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Abstract

We present a systematic investigation of the dynamic properties of silicon nitride cantilevers in
air. The thermal noise spectra of cantilevers have been measured using a home-made optical
deflection setup. Torsional and flexural resonances up to the seventh mode are observed. The
dependence of resonance frequencies on the dimensions and mode number is studied in detail.
It is found that undercut increases the effective length of the cantilever by a value �L, which
depends on the undercut distance and the resonance mode shape, but not on the cantilever
length. Finite element modelling confirms these experimental findings. A simple model is
suggested for the shape of the undercut region, which agrees well with experimental findings.
Using this model, the undercut cantilever can be approximated by a stepped beam, where the
clamp distance depends on the underetch duration and the mode shape.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Cantilever systems in the micro- and nanometer regimes have
attracted great interest because of their wide range of sensor
applications. Examples, both in fundamental and industrial
areas, include Casimir force detection [1], material properties
analysis [2, 3], magnetic resonance force microscopy (MRFM)
[4] and extremely sensitive mass sensors [5–7]. Using the first
natural frequency of the cantilevers for detection [8, 9], the
mass sensitivity can be in the order of 10−19 g (Hz)−1/2 which
is suitable for single virus detection. Interest in higher modes
is raised as they potentially offer higher sensitivity [10, 11].
New measuring techniques are currently investigated to realize
on-chip readout at resonance frequencies on the order of MHz
up to the GHz range [12].

In practical applications, such as scanning probes and
mass or stress sensors, often silicon nitride cantilevers are
used, with dimensions in the range of ten to several hundreds
of micrometers. The present work is a systematic investigation
of the resonance frequency as a function of dimensions of
such cantilevers in air. The undercut is explicitly taken into
account [2, 3]. Flexural and torsional resonances have been

1 Author to whom any correspondence should be addressed.

measured up to the seventh mode using the thermal noise
spectra. With the presented results, the resonance frequency
can be predicted more accurately from the design. This is of
great importance in the design of cantilever sensors (arrays)
and in appropriate analysis of cantilever material properties
[2]. The latter aspect is the more so important when size-
dependent behaviour may enter the cantilever characteristics
upon further miniaturization.

2. Fabrication

2.1. Fabrication of cantilevers with undercut

Cantilevers with undercut are fabricated from home-made
Low-Pressure Chemical Vapour Deposited (LPCVD) silicon
nitride [13] on silicon (1 0 0). The SiNx thickness ranges from
74 to 850 nm. The cantilever length varies from 25 to 100 μm
and the width from 8 to 17 μm. For patterning of the SiNx

layers a two-layer resist is used: HSQ e-beam resist (Fox-12,
200 nm) on top of the photoresist (HPR, 0.5–1.5 μm thickness,
depending on the SiNx thickness). The HPR layer serves
as an extra dry etch mask while etching the SiNx layer (see
figure 1).
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(a) (b)
(c)

Figure 1. Cantilever fabrication process. (a) Overall layer stack.
(b) After patterning of the silicon nitride layer. (c) Release of the
cantilever structure by an isotropic dry etch process.

Figure 2. Scanning electron microscope (SEM) image of a silicon
nitride cantilever. The base of the cantilever is underetched; the dark
strip near the base of the cantilever indicates the undercut. The inset
shows the anchoring in more detail: the short release etch time
yields a protrusion which curves towards the cantilever.

The HSQ layer is patterned using an electron beam pattern
generator (Leica 5000+). After development, two anisotropic
dry etch steps follow to etch through the HPR and SiNx layers
as shown in figure 1(a). First, HPR is anisotropically etched
by a low-pressure O2 reactive ion etching (RIE) plasma (LH
Z400 system at 20 sccm, 0.3 μbar, 40 W), and next the SiNx

by a low-pressure O2/CHF3 (2.5 sccm, 50 sccm, 10 μbar)
RIE plasma at 50 W. Then, a selective isotropic dry etch step
follows with an SF6/O2 inductively coupled plasma (Alcatel
AMS100) to release the cantilevers (figure 1(c)). In this final
step the undercut is introduced at the base of the cantilevers,
as shown in figure 2.

