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Summary

This thesis is about maximum independent set and chromatic number

problems on certain kinds of infinite graphs. A typical example comes

from the Witsenhausen problem: For n ≥ 2, let Sn−1 := {x ∈ Rn :

‖x‖2 = 1} be the unit sphere in Rn, and let G = (V,E) be the graph

with V = Sn−1, in which two points in Sn−1 are adjacent if and only if

their inner product is equal to 0. What is the largest possible Lebesgue

measure of an independent set in G?

The problem is reminiscent of a coding theory problem, in which one

asks for the size of a largest set of distinct points in some metric

space so that the distance between each pair of points is at least some

specified constant d. Such a problem can be framed as a maximum

independent set problem: Define a graph whose vertex set is the metric

space, and join two points with an edge whenever their distance is

less than d. The codes of minimum distance d are then precisely the

independent sets in this graph.

In the Witsenhausen problem, rather than asking for a set of points in

the sphere in which all the distances less than d are forbidden, we ask

9
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for a set of points in which only one distance is forbidden. And it turns

out that the Delsarte (also called linear programming) upper bounds

for the size of codes [Del73] can be adjusted to give upper bounds for

the measure of an independent set in the Witsenhausen graph. This

was first done in [BNdOFV09] and [dOF09].

The Witsenhausen problem was stated in [Wit74], and in the same

note it was shown that the fraction of the n-dimensional sphere which

can be occupied by any measurable independent set is upper bounded

by the function 1/n. Frankl and Wilson [FW81] made a breakthrough

in 1981 when they proved an upper bound which decreases exponen-

tially in n. Despite this progress on asymptotics, the 1/3 upper bound

in the n = 3 case has not moved since the original statement of the

problem until now. In Chapter 5 we give one of the main results of the

thesis, which is an improvement of this upper bound to 0.313. The

proof works by strengthening the Delsarte-type bounds using some

combinatorial arguments deduced in Chapters 3 and 4.

The next main result of the thesis answers a natural question about

the graphs G(Sn−1, X), whose vertex set is Sn−1 and where two points

are joined with an edge if and only if their inner product belongs to

the set X ⊂ [−1, 1] of forbidden inner products. These graphs gener-

alize the Witsenhausen graph, and are called forbidden inner product

graphs. One may ask, Does there exist a measurable independent set

of maximum measure? There is a graph G = G(S2, X) (many, in fact)

having no such independent set. In Chapter 4 we construct for every

ε > 0 an independent set in G having measure at least 1/2 − ε, but
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we show that there is no independent set of measure equal to 1/2.

In Chapters 6 and 7 we build on the theory of adjacency operators

for infinite graphs developed in [BDdOFV14] to prove that maximum

measurable independent sets exist in G(Sn−1, X) for all n ≥ 3, and

for all sets X. As a relatively easy application of the machinery devel-

oped here, we also obtain a third result, which is that the supremum of

the measures of independent sets in G(Sn−1, X) depends only on the

topological closure of X in [−1, 1]. In particular, every independent

set has measure zero if 1 belongs to the closure of X.

Almost everything in this thesis relates to the Lovász ϑ-function of a

graph, introduced in [Lov79]. The Delsarte bounds for binary codes

can be regarded as coming from the ϑ-function, and Delsarte’s bounds

for spherical codes [DGS77] can be thought of as coming from an ex-

tension of the ϑ-function to forbidden inner product graphs on the unit

sphere. Approaches inspired by the ϑ-function have been successful

in improving lower bounds for the measurable chromatic number of

Euclidean space (see for instance [BNdOFV09], [dOF09], [dOFV10],

[BPT14]).

In Chapters 8 to 13 we develop two extensions of the ϑ-function to

(possibly infinite) Cayley graphs over compact groups, which apply

respectively to what we call sparse and dense graphs. Dense Cay-

ley graphs have enough edges to guarantee that their independence

numbers are finite, and in this case the applicable ϑ-function gives

an upper bound for the cardinality of any independent set. Infinite

sparse Cayley graphs have infinite independent sets, and the appli-
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cable ϑ-function then gives an upper bound for the Haar measure of

any measurable independent set. The extensions we develop are based

on the formulations of the ϑ-function for finite Cayley graphs given

in [DdLV14]. We also show how many of the ϑ-function approaches

taken in the literature can be seen as natural examples of our general

framework.

The ϑ-function for finite graphs has formulations both as maximization

and as minimization semidefinite programs which are mutually dual.

In the approaches mentioned above in which the ϑ-function is extended

to infinite graphs, it is also common to make use of duality, although

in the infinite case it had not been shown that the primal and dual

problems have equal values, a property known as strong duality. In

this thesis we prove strong duality for our ϑ-functions using a different

approach from the known strong duality proofs in the finite case. The

definitions and proofs related to the ϑ-function build on a theory of

positive type functions and measures which is developed in Chapters

8 to 10.

In [Mon11], Montina gives an application in quantum communication

complexity of a natural conjecture about the Witsenhausen problem,

the so-called Double Caps Conjecture. The extremal example for a

spherical set in any dimension avoiding orthogonal pairs of points is

conjectured [Kal09] to be the union of two opposite open spherical caps

of geodesic radius π/4. In dimension 3, this configuration occupies

about a 0.293-fraction of the unit sphere, so our new upper bound

of 0.313 gets roughly halfway from the previous 1/3 upper bound to
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the Double Caps Conjecture. Assuming the Double Caps Conjecture,

Montina is able to deduce a new lower bound on the cost of classically

simulating a quantum channel.





Samenvatting

Dit proefschrift gaat over het onafhankelijkheidsgetal en het chroma-

tisch getal van bepaalde soorten oneindige grafen. Een typisch voor-

beeld wordt gegeven door het Witsenhausen probleem: Voor n ≥ 2, zij

Sn−1 := {x ∈ Rn : ‖x‖2 = 1} de eenheidsbol in Rn, en zij G = (V,E)

de graaf met knopenverzameling V = Sn−1, waarin twee knopen ver-

bonden zijn met een kant als hun inwendig product gelijk is aan 0. Hoe

groot kan de Lebesgue-maat zijn van een onafhankelijke verzameling

in G?

Het probleem doet denken aan een probleem uit de coderingstheo-

rie, waarin er wordt gevraagd naar het grootste aantal punten in een

gegeven metrische ruimte waarvoor de onderlinge afstand tussen elk

tweetal punten ten minste een gegeven constante d is. Zo’n probleem

kan ook gesteld worden als het bepalen van een onafhankelijkheidsge-

tal: Definieer een graaf wiens knopenverzameling de metrische ruimte

is, en verbind twee knopen met een kant als hun onderlinge afstand

kleiner is dan d. De codes met minimum afstand d zijn dan precies de

onafhankelijke verzamelingen in deze graaf.
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Bij het Witsenhausen probleem vragen we niet naar een verzameling

punten in de eenheidsbol waarin alle afstanden kleiner dan d verboden

zijn, maar naar een verzameling waarin er precies één afstand wordt

verboden. Het blijkt dat de Delsarte (ook wel lineaire programmering

genoemd) bovengrenzen voor het aantal punten in een code aangepast

kunnen worden aan de Witsenhausen graaf om nieuwe bovengrenzen

te geven voor de maat van een onafhankelijke verzameling. Dit werd

voor het eerst in [BNdOFV09] en [dOF09] gedaan.

Het Witsenhausen probleem werd in [Wit74] gesteld, en in hetzelfde

artikel werd bewezen dat de fractie van de n-dimensionale eenheids-

bol waarin een meetbare onafhankelijke verzameling kan zitten van

boven begrensd is door de functie 1/n. In een doorbraak [FW81] van

Frankl en Wilson uit 1981 is een bovengrens die exponentiëel afneemt

in n ontdekt. Ondanks deze vooruitgang wat betreft het asympto-

tische gedrag, is de bovengrens van 1/3 voor n = 3 tot nu toe niet

verbeterd. In Hoofdstuk 5 geven we een van de hoofdresultaten van

het proefschrift, namelijk een verbetering van de bovengrens tot 0.313.

Het bewijs kan gezien worden als een verscherping van de uit Delsarte

volgende grenzen door deze met wat combinatorische redenering te

combineren. Deze redenering wordt in Hoofdstukken 3 en 4 uitgelegd.

Het volgende hoofdresultaat van dit proefschrift geeft antwoord op

een natuurlijke vraag over grafen G(Sn−1, X) wiens knopenverzamel-

ing Sn−1 is en waarin twee knopen verbonden zijn door een kant als

hun onderlinge inwendig product in de verzameling X ⊂ [−1, 1] van

verboden inwendige producten ligt. Deze grafen generaliseren de Wit-
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senhausen graaf en heten verboden inwendig productgrafen. Er kan

gevraagd worden: Bestaat er een meetbare onafhankelijke verzameling

met de grootst mogelijke maat? Er bestaat een graaf G = G(S2, X)

(in feite vele) waarvoor geen zo’n onafhankelijke verzameling bestaat.

In Hoofdstuk 4 construeren we voor elke ε > 0 een onafhankelijke

verzameling in G met maat minstens 1/2 − ε, maar we bewijzen ook

dat er geen onafhankelijke verzameling bestaat wiens maat gelijk is

aan 1/2. In Hoofdstukken 6 en 7 gebruiken we de theorie van verbind-

ingsoperatoren van oneindige grafen opgebouwd in [BDdOFV14] om

te bewijzen dat meetbare onafhankelijke verzamelingen van zo groot

mogelijk maat in G(Sn−1, X) feitelijk bestaan voor alle n ≥ 3 en alle

X. Als gevolg van het hier ontwikkelde gereedschap verkrijgen we

bovendien een derde resultaat, dat het supremum van de maten van

de onafhankelijke verzamelingen in G(Sn−1, X) alleen afhangt van de

topologische afsluiting van X in [−1, 1]. In het bijzonder heeft elke

onafhankelijke verzameling maat nul als 1 in de afsluiting van X ligt.

Vrijwel alles in dit proefschrift heeft te maken de Lovász ϑ-functie van

een graaf, gëıntroduceerd in [Lov79]. De Delsarte grenzen voor binaire

codes kunnen gezien worden als speciale gevallen van de ϑ-functie, en

de Delsarte grenzen voor sferische codes zijn ontleend aan een uitbreid-

ing van de ϑ-functie op verboden inwendig productgrafen op de eenhei-

dsbol. Ideeën gëınspireerd door de ϑ-functie hebben veel succes gehad

bij het verbetering van onder anderen ondergrenzen voor het chroma-

tisch getal van de Euclidische ruimte (zie bijvoorbeeld [BNdOFV09],

[dOF09], [dOFV10], [BPT14]).
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In Hoofdstukken 8 tot en met 13 ontwikkelen we twee uitbreidin-

gen van de ϑ-functie op (mogelijk oneindige) Cayley-grafen over com-

pacte groepen, die toepassen op wat wij dunne en dikke grafen noe-

men. Dikke Cayley-grafen hebben genoeg kanten om te garanderen

dat hun onafhankelijkheidsgetallen eindig zijn, en in dit geval geeft

de bijpassende ϑ-functie een bovengrens op de cardinaliteit van elke

onafhankelijke verzameling. Oneindige dunne Cayley-grafen hebben

oneindige onafhankelijke verzamelingen, en de bijpassende ϑ-functie

geeft dan een bovengrens op de Haar-maat van een meetbare on-

afhankelijke verzameling. De hier ontwikkelde uitbreidingen zijn gebaseerd

op de formuleringen van de ϑ-functies voor eindige Cayley-grafen gegeven

in [DdLV14]. Bovendien laten we zien hoe de meeste ϑ-functie aan-

pakken die voorkomen in de literatuur gezien kunnen worden als voor-

beelden van onze algemene theorie.

De gewone ϑ-functie voor eindige grafen heeft zowel een formulering als

een maximaliserings- als een minimaliseringsprobleem in de semidefini-

ete programmering, die duaal zijn aan elkaar. Bij de bovengenoemde

aanpakken waarin de ϑ-functie uitgebreid wordt naar oneindige grafen

maakt men vaak gebruik van dualiteit, alhoewel sterke dualiteit, namelijk

de eigenschap dat de waarden van beide formuleringen gelijk zijn aan

elkaar, tot nu toe nooit bewezen was. In dit proefschrift bewijzen we

sterke dualiteit voor onze ϑ-functies, en dit doen we op een andere

manier dan gebruikelijk in het geval van eindige grafen. De definities

en bewijzen die te maken hebben met de ϑ-functie worden overigens

opgebouwd op basis van een theorie voor functies en maten van positief

type, die wordt ontwikkeld in Hoofdstukken 8 tot en met 10.
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In [Mon11] geeft Montina een toepassing in de quantum informatie

theorie van een natuurlijk vermoeden dat verbonden is aan het Witsen-

hausen probleem, het zogenaamde Twee Bolkappen Vermoeden. Ver-

moed wordt [Kal09] dat in elke dimensie, een extremaal voorbeeld van

een deelverzameling van de eenheidsbol die geen tweetal punten bevat

die loodrecht op elkaar staan gegeven wordt door de vereniging van

twee tegengestelde open bolkappen van geodetische straal π/4. In di-

mensie 3 bevat deze configuratie ongeveer 0.293 van de oppervlakte

van de eenheidsbol, dus onze nieuwe bovengrens van 0.313 ligt nage-

noeg middenin de eerder bekende bovengrens van 1/3 en de grens van

het Twee Bolkappen Vermoeden. Uitgaande van het Twee Bolkap-

pen Vermoeden kon Montina een nieuwe ondergrens bewijzen voor de

kosten van het simuleren van een quantum communicatiekanaal met

een klassiek kanaal.





Part I

Overview and preliminaries
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Chapter 1

Main results and outline of

thesis

The thesis is divided into five parts which we now explain.

Part I lists the main results of the thesis, and also briefly reviews some

basic concepts used throughout the thesis. We fix notation and ter-

minology from graph theory and linear algebra. We also introduce

the theory of positive semidefinite matrices and semidefinite program-

ming. We then review the Lovász ϑ-function of a graph, which is an

important application of semidefinite programming in combinatorial

optimization. Almost all of the results presented in this thesis are

related in one way or another to the ϑ-function.

Part II is about the maximum measure of a spherical set avoiding

orthogonal pairs of points. In the first chapter we calculate the maxi-

23
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mum possible measure of a subset of the unit circle avoiding a single

forbidden angle, and we determine when a maximizer exists. This

solves a problem from [dOF09]. The remainder of Part II is devoted

to strengthening the methods in [BNdOFV09] and [dOF09] to upper

bound the spherical surface measure of a set I of unit vectors in R3

having the property that no two points in I are orthogonal. We find

the new upper bound of 0.313 times the measure of the unit sphere.

This improves the upper bound of 1/3 given in [Wit74], which has

remained the best known upper bound for around 40 years. The best

known lower bound is 1 − 1√
2
≈ 0.29, given by two opposite caps of

geodesic radius π/4; this is conjectured by Gil Kalai [Kal09] to be the

optimal configuration.

In Part III, we return to the problem of when a maximizer exists, and

we prove one of the main results of the thesis. We ask the following

general question: Let n ≥ 2 and X ⊂ [−1, 1] be given, and let Sn−1

be the unit sphere in Rn. A subset I ⊂ Sn−1 is called X-avoiding

if ξ · η /∈ X for all ξ, η ∈ I. Let α denote the supremum of the

Lebesgue surface measures of all X-avoiding subsets of Sn−1. For

which n and X does there exist an X-avoiding subset of Sn−1 having

measure α? We prove that a maximizer exists whenever n ≥ 3. The

proof is a functional analytic compactness argument. Surprisingly, the

argument fails when n = 2. In this case, the answer depends on X:

a maximizer may or may not exist. Parts II and III are based on the

article Spherical sets avoiding a prescribed set of angles [DP15], which

is joint work between the author and Oleg Pikhurko of the University

of Warwick. It is under review at the time of writing of this thesis.
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Part IV is about positive type functions and measures. The main

aim of this part is to provide the analytic foundation needed in Part

V, but some of the results presented here may be interesting in their

own right. After providing some background in harmonic analysis,

we give a proof of Bochner’s theorem for functions of positive type

on compact groups. The new proof is simple and self-contained. We

also state and prove a version of Bochner’s theorem for measures of

positive type on a compact group. The remainder of the part consists

of a number of applications of both versions of Bochner’s theorem.

The two applications which are most relevant from the optimization

point of view are the following: Under the dual pairing of continuous

functions with regular Borel measures, (1) the cone of positive type

measures is dual to the cone of positive type functions in the sense

of conic duality; and (2) the cone of positive type functions is weak-*

dense in the cone of positive type measures.

In Part V we present generalizations of the Lovász ϑ-function and

Schrijver’s ϑ′-function which apply to infinite Cayley graphs over com-

pact groups. We distinguish between two sorts of graphs: sparse and

dense. Roughly speaking, dense Cayley graphs on compact groups

have enough edges to guarantee that the independence number is fi-

nite, while sparse graphs have so few edges that they have independent

sets of positive Haar measure. Definitions of the ϑ- and ϑ′-function

are given for both the dense and sparse case. The main contribution is

a duality theory, which includes proofs of strong duality. Additionally,

we investigate which properties of the usual ϑ-function hold when the

graph is infinite, and we then work through some examples, recov-
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ering several seemingly disjoint results in the literature from a com-

mon framework; cf. [BNdOFV09], [BDdOFV14], [DdLV14], [DGS77],

[dOF09], [dOFV10].

The idea of focussing on Cayley graphs began with the writing of the

article Fourier analysis on finite groups and the Lovasz theta-number

of Cayley graphs [DdLV14], which was joint work between the author,

David de Laat, and the author’s thesis advisor Frank Vallentin. Only

finite graphs are dealt with in [DdLV14]. The main initial interest

in Cayley graphs came from the fact that they provide a good set-

ting in which to write down the frequency domain formulation of the

ϑ-number, but restricting to Cayley graphs also allows for the appli-

cation of harmonic analysis when proving theorems, which becomes

particularly interesting when the graph is infinite.

At numerous places in the thesis, inspiration has been taken from the

article Spectral bounds for the independence ratio and the chromatic

number of an operator ([BDdOFV14]), which was joint work between

the author, Christine Bachoc, Fernando Mario de Oliveira Filho, and

Frank Vallentin. In particular, the idea of “adjacency operator” used

in Parts II and III for forbidden inner product graphs on the unit

sphere came from [BDdOFV14], and especially important in this thesis

was a sufficient condition for the compactness of this operator, first

given in [BDdOFV14], and applied in Part III of this thesis to obtain

one of the main results.

While the primary contribution of Part V is intended to be the duality

theory for our ϑ-functions, a secondary contribution is the further
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development of the line of thought started in [BDdOFV14]. In Part V

the main ideas of [BDdOFV14] are streamlined for the most interesting

applications by eliminating the language of operators and measurable

graphs, and most of the results from [BDdOFV14] are recovered with

easier proofs.





Chapter 2

General preliminaries

2.1 Graph theory

A graph is an ordered pair (V,E), where V is any set, called the vertex

set , and E is a collection of subsets of V of cardinality 2. The set E

is called the edge set .

If G = (V,E) is a graph, an independent set I in G is a subset of V

such that {x, y} /∈ E for any x, y ∈ I. A clique Q in G is a subset of

V such that {x, y} ∈ E for every x, y ∈ Q. The independence number

α(G) of G is defined as the cardinality of a largest independent in G if

this number is finite, and∞ otherwise. A colouring of G is a partition

of V into independent sets. The smallest number χ(G) of independent

sets required is called the chromatic number of G. We write χ(G) =∞
when this number is infinite. The compementary graph Gc of G is the

graph Gc = (V,E ′), where E ′ = {{u, v} ⊂ V : {u, v} /∈ E, u 6= v}.

29
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An automorphism of a graph G = (V,E) is bijection a : V → V

satisfying

{a(u), a(v)} ∈ E ⇐⇒ {u, v} ∈ E, (u, v ∈ V ).

The set of automorphisms of G forms a group under composition,

which we denote by Aut(G). We say that G is vertex-transitive if

Aut(G) acts transitively on V ; that is, if for every u, v ∈ V , there exists

a ∈ Aut(G) such that a(u) = v. We say that G is edge-transitive if

Aut(G) acts transitively on E; that is, if for every {u1, u2}, {v1, v2} ∈
E, there exists a ∈ Aut(G) such that {v1, v2} = {a(u1), a(u2)}. The

complement of the 7-cycle is an example of a vertex-transitive graph

which is not edge-transitive, and a star is an example of an edge-

transitive graph that is not vertex-transitive.

2.2 Linear algebra

Let F be either R or C. The space of matrices with m rows and n

columns with entries from F will be denoted Fm×n or simply by Fm

when n = 1.

The transpose of a matrix A ∈ Fm×n is denoted by At, and its conju-

gate transpose is denoted by A∗. We will use A to denote the entrywise

complex conjugation of A. We say that A is symmetric when At = A,

and we say A is Hermitian when A∗ = A. The trace of A is denoted

Tr(A). The n× n identity matrix will be denoted In×n.

For F equal to either R or C, we think of Fn as a Hilbert space with

the inner product 〈u, v〉 = v∗u, and norm ‖v‖ =
√
〈v, v〉.
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For two n × n matrices A = (aij)
n
i,j=1, B = (bij)

n
i,j=1, we define their

trace inner product by

〈A,B〉 := Tr(B∗A) =
n∑
i=1

n∑
j=1

aijbij.

The Frobenius norm of A is defined as

‖A‖2 :=
√
〈A,A〉.

A matrix A ∈ Cn×n is called Hermitian positive semidefinite, or simply

positive semidefinite, if

v∗Av ≥ 0 for all v ∈ Cn. (2.1)

Using the polarization identity [Fol95, A1.1], one can show that (2.1)

implies that A is Hermitian. Therefore a matrix is positive semidefinite

if and only if it is Hermitian and all its eigenvalues are nonnegative.

If A has entries from R, then by the spectral theorem A is positive

semidefinite if and only if it is symmetric and

vtAv ≥ 0 for all v ∈ Rn. (2.2)

Note that (2.2) alone does not imply that A is symmetric; consider for

instance A = ( 1 1
−1 1 ).

