was
adjusted to each participant to reduce potential neck/shoulder strain. Participants kept their heads
stationary within the mount throughout the experiment except for voluntary rest breaks made
available to them around every five minutes across about 15 minutes of driving video viewing and
rating trials. Each trial began with an online drift correction dot in the center of the screen to which
participants needed to fixate and click the mouse at the same time to begin. A 3 second long driving
video clip was then played during which participants were tasked to move their hands to the wheel
while imagining that they were taking over control (i.e., from automated driving) and that they
must drive within that scene.

2.3 Stimuli and measurements

Stimuli consisted of a randomly ordered set of 60 dash cam video clips (Fig. 3.2.4) each of 3 seconds
duration selected across a multi-level grouping extended from a semantic content categorization
scheme developed in Cabrall et al., (2018) to ensure a variety of different driving scene
circumstances. The duration of 3 seconds is on par with an average human reaction time for taking
back control from an automated driving system found across a review of 25 papers in Eriksson and
Stanton (2017). Driving scene content components were manually outlined and color coded (cf.
CityScapes Dataset 2018) into five separate categories: (1) road surface area, (2) actual/potential
road users (vehicles, bicycles, pedestrians), (3) signs/symbols (stop signs, cross walks, roadway
writing, billboard advertisements, etc.), (4) buildings/infrastructure (houses, light poles, fences,
etc.), and (5) vegetation (trees, bushes, hedges, etc.). A free online image processing tool
(Krywinski, 2018) was used to determine a percentage of the windshield view that a specific
category covered in terms of pixelated area. A transparent protractor overlay was used to
approximate the curvature of the road of travel from the present lane position of the vehicle to the
furthest distance point down the road.
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Video 23.avi

Visible Driving Scene Driver
Context Contents Workload
Road Area 10.71% Avg. Effort Ratings 15.267
Road Users 0.00% l
Signs/Symbols 0.00% Avg. Pupil Size (arb) 4178.919
Buildings/Infrastructure 0.35% Avg. Fixation Duration (ms) 543,955
Vegetation/Trees 23.02% Avg. Saccade Amplitude (deg) 1.215

Approx. Road Curvature 2 Driver Eye Measures

Video 47.avi
Visible Driving Scene Driver
Context Contents Workload
Road Area 0.65% Avg. Effort Ratings 27.800
Road Users 7.93% l
Signs/Symbols 1.93% Avg. Pupil Size (arb) 4178.313
Buildings/Infrastructure 10.99% Avg. Fixation Duration (ms) 402.775
Vegetation/Trees 46.07% Avg. Saccade Amplitude (deg) 2.075
Approx. Road Curvature 61 Driver Eye Measures
Video 56.avi
Visible Driving Scene Driver
Context Contents Workload
Road Area 6.75% Avg. Effort Ratings 43.867
Road Users 7.13% ‘l,
Signs/Symbols 1.42% Avg. Pupil Size (arb) 4103.599
Buildings/Infrastructure 31.97% Avg. Fixation Duration (ms) 408.082
Vegetation/Trees 13.97% Avg. Saccade Amplitude (deg) 4.241

Approx. Road Curvature 78 Driver Eye Measures

Figure 3.2.4. Segmentation of a driving video into quantifiable factor component predictors (road area, road users,
signs/symbols, buildings/infrastructure, vegetation/trees, road curvature) and regression paths to outcome variables of
workload (effort ratings) and eye measures (pupil size, fixation duration, saccadic amplitude).
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All data were recorded to be analyzed at the level of a single driving video clip. For driving scene
content description data (degree of road curvature and amounts of categorized pixel area
coverage), a single representative frame was selected from the approximate middle of the video
clip. All eye measures were likewise averaged across the entire video clip duration. Lastly, effort
ratings were recorded from each participant for each video clip before being averaged across all
participants (n = 15) for each one of the 60 different video clips.

After the clip finished and disappeared, an effort rating scale (“How much effort for you to take
control and drive within that segment?”) was presented on the upper half of the screen, and
participants moved a vertical mouse cursor to click on the scale to input their answer from between
“Very Low” to “Very High”. Cursor click horizontal positions were divided by the pixel length of the
scale and rounded to a single point resolution from 0 to 100. The presented horizontal effort scale
contained 21 equally spaced demarcations from left to right following from those described within
the seminal NASA TLX (Task Load Index) subscales (Hart & Staveland, 1988) and widely adopted
across driver workload assessment research (see Fig. 3.2.5).

D e e e e e e
Very Low Very High

How much effort for you to take control and drive within that segment?

F Y

Figure 3.2.5. Driving effort response scale and cursor used to position on top of scale.

3. Results
Multiple rounds of linear regression models were applied to ascertain predictive power relations
between several sets of independent variables (V) and dependent variables (DV):
3.1. Model A: Driving scene contents (IV) and driver workload effort ratings (DV)

3.2. Model B: Driver workload effort ratings (IV) and driver eye measures (DV)

3.3. Model C: Driving scene contents (IV) and driver eye measures (DV)
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First, pairwise correlations between the driving scene content independent variables were
conducted to test for the presence of multicollinearity. All correlations between predictors were
found to be well below a conventionally considered problematic threshold of r =0.80 (Table 3.2.2,
top). Second, the correlations of each driving scene content component with driver workload
effort ratings and the eye measures were computed (Table 3.2.2, bottom). Furthermore,
correlations and linear best fit lines for eye measures and scene content/characteristic by an index
of video driving difficulty (wherein videos were grouped in accordance with the top, middle, and
bottom third of ranked average video effort ratings) are depicted in Figure 3.2.6. Approximated
degree of road curvature and pixelized area coverage amounts of signage, road users, and
buildings/infrastructure all evidenced significantly positive correlations with driver workload effort
ratings. None of the driving scene content components were found to significantly correlate with
the pupil-size measure. Road curvature and signage showed significantly negative correlations with
fixation durations. Road curvature, road users, buildings, and signage evidenced significantly
positive correlations with saccade amplitude. For each eye measure, road curvature showed the
highest correlative association.

Table 3.2.2. Correlations between driving scene contents, workload effort ratings, and driver eye measures. N = 60 video
segments.

Road- Road- o Road- . Trees-
Vs, IVs > Buildings Signs .
Curve Users Surface Vegetation
Road- - -
1 - - -
Curve
Road- 0.35%; 1 - -
Users (p =0.006)
o 0.21; 0.45%; - -
Buildings 1 -
(p=0.117) (p<0.001)
Road- 0.02; -0.18; 0.31%; 1 - -
Surface (p =0.906) (p=0.157) (p=0.016)
. 0.41%; 0.51%; 0.41%; 0.20; 1 -
Signs
(p=0.001) (p <0.001) (p=0.001) (p=0.129)
Trees- -0.01; -0.08; -0.09; -0.06; -0.07; 1
Vegetation (p = 0.959) (p = 0.545) (p=0.479) (p = 0.660) (p=0.616)
Road- Road- o Road- . Trees-
DVs {, IVs > Buildings Signs .
Curve Users Surface Vegetation
Workload- 0.66*; 0.53%; 0.50%; 0.18; 0.55%; 0.06;
Effort (p <0.001) (p <0.001) (p <0.001) (p=0.169) (p <0.001) (p=0.616)
Pupil- 0.19; -0.05; -0.19; -0.18; -0.12; 0.24;
Size (p=0.158) (p=0.698) (p=0.153) (p=0.172) (p=0.376) (p =0.070)
Fixation- -0.55%; -0.25; -0.20; 0.22; -0.43%; 0.19;
Duration (p<0.001) (p=0.051) (p=0.118) (p=0.093) (p=0.001) (p=0.144)
Saccade- 0.67%; 0.61%; 0.41%; 0.05; 0.59%; -0.20;
Amplitude (p <0.001) (p <0.001) (p=0.001) (p =0.696) (p <0.001) (p=0.126)

* Correlation is significant at the 0.05 level (2-tailed)
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Figure 3.2.6. Correlations between independent variable driving scene content or characteristic (") and dependent eye
measure (‘y’) by ranked video effort rating grouping (easy, medium, difficult).
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3.1 Prediction of driver workload from driving scene contents

A multiple linear regression was conducted with all of the driving scene content component factors
(road curvature, road users, buildings/infrastructure, road surface, signs/symbols, and
vegetation/trees) entered as the predictor variables and with driver workload (effort ratings) as the
outcome variable. The resulting equation (Eq. 1) was found to be statistically significant (F(6,53) =
15.85, p < 0.001) indicating that the combined driving scene factors taken together significantly
improved the prediction of workload compared to the intercept model alone. Model summary
statistics indicated around 64% of the variance in workload rating response scores were accounted
for by the full set of driving scene content factors with a standardized error estimate of 7.6 (Table
3.2.3). The predictor factors of road curve angle, road users, and buildings/infrastructure were
found to provide significant individual contribution to the amount of explained variance while
controlling for the other predictor variables. Restriction of the model to only these predictors
produced a lower variance accounted for (around 60%) and higher standard error estimate (around
7.8).

Table 3.2.3.Model summary statistics for prediction of driver workload from driving scene contents.

Model (Eq. 1) ¥ =10.398 + 0.202Xi + 90.232Xii + 27.897Xiii + 42.528Xiv + 64.266Xv + 8.646Xvi
F(6,53) = 15.85, p < 0.001

r A 7 adjusted Oest

0.80 0.64 0.60 7.6
Predictor(s) Std. Error 8 t p
X; Road-Curve 0.039 0.480 5.232 0.000*
X; Road-Users 43.648 0.235 2.067 0.044*
X;; Buildings 13.749 0.210 2.029 0.047*
X;, Road-Surface 30.964 0.134 1.373 0.175
X, Signs 64.266 0.123 1.158 0.252
X,; Trees-Vegetation 8.646 0.118 1.426 0.160

3.2 Prediction of driver eye measures from driver workload

Several linear regressions were conducted with driver workload (effort ratings) entered as the
predictor variable with each eye measure (pupil size, fixation duration, saccade amplitude) taken in
turn as a single outcome variable. Of the resulting equations (Eq. 2, Eqg. 3, and Eq. 4) only those for
fixation duration (F(1,58) = 4.94, p = 0.030) and saccade amplitude (F(1,58) = 34.66, p < 0.001) were
found to be statistically significant, while significant difference was not obtained for pupil size
(F(1,58) = 1.08, p = 0.303. Less than 1% of the variance in pupil size was found to be explainable
from the workload ratings (Table 3.2.4). Model summary statistics indicated around 6% of the
variance in fixation durations was accounted for by the workload ratings with a standardized error
estimate of 71.3 ms (Table 3.2.5), and that around 36% of the variance in saccade amplitude was
accounted for by the workload ratings with a standardized estimate of 0.5 degrees (Table 3.2.6).
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Table 3.2.4. Model summary statistics for prediction of driver pupil size from driver workload.

Model (Eq. 2) ¥=4134.718 + 0.682Xi
F(1,58)=1.08, p=0.303

r 7 1% adjusted Oest
0.14 0.02 0.001 60.6
Predictor(s) Std. Error 8 t P
X; Workload-Effort 0.656 0.135 1.040 0.303

Table 3.2.5. Model summary statistics for prediction of driver fixation durations from driver workload.

Model (Eq. 3) ¥ =478.973 +-1.717Xi
F(1,58) = 4.94, p = 0.030

r 15 7 adjusted Oest
-0.28 0.08 0.06 71.3
Predictor(s) Std. Error 8 t p
X; Workload-Effort 0.773 -0.280 -2.222 0.030*

Table 3.2.6. Model summary statistics for prediction of driver saccade amplitude from driver workload.

Model (Eq. 4) ¥=0.929 +0.34Xi
F(1,58) = 34.66, p < 0.001

r 14 14 adjusted Oest

0.61 0.38 0.36 0.5
Predictor(s) Std. Error 4] t P
X; Workload-Effort 0.006 0.612 5.888 <0.001*

3.3 Prediction of driver eye measures from driving scene contents

Several multiple linear regressions were conducted with all of the driving scene content component
factors (road curvature, road users, buildings/infrastructure, road surface, signs/symbols, and
vegetation/trees) entered as the predictor variables with each eye measure (pupil size, fixation
duration, saccade amplitude) taken in turn as a single outcome variable. Of the resulting equations
(Eq. 5, Eqg. 6, and Eq. 7) only those for fixation duration (F(6,53) = 9.216, p < 0.001) and saccade
amplitude (F(6,53) = 18.171, p < 0.001) were found to be statistically significant, while significant
difference was not obtained for pupil size (F(6,53) = 1.681, p = 0.144. Around 7% of the variance in
driver pupil size was found to be explainable from the driving scene content factors (Table 3.2.7).
Model summary statistics indicated around 46% of the variance in driver fixation durations was
accounted for by the driving scene content factors with a standardized error estimate of 54.4
(Table 3.2.8), and around 64% of the variance in driver saccade amplitude was accounted for by the
driving scene content factors with a standardized error estimate of 0.4 (Table 3.2.9). For fixation
durations, the predictor factors of road curve angle, road surface, signs, and road users were found
to provide significant individual contribution to the amount of explained variance while controlling
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for the other predictor variables. For saccade amplitudes, the predictor factors of road curve angle
and road users were found to provide significant individual contributions to the amount of
explained variance while controlling for the other predictor variables.

Table 3.2.7. Model summary statistics for prediction of driver pupil size from driving scene contents.

Model (Eq. 5) ¥ =4142.455 + 0.588X; + 77.18X; + -182.965X;; + -335.847X,, + -81.233X, + -63.807X,;
F(6,53)=1.68,p=0.144

r 15 7 adjusted Oest

0.40 0.16 0.07 58.6
Predictor(s) Std. Error 8 t p
X; Road-Curve 0.299 0.277 1.970 0.054
X Trees-Vegetation 46.859 0.209 1.647 0.105
X;i Road-Surface 239.220 -0.144 -0.765 0.448
X, Signs 428.773 -0.128 -0.783 0.437
X, Buildings 106.217 -0.121 -0.765 0.448
X,; Road-Users 337.210 -0.033 -0.189 0.851

Table 3.2.8. Model summary statistics for prediction of driver fixation duration from driving scene contents.

Model (Eq. 6) ¥ = 400.83 + -1.179Xi + 824.614Xii + -1196.586Xiii + 653.48Xiv + -158.252Xv + 86.068Xvi
F(6,53) = 9.22, p < 0.001

r 14 14 adjusted Oest

0.72 0.51 0.46 54.4
Predictors Std. Error 8 t p
X; Road-Curve 0.277 -0.457 -4.257 <0.001*
X;; Road-Surface 221.958 0.423 3.715 <0.001*
Xii Signs 397.832 -0.375 -3.008 0.004*
X;, Road-Users 312.876 0.278 2.089 0.042*
X, Buildings 98.553 -0.194 -1.606 0.114
X,; Trees-Vegetation 43.478 0.192 1.980 0.053

Table 3.2.9. Model summary statistics for prediction of driver saccade amplitude from driving scene contents.

Model (Eq. 7) ¥=1.395+0.011X; + 6.471X; + 5.673X;; + -0.612X;, + 0.571X, + 0.512X,,
F(6,53) = 18.17, p < 0.001

r IS 14 adjusted Oest

0.82 0.67 0.64 0.4
Predictors Std. Error 8 t p
X; Road-Curve 0.002 0.463 5.280 0.000*
X;; Road-Users 2.318 0.304 2.791 0.007*
Xi Signs 2.948 0.196 1.925 0.060
X, Trees-Vegetation 0.322 -0.150 -1.900 0.063
X, Buildings 0.730 0.077 0.782 0.438
X,; Road-Surface 1.645 0.029 0.312 0.757
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4. Discussion
4.1 Using driving scenes to predict driver workload

The design of our experiment exposed participants to multiple driving scenes, which varied in the
amount of ‘stuff’ visible in the scene, and a range of experienced workload effort ratings was
captured. Specifically, the average workload ratings per video ranged between 4.67 and 55.87 on
the provided 0 to 100 point scale. As expected, this indicates that our non-critical/non-hazardous
driving scene stimuli represented a range of perceived difficulties even while collectively residing on
the lower portion of a scale for anticipated driving effort. Moreover, the workload ratings were
found to vary in a reliable way in accordance with the identified driving scene components,
accounting for approximately 60.2% of the variance of the workload effort ratings which can be
interpreted as a ‘moderately strong’ relation in accordance with the 5-level general guide provided
by Brewer (2003). A standard error estimate of around 7 points on a 100 point workload scale is
expected to be practically useful (even without being perfectly precise) in adaptive aiding and
driver monitoring systems, for example as depicted within Fig. 3.2.2.

Such results are consistent with general practices of road safety research to factorize driving task
scenarios into more/less easy conditions, and in particular are convergent with the results of
Steyver et al. (1994) where differently experienced appreciations were found by tasking
participants to imagine having to drive on various roads via use of previously recorded video
footage. For causal effects from scene components to workload, the previously introduced and
reviewed research has been purposefully constrained to a limited number of conditions with
controlled variations in combinations of different hypothesized factors of interest (e.g., day/night,
presence/absence of traffic, homogeneous/heterogeneous vegetation, presence/absence highway
merging, presence/absence of roadside barriers, etc.) and thus participants had been typically
exposed to only a handful of different road scenes. As an extension to such research, and through
use of modern day image processing technology, the present computational approach was able to
employ 60 different videos with continuous rather than discrete quantities of scene components
while collecting human judgments of effort on a continuous scale inspired by the standardized and
widely adopted NASA-TLX workload measure.

Not all visual information in the scene was found to be correlated with the effort rating responses
(i.e., trees/vegetation and road surface were not statistically significant) ahead of the regression
model. The driving scene features and objects that were found to be significantly correlated with
effort rating responses (i.e., amounts of road curvature, road users, signs, and buildings) appear as
a group to be those that are perhaps more semantically meaningful to the task of receiving driving
control. While increased amounts of buildings and trees both present additional obstacles a driver
must be wary of avoiding, the former is conceivably more likely to entail presence of other people
and vehicles and hence signs/symbols for negotiating rules governing their interactions. Within the
regression model, it remains to be seen why specifically the individual contribution of
signage/symbols to driving effort ratings is reduced given the presence of the predictors. For now, a
plausible interpretation is that signs not only co-exist with, but are often designed specifically as
warnings for curved roads, potential presence of other road users, and identification of buildings,
etc. Such a notion is supported by our observed co-variance matrix (Table 2, top) and hence why
the individual explanatory power of signage might be diminished given the presence of the other
significantly contributing features.
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4.2 Using driver workload to predict driver eye measures

Given first considerations of the previously reviewed research on driver eye measure correlates of
workload, it would appear as though our eye measurement results are lacking at best and
contradictory at worse. From increases in workload effort ratings: pupil sizes did not systematically
increase, fixations durations were longer rather than shorter, and saccade amplitudes increased
rather than decreased. Limitations for not obtaining increased pupil sizes with increased workload
in our study might be considered as stemming from a lack of strict measurement and control over
luminance effects from the varying driving video clips (e.g., some might have been systematically
brighter/dimmer than others irrespective of effort related factors). The pupil is well-known to be
more dynamically susceptible in terms of size changes due to adaptive responses to lighting rather
than cognitive states. Indeed, pupillometry in driving applications has been criticized by such real
world limitations as recognized for vehicles that physically traverse natural environments of varying
light and shadow, etc. without recompense to increased differentiating resolutions from
sophisticated compensatory technology and/or costly patented algorithms.

However, more reasonable and practical interpretations of our seemingly problematic results are
derivable following a similar argument logic as used by Recarte et al (2008) and Gerhard et al.
(2015) to rectify the mixed results regarding driver workload and driver blink rates (cf. Kramer,
1990). The mixed results regarding blink rate (cf. Kramer, 1990) have previously been deemed
explainable due to situational aspects (i.e., visual demands) and the theoretical (non)differentiation
of such confounds whereby visual and mental workload may produce eye measure results in
opposite directions (Recarte et al., 2008; Marquart et al., 2015). Furthermore, consensus
interpretations could be better served by direct consideration of what is expected to be an intrinsic
or extrinsic component of nominal primary driving task demands. For example, Recarte et al., 2008
found an increase in blink rate during all their secondary cognitive tasks (listening, talking, and
calculating). Hence, it might be initially generalized and expected for example that more complex
driving scenarios like urban areas should be associated with increased blink rates. However, Recarte
et al. 2008 also found a decrease in eye blink rate for more visually demanding tasks when
compared to less visually demanding tasks. Now another perspective might expect, for example,
dense urban areas to entail increased visual demands such as from traffic lights, road signs, road
markings, and buildings, etc. and thus serve to reduce blink rate as the observer prolongs looking
exposures to take in and process the large amount of visual information.

Reasonably, mental driving effort does not necessarily follow from an increase in only visual
information, per se, as drivers may not, in fact, be tasked to take in all information but instead
prioritize along subsets of the most meaningful aspects (e.g., as relevant to their driving task). In
other words, not all information (whether visual or mental) necessarily presents itself as a demand
(i.e., of primary driving task relevancy). Although other eye measures of mental workload have
conventionally been interpreted to show more directional consistency than blink rate (Table 3.2.1),
the application and interpretation of eye behavior data in driving may warrant reconsideration
when taking into account such situated aspects (i.e., consideration and comparison of general
visual information versus those specific to effortful mental driving demands). Of those previously
introduced and reviewed research that found eye results in counter direction to our own at
present, eye measurements were often taken under circumstances to purposefully induce extra
mental workload or account for spare capacity via secondary tasks (e.g., auditory recall, cell phone
conversations, etc.) and/or to elevate urgency as with safety-critical driving scenarios (e.g.,
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hazards). Thus, a sourcing explanation and research focus for driver mental workload is deemed
most appropriate at present.

In the recently updated psychological construct model for driving automation by Heikoop et al.
(2015), mental workload can be attributed (among other interactive cognitive states) to be
impacted by task demands before in turn impacting attention and eventually situation awareness.
Logically, task demands for a driver can come from primary driving tasks as well as secondary tasks
(e.g., driving unrelated). Additionally, primary task demands can both be considered across a full
spectrum of nominal and off-nominal conditions. Our present research purposes were to
computationally model and establish reference eye measures (presumably of mental workload) to
inform assessments of a driver-getting-ready-to-drive under different (mathematically describable)
driving scene circumstances. As a starting point, and for a probabilistically high proportion of
impact to driving operations, nominal and non-critical transitions of driving control away from
automation towards increased human driving responsibility were selected for investigation. In our
modeling of non-critical levels of driving control workload effort within nominal driver eye
measures (i.e., without additional secondary tasks or while evaluating hazards), we have found a
lacking of significance for our workload ratings to be positively associated with pupil sizes, while
negative and positive relations reached significance for fixation durations and saccade amplitudes,
respectively. Per the guidelines of Brewer (2003), the obtained correlatively explained variances of
around < 1%, 6%, and 36% for pupil size, fixation duration, and saccade amplitude might be
appropriately interpreted as ‘none’, ‘weak’, and ‘mild/modest’ respectively. The obtained standard
error estimates of around 71 ms (for fixation durations) and half a degree of gaze angle (for saccade
amplitude) are expected to be of sufficient resolution to be practically useful as predicted targets to
represent some component of mental workload within the eye measures of would-be drivers.

4.3 Using driving scenes to predict driver eye measures

Irrespective of any precisely captured cognitive state, the design of our study was able to
successfully capture systematic predictions of eyes movements as a function of different
compositions of driving scenes. Generally, the correlative directions of amount of scene content
impact on fixation duration (negative) and saccade amplitude (positive) are consistent with
previous driver eye tracking research that separately controlled for road type visual complexity vs.
aspects of danger. Chapman and Underwood (1998) found that when nominally safe road types are
compared along a dimension of rising visual complexity such as with rural, suburban, and urban
roads, then average fixation durations present a decreasing pattern of 437, 420, and 389 ms
respectively, while average saccade lengths exhibit an increasing pattern of 1.71, 1.99, and 2.16
degrees respectively. While an opposing direction is presented by elevating the danger of a driving
situation (increase in fixation durations, and decrease in saccade lengths), by comparing across
road types within a collapsed condition of dangerous situations, then the same previous directional
eye movement patterns persist again (decrease in fixation durations, and increase in saccade
lengths) as a function of increasing roadway visual complexity.

However, as with the interpretation of our workload ratings in 4.1, not all visual information in the
driving scene was found to be significantly correlated with the eye measure outputs of fixation
durations and saccade amplitudes. Ahead of the regression models, only degree of road curvature
and amount of signage/symbols were significantly correlated with fixation durations (both in a
negative direction), whereas road curvature, road users, buildings, and amount of signs were
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significantly correlated with saccade amplitudes (all in a positive direction). Conversely, an
association in either direction of amount of road surface area and amount of vegetation did not
obtain significant correlation with either fixation duration or saccade amplitude. In pretending to
initially receive driving control and assess a scene ‘in medias res’ for its required driving effort, the
eyes of our participants appeared to be motivated to move more quickly and further around
especially as related to increased degree of road curvature and presence of sighage/symbols (as
both items were significantly correlated for both fixation durations and saccade amplitude). Within
the regression models, the strongest contributing factor predictive of either fixation duration or
saccade amplitude eye movements was degree of road curvature. Approximately 7%, 46% and 64%
of the variance explained in pupil size, fixation duration, and saccade amplitude from the driving
scene component factors represents associations that by the labels of Brewer (2003) would be
considered ‘weak’, ‘moderate’, and ‘moderately strong’, respectively. Obtained standard estimates
of around 54 ms (for prediction error of fixation durations) and around 0.4 degrees (for prediction
error of saccade amplitude) are expected to be of sufficient resolution to be practically useful as
eye movement targets to represent nominal driving scene evaluation processes.

As with the general scene viewing literature reviewed in our introduction, we expect a blend of
exogenous and endogenous influence on eye movements. However, for our participants and the
target application area of transitioning control to human drivers, the relevant visual sampling task is
not an open one of free exploratory viewing or a closed one of searching for a particular
item/feature but instead a purposeful time limited assessment is assumed to transpire during the
transitional phase of getting ready to drive. Thus, the initial movements of the eyes before re-
uptake of driving control are most likely driven both by scene stimulus saliency factors (amounts of
visual information) but can quickly mediate and ignore irrelevant visual complexities (e.g.,
trees/vegetation) and mediate gaze patterns instead by semantic relevancy to specifics of driving
task demands on a higher cognitive level regarding where/how to look around (reduction of lateral
and longitudinal conflict risks; adherence to governing rule/regulations; and negotiation of
potential interactions with other road users).

4.4 Potential Applications

As previously introduced, the most relevant application areas for the findings of the present
investigation, its produced regression model equations, and the proposed adaptive control
framework depicted in Fig. 3.2.2, are envisioned to be within the transitional phases between
automated and human driving control as depicted in the middle of Fig. 3.2.1. Ahead of being given
full control of a vehicle, the eyes of the would-be driver can be compared against stored predicted
values as per the present situation of the given driving scene components. As the person
him/herself begins to assess the driving scene and ascertain how much the task demands will
require of their mental effort, attentional resources, and ultimately situation awareness, an
automatic driver monitoring system safety layer can provide oversight and correct as needed. If the
driving scene is one where moderate/high amounts of driving workload effort are expected (e.g.,
containing a sizeable amount of other road users, a large road curvature degree, many signs and
symbols to read and interpret, etc.) but the driver’s eyes are moving slower and with shorter
distances than that has been previously computationally predicted (e.g., they are still mentally
fixated on that last email they were composing), then any number of different adjustments might
be made in terms of automated warnings and/or vehicular control to modulate the potential risks
of the transition. One example interface solution might be to begin to highlight relevant missed
parts of the driving scene until the driver is able to unlock full manual control by gazing at these,
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but of course there are many alternative design solutions. In any case, a real-time assessment of
driver fitness to drive within the present scene situation would be desirable and the present study
represents a starting point method and resulting model for generating such information. Note, on
account of all the models (A, B, and C) outlined in Fig. 3.2.2, the solution framework need not be
limited to a strictly behavioristic or cognitive perspective but is amenable to either or a blend of
both.

4.5 Limitations

There are important considerations in common across our measures that should be taken into
account. All obtained effect sizes were taken into account only after an averaging of multiple
exposures rather than a single video viewing where the effect sizes would be expectedly reduced.
Additionally (due to difficulties in valid/reliable manual human annotation), a potentially
confounding effect of ego-vehicle speed in the driving video segments was not yet
controlled/characterized, and we recommend such an aspect as an interesting mediating or
independent factor to investigate in future studies. Eye measurements were taken while viewing a
previously filmed driving video rather than in full fidelity environment where additional fields of
view might be expected to be present and relevant (e.g., mirrors and peripheral). Eye tracking and
scene identification will be limited by the cost and availability of technological software and
hardware components (e.g., computer vision and machine learning) although these have been
recently undergoing rapid advancements. Additional model components of other non-intrusive
physiological measures and cognitive

construct interactions would be expected to complement the present envisioned adaptive control
model provided in Fig. 3.2.2. As with all models, more data is expected to improve the presently
provided regression equations — the current framework could be extended via additional videos of
greater variety and increased sets of classifiable items and/or greater resolutions of bounding
boxes.