2.2. Fabrication of cantilevers without undercut

Cantilevers without undercut are fabricated as well. In this
case, double-side polished silicon (1 0 0) wafers coated with
LPCVD silicon nitride on both sides are used. Square windows
are made in the nitride on the back side of the wafer, through
which the Si is wet etched till a SiNx membrane results at the
front side. A KOH solution is used (H2O:KOH = 25 ml:9 g;
etch rate 1 μm min−1) creating the well-known pyramidal
features according to the silicon (1 1 1) facets.

In a second lithography step, the cantilever pattern is
defined in the silicon nitride membrane, which has a thickness

(a)

(b)

(c)

Figure 3. Fabrication of cantilevers without undercut.
(a) Schematic side view of the membrane fabrication steps.
(b) Schematic top view after the cantilever release with the nitride
stripes extending from the base to free space, without any undercut.
(c) SEM image of the SiNx cantilevers.

of 500 nm. The membrane is spin coated with HPR (900 nm)
photoresist and on top HSQ (Fox-12, 200 nm) e-beam
resist. After e-beam patterning and development the
cantilevers are released using the same sequence of O2 and
O2/CHF3 plasma steps indicated for the undercut devices.
The schematics of the fabrication process are shown in
figures 3(a)–(b). An example of fabricated cantilevers without
undercut is shown in figure 3(c).

3. Measurement setup

The resonance behaviour of the cantilevers is measured in
a home-made optical laser deflection setup operating in
atmospheric environment. Figure 4 depicts the configuration
of the setup. The deflection of the cantilevers due to thermal
noise is probed by a 658 nm (New-Focus) laser diode. The
output signal, the voltage difference generated by the reflected
light focused on a two-segment diode, is measured with a
spectrum analyser to obtain thermal noise spectra. The laser
spot is typically positioned at the end of the cantilever with
a spot diameter of 6 μm and a power of a few mW. The
electronic bandwidth of the setup is 5 MHz and its sensitivity
is estimated to be about 1 pm (Hz)−1/2. We have reduced the
laser power by a factor of 2 and found that the noise spectra are
not affected. Therefore, the measured spectra are attributed
to thermal fluctuations and not to excitations induced by the
laser.

Thermal noise spectra are measured for a large number
of cantilevers with varying length (L), thickness (t) and width
(w). Figure 5 shows three spectra of a 74 nm thick cantilever.
Flexural modes (upper panel: modes 2–6 are clearly visible
in this case) and torsional modes (middle panel: modes 1–5)
can be measured independently [14] by rotating the cantilever
with respect to the incoming laser beam. The insets in
figure 5 schematically show the movement of the reflected
laser beam on the two-segment diode. Flexural movements
of the cantilever result in horizontal beam deflections (top
figure 5), which can be detected since the laser generates a
periodic signal on the two-segmented photodiode. In this
configuration, the detector is insensitive to the vertical beam
deflections which represent the torsional movements. In the
middle figure 5 the sample has been rotated by 90◦. Now
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Figure 4. Schematic of the home-made optical deflection setup.

Figure 5. Thermal noise spectra of a SiNx cantilever with
dimensions w × L × t = 17 × 60 × 0.074 μm3. Distinction
between the torsional and flexural modes is obtained by rotating the
cantilevers by 90◦. With a rotation of 45◦ both flexural and torsional
modes are visible (lower panel). The insets illustrate the motion of
the reflected laser beam on the segmented diode.

torsional movements can be detected and for the flexural modes
the output voltage equals zero. When the sample is placed
at 45◦, the reflections from the flexural and torsional modes
make an oblique movement and both modes are detected at the
same time. The independent identification of the modes is an
advantage of measuring thermal noise spectra; measurements
on actuated cantilevers generally show the two types of modes
at the same time [15].

The resonance frequency and the Q-factor of the
resonances are determined from Lorentzian fits (red lines)
through the data, as is illustrated in figure 6 for the fourth
torsional and flexural modes. In the next sections, we
will discuss in more detail the dependence of the resonant
frequencies on the cantilever geometry.

4. Flexural modes

The equation of motion for the flexural vibration modes in
vacuum (quality factor Q � 1) and its solutions can be found
in the text books [16, 17] and is briefly summarized here for

Figure 6. Zoom-in on the fourth torsional and flexural modes; red
lines are Lorentzian fits through the data defining the position of the
resonance and its Q factor.

