

Delft University of Technology

Why computing students should contribute to open source software projects

Spinellis, D.

DOI
10.1145/3437254
Publication date
2021
Document Version
Final published version
Published in
Communications of the ACM

Citation (APA)
Spinellis, D. (2021). Why computing students should contribute to open source software projects.
Communications of the ACM, 64(7), 36-38. https://doi.org/10.1145/3437254

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3437254
https://doi.org/10.1145/3437254

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

36 COMMUNICATIONS OF THE ACM | JULY 2021 | VOL. 64 | NO. 7

V
viewpoints

I
M

A
G

E
 B

Y
 B

A
K

H
T

I
A

R
 Z

E
I

N

vasive process automation, as well as
sophisticated teamwork, workflows,
and management. Second, industrial
best practices have homogenized with
those followed by large and successful
open source software projects. Busi-
nesses have assimilated and contrib-
uted many open source development
practices. This has made the corre-
sponding knowledge and skills por-

L
E A R N IN G TO PROG RAM is—
for many practical, histori-
cal, as well as some vacuous
reasons—a rite of passage
in probably all computer

science, informatics, software engi-
neering, and computer engineering
courses. For many decades, this skill
would reliably set computing gradu-
ates apart from their peers in other
disciplines. In this Viewpoint, I argue
that in the 21st century programming
proficiency on its own is neither rep-
resentative of the skills that the mar-
ketplace requires from computing
graduates, nor does it offer the strong
vocational qualifications it once did.
Accordingly, I propose that comput-
ing students should be encouraged to
contribute code to open source soft-
ware projects through their curricular
activities. I have been practicing and
honing this approach for more than
15 years in a software engineering
course where open source contribu-
tions are an assessed compulsory re-
quirement.2 Based on this experience,
I explain why the ability to make such
contributions is the modern general-
ization of coding skills acquisition,
outline what students can learn from
such activities, describe how an open
source contribution exercise is em-
bedded in the course, and conclude
with practices that have underpinned
the assignment’s success.

Contributing Is the New Coding
Programming skills nowadays are
only a part of what a software devel-
oper should know. This is the case
for two reasons. First, practices have
advanced well beyond the chief pro-
grammer/surgeon model popular-
ized by Fred Brooks in the 1970s,1 to
include work on orders of magnitude
larger systems, advanced tooling, per-

Viewpoint
Why Computing Students
Should Contribute to Open
Source Software Projects
Acquiring developer-prized practical skills, knowledge, and experiences.

DOI:10.1145/3437254 Diomidis Spinellis

http://dx.doi.org/10.1145/3437254

JULY 2021 | VOL. 64 | NO. 7 | COMMUNICATIONS OF THE ACM 37

viewpoints

V critical judgment, effective commu-
nication, and the recognition of one’s
limitations (Curriculum Guideline
8); developing skills for self-directed
learning (CG 9); appreciating the mul-
tiple dimensions of software engi-
neering problem solving (CG 10); us-
ing appropriate and up-to-date tools
(CG 12); having a real-world basis (CG
14); and educating through a variety
of teaching and learning approaches
(CG 18).

Embedding Open Source
Development in a Software
Engineering Course
The compulsory open source software
contribution assignment is part of a
third-year course titled “Software En-
gineering in Practice.” (The course re-
ceived the Management School’s Excel-
lence in Teaching award in 2019.) We
teach this course to about 20–50 stu-
dents each year who follow the “Soft-
ware and Data Analytics Technologies”
specialization offered by the Athens
University of Economics and Business
Department of Management Science
and Technology. The course is also a
recommended elective for the univer-
sity’s Department of Informatics.

The course is delivered using a
(light) flipped classroom approach4
and is entirely assessed through
coursework. The open source contri-
bution assignment counts for 50% of
the course’s grade. Students can work
alone or in pairs. Pairing aims to help
students who may feel insecure on
their own, though in such cases the
pair must deliver more work than an
individual, and the contributions
must be made from separate GitHub
accounts.

We assess the students’ perfor-
mance based on their open source
project work available online (code
commits and interactions), their final
written report, and their in-class pre-
sentations. Three presentations take
place approximately on week 4 (de-
scribing the selected project), week
8 (outlining the proposed contribu-
tions), and week 14 (summarizing
the contributions’ implementation).
Getting a contribution accepted is
not a prerequisite for passing the as-
signment, but it is positively assessed.
Other assessed elements include the
students’ comprehension and docu-

table between volunteer projects and
enterprise ones.