5. Conclusions

In conclusion, the present study contributes new regression model equations that are statistically
significant improvements by including their identified predictor variable factors over simple
intercept only counter-parts for each of the following relations of interest: for predicting driver
mental workload from visible driving scene contents, for predicting driver eye movements from
driver mental workload, and for predicting driver eye movements directly from driving scene
contents. Such models are applicable during transitions of control away from automated driving
that would involve an initial human viewing of a driving scene for the purpose of evaluating the
amount of effort that might would be needed for uptake of conventional manual driving control.
Automated support can be designed in a variety of circumstances in cases of mis-matches between
eyes of drivers and driving scene contents. For example, eyes measured as exhibiting too low
saccadic amplitudes for too long in a driving scene of high complexity contents might indicate an
unawares driver (a.k.a., “looking but not seeing”) thus suggesting a prolonged involvement of an
automated driving agent if possible, or ultimately safe-stop procedure if available. On the other
hand, eyes measured as over-expressing a nominal level of driving scene complexity in a more
simplistic scene might be useful for facilitative training aids for novice or otherwise overwhelmed
drivers.
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Appendix A. Developed Driving Research Tools

A.1. Driving Scene Capture

To create visual driving recording stimulus materials (e.g., such as used in Chapters 3.1 and 3.2)
there are many options with different associated costs, conveniences, and resultant fields of view.
Mounts for filming equipment are a first underlying consideration. Some in-car camera mounts are
affixed to windows and/or dashboards and can come at professional grade costs if needed. Here, a
fast, simple, and effective design was implemented with a budget of only a few US dollars. Figure
3.2.A.1. shows my specific arrangement of three compact cameras affixed via standard %” machine
screws to 2” x 4” wooden support bars that were drilled to fit within the existing head reset mount
interlock system. Thus, forward facing and periphery views were able to be captured by a single
robust setup. Future studies could extend such an apparatus to hold various cameras at differently
desired angles for multiple data collection purposes (e.g., in-vehicle occupant monitoring, capture
of the driving scene from different passenger points of view, etc.).

Figure 3.2.A.1. Low-cost driving scene video generation solution implemented to augment online videos collected and
analyzed in the present chapters 3.1 and 3.2.
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A.2. Automatic Clipping of Videos

After driving video recordings are collected, they may need to be parsed in various ways before
being applied in an experimental research setting. For the studies in Chapter 3.1 and 3.2, it was
desirable that different people would see not only different videos but across a set of exposures,
comprehensive coverage of a single video could be enabled. Thus, a MATLAB function (included as
copy/paste text below) was composed to automatically segment a longer duration video down into
smaller clips of a specified length. Each video segment was set to start 1 second after the previous
to ensure overlap within the dataset (i.e., for repeated measures reliability purposes). Note: this
feature can be changed by adjusting the last number of ‘while loop’ iteration statement (e.g., 3 to
last line of code) to whatever the desired output video segment spacing might be (i.e., changing the

‘

iteration computation from 5 =i + 1’ to ‘i = i + (input_2)’” would produce contiguous non-
overlapping segments).

function vidChopperFun (input 1, input 2)
$Automatic segments of .mov video as overlapping clips of set size.
% input 1 = a video file, input 2 = desired segment size (secs)
% Each video segment starts 1 second after the previous.
The first/last second of the full video is not included.
Clip size must be at least 2 seconds less than full video length.
$Initialize limits
vidIn=VideoReader (input 1); input 2=input 2+1;
limit=round(vidIn.Duration, 0)- (input_ 2);
i=1;
while i<=limit
$Read in specific frames [start end]
vidFrms=read(vidIn, [ (i*vidIn.FrameRate) ((i+input 2)*vidIn.FrameRate)]);
$Create a MATLAB movie struct from the video frames
for k=1 : input 2*vidIn.FrameRate
mov (k) .cdata=vidFrms (:,:, :,k); mov(k).colormap=[];

o
S

end
$Prepare and open the new file
vidOut=VideoWriter (num2str(i)); vidOut.FrameRate=vidIn.FrameRate;

open (vidout) ;

$Write each frame to the file

for k=1 : input 2*vidIn.FrameRate
writeVideo (vidOut,mov(k));

end

$Close the file

close (vidOut) ;

$Provide progress feedback

disp(strcat ('completed.',num2str(i),"'."',num2str (input 2-1), ...
'-sec.clips.out.of.',num2str (1limit), '.possible'));

$Iterate to next whole second available from original video

i=i+1;

end $End of while loop
end $End of function
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Chapter 3.3: On-Road Out-of-the-Loop Drivenger Eyes

Chap. 3.3) On-road Driver vs. Passenger Eye
Eccentricity in a Conventional Car for In- vs. Out-
of-the-loop “Drivenger” Monitoring in
Automated Vehicles

Control Warning
Modifications Information

In regards to the overall thesis big picture, this experiment serves to relate eye
measurements with aspects of the on-road driving scenes/situational demands from
which they were captured for the purposes of reducing the potential of driver monitor
systems subjecting drivers/AV supervisors to unnecessary levels of over-alerting. Within
an on-road study environment, Chap 3.3. investigates a different characterization of eye-
scene relations than was able to be determined in the laboratory environment of Chap
3.2 (where scene demands could be more precisely measured and safely manipulated).
Eye movements of drivers are contrasted with eye movements of passengers because
while both are naturally in the same vehicle in the same driving environment, they are
artificially divided in their responsibilities, and hence possess and represent different
imposed attentional task demands (drivers being by definition in the control loop of
driving, and passengers being by definition out of the control loop of driving). A
continuous percentage distance eye eccentricity measure (ECC) discriminated at the level
of momentary events, better at the level of individual participants and with longer
measurement windows, and best when situated aspects such as vehicle speed and traffic
count were also taken into account. Importantly, the eye eccentricity of all drivers safely
rose (including prolonged periods of looking off-road) and fell across the driven trips
where real-world driving scene task demands also naturally varied between relatively
higher and lower demands.

Adapted from:

Cabrall, C.D.D., Petrovych, V., de Winter, J.C.F., & Happee, R. (under review). On-road driver vs. passenger eye
eccentricity in a conventional car for in- vs. out-of-the-loop “drivenger” monitoring in automated vehicles.
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Abstract

Objective: To detect an out-of-the-loop driver state using eye-based criteria. Background: Many
automated vehicles (AVs), whether released as SAE Level 2 or developing via on-road testing as
SAE Level 3/4, require mentally ‘in-the-loop’ human supervisors despite removing continuous
hands/feet involvement. Driver monitor systems (DMS) can trigger when attention deviates from
conventional in-control driver levels towards being more passenger-like (i.e., a ‘drivenger’).
However, too many false alarms can undermine human trust, reliance, and acceptance of
automatic alerts. Methads: Drivers and passengers simultaneously wore eye-tracking glasses on
32 on-road driving trips. An eye eccentricity (ECC) measure was computed as a mean percentage
distance whenever eyes left a window-calibrated coordinate center gaze point. Impact of window
size/levels and situated aspects (speed, steering angle, traffic count) on DMS alerting performance
were assessed via ROC curves. Results: ECC was significantly higher for passengers. ECC
discriminated between drivers and passengers both at the level of individual participants (based
on the participant’s average ECC score) and at the level of events (based on the momentary
eccentricity score of an off-center looking event). ECC-based driver/passenger detection
discrimination performance was improved by longer measurement window periods and
consideration of vehicle speed (for windows shorter than 1 minute) and traffic count with vehicle
speed (for windows longer than 1 minute). Conclusion: Our introduced measure differentiates in-
vs. out-of-control eyes. For DMS, we recommend use of relative moving window averages and
situated criteria to reduce false alarms. Application: Passengers in conventional vehicles can help
refine measures for AV driver vigilance.
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1. Introduction

1.1. Background

Classic driver distraction problems suggest a turn towards driving automation to serve as an
impactful safety solution. Crash data from 2010 showed that 17 percent (an estimated 899,000
crashes) of all police-reported crashes in the U.S. involved some type of driver distraction (NHTSA,
2013a). In a 50 year review of driving safety research, Lee (2008) relates that crashes are often
caused by drivers failing to look ‘at the right thing at the right time’ and cites evidence suggesting
that even short glances away increase crash risk (Klauer et al., 2006). Meanwhile, automated
vehicles (AV) are recently emerging in terms of on-market automotive features (Mays, 2018) as well
as on-road tests and developments (CA DMV, 2018). AV technology is often motivated by safety
claims to address human errors (e.g., NHTSA, 2017) such as the above distraction issues. For
example, NHTSA (2008) (where aberrant driver states and behaviors were found associated in a
majority of fatal crashes) is frequently cited attributing 90% or more of causal blame towards the
human rather than the vehicle or the environment. However, vehicles that range between being
able to do some or almost all of the driving inherently lack a full authority and thus require human
oversight and back-up. Recent tests from Euro NCAP (2018) concluded that ‘cars, even those with
advanced driver assistance systems, need a vigilant, attentive driver behind the wheel at all times’.
Likewise, AAA (2018) expressed a cautionary sentiment towards consumers becoming disengaged
during partially automated driving. Inadequate safety-driver supervision was implicated in the first
widely reported pedestrian fatality of an autonomous vehicle (Coppola & Frank, 2018).

1.2. Automation-induced ‘out-of-the-loop’ concerns

New kinds of inattention issues may arise when humans are required to monitor driving
automation. Historically, a wide body of human factors research has suggested expectations for
problems in placing people in this sort of role. Endsley and Jones (2012, Chapter 10) summarize
hindrances to situation awareness while supervising automation due to issues of complacency,
passive processing of information, and quality of system feedback. Concerns surrounding limited
human vigilance in supervising automated processes can be traced back to Mackworth (1948) and
have been observed to exist for both simple and more complex kinds of monitoring tasks
(Parasuraman, 1987). Across several studies, the situation awareness of air traffic controllers has
been commonly observed to suffer when only monitoring rather than actively controlling aircraft
(Endsley et al.,, 1997; Endsley & Rodgers, 1998; Metzger & Parasuraman, 2001). Adaptive
automation concepts have been shown to effectively close feedback loops towards enhanced
operator engagement (Parasuraman et al.,, 1996). In practice, a range of adaptively triggered
functional outcomes can vary between differently designed alert-notification-warnings and/or
transitions of control.

Recent studies suggest empirical evidence of a human deficiency in monitoring specifically for
driving automation (Greenlee et al., 2018; Banks et al., 2018) while others contain eye tracking of
AV drivers (Merat et al., 2014; Louw et al., 2016; Louw & Merat, 2017; Pampel et al., 2018) and so
represent an apparent interest towards the topic of driver visual vigilance within AVs. By removing
traditional in-the-loop motor control activities of hands and feet, and especially where remaining
engagement is characterized as for exceptional rather than nominal circumstances, AVs might
paradoxically prime drivers towards familiar passive passenger levels of attention akin to ‘along-for-
the-ride’ responsibility even if some may technically require full and active alertness. Thus, a
collective interest is observed centered around the topic of catching and protecting against

165



‘drivenger’ states (i.e., where traditional levels of driving visual control might stray from active
conventional drivers towards more passive passengers) as a newly introduced susceptibility
resultant from what Banks & Stanton (2017) have dubbed the ‘Driver Not Driving’ role in the
automotive domain (e.g., an analog to the ‘Pilot Not Flying’ role in aviation).

1.3. Driver Monitoring Systems (DMS) for both conventional vehicles and AVs

Monitoring activity by drivers is inherent across multiple levels of conventional driving as well as
driving automation: for operational functions of lateral/longitudinal movements, for tactical
functions of object/event detection, and for strategic functions of navigation (see Merat et al.,
2018, esp. Fig. 2). Thus, meta-monitoring from driver monitoring systems (DMS) is expected to be
valuable on account of the prevalence of what Merat et al. (2018) refer to as ‘in/on-the-loop’
activity. DMS may utilize various behavioral, subjective, and physiological measures (see Dong et al.,
2011, for a review). Behavioral measures such as steering movements are popular in on-market
systems, but from a perspective of active safety, might be regarded as relatively ‘reactive’ rather
than ‘proactive’ by their measurement of consequences rather than predictive indices. Subjective
measures can be difficult to incorporate in real-time DMS and carry risks of inaccurate
introspection—Schmidt et al. (2009) found a lack of ability in the self-assessment of vigilance after
continuous monotonous driving. Physiological measures vary along a dimension of equipment
obtrusiveness such as between electrodes (EEG, ECG, skin conductance), pressure transducers
(respiratory responses) and cameras (eye, face, and body tracking). Previously, state-of-the-art
releases of DMS for inattention while supervising driving automation had thus far in the majority
relied on steering measures indicative of hand placement (e.g., Tesla’s ‘Autopilot’, Volvo's ‘Pilot
Assist II', Audi’s ‘Adaptive Cruise Assist’, BMW's ‘Active Driving Assistant Plus’, Daimler’s ‘Distronic
Plus’). Recently, however, gaze/head based camera DMS are now beginning to reach the AV
functionality market as well (e.g., GM'’s ‘Driver Attention System’, Subaru’s ‘Driver Focus’, Audi’s
‘ZFAS’) ahead of reports (e.g., Yoshida, 2018) of increased demands and roadmap releases from
Euro NCAP targeting (presumably camera-based) DMS as a primary safety standard by 2020.

In particular, eye-tracking technology in DMS for inattention in supervising driving automation is
expected to show promise for many reasons. It maintains face validity benefits where overt
fixations are generally assumed to indicate attention in the sense of information uptake (e.g., Just &
Carpenter, 1980; Shojaeizadeh, et al., 2016). In accordance with a model of directional relations
between cognitive constructs (i.e., Heikoop et al., 2015), a state of attention is expected to occur
later in a chain of related states and is thus a more preferable measurement construct than earlier
states that it presumably subsumes (i.e., fatigue and/or workload). Furthermore, driving
performance decrements from distraction appear more capable of being resolved in comparison to
recovering from fatigue (Hancock, 2013). Lastly, a wide body of research has previously established:
a pre-dominant importance of visual information for driving (Sivak, 1996), the expected frequencies
with which drivers look to specific objects (Gordon, 1966; Serafin, 1994; Green, 2001), scene-
situated variations in gaze such as with route familiarity (Mourant & Rockwell, 1970), curvy
roadways (Land & Lee, 1994), car following (Tijerina et al., 2004), overtaking (Gray & Regan, 2005),
intersection negotiation (Romoser, 2013), and general increased cognitive task complexity (Reimer,
2009), the modeling of driver visual sampling (Senders et al., 1967; Salvucci & Gray, 2004) and
distraction behavior (Sheridan, 2004; Liang et al., 2012), as well as multiple eye-based DMS
developmental applications (Dinges et al., 1998; Smith et al., 2000; Ji & Yang, 2001; Ohn-Bar &
Trivedi, 2016).
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1.4. Situating eye measures of aberrant driver attention

A conceptual complication and conflict for the eye-tracking of drivers is suggested from the top-
most fundamental principle from U.S. federal guidelines regarding driver distraction (NHTSA,
2013b) where it is seen that not all looking around behavior is necessarily bad: ‘the driver’s eyes
should usually be looking at the road ahead’ (emphasis added). Klauer et al. (2006) seem to agree
from their own conclusions that ‘short, brief glances away from the forward roadway for the
purpose of scanning the driving environment are safe and actually decrease near-crash/crash risk’.
Ultimately, however, the challenge of ambiguity in good vs. bad driver visual behavior is
downplayed by Klauer et al. (2006) by their proposition of a hard and fast rule they relate as
‘glances totaling more than 2 seconds for any purpose increase near-crash/crash risk by at least two
times that of normal, baseline driving’ (emphasis added). Hence, such a 2 second rule (cp. Rockwell,
1988) has been since adopted in the NHTSA guidelines regarding the amount of time that the
driver’s eyes are drawn away from the roadway during the performance of a task (NHTSA, 2013b).

An absolute and fixed criterion based only on timing seems inconsistent with a variety of research
practices and foci around different scene-dependent factors in driving: day/night, straight/curved
roads, young/old drivers, familiarity/novelty, presence/absence of lead car and/or other traffic, etc.
that can be observed across a 6 decade span of research regarding how long and where drivers
look around (Table 3.3.1). Victor et al. (2005) lament that ‘It seems unnecessarily restrictive that
evidence of a single glance longer than two seconds by a single subject could create a fail situation’.
Furthermore, visual occlusion techniques have shown both durations longer than 2 seconds ‘away’
and many other situation dependencies. Averaged voluntary occlusion periods evidenced in
Godthelp et al. (1984) ranged from 2.5 to 5.5 seconds where it was concluded that drivers use a
relative basis of time available (i.e., including aspects of lane position and vehicle velocity) to
determine their visual information needs rather than some constant amount of time. Furthermore,
Victor et al. (2005) relate the classic findings of Senders et al. (1967) as ‘drivers dramatically
increase eyes-off-road-times as speed is reduced. This result indicates that glance duration as a
measure must be considered in relation to the driving demand imposed by the situation, for example
speed.” Extensions from classical control theory (error/uncertainty nullification) perspectives posit
prominence of mental models to decide on contextualized probabilities/expectancies and effort
(Sheridan, 2004) to serve information bandwidth models such as theorized from the likes of
Senders et al. (1967), Wierwille (1993), Mourant & Ge (1997) and Courage et al.(2000) to drive
periodic visual sampling in automobile control. Kircher & Ahlstrom (2017) introduced a theory of
minimum required attention (MiRA) that accounts for adaptive human visual behavior where ‘a
driver is considered attentive when sampling sufficient information to meet the demands of the
system’.

Table 3.3.1. Aspects of measuring where and for how long drivers look around while driving to inform definitions of
nominal and off-nominal looking. *Sub-set concerning daytime straight road driving.

Year First Author, Looking Time Looking Distance
Last Name Definition Aspects Definition Aspects
1967 Senders 300 second window periods: Discrete; Binary;
self-chosen occlusion intervals Visual occlusion device in front of the eyes. Open or
shut.
1975* Rackoff 30 second window periods Discrete; AOI set; (6)
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Vear First Author, Looking Time Looking Distance
Last Name Definition Aspects Definition Aspects
(6 exterior, O interior, O other); Ahead =3 by 6
degrees around the focus of expansion; Manual
annotation
1977* Shinar Unspecified window period: Discrete; AOI set; (4)
two straight segments among 22 (2 exterior, 2 interior, O other), Ahead = 1.6 degrees
curves across 34 km to the right and 0.7 degrees above the focus of
expansion;
Manual annotation
1984 Godthelp 450 second window periods: Discrete; Binary;
self-chosen occlusion intervals Visual occlusion device in front of the eyes. Open or
shut.
1989* Olson 30 second window periods: Discrete; AOI set; (8)
based on total run distance of 1 mile (6 exterior, 1 interior, 1 other), Ahead = 3 different
long for'120 seconds'and reported possible AOls:
0.25 mile of the straight segment center of road, lead car, far field;
Manual annotation
1994* Serafin 50 second window periods: Discrete; AOI set; (15)
based on posted speed limit of 50 (9 exterior; 4 interior; 2 other), Ahead = 2 different
mph, and distance of about 0.7 mile of ' possible AO|§:
the straight segment right lane, far field;
Software annotation
2000 Recarte 30 second window periods Continuous;
Standard deviation of gaze position (angle) relative
to focus of expansion;
Software annotation
2005 Victor 30 second window periods Discrete; Binary; AOI set; (2)
Percentage of gaze samplesin a (0 exterior; O interior; 2 other), Ahead = a circle of
defined road center area 16 degrees surrounding a modal (most frequent)
gaze angle position;
Software annotation
2006 Zhang 60 second window periods Discrete; AOI set; (4)

(1 exterior; 3 interior; 1 other), Ahead =;
both vertical and horizontal gaze angles were
between+12 and -12 degrees at the focus of

expansion on the horizon line;
Software annotation
2007 Donmez 3 second window period: Discrete; Binary; AOI set; (2)

degree of distraction as a function of
current off-road glance duration
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Vear First Author, Looking Time Looking Distance
Last Name Definition Aspects Definition Aspects
compared to total off-road glance Software annotation
duration during the last 3 seconds
2008 Reyes 60 second window periods Continuous;
Standard deviation of gaze position (angle) relative
to focus of expansion;
Software annotation
Discrete; Binary; AOI set; (2)
(2 exterior; O interior; 0 other)
Ahead = less than 5 degrees either direction of
mode horizontal fixation
Right side = greater than or equal to 5 degrees to
the right of the mode horizontal fixation;
Software annotation
2008 Zhang Variable up to 30 second window Discrete; Binary; AOI set; (2)
period: The time window was re- (1 exterior; 1 interior; O other)
fi ble within th f 1-30 )
con |g_ura ) € within the range o Ahead = +/-24 degree horizontal,
secs, i.e., implemented a 4.3 second .
. +/- 24 degree vertical,
window
rectangular forward area;
Software annotation
2009 Kircher 2 second window period: Discrete; AOI set; (6)
2 sec time buffer starts to deplete (2 exterior; 4 interior; O other)
uponmoving gazg away frgm Ahead; Ahead = +/- 45 degrees horizontal,
0.1 sec latency in returning gaze .
- ) +45/-22.5 degrees vertical;
Ahead before refilling the time buffer; )
) . Software annotation
1 sec latency in moving gaze away
from Ahead but to speedometer or a
mirror
2010 Weller 1 second window periods based from Continuous;
subsections of 25 meters (i.e., 90 Standard deviation of gaze position
km/h) (pixel distances);
Software annotation
2014 Merat 10 second window period: Discrete; Binary; AOI set; (2)

If driver looked away from ‘road
centre’ for 10 secs or more.

5 and 60 second window periods:
PRC data were plotted at 5 sec
intervals, for the first 60 secs after
disengagement of driving controllers.
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(0 exterior; O interior; 2 other),
Ahead = ellipse with a 10 degree major and 6 degree
minor radius;
Software annotation

Discrete; Binary; AOI set; (2)

(0 exterior; O interior; 2 other), Percentage of gaze
samples in a defined road center area, Ahead = a
circle of 6 degrees surrounding a modal (most
frequent) gaze angle position;

Software annotation



Vear First Author, Looking Time Looking Distance
Last Name Definition Aspects Definition Aspects
2015 Vicente 0.033 second (30hz) instantaneous as Discrete; Binary; AOI set; (2)
well as 10 second window evaluation (1 exterior; 1 interior; O other),
period: Ahead = windshield plane;
If the intersection point lies outside of Software annotation
the defined on-the-road area, an
alarm is triggered; as well as a
percentage of frames correctly
predicted in terms of eyes on/off-the-
road during ten second periods
2016 Louw 1 second time window periods across Discrete; AOl set; (5)
3 consecutive seconds; (5 exterior; O interior; O other),
Percentage of gaze samplesin a Ahead = a circle of 6 degrees surrounding a modal
defined road center area (most frequent) gaze angle position;
Software annotation
2017 Louw Varying time window periods: Continuous;
100 seconds, 30 seconds, Standard deviation of horizontal and vertical gaze
8 seconds, 3 seconds positions (angle);
Software annotation
2018 Pampel 5 and 60 second window periods: by Discrete; AOl set; (2)

splitting the one-minute period into
5.0-second time bins; From the
previous 10 seconds to the future 10
seconds

Percentage of gaze samplesin a
defined road center area

(1 exterior; 1 interior; O other),
Ahead = Within 20 degrees horizontal and 15
degrees vertical around the mean fixation point;
Software annotation

Continuous;

Standard deviation of horizontal gaze positions
(angle);

Software annotation

Specific nuances of measurement and application still remain an open point of research for DMS
algorithms and systems integration alerting criteria. While Klauer et al. (2006) used manual
reductionist methods (i.e., human annotators), a real-time DMS would require an a-priori
computerized definition of what constitutes ‘looking ahead’ vs. ‘glancing away’ in terms of
boundary definitions in both time and space. As seen in Table 3.3.1, components of time and
distance in defining driver distraction present relatively more variability than definitive consensus in
how to directly proceed with functional criteria for building a real-time DMS system. Timing
measurement aspects vary in window size and number (i.e., sub-windows) while distance
measurement aspects vary by nature of being continuous or discrete (and if discrete, then in the
number of defined boundaries). In general, a popular approach appears to typically discretize pre-
defined areas of interest — AOlIs (e.g., percentage road center — PRC, AttendD, etc.).
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1.5. A new distance-based measure of eye eccentricity (ECC)

In principle, the previous measures are distance agnostic and bound to pre-defined central focus
area boundaries. However, previous research suggests that eyes of drivers might frequently change
their points of reference—with different sized cars and turn radiuses (Olson, 1964); in the presence
of a lead vehicle (Mourant et al., 1969), and situational demands of signage, other vehicles, and
road edge markings (Mourant & Rockwell, 1970); while approaching and transiting curves (Laya,
1992; Land & Lee, 1994), with varying levels of experience across rural, suburban, and expressway
roads (Crundall & Underwood, 1998); and between near and (differing) far points (Salvucci & Gray,
2004); as well as to scan a number of off-center driving-related areas/objects (e.g., an assumption
of Kircher and Ahlstrom, 2009). While AOI-based measures can provide foundational detections of
overt distraction (e.g., looking too long at a secondary task on an in-vehicle display or mobile
device), they are challenged to account for more covert inattention issues such as ‘looked-but-
failed-to-see’ (Herslund & Jorgensen, 2003) errors where driver eyes can fall within the normative
AOI bounds(and/or for the normative durations) but with a disconnect to perceptual/cognitive
processes.

Eye movement measures can also be defined in ways that do not require labeled AOI boundaries
which can be complicated by the diversity of vehicle interiors, driving scene exteriors, and
growing/shrinking AOIls from near/far 3D movements. Thus, AOl-based driver eye behavior
measures stand to be complemented and extended with applications that incorporate continuous
gaze location/extent (e.g., standard deviation of gaze - SDG) as another dimension of eye-
movement resolution. For example, Louw & Merat (2017) used a remote eye tracker mounted on
the dashboard of a driving simulator and found an increase in horizontal gaze dispersion via SDG
measures for conditions of automated vs. manual driving. Like SDG, an eye eccentricity — ECC
measure (i.e., from a head-mounted eye tracker without a 3D world model) might be defined and
used to capture continuous distances of eye movements beyond discrete bounded thresholds.
Unlike conventional static AOI methods, ECC can make use of a central tendency coordinate point
(average gaze location over a measurement/period of interest) from which to relatively compute a
dynamically calibrated off-center distance. In sum, a new ECC measure could extend previous eye
measures by relatively moving around with and as the head and eyes move around, with less
restrictive absolute definitions. Thus, ECC could be a kind of DMS measure that can differentiate ‘in-
the-loop’ eyes that are up, on the road, and moving around versus ‘out-of-the-loop’ eyes that are
also up, on the road, and moving around but in different manner (i.e., different distances).

1.6. Present multi-phase study motivations and aims

1.6.1 Phase 1: Replication of driver-passenger eye differences and validation of ECC

A multi-algorithmic study of Liang et al. (2012), hypothesized to obtain an eye-distance-based effect
in crash-risk prediction performance (from a naturalistic dataset), but ultimately attributed a lack of
obtained differences to their estimated location data from manually coded video data, while
suggesting further investigations with more precise measures of visual angle derived from eye-
tracking data. Using electrooculogram (EOG) techniques (i.e., electrical potential measurements
from near-eye electrodes), Takeda et al. (2016) found a difference between in-the-loop drivers and
out-of-the-loop passengers in terms of the number of small/large sized saccadic eye movements
(i.e., some distance based differences).
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In Phase 1, we aimed to define and validate a new inattention construct via on-road measurements
to differentiate ‘in-the-loop’ eye movements versus ‘out-of-the-loop’ eye movements. Analyses
from the drivers versus passengers study of Takeda et al. (2016) were replicated to ensure similar
attentional differences existed between our own set of drivers and passengers before applying our
new measure of off-center eye eccentricity (ECC). A preliminary analysis of the present data is
provided by Cabrall et al. (2017).