Figure 7. Schematic view of a uniform beam with rectangular cross
section with nominal length L, width w and thickness t and w � t .
The angle θ denotes the rotation around the x-axis.

convenience. We will adopt the notation shown in figure 7 and
note that the starting point for the calculation of the resonance
frequencies is the Euler–Bernoulli beam equation:

EI
∂4y

∂x4
+ ρA

∂2y

∂t2
= 0, (1)

where E is the Young’s modulus, I is the area moment of
inertia, ρ is the mass density, and A is the cross-sectional area.

The harmonic vibration solution can be found using the
method of separation of variables with Y (x, t) = u(x) eiωt ,
which simplifies (1) for the spatial solution to

d4u(x)

dx4
− k4u(x) = 0, (2)

where

k4 = ρA(2πf )2

EI
(3)
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Table 1. The frequencies and Q-factors of the first seven flexural
modes of a cantilever with dimensions (w × L × t = 17 × 100 ×
0.2 μm3). The theoretical and experimental fn/f1 are in good
agreement. The error in all measurements of fn was within ±10 Hz.

N fn (MHz) Q-factor fn/f1 (theory) fn/f1 (exp)

1 0.032 2.2 1 1
2 0.21 13.3 6.267 6.51
3 0.59 35.2 17.548 18.29
4 1.26 66.2 34.389 35.87
5 1.90 92.8 56.843 59.15
6 2.80 124 84.914 87.93
7 3.90 ∼100 118.599 121.54

is the characteristic parameter of the system and f is the
resonance frequency. The general solution to (2) is given
by

u(x) = a1 sin(kx) + a2 cos(kx) + a3 sinh(kx) + a4 cosh(kx).

(4)

For cantilevers, the boundary conditions are

u(0) = du(0)

dx
= d2u(L)

dx2
= d3u(L)

dx3
= 0.

A non-trivial solution for the prefactors in (4), leads to the
characteristic equation

1 + cos(knL) cosh(knL) = 0. (5)

The solutions {αn = knL with n = 1, 2 . . .} of (5) give the
wave numbers kn of a set of flexural vibration modes, where n
is the mode number. Combining the solutions of (5) with (3),
one finds the resonance frequency of the cantilevers in terms
of the dimensions and the material properties:

fn = α2
n

2π
√

12

t

L2

√
E

ρ
, (6)

where we have substituted A = wt and I = wt3/12.
For the first seven modes the mode-dependent αn is

given by 1.8751, 4.694, 7.855, 10.996, 14.1372, 17.2788 and
20.4204, respectively. With these numbers the ratio fn/f1 is
calculated as shown in table 1. Equation (6) is to within a 2%
error valid for rectangular cantilever plates (thin beams) with
a small aspect ratio (L/w > 1.5) [18]. Experimental values
determined from a 200 nm thick cantilever are given in the
same table; they are in good agreement with the theoretical
values. For other cantilevers we also find fn/f1 values that are
close to those listed in table 1. We note that a slightly better
agreement can be obtained if we correct the frequencies for the
low Q-factors. In the harmonic approximation, the correction
equals (1–1/(4Q2))−1/2 [19] and the ratios are then equal to
6.34, 17.81, 36.18, 57.29, 84.42 and 117.59, respectively.

To further test the applicability of the Euler–Bernoulli
theory, we have measured the resonance frequencies as a
function of length, thickness and width. Figure 8 shows
the dependence of the fundamental resonance frequency f1
versus L−2 in samples without undercut. The observed linear
dependence is in agreement with (6). The dependence of f1 on
the thickness is shown in figure 9, for cantilevers with a fixed
undercut. For a fixed cantilever length, a linear behaviour is
observed, in accordance with (6).

Figure 8. Resonance frequency of the first mode versus 1/L2

showing the expected linear dependence of (6). These measurements
were performed on cantilevers without undercut as shown in the
inset SEM image. Cantilever thickness and width are 500 nm and
17 μm, respectively. The length varies from 20 to 100 μm.

Figure 9. Fundamental resonance frequency versus thickness for
different cantilever lengths, showing the expected linear dependence
of (6).

