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Abstract

We analyze the spatially discretized version of the Allen-Cahn partial differential
equation. The second order derivative is numerically approximated by a weighted in-
finite sum. The coefficients of this sum as well as the function f in the differential
equation have got freedom inside determined restrictions. For this spatially discretized
variation of the Allen-Cahn partial differential equation, we prove the existence of a
travelling wave solution.

Lekensamenvatting

In dit verslag bekijken we een speciale versie van de Allen-Cahn vergelijking. De Allen-Cahn
vergelijking wordt gebruikt om verschillende processen uit de natuur te beschrijven, zodat
we deze beter kunnen begrijpen. Een voorbeeld van zo’n proces is de transportatie van een
impuls door een zenuw. We gaan onderzoeken of de Allen-Cahn vergelijking oplossingen
heeft die zich gedragen als een golf. Dit kunnen we doen in het continue geval of in het
discrete geval. In de continue wereld beweegt alles vloeiend, terwijl in de discrete wereld
alles stapsgewijs beweegt. Een voorbeeld van een golf in een continue ruimte is een golf zoals
we die zien in de zee, want deze beweegt zich vloeiend voort. Een voorbeeld van een golf
in een discrete ruimte is een wave in het stadion. Deze beweegt zich namelijk stapsgewijs
voort. Wij gaan ons verdiepen in het discrete geval en ons doel luidt dan ook: 'Het bewijzen
van het bestaan van een golfoplossing voor de gediscretiseerde Allen-Cahn vergelijking’.



Summary

In this thesis we prove that the spatially discretized Allen-Cahn partial differential equa-
tion has a travelling wave solution. We start by giving some background information in
the Introduction. The Allen-Cahn equation is introduced and some of its applications are
mentioned. Furthermore, the spatial discretization used is discussed and motivated. The
body of the report consists of two sections, namely the Problem Setup and the Main Proof.

In the first part, the problem for which we want to prove a solution exists is laid out. Several
assumptions are made regarding the discretization, the function f in the Allen-Cahn equa-
tion and the fact that we seek a travelling wave solution. After applying these assumptions
it is shown that the Allen-Cahn equation can be written as

ceul — Acue + f(us) =0, uc(+o0) = £1.

Here
1
Acu(z) = = oy ulz — ke) + u(z + ke) — 2u(z)].
< k>0
This is the problem for which, mainly in the second part, it will be proven a solution exists.
But first, the operators E:(SQS, R(c,¢) and N(ug, ¢) are introduced to rewrite the equation

above in a form suitable for the proof in the second part, namely as E: 50 = Rice, d2).

Here E: 5@ is the linearization of the discrete Allen-Cahn equation around the travelling
wave solution wug of the Allen-Cahn partial differential equation, while operator R(cc, ¢.)
contains the difference between the discrete and the continuous equation. The nonlinear
part of this difference is denoted as N(ug, ¢). The first of the two main sections ends with
proves of some properties of A,.

The second part consists almost exclusively of theorems and proofs. The entire section
functions as a setup to be able to apply Banach’s Fixed Point Theorem on the mapping
Té = (LL;) ' R(ce(¢), ¢) in the end. From this it immediately follows that there exists a
travelling wave solution and thus the goal is achieved. Most of the work is in showing that
T satisfies the requirements in order to apply Banach’s Fixed Point Theorem. This is done
by making estimates involving the operators E: 5@ and R(c-(¢), ¢). To estimate expressions

containing [,Ei 5@, there are first made similar estimations with the related operator £§¢.

Finally, the result that has been proven in the report is discussed in the Conclusion. Fur-
thermore, ideas for further research concerning this subject are shared.
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1 Introduction

In this report we discuss a partial differential equation (PDE) that is related to the Allen-
Cahn equation. The one dimensional Allen-Cahn equation is given by

ot  0Ox?

It is a reaction-diffusion equation used to describe numerous processes in nature. An example
of such a process is the propagation phenomenon of nerve excitation. If the equation is used
to describe this, it is referred to as the Nagumo equation.

+ f(u)=0. (1.1)

The structure of the nonlinearity f has a major impact on the behaviour of the solutions to
the PDE. We will examine this equation for a particular kind of functions f called bistable
functions. These functions will include the function

flw)=(w-1)(u+1)(u—gq), with g€ (—1,1). (1.2)

Then the diffusion-free equation of (1.1) has two stable equilibria = —1, 1 and an unstable
equilibrium v = ¢. Such a system is named a bistable system and (1.1) is then called a
bistable reaction-diffusion equation.

An example of a situation that can be modelled by a bistable system is the competition
between two species for dominance in a certain area[l]. Then the two stable equilibria each
represent full dominance of one of the two species. Another example is the phase transitions
of materials. Here the stable equilibria represent two material phases.

The Allen-Cahn equation has been used to understand a variety of concepts in dynamical
systems theory. In many of these concepts, travelling wave type solutions play an important
role. These can be written as

u(z,t) = ¢(x + ct), ¢(£o0) = £1. (1.3)

These boundary conditions represent the stable equilibria, allowing that one of the stable
equilibria dominates the total solution. To satisfy PDE (1.1), the pair (¢, ¢) has to satisfy

c¢' =¢" — f(¢9), (1.4)
known as the travelling wave equation.

We will study these wave type solutions, but in slightly different circumstances. We want to
examine whether there exist wave type solutions with the presence of spatial discretization.
Usually we discretize in space to avoid having to solve a PDE analytically. Famous methods
for solving PDE’s that make use of this idea are the finite difference method, the finite
element method and the finite volume method. But in this case we can actually find solutions
to (1.4) using analytic methods. These solutions, analyzed by Fife and McLeod[7], are given

by
11 V2 V2
= -+ —tanh [ — = —(1—2q). 1.5
5(©) 2+2n<4g>, e=L01-2) (15)
So why would we discretize in space? The answer is that for some phenomena in nature a
discretized space fits them better than a continuous space. An example is the Josephson
effect, which is a phenomenon that occurs when two superconductors are placed in proximity,



with a small barrier of non-conducting material between them. Such a device is called a
Josephson junction. The Josephson effect produces a current that flows across the Josephson
junction. When we consider an array of Josephson junctions we can already see that this
array has strong connections to a discretized grid. Other examples are chains of coupled
diode resonators, coupled chemical or biochemical reactors, myelinated nerve fibers, neuronal
networks, and patchy ecosystems. In all of these situations it makes more sense to use a
discretized space, rather than a continuous space.

Now we specify how the spatial discretization will be executed. We discretize in space by
setting the spatial coordinate x = en in the travelling wave assumption (1.3). Here ¢ is
small and represents the discretization step size and n is some integer denoting the amount
of steps taken. So instead of (1.3), we use a discrete travelling wave assumption that is
given by

un(t) = ulen + ct), u(£o0) = +1. (1.6)

This assumption gives us a different equation compared to (1.4). What will make the prob-
lem we are going to study a really difficult one, is that the second derivative in space will
be approximated by an infinite sum. In order to keep the analysis general, we don’t impose
too many restrictions on the infinite sum. So we consider a collection of approximations
for the second spatial derivative. This collection contains well known numerical approx-
imations such as the second order central difference. But a more complicated numerical
approximation such as

) ;;[uﬁk(tww_k(w—2uj<t>1e—’< (1.7)
>0

is also included. The idea of the central difference approximation is being extended. The
coefficients e * ensure the further away from z we are, the less impact the value of u has
on the approximation.

For our research we combine all the ideas mentioned in the previous paragraphs to modify
the Allen-Cahn equation. So we seek travelling wave solutions for a spatially discretized
and bistable Allen-Cahn equation, where the second space derivative is approximated by an
infinite sum. The existence of such a travelling wave solution was first proven by Bates, Chen
and Chmaj[2], but their work omitted several calculations, proofs of claims and subtleties.
The main contribution of this thesis is to fill in these gaps, by providing fully worked out
proofs.

Likely, our work will make it easier to generalize these results. For example, consider a
version of equation (1.1) where the second derivative is replaced by a convolution kernel of

the form
82

@u(x,t) — /_OO K(y)u;(y +t) dy. (1.8)

These type of discretizations incorporate both continuous and discrete parts and have been
studied, for instance, in [5] and [6].

Mathematically, the problem we will study is given by

in()= 5 Y o 4(6) ~ flun), e, (1.9)

k=—o0



with u,(¢) as in (1.6). This differential equation originates from Ising models. These are
models used to describe magnets, among other things. The magnet is discretized into
a lattice where every site has its own magnetic moment, called spin. Each spin has a
direction, which is either up or down. This idea of having two states, namely up and down,
makes the Ising models also very fitting for describing all sorts of behaviour related to phase
transitions. When an Ising model is used to describe a phase transition between liquid and
gas, then liquid and gas behave as the two states.



2 Problem Setup

This section is mainly focused on introducing the problem for which we will prove a solu-
tion exists. The Allen-Cahn equation will be modified using some made assumptions and
thereafter, by introducing a few operators, will be written in a convenient way such that we
can later prove a solution exists.

Let us first state the partial differential equation that plays a central role throughout this
thesis. It is called the Allen-Cahn or Nagumo partial differential equation (PDE) and is
given by

ou  0*u

o ) 2.1

ot 0x? Fw) 21)

As mentioned we will make some assumptions and we start with an assumption regarding
the function f(u).

Assumption (A1). f € C?(R) is a function with exactly 3 zeroes at —1,q € (—1,1) and
1, with f'(+1) > 0. Furthermore f_ll fly)dy # 0.

An example of such a function is
flwy=(u—1)(u+1)(u—gq), withqge (-1,1). (2.2)

Thus we could keep in mind the third order polynomial for f if we would like, but in general
we will assume f is any function satisfying (A1l).

We want to examine whether there exist wave type solutions to equation (2.1). So the next
assumption we make is that u(x,t) = ®(z + ct), which represents a travelling wave with
wave speed ¢. We want to insert this travelling wave into equation (2.1). In order to do this
we first compute the derivatives of u(z,t) using our travelling wave assumption. We find

ou 0 oy
Fri ) (:chct)a[erct] = c®'(x + ct),
% = <I>’(x+ct)(%[x+ct] = &' (z + ct), (2.3)
0%u o)
ek " (x + ct)% [x + ct] =" (z +ct).
After substitution, equation (2.1) is transformed into

c® (z +ct) = 0" (x + ct) — f(P). (2.4)

For better readability we introduce the variable £ = x + ct, so that the equation can now be
written as

c®'(§) = @"(§) — f(2). (2.5)

We will be examining a spatially discretized version of this equation. Namely, the problem
1 o0

u;z(t) = ? k_z_ akunfk(t) - f(un)7 n e Z7 (26)

where € > 0 and where u,(t) is a travelling wave solution of the form

un(t) = ulen +ct) satisfying u(+oo) = £1. (2.7)

Furthermore, an assumption is made for the coefficients {ay}.