1.6.1 Phase 2: Hypothetical application of DMS using ECC

As an alerting agent, a DMS bears a burden beyond its objective detection performance towards
establishing credibility with the driver. Trust is a major component for effective human-automation
interaction (e.g., Lee & See, 2004) and its constituent components of reliance and compliance have
been identified by Parasuraman and Wickens (2008) to be determined by the thresholds that
designers use to balance automation misses and false alarms. The negative subjective experience of
over-alerting has been commonly referred to as a ‘cry-wolf effect that diminishes trust and
detracts from warning compliance. Automation mistakes on tasks deemed easy for humans are
particularly detrimental to trust development (Madhaven et al., 2006). Thus, counterproductive
effects could be expected if a driver is automatically assessed as being inattentive when they
believe otherwise (e.g., while looking away from the road while at a red light). Such considerations
suggest a purely human-centric DMS (i.e., that responds only to physiological/behavioral measures
of a person) could be less useful than a situated DMS (i.e., that also accounts for aspects of the
situation the person presently resides within).

In Phase 2, the aim was to explore implementation criteria of a hypothetical DMS to reduce
perceived false alarms of that DMS. For the second aim, effects of using ECC under different
threshold levels of eccentric events and aggregation levels (at the level of individual events vs. at
the level of individual drivers) and of accounting for common (automated) vehicle telemetry items
(i.e., vehicle speed, steering angle, presence of lead vehicles) were all examined, with a focus on
the trade-off between misses and false alarms.

2. Methods

2.1 Participants

The experiment was completed in November 2016 by 16 pairs of participants (78% male, 22%
female, mean age = 27.3, SD age = 2.4) recruited from the Delft University of Technology. Written
informed consent was obtained under the approval of a Human Research Ethics Committee (On
Road In Vehicle Eye Tracking: Drivers and Passengers, 26 September 2016). Each participant had
normal or corrected-to-normal vision and reported having obtained their initial driver’s license for
at least more than one year prior to the experiment. Participant pairs were formed around a quasi-
experimental variable of familiarity, such that half of the pairs knew one another well, whereas with
the other half, participants were not known to one another in advance. analyses pertaining to this
aspect, however, remain to be pursued in future follow-on studies.

2.2 Driving route and procedures

The driving route began from Leeghwaterstraat 21 and proceeded across campus via Jaffalaan and
Mekelweg/Christiaan Huygensweg, then continued southbound on Schoemakerstraat, westward
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along Kruithuisweg, joined the A4 highway northbound until exit 12 for route N211, at which point
the route crossed over the highway and returned along the same roads in reverse direction (Figure
3.3.1). The route was selected to contain a wide variety of driving situations (e.g., road geometry,
traffic, signage). The full route was completed as one trip of about 20.0 km and around 30 minutes
on average, and repeated per pair with a switching of driver/passenger role, for a total of 32 trips.
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Figure 3.3.1. The route covered mixed urban and highway roads. Representative screenshots are provided for various
route segments at number-labeled points on the map.

Drivers were given no instructions other than to drive as they normally would (i.e., in a safe
manner). Passengers also began without any instructions to deviate from their normal behaviors,
but at the turnaround point they were given a piece of paper to covertly assign an experimental
manipulation: ‘Please imagine that you are doing the driving. So try to pay attention and behave
with your eyes as if you are currently driving. You do not need to move your hands/feet like a driver’.
In lieu of naturalistic observation motivations for any role, no restrictions were expressed per
conversation, use of electronic devices, etc.
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2.3 Apparatus and measurements

Both passenger and driver participants wore UV shielded eye-tracking glasses from SensoMotoric
Instruments (SMI) coupled by a single USB cable each to their own dedicated Samsung Galaxy
smartphone running only the eye-tracking software and were held by ride-along experimenters in
the backseats (Figure 3.3.2). The car driven was a 2014 Toyota Prius Hybrid passenger vehicle with
automatic transmission without use of any cruise control and was equipped with driving research
telemetry for vehicle state and control input data.

Figure 3.3.2. Passenger and driver wearing minimally invasive eye-tracking glasses.

The glasses recorded eye measurement samples (60 Hz), with gaze data indexed by a 960 x 780-
pixel coordinate grid in respects of a viewing plane of the forward facing camera above the nose
bridge of the glasses. The eye-tracking software used virtual geometrical dimensions of the viewing
plane to automatically compute and log its gaze coordinates as if on top of such a screen: 960 mm
(wide) x 780 mm (tall) with a depth location of 145 mm (in-front). Missing data (e.g., due to blinks)
or data points out of the screen bounds were removed and subsequently linearly interpolated.

Driver and passenger ECC scores were computed based on the distance to a calibrated center
region:

(1) The median x and y gaze coordinates of a measurement/analysis period were subtracted
from the original x and y gaze coordinates, to obtain a calibrated value of the gaze
coordinates around (0,0).

(2) The Euclidean distance was computed from each gaze sample location to the central
coordinate point (0,0), and divided by 600 (and multiplied by 100) to result in a percentage
of distance from the center.

(3) The eccentricity score for a particular period of interest is the mean of the distance scores in
a selected period of interest.
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2.4 Analyses

For the first phase analyses, three periods of interest were applied that varied in duration and
expected driving situational demands.

(1a)/(1b) “Post/Pre Task”, each about 100 seconds. The first period revolved around a transition
from a naturalistic passenger to an (enacted) driver role as the portion of time for the few
minutes immediately before compared against the time period immediately after the
passenger task instruction presentation (with 20 seconds before/after the task start
removed to exclude reading/processing of task instructions). For the passengers, ‘post-task’
data are regarded as ‘pseudo drivers’ attempting to represent visual control whereas the
‘pre-task’ data of the passengers are regarded still as natural (untasked) freely varying
passenger eye data.

(2) “Entering A4”, about 45 seconds. The second period involved entering and merging onto a
highway. The first highway on-ramp and merging period where it was assumed a driver
would be likely to prioritize and evidence high levels of dedicated driving control visual
behavior. Both driver and passenger eye data are included.

(3) “Gate to Task”, about 950 seconds. The third period was an extended period to capture the
entire first half of the drive, from the start of the trip (leaving the parking lot gate) up until
the start of the passenger task manipulation.

Because eye-tracking data are susceptible to missing values which might affect data validity, we
removed participant pairs if more than 20% of data were missing or out of the forward-facing
screen bounds for either driver or passenger.

3. Results

Equipment errors resulted in complete eye tracking data loss from 2 drivers and 2 passengers.
Furthermore, for 2 drivers and 2 passengers, more than 20% of the gaze data were missing. Thus,
eye-tracking data were available for 28 of 32 drivers, and for 28 of 32 passengers.

A distribution of the eccentricity values showed clear differences between drivers and passengers
(Figure 3.3.3). Drivers were more likely to look ahead (< 13%), while passengers were more likely to
look away from their central point (> 13%).
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Figure 3.3.3. Distribution of eccentricity values at the sample level (60 Hz) for the “gate to task” period (about 950 s of
driving per trip). The distribution was calculated for each driver and passenger separately, and subsequently averaged
across the drivers/passengers. The eccentricity values were divided into 100 one-percent bins. The two density curves
have been normalized so that the sum of the 100 data points equals 1.

Mean eccentricity scores were computed for drivers and passengers (Figure 3.3.4). Independent-
samples t-tests showed that passengers had statistically higher eccentricity scores as compared to
drivers for three of the four conditions shown in Figure 3.3.4, t(54) = 4.59, p < 0.001, t(54) = 3.55, p
< 0.001, t(54) = 4.78, p < 0.001, t(54) = 1.59, p = 0.118, respectively. Thus, passengers exhibited
significantly higher eccentricity scores than drivers, except in the post-task period where
passengers had the task to look as if they were a driver.

Driver
[EPassenger

Gate to task (about 950 s)

Entering A4 (about 40 s)

Post-task (120 s)

1 1 1 1 1 |
0 5 10 15 20 25 30
Mean eccentricity score (%)

Figure 3.3.4. Average eccentricity scores for drivers and passengers. Error bars run from the mean +/- 1 standard
deviation. The means and standard deviations were calculated for 28 drivers and 28 passengers.
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The gray line in Figure 3.3.5 is the ROC curve for the eccentricity scores at the level of the drivers (n
= 28) and passengers (n = 28) for the gate to task period. It can be seen that reasonable
discrimination is achieved, e.g., for a hit rate of 82% (i.e. detecting that the passenger is indeed a
passenger), there is a false alarm rate of 36% (i.e., falsely detecting that the driver is a passenger).
Figure 3.3.5 also shows the ROC curve at the sample level in green. More specifically, we calculated
the true positive rate versus false positive rate for all individual eccentricity samples of the
experiment (n = 1,611,825 for drivers, n = 1,611,383 for passengers). It can be seen that
discrimination between driver and passenger at the sample level is less strong than at the
participant level. This means that there is poor discrimination between drivers and passengers
based on the eccentricity of a single sampling instance. Figure 3.3.5 also shows that the
discrimination between drivers and passenger becomes better when applying a moving average on
the eccentricity scores. That is, when aggregating eccentricity data for a minute or five minutes, it
becomes reasonably possible to distinguish drivers from passengers.
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Figure 3.3.5. Receiver operating characteristic (ROC) curves for a hypothetical driver monitoring system which issues a
warning when eccentricity exceeds a threshold level. The ROC curve is provided at the level of measurement samples and
at the level of trips. The figure is based on the gate to task period.
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One explanation for the poor discrimination for individual samples is illustrated using Figures 3.3.6—
9. In these figures, evidence is suggested that shows that the eccentricity level was situation-
dependent. For a first example, when taking a turn (recognizable by low speed and a high steering
angle) with elevated potential for interactions with other traffic, eccentricity scores of drivers and
passengers were high (i.e., first inset of each Figures 3.3.6-9). As a second example, in a situation
when driving scene demands were more predictable/stable (recognizable by high speed, low
steering angle, and low traffic count), eccentricity scores of drivers also rose several times to
overlap with passenger levels (i.e., second inset of each Figures 3.3.6-9). These findings suggest that
a DMS should be context-dependent, by taking into account the viewing demands of the situation.

A possible solution for improving the accuracy of the classifier is to discard (e.g., refrain from
potentially over-alerting during) situations where off-center looking might be expected to increase
as natural/safe adaptation to relative extremities of high/low (visual) driving scene task demands.
Figure 3.3.10 illustrates that classification becomes better when excluding moments where the
vehicle was driving slower than 20 km/h, when the traffic count was less than or equal to 1, and
best overall when accounting for both sources of information. In particular, for moving window
average sizes of around 1 minute or less, speed constraints had the largest benefit to discrimination
performance while for larger window sizes, traffic count constraints provided additional benefits in
conjunction with speed constraints.
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Figure 3.3.6. Vehicle speed as a function of travelled distance for 30 trips (2 trips were excluded because the driver took
a wrong turn and so the total travelled distance different from the others).The black lines represent the speed of the 30
individual trips, whereas the red line represents the average of the 30 trips. The figure is based on the gate to task
period.
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Figure 3.3.7. Steering wheel angle (left = positive, right = negative) as a function of travelled distance for 30 trips (2 trips
were excluded because the driver took a wrong turn and so the total travelled distance different from the others).The
black lines represent the steering angles of the 30 individual trips, whereas the red line represents the average of the 30
trips. The figure is based on the gate to task period.

‘mh'm« M Uk AWl B )
7 300 400 500 600 700 800 8300 8400 8500 8800 8700 8800

Mean detected vehicles

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Travelled distance (m)

Figure 3.3.8. Approximated traffic count as a function as a function of travelled distance for 30 trips (2 trips were
excluded because the driver took a wrong turn and so the total travelled distance differed from the others). The black
lines represent the approximated traffic count of the 30 individual trips, whereas the red line represents the average of
the 30 trips. The figure is based on the gate to task period.
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Figure 3.3.9. Mean eccentricity scores as a function of travelled distance of 27 drivers and 26 passengers (2 trips were
excluded because the driver took a wrong turn and so the total travelled distance different from the others). The figure is
based on the gate to task period.

Area under ROC curve (AUC) (%)

55—

—— All samples

- All samples with vehicle speed > 20 km/h

-~ All samples with traffic >= 1

—==All s‘amples with vehicle speed ‘> 20 km/h and traffic >= 1

| | |
50
0 50 100 150 200 250 300
Moving average window (s)

Figure 3.3.10. Area under the ROC curve (%) for different moving average time windows of the eccentricity values for all
samples (corresponding to the ROC curves in Figure 3.3.5) and for all samples for which the vehicle drove faster than 20
km/h and 1 or more vehicles were determined to be present (from automatic visual detection) in the driving scene.

4, Discussion

In Phase 1, our aim was similar to Takeda et al. (2016) of detecting possible ‘drivenger like lapses
attention of supervisors of future AVs via eye measurement differences between in-control drivers
and not-in-control passengers in a conventional vehicle. We replicated results of Takeda et al.
(2016) in finding passengers (as compared to drivers) to exhibit a higher variance of gaze as
significantly higher levels of ECC were found in passengers compared to drivers. With more precise
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measurement of visual orientation (e.g., increased resolution of automatic continuous coordinates
rather than manual annotations of inside/outside of AOls) we obtained an effect of distance
consistent with the (unattained) hypothesis from Liang et al. 2012, i.e., greater visual distances
associated with less driving control. On account of safety (and face validity) concerns we did not
attempt to measure the eyes of drivers while they were tasked towards inattention out on the
open roads (i.e. overt distraction). Instead we took semi-naturalistic observations of both drivers
and passengers, and included an experimental tasking period for passengers to act with their eyes
as if they were driving for baseline directional verification. Without the availability or safety
implication issues of using actual AVs to investigate concerns for lapses in supervisory driver
attention, drivers and passengers in conventional vehicles are appealing comparison cases of
sometimes near but definitively “out-of-the-loop” visual control (i.e., covert inattention) that can
evidently produce significantly different eye movement behavior results. Regarding ECC as a
distance-based off-center eye measure, the eyes of drivers exhibited greater focus around a central
area while the eyes of passengers were more liberal in exploration.

For Phase 2, better signal detection discrimination performance (i.e., increased rates of true
positives with decreased rates of false positives), as previously suggested as critical for effective
human automation interaction (Lee & See, 2004; Parasuraman & Wickens, 2008), was obtained via
accounting for situated driving aspects for a hypothetical DMS. By such an approach, lower
amounts of driving-eye data (i.e., smaller windows down to sample level) were observably more
susceptible (decreased discriminability between in- vs. out-of-the-loop) to particular driving
events/scenarios. This can be seen in our data to occur for both exceedingly high/low driving task
demands. On the one hand, increases in driver ECC were seen during an “urban” like driving
scenario involving low-speed high-degree turns amidst high amounts of potential traffic conflicts.
Here, looking around more (at greater off-center distances) might be considered a beneficial
adaptive consequence of bandwidth-driven sampling to obtain/maintain a situation awareness
across aspects that are (potentially) rapidly changing/fleeting (i.e., information decay). On the other
hand, some increases in driver ECC towards levels of out-of-the-loop passengers were seen during a
more “rural” like driving segment involving high-speed flat steering angles and low/no amount of
other vehicles. Here, looking around more (at greater off-center distances) might also be
considered a beneficial (rather than mal-adaptive) consequence. Increased road/infrastructure
affordances can be considered to effectively protect/contribute increased driving
control/predictability (i.e., this portion of our route involved an elongated relatively straight
dedicated/segregated expressway off-ramp) and thus the driver could prioritize his/her visual
activity/energy to seek additional relevant off-center information (e.g., from signage) or
appropriately schedule involvement in a secondary task from left-over/untapped resources (e.g.,
risk homeostasis). In either case (i.e., our first and second situated insets in Figures 3.3.6-9), such
increases in driver ECC could be considered safe/innocuous ipso facto as we completed all 32 trips
without any perceptible increases in risk of corrective actions, near-crashes, and/or crashes (i.e.,
definitional components of distraction according to subject matter experts such as described in
Hedlund et al., 2006).

If alerts are defined in too absolute rather than relative terms, they run the risk of being overly
triggered (i.e., out of context). Too many triggers without actual (or even perceived) necessity for
such alerting contributes to false alarms in a ‘cry wolf effect’ and may diminish the effectiveness of
a DMS through lowered end-user trust and acceptance. In developing evaluation protocols of
emerging DMS technologies, NHTSA (2013b) concluded that ‘perhaps the most important outcome
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of this analysis is an understanding that distraction and its detection cannot be considered
independent of the driving environment’ while recognizing dependencies between false alarms and
acceptance, ‘false alarms might either disrupt drivers’ attention to the road or undermine their
acceptance of the mitigation system’.

4.1 Limitations

Our results regarding eccentricity should be taken with several considerations. In our present
analyses, the “pre-task” passenger eye data may have included reading the instructions for some
participants as only a gross/generalized cut-off of 20s was applied rather than individually derived.
Furthermore, if a driver more fully concentrated on a secondary task to the point of becoming a
primary task, it might be expected that eccentricity would decrease rather than increase. Without
world knowledge, the eccentricity measure is agnostic as to what specifically is being concentrated
on, but instead reflects more only the presence/absence of visual concentration/control. Thus our
ECC measure is proposed as only an additional tool to complement AOI-based measures that might
supply detections of such overt distraction (e.g., head down and/or eyes directed towards the
interior of the vehicle, non-driving related display surfaces, etc.). Future studies should examine the
attentional impact of our present situated measures in greater fidelity/detail. For example, vehicle
count data was presently determined only by out-of-the-box computer vision emulations provided
in MATLAB R2017b Automated Driving System Toolbox via their annotation tool ‘Ground Truth
Labeler strictly by pre-existing automatic processes (ACF Vehicle Detector) without any manual
adjustment or deep-learning training modifications. In other words, our vehicle count data is not
reflective of state-of-the-art object detection, automated driving scene semantic segmentation,
and/or direct-time-of-flight detection (e.g., sonar, radar, lidar, etc.) that might be better situational
measurement candidates in future studies. Thus, presently such data should be interpreted for
relative precision (repeatability) utility rather than absolute accuracy (validity).Additionally, further
contextual aspects of the driving scene for example such as the presence of vulnerable road users
(VRU) or real life driving pressures (e.g., driving in haste and/or while in a compromised affectual
state) for a more holistic picture of adaptive visual behavior and driving task demands. Lastly, it
should be noted that the coordinate frame moved as the participant moved his /her head and it
remains for us later outside the scope of the present study to further (re)analyze our data in a
rectified/resolved 3D world model as needed.

5. Application

A substantial need for effective DMS is suggested by NHTSA’s (2008) crash causation findings
primarily consisting of inadequate surveillance, distraction, and inattention. Recent AV
developments bring into focus the vigilance dilemmas of drivers turned into supervisors of
imperfect self-driving vehicles. In the wake of the first widely reported Tesla Autopilot fatality of
Joshua Brown (May 17, 2016 in Florida), the U.S. National Transportation Safety Board (NTSB)
issued new safety recommendations on September 12, 2017 for manufacturers to ‘develop
applications to more effectively sense the driver’s level of engagement and alert the driver when
engagement is lacking while automated vehicle control systems are in use’. Meanwhile, accidents
with human supervision of so-called ‘self-driving’ vehicles have continued to occur. On January 30,
2018 in California, a modified Hyundai Genesis by Phantom Al was driving in a supervised autonomy
mode and crashed into a lead vehicle in spite of on-board test and press personnel. On March 18,
2018 in California, Elaine Herzberg was killed while walking across the road by an Uber Volvo XC90
while it was driving in an autonomous mode and being supervised by an on-board safety driver.

182



Chapter 3.3: On-Road Out-of-the-Loop Drivenger Eyes

Many real-time eye tracking DMS algorithms have been developed that can determine if eyes are
on/off the road and how frequently the eyes fall within a specified ahead road center region or not.
But how ‘more effective’ (per the recommendations of NTSB in 2017) both previously developed
and released on-road systems may become are often complicated by phenomena such as ‘looked-
but-failed-to-see’ phenomenon (e.g., in Table 2 of Najm et al.,, 1994; Hills, 1980; Herslund &
Jorgensen, 2003). A Motor Trend review by Hong (2018) characterizes this complication with the
camera-based attention monitor of GM’s automated driving Super Cruise system as: ‘If your eyes
are looking forward, but you aren’t paying attention ..., this can really catch you out’. The present
analyses have shown how an ECC eye measure can detect visual control aberrance while eyes are
still looking up through the windshield. In other words, ‘in-the-loop’ vs. ‘out-of-the-loop’ eyes of
drivers and/or driving automation supervisors can be differentiated from off-center lingering even
when the center is not necessarily measured as the road center. Furthermore, reductions in
potentially perceived false alarms (e.g.,. where a DMS might trigger an alert against someone who
does not feel distracted as they let their eyes wander during a red light) should help advance the
state of the art in DMS towards greater levels of future acceptance and effectiveness.
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Chapter 4.1: Directionality of Eye-Based Transitions of Driving Control

Chap. 4.1) Adaptive automation: Automatically
(dis)engaging automation during visually
distracted driving

Control Warning
Modifications Information

In regards to the overall thesis big picture, this driving simulator experiment serves to
provide initial validations of integrating a real-time eye-based driver monitoring system
with driving automation system functionality. As a result, lateral performance was
observably improved in a visual distraction induced backup driving automation system
compared to conventional/manual controlled driving with the same visual distractions.
Eye tracking was used here on an applications basis but not investigated as a primary
research factor of interest. Instead, the adaptive directionality of automatic
consequential vehicular control transfer was varied to either end up with the human or
the automation upon detection of visual distraction. Participants performed better with
(less lateral error) and better appreciated (lower workload and higher acceptance ratings)
the backup concept. Chap. 4.2 extended the successful backup driving automation of
Chap. 4.1 with enhanced simulation visual/behavioral fidelity as well as an investigation of
further design aspects of the DMS integration to address potential human interaction
drawbacks of over-alerting and over-reliance.

Adapted from:

Cabrall, C.D.D.*, Janssen, N.M.*, & de Winter, J.C.F. (2018). Adaptive automation: Automatically (dis)engaging
automation during visually distracted driving. PeerJ Computer Science, 4:e166, https://doi.org/10.7717/peerj-cs.166

*Joint first authors
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Abstract

Background: Automated driving is often proposed as a solution to human errors. However, fully
automated driving has not yet reached the point where it can be implemented in real traffic.
This study focused on adaptively allocating steering control either to the driver or to an
automated pilot based on momentary driver distraction measured from an eye tracker.
Methods: Participants (N = 31) steered a simulated vehicle with a fixed speed, and at specific
moments were required to perform a visual secondary task (i.e., changing a CD). Three
conditions were tested: (1) Manual driving (Manual), in which participants steered themselves.
(2) An automated backup (Backup) condition, consisting of manual steering except during
periods of visual distraction, where the driver was backed up by automated steering. (3) A
forced manual drive (Forced) condition, consisting of automated steering except during periods
of visual distraction, where the driver was forced into manual steering. In all three conditions,
the speed of the vehicle was automatically kept at 70 km/h throughout the drive. Results: The
Backup condition showed a decrease in mean and maximum absolute lateral error compared to
the Manual condition. The Backup condition also showed the lowest self-reported workload
ratings and yielded a higher acceptance rating than the Forced condition. The Forced condition
showed a higher maximum absolute lateral error than the Backup condition. Discussion: In
conclusion, the Backup condition was well accepted, and significantly improved performance
when compared to the Manual and Forced conditions. Future research could use a higher level
of simulator fidelity and a higher-quality eye-tracker.
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Chapter 4.1: Directionality of Eye-Based Transitions of Driving Control

1. Introduction
1.1. Automated driving

Over the last couple of decades, researchers have been studying the viability of automated driving
for commercial use. However, automation research has not yet reached the point where fully
autonomous driving can be implemented with the promise of a perfect system. Current designs of
automated driving systems often focus on applying partial, conditional, or high automation (SAE
International, 2016), where the human tasks are that of a supervisor. This supervisory role has
brought about other human factor issues, including loss of vigilance, varying workload, fatigue, and
loss of situation awareness (Casner, Hutchins & Norman, 2016; De Winter et al., 2014; Matthews,
2016; Parasuraman & Riley, 1997).

1.2. The potential of adaptive automation

Adaptive automation has been proposed as a solution to maximize human-machine cooperation
(e.g., De Visser & Parasuraman, 2011; Hancock, 2007; Inagaki, 2003; Kaber & Endsley,
2004; Parasuraman, 2000). In adaptive automation, control functions change to a lower or higher
level of automation depending on predetermined criteria, such as momentary workload or
situation awareness of the human operator. For example, if during the automated execution of a
task the human is measured to be inattentive, the algorithm could switch the automation to a
lower level or even turn over control entirely to the human operator to engage the human.
Alternatively, if high human workload is detected during a manually-executed task, some or all of
the control might automatically be switched to the automation.

1.3. Types of adaptive automation

Algorithms that define how and when automation is invoked and terminated differ
greatly. Sheridan & Parasuraman (2005) (see also Parasuraman et al., 1992; Inagaki, 2003) describe
five types of methods for implementing adaptive automation: (1) critical-event logic, (2) operator
performance measurements, (3) modeling, (4) operator physiological measurements, and (5)
hybrid methods, combining multiple of these methods.

Physiological measurements offer the advantage that they can be obtained continuously regardless
of whether the automation is active or inactive (Parasuraman et al., 1992; Scerbo et al., 2001).
There are different physiological measures that provide information on the human operator state,
including heart rate, skin conductance, and eye movements. For this research study, the focus lies
on eye movements because they can be measured non-obtrusively and provide specific
information regarding where the driver attends to, as opposed to other physiological indexes which
provide a more general index of attentional/arousal. How drivers distribute their visual attention is
relevant in driving safety research, as the information relevant to driving is likely to be
predominantly visual (Sivak, 1996).

1.4. Backup automation

Fundamentally, there are two approaches towards adaptive automation using eye movements. The
first approach is backup or background automation, which “allows the driver to drive the vehicle,
but watches over them in case of trouble” (Kyriakidis et al., in press). For example, it is possible to
let the driver control the car manually, and invoke automation if the driver is distracted. This
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approach may be beneficial for safety, as off-road glances are associated with decrements in
performance and safety. For example, a naturalistic driving study found significant associations
between eyes-off-road time and standard deviation of lateral position (Peng, Boyle & Hallmark,
2013).

Backup automation is similar to real-time distraction-mitigation feedback which alerts drivers based
on their off-road eye glances (Donmez, Boyle & Lee, 2007). However, alerts alone may not always
be effective, as drivers may decide to ignore warning systems (e.g., Parasuraman & Riley, 1997).

1.5. Forced manual driving

The second and opposite approach (‘foreground automation’; Kyriakidis et al., in press) would be to
let the car drive automatically, and force the driver to take over if he or she is distracted
(i.e., negligent in their responsibility for monitoring the dynamic driving task).

The notion of forced manual driving might seem odd due to its apparent unsafe nature. However, it
is not odd in the sense that it roughly corresponds to a path being followed by the automotive
industry. As a result of an investigation into the first fatal crash with Tesla’s Autopilot and a truck in
May 2016, the National Transportation Safety Board (NTSB) has issued recommendations to
“develop applications to more effectively sense the driver's level of engagement” and to
“incorporate system safeguards that limit the use of automated vehicle control systems to those
conditions for which they were designed” (NTSB, 2017). Other than a warning based on hands-on-
wheel sensing, one such safeguard could be to automatically activate a functional transition from
the automated mode towards manual driving, see the case of Cadillac Super Cruise, which uses
head tracking software that “helps make sure your eyes are on the road, and alerts you when you
need to pay more attention or take back control” (Cadillac, 2018). In current level 2 automated
driving, the car performs lateral and longitudinal control, and the system penalizes the inattentive
supervisor with a transition of control back to the driver. In an overview of 2017 models from
vehicle manufacturers with level 2 driving automation systems, transitions of control back to the
driver were found to be a commonly employed strategy for reacting to insufficient supervisory
driver attention (C Cabrall, A Eriksson, F Dreger, R Happee & JCF De Winter, 2018, unpublished
data). Accordingly, the forced manual driving may be a useful strategy to prevent overreliance on
automation.

1.6. The present study

In summary, transitions in adaptive automation could occur in two directions. While driving
manually, detection of visual distraction could trigger a transition from manual driving control to
automated control (Backup automation). In the other direction, visual distraction could trigger a
transition from automated to manual driving (Forced manual driving). At present, it is unknown
whether background automation or foreground automation with forced manual driving is preferred
in terms of safety and driver acceptance.

The present experiment was performed with three different conditions (1) Manual driving
(Manual), (2) An automated backup (Backup) condition, consisting of manual driving except during
periods of visual distraction, where the driver was backed up by an automated pilot that was
automatically initiated, and (3) A forced manual drive (Forced) condition, consisting of automated
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driving except during periods of visual distraction, where the driver was forced back into the
manual control loop.