5. Torsional modes

Apart from the flexural modes (the xy-plane) the cantilever
also has other degrees of freedom. Vibration in the xz-plane
is also possible although in practice the amplitudes of those
modes are much smaller and more difficult to detect due to a
higher stiffness (I = tw3/12 instead of I = wt3/12). Torsional
modes refer to displacements due to rotation around the
cantilever x-axis and the corresponding resonance frequencies
of these modes are within our detection range. The equation
of motion is given by [20]

T
∂2θ

∂x2
− ρIp

∂2θ

∂t2
= 0,

where T is the torsional stiffness, θ(x, t) is the angle of twist
about the x-axis (figure 7), and Ip is the polar moment of inertia
given by

Ip = Iy + Iz = wt3

12
+

tw3

12

4
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for the cross section in the yz-plane. In practice, t3 w � tw3

so that the first term can be neglected.
The torsional stiffness [21] T = ηG in which the shear

modulus G is given by G = E/2(1 + ν), with ν being Poisson’s
ratio. The factor η is dependent on the geometry of the cross
section and will be discussed later. By the method of separation
of variables [22]

d2�(x)

dx2
+ λ2

n�(x) = 0, with λ2
n = ρIp

T
ω2. (7)

The general solution to (7) is

�(x) = b1 sin(λnx) + b2 cos(λnx),

with boundary conditions:

�|x=0 = T
∂�

∂x

∣∣∣∣
x=L

= 0.

The latter term indicates that there is no torque applied at the
free end of the cantilever and from this boundary condition
one obtains the characteristic equation:

cos(λnL) = 0, with λn = (2n − 1)π

2L

so that

fn = 2n − 1

4L

√
ηG

ρIp

.

The remaining problem is to find the value of η. When the
cross section of the beam is considered to be an ellipse with
the axis lengths equal to the width w and the thickness t of the
cantilever, then η = t3w/3 and the resonance frequency in the
absence of damping equals

fn = 2n − 1

2L

t

w

√
G

ρ
. (8)

For a narrow rectangular shaped beam, a better approximation
is given by [23]

η ≈ 1

3
wt3

(
1 − 0.630

t

w

)
.

For the beams in this study, the difference between these two
approximations is less than 1% and we will use (8) to calculate
the resonance frequencies for the torsional modes.

Figure 10 shows the resonance frequencies of the first
torsional mode for a sample without undercut. The frequency
versus reciprocal length does not show the expected linear
dependence (8). An upward curvature is observed instead:
shorter cantilevers have a higher resonance frequency than
that expected from (8). This can be explained by taking
into account the ratio L/w of the cantilever, according to
the theory of Reissner and Stein [24]. With the measured
Young’s modulus obtained from the flexural modes (200 GPa
for the cantilevers released by wet etching), and the Poisson’s
ratio of 0.22 from literature [25], we have calculated the
torsional resonance frequencies predicted by this theory. As
figure 10 shows, the data are in good agreement with this
calculation.

Figure 10. Resonance frequency of the first torsional mode versus
the inverse of length, for cantilevers without undercut. Dotted line:
solution according to (8). Solid black line: solution when the finite
L/w ratio is taken into account. The cantilever width is 17 μm, and
the thickness is 500 nm.

Figure 11. Fundamental resonance frequency of the flexural mode
versus 1/(L + �L) 2. �L is a correction (6.7 μm in this case) to the
nominal length L due to the underetch Lu (12.5 μm for this sample).
Inset: f1 versus 1/L2. Cantilever thickness and width are 500 nm
and 17 μm, respectively.

6. The effects of undercut

6.1. Flexural modes

To investigate the effect of undercut on the cantilever resonance
frequency, we now turn to the length dependence of modes
in the samples with undercut. The inset of figure 11 shows
the result. The undercut, which is 12.5 μm in this sample,
leads to a deviation from the linear relation predicted by
(6) and observed for devices without undercut in figure 8.
The deviation from linearity is most pronounced for short
cantilevers. Apparently, the base region near the anchoring
point participates in the overall resonance behaviour of the
cantilever. The effect of undercut can be included by adding a
length �L to the nominal cantilever length [26–28], where
�L is independent of the length of the cantilever. Thus
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Figure 12. Correction �L to the nominal length as a function of the
undercut length for the first flexural mode. •, four different batches
of samples with a cantilever thickness of 500 nm; 
, one batch of
samples with a cantilever thickness of 200 nm. Both errors in Lu and
�L are well within the diameter of the circles. Drawn lines are the
result of a finite-element simulation according to models
schematically depicted in figure 13. Grey and black lines refer to
undercut without (figure 13(a)) and with (figure 13(b)) protrusion.