Assumption (A2). The coefficients {ou,} satisfy Y, ou =0, o = a—g, > pogohk?® =1
and Yoo lok| k* < co. Furthermore, we have an extra condition when k = 0, namely
g < 0. As a final condition we have that A(z) = .o ar (1 —cos (kz)) > 0 for all z € [0, 27].

Equation (2.6) seems like a completely different equation compared to (2.5), but we get
the original equation (2.5) back after letting € go to 0. We will first show this is true in the
case of an example where the coefficients have certain given values. Later we will prove this
for the general case in which the coefficients {ay} satisfy (A2). But first we’ll explain how
we get to this spatially discretized equation.

To explain this we need to go back to equation (2.5). Here we discretize in space by writing
the spatial coordinate as * = en for n € Z. This makes ¢ depend on n and thus we write
&, = en+ct. Applying this to (2.5), we get that ¢c®'(en + ct) = ®”(en+ ct) — f(®P) for each
n € Z. Note that %—? = ¢®’(en + ct) and replace every ® with a u just for notation reasons.
Then we have 2% = u”(en+ct) — f(u). As a final step we can write u(en+ct) = u,(t) which
is the definition for w,(t). This transforms the equation into u (t) = u”(en + ct) — f(un).
Now the only difference with equation (2.6) is the second derivative term. But we will later
see that if € is approximating zero, the term including the summation in equation (2.6)
approximates this second derivative with the help of the assumptions we made in (A2). So
this term can be considered as a numerical approximation for the second derivative. Note
that for this reason it makes sense see € as the discretization step size and n as the amount
of steps taken.

As an example we choose the coefficients as follows: a1 = a_1 =1, ap = —2 and «a = 0 for
all other values of k. Note that the coefficients in this example satisfy (A2). This choice of
coefficients corresponds to the so-called nearest neighbour discretization. However, we also
allow cases where infinitely many coefficients are nonzero. As mentioned before we want to
show that we get equation (2.5) back when letting € go to 0.

To be able to show this we first need a few derivations. We denote x = en + ct. With this
notation we first derive expressions for the u terms in our equation which are needed later
on. We have

() = u'(x)% [en+ ct] = ' (a), (2.8)

Un—i(t) = u(e(n — k) + ct) = u(en + ct — ke) = u(z — ke). (2.9)

Furthermore, we write ¢ in a clever way. We can do this by using some of the made
assumptions (A2). We obtain

aozao—Zak:—Zakz—Zak—Zak:—QZak. (2.10)
k k0 k<0 k>0 k>0

Now everything is ready to show the claim that letting € to 0 gives us back the original
equation. We move all the terms in equation (2.6) to the left-hand side and then use (A2)



and the expressions that just have been derived. This gives

0=l (t) - EiQ S apttn—i + flun)

k=—o0
=cu/(x) — a% Z agu(z — ke) + f(u)
k=—o0
=cu'(z) — 6% Z agu(z — ke) — 6% Z agu(z — ke) — éaou(m) + f(u)
k>0 k<0
= Zaku (x — ke) = Zaku x+ke) — Eiozou( )+ f(u) (2.11)
k>0 k>0
= cu'(z) — 5% Z agu(r — ke) — 5% Z apu(z + ke) + E% Z aru(z) + f(u)
k>0 k>0 k>0
- Zak (z — ke) + u(z + ke) — 2u(@)] + f(u)
k>0
o, u(z — ke) + u(x + ke) — 2u(x)
=cu'(z) — kzwaka e + f(u).

We now use the prescribed values of the coefficients from the earlier given example by
inserting these into the final expression. Then we find that

u(zx —¢e) + u(x + ) — 2u(x)
-2

0=cu(z)— — f(u). (2.12)

To get to equation (2.5) there is one step left to do, which is letting ¢ go to 0. It is well
u(x— a)+u(m+a) 2u(z) .

known from numerical mathematics that the fraction is converging to
the second derivative of u(x) if € — 0. So after letting € — 0 we end up with

cu'(z) —u"(x) + f(u) =0, u(doo) = +1. (2.13)

Note that this is exactly the same equation as (2.5). So we can conclude that (2.6) is indeed
a discretized version of (2.5). But we only showed this in the case of the example coefficient
values. It will later be shown in Corollary 1 that this is also valid in the general case.

We’ll now rewrite equation (2.6) a little by introducing some new notation. Note that during
the derivations in (2.11) we found out that (2.6) can be written as

- = Zak u(z — ke) + u(x + ke) — 2u(x)] + f(u) =0, u(+oo) = 1. (2.14)
k>0

To make this equation look a bit neater we introduce the operator A, that is denoted as

= Zak uw(x — ke) +u(z + ke) — 2u(x)]. (2.15)
k>0
So now we can write (2.14) as
u, — Acue + f(ue) =0, ue(£00) = £1. (2.16)

10



Here (ce,u.) is the solution pair to equation (2.14) with a certain value for ¢ that is given
in the subscripts. The goal of this thesis is to show that this problem has a solution. To be
able to prove this we have to further rewrite this problem into a form suitable for the proof.
But first we’ll discuss function spaces.

2.1 Function spaces

In the process of solving this problem we will often take functions that live in different
function spaces. In this small section these function spaces will be discussed.

First a remark about notation. The inner product will be denoted as (-,-) and the norm
will be denoted as ||-||. We now discuss the first type of function spaces called L spaces.
For our problem we are only interested in L?(R) and L>(R). For L?(R) we will give the
corresponding definition, inner product and norm. These are given by

p®={r k| [ )P <oo}.

(f,9)12 = /:X) f(z)g(z)dz, (2.17)

1= ([ |f<x>|2dx>1/2.

In this report we will omit writing L? in (f, g) 2, since we will almost always use the inner
product corresponding to L?(R). So this means that (f, g) denotes the L? inner product. If
we use an inner product corresponding to another function space, then this will be specified.

Now we’ll introduce L*>(R). L*°(R) contains measurable functions that are bounded. Fur-
thermore the corresponding norm is given by

[/l = sup [f(z)]. (2.18)
r€R

The second type of function spaces we discuss are Sobolev spaces. These type of function
spaces are denoted by H*(R). Here we are only interested in the cases k = 1 and k = 2.
For both H!(R) and H?(R) we state the definition and the norm. These are given by

H'R)={f:R—>R|feL*R), f € L*R)},

1/2 (2.19)
1l = (UFIZ2 + 1)

HXR) = {f :R>R| f € I*(R), [' € *(R), [" € *(R)},
1/2 (2.20)
1 = (UFIe + 1A + 17105 )

Finally we also give the definition of function space C§°(R). This function space won’t occur
too often. It’s definition is given by

Ce°(R) = {f: R — R | f is infinitely differentiable and lim,_, 4+ f(z) = 0}. (2.21)

All the function spaces we need have now been introduced. There are some useful properties
for certain inner products. These are stated in the next lemma.

11



Lemma 1. For ¢ in certain function spaces some useful identities for inner products follow.
We have

(i) for any ¢ € H'(R), (¢, ¢) = 0;
(ii) for any ¢ € H*(R), (¢", ¢) < 0.

Proof. (i) Let ¢ € H'(R) arbitrary. Then applying integration by parts gives

& ) = / ¢ (2)6() de = [$(x)d()]°, - / o (@)o(x)dn.  (2.22)

Since ¢ € HY(R) we have that ¢(z) — 0 if we let *+ — +oo. This implies that
[p(z)p(x)]™,, = 0. So we find

@, ¢) = / ¢ (2)p(x) dz = — (&, 8). (2.23)

From this it follows that (¢’ , ¢) = 0.

(ii) Let ¢ € H?(R) arbitrary. Then applying integration by parts gives
@ 0)= [ @) de = ¢ Do), - [ S @dn @20
R R

Since ¢ € H?(R) we have that ¢(x) — 0 and ¢'(z) — 0 if we let 2 — do0o. From this
it follows that [¢'(z)¢(z)]™, = 0. So we find

(0", ¢) = —/RW(HCW(JJ) de = —||¢/'(@)[7= < 0. (2.25)

O

2.2 Rewriting the problem

We now return to the problem we want to solve. To be able to show that equation (2.16)
has a solution the problem has to be rewritten. This will be done in this section.

If we study equation (2.16), we observe that for one value of ¢ we already know the solution
to this equation. This is the case for € equal to 0. We have seen this gives us equation (2.13)
for which the solution is known. We denote this solution by (cg, ug). Thus we have got the
identity

coup — ug + f(ug) =0, ugp(o00) = £1. (2.26)

But there is more known about the solution (cp,ug), which is stated in a theorem and a
lemma.

Theorem 1 ([8, §1]). Consider the equation coug(x) —ui(x)+ f(uo(x)) = 0 with the bound-
ary conditions ug(£oo) = £1. Then there exists a solution ug(x). Furthermore uj(xz) > 0
for all z € R and up(x) converges exponentially to £1 as x — Foo.

12



Lemma 2. Assume f is a function satisfying (A1) and let (co,uo) be defined as the solution
to (2.26). Then cy #0

Proof. We first take equation (2.26) and multiply it on both sides by wug(x). This gives

co [up(2)]” — ufy(x)up(x) + f(uo(z))up(z) = 0. (2.27)

Now we integrate from —oo to oo on both sides of the equation, after which we get

Co /00 [ug(aj)]2 dx — /00 ug (x)ug(z) dz + /jo f(uo(2))uj(x) de = 0. (2.28)

o0 — 00

Let us now analyze the latter two integrals in the equation above. Using the substitution
y = up(x) we can write

/ " f o) () de = / f) (2.20)

It follows from Theorem 1 that ufy € L?(R). So we can apply Lemma 1(i) to uf, which gives
that

/OO ug (z)ugy(z) dz = (ug , ug) = 0. (2.30)

— 00

Using both of these observation we can rewrite (2.28) to

7% L (@) dz

(A1) tells us that f_ll f(y)dy # 0. Furthermore [~ [uf(x)]* dz > 0. So we can conclude
that ¢y # 0. O

co (2.31)

To rewrite our problem we introduce the operators E:(sqﬁ, R(c, ¢) and N(ug, ). These
are given by

LI ={Fcot — A+ fu(ug) + 6} 6, (2.32)
Rle,d) = (co — ) (up + ¢') + (Ac — L )ug + 6 — N(ug, ¢), (2.33)
N(uo, ¢) = f(uo + ¢) — f(uo) — fuluo)o. (2.34)

Here E: 5@ is the linearization of the spatially discretized Allen-Cahn equation (2.16) around
the travelling wave solution (co, ug). Furthermore, R(c, ¢) contains the difference between
the continuous and the discrete equation, where the nonlinear parts of this difference are
contained in N(ug, ¢). Now we are able to rewrite the problem with the help of a lemma.