There are many equivalent ways of defining positive semidefinite ma-

trices, a few of which we summarize below. (Cf. [Lov03])

Proposition 2.1. Let A ∈ Cn×n. Then the following are equivalent:
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1. A is positive semidefinite; that is v∗Av ≥ 0 for all v ∈ Cn;

2. A is diagonalizable and all its eigenvalues are real and nonnega-

tive;

3. A = B∗B for some B ∈ Cn×n;

4. A is a nonnegative linear combination of matrices of the form

vv∗, with v ∈ Cn;

5. The determinant of every principal submatrix of A is real and

nonnegative.

For a symmetric matrix A ∈ Rn×n, the equivalence of 1-5 holds if C
is replaced by R.

The set of positive semidefinite matrices in either Rn×n or Cn×n forms

a cone (see Section 10.1), meaning that it is closed under addition,

and under multiplication by nonnegative (real) scalars.

The following are some important facts about positive semidefinite

matrices which follow easily from Proposition 2.1.

Proposition 2.2. 1. If A,B ∈ Cn×n are positive semidefinite ma-

trices, then 〈A,B〉 ≥ 0;

2. If A ∈ Cn×n, then A is positive semidefinite if and only if

〈A,B〉 ≥ 0 for every positive semidefinite matrix B ∈ Cn×n;
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3. If A ∈ Rn×n is symmetric, then A is positive semidefinite if

and only if 〈A,B〉 ≥ 0 for every positive semidefinite matrix

B ∈ Rn×n.

The usual matrix product of two positive semidefinite matrices need

not be Hermitian, let alone positive semidefinite. However, it is a

fact that if A and B are positive semidefinite, then AB is positive

semidefinite if and only if it is Hermitian; this is because if A = C∗C

as in Proposition 2.1, then AB and CBC∗ have the same nonnegative

eigenvalues.

If A = (aij)i,j, B = (bij)i,j are two m × n matrices, the Hadamard

product or entrywise product of A and B is defined as the m × n

matrix whose ij-entry is aijbij. We have the following nice fact about

the Hadamard product of semidefinite matrices, which is known as the

Schur product theorem; it is proven in [Sch11].

Proposition 2.3 (Schur product theorem). The Hadamard product

of two positive semidefinite matrices is positive semidefinite.

2.3 Semidefinite programming

For A ∈ Cn×n, we write A � 0 to mean that A is Hermitian positive

semidefinite. A semidefinite program is an optimization problem of
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the following form:

minimize ctx (2.3)

subject to x1A1 + · · ·+ xnAn −B � 0 (2.4)

x = (x1, . . . , xn) ∈ Rn (2.5)

where c ∈ Rn, B,A1, . . . , An ∈ Rn×n are given symmetric matrices.

Since a diagonal matrix is positive semidefinite if and only if all the

entries on the main diagonal are nonnegative, it is easy to see that

semidefinite programming generalizes linear programming.

Modulo some technicalities (which almost never present a problem

in practice), a semidefinite program with rational coefficients can be

solved to any fixed degree of precision in time growing no faster than

a polynomial in the input size. This can be accomplished using the

ellipsoid method, though in practice interior point methods are used

because of the practical inefficiency of the ellipsoid method. For this

reason, semidefinite programming has proven useful in developing ap-

proximation algorithms for hard combinatorial optimization problems.

An excellent survey on this topic can be found in [Lov03].

Throughout this thesis, we assume the reader has some basic famil-

iarity with linear programming. A good reference is the book by Ma-

toušek and Gärtner [GM07].
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2.4 The ϑ- and ϑ′-functions

The Lovász ϑ-function was introduced in [Lov79] as an upper bound

for the so-called Shannon capacity of a graph. Using the ϑ-function

he determined the Shannon capacity of the 5-cycle, settling a problem

of Shannon that had remained open more than 20 years.

For a graph G = (V,E) with V = {1, . . . , n}, the Lovász ϑ-function

ϑ(G) of G is defined as the value of the following semidefinite program

in the matrix variable A = (aij) ∈ Rn×n.

maximize
n∑
i=1

n∑
j=1

aij (2.6)

subject to Tr(A) = 1

aij = 0 when {i, j} ∈ E
A � 0

The ϑ′-function ϑ′(G) of G, introduced by Schrijver in [Sch79], is the

value of the program obtained from program (2.6) by adding the con-

straints aij ≥ 0 for all i, j = 1, . . . , n. Clearly one has ϑ′(G) ≤ ϑ(G).

The ϑ-function is explored in detail in the original paper of Lovász

[Lov79] and in the survey article [Knu94] by Knuth. The most impor-

tant property for us is what has come to be known as the “sandwich

theorem”:

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ χ(Gc).

The formulations of ϑ and ϑ′ just given show that they can be com-



36

puted in polynomial time using semidefinite programming solvers, and

they therefore provide polynomial time computable bounds for the two

NP-hard graph parameters α(G) and χ(G). This is the main reason

these functions are of interest in combinatorial optimization.

In this thesis, the main interest in ϑ and ϑ′ is not their low compu-

tational complexity, but rather the fact that they can be regarded as

spectral or eigenvalue bounds for α and χ. This thesis deals with in-

finite graphs for which the definitions of α and χ are extended in a

reasonable way. Calculating α and χ exactly for the types of graphs

discussed here does not seem possible with today’s mathematical tech-

nology; a good example is the Hadwiger-Nelson problem (see [Soi09]),

which asks for the chromatic number c of the graph over the vertex

set R2 in which two points are joined by an edge precisely when their

Euclidean distance is equal to 1. It has been known since 1950 that

4 ≤ c ≤ 7, and since then this inequality has not been improved.

Exact values of α and χ have only been found in a few very special

cases, for instance the kissing numbers in dimensions 2, 3, 4, 8, and 24

([Mus08], [CS93], [Lev79], and [PZ04]) and single forbidden distance

graphs on the circle (this is Theorem 4.1).

Therefore, rather than trying to compute α and χ exactly, one might

try to extend known eigenvalue methods to these infinite graphs in

order to obtain bounds. This idea actually goes back at least as far

as 1977 when Delsarte, Goethels, and Seidel [DGS77] extended the

eigenvalue upper bounds for binary codes from Delsarte’s Ph.D. thesis

[Del73] to spherical codes.
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A nice introduction to the eigenvalue method in extremal combina-

torics is given by Ellis in the lecture notes [Ell11].

2.5 Cones and cone programming

A dual pair is a pair of R-vector spaces V, V ′, together with a bilinear

mapping 〈·, ·〉 : V × V ′ → R satisfying

1. If 〈v, v′〉 = 0 for all v′ ∈ V ′, then v = 0;

2. If 〈v, v′〉 = 0 for all v ∈ V , then v′ = 0.

The mapping 〈·, ·〉 is called the bilinearity of the the pair (V, V ′).

Let V be an R-vector space. A subset K ⊂ V is called a cone if it

satisfies the following properties:

1. K +K ⊂ K; and

2. tK ⊂ K for all t ≥ 0.

Here we use the notation K + K = {k + k′ : k, k′ ∈ K} and tK =

{tk : k ∈ K}. Cones are always convex. If a cone K also satisfies the

property K ∩ (−K) = {0}, then we say K is pointed. Each pointed

cone K in V defines a partial order relation ≥K on V by x ≥K y ⇐⇒
x− y ∈ K.

Let V, V ′, 〈·, ·〉V , andW,W ′, 〈·, ·〉W be two dual pairs of R-vector spaces,

and let K ⊂ V and L ⊂ W be cones. Let b ∈ W, c ∈ V ′, and let
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A : V → W be a linear operator. A cone program or conic program is

an optimization problem of the following form

minimize 〈x, c〉 (2.7)

subject to b− Ax ≥L 0

x ≥K 0.

Linear programs and semidefinite programs are both cone programs.

Any x ∈ K satisfying b−Ax ≥L 0 is called a feasible solution to (2.7).

If (2.7) has a feasible solution, we say it is feasible, and otherwise we

say it is infeasible. The objective value of a feasible solution x is 〈x, c〉.
The value of the program (2.7) is

inf{〈x, c〉 : b− Ax ∈ L, x ∈ K}. (2.8)

We say that a program is bounded when its value is finite. In order to

save space, we typically rewrite programs of the form (2.7) like (2.8).



Part II

Upper bounds for measures

of spherical sets avoiding

orthogonal pairs of points
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Chapter 3

Background and

combinatorial upper bound

3.1 Background

H. S. Witsenhausen [Wit74] in 1974 presented the following problem:

Let Sn−1 be the unit sphere in Rn and suppose I ⊂ Sn−1 is a Lebesgue

measurable set having the property that 〈ξ, η〉 6= 0 for all ξ, η ∈ I.

What is the largest possible Lebesgue surface measure of I?

Let α(n) denote this maximum divided by the total surface measure

of Sn−1. Also in [Wit74], Witsenhausen deduced that α(n) ≤ 1/n.

In 1981 [FW81, Theorem 6] Frankl and Wilson proved the famous

result named after them, and as an application they gave the first

exponentially decreasing upper bound: α(n) ≤ (1 + o(1))(1.13)−n us-

ing a combinatorial argument. Later in 1999, Raigorodskii [Rai99]
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improved the bound to (1 + o(1))(1.225)−n using a refinement of the

Frankl-Wilson method. In 2009, Gil Kalai conjectured in his weblog

[Kal09] that α(n) = (
√

2 + o(1))−n, achieved by two opposite caps,

each of geodesic radius π/4.

Besides the existing interest in the double caps conjecture, it is also

interesting because if true, it would imply new lower bounds for the

measurable chromatic number of Euclidean space, which we now dis-

cuss. Let c(n) be the smallest integer k such that Rn can be partitioned

into sets X1, . . . , Xk, with ‖x − y‖ 6= 1 for each x, y ∈ Xi, 1 ≤ i ≤ k.

The number c(n) is called the chromatic number of Rn, since the sets

X1, . . . , Xk can be thought of as the colour classes for the graph on the

vertex set Rn, in which we join two points when they have distance 1.

A conjecture of Erdös states that c(n) increases exponentially. Frankl

and Wilson also prove this conjecture [FW81, Theorem 3] with a com-

binatorial argument, showing that c(n) ≥ (1 + o(1))(1.2)n. Raigorod-

skii [Rai00] improved the lower bound to (1 + o(1))(1.239)n.

Requiring the classes X1, . . . , Xk to be measurable yields the measur-

able chromatic number cm(n). Clearly cm(n) ≥ c(n). It was proven re-

cently in [BPT14] that cm(n) ≥ (1.268+o(1))n. Assuming Kalai’s dou-

ble caps conjecture, it is not hard to prove that cm(n) ≥ (
√

2 + o(1))n.

3.2 Preliminaries

If u, v ∈ Rn are two vectors, their standard inner product will be

denote 〈u, v〉. All vectors will be assume to be column vectors. The
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transpose of a matrix A will be denoted At. We denote by SO(n) the

group of n×n matrices A over R having determinant 1, for which AtA

is equal to the identity matrix. We will think of SO(n) as a compact

topological group, and we will always assume its Haar measure is

normalized so that SO(n) has measure 1. We denote by Sn−1 the

set of unit vectors in Rn:

Sn−1 = {x ∈ Rn : 〈x, x〉 = 1}.

We equip Sn−1 with its usual topology. The Lebesgue measure λ on

Sn−1 is always taken to be normalized so that λ(Sn−1) = 1. Where

we need to refer to the standard surface measure of Sn−1, we use ωn.

The Lebesgue σ-algebra on Sn−1 will be denoted L. When (X,M, µ)

is a measure space and 1 ≤ p <∞, we use

Lp(X) = {f : f is an R-valued M-measurable function and

∫
X

|f |p dµ <∞}.

For f ∈ Lp(X), we define ‖f‖p :=
(∫

X
|f |p dµ

)1/p
. Identifying two

functions when they agree µ-almost everywhere, Lp(X) becomes a

Banach space with the norm ‖ · ‖p.

We will use bold letters (for example X) for random variables. The

expectation of a function f of a random variable X will be denoted

EX [f(X)], or just E[f(X)]. The probability of an event E will be

denote P[E].

When X is a set, we use 1X to denote its characteristc function; that

is 1X(x) = 1 if x ∈ X and 1X(x) = 0 otherwise. When X is a subset

of some topological space, X will denote its closure.
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For X ⊂ [−1, 1], we define G(Sn−1, X) to be the graph with vertex

set Sn−1, where ξ, η ∈ Sn−1 are joined with an edge if and only if

〈ξ, η〉 ∈ X. The graphs G(Sn−1, X) are called forbidden inner product

graphs on Sn−1. We allow the possibility that 1 ∈ X, which would

correspond to each point in Sn−1 having a self-loop.

We define the independence ratio of G = G(Sn−1, X) by

α̃(G) := sup{λ(I) : I ∈ L is an independent set in G}
= sup{λ(I) : I ∈ L and 〈ξ, η〉 /∈ X for any ξ, η ∈ I}.

In case 1 ∈ X, we have α̃(G) = 0.

3.3 Combinatorial upper bound

Let us begin by deriving a simple “combinatorial” upper bound for

the independence ratio of a forbidden inner product graph.

Proposition 3.1. Let n ≥ 2. If G = G(Sn−1, X) contains a finite

subgraph H, then α̃(G) ≤ α(H)/|V (H)|.

Proof. Assume that V (H) ⊂ Sn−1. Let I be an independent set,

and take a uniform O ∈ SO(n). Let the random variable Y be the

number of ξ ∈ V (H) with Oξ ∈ I. Since Oξ ∈ Sn−1 is uniformly

distributed for every ξ ∈ V (H), we have by the linearity of expectation

that E(Y ) = |V (H)|λ(I). On the other hand, Y ≤ α(H) for every

outcome O, since the points Oξ landing inside I form an independent

set of the subgraph of G induced by all the pointsOξ, and this induced

subgraph is isomorphic to H. Thus λ(I) ≤ α(H)/|V (H)|.



Chapter 4

Circular sets avoiding a

given inner product

We next use Proposition 3.1 to find the largest possible Lebesgue mea-

sure of a subset of the unit circle in R2 in which no two points lie at

some fixed forbidden angle. This could also be phrased as the problem

of finding α̃(G) for some appropriate forbidden inner product graph

G.

Theorem 4.1. Fix t ∈ (0, 1) and let G = (V,E), where V = [0, 1),

and where E is defined by declaring (x, y) ∈ E if and only if x−y ≡ ±t
(mod 1). Let

α̃(G) = sup{λ(I) : I ⊂ [0, 1) is a Lebesgue measurable independent set in G},

where λ denotes Lebesgue measure. If t is rational and t = p/q with p
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and q coprime integers, then

α̃(G) =

1/2 if q is even

(q − 1)/(2q) if q is odd
.

In this case α̃(G) is attained as a maximum. If t is irrational then

α̃(G) = 1/2, but G has no independent set I with λ(I) = 1/2.

Proof. Consider the interval [0, 1) as a group with the operation of

addition modulo 1. Notice that I ⊂ V is an independent set in G if

and only if I ∩ (t+ I) = ∅. This implies immediately that α̃(G) ≤ 1/2

for all values of t.

Now suppose t = p/q with p and q coprime integers, and suppose that q

is even. Let S be any open subinterval of [0, 1) of length 1/q, and define

Tt : [0, 1)→ [0, 1) by Ttx = x+ t mod 1. From the fact that p and q

are coprime, it follows that that intervals S, T 2
t S, . . . , T

q−4
t , T q−2

t S are

disjoint, and therefore that their union, which we denote by I, has

measure 1/2. Also I is independent since TtI = TtS ∪ T 3
t S ∪ · · · ∪

T q−3
t S ∪ T q−1

t S is disjoint from I. Therefore α̃(G) = 1/2.

Next suppose q is odd. With notation as before, a similar argument

shows that S∪T 2
t S∪· · ·∪T

q−3
t S is an independent set in G of measure

(q − 1)/(2q). Now applying Proposition 3.1 to an induced cylce of

length q shows that this is largest possible.

Finally suppose that t is irrational. By Dirichlet’s approximation the-

orem there exist infinitely many pairs of coprime integers p and q such

that |t−p/q| < 1/q2. For each such pair, let ε = ε(q) = |t−p/q|. Using
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an open interval I of length 1
q
− ε and applying the same construction

as above with Tp/q, one obtains an independent set of measure at least

((q − 1)/2)(1/q − ε) = 1/2− o(q). Therefore α̃(G) = 1/2.

However this supremum can never be attained. Indeed, if I ⊂ V is an

independent set with λ(I) = 1/2, then I ∩ TtI = ∅ and TtI ∩ T 2
t I = ∅.

Since λ(I) = 1/2, this implies that I and T 2
t I differ by a nullset,

contradicting the ergodicity of the irrational rotation T 2
t .





Chapter 5

Spherical sets avoiding

orthogonal pairs of points

The aim of this chapter is to prove that any set occupying more than a

0.313 fraction of the unit sphere in R3 must contain a pair of orthogonal

vectors; in other words α̃(G(Sn−1, {0})) ≤ 0.313.

5.1 Gegenbauer polynomials and

Schoenberg’s theorem

Before beginning the core of the chapter, we briefly review the Gegen-

bauer polynomials and Schoenberg’s theorem from the theory of spher-

ical harmonics. For ν > −1/2, define the Gegenbauer weight function

wν(t) := (1− t2)(ν−1/2), (−1 < t < 1).
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Applying the Gram-Schmidt process to the polynomials 1, t, t2, . . . us-

ing the inner product 〈f, g〉 =
∫ 1

−1
f(t)g(t)wν(t) dt, one obtains the

Gegenbauer polynomials Cν
i (t) for the degrees i = 0, 1, 2, . . . . We al-

ways use the normalization Cν
i (1) = 1. (Cf. [DX13, Section B.2])

For a fixed n ≥ 2, a continuous function f : [−1, 1] → R is called

positive definite if for every set of distinct points ξ1, . . . , ξs ∈ Sn−1, the

matrix (f(〈ξi, ξj〉))si,j=1 is positive semidefinite. The following theorem

is known as Schoenberg’s theorem ([DX13, Theorem 14.3.3]).

Theorem 5.1 (Schoenberg’s theorem). For n ≥ 2, a continuous func-

tion f : [−1, 1] → R is positive definite if and only there exist coeffi-

cients ai ≥ 0, for i ≥ 0, such that

f(t) =
∞∑
i=0

aiC
(n−2)/2
i (t),

where convergence on the right-hand side is absolute and uniform.

For a given positive definite function f , the coefficients ai in Theorem

5.1 are unique and can be computed explicitly; a formula is given in

[DX13, Equation 14.3.3].

We are especially interested in the case n = 3. Then ν = 1/2, and the

first few Gegenbauer polynomials C
1/2
i (x) are

C
1/2
0 (x) = 1, C

1/2
1 (x) = x, C

1/2
2 (x) =

3

2
x2 − 1

2
,

C
1/2
3 (x) =

5

2
x3 − 3

2
x, C

1/2
4 (x) =

35

8
x4 − 30

8
x2 +

3

8
.
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5.2 An adjacency operator for an

infinite graph

Let n ≥ 3. For each ξ ∈ Sn−1 and −1 < t < 1, let σξ,t be the unique

probability measure on the Borel subsets of Sn−1 whose support is

equal to the set ξt := {η ∈ Sn−1 : 〈η, ξ〉 = t}, and which is invariant

under all rotations fixing ξ. For f ∈ L2(Sn−1), define

(Atf)(ξ) :=

∫
ξt
f(η) dσξ,t(η). (5.1)

It is shown in Theorem 6.1 that At is well-defined and maps L2 into

L2.

Lemma 5.2. Let f and g be functions in L2(Sn−1), let ξ, η ∈ Sn−1

be arbitrary points, and write t = 〈ξ, η〉. If O ∈ SO(n) is chosen

uniformly at random with respect to the Haar measure on SO(n), then∫
Sn−1

f(ζ)(Atg)(ζ) dζ = E[f(Oξ)g(Oη)].

Proof. Note that picking a point uniformly at random from Sn−1 is

equivalent to fixing an arbitrary point in Sn−1, and then applying to

it a rotation O ∈ SO(n) chosen uniformly at random. We therefore

have∫
Sn−1

f(ζ)(Atg)(ζ) dζ =

∫
SO(n)

f(Oξ)(Atg)(Oξ) dO

=

∫
SO(n)

f(Oξ)

∫
(Oξ)t

g(η) dσOξ,t(η) dO
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If H is the subgroup of all elements in SO(n) which fix ξ, then the

above integral can be rewritten∫
SO(n)

f(Oξ)

∫
H

g(Ohη) dh dO.

By Fubini’s theorem, this integral is equal to∫
H

∫
SO(n)

f(Oξ)g(Ohη) dO dh

=

∫
H

∫
SO(n)

f(Oh−1ξ)g(Oη) dO dh

=

∫
SO(n)

f(Oξ)g(Oη) dO,

where we use the right-translation invariance of the Haar integral on

SO(n) at the first equality, and the second equality follows by noting

that the integrand is constant with respect to h. Recall that all Haar

measures are normalized to have measure 1.

Lemma 5.3. Suppose f ∈ L2(Sn−1) and define kf : [−1, 1]→ R by

kf (t) = E[f(Oξ)f(Oη)], (5.2)

where the expectation is taken over randomly chosen O ∈ SO(n), and

ξ, η ∈ Sn−1, are any two points satisfying 〈ξ, η〉 = t. Then kf (t) is

defined for each t ∈ [−1, 1], and kf is continuous and positive definite.

Proof. Fix any point ξ0 ∈ Sn−1 and let P : [−1, 1] → SO(n) be any

continuous function satisfying 〈ξ0, P (t)ξ0〉 = t for each −1 ≤ t ≤ 1.
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We have

kf (t) =

∫
SO(n)

f(Oξ0)f(OP (t)ξ0) dO (5.3)

for each t. Being an inner product in L2(SO(n)), the right-hand side

of (5.3) exists for each t ∈ [−1, 1]. For each O ∈ SO(n), let RO :

L2(SO(n)) → L2(SO(n)) be the operator defined by (ROf)(O′) =

f(O′O) for each O′ ∈ SO(n), and define F : SO(n) → R by F (O) =

f(Oξ0). Since right-translation is continuous on L2(SO(n)) [DE09,

Lemma 1.4.2], the function t 7→ RP (t)F is continuous from [−1, 1] to

L2(SO(n)). Therefore

kf (t) =

∫
SO(n)

F (O)(RP (t)F )(O) dO.