An expected result was that the automated backup condition would yield better lane-keeping
performance during visual distraction because the automation is programmed to keep lane center
better than what humans are capable of. Additionally, it was of interest to see whether people
accepted this condition, in which control was taken away from them. For the forced manual drive
condition, it was expected that lateral driving performance would deteriorate as compared to the
manual drive condition during such moments because visual attention is a prerequisite for being
able to keep the car in the lane (Senders et al., 1967).

2. Methods

2.1. Ethics statement and Participants

This research was approved by the Human Research Ethics Committee (HREC) of the Delft
University of Technology (TU Delft). All participants provided written informed consent. Thirty-one
people participated, of which 25 were male and six female. The mean age was 26.4 years (SD =
4.5 years). Participation criteria were having a driver’s license, and not having to wear glasses to see
properly. Participants were offered €5 compensation for their time (approx. 30 min).

2.2. Equipment

A SmartEye DR120 remote eye tracker was used to record the participant’s gaze direction while
seated and viewing a desktop monitor (Figure 4.1.1). Data were collected at a frequency of 60 Hz.
The experiment took place in a room with standard office lighting and lowered window blinds. A
24-inch monitor was used to display the simulated environment. The distance between the monitor
and the participant differed between participants but was limited by the DR120 eye tracker, which
was able to measure in the range 50-80 cm from the cameras. A Logitech G27 steering wheel was
used to control the simulated vehicle. PreScan software (TASS International, Helmond, The
Netherlands) was used to create the simulation environment. MATLAB/Simulink was used along
with PreScan to control the simulated vehicle and to log data. A stack of CDs and a small boom box
to the right of the monitor and steering wheel were used to present a secondary task that evokes
visual distraction similar to that which might commonly occur while driving (e.g., using a route
navigation device, tuning the radio, texting).
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Figure 4.1.1. The experimental setup.

2.3. Simulated environment

The environment consisted of a two-lane road with a lane width of 5 m. The road had five straight
segments and four 10° bends (Figure 4.1.2). The participant was shown the dashboard of a vehicle
(BMW X5) as well as the road in front of them (Figure 4.1.3). A bar on the dashboard indicated the
state of the automation. A green bar indicated that the automation was on, a yellow bar indicated
that the automation was still on but that the participant was about to regain lateral control, and a
red bar indicated that the automation was off (i.e., manual lateral control). The automation was
designed in such a way that when it was switched on, it would quickly drive the car towards the
center of the right lane and keep it there.
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Figure 4.1.2. Top-down perspective of the road. The markers indicate the six moments when a 1-s beep was presented,
signaling that the participant could start the secondary task.
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Figure 4.1.3. Photo from the participant’s perspective. The eye-tracker cameras are connected to the bottom of the
monitor.
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2.4. Experimental conditions

A within-subject design was used, and the order of the conditions was counterbalanced across the
participants. The counterbalancing was done by presenting the six possible orders of the Manual
(1), Backup (2), and Forced (3) conditions, in the following manner to the first six participants: 1-2-
3, 3-2-1, 2-3-1, 2-1-3, 1-3-2, 3-1-2. These orders were repeated for Participants 7-12, 13—18, 19—
24, and 25-30, and Participant 31 was presented with the 1-2-3 order. During the entire
experiment, the vehicle speed was constant at 70 km/h, and thus no longitudinal control actions
were required. This speed was chosen to simulate driving on rural roads. No infrastructure
(buildings, signage, vegetation) nor any other traffic were simulated. Three experimental conditions
were used:

(1) Manual condition (Manual). In the Manual condition, the participant performed the steering
without help from an automated system.

(2) Automated backup condition (Backup). In this condition, the automated system assumed
lateral control when visual distraction was measured. Otherwise, the participant performed
manual steering. Visual distraction was defined by the consecutive eyes-off-monitor time
being greater than 1.5 s. The secondary task was placed to the right of the steering wheel,
and when the participant turned the head to look at it, it sometimes became difficult for
the eye tracker to record the eyes. When the eye tracker was not able to record the eyes, it
reported this as null values, and the algorithm treated these as off-monitor measurements.
Automation termination was also performed based on eye measurements: the participant
would regain lateral control if (s)he focused on the monitor for 4.5 s. The yellow status bar
switched on 1.4 s before the transition to manual took place. The 1.5 s and 4.5 s thresholds
were based on pilot studies (see https://data.4tu.nl/repository/uuid:49d87edc-07a6-4f07-
a5e6-0b699705881b). The 1.5s threshold for Backup automation is in approximate
agreement with the literature, which suggests that off-road glances of 2.0 s and longer are
risky (Klauer et al., 2006; Ryu, Sihn & Yu, 2013). Recently, Liang, Lee & Horrey
(2014) concluded that “frequent off-road glances longer than 1.7 s present a high-risk
glance pattern in the seconds preceding a safety-critical event and that the 2.0 second-
threshold that is frequently cited in defining dangerously long off-road glances might be a
liberal estimation”.

(3) Forced manual drive condition (Forced). The Forced condition can be described as being
opposite to the Backup condition in the sense of control transition directionality. The
automation had lateral control of the car while the participant was assessed as being
visually attentive, and initiated a control transition to manual driving if visual distraction
was measured. If the gaze was directed away from the monitor for 1.5 consecutive seconds,
the automation switched off, and the participant would be forced to drive manually. The
status bar switched from green to yellow 0.75 before the transition to manual would take
place. The algorithm would wait until 4.5 on-monitor seconds were measured and then the
automation would switch on.

In the Manual and Backup conditions, the first 3.5 s of each trial were driven with automation
enabled, and between 3.5 and 5 s, the status bar was yellow. This ensured that the participant
started smoothly with zero lateral error.
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During automated driving, the steering wheel (i.e., the physical angle of the Logitech steering
wheel) was decoupled from the simulated steering angle, and so not necessarily centered. When
regaining manual control, the virtual steering angle would make a discrete jump from the previous
steering angle determined by the automation towards the steering angle at which the physical
steering wheel angled at that moment.

It is noted that the above-mentioned descriptions of the Backup and Forced conditions are
simplifications of the actual algorithms (see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-
a5e6-0b699705881b for source code). One detail is that, to prevent effects of eye blinks and rapid
glances between the secondary task and the monitor, the algorithms featured a filter regarding the
transition back to the nominal state (i.e., manual driving in the Backup condition and automated
driving in the Forced condition). This means that the driver did not have to look to the monitor for
4.5 s consecutively to induce a transition. Specifically, the algorithm of the Backup condition was
programmed in such a way that if the eye tracker measured 1.5 consecutive off-monitor seconds,
the on-monitor counter would reset to zero. In other words, if a cumulative total of 4.5 on-monitor
seconds were measured (i.e., without 1.5 consecutive off-monitor seconds in between), the
participant automatically regained lateral control. For the Forced condition, on the other hand, the
on-monitor counter would reset after 0.33 consecutive off-monitor seconds. There was no specific
purpose for these differences between the Backup and Forced conditions, but these differences
were the consequence of adjustments during pilot testing.

2.5. Secondary task

The participant was given a secondary task intended to cause a visual distraction. In this secondary
task, the participant was required to perform a sequence of physical actions involving the stack of
CDs and a CD-player (see Horberry et al., 2006), who reported that this type of task degrades
driving performance).

The sequence of steps consisted of keeping the left hand on the steering wheel and using the right
hand to (1) press stop on the CD-player, (2) open the CD-player, take out the CD, and put it on top
of the stack of CDs, (3) take out the bottom CD from the stack, put it in the CD-player, and close the
lid, (4) press play on the CD-player, (5) put the stack of CDs back in their original position, and (6)
place the right hand back on the steering wheel. The sequence of steps was designed to encourage
visual distraction and thus trigger an automatic transition of control. Note that the volume of the
CD-player was set to zero.

The participant was told to keep the left hand on the steering wheel at all times. Furthermore, the
participant was instructed to look at the secondary task (CDs, CD-player) when performing the
secondary task. In other words, the participant was not supposed to look towards the monitor and
simultaneously perform the secondary task based on peripheral vision or touch. This requirement
was included to ensure that the participant was visually distracted from the driving due to
performing the secondary task.

At six moments during the drive (after 15s, 655, 1155, 165 s, 225 s, and 275 s), the participant was
alerted that he/she was required to perform the secondary task by a long (1 s) beep. To encourage
secondary task engagement, the participant was scored by the experimenter on a scale from 0 to
10. The participant could get up to 6 points for performing the task steps correctly and up to 4
points depending on how quickly the task was completed. The scoring was done by the
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experimenter by looking at the participant and an on-screen timer that was visible on the
experimenter’s computer. The precise scoring criteria are provided
in https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b. If the task was not
completed within 25 s, the participant would only get points for the steps finished at that time. The
total score was the average of the six secondary tasks per driving trial. At the end of each driving
trial and before they started with the questionnaires, the experimenter orally told the participant
what the secondary task score was, rounded to 1 decimal point.

Additionally, for the Manual and Backup conditions, a short (0.25 s) beep was produced 25 s after
the long beep, to mark the end of the secondary task period. In the Forced condition, the short
beep was produced when the automation had made a transition from manual to automated driving
or 25 s after the long beep (whichever came first). For the Forced condition, the short beep was
presented right after the manual-to-automation transition to signal to the participant that the
secondary task was over.

The instructions form mentioned that “a long beep will indicate the start of the task, a short beep
will indicate that you can stop the task if you are not already finished.” Furthermore, the form
stated that lane keeping was the primary task, “Your primary task is to focus on staying in the
center of the right lane as accurately as you can. This should always be the most important task.
Safety first!”. The form also clarified that changing the CD was the secondary task, and that the
participant should attempt to score as high as possible while still driving safely.

2.6. Procedure

After reading and signing the consent form, which mentioned the goal of the experiment and the
workings of the three conditions, each participant was asked to fill out a personal information
qguestionnaire.  They  were  also required to read the instructions  form
(see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b).

Next, the participant was asked to sit in front of the eye tracker and focus on four fixed points on
the monitor to perform a gaze calibration. If the calibration could not be completed, the participant
was asked to sit differently so that the cameras could record their eyes better before performing
another calibration.

For each of the three conditions, the participant was asked to drive the simulated vehicle in the
environment described above, using the steering wheel for lateral control. Additionally, for each of
the three conditions, at fixed intervals during driving, the participant was required to perform the
CD-player secondary task.

After each driving trial, the participant was asked to complete a NASA Task Load Index (TLX)
guestionnaire (Hart & Staveland, 1988). Following the Backup and Forced conditions, the
participant was required to fill out an acceptance scale of in-vehicle technology (Van der Laan,
Heino & De Waard, 1997). The participants were not required to complete this questionnaire for
the Manual condition, because the scale asks to rate a specific vehicle technology. At the end of the
experiment, the participant was asked to complete a questionnaire where they could state which
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session they preferred as well as give general comments (for all the questionnaires used in this
study, see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b ).

The participant performed a 185 s training run before each of the driving trials to become familiar
with each condition. These training runs were driven on the same track as the actual experimental
runs, and included three secondary task periods. After the training run, the participant drove the
full track, which took 350 s for each driving trial and included six secondary task periods.

2.7. Dependent variables

The following measures and measurements were assessed across the 10.0 s and 349.5 s of elapsed
time per driving trial of a particular condition. The first 10 s were discarded because this period was
regarded as settling time for participants.

Lateral performance:

(1) Mean Absolute Lateral Error (meanALE) (m). This was the mean of the absolute difference in
lateral position between the vehicle’s position and the lane center. The meanALE is an
index of overall lane keeping performance and includes both periods where the lateral
driving automation is active (and so the lateral error is 0) and periods of manual driving.

(2) Mean Absolute Lateral Error during Manual Driving (meanMALE) (m). This was the mean of
the absolute difference in lateral position between the vehicle’s position and the lane
center, only for moments when the participant was driving manually.

(3) Maximum Absolute Lateral Error (maxALE) (m). maxALE is the maximum of the absolute
difference in lateral position between the vehicle’s position and the lane center in meters,
and can be regarded as an index of safety.

Furthermore, the following measures were extracted from the self-reports, for each of the three
driving conditions.

Secondary task performance:

(4) The secondary task score (0—10) was computed as the mean of the full set of six secondary
tasks of a driving trial.

Workload:

(5) NASA-TLX (%), ranging from 0% to 100% with steps of 5%. This questionnaire was used to
assess subjective workload on six different categories: (1) Mental demand, (2) Physical
demand, (3) Temporal demand, (4) Performance, (5) Effort, and (6) Frustration (Hart &
Staveland, 1988). The items were answered on a 21-point scale ranging from ‘very low’
(‘perfect’ for the performance item) to ‘very high’ (‘failure’ for the performance item). A
composite score was obtained by taking the mean of the six different sub-category scores
(Byers, Bittner Jr & Hill, 1989).
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System acceptance:
(6) Acceptance scale, ranging between +2 and -2, with steps of 1. The acceptance scale was
used to assess the drivers’ opinion on the Usefulness and the Satisfaction of the systems
they tested. This questionnaire consisted of nine sub-scale items, presented in order as (1)
useful-useless, (2) pleasant-unpleasant, (3) bad-good, (4) nice-annoying, (5) effective-
superfluous, (6) irritating-likeable, (7) assisting-worthless, (8) undesirable-desirable, (9)
raising alertness-sleep inducing.

(7) Preference. The participant was also asked which condition they preferred the most in a
final questionnaire after they had performed all of the conditions. The question they were
asked was “Which session did you prefer?”. The possible answers were “session 17,
“session 2” “session 3”, and “no difference”.

2.8. Statistical analyses

Non-parametric tests were used because some of the performance measures were non-normally
distributed among participants. For example, maxALE represents the maximal deviation during the
entire drive and so is sensitive to a single road excursion. Differences between pairs of conditions
were compared using the Wilcoxon signed rank test. Corresponding effect sizes were calculated
as Z/N°°. A significance level of .005 was used (Benjamin et al., 2017).

3. Results
3.1. Automation functionality

First, we assessed whether the Backup and Forced conditions worked as
intended. Figure 4.1.4 shows the proportion of participants with automation on at any time for the
Backup and Forced conditions. It can be seen that about 90% of the participants in the Backup
condition drove automatically about 10 s after the task initiation beep was presented. The 10 s
comprises the minimum 1.5 s required to initiate a transition, plus individual differences in eye-
response time (or the fact that participants may have used frequent scanning back and forth
scanning rather than a direct re-allocation of gaze in a binary manner). Similarly, about 90% of the
participants were issued manual driving control status in the Forced condition about 10 s after the
beep. Figure 4.1.4 also shows that some of the participants experienced control transitions outside
of the secondary task periods. This could be due to eye tracker imperfections, as faulty
measurements could result in 1.5s off monitor glancing. Summarizing, the results in Figure
4.1.4 show that the Backup and Forced conditions worked in opposite ways, as intended.

202



Chapter 4.1: Directionality of Eye-Based Transitions of Driving Control

Backup
» 100 —
IS
©
o
S 50
£
©
.,Q_- p— |
5 0 T ’ T T — T — ]
g\: 0 50 100 150 200 250 300 350
2
3 Forced
@ 100 — " —r
c
S ”
© -
£ 50
[e]
5
< 0 T T T T T T |
0 50 100 150 200 250 300 350

Elapsed time (s)

Figure 4.1.4: The proportion of participants with automation turned on as a function of elapsed time. The magenta
vertical lines represent the secondary task initiation beeps. The overall percentage of automated driving time was 0%,
22%, and 76% for the Manual, Backup, and Forced conditions, respectively.

3.2. Lane-keeping performance

Figure 4.1.5 shows results of the absolute lateral errors for every participant, and of all participants
averaged. Differences between conditions are evident in the lateral position while performing a
secondary task (i.e., up to about 20 s following each magenta line, cf. Figure 4.1.4). In the Backup
condition, the absolute lateral error drops to near-zero after participants were notified to perform
the secondary task. In the Manual condition, however, the absolute lateral error increases with
evidently higher peak values compared to periods without the secondary task. During the Forced
condition, the absolute lateral error is near-zero before the secondary task periods (i.e., when
automation is on) but increases substantially when the automation is disengaged.

Manual

Backup
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0 50 100 150 200 250 300 350
Elapsed time (s)

Figure 4.1.5: Absolute lateral position as a function of elapsed time. The magenta vertical lines represent the secondary
task initiation beeps. The results of individual participants (N = 31, in each condition) are shown in gray. The mean of
participants is shown in black.
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Figure 4.1.6 shows the results for the three lane-keeping performance measures. Concerning the
first measure (meanALE), the Backup condition yielded better lane-keeping performance than the
Manual condition. Specifically, the meanALE of the Manual condition (Med = 0.54 m, IQR = 0.25 m)
was higher than for the Backup condition (Med =0.33 m, IQR = 0.12 m), Z=4.62, r = .83, p < .001.
The meanALE of the Forced condition (Med = 0.18 m, IQR = 0.20 m) was significantly lower than
that of both the Manual condition (Z=4.78,r=.86,p<.001) and the Backup condition
(Zz=3.02, r=.54, p = .003).
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Figure 4.1.6: (A) The mean absolute lateral position (meanALE), (B) the mean absolute lateral position during manual
driving (meanMALE), and (C) the maximum absolute lateral position (maxALE). maxALE is presented on a logarithmic
scale. For each box, thick red the horizontal line is the median, and the edges of the box are the 25th and 75th
percentiles. The markers represent scores for individual participants, with a horizontal offset to prevent overlap.

Concerning the second measure (meanMALE), which compares only the portions of manual driving,
the median value for the Backup condition was 0.42 m (IQR = 0.14 m), which was significantly lower
than the Manual condition (Med = 0.55 m, IQR = 0.25 m), Z=3.94, r=.71, p < .001. The Forced
condition yielded a significantly higher meanMALE (median = 0.71 m, IQR = 0.81 m) than the
Manual condition (Z=3.88, r=.70, p <.001) and the Backup condition (Z=4.66, r = .84, p <.001).
In summary, average lane positioning during periods of manual control with adaptive transitions of
control was improved in the Backup condition compared to full manual control and was worsened
in the Forced condition.

Finally, concerning the third measure (maxALE), the Manual condition yielded poorer performance
(Med = 249 m, IQR = 1.74 m) than the Backup condition (Med = 1.67 m, IQR = 0.70
m), Z=3.51, r=.63, p <.001. Furthermore, the maxALE of the Forced condition (Med =3.14 m, IQR
= 2.67) was significantly higher than that of the Backup condition, Z=4.23,r=.76, p <.001,
whereas the difference in maxALE between the Forced and Manual conditions was not statistically
significant, Z=2.02, r=.36, p =.044. In summary, maximum lane deviations were lowest in the
Backup condition.
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3.3. Driver attention and secondary task performance

Figure 4.1.7 shows the percentage of participants glancing at the monitor as a function of elapsed
time for the three conditions. It can be seen that participants in the Backup condition were more
likely to look away from the monitor (between about 3 and 12 s after the task initiation beep) than
participants in the other two conditions. Participants apparently used the available backup to
concentrate on the secondary task, whereas in the Manual and Forced conditions, participants had
to periodically check the road to keep the vehicle in the lane. This was also reflected in the average
number of points earned across the six sessions, with median values of 8.50, 9.00, and 8.67 on the
scale from 0 to 10, for the Manual, Backup, and Forced conditions, respectively (Figure 4.1.8). The
score for Backup was significantly higher than for the Manual (Z=3.02, r = .54, p =.003) and Forced
condition (Z=3.23,r=.58, p =.001). The difference between the Manual and Forced conditions
was not significant (Z=0.58, r=.10, p = .562).
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Figure 4.1.7: The percentage of participants glancing at the monitor as a function of elapsed time.Filtering with an
interval of 0.25 s was applied, and the data for the six secondary tasks were averaged. Missing data (e.g., the eye
tracker not tracking the eyes because the participant is performing a blink or performing the secondary task) were coded
as an off-monitor glance. The thick magenta vertical line represents the secondary task initiation beep.
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Figure 4.1.8: Points scored on the secondary task. The participant’s score is the average of six tasks. For each box, thick
red the horizontal line is the median, and the edges of the box are the 25th and 75th percentiles. The markers represent

scores for individual participants, with a horizontal offset to prevent overlap.

3.4. Self-reported workload

The results of the NASA-TLX questionnaires per item are shown in Figure 4.1.9. Generally, the
Backup condition yielded lower workload ratings than the Manual and Forced conditions for each
of the six items. Regarding composite workload (i.e., the mean across the six items), the medians
across participants for Manual, Backup, and Forced were 46.7%, 31.7%, and 46.7%, respectively.
The composite workload of the Backup condition was significantly lower than both the Manual
condition (Z=3.98,r=.71, p<.001) and the Forced condition (Z=3.95,r=.71, p<.001). The
difference  between the Forced and Manual conditions was not statistically
significant, Z=1.09, r = .20, p = .275.
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Figure 4.1.9: Results for the six items of the self-reported workload (NASA-TLX) per condition. For each box, thick red the
horizontal line is the median, and the edges of the box are the 25th and 75th percentiles. The markers represent scores
for individual participants, with a horizontal offset to prevent overlap. The items were answered on scale ranging from O
= very low’ (‘perfect’ for the performance item) to 100 = ‘very high’ (‘failure’ for the performance item).

3.5. Self-reported driver acceptance

The results of the acceptance scale per item are shown in Figure 4.1.10. Participants reported
significantly higher acceptance scores on all items (p < .001) for the Backup condition as compared
to the Forced condition, except for the Raising alertness —Sleep-inducing item.

== Backup 001
1. Useless [ Forced - 1, Useful p=
r=079
|- | p<.001
2. Unpleasant 2. Pleasant r=070
L B p<.001
3.Bad 3. Good =063
L B p<.001
4. Annoying 4. Nice r=079
| i p<.001
5. Superfluous 5. Effective r=068
L P p<.001
6. Iitating 6. Likeable r=074
L B 5 p<.001
7. Warthless 7. Assisting r=076
) L | i p=<.001
8. Undesirable 8. Desirable r=0.80
9. Sleep-inducing [~ = o |- Raising alertness T:DSWYI?
1 ! | | |
2 -15 -1 05 0 05 1 15 2

Figure 4.1.10: Mean ratings on the acceptance scale for each of the nine items.The semantic differential scale runs from
-2 to 2. The figure also shows the p values and effect sizes of a Wilcoxon signed-rank test comparing the Backup
condition with the Forced condition per item.

At the end of the experiment, each participant completed a form where they were asked which
session they liked most. Out of the 31 participants, 22 (71%) selected the Backup condition as their
preferred condition, eight (26%) selected the Manual condition, and one (3%) participant selected
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the Forced condition. A final optional comments section was provided through which 13
participants provided responses (see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-
0b699705881b). Three participants reported that they would prefer to change control manually.
Furthermore, three participants commented on the automation status bar, which was perceived as
annoying, useless, and/or interfering with the working of the systems.

4. Discussion

This research aimed to design and investigate a distraction-mitigation system that automatically
invoked a control transition based on distraction measurements and to see how it would affect
performance, workload, and acceptance. Triggers were designed and implemented under two
essentially opposite approaches to eye-based adaptive driving automation to examine different
directional consequences upon detection of distraction: a transition from manual to automated
control vs. a transition from automated to manual control.

4.1. Lane-keeping performance
4.1.1. Backup vs. manual

Lane-keeping performance was assessed via three complementary measures: meanALE,
meanMALE, and maxALE. All three performance indices were significantly better for the Backup
condition compared to the Manual condition. The substantially lower meanALE and maxALE are a
direct result of the secondary task that induced visual distraction and triggered the lane centring
driving automation. For the meanMALE measure, the enhanced lateral driving performance during
periods of manual driving could be explained by a ‘staging’ benefit in the sense that the automated
agent positioned the car in the center of the lane before returning manual control to the driver.
However, it could also be because drivers felt more at ease and confident during manual driving,
knowing that they had an automated driving agent to support them.

4.1.2. Forced vs. manual

Regarding the Forced condition, improved lane-keeping performance compared to the Manual
condition was found only for the overall performance of meanALE, whereas a performance
detriment was found for meanMALE. The superior meanALE of the Forced condition can be
explained because automated steering was enabled for the majority (76%) of the driving time.

The fact that the Forced condition yielded lower meanALE but higher meanMALE than the Manual
condition indicates that a trade-off exists between automation use (i.e., more automation is better,
as automation vyields zero lateral error, thereby contributing to low meanALE) and automation
reliability (i.e., if drivers are required to take over, as in the Forced condition, large performance
errors can result). This cost-benefit trade-off resembles the lumberjack effect, where automation
has benefit for routine system performance, but a negative impact when the human has to take
over (Onnasch et al., 2014).

Whether the driver is constantly in control of steering or whether he or she is occasionally forced to
take control when looking away from the forward road, the maxALE did not obtain significant
difference. An explanation for the observably large maxALE during the Forced condition could be
that the steering wheel was not always centered during an automation-to-manual transition
(see https://doi.org/10.4121/
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uuid:49d87edc-07a6-4f07-a5e6-00699705881b for steering angle results). Whether or not a
steering wheel should be decoupled during automated driving has been a topic of debate
(Kerschbaum, Lorenz & Bengler, 2014). Our results suggest that a decoupled steering wheel is
associated with increased lateral positioning variability if the decoupled steering wheel is not
centered at the moment of transferring control back to the human driver.

4.2. Workload

The Backup condition received the lowest self-reported workload ratings. During the Forced
condition, drivers were monitoring what the automated pilot was doing, until they were forced
back into control during periods of visual distraction. In other words, drivers initially experienced a
state of low task demands and were forced into high task demands. This was not the case for the
Backup condition, where adaptive automation was applied to help the human when task demands
increased.

It should be noted that low workload ratings are not necessarily desirable, because low workload,
or ‘underload’, may be associated with fatigue and loss of vigilance (Hancock & Parasuraman,
1992; Young & Stanton, 2007). Parasuraman (2003) argued that ‘clumsy automation’ can be an
issue, whereby (adaptive) automation inadvertently adds workload (e.g., via new task demands like
supervising or re-programming the automation) during already high periods of demand and do little
to regulate workload during low periods of demands (i.e., during routine operation of the
automation). In the end, an ‘optimal’ and balanced workload level should be aimed for. Within the
current study, it is believed that the Backup condition supported such a balanced workload during
driving because the presently 100% reliable automated steering did not require attention from the
driver when it became active and it counteracted degraded lateral performance that would
otherwise occur due to the uptake of the non-driving task.

4.3. System acceptance

The Backup condition was rated more favorably than the Forced condition on nearly all items,
except for the Raising Alertness—Sleep-inducing item where results were mixed and inconclusive.
The task demands in the Forced condition provide an explanation of its negative acceptance
ratings. Before the transition of control, participants experienced simultaneous demands to both
monitor the automated driving and undertake the secondary task. Likewise, after the transition of
control, participants were still involved in the secondary task when manual control was returned to
them.

The results in Figure 4.1.7 showed that participants looked away in higher proportions in the
Backup condition than in the Manual condition. This suggests that the participants trusted that the
automation would assume control and were more inclined to keep their focus on the secondary
task. One of the intended goals of the Forced condition was to prevent drivers from misusing
driving automation that requires their active oversight and mental involvement (SAE Level 2
automation). However, the Forced condition appeared to show slightly more off-road glancing than
the Manual condition. This is contrary to what was intended and expected with the Forced
condition design as it was meant to return driver attention to the road. Apparently, in manual
driving, participants are more conservative with their off-road glances than when automation is
present (whether backup or forced). This may be because, in the former, there is one driving agent
in the system whereas in the latter there are two driving agents.

209


https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b

When asked to complete a form at the end of the experiment, a majority of participants (22 of 31)
preferred the Backup condition, which supports the results from the acceptance scale. These
preferences add to the promise of the Backup condition in real-world applications. However, these
preferences might also be because the automation lasts for as long as the driver keeps the eyes off
the road, and so allows for unrestricted secondary task engagement. A driving simulator study
by Jamson et al. (2013) found results which suggested that “drivers are happy to forgo their
supervisory responsibilities in preference of a more entertaining highly-automated drive”, whereas
a test-track study by Llaneras, Salinger & Green (2013) showed that, when using reliable
automation, drivers are likely to increase the frequency of secondary task interactions and engage
in tasks that cause extended glances away from the road. In a review by De Winter et al. (2014), it
was found that relative to manual driving (100%), highly automated driving resulted in 261% of the
number of tasks completed on an in-vehicle display. These findings suggest that the Backup
condition might be preferred because it has the potential (whether intended or not by designers) to
allow for increased end-user involvement in non-driving tasks.