Lemma 3. Let (co,up) be the solution to equation (2.13). Write ue = ug + ¢, where
¢. € HY(R) and let § > 0 be a small number. Then the following 2 problems are equivalent:

1. ceul — Acue + f(ue) =0.
2. LF 6. = Rice, b2).

13



Proof. We will prove this by showing E;JQSE —R(ce, de) = ceul — Aus+ f(u:). We compute

L 50e — Rlce, ¢e) = coede — Dede + fuluo)de + 8¢ — (co — co)(ug + ¢L) — Acug
+ Loug — 862 + fFluo + de) — fluo) — fuluo)de
= copL — Do — cougy — codr + coup + ol
— Acug +ug + f(uo + ¢e) — f(uo)
= cs(% + ¢L) — Ac(uo + ¢c) + fuo + ¢2) — (coug — ug + f(uo))
= coul — Acue + f(ue).
(2.35)

Note that, in the final step, we used that u, = uo + ¢ and that (cg,ug) is the solution to
equation (2.13), since this implies that coul — ug + f(uo) = 0. Furthermore we remark that
we can also do all steps in reverse. Thus it follows that 1. and 2. are equivalent. O

From now on we will work with the rewritten equation from Lemma 3. Before we start
with the main part of this report where we prove this problem has a solution, we first treat
two lemmas with some useful results for later on.

Lemma 4. Let A, be defined as in (2.15) and let the coefficients {ay} satisfy (A2). Then

(i) for any ¢ € L®(R) with ¢" € L*(R) and with lim, 4o ¢(x) and lim, 1. ¢'(7)
ezisting, we have
|Acp — @2 — 0 ase ] 0;
(ii) for any ¢ € HY(R), (A, ¢') = 0;
(iii) for any ¢, € L*(R), (Ac¢, ) = (¢, A);
(iv) for any ¢ € L2(R), (A, ¢) < 0.

Proof. (i) First notice that, since lim, 4+ ¢(x) and lim,_, 1, ¢'(z) exist, we have
Jim Acpr) = 5 Z lim oy [p(a = ke) + ¢(x + ke) — 26(x)]

i 2.36
=23 lim e 6lo) +9(e) ~26(0) (2.36)
=0.

Because [quﬁ(x)]/ = A.¢'(x), it follows in exactly the same way that limg, 4.0 Acd'(z) =0
as well. We will use F [¢] (§) as notation for the Fourier transform of ¢. So

£) = [ h H(z)e™s® da. (2.37)

14



Now integration by parts will be applied twice to rewrite the Fourier transform of
A.¢p. This gives

FIA (€)= / Y Ao(2)e’ s da

1 100 1 [ .
= [Acp(z)e™]” - g/_ A ¢ ()" da
1 [ .
=—— | A (2)e" da
i)
_ 1 / i€x] 1 > iz i€x (238)
-z [AL¢ (z)e™™] " — ?[ A ¢ (x)e's" dx
= —5% /_00 A (x)e" da
1
= —?f[Aaé"] (€)-
Furthermore, using translations, we can write
FlA9"] (&) = [ A9 (v)e*" d
= % /OO Zak [0 (x — ke) + ¢" (x + ke) — 2¢" (2)] €% dx
€ /oo k>0
. S o ( / O; oo — ko) + [ Z o'zt ket —2 [ Z ¢ (2)es” dw)
= ;];)ak (/Oo ¢ (x)ete@Hke) 4 /700 ¢ (z)et@ke) _ 9 [m ¢ (x)e't” dx)
1 i —ike "
=3 goak (elgk‘E + eTitke _ 2) Fl6"(€).
(2.39)

Using Euler’s formula we find that €% 4 e~%k¢ = 2 cos(¢ke). Combining this with
the just derived (2.38) and (2.39) gives that

FA ] (&) = —52% Z ay (2 cos(Eke) — 2) Flg"](€)

k>0

) (2.40)
e lgo a (1 = cos(¢ke)) F[¢"](€),
and thus
R e B o
- (2Dl =2 1 2
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We denote

23 koo (1 — cos(Eke)) — £%€?
QE (5) = 5252 °
We want to estimate g.(£). We use that Y, o (1 — cos(Eke)) > 0, which follows
from (A2), to find a lower bound. We estimate

23 a0 0k (1 — cos(Eke)) — E2e2 _ —¢2¢2
2¢2 Z €2e2

(2.42)

¢=(§) = =1 (2.43)

Of course we also want to have an upper bound. To find one, we need the known
inequality 2 — 2cos(z) < 2%, Furthermore, we need another assumption from (A2),
namely >, apk? = 1. Applying both of these we find

23 a0 0k (1 — cos(Eke)) — 22

q:(§) = €222
2.44
- (Zk>0 Oékk2) 5282 _ 6252 B 5252 _ 6262 0 ( )
= §2€2 - 5252 -

So we have that ¢.(§) € [-1,0]. Now we let § > 0 arbitrary. Notice that since
¢" € L*(R), Plancherel’s identity implies that also F[¢"] € L?(R). So this means we
can pick N > 0 such that

" 2 0
FgN O de < 5. (2.45)

(c0,—N]U[N,00)
This implies that
(O Flo"\ ) de < )
e 9’ (2.46)
(c0,—N]U[N,00)
since |g-(£)] < 1.

We claim that we can choose g9 > 0 such that |g.(£)]| < forall 0 <e < ¢g

2Hf[¢>“ 1017 2
and all =N < ¢ < N. To show this claim is true we first analyze the equation
Zak(Q —2cos(kx)) = (1 - 5//2> @’ (2.47)
2| Fl¢"]l17 2

k>0

for positive z. Writing cos(kx) as its Taylor expansion around 0 allows us to write

> k(2 — 2cos(ka)) = Zak(2—2(1 - k22z2 s W))

k>0 k>0 n>2
k: 2n :
=S ek -2 3 S 24
k>0 k>0 n>2
=22 4+ O(z*).
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Notice that, in the final step, we used that 3, ., arpk? = 1, which is assumed in (A2).
We can assume without loss of generality that 0 < 1— W < 1. This means that
2

if z is small enough, then ), ax(2 —2cos(kx)) > (1 -

Y
2F I,

) x2. Furthermore

we observe that at = 27 we have ), _;ax(2 — 2cos(kz)) = 0. So we get a similar

situation to the one in the graph below.

5 s

o 2

(1 STF T, ) v
41 — > k>0 k(2 — 2cos(kx))
3 1
2 1 |
i
0 L y
0 K 2

™
xT

From the graph it follows that equation (2.47) definitely has a solution. We denote

this solution by K > 0. Now we are ready to show that the earlier
We have

1)
(& < ——5—
%) 2| Flo" 2
o)
= —q(£ < ———5—
%) 2 | Flo" 2
o)
— 2cos(Eke) —2) + €22 < ——— 222
2, o (2eos(Ehe) =2)+ %6 < Sy e

made claim holds.

(2.49)

= Z oy (2cos(Eke) — 2) < (2}_[3)”]”2 - 1) £2¢2
L2

k>0

o 2.2
— Zak (2 — 2 cos(Eke)) > (1— W!%>£ e”.

k>0

In the graph we can see that this inequality holds when [¢z] < K.

Thus it also holds

if [¢] < g So choosing €y such that N = g proves the claim. Now using the claim

by letting 0 < € < €9, we can estimate

N 5 S N 5
(OFINOF ds < ———— [ |F))F d
[ e @Fer de < st [ 17

17

<

YRS

(2.50)



(i)

From this together with (2.46) it follows that

N
e Flo" ]2 = / 14 (&) FLo")(©) de + / la©FS N de
(00,~ NJU[N,0) B (2.51)
) 1)
< 5 + 5 = 5,

whenever 0 < € < gg. So we have now shown that

. . 2
lim | F[Ac¢ — ¢"][] 7> = lim [l¢-F[¢")[z. = 0. (2:52)
el0 el0
Plancherel’s identity implies that || F[A.¢ — ¢"]||2 = ||Acp — ¢"||,2. So it follows
that
lim [|[Acg — ¢"[|5. =0 (2.53)
eJ0

and thus also
Lim |Acp —¢"|| 2 =0, (2.54)
E.

which concludes the proof.

We first claim that for any integer k,
/Rqﬁl(x) [6(z + k) + ¢(x — ek)] dz = 0. (2.55)
We’ll show now that this actually holds. We apply integration by parts to obtain
/R 6z + k) (z) dz = [b(x + ek)o / & (@ +ek)o(z) e, (2.56)

We observe that [¢(z + ek)¢(x)]™ vanishes. This is a consequence of ¢(z) being a
function that is part of function space H'(R). Because this tells us that if we let z go
to o0, ¢(x) will converge to 0. From this it follows that

Oz/qb(x—i—sk)qS’(m) dx—l—/q[)’(x—i—sk:)qb(x) dx
/(bx-i-ekz dm—l—/d) ¢(x —ek) dx (2.57)
= [ #/@) oo+ ok) + ol eh) do.

Note that we applied a translation of ek to the second integral. Thus indeed we find
that our claim holds. If we take k = 0, it follows from our claim that

2 /]R (x)¢' (x) dz = 0. (2.58)

18



Now we are ready to prove the original statement with the help of our claim and also
its special case for when £ = 0. We have

(8., 8') = / [Aco(@))6'(2) do
/]RZak d(x + k) + ¢(x — ek) — 2¢(z)] ¢’ (x) dx

k>0

= Yo [ oo +ek) + 6o — k) — 20(a)) ) d

k>0
- 2]§Jak</¢ d(x + k) + d(z — k)] dx—Z/ng )d:c)
- (2.59)

(iii)
(Aut, ) = / (A ed(@)](x) da

/ 5 D ok [Blo + k) + 0w — ek) — 26(2)] Y (x) da

k>0

(2.60)
= kE)w(x)d —ck)y
EQ{/;()aquw—i—s x—i—/goak(bx ek)y(x) dx
ard(z
2 Zmwora).
where after translations with w = = 4 ek in the first 2 terms we get
(Ac, ) = { apd(w)(w — ek) dw + apdp(w)Y(w + ek) dw
IZ 1%
—2
R ,;;;am } (2.61)
/ 5 Yo [(w + k) + (w — ek) — 2¢(w)] p(w) dw
k>0
= <¢a sw>

(iv) To be able to show this we will need Plancherel’s identity. Here it implies that
(Ach, &) = (F[A:P], Flo]), where we use F[¢] as notation for the Fourier trans-
form of ¢ as defined in (2.37).