It now follows that kf (t) is continuous in t.

To see that kf is a positive definite function, fix arbitrary distinct

points

ξ1, . . . , ξs ∈ Sn−1; we need to show that the s × s matrix K =

(kf (〈ξi, ξj〉))si,j=1 is positive semidefinite. But if v = (v1, . . . , vs)
t ∈ Rs

is any column vector, then

vTKv =

∫
SO(n)

(
s∑
i=1

f(Oξi)vi

)2

dO ≥ 0.
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5.3 A linear programming relaxation for

independence ratio

Combining Lemma 5.3 with Schoenberg’s theorem allows us to set

up a linear program whose value upper bounds the measure of any

independent set in G = G(Sn−1, {0}) for any n ≥ 3. The same result

appears in [BNdOFV09] and [dOF09]; our proof is slightly simpler

than the ones presented there.

Theorem 5.4. α̃(G) is no more than the value of the following infinite-

dimensional linear program.

maxx0

∞∑
i=0

xi = 1

∞∑
i=0

xiC
(n−2)/2
i (0) = 0

xi ≥ 0, for all i = 0, 1, 2, . . . .

(5.4)

Proof. Let I be a Lebesgue measurable subset of Sn−1 with λ(I) > 0,

having the property that 〈ξ, η〉 6= 0 for any ξ, η ∈ I. We shall construct

a feasible solution to the linear program (5.4) having value λ(I). Let

k = k1I be as in Lemma 5.3. Then k is a positive definite function

satisfying k(1) = λ(I) and k(0) = 0. By Theorem 5.1, k has an

expansion in terms of the Gegenbauer polynomials:

k(t) =
∞∑
i=0

aiC
(n−2)/2
i (t), (5.5)
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where the convergence of the righthand side is uniform for on [−1, 1].

Moreover, we have

a0 =
ωn−1

ωn

∫ 1

−1

k(t)(1− t2)(n−3)/2 dt

=

∫
Sn−1

k(〈ξ, ξ0〉) dξ,

where ξ0 ∈ Sn−1 can be any point. Since the above expression is

constant with respect to ξ0, it follows that if O ∈ SO(n) is picked

uniformly at random, then by Lemma 5.2 we have

∫
Sn−1

k(〈ξ, ξ0〉) dξ =

∫
Sn−1

P[Oξ ∈ I,Oξ0 ∈ I] dξ

=

∫
Sn−1

∫
Sn−1

P[Oξ ∈ I,Oξ0 ∈ I] dξ de

= λ(I)2.

We conclude that a0 = λ(I)2. Recall that C
(n−2)/2
i (1) = 1 for i ≥

0. Therefore setting xi = ai/λ(I) for i = 0, 1, 2, . . . gives a feasible

solution of value λ(I) to program (5.4).

Unfortunately in the case n = 3, the value of (5.4) is at least 1/3, which

is the same bound obtained in Witsenhausen’s original statement of

the problem in [Wit74]. This can be seen from the feasible solution

x0 = 1/3, x2 = 2/3 and xi = 0 for all i 6= 0, 2.
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5.4 Adding combinatorial constraints

Our aim now is to strengthen (5.4) for the case n = 3 by adding

combinatorial inequalities coming from Proposition 3.1. We proceed

as follows: Let p and q be coprime integers with 1/4 ≤ p/q ≤ 1/2, and

let tp,q =
√
− cos(2πp/q)
1−cos(2πp/q)

. If ξ ∈ Sn−1 is any point, then two orthogonal

unit vectors with endpoints in ξtp,q make angle 2πp/q in the circle

ξtp,q . The circle therefore contains a cycle of length q, and applying

Proposition 3.1 to this circle we obtain

(Atp,q1I)(ξ) ≤ (q − 1)/2q

when q is odd. Since the inequality holds for every ξ ∈ S2, we get

k(tp,q) =

∫
S2

1I(ξ)(Atp,q1I)(ξ) dξ

≤ λ(I)
q − 1

2q
,

and it follows that the inequalities

∞∑
i=0

xiC
1/2
i (tp,q) ≤ (q − 1)/2q, (5.6)

are valid for the relaxation and can be added to (5.4). The same holds

for the inequalities
∑∞

i=0 xiC
1/2
i (−tp,q) ≤ (q − 1)/2q.

We have just proved the following result.

Theorem 5.5. α̃(G(S2, {0})) is no more than the value of the follow-
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ing infinite-dimensional linear program.

maxx0

∞∑
i=0

xi = 1

∞∑
i=0

xiC
1/2
i (0) = 0

∞∑
i=0

xiC
1/2
i (±tp,q) ≤ (q − 1)/2q, (q odd, p, q coprime)

xi ≥ 0, for all i = 0, 1, 2, . . . .

(5.7)

5.5 Main theorem

The next theorem is the main result of Part II. Let G = G(S2, {0}).
Rather than attempting to find the exact value of the linear program

(5.7), the idea will be to discard all but finitely many of the combi-

natorial constraints, and then to apply the weak duality theorem of

linear programming. The dual linear program has only finitely many

variables, and any feasible solution gives an upper bound for the value

of program (5.7), and therefore also for α̃(G). At the heart of the proof

is the verification of the feasibility of a particular dual solution which

we give explicitly. While part of the verification has been carried out

by computer in order to deal with the large numbers that appear,

it requires only rational arithmetic and can therefore be considered

rigorous.

Theorem 5.6. α̃(G) < 0.313.
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Proof. Consider the following linear program

max
{
x0 :

∞∑
i=0

xi = 1,
∞∑
i=0

xiC
1/2
i (0) = 0,

∞∑
i=0

xiC
1/2
i (t1,3) ≤ 1/3, (5.8)

∞∑
i=0

xiC
1/2
i (t2,5) ≤ 2/5,

∞∑
i=0

xiC
1/2
i (−t2,5) ≤ 2/5,

xi ≥ 0, for all i = 0, 1, 2, . . .
}

The linear programming dual of (5.8) is the following.

min b1 +
1

3
b1,3 +

2

5
b2,5 +

2

5
b2,5−

b1 + b0 + b1,3 + b2,5 + b2,5− ≥ 1

b1 + C
1/2
i (0)b0 + C

1/2
i (t1,3)b1,3 + C

1/2
i (t2,5)b2,5 + C

1/2
i (−t2,5)b2,5− ≥ 0

for i = 1, 2, . . .

b1, b0 ∈ R, b1,3, b2,5, b2,5− ≥ 0

(5.9)

By linear programming duality, any feasible solution for program (5.9)

gives an upper bound for (5.8), and therefore also for α̃(G). So in order

to prove the claim α̃(G) < 0.313, it suffices to give a feasible solution

to (5.9) having objective value no more than 0.313. Let

b = (b1, b0, b1,3, b2,5, b2,5−) =
1

106
(128614, 404413, 36149, 103647, 327177).

It is easily verified that b satisfies the first constraint of (5.9) and that

its objective value less than 0.313. To verify the infinite family of
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constraints

b1 + C
1/2
i (0)b0 + C

1/2
i (t1,3)b1,3 + C

1/2
i (t2,5)b2,5 + C

1/2
i (−t2,5)b2,5− ≥ 0

(5.10)

for i = 1, 2, . . . , we apply Theorem 8.21.11 from [Sze92], which implies

|C1/2
i (cos θ)| ≤

√
2

√
π
√

sin θ

Γ(i+ 1)

Γ(i+ 3/2)
+

1√
π23/2(sin θ)3/2

Γ(i+ 1)

Γ(i+ 5/2)

(5.11)

for each 0 < θ < π, where Γ denotes the Euler Γ-function. Note that

t1,3 = 1/
√

3 and t2,5 = 5−1/4. When

θ ∈ A := {π/2, arccos t1,3, arccos t2,5, arccos−t2,5},

we have sin θ ∈ {1,
√

2
3
, γ}, where γ = 2√

5+
√

5
. The righthand side of

equation (5.11) is maximized at sin θ = γ for each fixed i, and since

the righthand side is decreasing in i, one can verify using rational

arithmetic only that it is no greater than 128614/871386 = b1/(b0 +

b1,3 + b2,5 + b2,5−) when i ≥ 40, by evaluating at i = 40. Therefore,

b1 + C
1/2
i (0)b0 + C

1/2
i (t1,3)b1,3 + C

1/2
i (t2,5)b2,5 + C

1/2
i (−t2,5)b2,5−

≥ b1 − (b0 + b1,3 + b2,5 + b2,5−) max
θ∈A
{|C1/2

i (cos θ)|}

≥ 0

when i ≥ 40. It now suffices to check that b satsifies the constraints

(5.10) for i = 0, 1, . . . , 39. This can also be accomplished using rational

arithmetic only.
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The rational arithmetic calculations required in the above proof were

carried out with Mathematica. When verifying the upper bound for

the righthand side of (5.11), it is helpful to recall the identity Γ(i +

1/2) = (i− 1/2)(i− 3/2) · · · (1/2)
√
π. When verifying the constraints

(5.10) for i = 0, 1, . . . , 39, it can be helpful to observe that t1,3 and t2,5

are roots of the polynomials x2 − 1/3 and x4 − 1/5 respectively; this

can be used to cut down the degree of the polynomials C
1/2
i (x) to at

most 3 before evaluating them. The ancillary folder of the arxiv.org

version of [DP15] contains a Mathematica notebook that verfies all

calculations.

The combinatorial inequalities of the form (5.6) we chose to include in

the strengthened linear program (5.8) were found as follows: Let L0

denote the linear program (5.4). We first find an optimal solution σ0

to L0. We then proceed recursively; having defined the linear program

Li−1 and found an optimal solution σi−1, we search through the in-

equalities (5.6) until one is found for which σi−1 is infeasible for Li−1,

and we strengthen Li−1 with that inequality to produce Li. At each

stage, an optimal solution to Li is found by first solving the dual min-

imization problem, and then applying the complementary slackness

theorem from linear programming to reduce Li to a linear program-

ming maximization problem with just a finite number of variables.

Adding more inequalities of the form (5.6) appears to give no improve-

ment on the upper bound. Also adding the constraints
∑∞

i=0 xiC
1/2
i (t) ≥

0 for −1 ≤ t ≤ 1 appears to give no improvement. A small (basically

insignificant) improvement can be achieved by allowing the odd cycles
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to embed into G in more general ways, for instance with the points

lying on two different latitudes rather than just one.





Part III

Existence of measurable

maximum independent sets

in forbidden inner product

graphs
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Chapter 6

Revisiting adjacency

operators of forbidden inner

product graphs on Sn−1

In this chapter we investigate the adjacency operator defined in Equa-

tion (5.1), proving some properties of it which we will require in Chap-

ter 7.

6.1 Boundedness and self-adjointness

Recall the definition (5.1) of the adjacency operator from Section 5.2:

(Atf)(ξ) :=

∫
ξt
f(η) dσξ,t(η).

65
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Theorem 6.1. For every t ∈ (−1, 1), At is a bounded, self-adjoint

operator mapping L2(Sn−1) to L2(Sn−1), having operator norm equal

to 1.

Proof. The right-hand side of (5.1) involves integration over nullsets

of a function f ∈ L2(Sn−1) which is only defined almost everywhere,

and so strictly speaking one should argue that (5.1) really makes

sense. In other words, given a particular representative f from its

L2-equivalence class, we need to check that the integral on the right-

hand side of (5.1) is defined for almost all ξ ∈ Sn−1, and that the

L2-equivalence class of Atf does not depend on the particular choice

of representative f .

Our main tool will be Minkowski’s integral inequality (see e.g. [Fol99,

Theorem 6.19]).

Let en = (0, . . . , 0, 1) be the n-th basis vector in Rn and let

S = {(x1, x2, . . . , xn) : xn = 0, x2
1 + · · ·+ x2

n−1 = 1}

be a copy of Sn−2 inside Rn. Considering f as a particular measurable

function (not an L2-equivalence class), we define F : SO(n)× S → R
by

F (ρ, η) = f
(
ρ
(
ten +

√
1− t2 η

))
, ρ ∈ SO(n), η ∈ S.

Let us formally check all the hypotheses of Minkowski’s integral in-

equality applied to F , where SO(n) is equipped with the Haar mea-

sure, and where S is equipped with the normalised Lebesgue mea-
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sure; this will show that the function F̃ : SO(n) → R defined by

F̃ (ρ) =
∫
S
F (ρ, η) dη belongs to L2(SO(n)).

Clearly the function F is measurable. To see that the function ρ 7→
F (ρ, η) belongs to L2(SO(n)) for each fixed η ∈ S, simply note that∫

SO(n)

|F (ρ, η)|2 dρ =

∫
SO(n)

∣∣∣f(ρ(ten +
√

1− t2 η))
∣∣∣2 dρ = ‖f‖2

2.

That the function η 7→ ‖F (·, η)‖2 belongs to L1(S) then also follows

easily (in fact, this function is constant):∫
S

(∫
SO(n)

|F (ρ, η)|2 dρ

)1/2

dη =

∫
S

‖f‖2 dη = ‖f‖2.

Minkowski’s integral inequality now gives that the function η 7→ F (ρ, η)

belongs to L1(S) for a.e. ρ, that the function F̃ belongs to L2(SO(n)),

and that its norm can be bounded as follows:

‖F̃‖2 =

(∫
SO(n)

∣∣∣∣∫
S

F (ρ, η) dη

∣∣∣∣2 dρ

)1/2

≤
∫
S

(∫
SO(n)

|F (ρ, η)|2 dρ

)1/2

dη = ‖f‖2. (6.1)

Applying (6.1) to f − g where g is a.e. equal to f , we conclude that

the L2-equivalence class of F̃ does not depend on the particular choice

of representative f from its equivalence class.

Now (Atf)(ξ) is simply F̃ (ρ), where ρ ∈ SO(n) can be any rotation

such that ρen = ξ. This shows that the integral in (5.1) makes sense

for almost all ξ ∈ Sn−1.
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We have ‖At‖ ≤ 1 since for any f ∈ L2(Sn−1),

‖Atf‖2 =

(∫
Sn−1

|(Atf)(ξ)|2 dξ

)1/2

=

(∫
SO(n)

|(Atf)(ρen)|2 dρ

)1/2

=

(∫
SO(n)

∣∣∣F̃ (ρ)
∣∣∣2 dρ

)1/2

≤ ‖f‖2,

by (6.1).

Applying At to the constant function 1 shows that ‖At‖ = 1. To see

that At is self-adjoint, fix ξ, η ∈ Sn−1 that satisfy 〈ξ, η〉 = t. Then

Lemma 5.2 implies that for any f, g ∈ L2(Sn−1),

〈Atf, g〉 = EO∈SO(n)[f(Oξ)g(Oη)] = 〈f, Atg〉.

6.2 Eigenvalues and eigenvectors

For n ≥ 2 and d ≥ 0, let H n
d be the vector space of homogeneous

polynomials p(x1, . . . , xn) of degree d in n variables belonging to the

kernel of Laplace operator; that is

∂2p

∂x2
1

+ · · ·+ ∂2p

∂x2
1

= 0.

Note that each H n
d is finite-dimensional. The restrictions of the ele-

ments of H n
d to the surface of the unit sphere are called the spherical
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harmonics. For fixed n, we have L2(Sn−1) = ⊕∞d=0H
n
d ([DX13, The-

orem 2.2.2]); that is, each function in L2(Sn−1) can be written as the

infinite sum of elements from H n
d , d = 0, 1, 2, . . . , with convergence

in the L2 norm.

The next lemma says that the eigenfunctions of the operators At are

exactly the spherical harmonics. It extends the Funk-Hecke formula

([DX13, Theorem 1.2.9]) to the Dirac measures, obtaining the eigen-

values of At explicitly.

Proposition 6.2. Let t ∈ [−1, 1]. Then for every spherical harmonic

Yd of degree d,

(AtYd)(ξ) :=

∫
ξt
Yd(η) dσξ,t(η) = µd(t)Yd(ξ), ξ ∈ Sn−1,

where µd(t) is the constant

µd(t) = C
(n−2)/2
d (t)(1− t2)(n−3)/2

/
C

(n−2)/2
d (1).

Proof. Let ds be Lebesgue measure on [−1, 1] and let {fα}α be a net

of functions in L1([−1, 1]) such that {fα ds} converges to the Dirac

point mass δt at t in the weak-* topology on the set of Borel measures

on [−1, 1]. By [DX13, Theorem 1.2.9], we have∫
Sn−1

Yd(η)fα(〈ξ, η〉) dη = µd,αYd(ξ),

where

µd,α =

∫ 1

−1

C
(n−2)/2
d (s)(1− s2)(n−3)/2fα(s) ds

/
C

(n−2)/2
d (1)
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and taking limits finishes the proof.

The next lemma is a general fact about weakly convergent sequences

in a Hilbert space.

Lemma 6.3. LetH be a Hilbert space and let K : H → H be a compact

operator. Suppose {xi}∞i=1 is a sequence in H converging weakly to

x ∈ H. Then

lim
i→∞
〈Kxi, xi〉 = 〈Kx, x〉.

Proof. Let C be the maximum of ‖x‖ and supi≥1 ‖xi‖, which is finite

by the principle of uniform boundedness. Let {Km}∞1 be a sequence

of finite rank operators such that Km → K in the operator norm as

m→∞. Clearly

lim
i→∞
〈Kmxi, xi〉 = 〈Kmx, x〉

for each m = 1, 2, . . . . Let ε > 0 be given and choose m0 so that

‖K − Km0‖ < ε. Choosing i0 so that |〈Km0xi, xi〉 − 〈Km0x, x〉| < ε

whenever i ≥ i0, we have

|〈Kxi, xi〉 − 〈Kx, x〉|
≤|〈Kxi, xi〉 − 〈Km0xi, xi〉|+ |〈Km0xi, xi〉 − 〈Km0x, x〉|

+ |〈Km0x, x〉 − 〈Kx, x〉|
≤‖K −Km0‖C2 + ε+ ‖K −Km0‖C2

<(2C2 + 1)ε,

and the lemma follows.
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6.3 Compactness

The next corollary is a result obtained in [BDdOFV14].

Corollary 6.4. If n ≥ 3 and t ∈ (−1, 1), then At is compact.

Proof. The operator At is diagonalizable by Proposition 6.2, since the

spherical harmonics form an orthonormal basis for L2(Sn−1). It there-

fore suffices to show that its eigenvalues have only zero as a cluster

point.

By [Sze92, Theorem 8.21.8] and Proposition 6.2, the eigenvalues µd(t)

tend to zero as d → ∞. The eigenspace corresponding to the eigen-

value µd(t) is precisely the vector space of spherical harmonics of de-

gree d, which is finite dimensional. Therefore At is compact.





Chapter 7

Attainment of the

independence ratio of

forbidden inner product

graphs on Sn−1

Let n ≥ 2 and X ⊂ [−1, 1], and let G = G(Sn−1, X). From Theorem

4.1 we know that the supremum in the definition of α̃(G) is sometimes

attained as a maximum, and sometimes not. It is therefore interesting

to ask when a maximizer exists. The main positive result in this direc-

tion is Theorem 7.3, which says that a largest measurable independent

set always exists when n ≥ 3. Remarkably, this result holds under no

additional restrictions (not even Lebesgue measurability) on the set

X of forbidden inner products.
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In this chapter we first prove a technical result, and we then put it

together with the facts established about adjacency operators in Chap-

ter 6 in order to prove the main result, Theorem 7.3, which says that

G(Sn−1, X) has maximum measurable independent sets for any X,

provided n ≥ 3. We then conclude by proving that the independence

ratio of G(Sn−1, X) does not change if X is replaced with its closure.

For the remainder of this section we suppose n ≥ 3.

7.1 A lemma concerning pairs of

Lebesgue density points

This aim of this section is to prove Lemma 7.1, which is crucial in

the proof of the existence of measurable maximum independent sets

in forbidden inner product graphs. Essentially it says that if some pair

of Lebesgue density points of a subset I of Sn−1 make inner product

t, then there are “many” pairs of points in I making inner product t.

Lemma 7.1. Suppose n ≥ 3 and let I ⊂ Sn−1 be a Lebesgue measur-

able set with λ(I) > 0. Define k : [−1, 1]→ R by

k(t) = E[1I(Oξ)1I(Oη)]

as in Lemma 5.3 with f = 1I . If ξ1, ξ2 ∈ Sn−1 are Lebesgue density

points of I, then k(〈ξ1, ξ2〉) > 0.

For each ξ ∈ Sn−1, let Ch(ξ) be the open spherical cap of height h

in Sn−1 centred at ξ. Recall that Ch(ξ) has volume proportional to
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∫ 1

1−h(1− t
2)(n−3)/2 dt.

Lemma 7.2. For each ξ ∈ Sn−1, we have λ(Ch(ξ)) = Θ(h(n−1)/2),

and

λ(Ch/2(ξ)) ≥ λ(Ch(ξ))/2
(n−1)/2 − o(h(n−1)/2) as h→ 0+.

Proof. If f(h) =
∫ 1

1−h(1 − t2)(n−3)/2 dt, then we have df
dh

(h) = (2h −
h2)(n−3)/2. Since f(0) = 0, the smallest power of h occurring in f(h)

is of order (n− 1)/2. This gives the first result. For the second, note

that the coefficient of the lowest order term in f(h) is 2(n−1)/2 times

that of f(h/2).

Proof of Lemma 7.1. Let t = 〈ξ1, ξ2〉. If t = 1, then the conclusion

holds since k(1) = λ(I) > 0. If t = −1, then ξ2 = −ξ1, and by the

Lebesgue density theorem we can choose h > 0 small enough that

λ(Ch(ξi) ∩ I) > 2
3
λ(Ch(ξi)) for i = 1, 2. Therefore,

k(−1) = E[1I(Oξ1)1I(O(−ξ1))]

≥ E[1I∩Ch(ξ2)(Oξ1)1I∩Ch(ξ2)(O(−ξ1))] ≥ 1

3
λ(Ch(ξ1)).