4.4. Limitations and generalizability
4.4.1. Driving task simplicity

The track that the participants experienced was designed to be short-lasting (350 s per drive) and
easy: no obstacles, other road users, or emergency situations were implemented. Furthermore,
participants were instructed to keep the center of the lane and there was also no active penalty
involved with an unintended lane crossing or large lateral position errors, and there was a reward
for performing the secondary task well (in the form of a post-trial feedback score which was
determined by the experimenter while the participant was performing the task). These factors may
have caused participants to focus on the secondary task more than they would do in real life.
Future research should establish how the adaptive automation would function in more naturalistic
driving conditions.

4.4.2. Eye-tracker capabilities

The eye tracker sometimes lost sight of the eyes of the driver and thus reported a null value for the
gaze direction. The tracker appeared to have more difficulty with some drivers when compared to
others. For our research we used a simple binary criterion to assess visual distraction: does the
participant look at the monitor or not? This criterion was combined with a filter of 1.5 and 4.5 s
interval (see ‘Experimental conditions’), which accounted for short data gaps due to e.g., blinking.
Based on the results in Figure 4.1.4, sensitivity of the on-monitor attention algorithms must have
been high, as the percentage of participants for whom the automation was ‘on’ in the Backup
condition was mostly zero when participants were supposed to look at the road (i.e., in between
the secondary task periods). There were a few participants for whom the automation turned on
during such periods in the Backup condition; we were unable to determine whether these were
due to data losses of the eye-tracker or whether participants were actually looking away from the
screen (e.g., exploring whether the Backup system was working properly). Specificity must also be
high because it would be unlikely for the eye tracker to measure that a participant is looking at the
monitor (which subtends a relatively small angular area in the participant’s field of view) when
he/she is looking instead at the CD-player. In summary, there were a few unexpected control
transitions in between the secondary task periods, but these were infrequent and probably did not
have a significant influence on the performance results.
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The eye tracker used during this study had to be calibrated for every participant and sometimes still
had trouble discerning the correct gaze direction. If the eye tracker were to calibrate itself and
become more sensitive to gaze direction and less sensitive to confounding factors such as ambient
lighting, this would increase the possibilities for real-world applications. Similar conclusions were
drawn by Pohl, Birk & Westervall (2007) who also performed a study on distractions leading to lane
departures.

4.4.3. Realism of the steering wheel

The steering wheel that was used was smaller than an actual steering wheel and was designed
without any force feedback. Some participants mentioned that this lack of force feedback was
annoying. Another comment some of the participants made was that it was difficult for them to
follow the instructions, which stated to completely focus on what they were doing with their hands.
They were told that they were not allowed to perform any part of the secondary task blindly, to
prevent a situation where they could just keep looking at the monitor and still finish the secondary
task in time. This, understandably, might have felt unrealistic for the task of switching a CD in the
CD-player (i.e., a task people may have sufficient practice with, and which could in principle be
completed without continuous visual attention). Nonetheless, this approach was implemented to
ensure that control transitions did take place and to simulate situations where long consecutive
eyes-off-road periods did occur.

4.4.4. Capabilities of the distraction detection algorithm

The initiation and termination threshold criteria for automatic transitions of control between the
human and the automated driving were established based on pilot studies. However, these times
are not necessarily generalizable, and would have to be determined again for experiments that use
a different setup. For example, some drivers kept looking back and forth between the secondary
task and the primary task at a high frequency. Due to this behavior, the algorithms never counted
enough samples of looking away from the monitor which prevented the system from automatically
initiating a control transition. A follow-up experiment could focus on discovering recommended
initiation and termination times, or perhaps even incorporate an algorithm for using variable times.

The difference between safe and unsafe glances was defined by looking at the monitor or away
from the monitor, respectively. In real-world driving situations, this would have to be defined more
clearly. For example, further experiments might focus on what is considered as a safety region in
the visual field. Perhaps it might be better to define a gradient where looking at the road directly in
front of the car is or at task-relevant objects is considered to be 100% safe, whereas looking to the
sides is less safe. Using such a gradient, the amount of time after which automation engages might
also be varied so that, for example, a “10% safety area’ uses a shorter initiation time than an ‘80%
safety area’. It should also be noted that no mirrors were used during this experiment. Drivers
usually look at the mirrors, and an improved algorithm should not classify mirror usage as a visual
distraction.

Definitions of driver distraction (see Pettitt, Burnett & Stevens, 2005) are important for reliable
driver monitoring and cross-study comparisons. Driver distraction can be separately categorized as
visual, auditory, biomechanical, and cognitive (Ranney et al., 2000). It should be noted that the
Backup and Forced systems detected visual distraction, not other types of distraction. For example,
cognitive distraction is regarded as an important contributor to crashes, yet is a concept that is
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hard to define (Young, 2012). Cognitive distraction in driving (Strayer et al., 2013) has been
discussed in different guises, including daydreaming (Galéra et al., 2012), mind wandering (Yanko &
Spalek, 2013), looked-but-failed-to-see errors (Sabey & Staughton, 1975; Staughton & Storie,
1977; Labbett & Langham, 2006), cognitive tunneling (Reimer, 2009), attention focusing (Chapman
& Underwood, 1998), loss of covert/peripheral attention via diminished functional field of view
(Crundall, Underwood & Chapman, 1999), and highway hypnosis (Wertheim, 1978). We reiterate
here that our Backup and Forced concepts cannot detect all forms of driver aberration: in reality,
drivers may drive in an unsafe manner or crash into objects even when their eyes are on the road
(Victor et al., 2018), and one should therefore not expect that the present Backup automation is a
remedy to all types of driver distraction. However, given the predominant importance of visual
information for driving (Sivak, 1996), the generally presumed eye-mind hypothesis where gaze
direction is a strong correlate of cognitive activity (Just & Carpenter, 1980), and a substantial
history of driving visual occlusion research (e.g., Senders et al., 1967; Van der Horst, 2004), adaptive
automation based on visual attention alone could reasonably be expected to offer a beneficial
contribution.

4.4.5. Realism of the secondary task

The secondary task of changing a CD during this study was chosen because it was assumed to
involve similar visual-manual loads as a number of common and risky in-vehicle tasks (e.g., texting,
reaching for a dropped object, searching within a bag or purse, handling cables of charging devices,
etc.). Participants were periodically forced to perform this secondary task at pre-defined moments
during driving. This might have felt unnatural to some of the drivers because normally, a driver
might choose a moment during driving before he or she would start a secondary task, whereas
during this study these moments were forced.

4.4.6. Mode errors and human machine interface

Because of the automatic and dynamic switching of driving task responsibility between the driver
and the automated driving system, the Backup and Forced conditions could be susceptible to mode
confusions, a well-known problem in human-automation interaction (e.g., Feldhltter, Segler &
Bengler, 2017; Sarter & Woods, 1995). A mode confusion occurs when the driver believes that the
automation is on while it is off, or vice versa (see Janssen et al., in press for a framework of mode
confusions in automated driving).

In our study, the status of the automation was communicated visually to the driver by means of a
status bar in the middle of the dashboard. However, because the secondary task imposed a visual
distraction, it was difficult for the driver to know whether the automation had taken control or not,
as predicted by the multiple resource theory (Wickens, 2002). In more complex driving tasks, where
the driver performs many head movements (e.g., looking over the shoulder, looking in mirrors), the
driver may be susceptible to mode confusion, as such conditions could cause the Backup
automation to enable itself without the driver being aware of this.

A proper human-machine interface is essential to prevent such confusions and facilitate trust in the
adaptive system. Donmez et al. (2006) found that display modality of a distraction-mitigation
feedback system had a strong effect on driver acceptance and trust. Future research could be
focused on how to best communicate the automation status to a visually distracted driver and
whether the existence of backup automation needs to be communicated at all. For example, if the
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automated driving functions are implemented in an innocuous manner (e.g., small accelerations,
minor corrections, blended inputs, etc.), automation status might even be best hidden to avoid
confusion or misuse. That is, perhaps the driver does not need to know that the automation exists
at all or when it is functioning (cf. electronic stability control, emergency enhanced braking power,
etc.).

5. Conclusions and Recommendations

In conclusion, the Backup condition shows the potential to increase safety when compared to
manual driving. A system that forces manual control back upon the driver appeared to be less safe
than normal manual driving and less accepted than a backup system.

The current systems were designed to be simple and will need to be tested in more realistic long-
lasting studies before any definitive conclusions can be drawn about the safety implications during
real-world driving, and see Kalra & Paddock (2016) for calculations indicating that hundreds of
millions of kilometers need to be driven in order to prove that automated driving technology is
safe. Further testing might focus on expanding the simulation and the algorithm to account for
other traffic, objects, emergency situations and increase fidelity by including car mirrors, and a
more realistic car interior.

Finally, we note that the Backup and Forced conditions rest on different philosophies. That is, the
Backup automation is a form of background automation (Kyriakidis etal., in press), where
automation is engaged only when the driver is measured to be distracted. The assumption here is
that, even though the automated driving system may be imperfect, automation is still better than a
visually impaired human. The Forced automation system is a form of foreground automation,
where the automation is active for most of the time but needs a human supervisor at all times. In
the Backup condition, participants could devote themselves more to the secondary task than in the
Forced condition. This difference result could be interpreted as good (because a given secondary
task is completed sooner) or bad (because it affords the ability to devote attention to the secondary
task), depending on the context of operations.

It may take many decades of technological progress until fully automated (i.e., autonomous) driving
is commercially viable (Shladover, 2016). Until that time, foreground and background automation
strategies are viable candidates to be further researched developed before wide-market
deployment on public roads.
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Chap. 4.2) Redesigning Today’s Driving
Automation Towards Adaptive Backup Control
with Situated and Implicit Interfaces

Control Warning
Modifications Information
4

In regards to the overall thesis big picture, this driving simulator experiment serves to
provide initial explorations of different variations on adaptive backup driving automation
(i.e., which triggers on/off upon detection of visual distraction/attention). Eye tracking
was used here on an applications basis but not investigated as a primary research factor
of interest Firstly, problems were confirmed for supervisors of driving automation where
more non-response errors were made to unexpected hazards than by those with full
conventional/manual control. Such results substantiate a motivating interest in
alternative functional allocations of driving automation than those conceptually similar to
what is presently being released in the automotive market. Instead adaptive backup
driving automation was seen to improve lateral control compared to manual driving
(consistent as with Chap. 4.1) and with lower levels of visual distraction and fewer non-
response errors compared to supervised automated driving. Using a scene-tied
implementation of inattention (i.e. situated) effectively reduced the number of
unnecessary alerts (i.e., without safety impact) compared to a condition where distraction
was based only on looking away. Furthermore, to mitigate potential over-reliance and
automation misuse (e.g., becoming distracted because you expect the automation to
back you up), the status display of backup automation was removed without any negative
impact on any of the present measures of safety, efficiency, performance or acceptance.

Adapted from:

Cabrall, C.D.D., Stapel, J.C.J., Happee, R. & de Winter, J.C.F. (under review). Redesigning today’s driving automation
towards adaptive backup control with situated and implicit interfaces.
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Abstract

Objective: We investigated adaptive backup designs for distracted drivers via a driver monitoring
system (DMS). Background: Combined lateral/longitudinal driving automation backup may be an
effective redesign of roles compared to assumption of human supervision of continuous
automation. However, such backup control concepts pose complications: distrust of distraction
assessment and/or misuse via over-reliance. Methods: 91 participants were assigned between-
subjects to conditions of supervised automated driving and conventional driving with different
forms of DMS-based adaptive backup control. We compared supervision with and without a hand-
on-steering-wheel requirement, an ‘eyes-only’ DMS detecting visual distraction against an ‘eyes-
plus-situation’ DMS requiring the additional presence of a course/collision conflict, and an ‘explicit’
backup providing display of automation status against an ‘implicit’ backup without notification or
driver awareness of the automation. All participants performed an NDRT (visual N-back) for the
entire driving trial Results: Automated driving increased visual distraction and non-responses to
hazards compared to backup and conventional driving. A hand-on-the-wheel requirement
improved response generation compared to no-hands-on-the-wheel. Across an entire driving trial,
the backup improved lateral performance compared to conventional driving. Without negatively
impacting safety, the eyes-plus-situation DMS reduced amounts of unnecessary automated
control compared to the eyes-only DMS conditions. Eyes-only assessment produced low
satisfaction ratings, whereas eyes-plus-situation satisfaction was on par with automated driving.
Removing indication of driving automation made no appreciable difference. Conclusions: We
evidenced the preliminary feasibility of driving automation to serve as a situated and implicit
backup safety system. Application: Redesigns of driving automation with eye-based DMS can
enable adaptive control benefits.
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1. Introduction

1.1. Fatal firsts, conflicting expectations, and potential re-starts in the race to self-
driving

The present experiment explores the human factors problem of expecting people to effectively
supervise iterative levels of automated/autonomous vehicles (AVs) (e.g., SAE 2018) with several
solutions. Given the controversial nature of anticipated AVs benefits (e.g., De Winter, in press;
Bhuiyan, 2018), we take it upon ourselves to not only motivate and test our proposed solutions
(situated, implicit, adaptive backup driving control), but to first motivate and test our problem
expectations (inattention in human supervision of driving automation) as well as others’ status quo
solutions (keeping a hand on the steering wheel while supervising). So first, brief clarification of
problems with the current way forward is needed and substantiated as motivation of the present
counter-position detour.

News reports of the first people killed in AV crashes illustrate new levels of inattention risks while
driving (Fung, 2017; Coppola & Frank, 2018). Because general Al technology to replace human
driver flexibility is not yet proven despite contrary public opinion (e.g., Euro NCAP, 2018 highlights
‘stark contrasts’), it is likely that the public will become too complacent in their supervision over
AVs. Furthermore, instructions to monitor AV technology are inconsistent with observed would-be
consumer behaviors (Carsten et al., 2012; Jamson et al., 2013; Large et al., 2017) and value
proposition/preference (Cyganski et al., 2014; Bertoncello & Wee, 2015). Even if people wanted to
supervise driving automation, many decades of human factors research, from Mackworth (1950) to
Hancock (2017), have suggested risks when humans monitor automated (e.g., monotonous, self-
regulating, removed, etc.) processes over extended periods of mostly successful operation. Such
risks have recently been substantiated by reviews specific to the driving domain (e.g., Cabrall et al,,
2016a; Goncalves et al., 2017). A potential reason why ironies of automation may expand rather
than eliminate problems with human operators (e.g., Strauch, 2017), is that humans are prone to
unconscious switching/trading of attention rather than the even-handed attentional sharing desired
for supervisors of automation. Instead, cost-free multi-tasking has been generally ousted as a
‘myth’ (Loukopoulos et al., 2009; Rosen, 2008).

For human-machine teaming, there can be more rational “first-steps” than full-time driving
automation that must only assume human supervisory oversight. Driver monitor systems (DMS) can
warn against supervisory inattention and/or trigger transitions of control (ToC) in new adaptive
function allocation designs (e.g., Petermeijer, et al., 2015; Cabrall et al., 2018a). Generally, human
errors in driving (e.g., the often repeated over 90% of fatal accidents statistic from NHTSA, 2008)
should be recognized as exception cases (because accidents, and fatal ones at that, are by
definition exception cases already) and to thus motivate more targeted solutions (i.e., at periodic
events of degraded human driver attention) rather than full system re-hauls of unknown
consequences and extra risks. The present introduction proposes a reversal of AV technology away
from continuous operation and towards DMS-triggered adaptive backup. In the remainder of the
paper, we extend previous research with experimental comparisons of various interface designs for
how that adaptive backup system might be conceived. We compare regular eye-tracking-based
DMS assessments of distraction (‘eyes-only’) to scene-tied DMS (‘eyes-plus-situation’) taking driving
conditions into account. We compare ‘explicit’ DMS informing drivers when backup is activated to
‘implicit’ DMS without notification or driver knowledge of the automated system.
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1.2. Driver monitor system (DMS) solutions

The U.S. National Transportation Safety Board (NTSB) issued new safety recommendations on
September 12, 2017 (NTSB, 2017) for manufacturers to ‘develop applications to more effectively
sense the driver’s level of engagement and alert the driver when engagement is lacking while
automated vehicle control systems are in use’.

1.2.1. Hand placement

As a basic first form of DMS in SAE Level 2 AVs, many manufacturers require the driver to maintain
hand contact with the wheel (Audi, BMW, Mercedes, Tesla, and Volvo). From voluntary safety self-
assessments collected by NHTSA (2018), multiple ‘fully’ autonomous driving vehicles (Apple, Ford,
GM, and Uber) can also be seen to currently require safety-driver hand placement on/near the
wheel during on-road test/development. Beyond faster responses from having closer positioning,
hand-on-wheel placement may yield risk detection and memory benefits underlying the successful
generation of a response. Positioning of hands-on-the-wheel has been associated with risk
perception rather than only fatigue or personal style preferences (Walton & Thomas, 2005). In
physical rehearsal of movements (e.g., sports, dance, etc.), memory is tightly coupled to motor
processes: ‘Motor practice is associated with the formation of elementary motor memories’ (Stefan
et al., 2008). The primary motor cortex has been shown to hold short-term representations of
recently practiced movements with encoded kinematic details (Classen et al., 1998, 1999; Butefisch
et al., 2000).

1.2.2. Adaptive backup control

Previous human factors research has suggested an industrial self-affliction of vigilance problems
where humans must supervise automation: Hancock (2013, 2017) described the problem as
‘iatrogenic’ and Parasuraman and Riley (1997) called it an ‘abuse’ by creators of automation. Thus,
with more effectively designed DMS, it is worth considering alternatives to the controversial
function allocation that seeks to recast human drivers into supervisors of full-time automated
driving. Given that the majority of human driving is successful and safe, a more rational step would
be to support periods of degraded human driver attention in a selective manner. The general
notion for the reversal of continuous driving automation implementations towards event-driven
backup is supported by prior human factors research that addresses degraded human vigilance in
supervision of automation by use of shorter durations of supervision and schemes of adaptive
control (e.g., Parasuraman & Wickens, 2008; Sheridan & Parasuraman, 2005; Parasuraman et al.,
1996; Scallen et al., 1995). In particular for driving, Petermeijer et al. (2015) found benefits of
event-driven backup (bandwidth feedback) to avoid negative aftereffects compared to continuous
shared-control automation when automation is unexpectedly removed. Furthermore, a driving
simulator study of Cabrall et al. (2018a) found that, in the presence of a distraction activity, a
backup automation system performed the best (decreased lateral errors, lower self-reported
workload, and higher levels of acceptance) in comparison with conventional driving control and a
full-time driving automation system that automatically disengaged itself upon detecting driver
distraction (e.g., a concept consistent with current forms of on-market systems).

The simulation visuals of Cabrall et al. (2018) was minimalistic (i.e., only road and grass) and hence
the present experiment aims to replicate adaptive backup control benefits with increased
environmental complexities and to explore further system design opportunities. Monotonous
environments may aggravate inattention issues in supervision over automation: with less in the
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driving environment (especially compared to real life), participants might be inclined towards
greater amounts of non-driving related task (NDRT) engagement. Next, we describe additional
functional and interface design considerations to avoid human-automation interaction trust issues
that might likely arise within such a concept of adaptive distraction-induced backup driving
automation.

1.2.3. Situated assessments of distraction

An assessment of driver distraction is expected to be insufficient by looking only at the driver, as
such approach may vyield false alarms and ‘cry-wolf” effects. Distraction assessment should not be
limited to an internal human-centric focus but could extend its perspective by looking outward of
the vehicle for relevant contextual considerations. Accordingly, we propose a more conservative
implementation strategy for classifying distraction (called ‘situated’ adaptive automation). This
approach is not yet common in the automotive AV market but is not without precedent (see Hof,
2016; Simonite, 2017). In addition to diversion of attention away from driving, the driver distraction
definition of Hedlund et al. (2006) included resource competition and increases in risk, and
highlighted their implication that ‘distractions are affected by driving conditions and situations’.
Beyond interrogating if a driver is looking away from the road to an NDRT, a DMS might ask if the
driver is looking away too much given the present circumstances (cf., Minimum Required Situation
Awareness, Kircher & Ahlstrom, 2017). This paper extends theoretical recommendations with an
applied research investigation for benefits and operational feasibility of situated assessments in a
distraction-induced driving automation backup concept. Immediate lateral and longitudinal control
demands form the inner-core of descriptive hierarchical driving models (e.g., Merat et al., 2019;
Michon, 1978, 1985), and so seem a reasonable level to implement practical situated assessments
of attention.

1.2.4. Implicit backup operations

If people believe the system will back them up, they may allow themselves to become distracted
more often with expectation for backup from the automation (i.e., misuse through over-reliance).
While the notion of appropriate feedback has been a mainstay constituent of good human factors
design (e.g., Norman, 1990) and for advanced driver assistance systems (Seppelt & Lee, 2007), it
does not necessarily imply that feedback is needed for all things at all times. An avenue for reducing
operator over-reliance on SAE Level 2 driving automation might be to make its operation less
apparent (i.e., ‘implicit’ adaptive automation) rather than providing ‘explicit’ information of system
existence/activation. Reasonably, it is harder to misuse something (e.g., Parasuraman & Riley, 1997)
that you do not know is there. Furthermore, explicit DMS information during a period of detected
operator distraction may increase workload and unwanted visual behaviors especially if the HMI is
confusing or unwanted/un-trusted. Jaguar Land Rover’s head of safety, Phil Glyn-Davies, has
proposed in Bird (2018) that ‘the best active safety system is one where you’re not even aware of its
presence’.

1.3. Research questions and aim

In summary, background evidence suggests healthy skepticism for the capabilities of current on-
market AVs and of human supervisors of continuous driving automation. Tempting new
opportunities for increased levels of distraction (e.g., with highly engaging/demanding NDRTs) are
likely and can have fatal consequences. We assume distraction to be dangerous when it reaches
levels that degrade safe vehicular control such as an ability to respond to hazards and to stay within
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a target lane of travel. Thus, the present paper seeks to assess joint system outcomes in terms of
human behavior and vehicle performance when DMS and driving automation components are
given a different human system integration (i.e., via various designs of event-driven periodic backup
support).

SAE Level 2 AV technology (simultaneous automatic lateral and longitudinal control) as exists today
might be re-branded and re-implemented more towards a safety rather than a convenience
feature—in other words, away from ‘automation always/mostly replaces the human driver’ and
towards ‘automation backs up the human driver as needed’. In order to do so, new functional and
interface design considerations are needed and worth exploring. The present paper addresses 5
related research questions (RQ) embedded within a single experiment.

(1) RQ1—Are drivers susceptible to dangerous levels of distraction with SAE Level 2?

(2) RQ2 — Does placing a hand on the wheel improve driver supervision of automation?

(3) RQ3 —Is adaptive backup a safe and acceptable alternative to continuous automated driving?
(4) RQ4 — Can situated criteria safely reduce driver state monitoring from over- triggering?

(5) RQS5 —Is the status of backup driving automation necessary to display to drivers?

2. Methods
2.1. Participants

The experiment was completed by 91 university students (26 female, 65 male) aged between 21
and 34 years (M = 23.51, SD = 2.17) with a majority (73%) indicating a driving frequency between a
weekly and monthly basis. Overall, participants had a driving license for about four and a half years
(M = 4.48, SD = 2.70). This research complied with the American Psychological Association Code of
Ethics and was approved by the Human Research Ethics Committee of the TU Delft. Informed
consent was obtained from each participant.

2.2. Apparatus

The driving simulation hardware consisted of the Logitech G27 USB gaming steering wheel and
pedals. The software was programmed within MathWorks Simulink (2017b) model-based design
environment and TASS International PreScan simulation (release version 7.4) which is ‘a physics-
based platform that is used in the automotive industry for the development of Advanced Driver
Assistance Systems (ADAS) that are based on sensor technologies such as radar, laser/lidar, camera
and GPS’ (TASS International, 2019). The simulated driving visuals were displayed on an NEC
MultiSync EA 243wm monitor with a 52 cm x 33 cm viewable image at 1920 x 1200-pixel resolution
that was placed approximately 65 cm from participants’ eyes. A SmartEye DR120 remote eye
tracker was used with its cameras concealed behind a black bar beneath the simulation display
monitor. Figure 4.2.1 depicts the overall apparatus.
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Figure 4.2.1. Driving simulator arrangement including a gaming steering wheel attached to the edge of the table
(bottom), floor pedals (not shown), driving simulation visuals displayed on a monitor (middle), and secondary task on a
laptop with an external mouse (right).

2.3. Simulated level of driving automation

A version of SAE Level 2 driving automation was implemented in the driving simulator. The software
kept the vehicle in the middle of the right lane at a constant speed of 70 km/h. Additionally, the
vehicle automatically reduced its speed to maintain spacing as needed behind a slower lead vehicle,
and returned to the target speed of 70 km/h when that slower lead vehicle moved away from the
lane of travel. The driving automation included a stipulation that the participant must monitor and
correct the automated driving for any dangers/errors.

2.4. Driver monitoring system using eye-tracking

Individual MathWorks Simulink architectures were built and deployed on different computers to
model the driving simulation with its automated control functions separately from the DMS. These
two systems were integrated for real-time operation by use of standard UDP communication
channels. The DMS was designed to function by receiving participant gaze direction and eyelid
opening information as inputs from the eye tracker to assess several driver states of distraction,
drowsiness, and/or cognitive overload across different time period criteria specific to each state
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and towards an elevated state of ‘aberrance’ (Cabrall et al.,, 2016b). For the purposes of this
experiment, the DMS was used to continuously assess whether the participant was looking at the
screen or not (as with Cabrall et al., 2018). Classification of visual distraction was implemented by
similar mechanisms as in Cabrall et al. (2018). A prior state of attentive/distracted held until the
threshold was met to change that state: consequently, the participant was always classified as
either being attentive or distracted at any given point in time across the full driving trial. The
distraction threshold approximated a 2-second criterion which has generally been accepted from
the results of widely-cited driver distraction research (Klauer et al., 2006; NHTSA, 2013) and
consequently frequently corroborated (e.g., Ryu et al., 2013). For example, Rockwell (1988, p. 322)
states: ‘For years researchers studying car following and eye movements have found a 2 second rule,
i.e., drivers are loath to go without roadway information for more than 2 seconds (and rightly so)’. In
the present study, distraction states were applied after 3 consecutive seconds of looking away from
the simulation display monitor (with a reset after 4 consecutive seconds of looking forward again).
It should be noted that these thresholds were intended to be half as large, to be around the same
levels as suggested by previous research (Kircher & Ahlstrom, 2009; Seaman et al., 2017; Seppelt et
al., 2017), but a system integration error transpired where the downscaling of the eye-tracker
measurement frequency (120 Hz) as limited by the driving simulation resolution (60 Hz) was not
properly accounted for in the classification algorithm.

It should also be noted that previous research suggests that exact durations of off-road glances for
classifying distraction could be variable and might not actually be as problematic as is an increase in
the frequency of longer duration glances (see Liang et al., 2014). For example, Rockwell (1988, p.
324) states that drivers ‘will pay the price in more glances but not longer glances’. Attentional
buffers of between 2.5 and 5.5 seconds for off-road glances are suggested by results of Godthelp et
al. (1984), and between 2 and 4+ seconds of on-road glances from Samuel and Fisher (2015) and
Glaser et al. (2016), and even upwards of between 7 and 12 or beyond 20 seconds for establishing
aspects of roadway situation awareness from Lu et al. (2017). Furthermore, our methodological
error in the timing of visual distraction/attention classification should not invalidate our present
results, as our results are presently analyzed in a conservative manner in terms of relative
comparisons between conditions (e.g., percentage) rather than in an absolute number of seconds.

2.5. Adaptive transitions of control (automated control as “Backup”)

Two types of adaptive driving automation backup were evaluated via an experimental DMS. In one
case (‘eyes-only’), detections of driver visual distraction directly activated automated driving control
functions (i.e., lateral control via steering the vehicle to the center of the right lane, and
longitudinal control by gradually slowing down). In the other case (‘eyes-plus-situation’), the
operating routine required both the detection of driver distraction and simultaneous
course/collision conflict predictions to activate the automated control functions. In either operating
case, conventional driving control (human operation of steering wheel, throttle, and brake) was re-
activated when all criteria for automated driving control was no longer met.

Course/collision conflict predictions were assessed with simulated radars for road departure or
collision with an object. The simulated lateral and longitudinal radars each interrogated a fixed
distance ahead of the vehicle (approximately 20 and 100 meters, respectively) to determine a
binary state of course/collision conflict. Assuming a traveling speed of 70 km/h (a typical speed
targeted in our simulation), the look-ahead positioning of these radars represented time budgets of
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approximately 1 and 5 seconds for course and collision conflicts respectively. The present conflict
predictions were not yet capable of dynamically adjusting their ranges based on actual driven speed
fluctuations. With only a fixed look-ahead distance, actual speeds slower/faster than 70 km/h
respectively increased/decreased the time budgets, and diminished/inflated the frequency of
alerting and thus also the potential for backup automated driving control.