Consequently, instruction must
move from a course’s educational labo-
ratory to an organizational setting. By
contributing to open source projects,
students acquire in practice a formi-
dable range of skills, knowledge, and
experiences, allowing them to work
productively as modern well-rounded
developers rather than as the lone-
wolf coders portrayed by Hollywood.
The most difficult skills to acquire in a
traditional programming assignment
are the following social and organiza-
tional skills.

 ˲ Developing a sense of context: un-
derstanding how development work
is embedded within a project’s scope,
mission, team of co-developers, and
new forms of leadership;

 ˲ Interacting with a project’s global
and diverse community;

 ˲ Negotiating feature requests, re-
quirements, and implementation
choices;

 ˲ Dealing with communication
problems, such as absent responses,
which are common in volunteer-run
projects;

 ˲ Appreciating the software as a
product through practices such as is-
sue triaging and release planning; and

 ˲ Receiving, discussing, and ad-
dressing code review comments.

Corresponding learning outcomes
associated with technology range
from analysis and evaluation to ap-
plication and creation, including the
following:

 ˲ Navigating through a project’s as-
sets, such as software code, issues,
documentation, and pull requests;

 ˲ Evaluating swiftly the product and
process quality of software systems or
components, as is often required in
modern software reuse;

 ˲ Configuring, building, running,
and debugging third-party code;

 ˲ Setting up and running software
intensive systems with diverse soft-
ware and hardware requirements. In
the course I run, these have included
mobile phones, car electronics, ap-
plication servers, databases, contain-
ers, IoT equipment, and embedded
devices;

 ˲ Choosing realistic contribution
goals. (Initially students tend to wildly
overestimate their ability to contribute

to a project.) This is a key activity in ag-
ile development sprints;

 ˲ Reading third-party code to iden-
tify where their additions or fixes need
to be made;

 ˲ Modifying a large third-party sys-
tem by adding a new feature or fixing
a bug;

 ˲ Writing tests that demonstrate a
contribution is working as expected
now and into the future;

 ˴ Working with software systems
developed using multiple program-
ming languages and tools; students are
often surprised to find out that knowl-
edge of an Integrated Development En-
vironment (IDE) is by no means a pass-
port for contributing to a project;

 ˴ Documenting their work, typi-
cally using a declarative markup lan-
guage, for example Markdown or docu-
mentation generator code comments;

 ˴ Following sophisticated con-
figuration management (version con-
trol) workflows, such as working on
issue branches and rebasing code
commits; and

 ˴ Passing pre-commit and contin-
uous integration checks and tests.

Both the social and technical
learning outcomes are very relevant in
the modern workplace—and they go
well beyond the proposed ACM/IEEE
curriculum for software engineering
programs.3 In parallel, the course’s
practices embrace many of the ACM/
IEEE curriculum guidelines as cross-
cutting concerns. These include: the
exercising of personal skills, such as

We assess
the students’
performance based
on their open
source project work
available online,
their final written
report, and their
in-class
presentations.

38 COMMUNICATIONS OF THE ACM | JULY 2021 | VOL. 64 | NO. 7

viewpoints

 ˲ Try to contribute a trivial fix as
a warm-up exercise and as a way to
test your ability to follow the project’s
workflows.

 ˲ Look for project issues marked as
“Good first issue,” which indicate a
project that is open to new contribu-
tors. (There are several online lists of
projects with such issues.)

We leave the choice of the contribu-
tion entirely to the students: they can
pick an open task from the project’s
issue database, or propose their own
enhancement or fix. Students also of-
ten change tack after interacting with
the project’s core team. Although their
freedom to choose their contribution
may appear to make the assignment
too easy, we have found that it makes
it easy enough so that about half of the
student contributions get integrated.

The most common problems faced
by the students over their assignment
are the inability to build the project
(typically due to inexperience and
platform incompatibilities) and a lack
of communication by the project’s
team (students get needlessly anx-
ious, thinking that their work must
be integrated into the project). On the
flip-side, the biggest delight felt by the
students is when they find their code
integrated into production software
used worldwide. Invariably, in the
course evaluation students comment
favorably on the many practical skills
and self-confidence they gain after they
complete their open source software
contribution assignment.