From now on we may therefore assume −1 < t < 1. By Lemma 5.2

we have k(t) =
∫
Sn−1 f(ζ)(Atg)(ζ) dζ. Let h > 0 be a small number

which will be determined later. Suppose x ∈ Ch(ξ1). The intersection

xt∩Ch(ξ2) is a spherical cap in the (n−2)-dimensional sphere xt having

height proportional to h; this is because Ch(ξ2) is the intersection of

Sn−1 with a certain halfspace H, and xt ∩ Ch(ξ2) = xt ∩H. We have

σx,t(x
t∩Ch(ξ2)) = Θ(h(n−2)/2) by Lemma 7.2, and it follows that there
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exists D > 0 such that σx,t(x
t ∩ Ch(ξ2)) ≤ Dh(n−2)/2 for sufficiently

small h > 0.

If x ∈ Ch/2(ξ1), then xt ∩Ch/2(ξ2) 6= ∅ since xt is just a rotation of the

hyperplane ξt1 through an angle equal to the angle between x and ξ1.

Therefore xt ∩ Ch(ξ2) is a spherical cap in xt having height at least

h/2.

Thus there exists D′ > 0 such that σx,t(x
t ∩ Ch(ξ2)) ≥ D′h(n−2)/2 for

all x ∈ Ch/2(ξ1), by Lemma 7.2.

Now choose h > 0 small enough that λ(Ch(ξi)∩I) ≥ (1− D′

2nD
)λ(Ch(ξi))

for i = 1, 2; this is possible by the Lebesgue density theorem since ξ1

and ξ2 are density points. We have by Lemma 5.2 that

k(t) = P[η1 ∈ I,η2 ∈ I],

if η1 is chosen uniformly at random from Sn−1, and if η2 is chosen

uniformly at random from ηt1. Then

k(t) ≥ P[η1 ∈ I ∩ Ch(ξ1),η2 ∈ I ∩ Ch(ξ2)]

≥ P[η1 ∈ Ch(ξ1),η2 ∈ Ch(ξ2)]− P[η1 ∈ Ch(ξ1) \ I,η2 ∈ Ch(ξ2)]

− P[η1 ∈ Ch(ξ1),η2 ∈ Ch(ξ2) \ I].

The first probability is at least

D′h(n−2)/2λ(Ch/2(ξ1)) ≥ D′

2(n−1)/2
h(n−2)/2λ(Ch(ξ1))− o(h(2n−3)/2)

by Lemma 7.2. The second and third probabilities are each no more

than
D′

2nD
λ(Ch(ξ1))Dh(n−2)/2 =

D′

2n
λ(Ch(ξ1))h(n−2)/2
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for sufficiently small h > 0, and therefore by the first part of Lemma 7.2,

k(t) ≥ D′

2(n−1)/2
λ(Ch(ξ1))h(n−2)/2−o(h(2n−3)/2)− D′

2n−1
λ(Ch(ξ1))h(n−2)/2,

and this is strictly positive for sufficiently small h > 0.

7.2 Attainment of the independence

ratio for n ≥ 3

Theorem 7.3. Suppose n ≥ 3 and let X be any subset of [−1, 1]. Then

G(Sn−1, X) has an independent set I ⊂ Sn−1 such that λ(I) = α̃(G).

Proof. Let G = G(Sn−1, X). If 1 ∈ X then every independent set

for G is empty. Otherwise, let {Ii}∞i=1 be a sequence of measurable

independent sets of G such that limi→∞ λ(Ii) = α̃(G). Passing to

a subsequence if necessary, we may suppose that the sequence {1Ii}
of characteristic functions converges weakly in L2(Sn−1); let h be its

limit. Then 0 ≤ h ≤ 1 almost everywhere since 0 ≤ 1Ii ≤ 1 for every

i.

Denote by I ′ the set h−1((0, 1]), and let I be the set of Lebesgue density

points of I ′. We claim that I is an independent set for G.

For all t ∈ X \ {−1}, the operator At : L2(Sn−1) → L2(Sn−1) is

compact and self-adjoint by Theorem 6.1 and Corollary 6.4. Since

〈At1Ii ,1Ii〉 = 0 for each i, Lemma 6.3 implies 〈Ath, h〉 = 0. Since

0 ≤ h ≤ 1, it follows from the definition of At that 〈At1I′ ,1I′〉 = 0,
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and therefore also that 〈At1I ,1I〉 = 0. But if there exist points ξ, η ∈ I
with t0 = 〈ξ, η〉 ∈ X \ {−1}, then 〈At01I ,1I〉 > 0 by Lemma 7.1.

Therefore I is an independent set in G(Sn−1, X \ {−1}), so we will be

done if we can show that there is no pair of points ξ,−ξ ∈ I when

−1 ∈ X. Since ξ and −ξ are Lebesgue density points of I, there

is a spherical cap C centred at ξ such that λ(I ∩ C) > 2
3
λ(C) and

λ(I ∩ (−C)) > 2
3
λ(C). The same applies to Ii for all large i. But this

contradicts the fact that Ii and its reflection −Ii are disjoint for every

i.

We conclude that I is an independent set, and finally, we have

λ(I) = λ(I ′) ≥
∫
h = 〈1Sn−1 , h〉 = lim

i→∞
〈1Sn−1 ,1Ii〉 = lim

i→∞
λ(Ii) = α̃(G),

whence λ(I) = α̃(G) by the definition of α̃.

7.3 Invariance of the independence ratio

under taking the closure of the

forbidden inner product set

Again let n ≥ 2, X ⊂ [−1, 1], and let G = G(Sn−1, X). When X

is replaced with its closure X, the resulting graph G = G(Sn−1, X)

obviously has fewer independent sets. It is therefore surprising that

the following theorem should be true.
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Theorem 7.4. Let X be an arbitrary subset of [−1, 1]. Let G =

G(Sn−1, X) and G = (Sn−1, X). Then α̃(G) = α̃(G). In particular

α̃(G) = 0 if 1 ∈ X.

Proof. Clearly α̃(G) ≥ α̃(G). For the reverse inequality, let I ′ ⊂ Sn−1

be any measurable independent set for G, let I ⊂ I ′ be the set of

Lebesgue density points of I ′, and define k : [−1, 1] → R by k(t) =

k1I (t) =
∫
Sn−1 f(ξ)(Atf)(ξ) dξ as in Lemma 5.3. Then k is continuous,

and since k(t) = 0 for every t ∈ X, it follows that k(t) = 0 for every

t ∈ X. Lemma 7.1 now implies that I is an independent set for

G. Since I ′ was arbitrary and since λ(I) = λ(I ′), we have proven

α̃(G) ≤ α̃(G).





Part IV

Positivity for the analyst
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Chapter 8

Functions and measures of

positive type on compact

groups

The aim of this chapter is to review the basic facts from representation

theory and harmonic analysis which we will use later on. The layout

of the chapter is as follows: In Section 8.1 we recall a number of basic

facts from the representation theory and harmonic analysis of abstract

compact groups, and we fix notation for the rest of the chapter. Sec-

tion 8.2 defines functions of positive type, and recalls several key facts

about them. Section 8.3 treats the basic Fourier analysis of measures

and defines measures of positive type.
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8.1 Representation theory and

harmonic analysis preliminaries

A topological group Γ is a topological space, endowed with the struc-

ture of a group such that the group operations are continuous; that

is, x 7→ x−1 is a continuous map from Γ to Γ and (x, y) 7→ xy is a

continuous map from Γ× Γ to Γ.

By a compact group, we shall mean a topological group whose under-

lying topological space is compact and Hausdorff. All compact groups

discussed in this thesis will be assumed to be metrizable.1 Every com-

pact group Γ has a regular finite Borel measure λ which is both left-

and right-translation invariant, meaning that λ(E) = λ(xE) = λ(Ex)

for all x ∈ Γ and all Borel subsets E of Γ. The measure λ is called the

Haar measure of Γ, and it is unique up to scaling by positive numbers.

We always take λ to be scaled so that λ(Γ) = 1. We will sometimes

write dx in place of dλ(x), and we may use
∫
f dλ or just

∫
f to

mean
∫
f(x) dx. For a detailed treatment of the Haar measure, see

for instance [Fol95, Chapter 2].

For 1 ≤ p < ∞, the set Lp(Γ) will be defined as the set of Borel

measurable functions f : Γ → C for which
∫
|f(x)|p dx < ∞. By

identifying functions that agree λ-almost everywhere, one makes Lp(Γ)

into a Banach space with the norm ‖f‖p :=
(∫
|f(x)|p dx

)1/p
. Strictly

speaking, one should consider the elements of Lp(Γ) as equivalence

classes of functions; here, when we say f ∈ Lp(Γ), it will always be

1This is in order to ensure that L2(Γ) is separable.
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clear from context whether f is being thought of as a function or an

equivalence class. If f : Γ→ C is Borel measurable, we define

‖f‖∞ := inf
{
a ≥ 0 : λ({x ∈ Γ : |f(x)| > a}) = 0

}
,

with the convention that inf ∅ =∞. We next define L∞(Γ) to be the

set of Borel measurable functions f : Γ → C for which ‖f‖∞ < ∞.

Again, L∞(Γ) becomes a Banach space when one identifies functions

agreeing λ-almost everywhere.

Given two functions f, g ∈ L1(Γ), we define their convolution product

as

f ∗ g(x) =

∫
f(y)g(y−1x) dy.

This expression is valid for λ-almost all x ∈ Γ, and one can show that

f ∗ g ∈ L1(Γ); in fact, one has the inequality ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. We

also define the involution f ∗ of f ∈ L1(Γ) by the formula

f ∗(x) = f(x−1), (x ∈ Γ).

These convolution and involution operations turn L1(Γ) into a Banach

∗-algebra, called the group algebra of Γ.

A unitary representation of a compact group Γ is a group homomor-

phism π from Γ into the group U(Hπ) of unitary operators on some

nontrivial complex Hilbert spaceHπ, which is continuous in the strong

operator topology; that is, the map x 7→ π(x)u is continuous from Γ

to Hπ for each fixed u ∈ Hπ. We will refer to unitary representations

simply as representations. Representations always satisfy the identi-

ties π(xy) = π(x)π(y) and π(x−1) = π(x)∗, where π(x)∗ denotes the
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adjoint of π(x). The dimension or the degree of π is the dimension of

Hπ, which will be denoted dπ.

A vector subspace M⊂ Hπ is called π-invariant if π(x)u ∈M for all

u ∈ M and all x ∈ Γ. The representation π is called irreducible if

the only π-invariant subspaces are {0} and Hπ itself. Two representa-

tions π and π′ are called (unitarily) equivalent if there exists a unitary

operator U : Hπ → Hπ′ such that π′(x) = Uπ(x)U−1 for all x ∈ Γ.

The next theorem is Theorem 5.2 in [Fol95].

Theorem 8.1. If Γ is compact, then every irreducible representation

of Γ is finite-dimensional.

For each unitary equivalence class of irreducible representations, choose

a representative π, and let Γ̂ be the collection of all such π.

For f ∈ L1(Γ), we define the Fourier transform f̂ of f by

f̂(π) =

∫
f(x)π(x)∗ dx, for all π ∈ Γ̂.

The value of the above integral is an operator on Hπ; see [Fol95,

Appendix 3] for a general treatment of vector-valued integrals. For

each x ∈ Γ, one can express π(x) in terms of some fixed basis for Hπ,

and for this reason there is usually no harm in thinking of f̂(π) as a

dπ × dπ matrix when dπ is finite.

The next theorem is an immediate consequence of the Peter-Weyl

theorem (see for instance [Fol95, Theorem 5.12]):
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Theorem 8.2 (Fourier inversion). If Γ is compact, then for f ∈ L2(Γ),

we have

f(x) =
∑
π∈Γ̂

dπ Tr(f̂(π)π(x)),

where Tr denotes the trace, and where the sum converges in the L2

sense.

The next result pulls together some basic facts about the Fourier trans-

form which we will use later on without further mention:

Proposition 8.3. For every f, g ∈ L1(Γ), π ∈ Γ̂, and a, b ∈ C, we

have

(a) (af + bg)̂(π) = af̂(π) + bĝ(π)

(b) (f ∗)̂(π) = f̂(π)∗

(c) (f ∗ g)̂(π) = ĝ(π)f̂(π)

(d) (Parseval’s identity) If f ∈ L2, then

‖f‖2
2 =

∑
π∈Γ̂

dπ Tr(f̂(π)∗f̂(π)).

Note the following useful consequence of Proposition 8.3 (d):

〈f, g〉 =
1

2

∑
π∈Γ̂

dπ Tr
[
f̂(π)∗ĝ(π) + ĝ(π)∗f̂(π)

]
, (8.1)

for f, g ∈ L2.
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For any function f : Γ→ C, we can define the left and right translates

of f as

(Lyf)(x) = f(y−1x), and (Ryf)(x) = f(xy).

The following fact, which is Proposition 2.41 in [Fol95], will be useful

for us later.

Proposition 8.4. If 1 ≤ p <∞ and f ∈ Lp(Γ) then ‖Lyf − f‖p and

‖Ryf − f‖p tend to zero as y tends to e.

8.2 Functions of positive type

The aim of this section is to define functions of positive type on a

compact group, and to collect several useful facts about them which

we will need later on. With some minor modifications, we follow the

exposition given in [Fol95, Section 3.3]; all the proofs can be found

there, except for the proof of Corollary 8.9, which we prove here. Let

Γ be a compact group and let λ be its Haar measure. We say that

φ ∈ L∞(Γ) is of positive type if∫
(f ∗ ∗ f)φ dλ ≥ 0, (8.2)

for every f ∈ L1(Γ). Note that by a straightforward density argument,

when checking that a function is of positive type, it suffices to check

(8.2) only for f ∈ C(Γ).

Proposition 8.5. For any f ∈ L2(Γ), the function f ∗∗f is continuous

and of positive type.
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The next theorem gives a complete characterization of positive type

functions.

Theorem 8.6. Let π be a unitary representation of Γ, take u ∈ Hπ,

and let φ(x) = 〈π(x)u, u〉. Then φ is a function of positive type.

Conversely, if φ is a function of positive type on Γ, then there exists

a unitary representation π of Γ and a vector u ∈ Hπ such that φ(x) is

equal to 〈π(x)u, u〉 for λ-almost every x ∈ Γ.

The main importance of Theorem 8.6 for us will actually come from

its corollaries.

Corollary 8.7. The following statements hold:

(a) Every function of positive type on Γ agrees almost everywhere

with a continuous function.

(b) If φ is a continuous function of positive type, then ‖φ‖∞ = φ(e)

and φ(x−1) = φ(x). In particular, real-valued continuous func-

tions of positive type are even.

A function φ : Γ → C is called positive definite if for every posi-

tive integer n and distinct points x1, . . . , xn ∈ Γ, the n × n matrix

(φ(x−1
j xi))

n
i,j=1 is positive semidefinite. The relation between positive

definite functions and functions of positive type is given in the next

proposition.

Proposition 8.8. A continuous function φ : Γ→ C is positive definite

if and only if it is of positive type.
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An important consequence of Proposition 8.8 for us is the next result,

which will become crucial in determining the dual cone of the cone of

positive type functions in Chapter 10.

Corollary 8.9. If φ and η are two continuous functions of positive

type, then their pointwise product φη is also of positive type.

Proof. This follows from Propositions 8.8: The matrix (φ(x−1
j xi)η(x−1

j xi))i,j

is positive semidefinite for every x1, . . . , xn ∈ Γ, being the Hadamard

(entrywise) product of the positive semidefinite matrices (φ(x−1
j xi))i,j

and (η(x−1
j xi))i,j.

8.3 Fourier analysis of measures and

measures of positive type

Recall that if X is any locally compact Hausdorff space and µ is a

(positive) measure on the Borel σ-algebra M of X, then µ is called

regular [Rud87, Definition 2.15] if

1. µ(E) = inf{µ(V ) : E ⊂ V, V open} for every E ∈M; and

2. µ(E) = sup{µ(K) : K ⊂ E,K compact} for every open set E,

and for every E ∈M with µ(E) <∞.

If µ is a complex Borel measure, its total variation |µ| is defined by

the equation

|µ|(E) = sup
∑
i

|µ(Ei)|,



91

where the supremum is taken over all countable partitions {Ei} ⊂ M
of E. It is a fact [Rud87, Theorem 6.2] that |µ| is actually a measure

and [Rud87, Theorem 6.4] that |µ|(X) <∞. We say that µ is regular

if |µ| is regular in the sense defined above.

Now suppose Γ is a compact group. Let C(Γ) denote the vector space

of continuous functions f : Γ → C, and let M(Γ) denote the vector

space of complex regular Borel measures on Γ equipped with the total

variation norm; that is ‖ν‖ = |ν|(Γ) for all ν ∈M(Γ).

A measure ν ∈ M(Γ) is of positive type if
∫
f ∗ ∗ f dν ≥ 0 for all

f ∈ C(Γ). A function φ ∈ L∞(Γ) is therefore of positive type if

φ dλ is a measure of positive type. The involution µ∗ of a measure

µ ∈M(Γ) is defined by µ∗(E) = µ(E−1) for each Borel subset E ⊂ Γ,

where E−1 = {x−1 : x ∈ E}. The Riesz representation theorem (see

e.g. [Rud87, Theorem 6.19]) says that every bounded linear functional

on C(Γ) is represented by an element of M(Γ); more precisely, for

each bounded linear functional ψ on C(Γ), there exists a ω ∈ M(Γ)

such that ψ(f) =
∫
f dω for all f ∈ C(Γ). If ν ∈ M(Γ), then

the convolution product µ ∗ ν is defined via the Riesz representation

theorem as the unique regular Borel measure ω satisfying∫
f(x) dω(x) =

∫ ∫
f(xy) dµ(x) dν(x),

for all f ∈ C(Γ).

The Fourier transform of µ ∈M(Γ) is defined by

µ̂(π) :=

∫
π(x)∗ dµ(x) for all π ∈ Γ̂. (8.3)
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As with Fourier transforms of functions, µ̂(π) can be thought of either

as an operator on Hπ, or as a dπ×dπ matrix with respect to some fixed

basis for Hπ. One proves that the integral (8.3) converges as follows:

Let u, v ∈ Hπ be arbitrary; then x 7→ 〈π(x)∗u, v〉 is a continuous func-

tion, and |〈π(x)∗u, v〉| ≤ ‖u‖‖v‖. It follows that
∫
〈π(x)∗u, v〉 dµ(x)

exists, and µ̂(π) is then defined as the unique operator onHπ for which

〈µ̂(π)u, v〉 =
∫
〈π(x)∗u, v〉 dµ(x) for all u, v ∈ Hπ.

The following facts about Fourier transforms of measures are easily

verified:

Proposition 8.10. For any µ, ν ∈ M(Γ), π ∈ Γ̂, and a, b ∈ C, we

have

(a) (aµ+ bν)̂(π) = aµ̂(π) + bν̂(π)

(b) µ̂ ∗ ν(π) = ν̂(π)µ̂(π)

(c) (µ∗)̂ = µ̂∗

(d) µ is of positive type if and only if µ is of positive type.



Chapter 9

Bochner’s theorem for

compact groups

In this chapter we state and prove two versions of Bochner’s theorem

we will need later on. Section 9.1 is about the first version, which

applies to continuous functions on compact groups. This theorem is

well-known, but we present a streamlined proof which uses only the

tools we have developed here. The proof appears simpler than the one

in [HR94]. Section 9.2 then discusses a version for measures of positive

type. While the proof is not difficult, the result does not appear to

be contained in the literature. We also present several consequences

of the Bochner theorems which are interesting from the optimization

perspective and for our purposes.
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9.1 Bochner’s theorem for continuous

functions

There are two parts to Bochner’s theorem; the first simply asserts that

the Fourier coefficients of a positive type function are positive semidef-

inite matrices. The second part says that the Fourier series converges

uniformly. We will prove the first part, and then after establishing

some technical results, we will use the first part to give a proof of the

second.

Theorem 9.1 (Bochner’s theorem for compact groups). Suppose φ ∈
C(Γ). Then

(a) φ is of positive type if and only if φ̂(π) is a positive semidefinite

matrix for every π ∈ Γ̂; and

(b) if φ is of positive type, then

φ(x) =
∑
π∈Γ̂

dπ Tr(φ̂(π)π(x)),

where the right-hand side converges absolutely as a series in C(Γ)

with the supremum-norm, and therefore also uniformly in x.

Proof of part (a). First suppose φ is a continuous function of positive

type. Given π ∈ Γ̂, and a vector v ∈ Hπ, we have

〈φ̂(π)v, v〉 =
〈(∫

φ(x)π(x)∗ dλ(x)

)
v, v
〉

=

∫
φ(x)〈π(x)∗v, v〉 dλ(x),

(9.1)
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which is the integral of the pointwise product of two positive type

functions by Proposition 8.6. The integral of a positive type function

ψ is always nonnegative, since
∫
ψ dλ =

∫
ψ(1∗ ∗ 1) dλ ≥ 0, where

1 is the function identically equal to 1. The last integral in (9.1) is

therefore nonnegative by Corollary 8.9, and this shows that φ̂(π) is

positive semidefinite.

Next suppose that φ is a continuous function and that φ̂(π) is positive

semidefinite for every π ∈ Γ̂. By equation (8.1) and Proposition 2.2,

for every g ∈ C(Γ) we have∫
(g∗ ∗ g)φ dλ =

∑
π∈Γ̂

dπ Tr(Bπφ̂(π)) ≥ 0,

where each Bπ = ĝ∗ ∗ g(π) = ĝ(π)ĝ∗(π) is positive semidefinite.

We now establish the tools we require for part (b).

Proposition 9.2. If φ : Γ → C is a continuous function of positive

type, then

0 ≤
∑
π∈Γ̂

dπ Tr(φ̂(π)) <∞.