If the automatic transition of control (ToC) status was displayed (i.e., in the automated driving and
explicit backup conditions), it appeared on the right side of a virtual dashboard and read either as
‘Normal Driving’ (green background) or ‘Auto Backup Control’ (red background). In the implicit
backup conditions, the automation status was not shown, and participants were led to believe that
they were driving conventionally only (see Table 4.2.1).

Table 4.2.1. Experimental conditions (n = 13 per group).

Condition

Automation functionality

Task instructions

EXP1. Continuous automation

—no hands
https://youtu.be/hTHObgyHKSI

Automated simultaneous longitudinal

and lateral control for the entire drive.

Automated Driving: No hands
needed on the wheel, no feet are
needed on the pedals, but you must
monitor and correct the automated
driving for any dangers/errors

EXP2. Continuous automation

—one hand
https://youtu.be/7ulfPk5Do Y

Automated simultaneous longitudinal

and lateral control for the entire drive.

Automated Driving: One hand
needed on the wheel (just to touch,
not to steer), no feet are needed on
the pedals, but you must monitor
and correct the automated driving
for any dangers/errors

EXP3A. Backup

—eyes plus situation assessment with
explicit automation status
https://youtu.be/SIUPseabxwU

Backup simultaneous longitudinal and
lateral control if the participant was
visually distracted and the situation
was deemed unsafe (detected
course/collision conflict prediction).

Manual Driving: but driving
automation (collision avoidance,
middle of right lane) may
automatically turn on and off
periodically to help you (it decides
when/where/how long and how
much). It does this from looking at
the road situation and at your eyes.
The automation is not perfect, so it
cannot be relied upon to do all of the
driving. Automation status is shown
on screen in green=off/red=on.

EXP3B. Backup

—eyes only assessment with explicit
automation status
https://youtu.be/6BS1w5SuViHk

Backup simultaneous longitudinal and
lateral control if the participant was
visually distracted.

Manual Driving: but driving
automation (collision avoidance,
middle of right lane) may
automatically turn on and off
periodically to help you (it decides
when/where/how long and how
much). It does this from looking only
at your eyes. The automation is not
perfect, so it cannot be relied upon
to do all of the driving. Automation
status is shown on screen in
green=off/red=on.

EXP4A. Backup

— eyes plus situation assessment

Backup simultaneous longitudinal and
lateral control if the participant was

This is a manual driving condition
with eye tracking that we need to
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Condition

Automation functionality

Task instructions

with implicit automation status
https://youtu.be/plly S4YIZ8

visually distracted and the situation
was deemed unsafe (detected

course/collision conflict prediction). No

automation status was shown on the
screen.

use as a comparison against other
subjects who use automation.

EXP4B. Backup Backup simultaneous longitudinal and Same as 4A
— eyes only assessment with implicit lateral control if the participant was

automation status visually distracted. No automation
https://youtu.be/SrxcPauPyXE status was shown on the screen.

EXP4C. Conventional driving No automation; manual driving only. Same as 4A

No automation status was shown on
the screen.

—No automation
https://youtu.be/gwrr5796EVI

2.6. N-back secondary task

Our NDRT shared the expressed motivations of automotive research from Mehler et al. (2011): ‘to
induce varying levels of demand so that the impact on participants can be observed’ (p. 3). We
aimed to place the participant in a dual-tasking state whereby he/she would be challenged to
balance engagement in an activity unrelated to driving in competition with driving activity and
responsibility. Because distractions involving reaching and searching have been implicated as some
of the most detrimental in naturalistic vehicular safety studies (Hickman, 2015), our specific
implementation of the N-back task was in a graphical user interface (GUI) format (see Figure 4.2.2)
to add visual-manual demands to conventional cognitive demands (which have previously been
induced most conventionally along only the auditory channel). It was also felt that this modification
of the N-back task might better resemble real-life attentional demands such as with continuous
time-response critical visual-manual tasks (e.g., mobile phone instant-messaging) but in a
controllable manner and with empirical research precedence. Through pilot studies, it was
determined that an immediate ‘zero-overlap’ response level of N-back in the GUI was sufficient to
impose resource competitions on driving performance in our simulator while participants were still
able to achieve near perfect scores when performing that N-back in an isolated training session. It
should be noted that for translation purposes, it was easier to explain and label the task as a ‘1-
back’ for our non-native English speaking participants although the task was the conceptual analog
of the ‘O-back’ as described within Mehler et al. (2011).

Our visual N-back application is available online (Cabrall, 2017). Demonstration videos by an
experimenter are available from URLs in Table 4.2.1. As shown in Figure 4.2.1, the placement of the
N-back GUI was to the right (about 35-45 degrees) and slightly below the dashboard of the driving
simulator by a few inches and within arms-reach (e.g., in rough positional correspondence to a
center-console display, although participants used a mouse to input their responses). The pacing
involved an equivalently matched target display and response allotment time that randomly varied
between 1 and 2.25 seconds (at 0.25-second resolution). The same scripted set of pre-randomized
timings was used for every participant. The participants were informed that they would be scored
on the N-back task with correct answers receiving +1 point and incorrect/missed answers receiving
-1 point. Auditory feedback included a ‘beep’ for a correct answer, a ‘buzz’ for an incorrect answer,
and silence for a missed answer. Otherwise, scores were not displayed or communicated.
Participants were not told what they should prioritize, other than that they should do their best to
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simultaneously balance both their driving/supervision responsibilities (see Table 4.2.1) along with
the N-back task.

Taret Value is either: 1 back, 2 back, or 3 back

+ from 1 time ago

Target Value:

from 2 times ago

from 3 times ago ? ? ? ? ?

hide/show answers

Start

1 2 3

p00  Participant Number 4 5
EXP00 Condition Code

Exit 7 8 9

Figure 4.2.2. A modified N-back task was used as a secondary task presented via a graphical user interface (GUI).

2.7. Conditions and procedures

A between-subjects experiment was conducted. Participants were randomly allocated to one of
seven experimental conditions, as shown in Table 4.2.1. Upon examination of the results, two
participants were removed from the analyses. A participant from EXP3A was removed because his
experimental condition was mistakenly inconsistent with his provided instructions (i.e., wrong
condition). A participant from EXP4C was excluded due to an inability to maintain nominally
sufficient driving control in the simulator. Demographic details per experimental condition are
provided in Table 4.2.2. Across the randomly assigned groups, a large degree of demographic
similarity was obtained (except for condition 4C where a lower proportion of females was
represented).
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Table 4.2.2. Overview of demographics per experimental condition (after one participant exclusion each from EXP3A and
EXP4C).

Condition Male Female  Average  Average driving Average age
age frequency” first license
EXP1: continuous automation — no hands 8 5 23.46 3.85 18.97
EXP2: continuous automation — one hand 9 4 23.31 4.08 18.71
EXP3A: backup automation,
eyes + situation, explicit 8 4 23.17 4.36 18.55
EXP3B: backup automation,
eyes only, explicit 9 4 23.92 4.17 18.90
EXP4A: backup automation,
eyes + situation, implicit 9 4 23.08 4.00 18.76
EXP4B: backup automation,
eyes only, implicit 10 3 23.46 3.46 18.73
EXP4C: conventional driving, no automation 11 1 24.25 3.75 18.50

f1= every day, 2 = four to six days a week, 3 = one to three days a week, 4 = once a week to once a month, 5 = less than
once a month, 6 = never.

Separate training exposure periods (about three minutes) were given for the driving simulation and
the N-back task before simultaneous tasking was required in the experimental drive. After
completion of the experimental drive, participants were presented with an on-screen response
sheet that probed the participant’s self-perception of the success and effort spent regarding
aspects of safety, efficiency, and the N-back task, of the full driving trial, as well as (if applicable)
satisfaction with the driving automation. The specific spatial layout and instructions of the
subjective response sheet items are presented in Figure 4.2.3.

Subjective Response Sheet
Instructions:

Regarding the last driving trial session you just experienced,
Please TYPE IN a number for each of the items below

How (un)successful was the ... ? How little/much effort did you spend on ... ?
(fail) 1 2 3 4 5 (success) (ow 0 1 2 3 4 5 6 7 8 9 10 (high)
Safety: Safety:
Travel Time/Speed: Travel Time/Speed:
N-back Task Performance: N-back Task Performance:

If you experienced automation in the last driving trial, ...

How (un)pleased were you with the automation? paricpanttumbor OO
(unhappy) 0 1 2 3 4 5 6 7 8 9 10 (happy) Condtion Code: - EXPO0
SAVE

Figure 4.2.3. On-screen post-trial subjective questionnaire.
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2.8. Driving route, timing and hazards

All experimental drives lasted about 2m45s. The route featured a straight road segment (0-40 s), a
left curve (40-50 s), a straight road segment (50-70 s), a right curve (70-80 s), a straight road
segment (80-120 s), a right curve (120-130 s), and a straight road segment (130-165 s). To test
driver attentional engagement in the driving task, in each drive two surprise stationary obstacles
were presented. The automation was programmed to drive through these objects as simulated
detection errors. The objects had the form of a fallen tree and a stalled motorcycle (see Figure
4.2.4) presented at around 75 and 133 seconds, with response time-budgets of approximately 5
and 2 seconds, respectively. All of the aforementioned time descriptions are drawn from EXP1/2, in
which the speed was computer-controlled (see Table 4.2.1); otherwise, speed variations affected
the timing of route progress. The simulation had to be manually terminated because the driving
automation implementation would not function beyond its scripted nominal trajectory time-series.
A common data measurement cut-off point was established at 147.75 seconds (8865th frame at 60
Hz) for all seven conditions as this was the earliest point the simulation was manually terminated by
the experimenter (i.e., participant 61 in EXP4A).

Figure 4.2.4. Stationary obstacles in the driving simulation appearing first as a fallen tree (left) after around 1 minute of
driving and second as a stalled motorcycle (right) after around 2 minutes of driving.

2.9. Measures

Measures taken at the discrete hazards events. In EXP1/2, plots of steering and brake inputs were
manually inspected for conventional driving activity (e.g., non-constant values) within the period
between obstacle appearance and contact. In EXP3A/3B/4A/4B, the experimenter took subjective
note of participant awareness of the obstacle within the same period, and the objective status of
automation (on/off) and participant eye position (on/off screen) were recorded at the point of any
contact.

Measures taken continuously across full trial. Visual distraction was measured as the percentage of
time the DMS classified a state of visual distraction, registering a “1” for distracted after 3
consecutive seconds of looking off the driving simulation screen and a “0” for attentive after 4
consecutive seconds of looking on the driving simulation screen. NDRT performance was taken as a
percentage of an aggregate final score at the end of a driving trial divided by the number of shown
targets during that trial; one point was given for each correct response, and one point was
subtracted for each incorrect or missed response. Automated driving status was measured as the
percentage of time the vehicle was under automated control. Lateral performance was assessed as
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road departures whenever the front left and/or right corner of the car was positioned above the
grass area alongside the roadway. The car was 5.20 meters long and 2.03 meters wide, and the
road was 6.4 meters wide with two lanes of 3.1 meters and two shoulders of 0.1 meters.
Longitudinal route progress was calculated in meters traveled along the driving route. Perceptions
of success (on a scale from 1 to 5) and effort (on a scale from 0 to 10) were each probed separately
and in regards to the aspects of safety, travel efficiency (time/speed), and the N-back task
performance at the end of each driving trial (Figure 4.2.3). Lastly, for all conditions containing a
visible status display of automated control, participants were asked to rate their satisfaction on a
scale from 0 to 10 (Figure 4.2.3).

2.10. Comparisons for each Research Question

Generally, the dependent measures could be captured and applied across the different research
question comparisons (RQ1-5). However there were exceptions where certain measures would not
make sense to apply, and some key measures had higher conceptual relevancy within a particular
comparison than for others. For example, because the automation was active for the entirety of
EXP1, measures of lateral and longitudinal control, as well as the proportion of time with activated
driving automation, were not meaningful for this condition. Similarly, satisfaction with the
automation could not be assessed for EXP4C (because this condition did not have any automation)
or for EXP4A/4B (because participants were not told that this condition had any automation).

For RQ1, ‘Are drivers susceptible to dangerous levels of distraction with SAE Level 2?’ the conditions
EXP1 (Automation — no hands) and 4C (Conventional Driving — No Automation) were compared. The
key objective measure here was the generation of a response to the hazardous obstacles, and the
key subjective measures were perceived effort for time/speed efficiency of travel and perceived
success with the N-back task. Supporting measures included the amount of objective visual
distraction and N-back task performance.

For RQ2, ‘Does placing a hand on the wheel improve driver supervision of automation?’ an
improvement from EXP1 was sought by comparing EXP2 (Automation — one hand) with EXP1
(Automation — no hands). The key measures were thus the same as RQ1. Satisfaction with
automation was also of interest regarding a potential detriment to end-user experience for having
to keep one hand on the wheel.

For RQ3, ‘Is adaptive backup a safe and acceptable alternative to continuous automated driving? a
combination of all adaptive backup driving automation conditions (EXP3A/3B/4A/4B) was compared
against a combination of all continuous automation conditions (EXP1/2), as well as against
conventional driving (EXP4C). Key objective measures of interest included amounts of visual
distraction and N-back task performance between EXP1/2 vs. EXP3A/3B/4A/4B, and the lateral
performance measure of road departures between EXP3A/3B/4A/4B and EXP4C. Key subjective
measures included perceptions of success/effort with the N-back task and perceived safety
success/effort. Supporting measures included a measure of satisfaction with the automation,
perceived success/effort spent on efficiency, and hazard collisions.

For RQ4, ‘Can situated criteria safely reduce driver state monitoring from over-triggering?’ the set of
situated adaptive automation conditions (EXP3A/4A) were compared against the set of human-
centric adaptive automation conditions (EXP3B/4B). The key objective measure was the amount of
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automated driving control and its consequential impact regarding efficient travel (longitudinal
progress) in conjunction with safety (road departures). Key subjective measures were perceptions
of success/effort for both safety and efficiency and satisfaction with the automation. Supporting
objective measures included NDRT scores, amount of visual distraction, and hazard collisions, as
well as subjective perceptions of success/effort on the NDRT.

For RQ5, ‘Is the status of backup driving automation necessary to display to drivers?” the set of
implicit adaptive automation status conditions (EXP4A/4B) was compared to the set of explicit
status conditions (EXP3A/3B). Visual distraction, NDRT performance, and proportion of automated
control were key objective measures of over-reliance. Road departures and hazard collisions were
key objective measures of safety. Trade-offs in perceptions of success/effort for safety vs. the NDRT
were key subjective measures. Supporting measures included longitudinal progress performance
and perceptions of success/effort for efficiency.

3. Results

Overall, our present experimental design included six objective dependent measures and seven
subjective dependent measures and seven conditions as previously described. Data summaries of
the measures across conditions are provided in Table 4.2.3, Table 4.2.4, Figure 4.2.5, and Figure
4.2.6. All inferential statistics are given in Table 4.2.5 for one-way ANOVA comparisons between
EXP1 (no hands), EXP2 (one hand), and EXP4C (conventional driving); in Table 4.2.6 for t-test
analyses to compare adaptive backup driving conditions as a set (EXP3A/3B/4A/4B) against
continuous supervised automation conditions as a set (EXP1/2); and in Table 4.2.7 for two-way
ANOVA comparisons between the different levels of backup design: assessment criteria (eyes-only
vs. eyes-plus-situation) and interface display (explicit automation states vs. implicit automation
status).

Table 4.2.3. Overview of responses made to hazard obstacles in the EXP1 and EXP2 conditions

n Condition Hazard Order, Content, No Response: Response: Response:
Elapsed time response Steer Brake Steer &
only only brake
13 EXP1: Automation —no hands 1% tree, 60s 10 2 0 1
13 EXP1: Automation — no hands Z”d, motorcycle, 120s 2 7 1 3
13 EXP2: Automation — one hand 1% tree, 60s 2 11 0 0
13 EXP2: Automation —one hand an, motorcycle, 120s 2 10 0 1

Note: Non-response events were presently ambiguous in all experimental conditions containing some level of
conventional control inputs due to inability to isolate steering and/or pedal inputs specifically intended for hazard
avoidance (i.e., EXP3A/ 3B/4A/4B/4C).
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Table 4.2.4. Overview of collisions and circumstances with hazard obstacles in the EXP3A, 3B, 4A, 4B, 4C conditions

n  Condition Hazard Order, Collision  Conventional Eyes Not
Content, control Away Tryin
Elapsed time (automation (off- g
off) screen to
) Avoid
#
12 EXP3A: backup, eyes + situation, explicit 1% tree, 60s 11 2 1 2
12 EXP3A: backup, eyes + situation, explicit Z”d, motorcycle, 120s 6 4 0 0
13 EXP3B: backup, eyes only, explicit 1%, tree, 60s 4 0 4 0
13 EXP3B: backup, eyes only, explicit Z”d, motorcycle, 120s 2 1 0 0
13 EXP4A: backup, eyes + situation, implicit 1% tree, 60s 9 1 2 1
13 EXP4A: backup, eyes + situation, implicit Z"d, motorcycle, 120s 7 5 2 0
13 EXP4B: backup, eyes only, implicit 1% tree, 60s 6 2 3 0
13 EXP4B: backup, eyes only, implicit 2”d, motorcycle, 120s 0 n.a. n.a. n.a.
12 EXPAC: conventional driving,
no automation lSt, tree, 60s 0 n.a n.a n.a
12 EXPAC: conventional driving,
no automation 2”d, motorcycle, 120s 0 n.a n.a. n.a

# . . o .
as per experimenter notes via subjective observation.
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3.1. RQ1
‘Are drivers susceptible to dangerous levels of distraction with SAE Level 2?’

No collisions occurred in the conventional driving condition (EXP4C) for either the first or the
second obstacle (Table 4.2.4). With automation without any hands on the wheel (EXP1), 10 out of
13 participants (77%) did not make any response to the first obstacle and 2 out of 13 participants
(15%) made no response to the second obstacle (Table 4.2.3). Bonferroni-corrected alpha showed
that perceived effort spent on travel time/speed was not significantly lower in EXP1 than in EXP4C
(Table 4.2.5). Perceived success on the NDRT was not significantly higher in EXP1 than in EXP4C
(Table 4.2.5). Objectively, participants exhibited significantly higher levels of visual distraction and
improved NDRT scores in EXP1 than in EXP4C (Table 4.2.5).

3.2. RQ2
‘Does placing a hand on the wheel improve driver supervision of automation?’

For the initial hazard, there were 10 non-responses in EXP1 (no hands) compared to 2 non-
responses in EXP2 (one hand) (Table 4.2.3). However, non-responses to the second hazard were
equally frequent (2 non-responses each) in the EXP1 and EXP2 conditions (Table 4.2.3). Perceived
effort spent on travel time/speed and perceived success on the NDRT were not significantly
different in EXP2 than in EXP1 (Table 4.2.5). Objective amounts of visual distraction and NDRT
performance scores were also not found to differ significantly between EXP2 and EXP1 (Table
4.2.5). Satisfaction with the automation did not significantly differ between EXP2 and EXP1 (Table
4.2.6).

3.3. RQ3

‘Is adaptive backup a safe and acceptable alternative to continuous automated
driving?’

Visual distraction and NDRT performance scores were significantly lower in the set of adaptive
backup conditions (EXP3A/3B/4A/4B) in comparison to the set of continuous supervised automated
driving conditions (EXP1/2) (Table 4.2.6). Road departures were also significantly lower in
EXP3A/3B/4A/4B compared to conventional driving (EXP4C) (Table 4.2.6). Participants in
EXP3A/3B/4A/4B reported significantly lower effort and success with the NDRT compared to
EXP1/2 (Table 4.2.6). Significant differences were not found between EXP3A/3B/4A/4B and EXP1/2
in regards to perceived safety effort, perceived safety success, or satisfaction with the automation
(Table 4.2.6). For perceived travel time/speed, EXP3A/3B/4A/4B participants reported significantly
higher effort and significantly lower success than EXP1/2 (Table 4.2.6).

Compared to the rate of non-response errors to hazards in EXP1/2 (16 of 52 possible, 31%) (Table
4.2.3), a lower rate was observed of participants not noticing or not trying to respond to the
hazards in EXP3A/3B/4A/4B (3 out of 102 possible, 3%) (Table 4.2.4). Five hazard collisions occurred
in the adaptive backup conditions with unobserved participant awareness. 37 other hazard
collisions occurred in the adaptive backup conditions but with explainable causes rather than being
attributable to complacency errors: 19 when the participant was observed to be actively trying to
avoid the hazard (i.e., unsuccessful in regaining control from the automation), and 18 due to
simulation artifacts of DMS-control malfunctions where there was an automatic system mismatch
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between states of system-classified distraction and system-generated control authority (i.e.,
conventional driving allowed while being classified as distracted, or automated control retention
while being classified as non-distracted).

3.4. RQ4

‘Can situated criteria safely reduce driver state monitoring from over-triggering?’

In the eyes-plus-situation inattention assessment conditions (EXP3A/4A), the proportion of
triggered automated backup control was significantly less than in eyes-only conditions (EXP3B/4B)
(Table 4.2.7). Consequently, longitudinal progress was significantly greater in EXP3A/4A than in
EXP3B/4B (Table 4.2.7). Objectively, no significant increase was observed for road departures in
EXP3A/4A vs. EXP3B/4B (Table 4.2.7). Perceived success for travel time/speed was significantly
higher with EXP3A/4A vs. EXP3B/4B without significant difference in terms of subjective effort for
this aspect (Table 4.2.7). Participants in EXP3A reported significantly higher automation satisfaction
than those in EXP3B (Table 4.2.6). Perceptions of effort for safety and success of safety did not
significantly differ between EXP3A/4A and EXP 3B/4B (Table 4.2.7). Additionally, no significant
differences were observed between EXP3A/4A vs. EXP 3B/4B in terms of the amount of visual
distraction, NDRT performance scores, or perceived success/effort on the NDRT (Table 4.2.7). For
hazard collisions where the participant was definitively observed as not trying to avoid the obstacle,
all events transpired within the situated (EXP3A/4A) rather than the non-situated assessment
conditions (EXP3B/4B) but were overall generally rare as an occurrence (i.e., 3 collisions out of 102
total exposures for EXP3A/4A and EXP3B/4B) (Table 4.2.4).

3.5. RQ5

‘Is the status of backup driving automation necessary to display to drivers?’

In regards to objective measures suggestive of expected overreliance, visual distraction was not
found to be significantly higher in the explicit adaptive status display conditions (EXP3A/3B) than in
the implicit adaptive backup conditions (EXP4A/4B) (Table 4.2.7). NDRT performance scores,
proportion of automated control, and longitudinal progress also were not found to be significantly
higher with EXP3A/3B vs. EXP4A/4B (Table 4.2.7). Between EXP3A/3B and EXP4A/4B, no significant
difference was found for the safety measure of road departures (Table 4.2.7) and no discernable
patterns in evidently rare occurrences of hazard collisions where the participant was observed not
to be not attempting to avoid the obstacle (i.e., 2 in an explicit condition: EXP3A, and 1 in an
implicit condition: EXP4A) (Table 4.2.4). No significant differences were observed to evidence trade-
offs between perceptions of success/effort for safety, travel time/speed efficiency, or the NDRT
performance between EXP4A/4B and EXP3A/3B.

4. Discussion

4.1. Supervisory problems and design-level solutions
4.1.1. RQ1
‘Are drivers susceptible to dangerous levels of distraction with SAE Level 2?’

Firstly, ahead of the investigated automation re-design aspects, a confirmation of problems was
sought. The results from the conventional driving control condition (EXP4C) baselined a relative
level of visual distraction from our N-back task (e.g., an average of around 53.3%) associated with
poor lateral performance in our simulated setup (e.g., an average of around 7.4% time spent off-
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road). From such a level of classified visual distraction, significant increases in both of our simulated
SAE Level 2 driving automation conditions were evidenced: up to an average of 73.7% (EXP2 — one
hand on the wheel) and 75.6% (EXP1 — no hands on the wheel). This increase in secondary task
involvement (i.e., a significant improvement was also found in N-back scores between EXP4C and
either EXP1 or EXP2), most likely accounts for our evidenced results of inadequate supervision,
where 46.2% of our participants with continuous driving automation made no corrections to an
unannounced hazardous automation failure. The subjective results for EXP1 compared to EXP4C,
and for EXP2 compared to EXP4C suggest a prioritization of participants towards viewing the
driving automation as convenience commodity (significant decrease in perceived travel time/speed
effort with significant increase in perceived travel time/speed success; significant increase/trend in
perceived secondary task success) rather than safety aid (mixed results regarding safety
success/effort).

4.1.2.RQ (2)
‘Does placing a hand on the wheel improve driver supervision of automation?’

RQ2 aimed to provide evidence for whether a requirement for hand placement might begin to
address the above-identified problems in SAE Level 2 driving automation supervision. With a hand-
on requirement, participants committed fewer non-response errors to first and second hazards
(15%, 4 of 26) than those without hand placement stipulation (46%, 12 of 26). These results are in
contrast with Naujoks et al. (2015), where significant performance differences were not found
during critical events between hands-on and hands-off supervised driving automation conditions.
However, Naujoks et al. (2015) reported a majority of drivers in their hands-off condition (120s
interval allowed hands-free) had actually kept contact with the steering wheel. Notably, our EXP2
did not produce significant differences from EXP1 in terms of visual distraction, NDRT scores, or
perceptions of success/effort, which suggests improved hazard awareness from hand-on
requirements to be produced by mechanisms other than NDRT involvement or subjective value
proposition (as seen between EXP1 and EXP4C). Physical hand-wheel contact might represent
linked mind-body benefits that remind/prime a human operator towards conventional driving
responsibility and steering activity. This explanation is consistent with our observation of steering to
be the majority response (i.e., compared to braking) when responses were made.

4.1.3.RQ (3)
‘Is adaptive backup a safe and acceptable alternative to continuous automated driving?’

Ironically, the requirement for humans to continuously supervise driving automation implies
humans to have a greater capacity, across a larger operational envelope, which suggests humans
are better fit for a majority driving role and should be periodically supported only as needed rather
than replaced. RQ3 sought to replicate and extend benefits of the adaptive concept investigated in
Cabrall et al. (2018) where humans drive conventionally with periodic automated backup support
(e.g., when distracted). Our combined set of adaptive backup conditions (EXP3A/3B/4A/4B)
evidenced significantly lower visual distraction and NDRT performance compared to the supervised
continuous automation conditions (EXP1/2), and with significantly fewer road departures compared
to conventional driving (EXP4C). Compared to EXP1/2, the subjective results suggest adaptive
backup worked as intended by drawing participants back into the driving task (significantly lower
perceptions of success with higher levels of effort in terms of travel time/speed efficiency) and
away from the NDRT (significantly lower perceptions of success with lower levels of effort in NDRT
performance). Additionally, satisfaction ratings with the simulated short exposure sessions of
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driving automation were not found to be significantly lower (between-subjects) with
EXP3A/3B/4A/4B compared to EXP1/2.

Some engineering issues were observed for eye-based re-claim of control from the automation
during critical responses. Our unintentionally longer implemented requirements (on-road glance
duration of 4 rather than 2 seconds) for establishing readiness of visual attention (see Methods
section 2.4) is a likely explanation. Nevertheless, these results raise further design trade-off
considerations (not investigated by the present paper). More/less strict ToC attention duration
requirements might function in relation to the respective absence/presence of hazard(s). The
circumstances of DMS ToC blocking of a hazard-aware human (although present in our simulation)
would be conceptually rare in the real world as a combination of other rare events: driver
distraction to a level requiring back-up, hazard presence, and false negative automation error. In
contrast, continual human supervision of automated driving is expected to increase risks by a
combination of increased likelihoods: operational duration of automated control, hazard exposure
rate, vigilance decrement, and (illicit) uptake of NDRT with attentional capture. Overall then, in
consideration of the discussed risks, adaptive automated backup appears to be a better conceptual
driving automation choice than continually human supervised driving automation from a purely
probabilistic perspective.

4.1.4.RQ (4)
‘Can situated criteria safely reduce driver state monitoring from over-triggering?’