Before analyzing (F[A.¢], F[d]), we will first rewrite F[A.¢](€) in terms of F[¢](§).
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This gives
Fiaole) = [ Aola)e ds

:/OO 1 ZOék (x — ke) + ¢(x + ke) — 2¢(x ))eifa:dz

k>0

2Zak/ d(x — ke) + ¢z + ke) — 2¢(x)) ™" da

k>0
QZak</ oz — ke) zf””dac—l—/ o(x + ke)e*® da — 2 / qb(x)eigmdx),
k>0 oo
(2.62)

where after translations with ke in the first two integrals we get

FIA9)(€) = QZak ( / $(x)e’ ) dg 4 / (x)e'ttrke) d:v—Zf[dﬂ(é))

k>0

= B Y e (e e ) (0

k>0

_ Eiz 3 oy (2cos(eke) — 2) Flo](€)
k>0
= 2 AE)FI0).
(2.63)

Note that in the last step we have used notation A(z) which was introduced in assump-
tion (A2). Now we can analyze (F[A.¢], F[¢]). Since [F[¢](€)]> > 0 and A(¢e) >0
for all £ € R, it follows that

2

(FIAG), Flol) = 2 / FO() AEe) d < 0. (2.64)

2

So by Plancherel’s identity we can conclude that (A ¢, ¢) = (F[AL¢], Fl¢]) < 0.
O

Corollary 1. Let A, be defined as in (2.15) and let the coefficients {ay} satisfy (A2). If
we then let € | 0 in the spatially discretized Allen-Cahn equation (2.6), it converges to its
continuous version (2.5).

Proof. During the derivations in (2.11) we found that

0= ’U/;l(t) — ;12 Z QpUp—f + f(u’ﬂ)

k=—o00

=ca(r) - = Z a [u(x — ke) +u(x + ke) — 2u(x)] + f(u) (2.65)

k>0

= cu'(z) — Acu(z) + f(u).
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Now it follows from Lemma 4 (i) that if we let £ | 0 on both sides, then we get
cu' (z) —u’(x) + f(u) = 0. (2.66)

Furthermore, the boundary condition u(+o0) = +1 is still valid. So we see that we get
back problem (2.5) if we let € go to 0 in (2.6). Thus we can conclude that (2.6) is indeed a
discretized version of (2.5). O

Lemma 5. Assume f is a function satisfying (A1) and let (co,up) be defined as the solution
to (2.26). Then fy(uo) is bounded.

Proof. To show f,(up) is bounded we will examine what happens if x — +oo. If we let this
happen, we know that wug(z) — £1 from (2.26). This causes f,(ug) — fu(£1), since f' is
continuous by the assumption f € C?(R). Note that f,(+1) are both finite values. Because
of the values being finite and f, (1) being continuous it follows that f, (ug) is bounded. O

The properties stated in these two lemmas will come in handy during the proofs of some
main theorems in later sections. The setting up of the problem has been finished and thus
we can start with the main part of this report, which contains the body of the proof.
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3 Main Proof

The Allen-Cahn equation and its discretized version have been been discussed in the previous
section. Also the problem has been set up in more detail by introducing a different way to
state the problem and showing some interesting properties. This means we are finally ready
to state the theorem which is essentially the theorem we want to prove in this thesis.

Theorem 2. Assume f satisfies (A1) and assume the coefficients {au} satisfy (A2). Then
there exists a constant €* such that for alle € (0,€*), problem (2.16) has at least one solution
(ce,ue). This solution is locally unique in H*(R) up to translation and has the property

lifol(cg,ug) = (co,up) in Rx H'(R). (3.1)
€.

If we are able to prove this, then our problem is solved. But we don’t have enough
firepower yet to prove this result. We need a proposition which will help us prove Theorem 2.
This is Proposition 1 and is stated below.

Proposition 1. There exists a positive constant Cy and a positive function go(-) : RT —
R* such that for every § > 0 and every € € (0,g9(9)), Lsié is a homeomorphism, see

Definition A3, from H'(R) to L*(R). Furthermore

ez ], < o{ il + 31w 6501} (32)

where ¢§ € L?(R) is as in (3.5) below and ¢ € L*(R) arbitrary. If also ¢ L ¢, then we
have

|2 "] < Collwle (3.3)

Unfortunately this proposition is also not easy to prove and preparations are necessary.
These preparations will be executed in the following two subsections. More information
about the operator 5: s is required, on which the focus will lie in the second section. To get

there we consider another operator ESE in the first subsection. This operator is related to
Ef s» since both operators are linearizations of the Allen-Cahn equation around the solution

(co,up). The difference is that Ef s is a linearization in the discrete case, while L s a

linearization in the slightly easier continuous case. So it makes sense to first consider 535
such that we can make the connection to Ef’ 5

After these preparations we will be ready to show Proposition 1 indeed holds. Then, after
some more estimating, we are finally ready to prove the main result stated as Theorem 2.
3.1 Linearization £ of the continuous Allen-Cahn equation

In this section we treat the operator £F and the function ¢ (x). These are given by

Ly =Fcod — ¢ + fuluo)o, (3.4)

uh(a) L e
fp@le %% = fup@e,.

g (z) = (3.5)
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Here £F maps functions from H?(R) to L?(R). To understand the operators a bit better,
we remark that £& can be seen as the linearization of the system (2.13) around the solution
(co,up). The observant reader will question if the taking of the L?-norms above is allowed.
But we have exponential convergence for ug by Theorem 1, which is a property that is
preserved under differentiation. This justifies the taking of the L2-norms. We now treat a
lemma consisting of properties involving Eg and qbgt(x).

Lemma 6. Let L and ¢ be as above in (3.4) and (3.5). Then the following statements
hold.

(i) 95 Nl = 1.

(ii) L5y =0.
(iii) (LEo, V) = (¢, LTY), for any d,1» € H*(R).
(iv) ¢y € HA(R).

(v) There exists a positive constant C' such that for all x > 0, we have

il’ 9371 an 71 = = 2
ot [ e i | wlPasce o

(vi) For every 1 € L*(R) the problem
LEip=1v with¢c HXR) and ¢ L o7 (3.7)

has a unique solution if and only if ¢ L d)(jf. Furthermore, there exists a positive
constant C1, such that

@)l o < C1||L50|,,  for all ¢ € H*(R) satisfying ¢ L 47 (3.8)

Proof. (i) This result is not so hard to show. It follows directly from the definition of (bf)t.
Since we have
up ()

/ /
v _ @l 59)
(2

e @)l

6 e = H

which proves the statement for ¢ . In exactly the same way we have ||¢g ||z = 1.

(ii) We want to show LE¢E = 0. First we take identity (2.26) and differentiate this on
both sides. This gives
coug — g + fu(uo)ug =0, (3.10)
which we will use later on. Now using (3.10) it follows almost immediately that
L$¢g = 0. Since we get

1

£+¢+:
070 lup (@)l 2

(coug —uy + fu(uo)u6> =0. (3.11)
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To show L; ¢, = 0 we have to put in some more effort. First, (¢, )" and (¢g )" have
to be computed. We get

1 6700$
-\ " ,—cox __ ! —com \ _ "o_ /
%) = T @e=eT,» (“Oe Cotio® ) = Ta@e=e,, <“ “) !
(3.12)
—\/! e_COx 1 " 2 7
()" = T @] 2 uy — 2coug + cgug |- (3.13)
0 L2

From this it follows that

—Cox
e 0

 lup(@)emeom]|
e—Cow
 lup(@)emeom]|

=0.

"

Ly by (c%ug — couf — uy + 2coufy — ciug + fu(uo)ug)

(COU{)’ —uy + fu (uo)%) (3.14)

Here we again used (3.10). So we indeed see that LE¢F = 0.

(iii) Let ¢,v € H?(R) arbitrary. We obtain, by applying integration by parts, that
(s, v) = ko [ $odo =2 (007, Feo [ o0/ du= (6, Feor)). (.19
R R

Notice that [¢1]™ _ vanishes here because both ¢,y € H 2(R). By using repetitive

integration by parts and using that ¢,v € H%(R), we get the following result in a
similar way as done above. We find

(¢", ¥y = (o, ¢"). (3.16)

Furthermore, we have the more trivial

(fulwo)e, ) = (¢, fuluo)). (3.17)
Using these three results we find
(L3¢, ¥) = (£eod' = ¢" + fuluo)d, ¥)
Eeod’, ¥) — (@7, ¥) + (fuluo)d, ¥)
) = (@, ")+ (B fuluo)y) (3.18)

(

=

= (¢, Feo)
= (¢, Feo' — V" + fu(uo)¥)
= (¢, LTY).

(iv) Differentiating (2.26) gives the dlfferentlal equation couy — ufy’ + fu(uo)uy = 0 with
the boundary condition ug(£oo) = £1. Note that ug = ug(x). So if we let x — +oo
our differential equation will be very similar to

C(ﬂ[o” - ’lZO/// + fu(:l:l)’ujo/ = 0. (319)
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We will solve this equation for 1y’. This way we get to know how ug roughly behaves
at +oo and thus also understand ¢at a lot better. To solve this equation we write iy’
in the form 1y’ (z) = €™, where r is a constant, and substitute this into differential
equation (3.19). This gives

e (cor —r* + fu(£1)) = 0. (3.20)
Because €"* is never equal to 0 we get
72— cor — fu(£1) = 0. (3.21)

Then completing the square gives

2 2
(r _ CL’) =% ful£1) (3.22)
2 4
so that
co 2
r=— 44/ 2+ fu(£1). (3.23)
2 4
Hence

2 2
0 44/ 50 (41 )z (@— D4 f, (1 )1
( 2 \/T + Bpe\? m as x — +oo.  (3.24)

Uy’ (z) = axe

So we have that

2 2
L) Dt fu(£1 ) (”—0— Dt fu(x1 ) -
(2 m $+5i€ 2 m “ asx — +oo. (3.25)

ug(x) ~ aye

Boundary condition ug(fo0) = £1 implies that uj(x) must be bounded. We can use
this to be more specific about u((x). First we make an observation. We know from
(A1) that f,(£1) > 0. So we get

Co

5 %Jrfu(ﬂ) < 0. (3.26)

24/ 24 fu(x1) >0  and
We consider the case when x — co. Using the two inequalities above, we see that

2 2
Qg By f (1 )z (C—D— D1 )m
(@ deney MAFVERRED Jr g sy

Since iy’ (x) has to be bounded, it follows that o, = 0. We can apply similar reasoning
in the case that  — —oo. Using the two inequalities from (3.26) again, we find that

e(%oﬂ/éﬂu(ﬂ))z o e(%of\/éﬁu(il))m

— 0 and

and — 0. (3.28)
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(v)

By the boundedness of u{(z), it now follows that S_ = 0. Using that oy = 8- =0
we can rewrite (3.25). We define the constant v1, where v, = f4 and y_ = a_. This

allows us to write (3.25) as
2
2 \/ ] w(E1 )r
PV A AED as ¢ — %o0. (3.29)

From this we observe that ug(x) converges exponentially to 0 x — *o0. Exponential
convergence is a property that is maintained while taking derivatives. Hence uj(z)
converges exponentially to 0 as x — £o00. Thus both u{(z),u](z) € L*(R). So, from
this it follows that ¢ € H?(R).

uf)(x) ~ Wie(

First of all note that ¢ (z) > 0, because u)(z) > 0 by Theorem 1. We keep this
in mind during the proof. In the proof of Lemma 6(iv) we have found that ug(z)
converges exponentially to 0 when z — oo. It follows from (3.29) there exists a r > 0,
such that for every z > r, we have

2
9 TOm(il))x

o)~ el (3.30)

2
For notation reasons we define the positive constant A = — (‘7‘) —\/ 3+ fu(£1) ) So

for every z > r, we now have
up(z) ~ yype A, (3.31)

Furthermore we define

. +
- d M= 3.32
m= min ¢o (z)  an e g (). (3.32)

We start with showing that the first of the two inequalities holds. Let x > 0 be
arbitrary. We’ll consider the cases x > r and x < r separately. First assume z < r.