Proof. Let F be the collection of finite subsets of Γ̂. For each F ∈ F ,

let φF (x) =
∑

π∈F dπ Tr(φ̂(π)π(x)). Then φ − φF and also φF are of

positive type by Theorem 9.1(a), and so Corollary 8.7 implies φ(e) ≥
φF (e) ≥ 0. But since φF (e) =

∑
π∈F dπ Tr(φ̂F (π))), it follows that the

set {∑
π∈F

dπ Tr(φ̂F (π))) : F ∈ F

}
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is bounded from above. The conclusion now follows by noting that

each term dπ Tr(φ̂F (π)) is nonnegative, since each φ̂F (π) is a positive

semidefinite matrix.

Lemma 9.3. Let A ∈ Cn×n be a positive semidefinite matrix, and let

U ∈ Cn×n be a unitary matrix. Then |Tr(AU)| ≤ Tr(A).

Proof. Let B be an n × n matrix such that A = B∗B. Then by the

Cauchy-Schwartz inequality

|Tr(AU)| = |Tr(B∗BU)| ≤
√
〈UB,UB〉

√
〈B,B〉 = 〈B,B〉 = Tr(A),

where the inner product used here is the trace inner product.

Theorem 9.1(b) now follows easily.

Proof of part (b). Since π(x) is unitary, we have |Tr(φ̂(π)π(x))| ≤
Tr(φ̂(π)) for all x ∈ Γ by Lemma 9.3 and Theorem 9.1(a). From

Proposition 9.2 it then follows that the series
∑

π∈Γ̂ dπ Tr(φ̂(π)π(·))
converges absolutely in the supremum norm, and hence it converges

uniformly.

The next proposition with its corollary will be helpful to us in proving

that the cone of continuous positive type functions and the cone of

positive type measures are mutually dual.

Proposition 9.4. If φ is any continuous function of positive type,

then φ = g∗ ∗ g for some g ∈ L2(Γ).
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Proof. For each π ∈ Γ̂, let Bπ be a dπ × dπ matrix satisfying B∗πBπ =

φ̂(π); this is possible by Theorem 9.1. By Proposition 8.3 and Theorem

8.2, it is enough to show that the series∑
π∈Γ̂

dπ Tr(Bππ(x)) (9.2)

converges in L2. Let π1, π2, . . . be an enumeration of the elements of

Γ̂.1

Then the series (9.2) is equal to

∞∑
i=1

dπi Tr(Bπiπi(x)),

which converges if and only if it is Cauchy. But for M ≥ m ≥ 1, we

have by Parseval’s identity (Proposition 8.3) that∥∥∥∥∥
M∑
i=m

dπi Tr(Bπiπi(x))

∥∥∥∥∥
2

2

=
M∑
i=m

dπi Tr(B∗πiBπi) =
M∑
i=m

dπi Tr(φ̂(πi)),

and by Proposition 9.2 the latter tends to 0 as m,M →∞.

Corollary 9.5. A measure ν ∈ M(Γ) is of positive type if and only

if
∫
φ dν ≥ 0 for all continuous functions φ : Γ→ C of positive type.

1Such an enumeration exists for the following reason: Given an orthonormal basis
{eπ,i}i for each Hilbert space Hπ, (π ∈ Γ̂), the Peter-Weyl theorem (Theorem
5.12 [Fol95]) says that the functions x 7→

√
dπ〈π(x)ei, ej〉 form an orthonormal

basis B for L2(Γ). Since Γ is metrizable, it is second countable, and therefore

L2(Γ) is separable. This implies that B is countable, and hence Γ̂ is countable.
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Proof. One implication follows immediately from the definition of pos-

itive type measures. For the other, suppose ν is of positive type. If φ

is a continuous function of positive type, then apply Proposition 9.4 to

write φ = f ∗ ∗f with f ∈ L2(Γ). Let {fn} be a sequence of continuous

functions converging to f in L2. Then f ∗n ∗ fn → f ∗ ∗ f pointwise as

n→∞: Indeed, we have

|f ∗ ∗ f(x)− f ∗n ∗ fn(x)|
≤ |〈Rxf, f〉 − 〈Rxfn, fn〉|
≤ |〈Rxf, f〉 − 〈Rxf, fn〉|+ |〈Rxf, fn〉 − 〈Rxfn, fn〉|
≤ ‖f‖2‖f − fn‖2 + ‖f − fn‖2‖fn‖2

for each x ∈ Γ. Therefore
∫
φ dν = limn→∞

∫
f ∗n ∗ fn dν ≥ 0 by the

theorem of Dominated Convergence.

Lastly we prove a result for measures which is analogous to Corol-

lary 8.7 (b).

Proposition 9.6. If µ ∈ M(Γ) is of positive type, then µ(E−1) =

µ(E), for all Borel subsets E of Γ, where we use the notation E−1 =

{x−1 : x ∈ E}.

Proof. It suffices to show that∫
φ(x−1) dµ(x) =

∫
φ(x) dµ(x) (9.3)

for all φ ∈ C(Γ). First suppose φ is of positive type. Then φ is also

of positive type, and so Corollary 8.7 (b) and Corolary 9.5 together
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imply (9.3). The general case now follows from [Fol95, Proposition

3.33], which says that the linear span of the positive type functions is

uniformly dense in the space of continuous functions.

9.2 Bochner’s theorem for measures

The purpose of this section is to prove a version of Bochner’s theorem

for measures of positive type on a compact group. After proving the

main theorem, we give some consequences which display an analogy

between measures of positive type and positive semidefinite matrices.

Theorem 9.7 (Bochner’s theorem for measures). Suppose ν ∈M(Γ).

Then ν is of positive type if and only if ν̂(π) :=
∫
π(x)∗ dν(x) is

positive semidefinite for every π ∈ Γ̂.

Proof. First suppose ν is of positive type. Given π ∈ Γ̂ and v ∈ Hπ,

we have

〈ν̂(π)v, v〉 =
〈(∫

π(x)∗ dν(x)

)
v, v
〉

=

∫
〈π(x)∗v, v〉 dν(x),

which is nonnegative by Proposition 8.6 and Corollary 9.5. This shows

that the operator ν̂(π) is positive semidefinite.

For the other direction, assume ν̂(π) is positive semidefinite for every

π ∈ Γ̂, and let φ ∈ C(Γ) be of positive type. Then by Theorem 9.1,

φ(x) =
∑
π∈Γ̂

dπ Tr(φ̂(π)π(x)),
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where the sum converges uniformly in x, and where each φ̂(π) is pos-

itive semidefinite. We have∫
φ(x) dν(x) =

∑
π∈Γ̂

dπ Tr

(
φ̂(π)

∫
π(x) dν(x)

)
,

and the operators
∫
π(x) dν(x) are positive semidefinite, being the

complex conjugates of the positive semidefinite operators ν̂(π). Since

the trace inner product of two positive semidefinite operators is non-

negative, so is the above sum.

As an immediate consequence of Theorem 9.7 and Proposition 8.10,

we get the following:

Corollary 9.8. For every µ ∈M(Γ), the measure µ∗ ∗µ is of positive

type.

For the next result, we recall the notion of approximate identity. This

is treated in [Fol95, Section 2.5]. Let U be a neighbourhood base at

e in Γ, and for each U ∈ U , let ψU be a continuous function such

that supp(ψU) is contained in U , ψU ≥ 0, ψU(x) = ψU(x−1) for all

x ∈ Γ, and
∫
ψU = 1. Then the family {ψU} is called an approximate

identity. Approximate identities exist for every locally compact group,

and they satisfy the properties

1. ‖f ∗ ψU − f‖p → 0 as U → {e} if 1 ≤ p <∞ and f ∈ Lp(Γ);

2. ‖ψU ∗f −f‖p → 0 as U → {e} if 1 ≤ p <∞ and f ∈ Lp(Γ); and
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3. If f ∈ C(Γ) then ψU ∗ f → f and f ∗ ψU → f in the supremum

norm as U → {e}.

Above we use the notation U → {e} to mean that the neighbourhood

U tends to e in the directed set of neighbourhoods of e, ordered by

reverse inclusion. For instance, item 1 says that for every ε > 0, there

is a neighbourhood V of e such that ‖f ∗ ψU − f‖p < ε whenever

U ⊂ V .

Lemma 9.9. Let {ψU} be an approximate identity. Then ψ̂U(π) con-

verges to the dπ × dπ identity matrix for each π ∈ Γ̂ as U → {e}.

Proof. Fix π0 ∈ Γ̂ and let gπ0(x) = dπ0 Tr(π0(x)). Letting I denote

the dπ0 × dπ0 identity matrix, we have

ĝπ0(π) =

I if π = π0

0 otherwise
.

Then ‖ψU ∗ gπ0 − gπ0‖2
2 → 0 as U → {e}. But by Parseval’s identity

we have

‖ψU ∗ gπ0 − gπ0‖2
2 =

∑
π∈Γ̂

dπ Tr[( ̂ψU ∗ gπ0(π)− ĝπ0(π))∗( ̂ψU ∗ gπ0(π)− ĝπ0(π))]

=
∑
π∈Γ̂

dπ Tr[(ĝπ0(π)ψ̂U(π)− ĝπ0(π))∗(ĝπ0(π)ψ̂U(π)− ĝπ0(π))]

= dπ0 Tr[(ψ̂U(π0)∗ − I)(ψ̂U(π0)− I)].

The latter is dπ0 times the squared Frobenius norm of the matrix

ψ̂U(π0)− I, and the conclusion follows.



102

Recall that the support of a Borel measure ν ∈M(Γ) is defined as the

set

supp(ν) = {x ∈ Γ : |ν|(U) > 0 for every open neighbourhood U of x},

where |ν| denotes the total variation of ν. Note that the support of a

Borel measure is always a closed set.

Corollary 9.10. Suppose that ν ∈ M(Γ) is a nonzero measure of

positive type. Then e ∈ supp(ν), where e denotes the identity element

of Γ.

Proof. Let {ψU} be an approximate identity and suppose e /∈ supp(ν).

Let V be an open, symmetric unit neighbourhood such that V 2 ⊂
Γ \ supp(ν), and set φV = ψ∗V ∗ ψV . Then φV is a continuous function

of positive type by Proposition 8.5, and supp(φV ) ⊂ V 2. Therefore∫
φV (x) dν(x) = 0. On the other hand, by Theorem 9.1, we have

φV (x) =
∑
π∈Γ̂

Tr(φ̂V (π) π(x))

where the sum converges uniformly. Therefore,

0 =

∫
φV (x) dν(x) =

∑
π∈Γ̂

Tr

(
φ̂V (π)

∫
π(x) dν(x)

)
.

Each term in the sum on the right is nonnegative by the same argument

used in the proof of Theorem 9.7, and therefore each one is zero. But

φ̂V (π) converges to the identity matrix as V → {e} by Lemma 9.9,

and it follows that ν̂(π) = 0 for every π ∈ Γ̂.
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For every n×n symmetric matrix A over R, there exists an r ≥ 0 such

that rIn×n +A is positive semidefinite. The next corollary shows that

something analogous is true for signed symmetric measures.

Corollary 9.11. Let ν ∈ M(Γ) be a signed (real) measure which is

symmetric; that is, ν(E) = ν(E−1) for each Borel subset E ⊂ Γ. Then

for each sufficiently large r > 0, the measure rδe+ν is of positive type.

Proof. Notice first that the conditions on ν imply that ν̂(π) is Hermi-

tian for every π ∈ Γ̂. We have |〈ν̂(π)v, v〉| ≤ ‖ν‖ for every unit vector

v ∈ Hπ, since

|〈ν̂(π)v, v〉| =
∣∣∣∣∫ 〈π(x)∗v, v〉 dν(x)

∣∣∣∣ , (9.4)

and |〈π(x)∗v, v〉| ≤ 1 by the Cauchy-Schwartz inequality. Therefore if

r ≥ ‖ν‖, the matrix

(rδe + ν)̂(π) = rIdπ×dπ + ν̂(π)

is positive semidefinite. Theorem 9.7 now implies that rδe + ν is of

positive type.





Chapter 10

Positive type functions and

measures as cones

In this chapter we show how the cone of positive type functions and

the cone of positive type measures can be seen as dual to one another

in a sense analogous to the self-duality of the cone of positive semidef-

inite matrices. Section 10.1 reviews the theory of cones and duality

in topological vector spaces, and Section 10.2 then proves the main

result of the chapter, which says that the cone of real-valued continu-

ous positive type functions and the cone of finite signed positive type

Radon measures are each other’s duals.
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10.1 Cones and duality

In this section, we review cones and duality in general. Most of the

material comes from Chapters 2 and 8 of [Ali07].

10.1.1 Dual pairs and weak topologies

Given any dual pair, one defines the weak topology on V to be the

topology τ generated by the seminorms pv′ : V → R, defined by

pv′(v) = |〈v, v′〉|, v ∈ V,

for each v′ ∈ V ′. The topology τ is denoted σ(V, V ′). A net {vα}
in V converges to v ∈ V in τ if and only if 〈vα, v′〉 → 〈v, v′〉 for

every fixed v′ ∈ V ′. The topology τ is locally convex and Hausdorff.

All linear functionals on V which are continuous in τ have the form

v 7→ 〈v, v′〉 for some v′ ∈ V ′; this is a consequence of the Mackey-

Arens theorem (Theorem 8.14 in [Ali07]). The weak topology on V ′ is

defined by interchanging the roles of V and V ′ in the above, and the

entire discussion is symmetric.

10.1.2 A separation theorem

Recall that two nonempty subsets X, Y of a vector space V are strongly

separated by a nonzero linear functional f : V → R if there exist

α, β ∈ R such that

f(x) ≤ α < β ≤ f(y)
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for all x ∈ X and y ∈ Y . There exist many important separation

theorems. However we will need just one (Corollary 8.18 in [Ali07]),

which is a consequence of the Hahn-Banach theorem:

Theorem 10.1 (Separation of points from closed convex sets). Every

point that lies outside a closed convex subset of a locally convex space

can be strongly separated from the set by a nonzero continuous linear

functional.

10.1.3 Cones and their duals

Let (V, V ′, 〈, 〉) be a dual pair of R-vector spaces and let W ⊂ V be a

cone. The dual cone of W is defined as

W ∗ := {x′ ∈ V ′ : 〈x, x′〉 ≥ 0 for all x ∈ W}.

The dual coneW ∗ is pointed precisely whenW−W is σ(V, V ′)-dense in

V . The dual cone W ∗ is σ(V ′, V )-closed, and the second dual cone W ∗∗

is equal to the σ(V, V ′)-closure of W in V . In particular W = W ∗∗ if

and only if W is σ(V, V ′)-closed. The conic dual operation is inclusion-

reversing: W ⊂ W ′ implies W ∗ ⊃ (W ′)∗. See Section 2.2 in [Ali07] for

a thorough treatment of conic duality in topological vector spaces.

10.2 Positive type functions and

measures as mutually dual cones

We now proceed to prove the main new result of this chapter, Theorem

10.2. As in previous chapters, let Γ be a compact group. Let CR(Γ) be
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the R-vector space of real-valued continuous functions on Γ, and let

MR(Γ) be the R-vector space of signed Borel measures on Γ having

finite total variation. We let SR(Γ) be the set of symmetric functions

in CR(Γ),

SR(Γ) := {f ∈ CR(Γ) : f(x−1) = f(x) for all x ∈ Γ},

and we let ΣR(Γ) denote the set of symmetric measures in M(Γ),

ΣR(Γ) := {ν ∈MR(Γ) : ν(E) = ν(E−1) for all Borel subsets E of Γ}.

In the terminology of Section 10.1, we define the duality 〈, 〉 : SR(Γ)×
ΣR(Γ) → R by 〈f, ν〉 =

∫
f dν. This duality induces the usual weak

topology on SR(Γ) regarded as a subspace of C(Γ), and the weak-∗
topology on ΣR(Γ). Let P denote the set of functions of positive type

in CR(Γ), and let Q be the set of measures of positive type inMR(Γ):

P = {φ ∈ CR(Γ) : φ is of positive type}
Q = {ν ∈MR(Γ) : ν is of positive type}.

We have P ⊂ SR(Γ) and Q ⊂ ΣR(Γ) by Corollary 8.7 (b) and Proposi-

tion 9.6. Both P and Q are closed cones in their respective topologies.

Our first result says that P and Q are dual to one another, and that,

in a sense, P is dense in Q.

Theorem 10.2. Let

P̃ = {φ dλ : φ ∈ P}
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be the image of P under the map f 7→ f dλ from CR(Γ) into MR(Γ),

and let D denote its weak-∗ closure in MR(Γ). Let

P∗ =

{
µ ∈ ΣR(Γ) :

∫
φ dµ ≥ 0 for all φ ∈ P

}
be the dual cone of P. Then D = P∗ = Q.

Proof. We first prove D = P∗. For the inclusion D ⊂ P∗, it suffices

to prove P̃ ⊂ P∗ since P∗ is closed. But if k, φ ∈ P , then
∫
kφ dλ ≥ 0

by Corollary 8.9. Now suppose there exists ν ∈ P∗ \ D. By Theorem

10.1, there exists φ ∈ SR(Γ) and β ∈ R such that∫
φ dµ ≥ β for all µ ∈ D, but (10.1)∫

φ dν < β. (10.2)

We cannot have
∫
φ dµ0 < 0 for any µ0 ∈ D, because D is a cone and

we would have by (10.1) that t
∫
φ dµ0 ≥ β for all t ≥ 0. Therefore∫

φ dµ ≥ 0 for all µ ∈ D. It now follows that φ ∈ P , for if ψ is any

(possibly C-valued) function of positive type, then

0 ≤
∫
φ(x)(ψ(x) + ψ(x)) dλ(x) =

∫
φ(x)ψ(x) dλ(x) +

∫
φ(x−1)ψ(x) dλ(x)

= 2

∫
φ(x)ψ(x) dλ(x),

by Corollary 8.7 (b). Now, using µ = 0 in (10.1) we obtain 0 ≥ β, so

(10.2) becomes
∫
φ dν < 0, which contradicts ν ∈ P∗. This completes

the proof that D = P∗.
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The inclusion Q ⊂ P∗ is just Corollary 9.5. For the inclusion P∗ ⊂ Q,

we need to show that µ ∈ ΣR(Γ) is of positive type whenever it satisfies∫
ψ dµ ≥ 0 for all R-valued continuous functions ψ of positive type.

But for arbitrary ψ of positive type, this follows from Corollary 9.5,

the symmetry of µ, and the fact that ψ + ψ∗ ∈ P .

We also record here two useful facts regarding SR(Γ) and the cone P .

Proposition 10.3. The R-linear span of P is sup-norm dense in

SR(Γ).

Proof. Let f, g ∈ SR(Γ) be given. Then the above linear span contains

the function

1

4
[(f + g) ∗ (f + g)∗ − (f − g) ∗ (f − g)∗] =

1

2
[f ∗ g∗ + g ∗ f ∗].

Taking g to run over an approximate identity proves that 1
2
(f+f ∗) = f

belongs to the sup-norm closure of the span.

Proposition 10.4. If f ∈ SR(Γ), then f̂(π) is Hermitian for each

π ∈ Γ̂.

Proof. Fix π ∈ Γ̂. For all u, v ∈ Hπ we have

〈f̂(π)u, v〉 =

∫
〈π(x)∗u, v〉f(x) dx =

∫
〈π(x)∗u, v〉f(x−1) dx

=

∫
〈π(x)u, v〉f(x) dx =

∫
〈u, π(x)∗v〉f(x) dx

= 〈u, f̂(π)v〉.
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10.3 Bases and interior points

Understanding whether a cone has interior points and a compact

base is often helpful in convex optimization when one wants to know

whether duality gaps exist, and whether optimal values are attained.

In this section, we ask and answer these questions for P and Q.

10.3.1 Bases

We begin by recalling a definition. Let V will be an R-vector space.

If K ⊂ V is a cone, then a nonempty convex subset B ⊂ K \ {0} is

called a base for K if for each x ∈ K \ {0}, there exists a unique t > 0

and a unique b ∈ B for which x = tb.

Unfortunately, the cone P need not have a σ(SR(Γ),ΣR(Γ))-compact

base, and Q need not have a σ(ΣR(Γ), SR(Γ))-compact base. We now

demonstrate this with an example.

Let T be the circle group and denote its Haar measure by λ. Suppose

B is a compact base for P . Given an finite subset F of the character

group T̂, let

NF = {φ ∈ B :

∫
φ(x)χ(x) dλ(x) = 0 for all χ ∈ F}.

Then each NF is a weakly closed subset of B, and is nonempty since

for any F , we have χ ∈ P \NF whenever χ /∈ F , and χ = tb for some

t > 0, b ∈ B. The family {NF} therefore has the finite intersection

property; that is, all the finite intersections are nonempty. However

the intersection ∩NF over all finite subsets F is empty since 0 /∈ B.
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Therefore B cannot be compact. The proof that Q does not have a

compact base is essentially the same.

It may however be of interest that P and Q usually both have closed

bases. This can be shown with the help of Theorem 1.47 of [Ali07],

which characterizes bases of cones as the positive level sets of strictly

positive linear functionals, which are linear functionals f : V → R
satisfying f(x) > 0 for all nonzero x in the cone of V .

First P : It follows from Corollary 8.7 (b) that a strictly positive linear

functional on SR(Γ) with cone P is given simply by δe, namely f 7→
f(e). So a natural base for P is just

{φ ∈ P : φ(e) = 1},

which is clearly closed in the weak topology.

Constructing a base for Q is trickier, but possible with the help of

Bochner’s theorem using the hypothesis that Γ is second countable. In

this case L2(Γ) is separable, from which it follows that Γ̂ is countable.

We may therefore let {πn} be an enumeration of Γ̂, and set

φ(x) =
∞∑
n=1

1

dπn2n
Tr(πn(x)).

The series converges absolutely to a function in C(Γ). Now if µ ∈ Q
is nonzero, we have∫
φ dµ =

∞∑
n=1

1

dπn2n
Tr

(∫
πn(x) dµ(x)

)
=
∞∑
n=1

1

dπn2n
Tr(µ̂(πn)) > 0,
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by Theorem 9.7. We also have
∫
φ dµ > 0, and therefore φ + φ ∈

SR(Γ) is a function which defines a strictly positive, continuous linear

functional on Q.