Our DMS was designed with an intended negative consequence for end-user inattention — where
others on-market (e.g., Tesla Autopilot or GM Super Cruise) have used alarms or feature lockout,
ours included an impedance to forward driving progress (i.e., slowing down). The human-centric
eyes-only DMS conditions (EXP3B/4B) had significantly greater proportions of automated control
and consequently more longitudinal impedance compared to the eyes-plus-situation DMS
conditions (EXP4A/4B). Correspondently, participants expressed negative subjective experiences
with significantly lower ratings on perceived travel time/speed success (EXP3B/4B) and automation
satisfaction (EXP3B). Importantly, the conservative shift towards less automatic DMS triggers did
not detract from safety: the perceived success of safety did not significantly decrease and lateral
performance errors (i.e., road departures) did not significantly increase. In other words, the
situated criteria functioned as hypothesized to reduce false alarms (e.g., avoid the ‘cry-wolf effect)
while also not (dangerously) increasing misses with an overly strict criterion level.

4.1.5.RQ,(5)
‘Is the status of backup driving automation necessary to display to drivers?’

In conjunction with the potential rebranding and redesign of driving automation to serve as a
punctuate safety rather than continual convenience commodity, there is an ethical manufacturer
responsibility to attempt to deter potential end-user misuse. With aims to reduce risks of
automation misuse such as from behavioral adaptation (see Martens & Jenssen, 2012) or mode
confusion (Sarter & Woods, 1995), the lack of end-user awareness of backup automaton
existence/status in implicit backup conditions (EXP4A/4B) was not seen here to carry additional
consequences (i.e., no significant detraction from positive measures nor significant addition to
negative measures). Even though our short-duration simulated trials did not obtain direct positive
evidence (e.g., significantly decreased visual distraction in EXP4A/4B), it is reasonable to expect (as
motivated in the introduction section) that people might allow themselves to become distracted
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more often, for longer periods of time, expecting that the vehicle can always successfully back
them up. Promisingly, our results do suggest that the notification of backup driving automation and
detected distraction events might not be necessary from a DMS and so can practically remain in the
background.

4.2. Limitations

In terms of external validity, we wish to emphasize first that all exposure sessions in our experiment
were targeted as fairly short (no more than a few minutes) distraction stress periods to evaluate
different consequences of automation and DMS design concepts. Thus, multi-tasking challenges
were assumed (as motivated in the introduction) and purposely induced by our procedures. Our
present experimental results are thus only suggestive, with more naturalistic vigilance, with more
rich/complex driving scene environments, and longer-term effects remaining to be investigated
further elsewhere for replication, validation, and generalizability purposes.

It should also be noted that the present DMS-based adaptive backup driving automation concept
was limited by some implementation problems in terms of computer network delays with the eye
tracking as well as some rapid oscillations with the situated transitions of control. This means that if
a participant was visually distracted, the automation recognized this sometimes several seconds
later than intended. Thus, although participants who were visually distracted received backup
support as intended (i.e., there was a strong correlation between the percentage of time that
participants were visually distracted and the total time that the automation was ‘on’ in the eyes-
only conditions, r = 0.98, n = 26 for the EXP3B and EXP4B conditions combined), participants in the
explicit eyes-only EXP3B backup condition might not have been able to directly predict/understand
when the backup automation turned on or off. Furthermore, indicative of unevenly distributed ToC,
the average number of conventional driving to automation ToC events was actually higher in the
situated assessment conditions (EXP3A/4A, M = 51.7) than in the eyes-only conditions (EXP3B/4B,
M = 7.2) although being shorter lived with lower durations of applied distracted status (i.e.,
automation sustained as ‘on’).

Additionally, it should be cautioned that our driving simulation and NDRT are only artificial analogs
(i.e., limited field of view, lack of realistic force feedback in steering, lack of vestibular motion
feedback, etc.) of their real-life constituent representations — the simulated vehicle handling was
anecdotally characterized as ‘slippery’ and the N-back task might be more demanding/compelling
than a real-life distraction such as a mobile phone chat message. Moreover, perceptions of risk
(and hence risk-taking behaviors) are rarely commensurate between driving simulators and real-life
roads.

The ecological validity of specific single off-road glance duration thresholds (e.g., around two
seconds) is a controversial driver distraction topic, and research has suggested that further studies
should be open to investigating more elaborated measures such as frequencies of repeated glances
off-road (Liang et al., 2014), as well as in relation to durations of on-road glances (Kircher &
Ahlstrom, 2009; Seppelt et al., 2017).

For all of the above reasons, the presently reported results should be interpreted in relative terms
(ordinal comparisons between conditions) rather than absolute numeric values.
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4.3. Conclusions

The present investigation demonstrated attentional susceptibilities in drivers tasked to supervise
simulated full-time driving automation in the presence of a compelling NDRT. A requirement to
maintain one hand on the wheel provided some benefit but still exhibited problematic rates of
visual distraction and non-responses to hazards. Although the NDRT was tasked rather than
voluntary, the depth of involvement was left free to each participant’s own behavioral discretion.
Consequently, we evidenced dangerous levels of distraction rather than uncompromised multi-
tasking. Our results exhibited such automation over-reliance problems as possible for occurring in
as short of time as a single minute.

Instead of focusing or leaving the problem as one of innate human limitations to attempt to
correct, the present paper motivated an ecological approach for ‘changing-the-machine-to-fit-the-
man’ via redesign allocations of the same technology as adaptive backup. Overall, decreases in
distraction (with the same NDRT) and consequential improvements to driving safety were
evidenced from the adaptive backup conditions. Situated DMS criteria reduced unnecessary
automatic assessments of distraction, and implicit automation status removed unnecessary risks for
human misuse of automation (e.g., over-reliance).

Under controlled between-subject comparisons, we have shown preliminary feasibility without
significantly reduced levels of acceptance compared to status-quo counterparts of supervised
continuous automated driving and eyes-only distraction assessment (i.e., our new designs did not
materialize evident conceptual deal-breakers). Our rather homogenized participant groupings were
randomly assigned between conditions where very little presumably varied other than the
manipulations of interest. However, further studies of within-subjects design, would strengthen a
claim of achieved levels acceptance of our concepts and more targeted survey studies might best
assess comparative acceptance/satisfaction at a broader level (e.g., intent to purchase).

4.4. Application

Our presently explored problems and solutions are germane to ongoing real-world automation
design directions and decisions. Beyond the widely reported first AV fatality, there continue to be
potential ‘procrustean bed’ issues of ‘fitting-the-man-to-the-machine’ which ironically can be
obscured as user errors rather than system design drawbacks. For example, over two years later in
June 2018, a safety driver of a Waymo autonomous vehicle caused an accident when he fell asleep
and inadvertently activated a transition back to manual control (Griswold, 2018) — this incident
was recorded with the CA DMV authority as a ‘conventional mode’ rather than an ‘autonomous
mode’ accident.

A redesign concept for automated driving control, from continuous to backup, aims to support
momentary irregular human errors rather than grossly replace all human driving authority (both
responsible and reckless together) with technology that is still evolving rather than matured. If
adaptive driving automation is pursued, further design considerations should involve how much
information a DMS uses in its assessments and how much the driver needs to know about the
system. Additional vehicle sensors (e.g., forward/side facing cameras and/or radar) can help DMS
defer to driving scene contexts (i.e., of present collision and course deviation risks) prior to
ascertaining driver states like distraction and consequential triggers for alerts and/or transitions of
control. Such a layer is expected to provide a more situated human-like or graceful interaction style
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through reduced false alarms and drops in perceived value by the driver. In terms of anticipated
benefits of implicit driving automation applications, several safety systems already set a precedence
of event-driven occurrence without explicit status indications or any knowledge required from the
driver. With reduced risks of driver over-reliance, example background automotive safety functions
include the priming of automated emergency braking, seatbelt tensioners, and electronic stability
control systems.

Key points

e Complacency effects can occur with automated driving systems in as short as one minute of
time. This may occur in spite of direct instruction requiring drivers to ‘monitor and correct
the automated driving for any dangers/errors’ and a recently experienced automated
driving error.

e The provision to keep one hand on the wheel had a positive impact on generating a
response to the first obstacle. However, non-responses to the second follow-on obstacle
were equally present in both the no-hands and the one-hand-on-the-wheel automated
driving conditions.

e All presently investigated backup driving automation conditions (whether with trigger
criteria of eyes-only or eyes respective of driving scene/situations; and whether with hidden
or overt transitions of control) were successful in reducing the amount of time spent off the
road in comparison to a conventional driving control condition.

e An implicit backup automated driving system is expectedly harder to misuse than one with
an explicit interface, and situated alerts have the potential to reduce negative impacts of
false alarms such as reduced perceptions of self-success and overall satisfaction.
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Appendix A. Developed Driving Research Tools
A.1. Driver Monitor System: Interface Layout

Driving automation can be integrated with driver monitoring systems (DMS) to produce real-time
adaptive and automatic transitions of control (ToC) (i.e., reducing human-machine interface
requirements on manual button presses, gesture generation/recognition, vocal commands, etc., as
well as relatively late cognitive processing requirements such as conscious human awareness of a
need for a ToC). Many DMS can respond to different physiological driver measurements (heart,
breath, sweat, brain, hands, head/face, body, etc.). Particular promise, however, is presumed from
the measurement of eyes based on accounts of the importance of visual information demands in
driving (cf. Sivak, 1996), as well as a continued reduction in form factors of cameras, which is
favorable towards practical instrumentation considerations of decreasing intrusiveness and cost.

Eye-based DMS have been developed with different eye measure attribute states, but few combine
several measurements and state classifications in a parallel hybrid manner, and fewer still towards
direct integration aspects with adaptive driving automation ToCs. The DMS referenced in the
present Chapter 4.2 has been shared as a Simulink model in an open-source repository at
http://doi.org/10.5281/zen0d0.893325 and functions by processing eye-behavior data through
three separate analysis streams to detect non-mutually exclusive sub-states of driver distraction,
drowsiness, and/or cognitive overload (Figure 4.2.A.1). The classification parameters within each
stream were derived from eye-tracking driving research but are purposefully grouped and arranged
so as to facilitate easy visual programming for adjustments per different research needs.
Furthermore, Figure 4.2.A.2 shows how feedback was directly incorporated in the model to visually
overview in real-time how the system is arriving at its classifications of distraction, mental overload,
and/or fatigue based on the currently defined parameters (i.e., values and time windows).
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Figure 4.2.A.1. Beginning with UDP eye tracker inputs on the left, three separate yet parallel eye behavior analysis
streams (from top to bottom: distraction, cognitive overload, fatigue) flow through the middle to the right where binary
switch gates can be toggled to include consideration of the classified states towards an abstracted level of aberrance
that can be transmitted via UDP as a single value for incorporation in an adaptive driving automation system’s decision

logic.
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A.2. Driving Automation Integration: Interface Layout

Packaged with the DMS model, is a Simulink model developed in conjunction with TASS
International’s PreScan physics-based driving simulation platform (see Figure 4.2.A.3). As an
extension to the pre-existing automated driving control logic (top-middle) of lane center-ing at a set
speed via linkages between vehicle states (middle-left) and vehicle dynamics (middle right),
additional grouped block areas were self-implemented and organized to incorporate experimental
control over adaptive lateral sensors for course conflict resolutions (top-left), adaptive longitudinal
sensors for collision conflict resolutions (top-right), manual control (bottom-middle), data output
(bottom-right) and functional allocation switches (middle-middle). For future studies, such a design
facilitates direct manual experimenter control, in a pre-set or real-time fashion (via the circled
binary switches) for what transitions of which driving control are (in)active and/or automatically
driven by incoming eye classification data (bottom-left of middle-middle). The Simulink model is
freely available within the online repository at http://doi.org/10.5281/zenod0.893325
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Figure 4.2.A.3. Extension of PreScan-Simulink model of driving automation platform for incorporation of automatic
adaptive transition of control aspects towards facilitated experimenter/researcher control over the integration or
isolation of different system components: automated lane centering and cruise control, manual steering and pedal
inputs, lateral sensor triggers, longitudinal sensor triggers (with adaptive cruise control via acceleration suppression
outputs), and/or eye-based classifications.
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A.3. Visual N-Back GUI

A flexible programmable secondary task is provided as a modified version of N-Back. This GUI allows
the experimenter to setup a visual manual N-back task that requires participants to key in

time, 2 times, or 3 times ago. Automatic scoring and auditory feedback is pre-programmed for
correct and incorrect responses. The experimenter can customize the target values, intervals
between targets, and amount of targets, and/or pre-load a provided set. Various display
information items can be toggled on/off including: a running score, the last number the user
responded with, the correct answer (whether from 1, 2, or 3 times ago), the table of target
intervals and target values. From such customizable features, this N-Back secondary task can be
adjusted in terms of difficulty/ease as needed (e.g., with more or less burden on memory). The
Standalone executable and source code files are freely available within the online repository at
http://doi.org/10.5281/zenod0.891531
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Discussion chapter structure

This discussion chapter progresses the impact of the present thesis work first with an imperative
and overview section. Subsequently, a summary of conclusions from each chapter is drawn out as a
logical progression of individual studies and grouped part relations. The next section provides
validating convergence of the present thesis study results with those from a few other recent
theoretical, simulator, and on-road studies (that were all published in the years following
completion of the present studies). A penultimate section provides a higher and lower level
discussion regarding the bigger picture framework this thesis advances as well as where it
specifically fits in for DMS applications. The discussion chapter concludes with a section pertaining
to future research recommendations.

1. Thesis Imperatives and Impact Overview

Since the start of this thesis project in 2014, the consequences of overly simplistic conventions for
assessing driver engagement have recently become all too real and deadly. In the wake of the first
widely reported Tesla Autopilot fatality of Joshua Brown (May 17, 2016 in Florida), the U.S. National
Transportation Safety Board (NTSB, 2017) issued new safety recommendations on September 12,
2017 for manufacturers to ‘develop applications to more effectively sense the driver’s level of
engagement and alert the driver when engagement is lacking while automated vehicle control
systems are in use’. While crossing the street as a pedestrian, Elaine Herzberg was killed on March
18, 2018 in Tempe, Arizona, by an Uber ‘self-driving’ test car equipped with a human safety driver
who local police have reported was distracted by a streaming television program at the time
(Plungis & Barry, 2018). Meanwhile, a recent National Safety Council public opinion poll (NSC, 2017)
has found that drivers are actively disabling or otherwise defeating built-in safety features because
they are either confusing, irritating, or susceptible to false alarms (Cichowski, 2017). Advanced
driving assistance systems that rely on assessing driver attention through (periodic) steering wheel
inputs have been subject to low-tech hacks from objects as common as an orange or a water bottle
(Stumpf, 2018). Moreover, such defeat devices are even being openly sold as commercial products,
e.g., the ‘Autopilot Buddy ® from Dolder, Falco and Reese (2018).

What can be done about the deaths that are presently occurring on our roadways both from before
and even still with driving automation? Improved human interactions with automatic driver
monitor systems (DMS) should foster mutual calibrations of trust and ultimately benefit traffic
safety through increased public adherence and appropriate use of its designed safety systems.

The aim of this thesis was ‘to develop a system that is able to monitor the driver’s vigilance’ and the
approach taken was inspired by cognitive systems engineering (ecological perspectives). In-depth
reviews of vigilance (Part 2) made it clear that situational knowledge would be crucial for
understanding vigilance whether in general, for driving, or for monitoring driving automation.
Furthermore, specific practical details with which to proceed to build a situated vigilance driver
monitoring system (DMS) were found to be lacking. Thus, measurement studies (Part 3) were
undertaken to better know the relevant details of driving scenes to which driver attention should
appropriately relate. Amount of road curvature, traffic, and eye movement distances were
identified as important and relatable factors.
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Lastly, proof-of-concept integration studies in a driving simulator (Part 4) were deployed both with
and without scene-tied assessment constraints. In the first version, control was taken away from
human drivers and the vehicle slowed down whenever they looked away from the road too long; in
the second version, looking away too long was tolerated by the system so long as no lateral or
longitudinal conflicts were present. Benefits were obtained for both versions, but the situated DMS
included a reduction of unnecessary alerts with improved primary and secondary task performance
as well as enhanced participant acceptance ratings. In other words, the situated DMS respected
natural human adaptive behavior (e.g., more secondary task involvement during less demanding
driving) allowing them to better manage conflicting competition for attention.

Consequently, this thesis has succeeded in its approach to the stated objective and on-market DMS
across levels of driving automation stand to be improved by incorporation of eyes and scenes taken
together as a unified assessment. Beyond developing a single situated DMS, outputs of this thesis
also were deliberately designed as several inroads towards extensibility for future research and
development. When paired with AV technology, situated DMS will reduce unnecessary alerts to
every instance of inadvertent supervisory attention over driving automation — instead focusing only
on those that meaningfully matter such as when there are high visual demands presented by
roadway curvature and/or increased traffic volumes. Thus, DMS can reach a level of social
interaction intelligence that humans commonly expect when dealing with authority figures they
more readily will comply with rather than reject or seek to undermine. When more people are able
to use more driver monitoring and AV technology more appropriately more often, then road safety
should reasonably be expected to increase.

2. Summary and Connection of Thesis Study Conclusions

Chapter 2.1: Driving vigilance task operationalization

Chap. 2.1 suggests the importance of vigilance tasking details (i.e., 18 are provided in Table 2.1.1)
that are lacking for predicting/managing driving vigilance situations: specific consensus definitions of
conventional driving signal(s), noise, and required response. Even with that same uncertainty,
common visions for supervision of driving automation present greater risks of vigilance problems
through an increase in overlap with other classic vigilance decrement features: temporal and spatial
uncertainty (i.e., from manual de-skilling) of intermittent/rare signals (i.e., from growing reliability
evolving automation) requiring time critical response (i.e.., from take-over requests), within
prolonged task durations (i.e., from enabling longer commutes/trips) and increased monotony (i.e.,
from computerized consistency in operation).

Vigilance is a pervasive topic. There were already around one thousand published reports on the
topic by the mid 1980’s (i.e., over 30 years ago). So a first place concern was to understand what
has been known to cause vigilance decrements. Top-cited theory from across seven decades
evidenced a list of around a dozen classic situational features (Table 2.1.1.) that were found to be
highly contrived/constrained: as in consisting of specific signals (that must be few, temporally
uncertain, short lasting, spatially uncertain, etc.), noise (that must be frequent and very similar to
signals), and tasks (that must be long in duration, monotonous, and have required responses, etc.).
Such artificial conditions evidenced as producing vigilance decrements is convergent with the titular
‘iatrogenic’ argument made by Hancock (2013) that ‘locates the origin of the phenomenon and the
onus for practical improvements ... with designers rather than apportioning blame for performance
decrements to the operator ... (and) ... reinforces the recognition of ... the often unrecognized
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external arbiter ... and the extrinsically imposed imperative to sustain attention’. In other words, if
vigilance decrements were to be taken as a kind of disease it is arguably one that appears to be
self-inflicted by design (i.e., by the specific operationalization of the vigilance task).

In prognosis of driving vigilance decrement issues, trying to map classic vigilance decrement
situational features to the case of driving was determined to be a difficult, near impossible,
endeavor. Too much uncertainty was present in reports of driving vigilance task operationalizations
or else the signals, noise, and responses most commonly investigated were alongside of, rather
than strictly belonging to driving percepts/actions (e.g., press a button upon hearing a 600 Hz but
not a 500 Hz sinus tone). The difficulty in finding consensus operationalization of driving
requirements at a specific/detailed level is probably best explainable upon reflecting that driving
success (in the real-world) can be achieved in many different sufficient/satisficing rather than
strictly optimized ways. However, even if specific definitions of driving signals, noise, and responses
still remain unknown for operations involving supervising driving automation (just as with
conventional driving), the overall supervisory task more closely approaches classic vigilance
degradation situations by way of increased work constraints/pressures and reductive processes.
What once was a complex/uncertain continuous task for the human driver, becomes a more
simple/contrived intermittent task for the human supervisor of driving automation with: temporal
and spatial uncertainty of intermittent/rare signals requiring time critical response, prolonged task
durations, and increased monotony. Conclusions from Chapter 2.1 thus recommended caution and
suggested (re)design opportunities against the status quo vision for deploying automated driving.

Chapter 2.2: Supervisory engagement with driving automation

Chap. 2.2 shows that the most common solution areas to the problem of keeping attention while
supervising automation include those focused on internal cognitive states, followed by those with a
broader situational (task/ecological) perspective.

Outside of recent developments in driving automation, increases in automation have been
changing human roles/responsibilities from lower-level operators to higher-level supervisors in
variety of domains for an extended period of time already. Consequently, there is a substantial
body of human-automation interaction literature with concerns and suggested solutions for
keeping up engagement/attention of human supervisors of automation. Chap 2.2. developed a
categorization scheme of six themes to group the solutions into recognizable areas such that
frequencies and trends analysis could be supported and applied. The first three themes describe
supervisory control avoidance either in a hard sense or different versions of a soft stance: objective
or subjective reductions in the supervisory control task. The latter three themes describe solutions
under familiar learning theory paradigms in chronological order: behaviourism, cognitivism, and
ecological constructivism. Results from Chapter 2.2 showed that independent raters were able to
reliably apply the themes to categorize recommendations from influential human-automation
interaction research. Cognitive followed by ecological themed solutions appeared to be the most
commonly proposed in influential human-automation interaction literature conclusions.
Additionally, less common but still evident areas suggested either avoiding the supervision task
outright or ways to reduce it

Part 2: Driver Vigilance Review — take-away

Taken together, the studies of Part 2 emphasize the importance of cognitive and situational themed
conclusions for managing vigilance issues in general, but a lacking of available practical details (i.e.,
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what driving scene features and driver eye measurements) with which one might proceed to build a
situated DMS. Thus, applied driver eye and driving scene measurement studies were conducted in
Part 3.

Chapter 3.1: Crowdsourced driving scene content categorization

Chap. 3.1 produced a broad yet efficient driving scene content categorization scheme and confirmed
relatively high levels of accuracy and reliability in crowdsourced annotations using that scheme. Thus,
measurement of driving scene aspects was nailed down in a concrete and viable manner.

After the review work of Part 2, we faced the question of how driving scenes could be
measured/described with a balance of comprehensive coverage and efficient annotation. Traffic
safety literature suggests that driving scene situational features of general interest might fall under
three categories of road users (and their locations), their behavior, and road/infrastructure details.
For ease of annotation, items were strictly operationalized as only binary values for
presence/absence (check boxes) and ordered in a probabilistically prioritized manner (more likely -
first, less likely - later). Consequently, a single driving scene annotation of around 36 scene features
took on average 37 seconds to complete. Several relatively easy/unambiguous driving scenes were
pre-categorized and used as explicit training material as well as mixed in (in places unknown to
crowdsourced annotators) as implicit screening devices to remove indiscriminate/incorrect
responders. A robust (valid and reliable) driving scene library was thus able to be constructed
consisting of about 38,298 seconds of dash-cam driving footage with their contents annotated by
around 200 crowdworkers from 46 countries in about 1 % days’ time.

Chapter 3.2: Prediction of workload, attention and eyes from driving scene
contents

Chap. 3.2 determined specific driving scene features (i.e., road curvature and traffic) to be of
importance to perceived driving effort ratings and associated eye movements (i.e., saccade
amplitude).

Because some driving scenes are easier/harder than others, a situated DMS should be able to know
how much attention to expect from a driver’s eyes relative to such present demands to be more
conservative/judicious in its vigilance assessments and involvement. So the measurement study of
Chap 3.2. sought to determine what driving scene features would be associated with what eye
measures (and in accordance with a range of perceived effort that drives those eye behaviors). The
high volume of annotated scene segments in Chapter 3.1 (~12,862 scenes from around 50 different
driving videos) enabled a selection of stimulus material that contained a sufficient degree of
resolution to perform predictive regression analyses in Chapter 3.2 (i.e., continuous scaled
independent variables to match continuous scaled dependent variable constructs). Specifically, 60
video clips were selected to represent a range of low/high driving scene demands with different
scene features.

The most powerful relations were found for effort ratings as predicted from road curvature and
traffic; saccade amplitude as predicted by effort ratings; and saccade amplitude as predicted from
road curvature and traffic. More/less road angle curvature (and more/less traffic) was associated
with more/less effort and more/less saccade amplitudes. Thus, the lower level eye movement
measurements showed stronger (more reliable) relations with perceived effort and visible scene
contents (lateral/longitudinal conflicts) than the higher level representation (and eye
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measurement) aspects of information uptake (fixation duration) and increased cognitive processing
(pupil size).

Chapter 3.3: On-road out-of-the-loop drivenger eyes

Chap. 3.3 measured both on-road eye movements and driving scene aspects. ‘Out-of-the-loop’ eyes
generally exhibited greater off-center movement distances across entire trips. However, the off-
center distances of ‘in-the-loop’ eyes were observed to periodically rise and fall with respectively low
and high driving scene demands (as operationalized by steering angle, traffic count, and speed).

Within an on-road study environment, Chap 3.3. investigated a different characterization of eye-
scene relations than was able to be determined in the laboratory environment of Chap 3.2 (where
scene demands could be more precisely measured and safely manipulated). An eye-measurement
difference was captured between the variant role/responsibilities of on-road drivers (who, by
definition, are in control of the driving) vs. on-road passengers (who, by definition, are not in
control of the driving). Benefits of this innovative approach included increased safety and
naturalism when compared to more common research methods of imposing artificial distraction
tasks to ensure the driving participant becomes ‘out-of-the-loop’ (i.e., for the sake of making
measurements at such points). An additional benefit was that paired participants served as
comparative controls for one another in terms of being in the same vehicle as it moved between
varying driving scene demands (traffic, weather, road-infrastructures, etc.).

Both driver and passenger eyes moved substantial distances on/off road center and around/across
the driving scene. Across a driving trip as a whole, passenger eye eccentricity typically exceeded
driver eccentricity (by about 25%). However, when driving scene demands were higher (increases in
steering angles, traffic, and/or speed) discrimination performance weakened because driver eye
eccentricity adaptively increased to meet those increased demands whereas passenger eye
eccentricity was more free to vary in such situations. Driver eye eccentricity also rose during low
demand situations where they became (like passengers) more free to vary. In conclusion,
recommendations were made to discard DMS alerts to increased driver eye movements that reflect
natural/safe adaption to relative extremities of high/low (visual) demands.

Part 3: Driving scenes and driver eyes — take-away

Taken together, the studies of Part 3 emphasize the viability of measuring relations between driver
eyes and driving scenes at a behavioral level. An applicable situated DMS conclusion was that
specific measureable (visible) scene demand features of road curvature and traffic count could
reliably be represented in low-level pre-cognitive eye movement measurements. Next, the studies
of Part 4 executed driving simulator proof-of-concept design validations of various integrations of
real-time vigilance DMS and driving automation.

Chapter 4.1: Directionality of eye-based transitions of driving control

Chap. 4.1 implemented a driving simulator proof-of-concept real-time DMS and driving automation
integration (i.e., where the automation backs up a driver that looks away too long) that showed
safety and acceptance improvements over an emulated concept of present-day on-market functional
allocations of automated driving (i.e., where the automation de-activates itself upon detecting
distraction).
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As discussed in the literature reviews/surveys of Chap 2.1 and Chap 2.2, there are evident human
factors concerns with a level of driving automation that requires human supervision (as backup/fall-
back). Nevertheless, such systems have been released on public roads and the most popular
conceptual instantiations are trending towards attempts to manage supervisory driver inattention
issues by automatically disengaging themselves if driver engagement assessments are negative
(‘forced-manual control’). The experiment of Chap 4.1 investigated safety implications of such an
integration implementation against a role reversed concept (‘adaptive-backup control’) where the
driving automation instead backs up the human driver upon inattention assessments.

Peak absolute lateral error was higher with the forced-manual control condition compared to the
adaptive-backup control condition. The adaptive-backup control condition showed lower self-
reported workload ratings and yielded higher acceptance ratings than the forced-manual control
condition. Thus, driving performance and experiences were improved by reversing the
directionality of the adaptive transition of control, i.e., keeping the majority/continuity of driving
control with human drivers and backing them up with automated driving control when they
become distracted.

Chapter 4.2: Situated/Implicit backup driving control

Chap. 4.2 extended the successful proof-of-concept from Chap 4.1 within another driving simulator
study. Inattention problems with supervising driving automation were evidenced (but also reduced
from a condition requiring one hand be kept on the wheel). Situated and implicit DMS integration
designs of adaptive-backup control showed user interaction and performance improvements.

First, Chap 4.2 confirmed previously assumed inattention issues with supervision of driving
automation by showing higher incidences of non-response errors to unexpected road hazards (as
compared to a condition with full-time manual control and several versions of adaptive-backup
control). Requirements with a low-level physical tie-in (i.e., keep one hand on the wheel)
significantly improved hazard response generation.