Then M M
+ X T
) /O Fg sy / LPE -y (3.33)

Now we consider the other case where x > r. We find that
o1 ug(z)  lug ()| 22
g (x) / dy = — / dy
0 r 9o (Y) [ug (@)L= Jr  ug(y)

T+ (3.34)

Using the previous estimations (3.33) and (3.34) we obtain

¢8”(x)/0$¢01() y¢0()</0 pram) y+/ pEm) y)_m+i. (3.35)
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(vi)

Note that we have only estimated for ¢ . If we take ¢, instead of @7 , the estimations
above can be done in exactly the same way. The only difference is that A has to be
replaced by A + ¢, which is also a positive constant. So, after we define AT = A and
A~ = A+ ¢y, we have

Mr

T 1 1
oE(x / ———dy<—+4+—  forallz>0. (3.36)
0 (@) 0 ¢(ﬂ)t(y) m  A*

Now we move on to the second inequality. Let x > 0 be arbitrary and again we split
the cases x > r and x < r. First we condider z > r. Then

o] ul(x 22 Y 2
S Y Ly P

[#¢ ()] i@ Lo (@)l
2Ax 9]
= 672 / 736_2*’41/ dy (337)
’Y-i— xT
€2Az 9 Ay 00 62Aa: 1
— —2Ay — _ —2Az —
y oa 0= ) =gx

Notice that this estimation is almost the same when (bé is replaced by ¢, . We only
have to replace A, by A + ¢y as mentioned before. So, to be precise, we have

1 o 2 1
Now we consider the case where x < r. Then we obtain
1 " + 2 1 " 2 MQ’/’
T — < — M = .
L /m (05 ()] dy < — /0 dy = — (3.39)

Combining (3.38) and (3.39) we find that

M/ac [(ﬁ?(y)f dy

(3.40)
1 r oo 2 1
N 6t @] </ 65 () dy+/ 6 ()] dy) < mzr ol
0 T r
So we have that
> 2
W/ [0 ()] dy < % + ﬁ forallz>0.  (341)
0 z

Thus if we take C' = max {% + A%, %—2{ + ﬁ}, we see that both of the inequalities
indeed hold.

Let’s first prove the if and only if statement in the forward direction. Let ¢ € L*(R)
arbitrary. We assume that ¢ is the unique solution to

LEp=1 with ¢ € H*(R) and ¢ L ¢F. (3.42)
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So we have that ¢ € H*(R) and, by Lemma 6(iv), also ¢f € H*(R). Hence we can
apply Lemma 6 (4ii). It implies that (1, ¢3) = (L, o) = (¢, LT ¢ ). Lemma 6 (ii)
states that £L§ ¢ = 0 and thus it follows that (¢, ¢f) = 0.

Now we want to prove the backward direction. We find a special solution ¢4, (x) to the
equation EO ¢ = 1 if we solve this by variation of parameters. This special solution

¢sp(z) is given by

:F
bsp(x) = ¢ (2 / Iy % / o (2)(z) dz dy. (3.43)

We will show that ¢,,(z) indeed satisfies the equation £0i¢ = 1. To do this we first
introduce some new notation

y) = /Oo of (2)0(z) dz, (3.44)

so that we now can write

2) = oF(x ! n(y)
bsp(w) = ¢y ( )/0 ¢g(y)¢a(y) dy. (3.45)

To be able to elaborate LT ¢, we need to know the derivatives 7/ (y), ¢%p(z) and
wp(T). ¢4, (z) can be derived using 7'(y) and ¢;,(x) and these are given by

' (y) = —od ()v(y), (3.46)

) = (ot () [ 1) n(z)
o) =G || G e 47

With the help of these two derivatives we find

() — ix n [* 77(3/)
V) = (@) | o @ YT st @ @)

65 (@v(@)e (2) + (65 (@) n(=)

F ()12
(67 ()] | 5.48)
/ n(y) dy + (65 () n(=)
o (v) oo (y o¢ (2)dg (x)
(x))’n(x)
(@
. [as @

Now we are ready to write out Eoigi)sp which should equal v (z). This gives
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to e (ot (o)) [ 1) o @) e [T ()
£t = oo (030 | G vk eogis ~ 8 | e o
@ @) @) @) @) e ()
Fo T g R | G
7‘% n(y) c £ — (6 () un)oE (x
- [ sy (e (65 ) — (550 + Fuluo o))
n@ (oo (05@) 65 ) N
[ (T(x)]2 <3|3 0¢0( ) gbg(x) +(¢0( )) + (). ( |
3.49

Note that the expression in brackets after the integral is just E(ﬂfqb(ﬂf and by Lemma 6 (71)
LEPE=0. So

o =1 (st - EEEC) ) 4y
Ly ¢sp L (i 085 (z) pea + (88 (@) | +v(2). (3.50)

Remember ¢,,(x) is a solution to the PDE if C?qﬁsp = 1. So if the first term of (3.50)
equals 0, then ¢4, (x) is a solution to the PDE. We claim that the expression between
the round brackets equals 0. We will use the definitions of ¢ (z) and ¢, (z), stated
in (3.5), to evaluate this expression for ¢ () and ¢, (=) separately. We find that

iy S @) B ()
oo ()= S (96 (@)
o t@em (@) up(r)em o u (@)l
Mep@e=o T Tug(@)lze (e v (@)
| M)em0" — oy (w)e=co* (3:51)

|ug(x)e=co®| L
coup(x)e= % — yf(x)e™ 0% + uj (z)e "% — coug(z)e 0

[ug(z)e=co] 2

207
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(60 () ¢ (2)
%o ()

_up(@)

Ty @)

(@)= = cou(w)eeom Y (@) [ (@) 2

[ug(z)e=coe]| L2 lup(2)]] 2 up(x)eo®

—codg (x)— (¢3($))/

ug ()
[[ug (@) 12
_ —coup(x) — ug(x) + coup(x) + ug (z)
[[ug ()]l 12
=0.
So we can conclude that
T F
oo - DA | gy o

o (@)

(3.52)

(3.53)

and thus we find that £F ¢.,(z) = 1(z), which means ¢, (z) is indeed a solution to

LEo=1p.

Now we’ll derive an upper estimate for n(y) which will be useful to obtain an upper
estimate for ¢sp,(z). To find such an estimate we use Cauchy-Schwarz and the second
inequality of (3.6) stated in Lemma 6(v). It follows that for every y > 0 we have

y)| =

/yoo o8 (2)0(2) dz| < \//yoo (67 (2)]° dz /:Omz)mz
< \/C [@T(y)f/yoo W(2)? dz

~VElGE W[ v

Using the derived inequality above, we obtain that for every x > 0

‘QSSP | < |¢0 |/ djo

<VC|oF (e |/E
o[ (e

’In )| dy

= \/>’¢O w(z)2 dz) dy.

|65 (v)]
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(3.54)

T ‘ | (y /yoo U(2)? dz ) dy  (3.55)



To further bound |¢g, ()| we need some observations. Note that ¢ (x) > 0, because
up(x) > 0 by Theorem 1. Together with the first inequality of (3.6) from Lemma 6(v)
this implies that

. SR SR L |
|65 ()] / G =) / i EC (3.56)

Furthermore we notice that \/fyoo P(2)2dz < \/ffooo P(2)?dz = ||¢|| ;2. Using these
two derived inequalities we find that

VO (@) / w (W:(yﬂ / T p(2)? dz> dy < CVE 9], (3.57)

So if we denote A; = CV/C, it follows that

|¢sp(2)] < A |99l 2 for x> 0. (3.58)

We can also write this as [|sp|| e .00y < A1 || 2 Here the norm [|¢spl| o< o ) takes
the maximum value of |¢g,(x)| for € (0,00). Furthermore, by applying I'Hopital’s
rule, it follows that lim,_,oo ¢sp(z) = 0.

Now we want to show there exists another constant Ay such that a similar statement
holds for x € (—o0,0), namely Hqﬁsp||Lm(7Oo o) < Az ||| ;2. To show this we assume

¥ L qﬁ, then for every y € R we have

0= [ v (a) da
o N (3.59)
— [ weet@des [ vt @) ds

so that

/Ooqp(xmg:(x) dx = /700 W(x) o (z) da. (3.60)

Bounds as in Lemma 6(v) can also be obtained for # < 0. These are found in the
same way as for z > 0. In a manner similar to the case when x is positive it can
be shown, using (3.60), that ||¢spll (o0 gy < A2 %] 2 for some positive constant
Ay and that lim,_,_ o ¢sp(z) = 0. So we find that ¢, is bounded by ¢ and that
limy s 100 ¢sp(z) = 0. It is claimed in [2, Lemma 5(2)] that this is enough to show

there exists a positive constant A such that ||@spl| 2 < A"

We define ¢ = ¢gp — (¢sp gb(jf)qb(jf and claim that ¢ is a unique solution to problem
(3.7). This would finish the proof immediately. We’ll show that this claim indeed
holds.

1t is claimed this result follows using the differential equation E(T ¢sp = 1 and an energy estimate.
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Recall that L ¢,, = 1. Furthermore we have L ¢g = 0 by Lemma 6(ii). Using both
of these observations, we find

'COin = 'Coi [(bsz) - <¢8p ) ¢oi>¢0i] = 'C(j)[¢8p - <¢8p7 ¢0i>'cg¢0i = Loi(bsz) = 1. (3~61)
Now we show that ¢ L ¢F. Since [|¢F |12 = 1 by Lemma 6(i), we have

<¢)a¢g>:<¢sp <¢spa¢0 ¢0a¢§>_ spa¢§>_<¢spv¢g><¢§v¢§>
s> 85) = (@op» 05105 172
Sp s

3.62
OT) — (Dsp» DT (362

(
=
= (¢
=0.