References
1. Brooks, F.P., Jr. The Mythical Man-Month. Addison-

Wesley, Boston, MA, 1975, 32.
2. Spinellis, D. Future CS course already here. Commun.

ACM 49, 8 (Aug. 2006), 13; https://bit.ly/3bYxSJs
3. The Joint Task Force on Computing Curricula.

Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering. ACM. New York,
NY; https://bit.ly/3vn04NP

4. Tucker, B. The flipped classroom. Education Next 12, 1
(Mar. 2012), 82–83.

Diomidis Spinellis (dds@aueb.gr) is a professor of
software engineering in the Department of Management
Science and Technology at the Athens University of
Economics and Business, Greece, and a professor of
software analytics in the Department of Software
Technology at the Delft University of Technology, the
Netherlands.

Many thanks to my colleagues Serge Demeyer, Michael
Greenberg, and Angeliki Poulymenakou, as well as to the
former course students Zoe Kotti and Christos Pappas
for their detailed and constructive comments on earlier
versions of this Viewpoint.

Copyright held by author.

mentation of the project they chose,
their contribution’s breadth, their im-
plementation’s quality, their code’s in-
tegration with the project, their testing
implementation, their collaboration
with the project’s development team,
their oral presentations, the quality of
their written report, and their use of
the available tooling for activities such
as version control, code reviews, issue
management, and documentation.

Cheating (by copying a contribu-
tion from a project fork, or farming
out work) could, in theory, be an is-
sue; it is countered by having students
present their work in class, and by
knowing that their (public) contribu-
tions become part of their work port-
folio and may be quizzed by future
prospective employers.

The course benefits each year from
one or two dedicated teaching assis-
tants who run laboratory sessions on
key tools, and are available during of-
fice hours to advise the students on
difficulties they invariably face. The
hard work they put into supporting
the course, means that increasing the
number of attending students would
require a commensurate increase in
teaching assistants.

Ensuring Successful
Open Source Contributions
Students approach the course and its
assignment with trepidation and com-
plete it with jubilation. Ensuring stu-
dents can make meaningful contribu-
tions to an open source project requires
balancing their inexperience with the
fast-paced sophistication of modern,
open source software development.

Throughout the years I have given
out the assignment, I have seen that
contributing to open source projects
has become easier. Projects are be-
coming more inclusive. Many projects
have streamlined on-boarding and
mentoring, teams are more diverse
(including female leads), a published
code of contact is common, respons-
es are typically polite, and Windows
builds are often supported (though
some students adopt Linux to avoid
glitches). Contributing has been sim-
plified thanks to handholding in pull
request workflows, widespread adop-
tion of continuous integration, diverse
code check bots, friendly code review
processes, and the use of draft pull re-

quests to allow incremental reviewing
of work in progress.

Still, the open source project envi-
ronment the students dive into, is very
far apart from the one they typically
experience in traditional academic as-
signments. Therefore, a small-scale
contribution is the only realistic goal.
The key to making the course’s as-
signment work, is to have what are, on
first sight, very low ambitions for the
students’ contributions. To an under-
graduate student, the barriers to open
source contributions are often so high,
that getting 20 lines of code integrat-
ed into a large project is a worthwhile
achievement indeed. The advice we
give our students for choosing a project
can be summarized as follows.

 ˲ Choose a project with several ac-
tive contributors, so that there is a
community to guide you and respond
to your questions.

 ˲ Choose a relatively popular project
(some GitHub stars) demonstrating
that it provides useful functionality
and is developed in a relatively sound
way. You want to avoid an abandoned
thesis project uploaded on GitHub.

 ˲ Avoid very popular projects, so
that your contributions will not get
drowned in competition, noise, and
bureaucracy. (Despite this, we have had
students contributing to blockbuster
projects, such as Tensorflow and Visu-
al Studio Code.)

 ˲ Verify that you can build and run
the project on your computer setup.

 ˲ Ensure the project regularly ac-
cepts pull requests from outsiders, so
that yours will also have a chance.

The open source
project environment
the students dive into
is very far apart from
the one they typically
experience in
traditional academic
assignments.