Second, Chap 4.2. examined different versions of the successful implementation from Chap. 4.1 in
order to examine further design improvements aimed at potential drawback issues of over-alerting
and driver over-reliance (misuse) as might be problematic for adaptive-backup control. Situated
DMS backup control (off-road looking with present lateral and/or longitudinal conflicts) generated
higher perceptions of success, while reducing over-alerting without impacting safety from its
lowered amount of involvement compared to non-situated DMS (off-road looking only). The
implicit design where adaptive backup control status indication was removed/hidden did not
produce any disadvantages.

Part 4: Adaptive driving automation — take-away

Taken together, the studies of Part 4 emphasize problems with presently released driving
automation designs where humans supervise without continuous physical activity involvement
requirements. Most importantly, the Part 4 studies confirm viability of real-time eye-based DMS
integration with driving automation towards practical user experience and safety advantages not
only when deployed in an adaptive-backup directionality for transition of control, but also as from a
situated version of DMS specifically.
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3. Recently Convergent Research

Since the completion of the design and conduct phases of the enclosed thesis work, an appreciable
volume of publications within the last couple of years (2017 and 2018) have meanwhile emerged
that appear to be in agreement with the present thesis topic, theoretical aims, methods, and/or
results. A few of such are taken as examples for discussion in this section pertaining to validating
convergence of my thesis research with the research of others.

3.1 Predicted problems and solution directions

Automation-related concerns have been a main-stay in human-machine research for decades
before and are predicted to continue. Strauch (2018) indicated that ironies such as introduced from
Bainbridge (1983) are remaining rather than resolved even while automation is proliferating well
beyond the professional operator settings of previous generations (e.g., now ubiquitous in
unregulated public arenas as with smartphones and automobiles rather than nuclear power
processing plants). In the driving automation domain, he cited driving simulator research indicating
delayed reaction times and reduced attention of vehicle operators in highly automated driving
compared to manual control. From the present thesis, Chapter 2.1 concluded with design features
of driving automation systems (e.g., prolonged periods with low-frequency signals, signals that are
similar to noise, lack of feedback on performance, etc.) that suggest an increased likelihood of
classic vigilance problems.

In terms of recommendations, Strauch (2018) suggested further research that examines how
drivers can retain skills enabling them to effectively recognize and respond to critical situations.
Strauch suggested systems that retain the features of automation (safety, reliability, accuracy,
economy) while at the same time optimizing human drivers’ vigilance and retention of manual and
cognitive operating skills. Presently, Chapters 4.1 and 4.2 have found benefits from using driving
automation as a backup to humans (e.g., a reverse of the typically promoted proportions of
human/automation driving control), an approach that may maximize the safety strengths of
automation while retaining operator manual driving skills. Furthermore, Strauch endorsed a
solution from Bainbridge as ‘worthwhile’, where operators are given opportunities to practice
manual control during actual system operations, and if not possible, by providing similar
experiences in system simulators (e.g., consistent with theme #2 of the present Chapter 2.2). He
concluded with an emphasis on provisions of training to meet the additional technology (e.g.,
consistent with theme #4 of the present Chapter 2.2), which he argued is important given the
problem of increases in automation in non-professional domains (e.g., automotive).

3.2 Performance and attention measures in driving automation simulator studies

Greenlee et al. (2018) tasked participants to press a button on the steering wheel upon detection
of low probability (5%) roadway hazards (i.e., vehicles encroaching upon the lane of travel) without
feedback while supervising an automated driving vehicle for trips of about 40 minutes under foggy
conditions. Across subsequent 10 minutes periods of watch, correct detections declined in number
(i.e., more than 30%) with a significant drop evidenced onward from the 10-20 minute time-on-task
period. Likewise, reaction times were found to significantly increase after the first period of watch.
Post-drive workload self-ratings descriptively showed above scale mid-point average ratings for
mental demand, temporal demand, effort, and frustration and a significantly higher than mid-level
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global demand. Pre- and post-drive self-reported stress ratings indicated significantly decreased
engagement and significantly increased distress. Comparably, Stapel et al. (2019) found on-road
automated driving to reduce perceived workload, but monitoring duties therein to increase
cognitive workload when compared to conventional/manual driving.

The vigilance task operationalization of Greenlee et al. (2018) appears highly in overlap with the
composite multi-decade vigilance decrement set of features identified in the present chapter 2.1
(e.g., rare and difficult to perceive signals that are similar to frequent noise in a prolonged
monotonous task without feedback, etc.). Recommended augmentative strategies to researchers
and developers of vehicle automation strategies included breaks from the monitoring duties and
use of physiological monitoring to continually assess and adaptively respond to measured driver
vigilance. Both of these recommendations are consistent with theme #2 of the present chapter 2.2
and are supported by the eye tracking measures of Chapter 3.2 and 3.3 as well as the incorporated
DMS development and application in chapters 4.1 and 4.2. In Chapter 4.2, human vigilance
inadequacies in supervising driving automation were found in time periods as short as 1 minute
(and even upon following a recent automation failure) when exacerbated by a compelling
secondary task.

3.3 Real-world driver SA and behavior issues with released on-road driving
automation

Endsley (2017) conducted a 6 month longitudinal study of personal naturalistic experiences with
the driving autonomy features of her own Tesla Model S. While SA (as measured from real-time
knowledge probes) was not found to be significantly higher or lower on average than a control
period, her observation was that it was still problematically consequential for increased accident
risk in being more variable and hence susceptible to being gone when it might be needed. Endsley
(2017) perceived her reaction times to be slower: ‘I was surprisingly slow to react ... it took extra
seconds to realize that the automation was not going to handle the situation’. With a secondary
task, significantly increased visual distraction and significant non-responses to automation failure
events were found in the driving simulator study of the present chapter 4.2 that emulated driving
automation conditions similar to the use of Tesla Autopilot features (i.e., simultaneous automated
driving lateral and longitudinal control with stipulations for visual/mental involvement and some
variation in hands-on requirements).

Endsley (2017) also experienced false alarm problems with warnings that occurred ‘frequently in
error, causing significant frustration’ and stated dissatisfaction with a lack of face-validity in
vigilance assessment: ‘having one’s hands on the wheel, is not the same as having one’s mind on the
road’. Present thesis results contributed to the reduction of potential false alarms (Chapter 3.3.)
and their consequences (Chapter 4.2) in assessment of driver engagement and constructs of driver
SA through eye-based measures (Chapters 3.2, 3.3, 4.1 and 4.2) rather than steering wheel input
sensors. However, it should be noted that the experiment of the present chapter 4.2 also
contributed counter-evidence that one-hand on the wheel in fact increased the likelihood of
generating a response to driving automation failures compared to no-hands on the wheel. Endsley
(2017) summarily states that the autopilot mode of Tesla ‘is likely to provide a good backup’ and is
consistent with the designs investigated in the present chapters 4.1 and 4.2. Lastly, Endsley (2017)
advocated for increased driver training to address the new responsibilities with driving automation
(consistent with the present chapter 2.2 theme #4) and also proposed many improvements of her
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identified system design/interface issues towards supporting drivers’ mental models and
understanding of the automation (theme #5).

Banks et al. (2018) analyzed video observations they collected during an on-road study using a Tesla
Model S being operated in Autopilot mode (i.e., 12 participants, approximately 40-minute driving
trips each). Only one participant was observed to remain ‘hands-on’ throughout their use of the
Autopilot features (note: Tesla documentation states ‘Autosteer is a hands-on feature. You must
keep your hands on the steering wheel at all times.’). Multiple warnings from the remaining drivers
resulted in periods in excess of 75 seconds of ‘hands free’ driving, which the authors lament as a
substantial time period that could enable non-driving related secondary tasks to be taken up and
might have ‘disastrous consequences’ if at the same point in time an operational design domain
(ODD) breach were to occur (e.g., an automation failure/error). Banks et al. (2018) cited (NHTSA,
2017) where the infamous Tesla Autopilot fatality (Joshua Brown) was attributed to a prolonged
period of distracted driving. With both, one and no hands, on the steering wheel (and a compelling
secondary task), the present chapter 4.2 found significantly increased instances of visual distraction
when participants were supposed to be monitoring simulated SAE level 2 driving automation as
compared to manual driving (also with the same secondary task). Furthermore, the emulated SAE
level 2 conditions of Chapter 4.2 produced non-responses to simulated driving automation errors
(i.e., driving into a fallen tree and through a motorcyclist) while participants were just so visually
distracted as warned above by Banks et al. (2018).

Banks et al. (2018) observed substantial issues with mode confusion, visual human machine
interface status displays, and false alarms. The present chapter 4.2 included system integration
designs for combining human and driving automation to reduce the first two via implicit backup
driving automation and the last via the incorporation of more situated automatic DMS assessments.
Banks et al. (2018) concluded that either the human driver should remain in control of at least one
of the control aspects (longitudinal and/or lateral) or they are removed entirely from the control-
feedback loop thus skipping the middle SAE levels of driving automation involving supervisory
driver control. Such a recommendation is consistent with the present chapter 2.2 theme #1.

3.4. Convergence summary

In recently published research of the last couple of years (2017 and 2018) problems have been
identified for driver engagement (attention, vigilance, SA, etc.) and its assessment across various
levels of driving automation. Suggested detailed understandings of the underlying issues are
consistent with those identified in the literature review of the present Chapter 2.1 and offered
solutions are convergent with themes discussed in Chapter 2.2. Additionally, continuous eye-based
measures are being proposed and pursued both from information processing frameworks (e.g.,
internal focus on interpreting cognitive states of individual drivers) as well as in relation to broader
external contexts. The present Chapters 3.2, 3.3, 4.1, and 4.2 all provide viable inroads to making
use of eye-tracking data, while relations to driving scene situations were more directly considered
in Chapters 3.2, 3.3, and 4.2. Furthermore, Chapter 4.2 contributed an integration design and
implementation platform that could be useful for further researchers of similar interests which
allows for preliminary/prototypical investigations of adaptive driving automation by means of a
easily re-configurable DMS and driving control (i.e., via GUI toggle switches and/or numeric entry
fields).

262



Part 5: Discussion

4. Thesis Research and Development Implications

4.1 Ecological theory framework

The research within the present thesis substantiates triadic theoretical paradigms (work domains,
humans, technology). When applied to driver vigilance, an assessment would be considered
meaningless (i.e., within a meaning processing account), without consideration of the concurrent
contextual aspects surrounding the assessment of the driver. The recently introduced driver
attention theory dubbed ‘Minimum Required Attention’, proposes that ‘a driver should only be
considered inattentive when information sampling is not sufficient’ to the demands of the situation,
‘regardless of whether the driver is executing an additional task or not’ (Kircher & Ahlstrom, 2017).
In other words, observed behavior alone is not enough for assessments of distraction until placed in
relation to situational/system demands. For example, typing a text message into a mobile phone
while merging onto a busy commute highway connotes a different meaningful assessment of
vigilance than the same actions while stopped at a red light in a rural town.

As opposed to presumed fixed-limits resource theories (cf. Wickens 1984, 1992), Malleable
Attentional Resources Theory (Young & Stanton, 2002) has asserted that human attentional
capacity naturally varies as a function of situational task demands (i.e., mental workload). In other
words and observed by Hancock (2017):

‘As the preeminent global adaptive species, humans readily learn and change their behavior

in accordance with the constraints and opportunities of their ambient environment ... When

we create boring, marginal, uninvolving interfaces to uninteresting tasks, we design boring,

marginal, uninvolved and uninterested people. We cannot, in all good judgment, simply

machine the mind to mind the machine.’
Thus, more consideration and measurement of the situations surrounding the driver are warranted
to relate with those tools aimed with a human focus, as well as to design more meaningful
interfaces to those relations.

Ecological approaches to driving safety can be traced to seminal work of Gibson and Crooks (1938).
Their principles are re-advocated recently by Delucia and Jones (2017) such as: that organism-
environment relations are the proper unit of analysis, that perception and action are continuous
and cyclic, and that natural human perception is of relational affordances rather than object
properties, etc. Situationally adaptive and appropriated understandings of driver distraction issues
are no different. A technical task force of expertise from both European and US intelligent
transportation systems researchers published a recent conceptual framework and taxonomy
(Engstrom et al.,, 2013) that proposed a situated action-oriented view of attention and
conceptualized driver inattention as ‘mismatches between the driver’s current resource allocation
and that demanded by activities critical for safe driving, rather than in terms of attentional failures
of the driver’. Within Engstrom et al (2013), attentional allocations are viewed as adaptive
functional processes regulating balances between benefits and costs where compensatory behavior
emerges in regards to contexts (e.g.,, more attention in anticipation of demanding or uncertain
situations such as complex intersections, focusing on detecting vehicles potentially appearing
behind a blind corner, and/or uptake of non-driving activities when bored and/or sleepy).

263



4.2 DMS application fit

The present thesis provides results regarding relatable demands from specific driving scene
features of road curvature (lateral course conflicts) and/or traffic volume (longitudinal collision
conflicts) with specific eye measurements of movement (saccades, eccentricity, etc.). These results
suggest a lower-level target for DMS applications to support the foundational core monitoring
activity of driving: attentiveness in visuomotor control (whether of oneself under conventional
driving circumstances or of another entity as with supervision over driving automation).

As discussed above, the driving task is clearly seen to be more than one thing, and monitoring
activity (i.e., selective information input to action output mappings) is pervasive throughout. In
formal research and engineering terms, hierarchical models are often employed to
decompose/describe human driving performance along a framework of relational orderings. To
clarify where the present thesis conclusions fit in and to what implications, it is helpful first to
briefly overview a few of such models from Rasmussen (1983) and Parasuraman et al. (2000) for
human cognitive information processing performance in general, and from Michon (1985), Merat
et al. (2018), and Victor (2005) for driving problems specifically. The resulting overarching theme is
one of consensus recognition and treatment of information that flows both fully and/or partially
(semi-independently) through earlier/lower/faster and later/higher/slower mechanisms as typically
mediated by experience/familiarity.

For all kinds of human operator performance and man-machine interface system designs,
Rasmussen (1983) arranged what is known as the SRK framework with ‘skill-based behavior' (SBB)
on the bottom, followed by ‘rule-based behavior (RBB) next, and with ‘knowledge-based behavior
(KBB) on top. SBB involves a direct mapping between sensory input feature forms to automated
sensori-motor pattern action outputs. At the RBB level, information proceeds through stages of
recognition, association and rule retrieval as intercedents between sensory inputs and action
outputs. At the KBB level, further intermediaries between sensory inputs and action outputs
include identification, decisions, and planning.

Parasuraman et al (2000) adopted a simple four-stage view of human information processing
proceeding in turn first from sensory processing, to perception/working memory, to decision
making, and ultimately to response selection. In terms for modeling functions of automation they
described these successive stages as information acquisition, information analysis, decision
selection, and action implementation. Notably, they described such stages as capable of being
considered as coordinated together in ‘perception-action’ cycles (e.g., Gibson’s (1979) affordance
relations) rather than always in a strict serial sequence from stimulus to response. Similar accounts
of information flow, with similar discussion of digressions off a singular path, are seminally
represented by Endsley’s (1995) three levels of situation awareness (perception, comprehension,
and projection) as well as the how-what-why triads within abstraction hierarchies of cognitive work
analysis from Vicente (1999) as explained within Mcllroy & Stanton (2011) and in particular, the
notional movement and shortcuts for information in control tasks across a ‘decision ladder’ where:

‘... although the diagram displays information processing in a linear fashion, different actors
are likely to take different routes from the entry point to the end point. More specifically,
novice workers are expected to follow the linear sequence while expert actors are often able
to take shortcuts. For example, in certain situations the diagnosis of the system state may
lead directly to the execution of a set procedure’ (p. 363).
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For driving specifically, Michon (1985) represents the problem solving tasks with three levels of skill
and control that build cognitively upwards as a nested hierarchy with operational (control) on the
bottom, tactical (maneuvering) in the middle, and lastly strategical (planning) on top. At the lowest
level, environmental inputs are processed directly into automatic action pattern outputs in the
timeframe of milliseconds, e.g., for threat coping aims to avoid acute, perceived danger consisting
of the basic handling skills of steering and braking. In the middle, maneuvers produce controlled
action patterns on the order of seconds, e.g., to negotiate merges, turns, and overtaking. At the
top, strategies invoke general plans under a longer time constant, e.g., overall trip goals, route and
modal choices.

Merat et al. (2018) adopted and extended the model of Michon (1985), merging it together with
the levels of driving automation from SAE (2016), specifically for the conceptualization of ‘out-of-
the-loop’ in the automated driving problem domain. Therein a multi-level control of driving is
depicted with continuous (ms — s), intermittent (s — min), and infrequent (min. — hrs.) monitoring
activity inherent across driving control. For the innermost loop, the monitoring of
lateral/longitudinal movements is tied in as ‘basic vehicle motion control’ e.g., ‘prediction of the
movement of one’s vehicle relative to other vehicles and within the lane ahead’.

In his doctoral dissertation on roadway inattention, Victor (2005) emphasizes the criticality of the
active vision approach that was argued to be ‘relatively unknown to traffic researchers and human
factors specialists developing in-vehicle information and communication systems and advanced
driver assistance systems’ (p. 10). He introduced and explained a guiding principle of vision from
Ungerleider and Mishkin (1982) consisting of two semi-independent cortical streams with foveal
ocular time-sharing constraints: ‘vision-for-action’ and ‘vision-for-identification’ as in accordance
with faster/basic ventral-stream processing compared to slower/abstracted dorsal-stream
processing (see also ‘System 1’ and ‘System 2’ respectively in Kahneman, 2011). Such parallel
division of labor of attentional processing allows for human drivers to move their eyes/attention
both for fast and spatially accurate processing as visuomotor action control (e.g., immediate lateral
and longitudinal protections) while at the same time for more conscious, representational, and
goal-setting purposes (e.g., reading road signs and monitoring in-vehicle displays, etc). When
coordination breaks down through competition for resources, the disruption of the lower
attentional mechanism is explained via over-taxation from the higher attentional mechanism. In
other words, thinking too heavily on a higher level (e.g., fixating too long on identifying/classifying
an object or concept) detracts from vision-for-action loops of path- and headway-control.

The results and conclusions from the present thesis studies showed that not only are driving
situations important for DMS assessments, but also suggest the level at which DMS could be
promisingly targeted. The results evidenced that eye movement measurements (i.e., saccade
amplitude, eccentricity, off-road glances) can be (beneficially) related to specific visual demands
(i.e., amount of road curvature, amount of traffic). These measurements, of both eyes and scenes,
reflect aspects of lateral and longitudinal spatial motion management — described by Michon
(1985) and Merat et al. (2018) as operational functions/control and explained by Victor (2005) in
terms of vision-for-action. Thus, on the whole, the present thesis studies suggest means for DMS to
be targeted to protect and maintain the lower foundational level or inner-most loop of driving
attention (rather than interactive implicit layers and representational experiences that can be added
on top). The situated DMS affords an ability for the intelligent vehicle to be more judicious in its
assessments and to conservatively refrain from alerting/reacting to simply whenever any
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‘secondary’ higher cognitive tasking is presently detected (e.g., eye movement consequences of
text reading or phone conversations, etc.). Instead, more (situationally) meaningful behavioral-
based causes for caution/correction comes from situationally restricting DMS involvement to
whenever the (measurable) eyes cannot (measurably) keep up with the (measurable) present visual
demands for the most basic level of driving: safe/critical lateral and longitudinal vehicular control.

The power of the situated DMS comes from its protective involvement when a driver’s thoughts
have been decoupled from actions to such an extent that the (vision-for-action) eyes consequently
suffer to keep up their basic lower level visuomotor control tasks of moving enough to match the
visual demands of the present driving scene. In particular, because supervision of driving
automation artificially splits the naturally adaptive perception-action cycle (i.e., Neisser, 1976) by
asking for driving control perceptions from the human without his/her control actions, needs for
DMS support are expected to be greater at such a level. As a composite homeostatic biological
system, the vision-for-identification neural streams in the brain might be expected to overly
dominate foveal occupations with diminished rehearsal requests from the vision-for-action neural
streams which themselves then should reasonably carry metabolic and temporal ‘start-up’ costs
upon recall from periods of inactivity (like putting force on a muscle that has ‘fallen asleep’ after
sustained disuse). Thus, the earlier adaptive visual attention activity that is pre-cognitive in the
sense that it sits before/below comprehension/awareness is expected to be where the results of
the presently devised situated DMS might best fit in.

5. Future Research and Recommendations

The present thesis studies also provided new avenues in terms of automotive research methods.

Specifically, further descriptions and URLs for specific tools that were developed and felt potentially
useful to future researchers (but were not otherwise available from the publications themselves)
have been included directly as appendices to chapters, 3.1, 3.2, and 4.2. and are presently
discussed in terms of extensibility.

Because future researchers and designers will ultimately be afforded and/or limited by their own
available resources, a range of ways to know driving eyes and to know driving scenes are provided
as contributions from the work of this thesis. For example, Chap 3.2 provides not only a theoretical
corrective feedback loop ‘big picture’ but also implementable regression equations that establish
quantifiable relations between how much workload and attention different high/low driving scenes
might be expected to require. For extensibility purposes, the situated DMS integration with driving
automation of Chap 4.2 was designed with standard UDP communication protocols that separated
customizable DMS classification states from consequential driving automation control actions that
also included an abstraction layer for definition of course and/or collision conflict (e.g., all of which
might differ between various automotive suppliers or research projects). Thus, it can be concluded
from this thesis taken as a whole, that to develop DMS of driving vigilance, not only are eye
measurements (esp. of movement distances) and scene contents (esp. road curvatures and
collision hazards) important factors but they are obtainable in practical ways for future research
and development applications.
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Recommendations for future research fall under two general categories: (1) greater
fidelity/complexity in driving simulations (e.g., more traffic, intersections, and real-life secondary
tasks should provide greater generalizability of naturalistic driver adaption to driving scene
demands) and (2) greater instrumentation technology in on-road vehicles (e.g., better knowledge
of the driving scene contents and eye movement behaviors with improved measurement
capabilities). Specifically out on the road, the presently available forward facing driving scene
cameras had relatively low resolution and moved whenever the head of the participant moved thus
obscuring/degrading recorded visual inputs for automatic computerized content segmentation let
alone accurate pixel area coverage calculations. In its present form, the computational resources
available to our driving simulator visualizations struggled with the additional scenery, sporadic
oncoming traffic, and more than a single lead vehicle programmed to follow a specific trajectory
within even the short 2-3 minute duration scenario which included only continuous traffic flow
characteristics: no stop signs, intersections, merges, or turns.

More generally, initiative for broader areas of innovative driving research resources used in this
thesis are summarized below, including the use of dashcam driving videos, crowdsourcing, and
parallel eye-tracking.

5.1 Dash cam driving video recordings

In the conduct of research in the driving domain, it is easy to take for granted just how diverse
driving can be. People commonly relate concepts to their own experiences and so it is a natural
fallacy to disproportionately represent roads and driving conditions that are most familiar and
available from one’s own driving history and personal environment. Additionally, driving video
recordings are growing research resources that offer a hybrid of enhanced stimulus/behavioral
fidelity towards on-road applications that also allow for laboratory levels of repeatability and
control.

Thus, in attempting an ecological approach to assessing driver eyes in context, a foundational
interest of this thesis involved probing readily available sources of what driving really looks like.
Casual observations across the last few years show a fairly steady increase in the number of dash
cam driving video recordings publically posted and shared on YouTube, now currently totaling in
excess of 5 million (Figure 5.1). Notably, by appending search terms such as ‘extreme’ or ‘fail’, many
unusual, and often times dangerous, recordings of driving situations can be exploited in controlled
and repeatable ways for various research purposes (e.g., which visual scene precursors to a
hazardous driving event would occupants of an automated/autonomous car notice both with and
without various kinds of infotainment and/or control interfaces).
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Figure 5.1. Recent growth in the number of publically available dash cam driving videos posted to YouTube

Furthermore, the automotive artificial intelligence (Al) community has long been actively
contributing open source image data sets to advance the training and application of their machine
learning computer vision models. Recently, dash cam driving video data sets have also been added
to the community research pool. In June 2018, UC Berkeley teamed up with the Al dash cam
company Nexar to release the BDD100K dataset containing 100,000 videos that include telemetry
information like GPS locations, IMU data, and timestamps, as well as annotations such as object
bounding boxes, lane marking identification, and indications of drivable areas.

5.2 Crowdsourcing for driving

The conventional driving transportation system has been built up over the last century by and for
humans. From traffic engineers to city regulatory officials and drivers, humans design and consume
the materials of the automotive system, so much in fact that driving skills (or knowledge of driving
domain aspects) has become perhaps nearly on par with walking and talking. Meanwhile, across
the world there is a growing community of online micro-task workers that through the Internet
complete services in parallel with significant reductions in time and cost. Such crowd work
continues to be a popular way of collecting subjective online survey data (esp. for aspects of
innovative products not yet widely released such with various levels of driving automation). In the
present chapter 3.1, objective work (i.e., naturalistic driving scene interpretation and content
labeling) was newly explored and validated specifically in the traffic safety research domain. In a
future of ever greater computer and car connectivity, it is conceivable that such a resource pool of
in-common skills may further become useful to advance driving research and transportation service
applications (e.g., tele-operated remote driving).
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5.3 Parallel passenger eye-tracking comparisons

Much of the history of eye-tracking has had a lens focus towards measurements of a single
individual, and across a pool of participants in separate sessions and typically in an enclosed
laboratory environment. However, with massive recent reductions in cost, weight and size of
camera and computing technology, eye-tracking equipment has evolved towards field studies and
applications that involve the real world. Benefiting from the same goals and advances regarding
reduced size and cost, the eye-tracking devices are increasingly prepared to undertake
simultaneous measurements from multiple individuals. In the shared data collection methods of
the present Chapter 4.1 and 4.2, comparisons of eye measures across a driving responsibility role of
being in/out-of-the-loop were enabled in a real-world driving environment, with its many potential
situational confounds of time, place, traffic conditions, weather, etc., held constant between the
two roles of investigatory interest. With increasing driving automation, end-user research will
correspondingly progress with topics involving non-driving vehicle participants (e.g., as everyone
becomes a passenger interacting with an automated/autonomous driving agent). Simultaneous
eye-tracking of multiple in-vehicle occupants allows for internal manipulations (e.g., different
human machine interface designs) while controlling external conditions (all in the same vehicle at
the same time and place) yet while retaining ecological real-world exposures of relevant driving
scene situations.

6. Conclusion

Primary contributions of the present thesis regarding human factors of monitoring driving
automation via eyes and scenes include: the critical importance of driving scene/situations (part 1);
practically associated measurement constructs (part 2); and DMS-driving automation integration
designs (part 3). Overall, it can thus be concluded that driver eyes adaptively move in relation to
driving scene/situations and that details of both are measurable, such that situated DMS can be
built and deployed with promising potential. Specifically, improved DMS are expected to improve
human-automation interaction in terms of calibrated trust, enhanced acceptance, and more
frequent and appropriate adherence. Consequently, road safety should reasonably be expected to
increase and alleviate damaging societal costs.
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Propositions Belonging to the PhD Thesis

These propositions are regarded as lending themselves to opposition and as defendable, and have
been approved as such by the promotors prof. dr. F.C.T. van der Helm, dr. ir. ].C.F. de Winter, and dr.
ir. R. Happee.

(1) Human remote driving is safer than automated driving, and easier to achieve than
autonomous driving.

(2) Tesla set an irresponsible and unethical precedent by using end consumers to beta
test their ‘Autopilot’ advanced driving assistance system on public roads.

(3) The full replacement of human driving control with autonomous processes is an
inappropriate aim for driving problems caused by human attentional errors.

(4) Vigilance decrements occur more often in automated driving than in conventional
driving.
This proposition pertains to this dissertation (Chaps. 2.1)

(5) Eye tracking measures now enable adaptive transitions of driving control where
backing up the human with automated driving control is safer than forcing a return
to manual control.

This proposition pertains to this dissertation (Chaps. 4.1, 4.2)

(6) For driver monitor systems, measurements of how people look around are stronger
determinants of being ‘in-the-loop’ than where/what drivers look at.

This proposition pertains to this dissertation (Chaps. 3.2, 3.3)

(7) Cognitivism has done a great disservice to applied human factors. Behaviorism
deserves and is already mounting a come-back.

(8) More focus is warranted on the first rather than second word in the ubiquitously
adopted Situation Awareness construct.

(9) Non-interactive real-life driving videos are under-realized transportation safety research
resources that provide more generalizability than driving simulators and more control than
on-road studies.

This proposition pertains to this dissertation (Chaps.3.1, 3.2)

(10) Human error is not something in need of being resolved
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