It is left to show that ¢ is a umque solution. First consider the problem ,Cig% 0.
It follows from Lemma 6(ii) that ¢ is a solution. Another solution to this problem
is (;50 fo W dy, which can be found by following the same procedure as during

the evaluation of LE¢,,, but with setting 1(y) = 1. These two solutions are clearly

linearly independent. Since E(?QAS = 0 is a second order ordinary differential equation,
all of its solutions must be linear combinations of these two solutions.

Now let ¢ be another solution to problem (3.7). Then

Lo —o] =L5o—Lio=v—v=0. (3.63)
As we have just observed, gz~5 — ¢ must be a linear combination of q% fox m dy
and qﬁg But ng(j)E fom m dy is unbounded and since ¢ — ¢ € H? (R), it can only

be a multiple of gbo So there exists a constant d such that ¢ — o= d% Using this
together with the fact that both gb 1L gbo and qﬁ i QSO , we find

0=1(¢—¢, ) =d{ey, &) = d| 5 7 (3.64)

But Lemma 6(i) states that ||¢=| > = 1 and thus it follows that d = 0. Because
(;5 ¢ = d% , we find that QS ¢ and we can conclude that ¢ is a unique solution to
(3.7) proving the claim.

Furthermore, we can estimate the H?-norm of ¢ by applying the Cauchy-Schwarz
inequality. We find that

16l r2 = ||6sp — (Dsp > SE) D |2 < I Dspllirz + [[(Dsp s D)5 || 7
= H¢8p||H2 =+ |<¢sp7 ¢3[>| “¢§”H2

P N P P o P
< spllpge (1 N 2 165 N )
Using that |¢Z 2 = 1, see Lemma 6(i), and using the earlier obtained bound
|Pspll 2 < Al 2 we can further estimate this expression. This gives
19l < A(1+ 16F ) el (3.66)
So defining Cy = A<1 + ||¢0i||Hz> confirms that also (3.8) holds.
O
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This lemma is mainly needed to prove the next lemma, where we find an estimate in which
a function ¢ € H?(R) is compared to (L5 + §)¢. Later, we will see that a similar estimate
can be obtained where the operator E(T + ¢ is replaced by Efj s+ S0, the continuous case
is then being connected to the discrete case. But this will happen in the next section 3.2,
where the operator Ei s is treated.

Lemma 7. Let LE and ¢F be as in (3.4) and (3.5). Then there exists a positive constant
Cs, such that for every 6 > 0 and for all ¢ € H*(R) we have

9]l 772 < Co {(15 (v, o)+ |¢||L2} where ¢ = LE b+ 6¢. (3.67)

Proof. We will consider 3 cases separately to prove this statement. Namely § is (a)large,
(b)small and (c)intermediate.

(a) We start with 0 being large. We denote 01 = 1+ || fu(uo)|| ~ and we assume 6 > 0;.
Let ¢ € H?(R) be arbitrary and set ¢ = L ¢ + d¢. Our goal is to show that

2 2 2 2 2 .
191z = 6Nz + 16'llz2 + 119”22 < Cllhllz=,  where C'is a constant.

If we can verify this, then (3.67) will easily follow. We will start by bounding Hd>||2L2
The Cauchy-Schwarz inequality implies that

[Pl L2 10l L2 = (&, 6) - (3.68)

By Lemma 1(%), Lemma 1(%) and the definition of ¢ we obtain

<7/)7 ¢> = <i00¢l - ¢” + fu(u0)¢ + §¢a ¢>
=Fco (¢, &) — (@, &) + (fuluo)o, &) +6 (¢, d) (3.69)

Since for all z € R we have f,,(uo(x)) > — || fu(wo)]| o, We find

(fuluo)g, ¢) = /Rfu(uo(ﬂc))gb(ac)2 dx

(3.70)
2 — [ fu(uo)l o /R¢($)2 dr = — || fuluo) |l 67
Furthermore we of course have (¢, ¢) = qu||iz From these two observations it follows
that
(Futo)d, 8) +06(d, 8) > (5 = || fuluo) | ) 672 (3.71)
Connecting (3.68), (3.69) and (3.71) gives
102 160 22 = (6 = | fuluo)ll ) 11172 (3.72)
which after dividing both sides by ||¢|| ;- is equivalent to
(0 = l[fuluo)ll o) 10l L2 < NIl 2 - (3.73)
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This together with the assumption § > d; implies that

18]l 2 = (61 = || fuluo)ll oo ) [|0]] 2
< (0 = [ fuluo)llLoe) 101l 2 (3.74)
<[l z--

After squaring both sides we obtain ||¢||2LQ < ||1/)||2Lg So we have found a bound for
6172+

Now we also want to bound [|¢/[|7> + ||¢”||32 by B ||[]/32 for some constant By. If
lco| > 1, we find

N

2 2 2 2
19112 + 19”1172 < leod 2 + 1”112 (3.75)

while if |¢p] < 1 we can estimate

2 2 1 2 2
16172 + 19”1172 = = (leod'lz= + lleos” I3 )
10 , , (3.76)
< = (lleod' = + 116”13+ ) -
0
So we can conclude that
2 2 1 2 2
1613 + 10132 < max {1, 5§ (1eod 3 + 167122 (3.77)
0

Note that by Lemma 1(i) we have that (¢”, ¢') = 0. We’ll use this to rewrite
llcod'l[72 + [1¢” 172 This gives

lleod|I72 + 1¢I5 = /R [c5¢/ (2)* + ¢ (2)?] da
— / [eod (z) — ¢ (2)]° da =+ 2¢o / ¢ (2)¢ (z) d
R R

(3.78)
= [ Bad@) - o @ do 2 6" )
2
_ Hicogy(x) - ¢”(m)’ R
By the definition of 1) we obtain +co¢’ — ¢" = ¢ — (fu(ug) + 0) ¢. So we have
lleod' 172 + 16”172 < || — (fuluo) + ) 8|7 (3.79)

< (18l + || (fuluo) +6) 6] )

Since fy(uo(x)) < || fulwo)|l = for all z € R, using the same reasoning as in (3.70),
we have that ||(fu(uo) +6) |2 < (||fu(u0)\|L®o +0) ||¢]| ;2. Using this together with
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(3.73) and (3.74) we find that

2
leod' 7= + 6”72 < (Il = + (1 FuCuo)ll o +6) ]2 )
2
= (Il = + O = a0l ) 1] + 211 fu (o) o 1))

< (20fuwll e +2) 12
(3.80)

If we now choose By = max{l7 C%} (2| fu(uwo)ll o + 2)2, then it follows from (3.77)
0
and (3.80) that
16112 + 16" 22 < B 1922 (3.81)

If we now combine this with the estimation ||¢Hi2 < ||1/1||2L2 obtained earlier, then we
have

2 2
ol Fr = lgll72 + 16172 + 16”172 < (B + 1) [|9]f7- - (3.82)

Taking the square root on both sides gives

ol < VB F Tl < VBT 3|00 6|+ ol } . 9

The final step is taking Cy; = +/B1 + 1, after which we end up with the result we were
seeking for.

(b) We consider the case where ¢ is small. We assume ¢ € (0, §p] where &y will be defined
later. Again we set 1 = LE¢ + 5¢ and we let ¢ € H?(R) arbitrary.

First we decompose ¢. We do this by choosing ¢+ such that ¢ = <¢, ¢§> qbgt + ot
Therefore we can now write ¢~ = ¢ — <¢), gb0i> qﬁ. Now Lemma 6(i), which states
that ||¢||z> = 1, implies that
(07, 05) = (¢, 65) — (9, 65) (¢5 » 97
2
= (¢, 65) — (6, 65 |95 || - (3.84)
=0.

So we have found that ¢+ L ¢3[. Furthermore Lemma 6(7i), which states that
/.Zoi%i = 0, helps us finding

Lyot =Lyd— (b, d5) La by =¥ — 0. (3.85)

Now applying the second part of Lemma 6 (vi) to ¢ gives
¢ 12 < Cu |50 | 2 = Co 9 = 60l 12 < Co {l1Wll 2 + 8 6]l 12} - (3.86)
This inequality will be used later in the proof. In the proof of Lemma 6(vi) we have
seen that £Oi¢ 1 ¢g for ¢ € H*(R). Since L'Oid) =1 — ¢, we also have ¢ — §¢ L ¢f

and thus
(v =00, 05) =, ¢f)—0(d, ¢f) =0. (3.87)
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Now bringing § <¢7 of > to the other side and replacing ¢ by its decomposition gives

(W, 6F) =6(b, 6F) =05(d, o7 ) (5, d5 ) + (", 67)- (3.88)
‘We denote i )]2
_ N\ ug(x)]” e co®
o= <¢8_ s Do > = /R Huf)(x)”L? [ufy (z)e—co2|| dz. (3.89)

Notice that o > 0. Furthermore o < 1 by the Cauchy-Schwarz inequality in combina-
tion with Lemma 6(%). Consider equality (3.88). We divide it by ¢ and rewrite it with
our definition of o. This gives

(b, o)y =0(d,¢5)+ (6", 7). (3.90)

| =

We can now bound o|(¢, ¢)| using Lemma 6(i). We get
o [(¢, 65)] =0 (9, 6]

1

s (¥, 0f) = (o7, of)

IN

S| = S =

(¥, o)| + (&, 60)

1
(0, 65| + 6™ 12165 11 2 = 5[y o)+ ¢l 22
(3.91)

<

From this together with the earlier obtained inequality for ||¢"| 52 it follows that

(0, &3 )] + 6F N2 + 6% | a2
(v, 63 )] + 2™ || (3.92)

o (¢, ¢5 )| + llo* | m2

IN IN
| = | = | =

IN

[, &F)| +2C1 1]l 2 + 20C1 ||l 2 -

After rewriting this is equivalent to

1
S0 o9+ 201 [0l e > o [0, 65)] + 6" 12 — 20Cs |19l - (3.93)
We want to find a lower bound for the left side of this expression that is of the

form A(0) ||¢]| ;2. To find such a lower bound one more inequality is required. This
inequality is obtained via the definition of ¢ in the following way. We have

18]l = [[(¢, 65) 65 + 6™ .
<[, 65) @5 1l 2 + o™ Il e
= (¢, 6| 65 lIz2 + oIl
=16, o5)| + oIl e

(3.94)
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Now we are ready to find the lower bound for o|(¢, ¢g)| + |||z — 200y || @]l 2
Besides the just derived inequality we’ll also use that ¢ < 1 during our derivation. We
find

o [{p, ¢5) + 6 2 — 26C: (|9l 12 > o |{b, ¢F)] + 1ot |22 — 26Cy (|9l 1
>o{ [(¢, d5)| + llo" L2} —26C |||
>0 ||l 2 —20C [[@]l 2
= (0 —20C1) [|¢]l 2 -