10.3.2 Interior points

Also unfortunate from the convex optimization perspective is that P
and Q need not have weakly interior points. This can be proven using

the characterization for interior points given in Lemma 2.5 of [Ali07].

We write f ≥P g to mean that f − g ∈ P .

Suppose φ ∈ P is an interior point. Then

U = {f ∈ SR(Γ) : −φ ≤P f ≤P φ}

is a neighbourhood of 0 by Lemma 2.5 of [Ali07]. Therefore U contains

a basic open neighbourhood of 0,

U1 = {f ∈ SR(Γ) :

∣∣∣∣∫ f dµ1

∣∣∣∣ < ε, . . .

∣∣∣∣∫ f dµn

∣∣∣∣ < ε},

for some µ1, . . . , µn ∈ MR(Γ) and ε > 0. But if SR(Γ) has infinite di-

mension, then U1 contains a subspace of infinite dimension. Therefore

there exists f ∈ U1 with f 6= 0 and tf ∈ U1 ⊂ P for all t ∈ R, which

is impossible since P is a cone. The argument for Q is essentially the

same.

We note however that Q does have a norm interior point, namely δe.

To see this, let µ ∈ MR(Γ) be any measure with ‖δe − µ‖ < 1. We

want to show µ ∈ Q. Let φ ∈ P be arbitrary, and assume φ(e) = 1.
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Then 1 > |
∫
φ dµ−

∫
φ dδe| = |

∫
φ dµ−1|, which implies

∫
φ dµ > 0.

That µ ∈ Q now follows from Theorem 10.2.



Part V

Lovász ϑ duality for Cayley

graphs over compact groups
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Chapter 11

Introduction

11.1 Background and motivation

Eigenvalue techniques related to the Lovász ϑ-function have been ap-

plied to obtain upper bounds for spherical codes [DGS77] (including

the kissing numbers), for indepedence numbers of compact packing

graphs [dLV13], and for upper bounding densities of packings of con-

gruent copies of a body in Rn [dOFV13]. They have also been used to

upper bound measures of spherical sets avoiding a prescribed set of an-

gles ([BNdOFV09], [BDdOFV14], [DP15]), and to write down infinite-

dimensional semidefinite programs which upper bound measures of

distance avoiding sets in compact metric spaces ([BNdOFV09]). Sim-

ilar approaches were used in [dOFV10], [dOF09], and [BPT14] to up-

per bound upper densities of distance-avoiding sets in Rn; these upper

bounds were then turned into lower bounds for the measurable chro-
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matic number of Euclidean n-space.

In the applications involving measures and upper densities, an infinite-

dimensional linear or semidefinite relaxation in the spirit of ϑ is set

up as a maximization problem whose value upper bounds the quan-

tity of interest. In the absence of methods for solving such infinite-

dimensional optimization problems to optimality, one typically sym-

metrizes the problem ([DKPS07], [BGSV12]) to obtain a linear pro-

gram, and then writes down the dual linear program. The dual has

the property that any feasible solution provides an upper bound for

the quantity of interest, so one then only needs to find good feasible

solutions. In the coding and packing applications, the relaxation one

obtains is already a minimization problem, and it is not immediately

clear whether the dual maximization problem provides any interesting

information about the original (unrelaxed) problem.

Given the success of these methods in recent years, it is therefore

of interest to study the duality of these infinite-dimensional systems.

How should one dualize them, and can one dualize before symmetrizing

to a linear program? Does strong duality hold? Does the maximization

dual in the coding and packing cases give any information about the

original graphs? Answering these questions is the main objective of

Part V of the thesis.

In Part V, we develop primal and dual formulations of the Lovász ϑ-

function and the Schrijver ϑ′-function for two kinds of Cayley graphs

over compact groups, which are defined below. Most of the definitions

are quite natural; the main contributions in this part of the thesis are
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the strong duality proofs which use abstract harmonic analysis in an

essential way. Additionally we show that our extensions satisfy most

of the important properties of the usual ϑ- and ϑ′-functions by giving

new analytic proofs.

An attempt to unify some of the results mentioned in the first para-

graph was made in [BDdOFV14], but until now only de Laat and

Vallentin [dLV13] have seriously investigated duality for any of these

problems; their work was in the context of what they call topological

packing graphs, and they give a delicate functional-analytic argument

proving strong duality for an entire hierarchy of infinite-dimensional

semidefinite programs, of which ϑ′ for their graphs is only the first

level. Their proof however does not extend to the other cases men-

tioned in the first paragraph, or to ϑ.

The main theoretical challenge in this part of the thesis was to develop

a theory of the Lovász ϑ-function and Schrijver ϑ′-function for infinite

graphs which applies to as many existing (and future) examples from

the literature as possible, while still enabling one to prove strong du-

ality and to recover the well-known properties of the ϑ-function which

hold on finite graphs. This was made difficult by the fact that the ϑ-

function examples from the literature were each developed ad hoc for

a specific application, and as such they do not come from a common

set of definitions.

The choice was made to develop a theory of the ϑ-function in the

context of Cayley graphs over compact groups. This choice was taken

because it seems to be the simplest framework which both captures
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the examples from the literature, and allows for the application of

abstract harmonic analysis in the strong duality proofs. A bonus of

this choice is the discovery that many of the well-known properties of

the ϑ-function have new and short (almost trivial) analytic proofs.

The theory extends effortlessly to graphs on homogeneous spaces, and

in this way our framework captures essentially all of the examples

mentioned in the first paragraph – the choice to work over Cayley

graphs rather than some more general class of graphs on homogeneous

spaces was basically taken to make the proofs cleaner. Furthermore,

the sorts of Cayley graphs on Rn of interest to us can be understood

by approximating them with Cayley graphs on large n-dimenensional

tori; for this reason the compactness assumption is no big restriction

either. However, even if some infinite graphs eventually come along

whose ϑ-functions do not fit into our theory, it is our belief that the

proof techniques given here could extend to accommodate them.

11.2 Preliminaries

In Part V we assume the reader possesses a mastery of the basics of

abstract harmonic analysis on compact nonabelian groups up to and

including the Peter-Weyl theorem. The books [Fol95] and [DE09] give

clear and readable expositions of all the prerequisite material.

Let Γ be a compact group with Borel σ-algebra B, Haar measure λ,

and identity element e. Since Γ is compact, its Haar measure is finite,

and we will always assume the normalization λ(Γ) = 1. A subset
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X ⊂ Γ with e /∈ X will be called a connection set if X = X−1; that is

x−1 ∈ X whenever x ∈ X. For any connection set X, the Cayley graph

Cay(Γ, X) is defined as the graph Cay(Γ, X) = (V,E) with V = Γ,

and E = {{x, y} ⊂ V : y−1x ∈ X}. The conditions defining the

connection set guarantee that Cay(Γ, X) is undirected and without

self-loops. Notice that by the definition of E, for every a ∈ Γ, left

multiplication by a is a graph automorphism of Cay(Γ, X).

In addition to the independence number, we will also be interested in

the independence ratio of G = Cay(Γ, X), defined as

α̃(G) := sup{λ(I) : I ∈ B is independent in G}.

Theorem 4.1 shows that the supremum in the definition of α̃ should

not be replaced with a maximum. We further define χm(G), the mea-

surable chromatic number of G; this is the smallest number k such

that Γ can be partitioned into sets C1, . . . , Ck ∈ B such that each Ci

is independent, or ∞ if no such finite partition exists.

In what follows, when X ⊂ Γ is a connection set and G = Cay(Γ, X),

we will use the notation Xc = Γ\(X∪{e}), and Gc = Cay(Γ, Xc); the

graph Gc is the complementary graph of G. We will use X to mean

the closure of X in the topology of Γ, and we define G = Cay(Γ, X),

which we call the closure of the graph G.

We will be mainly interested in two sorts of Cayley graphs on Γ, which

we call respectively dense and sparse. Roughly speaking, dense Cayley

graphs have sufficiently dense edge sets to force the independence num-

ber to be finite. When the graph is infinite, the chromatic number is
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then also infinite. An example of an infinite dense Cayley graph is the

kissing number graph on the circle, obtained by setting Γ = R/Z and

X = (−1/6, 0) ∪ (0, 1/6). Sparse Cayley graphs are roughly speaking

those graphs whose edge set is sparse enough to guarantee indepen-

dent sets of positive Haar measure. All the circle graphs from Theorem

4.1 are sparse. It is important to note that our definitions of dense

and sparse have nothing to do with those often found in the graph

theory literature. For instance, our sparse graphs Cay(Γ, X) can have

λ(X) > 0; in other words a positive proportion of the possible edges

can be present.

The formal definitions are as follows. We say that a connection set

X ∈ B is sparse if e /∈ X, and that Cay(Γ, X) is sparse if X is

sparse. We call a connection set X ∈ B dense if e is an interior point

of {e} ∪ X, and we say Cay(Γ, X) is dense if X is dense.1 Notice

that G = Cay(Γ, X) is sparse if and only if Gc is dense. There exist

Cayley graphs which are neither dense nor sparse, and a Cayley graph

is both dense and sparse if and only if it is finite. We next give some

justification to these definitions.

Proposition 11.1. Let G = Cay(Γ, X). If G is sparse, then α̃(G) > 0

and χ(G) ≤ χm(G) <∞. If G is dense, then α(G) <∞.

Proof. First suppose G is sparse. Then there exists an open symmetric

unit neighbourhood U with U2 ⊂ Γ \X; then U is an independent set

with λ(U) > 0, proving the first assertion. For the second assertion,

1Dense Cayley graphs are examples of the topological packing graphs of de Laat
and Vallentin [dLV13].
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the set {xU : x ∈ Γ} is an open cover of Γ, so by compactness there

exists a finite subcover, say x1U, . . . , xnU . Since left multiplication by

a group element is a graph automorphism, each xiU is an independent

set. With Γ now covered by n independent sets, one easily constructs

a proper colouring with at most n colours. The inequality χ(G) ≤
χm(G) is obvious.

If G is dense then we take U2 to be contained in the interior of {e}∪X.

Since U is a clique, each translate xiU of U can contain at most one

point from an independent set. This proves the last assertion.

Suppose that Y is a Borel subset of Γ. We regard Y as a topological

space with the topology induced from Γ, and we define B(Y ) := {E ∩
Y : E ∈ B}. We use CR(Y ) to denote the set of continuous R-valued

functions on Y , and MR(Y ) to denote the set of regular signed Borel

measures on Y having finite total variation. The set of continuous

R-valued functions on Y vanishing at infinity will be denoted CR,0(Y );

this is the set of functions f ∈ CR(Y ) such that for each ε > 0, the set

{x ∈ Y : |f(x)| ≥ ε} is compact in Y .

As in Part IV, we use P and Q to denote, respectively, the cone of

R-valued continuous functions of positive type, and the cone of finite

signed regular Borel measures of positive type.

Now suppose further that Y is symmetric; that is y−1 ∈ Y whenever

y ∈ Y . Then SR(Y ) will be the set of continuous R-valued symmetric

functions on Y :

SR(Y ) := {f ∈ CR(Y ) : f(y−1) = f(y) for all y ∈ Y }.
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We will use S+(Y ) to denote the set of all functions in SR(Y ) taking

only nonnegative values. We define ΣR(Y ) to be the set of all R-valued

finite symmetric signed regular Borel measures on Y :

ΣR(Y ) := {ν ∈MR(Y ) : ν(E) = ν(E−1) for all E ∈ B(Y )}.

We will use Σ+(Y ) to denote the set of positive measures in ΣR(Y ).

By Corollary 8.7 (b) and Proposition 9.6, we have P ⊂ SR(Γ) and

Q ⊂ ΣR(Γ).

For x ∈ Γ, the Dirac point mass at x will be denoted δx.



Chapter 12

Sparse Cayley graphs over

compact groups

In this chapter we define extensions of the Lovász ϑ-function and Schri-

jver’s ϑ′-function for sparse Cayley graphs over compact groups, which

give upper bounds for α̃. The extension is given in terms of two mu-

tually dual conic optimization programs. We prove both weak and

strong duality, and we relate these ϑ and ϑ′ to their finite counter-

parts. We furthermore mention how the theory extends to include

graphs on Γ-homogeneous spaces when Γ is a subgroup of the graph

automorphisms. Lastly we demonstrate the machinery by working out

a few examples (in particular forbidden distance graphs on the unit

sphere and on Rn) to show how they fit into our theory.

125
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12.1 ϑs and ϑ′s: primal formulation

In this section we give definitions of the ϑ- and ϑ′-functions of sparse

Cayley graphs over compact groups and we prove that they upper

bound the independence ratio. When Γ is a finite group we prove

that the new definitions give ϑ(G)/|Γ| and ϑ′(G)/|Γ|, respectively;

the difference in normalization comes from the fact that we use the

normalized Haar measure in our definitions. We then briefly explain

how the theory extends to include graphs on Γ-homogeneous spaces

when Γ is a compact subgroup of the automorphism group.

We demonstrate our formulation with an example by recovering the

linear programming upper bounds for the independence ratio of for-

bidden distance graphs on the unit sphere appearing in [BNdOFV09]

and [dOF09]. (The dual will be investigated in the next section.) Just

before giving the example, we prove a useful fact clarifying the re-

lationship between positive type functions on the special orthogonal

group and positive definite functions on the sphere.

12.1.1 Definition and relation to ϑ-function for

finite graphs

Suppose Γ is a compact group, X is a sparse connection set, and

G = Cay(Γ, X). We define ϑs(G) as the value of the following conic

optimization program.

ϑs(G) := sup

{∫
φ dλ : φ(e) = 1, φ|X ≡ 0, φ ∈ P

}
, (12.1)
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where φ|X ≡ 0 means that φ(x) = 0 for all x ∈ X. We also define

ϑ′s(G) := sup

{∫
φ dλ : φ(e) = 1, φ|X ≡ 0, φ ∈ P ∩ S+(Γ)

}
. (12.2)

Our first proposition gives the most important property of ϑs and ϑ′s.

Theorem 12.1. If G is a sparse Cayley graph, then programs (12.1)

and (12.2) are both feasible and

ϑs(G) ≥ ϑ′s(G) ≥ α̃(G).

Proof. Since G is sparse, there exists an independent set I ∈ B with

λ(I) > 0 by Proposition 11.1. Let I be any such set, and let

φ = λ(I)−1
1
∗
I ∗ 1I . Then clearly φ ∈ P ∩ S+(Γ). Also

φ(e) = λ(I)−1

∫
1I(y)1I(y) dy = 1,

and if x ∈ X, then

φ(x) = λ(I)−1

∫
1I(y)∗1I(y

−1x) dy = λ(I)−1

∫
1I(y)1I(yx) dy = 0

for since I is independent, at most one of y and xy can belong to I.

Therefore φ is feasible for (12.1) and (12.2). Finally, letting 1 denote

the trivial representation of Γ, we have∫
φ dλ = φ̂(1) = λ(I)−1(1̂I(1))∗1̂I(1) = λ(I).

Clearly ϑs(G) ≥ ϑ′s(G), so the proposition follows.
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We note here that ϑs(G) = ϑs(G) because of the requirement in (12.1)

and (12.2) that φ be continuous. This observation combined with

Theorem 12.1 also shows that the sparseness of G is actually equivalent

to the feasibility of (12.1) and (12.2), because of the constraint φ(e) =

1.

The next proposition explains how our definitions of ϑs and ϑ′s relate

to the usual definitions for finite graphs.

Proposition 12.2. Suppose Γ is a finite group with n = |Γ|. Then

ϑs(G) = ϑ(G)/n and ϑ′s(G) = ϑ′(G)/n.

Proof. Essentially the same proof is given in [DdLV14]. We prove

only that ϑs(G) = ϑ(G)/n, since the proof of ϑ′s(G) = ϑ′(G)/n is an

easy modification of this one. We first construct a feasible solution of

program (12.1) from an optimal solution of program (2.6). Let A =

(ax,y)x,y∈Γ be a solution for program (2.6) with ϑ(G) =
∑

x,y∈Γ ax,y,

and for each z ∈ Γ, let φ(z) =
∑
{x,y∈Γ:y−1x=z} ax,y. Then clearly φ(e) =

1, and φ(x) = 0 for all x ∈ X, and 1
|Γ|
∑

g∈Γ φ(g) = 1
n

∑
x,y∈Γ ax,y =

ϑ(G)/n. To see that φ is of positive type, let points x1, . . . , xn ∈ Γ be

distinct points and let v ∈ Cn be given. Then

vt(φ(x−1
j xi))

n
i,j=1v =

n∑
i,j=1

φ(x−1
j xi)vivj

=
n∑

i,j=1

∑
g∈Γ

agx−1
j xi,g

vivj =
∑
g∈Γ

n∑
i,j=1

agxi,gxjvivj,

and the latter is nonnegative since (agxi,gxj)
n
i,j=1 is a principal subma-

trix of the positive semidefinite matrix A.
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For the other direction, let φ be a feasible solution for (12.1), and define

A = (ax,y)x,y∈Γ by ax,y = φ(y−1x)/n, (x, y ∈ Γ). We have Tr(A) = 1,

and ax,y = 0 whenever y−1x ∈ X. Also A is positive semidefinite since

for v = (vx)x∈Γ, we have

vtAv =
∑
x,y∈Γ

ax,yvxvy =
1

n

∑
x,y∈Γ

φ(y−1x)vxvy ≥ 0

since φ is of positive type. Finally
∑

x,y ax,y = 1
n

∑
x,y φ(y−1x) =∑

g∈Γ φ(g).

12.1.2 Frequency domain formulation

By taking the Fourier transform, one can find an expression for ϑs in

the frequency domain. This can help compute it. This formulation

was explored in [DdLV14] when Γ is a finite group.

Again suppose Γ is a compact group and that X is a sparse connection

set, and let G = Cay(Γ, X). The following equalities are easily verified

from (12.1), using Theorem 9.1 (Bochner’s theorem). We write A � 0

to mean that A is Hermitian positive semidefinite. We also use the

notation Γ̂, dπ, Hπ from Part IV; the trivial representation is denoted

1.

ϑs(G) = sup
{
A1 :

∑
π∈Γ̂

dπ Tr(Aπ) = 1,
∑
π∈Γ̂

dπ Tr(Aππ(x)) = 0 for x ∈ X,

Aπ = Aπ, Aπ � 0 for π ∈ Γ̂
}
. (12.3)
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The constraint Aπ = Aπ (which does not appear in [DdLV14]) is re-

quired to ensure that
∑

π∈Γ̂ dπ Tr(Aππ(x)) sums to an R-valued func-

tion.

Therefore ϑs(G) can be expressed as the value of a block-diagonal

semidefinite program, possibly with infinitely many finite blocks. If Γ

is abelian then all the irreducible representations are one-dimensional,

and one sees immediately that ϑs(G) can be expressed as the value of

a linear program.

The same may hold true even when Γ is not abelian; a sufficient con-

dition for (12.3) to reduce to a linear program is that X be closed

under conjugation. One can see this using Schur’s lemma (see e.g.

[Fol95, Theorem 3.5]): Given a feasible solution {Aπ}π∈Γ̂ for (12.3),

set A′π =
∫

Γ
π(g−1)Aππ(g) dg for each π ∈ Γ̂. One can then show

that A′ππ(x) = π(x)A′π for all x ∈ Γ, and so A′π must be a multiple

of the dπ × dπ identity matrix. It is easy to check that {A′π} is a new

feasible solution for (12.3) having the same objective value. Therefore,

when solving (12.3), we may as well assume from the beginning that

all the matrices Aπ are multiples of the identity; this leads to a linear

program.

Note that by adding the constraints
∑

π∈Γ̂ dπ Tr(Aππ(x)) ≥ 0, (x ∈ Γ),

to program (12.3), we can also obtain a frequency domain formulation

for ϑ′s(G).
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12.1.3 Extension to graphs on homogeneous

spaces

The forbidden distance graphs on spheres are important examples that

we wish to be able to handle within our theory. Such graphs are not

Cayley graphs, but this is only a minor problem. We now show how

essentially all of the theory presented in Chapter 12 transfers to graphs

G on Γ-homogeneous spaces equipped with the induced Haar measure

when Γ is a compact subgroup of Aut(G). This idea is simply to

“blow up” each vertex in G, replacing it with an independent set on

the vertices in its preimage under the quotient map Γ → V ; edges

are replaced with complete bipartite graphs. Then independent sets

blow up to independent sets of the same Haar measure, and hence the

independence ratios are the same. We now give the precise statement

and details.

Let V be a locally compact Hausdorff topological space with Borel

σ-algebra B and let G = (V,E) be a graph. Consider the canonical

left-action of Aut(G) on V , and let Γ be a compact group which is

also a subgroup of Aut(G). Suppose that the action of Γ on V is

transitive, and that the restricted action map Γ×V → V is continuous.

Suppose further that for each x ∈ Γ, each of the maps v 7→ xv is a

homeomorphism of V . Then G will be called a topological Schreier

graph over the group Γ.1 Taking Γ = SO(n), one sees that forbidden

distance graphs on the unit n-sphere are topological Schreier graphs.

1This term was chosen because G is isomorphic to a Schreier left-coset graph over
the group Γ.
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Note that topological Schreier graphs necessarily have compact vertex

sets.

Fix v0 ∈ V and let H be the stabilizer subgroup of v0 in Γ. When

Γ/H is equipped with the quotient topology, it is homeomorphic to V

by [Fol95] Proposition 2.44. Let λ′ be the Haar measure on V ≈ Γ/H

normalized so that λ′(V ) = 1, and define the independence ratio of G

as

α̃(G) = sup{λ′(I) : I ∈ B, I is independent}.

Let

X = {x ∈ Γ : {v0, xv0} ∈ E} (12.4)

and G̃ = Cay(Γ, X). The graph G̃ is a blow-up of G. The next

proposition says that blowing up preserves independence ratios.

Proposition 12.3. α̃(G) = α̃(G̃).