the ‘effective length’ of the underetched cantilever is given
by L + �L. By performing a least-square fit (fit function:
f (x) = a/(L + �L)2) through the resonance frequency data
with �L and a as free parameters, �L was determined to be
6.7 μm for the data shown in figure 11. With the inclusion of
�L, a linear relation between the resonance frequency f1 and
1/(L + �L)2 is obtained, as illustrated in figure 11.

A similar analysis has been performed on three other
batches of samples with undercuts of 10.4 μm, 15.4 μm and
20.7 μm. The linear relation between f1 and 1/(L + �L)2 is
restored for �L equal to 2.8, 8.4 and 11.2 μm, respectively.
These fit values are plotted versus the experimental undercut
distance Lu, as shown in figure 12 for the first resonance
frequency (circles). The undercut distance, Lu, has been
determined from SEM inspection.

For higher mode numbers, we also found a discrepancy
between fn and L−2. Again, an effective length can be defined
to restore the expected linear behaviour between the two
parameters. The dependence of �L on the first three flexural
modes has been investigated for 200 nm thick cantilevers and
we find an increase of �L as the mode number increases:
�L = 5.3 μm for n = 1 (slightly smaller than the value for the
500 nm thick cantilevers; see figure 12), �L = 7.8 μm for
n = 2 and �L = 8.6 μm for n = 3. Apparently, for the
higher modes an increasing part of the base participates in the
vibration.

To support the experimental findings a three-dimensional
finite element simulation was carried out in ANSYS using 20
node structural solid elements (SOLID186 and SOLID95) and
an element size of 1–5 μm. The underetched cantilever is
modelled as a stepped beam as depicted in figure 13(a), and
with a more realistic clamp which mimics the actual situation
of an isotropic etching process when releasing the cantilevers
(figure 13(b)). Released areas of cantilever and base regions

(a) (b)

Figure 13. Schematic top view of the clamp region of a cantilever
with underetch. (a) Idealized underetch with complete removal of
substrate material over a length Lu, (b) more realistic underetch
geometry with a protrusion due to partial removal of the substrate
material over an effective length L∗

u. Dashed line refers to the
contour for just sufficient underetch to release the cantilever beam
over its full width.

are allowed to move freely. All translational and rotational
degrees of freedom are set to zero throughout the cross section
at the clamping regions where release is zero. As for input
parameters the experimental value for the Young’s modulus
has been used (239 GPa) whereas the density (3100 kg m−3)
and Poisson’s ratio (0.22) are taken from the literature [25].
The simulations show that indeed a �L can be defined and
its values have been determined in the same way as in the
experiments, i.e., by considering the frequency versus L−2

dependence. Note that the results shown are from simulations
with wu > 10 w, where 2wu is the total width of the simulated
structure (see figure 13). In this limit, the calculated �L is
independent of wu. If wu is smaller, the effective cantilever
length increases since the structure becomes less stiff.

For the idealized underetch case (figure 13(a)), the grey
line in figure 12 shows the calculated �L versus calculated
underetch length Lu. As expected, the line crosses the origin:
any undercut makes the effective cantilever length larger than
the defined length. This behaviour is in contrast with the
experimental data points which indicate a dependence with an
intercept on the x-axis around 10 μm.

The black line in figure 12 shows the calculated �L versus
underetch for the fundamental mode f1 when the protrusion is
explicitly taken into account. To model the protrusion, an
isotropic etching process is taken at a constant etch rate k.
The apex of the protruding tip, marked A, is positioned a
distance L∗

u from the cantilever base (see figure 13(b)). The
minimum underetch required to release the cantilever is half
the cantilever width w. From the geometry, the position of
the support is calculated as L∗

u =
√

(kτ )2 − (w/2)2, where
τ is the etching time. The etch rate of the apex is found by
differentiating its position to the etch time:

dL∗
u

dτ
= k2τ√

(kτ )2 − (w/2)2
> k, with kτ > w/2. (9)

The apex remains sharp, as is observed in the experiment.
Note that just after the cantilever is released, when kτ ≈ w/2,
the apex etch rate dL∗

u

dτ
is high. In practice, this results in poor

control over the undercut of the released cantilever right after
release.