(3.95)
So we also have got
1
3 ’<¢7 ¢0:F>| +2C |¥]| 12 = (0 = 26Ch) |6 12 (3.96)
which is equivalent to
1 1
6l < s {5 10 6500 + 2 1l | (3.97)

We will now finally set the value of §g. We let o = 0/4C4 such that § < o/4Cy. This
implies

2

1 400 [ 1
lolls < 2 {3 16w 651+ 201 ol | = 22 {

- w}<w,¢§>|+n¢|p}. (3.98)

Note that we can choose Cy as big as we like. We take C; > 1/2. If we now set
By = 4C4 /o we get

1
ol < B2 {3 166 65)| + W0l (3.99)

In a very similar way as in (a) we can find a bound for ||¢/||2L2 + ||¢N||iz- The main

difference is that we use (3.99) instead of (3.74) when bounding ||co¢’||2LQ + ||¢”Hiz as
in (3.80). This leads to a slightly different bound of course. We find that

1 2
Jeod I+ 167135 < Ba {5106 0} + 1 | (3.100)

where B3z = (2Ba || fu(uo)l| ;0 + 2)?. We now use (3.77) which implies

1] (1 ?
1615 + 16715 < Bamax {15 } {5 10,0 + 0l - @aoy

Just like in (a), we square inequality (3.99) and add inequality (3.101) to it. Thereafter
we take the square root on both sides of the obtained inequality to get the final result.
Namely

1
6l < Ca {5 00, 6]+ Iolza . (3102

with Cy = \/B§ —|—Bgmax{l,%}.
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(c¢) The final case we consider is for 6 € [dg, d1], where we assume that dy < 7. If this is
not the case, then parts (a) and (b) already complete the full proof. We define

AE(8) = it |L56+ 09|, (3.103)
A* = 66%1"61] AE(9). (3.104)

Let {¢;}52, and {0;}52, be sequences in respectively H*(R) and R, with [|¢;||z> =1
and J; € [dp, 1], such that

Jim (2565 + 0505 . = AT (3.105)

Define ¢; = LE¢; + d;j¢;. Then limj Vil = A* and therefore {¥j}52 is
a bounded sequence in L*(R). Since |[¢;]l» = 1 for all j, we have that {¢;}32,
is a bounded sequence in H2(R). So it follows from Theorem Al that, by taking
subsequences if necessary, there exist ¢ € H*(R) and ¢ € L?(R) such that

¥; — ¢ in L*(R) weakly, as j — oo, (3.106)
$; — ¢ in H*(R) weakly, as j — oc. (3.107)
Furthermore Theorem A2 implies that, by taking another subsequence if necessary,

we have
¢; — ¢ in L7, (R), as j — oo. (3.108)

For each j we have that §; < d1. So {0;}52, is a bounded sequence. Now the
Bolzano-Weierstrass Theorem tells us there exists a & € [dg, 1] such that, by taking a
subsequence if necessary, §; —  as j — 0.

Now we take a test function ¢ € C§°(R) N H?(R). Then

(W;, Q) =(L5d; + ;05 C)
= (L5605 C) + {805, ¢ = (85, LIC) + 65 (5, O)-
We want to examine what happens if we let j — oo on both sides. Since 1; — ¥
weakly in L?(R), we know that (¢, ¢) converges to (¢, ¢). Since ¢; — ¢ weakly
in H*(R), it follows that (¢;, L5¢) — (¢, L) and (¢, ¢) — (¢, (). We also

observed earlier that 0; — ¢. Using all of these observations, we see that letting
j — oo on both sides of (3.109) gives

(W, ¢)=(¢, LIC) +5(8,¢)
= (L5, Q)+ (06, C) = (L3¢ +0, ).
Because this holds for every ¢ € C3°(R) N H?(R), we find that ¢ = LE¢ + 5. We

claim that /A\f > (0. We will show this by contradiction and therefore we assume from
now on that A* = 0. It follows from Theorem A3 that

(3.109)

(3.110)

11l 2 < liminf [l . = A% (3.111)
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This implies that ¢ = 0 and thus it follows that L ¢+3d¢ = ¢ = 0. In [2, Lemma 5(3)],
the authors claim that the positivity of the functions (boi and the fact that £0i(b3[ =0
allows one to use Liouville’s theorem to conclude that the equation (LT + §)¢ = 0

does not have any nontrivial bounded solution®. So we find that ¢ = 0.

Our goal is to also show that ¢ # 0 and thus obtain a contradiction. We start by

deriving two inequalities that will come in handy later in the proof.

Let’s derive the first of the two inequalities. We start by observing that
(fuluo)dy, ¢7) — 167172 = (fu(u )cbj ; <z5-> — (¢}, &)

(ful [ )

<[’ d)] + COQS] ) ¢)N>

Now it follows from Lemma 1(i) and Lemma 1 (i) that
(Feod; — 0565, ) = Feo (85, 87) = 8;(85. ¢7) 20
and thus
(fulwo)dy, ¢7) = 1671172 = (L5365 + 8585, 6f) = (¥, 8]
By using the Cauchy-Schwarz inequality we find that
(fuuo)ds, ¢7) < I fuluo)llpeo (b5, @F) < Ifulwo)ll oo 1651 2 165 |22,
(5, ¢7) = = 1jll 2 167 2

Applying these estimates to both sides of (3.114) gives
Il fuCwo) | s 165112 167 122 = 165172 = = 1951 2 N6 Il 2
and thus
[ fu (o)l oo 16511 2 105 122 + 105 2 1105 Nl 22 > 119 1172

After diving this inequality by ||¢//||r> we get

I fu(uo)ll oo 105l 2 + 14h5ll 12 = 1165 1 2
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LT;+ 0,05, 87) + (Feod; — 6,05, &) .

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

2We could not find which theorem the authors refer to as Liouville’s theorem. Likely, they mean a theorem
that provides a link between the number of zeroes of an eigenfunction and an ordering of the eigenvalues.
In particular, the eigenfuction ¢0 having no zeroes would imply that O is the smallest eigenvalue, which
means that —5 cannot be an eigenvalue. This is similar to classical Sturm-Liouville theory. However, the
operator C does not correspond to a Sturm-Liouville boundary value problem, so this theory cannot be
applied here directly.



Squaring both sides gives

(I fu o)l e 1512 + 05l 2)" > 167 1132 (3.120)

We now further estimate the left hand side using the well known inequality (z +y)? <
222 + 2y%. So then

2 2 2
2| fu(uo)ll 1651172 + 21151172 > 1651172 (3.121)

and we end up with

02 (971172 = 2l fuwo)l7 161172 = 210517 (3.122)
This is the first of two inequalities we will need later on in the proof. Now we be-
gin with deriving the second inequality. From the definition of [JOi it follows that
+cog) = LEG; + ¢ — fuluo)¢;. Using this as well as Lemma 1(7), we observe that
£co|d)ll7e = (£eod, ¢])

= (L5 ds + (805 — 8;05) + & — fuluo)dys, &)

= (L5 65 +8i¢5 &) — 0 (b, &) + (&7, &) — (fuluo)d; . &)

= (¥5, &%) — (fuluo)g;, ¢}) -
Multiplying this on both sides by =+ sign(cg) gives

lcol ;117> = £sign(co) (¥;, ¢}) F sign(co) (fuluo)d; , &) (3.124)

(3.123)

and thus

lcol 1951172 F sign(co) (¥, ¢) = Fsign(co) (fuluo)d;, ¢) - (3.125)

We can estimate both sides of this equality by Cauchy-Schwarz. For estimating the
right hand side we also use that || f,(uo)¢;ll;2 < || fu(to)|l o |52, Which follows
from the fact that f,(uo(z)) < || fu(uo)|| - for all z € R. We find

ol 1051172 F sign(co) (¥5+ ¢) = leol 165172 — 1951 12 11 22, (3.126)
Fsign(co) (fuluo)dy, &5) < | fuluo)ll o 651l L2 165 2 (3.127)

Applying both of these estimates to (3.125) gives
lcol 1051172 = 115ll L2 1951122 < Nl fuCuo) | oo Nl 051l 2 N0 22 (3.128)

which after dividing by ||¢}| is equivalent to

lcol 1951122 = 1¥sll 1o < Il fuluo) | poc Il 12

= leol 1951z < |l fuluo)ll e 8502 + 195l 2 -

Now we square both sides of the inequality and thereafter use the earlier seen inequality
(x +y)? < 222 + 2y2. This gives

Al 132 < (1fuluo)l e N5l 2 + 5] 2)°

< 2| fuluo) 7 1951172 + 2 15172

(3.129)

(3.130)
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and thus
2 2 2
0> cglldjll7z — 21 fuluo) oo 105172 — 211051172 - (3.131)

This is the second inequality that will come in handy later on in proof. Now we
introduce the positive constants a and m. We first define

1
a= imin{fu(l),fu(—l)}. (3.132)
Note that (A1) implies that a > 0. Now we take a positive constant m satisfying

a= mln {fuluo(x))} . (3.133)

<[>

This is possible because f,(ug(z)) converges to f,(+1) as + — £oo and is taking
values smaller then 1 min{f,(1), f,(—1)} for certain values of z. In particular there
exist values of x such that f,(uo(x)) = 0, which follows from wug(x) taking values in
(—1,1) in combination with (A1).

Recall that our goal is to show that ¢ # 0. Therefore we are seeking a positive lower
bound for flem #?(x) dz. To obtain such a bound a lot of estimating has to be done.