Proof. Let Ψ : Γ/H → V be the homeomorphism given by [Fol95,

Proposition 2.44] and let q : Γ → Γ/H be the canonical quotient

map. Call a subset of Γ full if it is a union of left-cosets of H. Then

Ψ ◦ q induces a bijection between full independent sets in Cay(Γ, X)

and independent sets in G. To see this, it suffices to show that Ψ ◦ q
respects adjacencies and nonadjacencies. But for x, y ∈ Γ, we have by

(12.4) that

{Ψ(q(y)),Ψ(q(x))} ∈ E ⇐⇒ {yv0, xv0} ∈ E
⇐⇒ {v0, y

−1xv0} ∈ E ⇐⇒ y−1x ∈ X.
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This argument also shows that if I is an independent set in Cay(Γ, X),

then IH is a full independent set. Since IH is at least as large as I, the

proof will be done if we can show that Ψ ◦ q preserves Haar measures

of full sets. But this follows immediately from the quotient integral

formula (see e.g. [Fol95, Theorem 2.49]):∫
Γ

1IH(x) dλ(x) =

∫
Γ/H

∫
H

1IH(xh) dh dλ′(xH)

=

∫
Γ/H

1IH(x) dλ′(xH) =

∫
V

1Ψ(q(IH))(v) dλ′(v).

With Γ, X, and H as in the statement of Proposition 12.3, if φ is

any feasible solution for program (12.1), one can check that φ′(x) =∫
H
φ(xh) dh defines another feasible solution with the same objective

value. Therefore, when computing ϑs of the blow-up graph as in pro-

gram (12.1), we can suppose that φ is constant on the preimages of

the projection map Γ→ Γ/H.

12.1.4 Forbidden distance graphs on Sn−1

In [BNdOFV09] and [dOF09], an extension of the Lovász ϑ-function

is defined for forbidden distance graphs on the unit sphere in Rn. We

now show how this extension can be obtained as a special case of ϑs.

We first recall the setup from [BNdOFV09]. Let n ≥ 2, and use 〈·, ·〉
to denote the standard inner product on Rn. Let Sn−1 be the unit
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sphere in Rn.

Sn−1 := {ξ ∈ Rn : 〈ξ, ξ〉 = 1}

Let D ⊂ [−1, 1] and consider the graph G = (V,E) where V = Sn−1,

and E = {{ξ, η} ⊂ Sn−1 : 〈ξ, η〉 ∈ D}. We want to upper bound

the largest possible measure of an independent set in G, where we

regard Sn−1 as being equipped with the surface measure normalized

so that Sn−1 gets measure 1. It is shown in [BNdOFV09] (after a

renormalization) that the following supremum provides such an upper

bound:

sup
{
y0 :

∞∑
i=0

yi = 1,
∞∑
i=0

yiC
(n−2)/2
i (d) = 0 for all d ∈ D, (12.5)

yi ≥ 0 for i = 0, 1, 2, . . .
}
.

The functions C
(n−2)/2
i (x) are the Gegenbauer polynomials, defined in

Section 5.1. Recall that we always use the normalization Cν
i (1) = 1.

Our aim is to recover this bound from our framework. Notice that G

is not evidently a Cayley graph, so the definition in (12.1) does not

immediately apply. We resolve this difficulty by regarding Sn−1 as a

homogeneous space and associating to G an auxiliarly Cayley graph

G̃ as explained in subsection 12.1.3.

Let SO(n) be the group of n × n orthogonal matrices having deter-

minant equal to 1. The next proposition exhibits a useful relationship

between positive definite functions on Sn−1 and functions of positive

type on the group SO(n); it will be handy when working out the

examples involving spherical graphs.
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Proposition 12.4. Fix any point ξ0 ∈ Sn−1, and let H be the stabilizer

subgroup of ξ0 in SO(n) under the canonical action of SO(n) on Sn−1.

For each t ∈ [−1, 1] choose xt ∈ SO(n) so that 〈ξ0, xtξ0〉 = t. Let

φ ∈ CR(SO(n)) and define f : [−1, 1]→ R by

f(t) =

∫
H

∫
H

φ(hxth
′) dh dh′, t ∈ [−1, 1],

where the integrals are with respect to the Haar measure on the closed

subgroup H of Γ. Define φ′ : SO(n)→ R by

φ′(x) = f(〈ξ0, xξ0〉), x ∈ SO(n).

Then f is continuous, and f is positive definite when φ is of positive

type. Moreover, f is positive definite if and only if φ′ is of positive

type.

Proof. To see that f is continuous, note that the definition of f does

not depend on the particular choice of xt, for if 〈ξ0, xξ0〉 = 〈ξ0, yξ0〉,
then HxH = HyH. The choice can be made so that t 7→ xt is

continuous from [−1, 1] to SO(n). Letting ε > 0 be given, choose a

symmetric conjugate-invariant neighbourhood U of e such that |φ(x)−
φ(y)| < ε whenever y−1x ∈ U ; this is possible by [Fol95, Proposition

2.6 and Lemma 5.24]. If t0, t1 ∈ [−1, 1] are close enough, then x−1
t1 xt0 ∈

U , and ∣∣∣∣∫
H

∫
H

φ(hxt0h
′) dh dh′ −

∫
H

∫
H

φ(hxt1h
′) dh dh′

∣∣∣∣
≤
∫
H

∫
H

|φ(hxt0h
′)− φ(hxt1h

′)| dh dh′

< ε,
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where the last inequality holds since (hxt1h
′)−1(hxt0h

′) = (h′)−1x−1
t1 xt0h

′ ∈
U . This proves that f is continuous.

For the second assertion, assume that φ is of positive type. We show

that f is positive definite. For this let ξ1, . . . , ξs ∈ Sn−1 be given.

We want to show that the matrix M = (f(〈ξi, ξj〉))si,j=1 is positive

semidefinite. Choose y1, . . . , ys ∈ SO(n) so that ξi = yiξ0 for each

i = 1, 2, . . . , s, and let v = (v1, . . . , vs) ∈ Rs be arbitrary. Then

f(〈ξi, ξj〉) = f(〈ξ0, y
−1
i yjξ0〉) =

∫
H

∫
H

φ(hy−1
i yjh

′) dh dh′, (i, j = 1, . . . , s).

Therefore, applying Proposition 9.4 to obtain a function ψ ∈ L2(SO(n))

such that φ = ψ∗ ∗ ψ, we get

vtMv =
s∑
i=1

s∑
j=1

vivj

∫
H

∫
H

φ(hy−1
i yjh

′) dh dh′

=
s∑
i=1

s∑
j=1

vivj

∫
H

∫
H

∫
SO(n)

ψ(z)ψ(zhy−1
i yjh

′) dz dh dh′

=
s∑
i=1

s∑
j=1

vivj

∫
H

∫
H

∫
SO(n)

ψ(zyih−1)ψ(zyjh
′) dz dh dh′

=

∫
SO(n)

∣∣∣∣∣
s∑
i=1

vi

∫
H

ψ(zyih) dh

∣∣∣∣∣
2

dz ≥ 0.

We next show that φ′ is of positive type when f is positive definite.

Let distinct points y1, . . . , ys ∈ SO(n) be given. We want to show that

the matrix (φ′(y−1
i yj))

s
i,j=1 is positive semidefinite. But

φ′(y−1
i yj) = f(〈ξ0, y

−1
i yjξ0〉) = f(〈yiξ0, yjξ0〉),
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so the matrix is positive semidefinite by the definition of positive defi-

niteness for functions [−1, 1]→ R applied to the points y1ξ0, . . . , ysξ0.

To see that f is positive definite when φ′ is of positive type, just use

φ = φ′ in the first part of the proof.

Let ξ0, H, and {xt}−1≤t≤1 be as in Proposition 12.4. Let X be

the union of the double cosets HxdH, for d ∈ D, and set G̃ =

Cay(SO(n), X). The graph G̃ can be regarded as a blow-up of the

graph G. We now prove that the value of (12.5) is equal to ϑs(G̃).

Suppose y0, y1, . . . is a feasible solution to the conic program (12.5).

We construct a feasible solution to program (12.1) having the same ob-

jective value y0. Define f : [−1, 1] → R by f(t) =
∑∞

i=0 yiC
(n−2)/2
i (t).

The series defining f converges uniformly to a continuous function of

positive type by the Weierstrass M-test and Schoenberg’s theorem.

Moreover, we have f(1) = 1 and f(d) = 0 for every d ∈ D.

Now define φ′ : SO(n) → R by φ′(x) = f(〈ξ0, xξ0〉) as in Proposition

12.4. Then φ′ is of positive type, and φ′(e) = f(1) = 1. If x ∈ X, then

x = hxdh
′ for some d ∈ D, and h, h′ ∈ H; therefore

φ′(x) = f(〈ξ0, hxdh
′ξ0〉) = f(〈h−1ξ0, xdh

′ξ0〉) = f(〈ξ0, xdξ0〉) = f(d) = 0.

This shows that φ′ is a feasible solution to the conic program (12.1),

and we have by the quotient integral fomula ([Fol95] Theorem 2.49)
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that ∫
SO(n)

φ′ dλ =

∫
SO(n)

f(〈ξ0, xξ0〉) dx =

∫
Sn−1

f(〈ξ0, ξ〉) dξ

=
∞∑
i=0

yi

∫
Sn−1

C
(n−2)/2
i (〈ξ0, ξ〉) dξ = y0.

This proves that the value of program (12.5) is no more than ϑs(G̃).

For the reverse inequality, let φ be any feasible solution to program

(12.1), and define f : [−1, 1] → R by f(t) =
∫
H

∫
H
φ(hxth

′) dh dh′.

Then f is continuous and positive definite by Proposition 12.4, and

clearly f(d) = 0 for all d ∈ D. So by Schoenberg’s theorem we have

f(t) =
∞∑
i=0

yiC
(n−2)/2
i (t)

for some yi ≥ 0. Also

y0 =

∫
SO(n)

f(〈ξ0, xξ0〉) dx =

∫
SO(n)

∫
H

∫
H

φ(hxh′) dh dh′ dx

=

∫
SO(n)

φ(x) dx.

Finally 0 ≤
∑∞

i=0 yi = f(1) =
∫
H

∫
H
φ(hh′) dh dh′ ≤ 1 since φ(e) = 1,

and since scaling the coefficients yi to satisfy
∑∞

i=0 yi = 1 can only

make y0 larger, we obtain a feasible solution to (12.5) with objective

value at least that of φ. This shows that the value of program (12.5)

is at least ϑs(G̃), as required.
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12.2 Dual formulation

In this section we write down dual cone programs for (12.1) and (12.2).

We prove weak duality and zero duality gap for our programs, and

we show that from our duals one recovers the linear programming

duals of the linear programs in [BNdOFV09], [dOFV10], and [dOF09]

which give upper bounds for measures of independent sets in forbidden

distance graphs on Sn−1, and for densities of 1-avoiding sets in Rn.

As before, we let Γ be a fixed compact group, X ⊂ Γ a sparse connec-

tion set, and we let G = Cay(Γ, X). For a Borel subset Y of Γ and

ν ∈M(Y ), we denote by ν̃ the extension of ν by zero to all of Γ. For-

mally, ν̃ is defined via the Riesz representation theorem as the unique

regular Borel measure satisfying
∫
f dν̃ =

∫
Y
f dν for all f ∈ C(Γ).

We define

ϑ∗s(G) := inf {γ : γδe + ν̃ − λ ∈ Q, γ ∈ R, ν ∈ ΣR(X)} , (12.6)

and

ϑ′∗s (G) := inf {γ : γδe + ν̃ − λ ∈ Q+ Σ+(Γ), γ ∈ R, ν ∈ ΣR(X)} .
(12.7)

Our first theorem is trivial, but important.

Theorem 12.5 (Weak duality). For a sparse Cayley graph G =

Cay(Γ, X), we have ϑs(G) ≤ ϑ∗s(G) and ϑ′s(G) ≤ ϑ′∗s (G).
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Proof. Let φ be a feasible solution for (12.1); that is φ ∈ P , φ(e) = 1,

and φ|X ≡ 0. Also let γ ∈ R, ν ∈ ΣR(X) be feasible for (12.6). Then

0 ≤
∫
φ d(γδe + ν̃ − λ) = γφ(e) +

∫
X

φ dν −
∫
φ dλ,

from which
∫
φ dλ ≤ γ follows. This proves ϑs(G) ≤ ϑ∗s(G).

For ϑ′s, suppose further that φ ≥ 0, so that φ is feasible for (12.2). Let

µ ∈ Σ+(Γ) be such that

γδe + ν̃ − λ− µ ∈ Q.

Then

0 ≤
∫
φ d(γδe + ν̃ − λ− µ)

= γφ(e) +

∫
X

φ dν −
∫
φ dλ−

∫
φ dµ

≤ γ −
∫
φ dλ,

as required.

The next theorem says that the inequalities in Theorem 12.5 are in fact

equalities. Many (but not all) of the main ingredients of the proof are

contained in proofs of Slater’s condition from semidefinite program-

ming (see e.g. [BV04, Section 5.3.2] or [GM12, Theorem 4.7.1]). These

results however do not apply directly to our programs, and we there-

fore give a full proof.

Theorem 12.6 (Zero duality gap). We have ϑs(G) = ϑ∗s(G) and

ϑ′s(G) = ϑ′∗s (G)
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Proof. We prove only the first assertion, since the proof of the second

is very similar. Define ϕ : R⊕ ΣR(X)⊕ ΣR(Γ)→ R⊕ ΣR(Γ) by

ϕ(γ, ν, µ) = (γ, µ− γδe − ν̃).

Let K be the closure of ϕ(R ⊕ ΣR(X) ⊕ Q) in the product topology

on R⊕ΣR(Γ), where we think of ΣR(Γ) as being topologized with the

total variation norm. Suppose (ϑs(G),−λ) /∈ K. By Theorem 10.1,

there exist σ ∈ R and f ∈ CR(Γ) not both zero, and ρ ∈ R, such that

σγ +

∫
f d(µ− γδe − ν̃) ≥ ρ (γ ∈ R, ν ∈ ΣR(X), µ ∈ Q), (12.8)

and σϑs(G)−
∫
f dλ < ρ. (12.9)

If σγ +
∫
f d(µ − γδe − ν̃) < 0, for some choice of γ, ν, and µ, then

scaling by a large positive number would give a contradiction to (12.8).

Hence

σγ +

∫
f d(µ− γδe − ν̃) ≥ 0, (γ ∈ R, ν ∈ ΣR(X), µ ∈ Q).

(12.10)

Setting γ = 0, ν = 0, and letting µ range over Q, equation (12.10)

shows that f ∈ P , by Theorem 10.2. Setting µ = 0, γ = 0, and letting

ν range over ΣR(X), equation (12.10) also shows that f |X ≡ 0. Setting

µ = 0 and ν = 0 in (12.10), we obtain σγ − γf(e) ≥ 0 for all γ ∈ R.

Therefore f(e) = σ. Since f and σ cannot both be zero, and since

f ∈ P , it follows that σ > 0. We may therefore replace f by σ−1f

in (12.9), obtaining ϑs(G) −
∫
f dλ < ρ. Setting all variables to zero
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in (12.8) gives 0 ≥ ρ, whence ϑs(G) <
∫
f dλ; this is a contradiction

since f is a feasible solution to program (12.1).

We have just shown that there exist sequences {γn} ⊂ R, {νn} ⊂
ΣR(X), and {µn} ⊂ Q such that γn → ϑs(G), and µn−γnδe−ν̃n → −λ
in the total variation norm as n→∞. Let

qn := (1− ε)γnδe + 2εδe + (1− ε)ν̃n − λ.

We next claim that for every ε > 0, there exists n0 = n0(ε) such that

qn ∈ Q for all n ≥ n0. Let

B = {ω ∈ ΣR(Γ) : ‖2δe − λ− ω‖ < 1}

be the total variation norm ball of radius 1 about the measure 2δe−λ.

Then B ⊂ Q, for if ω ∈ B, and φ ∈ P with φ(e) = 1, then

1 >

∣∣∣∣∫ φ d(2δe − λ− ω)

∣∣∣∣ =

∣∣∣∣2− ∫ φ dλ−
∫
φ dω

∣∣∣∣ ,
and from this it follows that

∫
φ dω > 0 since 0 ≤

∫
φ dλ ≤ 1; so

ω ∈ Q by Theorem 10.2. Now let

pn = γnδe + ν̃n − µn − λ.

Then

qn = (1− ε)pn + (1− ε)µn + ε(2δe − λ),

and pn → 0 in total variation norm as n→∞. So qn ∈ (1−ε)µn+εB ⊂
Q for sufficiently large n. This proves the claim, and we have therefore

shown that putting γ = (1 − ε)γn + 2ε and ν = (1 − ε)νn gives

a feasible solution for (12.6) for large enough n. Taking ε → 0 we

obtain ϑ∗s(G) ≤ ϑs(G). The reverse inequality is Theorem 12.5.
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12.2.1 Forbidden distance graphs on Sn−1, dual

formulation

Suppose n ≥ 2, and let G, D, G̃, X, H, ξ0, and {xt}−1≤t≤1 be as in

subsection 12.1.4. When D is finite, a dual of the infinite-dimensional

linear program (12.5) is given in [dOF09]:

inf
{
z : z +

∑
d∈D

zd ≥ 1, z+
∑
d∈D

zdC
(n−2)/2
i (d) ≥ 0 (i ≥ 1),

z ∈ R, zd ∈ R for d ∈ D
}
. (12.11)

We now show that (12.11) equals ϑ∗s(G̃). By Theorem 12.6, this shows

that there is no duality gap in the linear programs (12.5) and (12.11)

defined in [dOF09]. The appropriate generalization of program (12.11)

in the case when D is infinite will now also become clear.

Let γ ∈ R, ν ∈ ΣR(X) be a feasible solution for (12.6). We show how

to construct a feasible solution for (12.11) having objective value γ.

The linear functional on CR,0(D) defined by ϕ(f) =
∫
X
f(〈ξ0, xξ0〉) dν(x)

is bounded, so by the Riesz representation theorem there exists a

µ ∈MR(D) such that
∫
D
f dµ = ϕ(f) for all f ∈ CR,0(D).

For every i ≥ 0, the polynomial C
(n−2)/2
i (t) in t is a positive definite

function by Schoenberg’s theorem. Therefore if φ(x) = C
(n−2)/2
i (〈ξ0, xξ0〉),

then by Proposition 12.4 and Theorem 10.2, we have

0 ≤
∫
SO(n)

φ(x) d(γδe + ν̃ − λ)

= γ +

∫
D

C
(n−2)/2
i (t) dµ(t)−

∫
SO(n)

φ(x) dλ(x).
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But
∫
SO(n)

φ(x) dλ(x) is equal to 0 if i ≥ 1, and it is equal to 1 oth-

erwise. Therefore γ, µ is a feasible solution for the conic optimization

program

inf
{
γ : γ +

∫
D

dµ(t) ≥ 1, γ+

∫
D

C
(n−2)/2
i (t) dµ(t) ≥ 0 (i ≥ 1),

γ ∈ R, µ ∈M(D)
}
, (12.12)

having value γ. When D is a finite set, program (12.12) is identical

to (12.11).

We have shown that the value of (12.12) is no more than ϑ∗s(G̃).

For the reverse inequality, suppose that γ ∈ R, µ ∈ M(D) is a

feasible solution for (12.12). We construct a feasible solution for

(12.6) having the same objective value. The linear functional φ 7→∫ 1

−1

∫
H

∫
H
φ(hxth

′) dh dh′ dµ(t) on CR,0(X) is given by integration

against some ν ∈MR(X). It is easy to check that ν ∈ ΣR(X). To see

that γδe+ν̃−λ ∈ Q, we use Theorem 10.2. Let φ ∈ P be arbitrary with

φ(e) = 1, and define f : [−1, 1]→ R by f(t) =
∫
H

∫
H
φ(hxth

′) dh dh′.

Then f is positive definite by Proposition 12.4, and so by Schoenberg’s

theorem there exist numbers yi ≥ 0, (i = 0, 1, 2, . . . ) such that

f(t) =
∞∑
i=0

yiC
(n−2)/2
i (t),

with uniform convergence on [−1, 1]. Notice that 0 <
∑∞

i=0 yi =

f(1) ≤ 1 since φ must be strictly positive in a neighbourhood of e.
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We therefore have

∫
φ d(γδe + ν̃ − λ) = γ +

∫
X

φ dν −
∫
φ dλ

= γ +

∫ 1

−1

∫
H

∫
H

φ(hxth
′) dh dh′ dµ(t)−

∫
Sn−1

f(ξ) dξ

= γ +

∫ 1

−1

f(t) dµ(t)− y0

= γ +
∞∑
i=0

yi

∫ 1

−1

C
(n−2)/2
i (t) dµ(t)− y0

= y0

(
f(1)−1γ +

∫ 1

−1

dµ(t)− 1
)

+
∞∑
i=1

yi

(
f(1)−1γ +

∫ 1

−1

C
(n−2)/2
i (t) dµ(t)

)
≥ 0.

This shows that γ, ν is a feasible solution for (12.6). Its value is γ, so

ϑ∗s(G̃) is at most the value of (12.12).

We finally remark that when D is nonempty, one can rewrite program

(12.12) as

inf
µ∈M(D),

∫
D dµ=1

− infi≥1

∫
D
C

(n−2)/2
i (t) dµ(t)

1− infi≥1

∫
D
C

(n−2)/2
i (t) dµ(t)

. (12.13)

The upper bound (12.13) for the independence ratio of a forbidden

distance graph on Sn−1 appears in [BDdOFV14, Section 4.2]; it also

recovers and extends Theorem 6.2 from [BNdOFV09].



146

12.3 Further examples

In this section we demonstrate the application of ϑs to a number of ex-

amples, in particular recovering the cone programs from [dOF09] and

[dOFV10]. Strong duality for these programs is therefore established

as a consequence of Theorem 12.6.

12.3.1 Finite cyclic groups

This is the simplest kind of Cayley graph. Let n ≥ 2 be an integer,

let Cn = Z/nZ be the cyclic group of order n, and let X ⊂ Cn be

a connection set. Let G = Cay(Cn, X). The characters of Cn are

the functions x 7→ e2πixk/n for k ∈ Cn. Using the frequency domain

formulation (12.3) of ϑs(G), and performing some simplification, we

obtain

ϑs(G) = sup
{
a0 :

∑
χ∈Ĉn

aχ = 1,
∑
χ∈Ĉn

aχχ(x) = 0 (x ∈ X),

aχ = aχ, aχ ≥ 0 (χ ∈ Ĉn)
}

= sup
{
a0 :

∑
k∈Cn

ak = 1,
∑
k∈Cn

ak cos(2πxk/n) = 0, (x ∈ X),

a−k = ak, ak ≥ 0 (k ∈ Cn)
}
.