The model with protrusion (black line in figure 12) shows
a much better agreement with the experimental data. For

6
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Figure 14. Resonance frequency as a function of undercut for the
first flexural (main panel) and first torsional (inset) mode, calculated
using the models of figure 13(a) (grey line) and figure 13(b) (black
line). The cantilever dimensions are w × L × t = 17 × 100 ×
0.2 μm3.

low Lu, however, the model predicts slightly higher �L values
compared to the measured ones. This discrepancy is attributed
to a more complicated etch profile than that assumed in our
2D model. As can be seen in the inset of figure 2, the sharp
underetch shape is slightly curving back towards the cantilever
which makes the cantilever’s effective length shorter than
modelled. For large Lu, this effect becomes less pronounced,
and the simulated and experimental values coincide. We also
modelled the higher modes. As in the experiment, we find a
slight increase of the �L values with increasing mode number.

Figure 14 shows a comparison between the calculated
resonance frequencies of the first bending mode versus
underetch for the two models. As expected, the effect of
the protruding support vanishes when the undercut length
Lu > w. For underetch lengths up to the cantilever width, the
protrusion plays a significant role. For small undercuts (Lu <

0.5 w) the cantilever length effectively becomes much shorter
than L as only the outer tip of the cantilever is released. We
note that for the description of the undercut on flexural modes,
a reasonable approximation can be obtained by assuming a
straight clamp at L∗

u, as shown by the dotted line in figure 14.
Here, L∗

u can be calculated using (9). The underetch region is
then simplified to a stepped beam geometry, which has been
studied in the past [29].

6.2. Torsional modes

For torsional resonances the effect of the protrusion is expected
to be less pronounced, as the support concentrates at the
cantilever central length axis, which is a nodal line. The inset
of figure 14 shows the dependence of the resonance frequency
on Lu, simulated using the models in figures 13(a) and (b).
In contrast to the bending modes, for the torsional modes the
role of the protrusion is indeed insignificant: the base can be
simplified as if it were clamped at Lu. This means that the
stepped beam model of figure 13(a) can be applied. Note that
it does not mean that the effective cantilever length increases
by this amount, as we will show below.

Figure 15. Torsional resonances as a function of the inverse length.
The 200 nm thick cantilevers have an undercut of 10 μm. Also is
shown the values according to the Reissner/Stein theory (black
solid line) and the values (dotted line) calculated using (8).

Figure 15 shows the measured fundamental torsional
resonance frequency versus the reciprocal length for 200 nm
thick cantilevers with an undercut of 10 μm. Simulations
(grey line) agree well with the experiments. The torsional
frequencies according to Reissner and Stein theory, which
takes into account the aspect ratio L/w [22], but not the
undercut, are also plotted (black line). In this particular case,
the effect of undercut is compensated by the decreasing L/w

aspect ratio, and as a result (8) gives a good approximation to
the data (dashed line).

As with the flexural modes, in the case of torsional modes
the effective cantilever length is larger than the physical length.
For the data in figure 15, we estimate a �L of 3.7 μm, which is
different from the corresponding value of the flexural modes.

7. Summary and conclusions

We have studied the resonance behaviour of silicon nitride
cantilevers in air, and compared the experimentally obtained
results to existing beam and plate theories, and finite
element simulations. Torsional and flexural modes can be
distinguished in the thermal noise spectra by rotating the
sample over 90◦. For both types of vibrations, higher modes
are observed. The flexural modes of cantilevers without
undercut behave according to the Euler–Bernoulli theory.
However, the presence of undercut results in a significant
deviation from this theory. We show that a correction can
be made to the nominal cantilever length to restore the
relation between frequency and length. This correction is
independent of the cantilever length, but varies with mode
number. In the case of the torsional modes also a deviation
due to the undercut has been observed, but different from
the flexural mode observations. Finite-element simulations
of the resonance frequency behaviour of the various modes
are in good agreement with the experiments and support our
findings.
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