This linear program can be solved analytically or with any linear

programming solver, and Proposition 12.2 shows that it computes

ϑ(G)/n.
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12.3.2 Circle group

Let T = R/Z be the circle group, let X ⊂ T be a sparse connection set,

and put G = Cay(T, X). The characters of T are given by x 7→ e2πixk

for k ∈ Z, and so (12.3) becomes

ϑs(G) = sup
{
a0 :

∑
k∈Z

ak = 1,
∑
k∈Z

ake
2πikx = 0 (x ∈ X),

ak = a−k, ak ≥ 0 (k ∈ Z)
}

= sup
{
a0 :

∑
k∈Z

ak = 1, a0 + 2
∑
k≥1

ak cos(2πkx) = 0 (x ∈ X),

ak = a−k, ak ≥ 0 (k ≥ 0)
}
.

By Theorem 9.7, the dual formulation (12.6) becomes

inf
{
γ : γ +

∫
X

dν ≥ 1, γ +

∫
X

e2πikx dν(x) ≥ 0

(x ∈ X, 0 6= k ∈ Z), γ ∈ R, ν ∈ ΣR(X)
}

= inf
{
γ : γ +

∫
X

dν ≥ 1, γ +

∫
X

cos(2πkx) dν(x) ≥ 0 (12.14)

(x ∈ X, 0 6= k ∈ Z), γ ∈ R, ν ∈ ΣR(X)
}
.

Assuming X is nonempty, we therefore have

ϑs(G) = inf
ν∈ΣR(X),

∫
dν=1

− infk≥1

∫
X

cos(2πkx) dν(x)

1− infk≥1

∫
X

cos(2πkx) dν(x)
.

12.3.3 Circle group, one forbidden distance

We specialize Example 12.3.2 to the case X = {x,−x}. For this

case, the computation of ϑs(G) also appears in [dOF09, Section 3.5a];
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now, equipped with Theorem 4.1, we can also investigate when the

inequality is strict. With the same setup as in Example 12.3.2, suppose

X = {x,−x} for some x ∈ T. We then have ϑs(G) =
infk≥1 cos(2πkx)

1−infk≥1 cos(2πkx)
.

If x is irrational, then infk≥1 cos(2πkx) = −1. If x = p/q with p and

q > 0 relatively prime integers, then infk≥1 cos(2πkx) is equal to −1

if q is even, and it is strictly greater than −1 otherwise. Therefore

ϑs(G) = α̃(G) = 1/2 if either x is irrational or q is even. When q = 3,

we have ϑs(G) = α̃(G) = 1/3. If cos(2πkp/q) is not equal to one

of ±1,±1
2
, then it is irrational; therefore α̃(G) = q−1

2q
< ϑs(G) when

q 6= 3 is odd.

12.3.4 n-dimensional torus

Let Tn = (R/Z)n be the n-dimensional torus. The characters of Tn

are the functions x 7→ e2πi(x·k), for x ∈ Tn, k ∈ Zn. Fix some small

δ > 0, and let Xδ be the image of the set {(x1, . . . , xn) ∈ Rn : x2
1 +

· · · + x2
n = δ} under the canonical projection Rn → (R/Z)n, and put

Gδ = Cay(Tn, Xδ). One can express ϑ∗s(Gδ) via the formulation (12.6):

ϑ∗s(Gδ) = inf
{
γ : γ +

∫
X

dν ≥ 1, γ +

∫
X

e2πi(x·k) dν(x) ≥ 0 (12.15)

(k ∈ Zn), γ ∈ R, ν ∈ ΣR(X)
}
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Since X is just a sphere of radius δ, program (12.15) can be rewritten

as

ϑ∗s(Gδ) = inf
{
γ : γ +

∫
Sn−1

dν ≥ 1, γ +

∫
Sn−1

e2πiδ(ξ·k) dν(ξ) ≥ 0

(12.16)

(k ∈ Zn), γ ∈ R, ν ∈ ΣR(Sn−1)
}
.

12.3.5 One forbidden distance in Rn

The next example was first treated in [dOFV10] and [dOF09], and later

redone in [BDdOFV14]. Improved bounds have since been obtained

in [BPT14] via a combinatorial strengthening of this method.

The upper density of a Lebesgue measurable set E ⊂ Rn is given by

the formula

lim sup
r→∞

1

rn

∫
[−r/2,r/2]n

1E(x) dx.

In this example we wish to upper bound the upper density of sets E

which avoid distance 1; that is, for which ‖x− y‖ 6= 1 for all pairs of

points x, y ∈ E.

Let E ⊂ Rn be a measurable set avoiding distance 1 and let ε > 0

be given. Let D be the upper density of E and choose r > 0 so that
1
rn

∫
[−r/2,r/2]n

1E(x) dx > D − ε. Let E ′ = r−1(E ∩ [−r/2, r/2]n) ⊂
[−1/2, 1/2]n. Then ‖x − y‖ 6= 1/r for all x, y ∈ E ′. By removing a

set of measure O(1/r) from near the boundary of [−1/2, 1/2]n, we can

obtain from E ′ a set F whose image I under the canonical projection

Rn → Tn is an independent set in G1/r from Example 12.3.4. The
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Haar measure of I in Tn is equal to the measure of F . Therefore

D − ε ≤ α̃(G1/r) ≤ ϑs(G1/r), and taking limits then gives

D ≤ lim sup
r→∞

α̃(G1/r) ≤ lim sup
r→∞

ϑs(G1/r)

for all ε > 0. Since the rational points are dense in Rn, we have from

(12.16) that

lim sup
r→∞

ϑ∗s(G1/r)

= inf
{
γ : γ +

∫
Sn−1

dν ≥ 1, γ +

∫
Sn−1

e2πi(ξ·x) dν(ξ) ≥ 0

(x ∈ Rn), γ ∈ R, ν ∈ ΣR(Sn−1)
}
. (12.17)

Denoting the normalized surface measure on Sn−1 by dξ, it is easy

to see that if γ, ν is a feasible solution for program (12.17), then

γ, (
∫
dν) dξ is another feasible solution having the same objective

value. Therefore defining Ω : R → R by Ω(t) =
∫
Sn−1 e

2πit(ξ·ξ0) dξ,

where ξ0 ∈ Sn−1 is any point, we have

lim sup
r→∞

ϑ∗s(G1/r)

= inf
{
γ : γ + σ ≥ 1, γ + σΩ(t) ≥ 0 (t ≥ 0), γ ∈ R, σ ∈ R

}
=
− inft≥0 Ω(t)

1− inft≥0 Ω(t)
,

thereby recovering the upper bound for D given in [dOFV10]. An

expression for Ω in terms of Bessel functions is also given there.



Chapter 13

Dense Cayley graphs over

compact groups

13.1 ϑd and ϑ′d: primal formulation

We will reuse the notation from Chapter 12. Let Γ be a compact

group, and let G = Cay(Γ, X) be a dense Cayley graph. We define

ϑd(G) as the value of the following conic optimization program.

ϑd(G) := sup

{
1 +

∫
Xc

dν : ν ∈ ΣR(Xc), δe + ν̃ ∈ Q
}

(13.1)

We define ϑ′d(G) as

ϑ′d(G) := sup

{
1 +

∫
Xc

dν : ν ∈ Σ+(Xc), δe + ν̃ ∈ Q
}
. (13.2)

151



152

Notice that ν = 0 gives a feasible solution to programs (13.1) and

(13.2) of value 1; in particular both programs are always feasible and

their values are at least 1.

Theorem 13.1. If G is a dense Cayley graph, then ϑd(G) ≥ ϑ′d(G) ≥
α(G).

Proof. The first inequality is clear. For the second, let I ⊂ Γ be

a nonempty independent set in G. Then |I| < ∞ by Proposition

11.1. Set ν = 1
|I|µ

∗ ∗ µ− δe where µ =
∑

x∈I δx. Then ν is feasible for

program (13.2) by Corollary 9.8, and its objective value is 1+
∫
Xc dν =

1 + µ̂(1)∗µ̂(1)/|I| − 1 = 1
|I|

(∫
Xc
dµ
)2

= |I|.

Proposition 13.2. When G = Cay(Γ, X) is a finite graph, we have

ϑ(G) = ϑd(G) and ϑ′(G) = ϑ′d(G).

Proof. We give the proof only for ϑ, the proof for ϑ′ being very

similar. Let ν ∈ ΣR(Xc) be a feasible solution for (13.1) and let

φ(x) = δe({x}) + ν({x}). Then φ is a function of positive type. Us-

ing n = |Γ|, define the matrix A = (ax,y)x,y∈Γ by ax,y = φ(y−1x)/n.

Then A is symmetric, and we have Tr(A) = 1 and ax,y = 0 whenever

y−1x ∈ X. It is easily verified that A is positive semidefinite, so A is

a feasible solution for program (2.6). Its objective value is∑
x,y∈Γ

ax,y =
1

n

∑
x,y∈Γ

φ(y−1x) = 1 +

∫
Xc

dν.

This shows ϑ(G) ≥ ϑd(G).
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For the reverse inequality, let A = (ax,y)x,y∈Γ be a feasible solution for

program (2.6), and for each z ∈ Γ, let φ(z) =
∑

g∈Γ agz,g. Then φ is

positive definite; indeed if z1, . . . , zs ∈ Γ and v = (v1, . . . , vs) ∈ Rs, we

have

vt(φ(z−1
j zi))v =

s∑
i,j=1

φ(z−1
j zi)vivj =

s∑
i,j=1

∑
g∈Γ

agz−1
j zi,g

vivj

=
∑
g∈Γ

s∑
i,j=1

agzi,gzjvivj,

and the last quantity is nonnegative since (agzi,gzj)
s
i,j=1 is a principal

submatrix of the positive semidefinite matrix A for each g ∈ Γ (pos-

sibly with multiplicities, but this makes no difference). It is now easy

to check that φ dλ− δe is a feasible solution for (13.1) with objective

value
∑

x,y∈Γ ax,y. Therefore ϑd(G) ≥ ϑ(G).

13.2 Dual formulation

Once again let G = Cay(Γ, X) be a dense Cayley graph. We define

ϑ∗d(G) := inf {1 + φ(e) : φ ∈ P , φ|Xc ≡ −1} (13.3)

and

ϑ′∗d (G) := inf {1 + φ(e) : φ ∈ P , φ|Xc ≤ −1} . (13.4)

Just as in the sparse case, the weak duality proofs are straightforward.

Theorem 13.3 (Weak duality). When G = Cay(Γ, X) is a dense

Cayley graph, we have ϑd(G) ≤ ϑ∗d(G) and ϑ′d(G) ≤ ϑ′∗d (G).
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Proof. Let ν ∈ ΣR(Xc) be a feasible solution for (13.1), and let φ ∈
P be a feasible solution for (13.3). By Theorem 10.2 we have 0 ≤∫
φ d(δe + ν̃) = φ(e)−

∫
Xc dν, so 1 +

∫
Xc dν ≤ 1 + φ(e). The proof for

ϑ′d is similar.

Theorem 13.4 (Zero duality gap). When G is a dense Cayley graph,

we have ϑd(G) = ϑ∗d(G) and ϑ′d(G) = ϑ′∗d (G).

Proof. We prove only the first assertion, the proof of the second being

very similar. Define ϕ : ΣR(Xc) ⊕ ΣR(Γ) → ΣR(Γ) ⊕ R by ϕ(ν, µ) =

(−ν̃ + µ,
∫
Xc dν). Let I = ϕ(ΣR(Xc)⊕Q), and let I be the closure of

I in ΣR(Γ)⊕ R, where we regard ΣR(Γ) as topologized with the total

variation norm.

We claim that (δe, ϑ
∗
d(G) − 1) ∈ I. Suppose not; then by Theorem

10.1 there exists φ ∈ CR(Γ) and σ ∈ R, and ρ ∈ R such that∫
φ d(−ν̃ + µ) + σ

∫
Xc

dν ≥ ρ (ν ∈ ΣR(Xc), µ ∈ Q) (13.5)

and

∫
φ dδe + σ(ϑ∗d(G)− 1) < ρ. (13.6)

We have ∫
φ d(−ν̃ + µ) + σ

∫
Xc

dν ≥ 0 (13.7)

for all ν ∈ ΣR(Xc) and µ ∈ Q, since otherwise scaling by a large

positive number would give a contradiction to (13.5). Putting ν = 0

and letting µ range overQ shows by Theorem 10.2 that φ ∈ P . Putting
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µ = 0 in (13.7), we find that
∫
Xc(σ − φ) dν ≥ 0 for all ν ∈ ΣR(Xc),

which is only possible if φ|Xc ≡ σ.

Now setting ν = 0 and µ = 0 in (13.5) shows that 0 ≥ ρ, and combin-

ing with (13.6) gives

φ(e) + σ(ϑ∗d(G)− 1) < 0. (13.8)

Since φ ∈ P , it follows that σ < 0. Therefore −σ−1φ is a feasible

solution to program (13.3), and (13.8) implies that 1 + φ(e) < ϑ∗d(G);

this contradiction proves the claim.

We have just shown that there exist sequences {νn} ⊂ ΣR(Xc) and

{µn} ⊂ Q such that −ν̃n + µn → δe in total variation norm and∫
Xc dνn → ϑ∗d(G)− 1. Let ε > 0 be given. We claim that there exists

n0 = n0(ε) such that δe + (1− ε)ν̃n ∈ Q whenever n ≥ n0. To see this,

let B = {ω ∈ MR(Γ) : ‖ω − δe‖ < 1/2}. Then B ⊂ Q, for if ω ∈ B
and ψ ∈ P with ψ(e) = 1, then |

∫
ψ dω−1| = |

∫
ψ dω−ψ(e)| < 1/2,

which can happen only if
∫
ψ dω > 0. Now,

δe + (1− ε)ν̃n = (1− ε)(δe + ν̃n − µn)

+ (1− ε)µn + εδe ∈ (1− ε)µn + εB ⊂ Q

for sufficiently large n, since δe + ν̃n − µn → 0. This proves the claim;

therefore (1−ε)ν̃n is a feasible solution of program (13.1) when n ≥ n0,

and its value tends to 1 + (1 − ε)(ϑ∗d(G) − 1). It now follows that

ϑd(G) ≥ ϑ∗d(G). The reverse inequality is Theorem 13.3.
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13.3 ϑd and the chromatic number of

sparse Cayley graphs

The ϑ-number of a finite graph gives a lower bound for the chromatic

number of the complementary graph. The analogous statement for in-

finite graphs relies on the fact that the complement of a sparse Cayley

graph is dense.

Theorem 13.5. Let G = Cay(Γ, X) be a sparse Cayley graph. Then

χm(G) ≥ ϑd(G
c).

Proof. Let C1, . . . , Ck be a partition of Γ into Borel sets which are

independent in G. Since we are claiming k ≥ ϑd(G
c), it suffices to

suppose that λ(Ci) > 0 for all i = 1, . . . , k; we simply discard the

nullsets in the partition. Let ψ =
∑k

i=1 1
∗
Ci
∗ 1Ci/λ(Ci). Then

ψ̂(1) =
k∑
i=1

|1̂Ci(1)|2

λ(Ci)
=

k∑
i=1

λ(Ci) = 1.

Therefore by Theorem 9.1, it follows that φ = ψ−1Γ ∈ P . Since each

Ci is an independent set, we have ψ|X ≡ 0, and therefore φ|X ≡ −1.

We conclude that φ is a feasible solution for program (13.3) for the

graph Gc. Since 1∗Ci ∗1Ci(e) = λ(Ci) for each i, its value is 1 +φ(e) =

1 + ψ(e) − 1 =
∑k

i=1 1 = k, and therefore ϑd(G
c) ≤ k by Theorem

13.3.

Theorem 13.6 combined with Theorem 13.1 gives us a version of the
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famous “Sandwich Theorem” [Lov86, Theorem 5.4]:

α(Gc) ≤ ϑd(G
c) ≤ χm(G).

The next theorem is the analogue of [Lov79, Theorem 12].

Theorem 13.6. Let G = Cay(Γ, X) be a sparse Cayley graph. We

have ϑs(G)ϑd(G
c) = 1.

Proof. Let ε > 0 be small and let φ ∈ P be a feasible solution to

program (12.1) having objective value
∫
φ ≥ β := ϑs(G) − ε, and let

ψ = β−1φ − 1Γ. Since 0 < β < 1, we have ψ̂(1) = β−1φ̂(1) − 1 ≥ 0,

and it follows from Theorem 9.1 that ψ ∈ P . One now easily checks

that ψ is feasible for program (13.3) for Gc having objective value

1 + ψ(e) = β−1. Therefore ϑd(G
c) ≤ β−1, and since ε was arbitrary

we get ϑs(G)ϑd(G
c) ≤ 1.

For the reverse inequality, again let ε > 0 be given, and this time let

ψ ∈ P be a feasible solution to program (13.3) for Gc having objective

value 1 +ψ(e) ≤ γ := ϑd(G
c) + ε. Let φ = (ψ+ 1Γ)/(1 +ψ(e)). Then

φ is a feasible solution to (12.1) and since
∫

(ψ+1Γ) ≥ 1, the objective

value of φ is
∫
φ ≥ γ−1. Therefore ϑs(G) ≥ γ−1, and it follows that

ϑs(G)ϑd(G
c) ≥ 1 since ε was arbitrary.

13.4 Extension to homogeneous spaces

In subsection 12.1.3, we saw that when G is a topological Schreier

graph over the compact group Γ, its independence ratio α̃(G) is pre-
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served after blowing up G to a Cayley graph G̃ over Γ. The blow-up

procedure involved replacing each vertex with an independent set. Ex-

cept in trivial cases, this procedure will change the independence num-

ber. In order to upper bound α(G) within our framework, we therefore

use a different kind of blow-up, which involves replacing each vertex

with a clique rather than an independent set.

Let G = (V,E) be a topological Schreier graph over the compact group

Γ. Let v0 ∈ V be any point, and let H be the stabilizer subgroup of

v0 in Γ. We set

X = {x ∈ Γ : {v0, xv0} ∈ E} ∪ (H − {e}),

and G̃ = Cay(Γ, X). (Compare with equation (12.4).) The next

proposition shows that this kind of blow-up does not affect the inde-

pendence number.

Proposition 13.7. α(G̃) = α(G); this equation is also valid when

one of the numbers is infinite.

Proof. Let q : Γ → Γ/H be the canonical projection map and let

Ψ : Γ/H → V be the homeomorphism given by [Fol95, Proposition

2.44]; so Ψ ◦ q(x) = xv0.

Let I ⊂ V be an independent set in G, and for each x ∈ I, choose one

x′ ∈ (Ψ ◦ q)−1(x); denote the set of all these choices x′ by I ′. Then I ′

is an independent set in G̃, for if x, y ∈ I ′ are distinct and y−1x ∈ X,

then {v0, y
−1xv0} ∈ E, and so {yv0, xv0} ∈ E. Moreoever |I ′| = |I|

and, so α(G̃) ≥ α(G).
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Now suppose J ⊂ Γ is an independent set in G̃, and let J ′ = {xv0 :

x ∈ J}. Then |J ′| = |J |, for if xv0 = yv0, then y−1x ∈ H, which

would mean that x and y were joined with an edge in G̃. Moreover

J ′ is independent since {xv0, yv0} ∈ E implies y−1x ∈ X. This shows

α(G) ≥ α(G̃).

13.5 Example: the Delsarte bound for

spherical codes

Fix n ≥ 2 and A ⊂ [−1, 1). A spherical A-code (see e.g. [DGS77])

is defined as a subset I ⊂ Sn−1 such that 〈ξ, ξ′〉 ∈ A for all distinct

ξ, ξ′ ∈ I.

Let P denote the set of positive definite functions f : [−1, 1]→ R for

Sn−1. Together with the Stone-Weierstrass theorem, [DGS77, Theo-

rem 4.3] gives the following upper bound for the size of any spherical

A-code when the elements of A are bounded away from 1.

inf {1 + f(1) : f ∈ P, f(t) ≤ −1 for all t ∈ A} (13.9)

The bound in (13.9) is known as the Delsarte bound for spherical

codes.

Spherical A-codes are precisely the independent sets in the graph G =

(Sn−1, E), where E = {{ξ, ξ′} : ξ 6= ξ′, 〈ξ, ξ′〉 /∈ A}. Since G is a

topological Schreier graph over the group SO(n), we can upper bound

α(G) = α(G̃) using our methods, where G̃ is the clique blow-up graph

described in Section 13.4. Provided A is bounded away from 1, the
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Cayley graph G̃ is dense. In this case, the upper bound of equation

(13.9) is equal to ϑ′d(G̃), and we now prove this.

Proposition 13.8. ϑ′d(G̃) is equal to the infimum (13.9).

Proof. As in the hypotheses of Proposition 12.4, fix any ξ0 ∈ Sn−1, let

H be the stabilizer subgroup of ξ0 in SO(n) for the canonical action of

SO(n) on Sn−1, and let {xt}−1≤t≤1 ⊂ SO(n) be a collection of points

satisfying 〈ξ0, xtξ0〉 = t for each t, −1 ≤ t ≤ 1.

Let γ denote the infimum in (13.9). If f : [−1, 1]→ R is a feasible so-

lution to program (13.9), define φ : SO(n)→ R by φ(x) = f(〈ξ0, xξ0〉).
By Proposition 12.4, φ is a feasible solution to program (13.4), and

φ(e) = f(1). This shows ϑ′d(G̃) ≤ γ.

If φ ∈ P is a feasible solution to program (13.4), define f : [−1, 1] →
R by f(t) =

∫
H

∫
H
φ(hxth

′) dh dh′. Then f is feasible for program

(13.9) by Proposition 12.4, and f(1) ≤ φ(e). Therefore γ ≤ ϑ′d(G̃),

establishing the proposition.
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