Using Lemma 1(3), Lemma 1(%) and the fact that f,(uo(x)) > — || fu(wo)|| e for all
x € R, we obtain

(W55 05) = (LG b5 + 6505, b5)
= (Ecod — ¢ + fuluo)ds + 6,65, b;)
= dco (¢, b5) — (] 5 05) + (Fuluo)dj , ¢5) + 65 (b5, ¢5)
=— (8], &) + (fuluo)ds, d5) + 65 65117
> (fuluo)gy, ¢J>

/fuuo (z) dx

- / Fuuo(2))62(x) i + / Fuluo(2))62(z) da
|z >m

|z]<m

> min (fulw@)} [ G@do- 1wl [ s

|z|> |z|>m |z|<m

=a 2§U Xr — 21’ X — w\U co 2:[ X
_ </R<z>]<>d /lme%()d) 1 uluo)ll, /Imqu()d

— allés12s — (@ + [ fuluo) ) / 62 (z) di

o] <m

(3.134)
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We now make another estimate using both Cauchy-Schwarz and the inequality —zy > — %x
This inequality follows from the well known inequality x2 + 3% > 2zy. We find

allélEa — 5 63) > alld e — 550 16510
= alloyls — (= eillz ) (Valiosl
> all6512 — oo 5112 — o 1%
= S50 — 5 Il

(3.135)

We combine the two previous obtained inequalities by first rewriting (3.134) and then
applying (3.135) to it. This gives

(a+ IIfu(u(J)IILoo)/| - &3 () dx > allg; |7 — (W5, &)
z|<m (3.136)

a 2 1 2
2 5 194llz2 = o [1¥5llz2 -

It is time to use the two inequalities we derived at the start of the proof. We denote

the positive constant B = 3 +2(c2 + 1) || fu(uo)|| 3. We now multiply (3.122) by % aCO
and (3.131) by 5%. So we get

acg acg Hfu(UO)HQLoo 2 aco
e R O M CRE 1)
and )
ach a || fu(uo) [l a
0> 2ljlize — =5 losli: — Zlvslie- (3.138)
Adding both of these to (3.136) gives
> acg
/1
(@ 4[| fuluo)ll o) ¢; (@) dow > o (11671172 + 95117
jo|<m 2B

2
+<”hW“g“%+”>wm;

a
2
1 aleg+1)

- (5 + 2 o

(3.139)
Furthermore, we notice that
2
a_allfuluo)llz~ (c§ +1)
2 B
, , (3.140)
a(cf +2(cg +1) 1fu(uo)llz=) 20| fuluo)llz (5 +1) _ acg

2B 2B 2B’
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We can substitute this into (3.139). To further simplify inequality (3.139) we introduce
the positive constants By and Bs. These are defined as

o an

B = B e u(u) ) (8.141)
e a(cd +1) 1

Bs = (2a+ B ><a+||fu<uo>||m>' (8.142)

Note that By is indeed positive, since ¢y # 0, shown in Lemma 2. We can now rewrite
(3.139) using these constants. We first divide the inequality by (a + || fu(u0)|| ;) and
thereafter insert the constants B4 and By where possible. This way we find that

/ L@z B (1167132 + 16532 + 16132 ) = Bsllos 13-
z|<m
3.143
= Bullés |13 — Bslos 2 (8.143)
=By — B5||1/)j||%2-

Here we used that ||¢;|| g2 = 1, which we assumed in the beginning of the proof. Recall
that lim;_,o [|9;]| ;. = AT and that ¢; — ¢ in L? .. So letting j — co on both sides
of the inequality gives

/ . ¢*(x)dr > By — B;(A*)? = B, (3.144)

since we assumed that A* = 0. Because By is a positive constant it follows that ¢ # 0.
But this gives a contradiction since we earlier obtained that ¢ = 0. Thus we must
have that A* > 0.

So we know there exists a positive constant Cs such that A* > C% We now let

8 € [00,01) and ¢ € H?(R) be arbitrary and we denote ¢ = L ¢ + d¢. Since we have

||m||H2 = 1, it follows from the definition of A% that
. LEd+ 60|, )
6l 10l 1l 2 01l 2 101l 2
Dividing by A* and multiplying by ||¢|| 2 gives
1
[0l 2 < i 1912 - (3.146)
After applying AE > C%, we obtain
19l sz < Co [l 2 (3.147)
and thus also )
18]l 52 < Ca {5 (v, 65)| + ||w|Lz} (3.148)
concluding the proof.
O
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3.2 Linearization ,Ci(S of the discretized Allen-Cahn equation

Now we’ll study the operator Ei(; as defined in (2.32). We do this by also using the
information we gained about ['0 in the previous section.

Let us first introduce two new quantities. We define A* (e, §) and A*(6) for every € > 0 and
for every § > 0. These are given by

+ _ + 1/ .4
A(ed) = inf_ 1{\@ +3 ]<£5,5¢,¢3F>'}, (3.149)
AE(0) = liminf A% (¢, 8). (3.150)

el0

Before stating the main lemma of this section we treat some key properties of Ef’ s- These
will help us proving Lemma 9 right after.

Lemma 8. Let /.Zgi(; be as in (2.32). Then

(i) E : HY(R) — L%(R) is a bounded operator;

(ii) for any ¢ € L*(R) and any ¢ € C§°(R) N H'(R), we have <£§5¢, §> = <gz5, £§5§>.

Proof. (i) Let ¢ € H*(R). Since we want to show boundedness, we need an upper bound
for ||£c 59 ;- of the form A ||@]| 1, with A being a positive constant. To find such an
upper bound we estimate

||£e,6¢HL2 = ||+cod’ — Ac + fuluo)d + 5¢”L2

(3.151)
< l£cod [l 2 + 180l L2 + | fuluo)dll L2 + (106 L2
Now since fy(uo(x)) < || fu(uo)|| ;= for all z € R, we get
IEestlze < leo 1911 + 1Autls + (el + ) Ile

< Aol 2 + (ol + [ fuluo)ll oo + 0) |0]] g1
The upper bound is almost in the right form. Only the term ||A.¢||, - is still a problem.
Estimating ||A.¢|| ;- gives

5 ok 6(z — ke) + 6l — ke) — 26(x)]

k>0

||A6¢||L2 =

L2

< 5 3 lowl (66 — ko)l o + 16z = k)l o + 262 12
2 (3.153)

4
=5 lonl 9]

k>0

4
5 lonl 19l

k>0

IN
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Since } ;- |ax| < oo by (A2), we can choose
4
A= 5 3 fo] + feol + [ fuluo)l| - + 6, (3.154)
k>0

satisfying || Lc 502 < Al|@|| 1. So we can conclude that L. s is a bounded operator
from H'(R) to L2(R).

(ii) Let ¢ € L*(R) and ¢ € C§°(R) N HY(R). Then
(£256. ¢) = (keod! = Ach+ fuluo)d + 60, C)
= :l:CO <¢’17 C> - <A€¢)7 C> + <fu(u0)¢a C) + <6¢a C> .

It is easy to see that (fu(uo)é, C) = (&, fuluo)C) and that (36, C) = (¢, 6C). By
Lemma 4 (iii) we have that (A.¢, ¢) = (¢, A.(). Using integrating by parts we find

(3.155)

(¢", Q) = /Rcb (@)¢(x) do = [p(x)C(2)] = — /Rd’(x)( (z) da (3.156)
= [p(@)¢(2)] 2 — (0. ¢)
Since ¢ € C§°(R), we have lim, 4 ((z) = 0. This causes [¢(x)((z)]”, to vanish.
Thus we get that (¢', () = — (¢, {’). Now we can rewrite the final expression in
(3.155). This gives
(256, ) =Feo (6, ) = (6, D)+ (6, Fuluo)O) + (6, 60)
= (¢, Feol' — A+ fuluo)C +4C) (3.157)
= (9, £T5¢).
O

Lemma 9. There exists a positive constant Cy such that A*(5) > CLU for all 6 > 0.

Proof. First of all we remark that the proof of this statement will be very similar to part
(¢) of the proof of Lemma 7. But, for completeness, we will yet show the proof.

Let § > 0 be any positive fixed constant. We take two sequences with certain properties,
namely {q}?io and {qu};io. We let {sj};io be a sequence with ¢; € (0,1) for all j,
where lim;_, €; = 0. For our other sequence {(bj};io, we let every ¢; € H'(R) such that
¢l 1+ = 1. By the definition of A*(§) there exist such sequences {ei},20 and {¢;}72,

that satisfy

lim {||¢jL2 + % (v; , ¢§>|} = A%(0), where ¢; = L ;¢;. (3.158)

Jj—o0

From this it follows that limsup;_, . [[9;]| - < A*(8). Thus {¢;}2 is a bounded sequence
in L?(R). Since ||¢;| ;. = 1 for all j, we have that {¢j};‘io is also a bounded sequence, but
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in H*(R). Now Theorem A1l can be applied to both sequences. It tells us that, by taking
subsequences if necessary, there exist functions ¢ € L?(R) and ¢ € H'(R) such that

Y; — 1 in L*(R) weakly, as j — oo, (3.159)
¢; — ¢ in H'(R) weakly, as j — oo. (3.160)
Furthermore Theorem A2 implies that, by taking another subsequence if necessary, we have

¢;j — ¢ in Li,.(R), as j — oo. (3.161)

loc

By the definition of weak convergence, see Definition A1, and by the continuity of the
absolute value we have

1 1
5|0 of)] = lim S [(e5, 67)]- (3.162)

Together with Theorem A3, this gives that
1 o 1 +
olls + 5 160 00 <tmint { gl + 5 0 00|} =450 169
Now we take a test function ¢ € C§°(R) N H?(R). From Lemma 8(4i) it follows that

(Wi, O = (LE 505, C) = (654 LT 5¢)- (3.161)

Now we let 7 — oo on both sides of the equation. On the left hand side it’s quite easy to see
what happens when we let j — oo. Since ¥; — 1 weakly in L?(R), we know that (¢, ¢)
converges to (¢, ¢). On the right hand side things are a bit more difficult. Writing out
gives

(63, £7.5€) = 05 Feol’ ~ AuyC+ Fulio)C +40)
= Fco <¢] ’ C/> - <¢] ) AE]‘C> + <¢] ’ fu(uO)C> + <¢7 ’ 5C> .
Now we examine what happens with each of the terms if we send j — oco. Since ¢; converges
to ¢ weakly in H'(R), it immediately follows that (¢;, (') — (¢, ("), (¢j, fu(uo)C) —

(@, fuluo)C) and (¢;, 6¢) — (¢, 6¢). By Lemma 4 (%) we have lim;_, ||A€j§ — C”||L2 =0.
Thus Theorem A4 implies that <¢j , A5j<> —{¢, (") as j — 00. So we find

(3.165)

Jim (65 LT 5C) = Feo (6. ¢') = (0, ")+ (@, fuluo)O) + (@, 50)

= (¢, Feol — "+ fuluo)C + 6¢) (3.166)
= (¢, (LT +9)¢).

So we conclude that letting j — oo on both sides of (3.164) gives
W, Q) ={(s, (LT +0) ) ={(LF+6)¢,¢). (3.167)

Since this holds for every ¢ € C§¢(R) N H?(R), we have ¢ = (LF +6) ¢ = L5 ¢ + d¢. This
is one of the requirements to be able to apply Lemma 7 to ¢. Now writing out L'Oid) in this
expression enables us to write ¢” = +cod’ + fiu(uo)@p + ¢ — 1. Each term on the right hand
side is part of L2(R). So ¢” € L*(R). Thus also ¢ € H?(R), as we assumed earlier that
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¢ € H*(R). We have shown that all requirements to be able to apply Lemma 7 on ¢ hold.
Using Lemma 7 and (3.163) we get

6l < Co {3 (6 D] + Il | < Can*o), (3.168)

It remains to find a lower bound for ||¢||, .. Directly from the definition of Ef’ s we find that
o) = £§7§¢j + A0 — fu(uo)p; — d¢j. Together with Lemma 1(7) and Lemma 4 (i)
this implies

ool §fll7e = (Feods, ¢))
= (L2 505+ Aey0 = fulu)d; = 50, , 6 )

(3.169)
= (L2505, 9)) + (82,05 0)) = (fuluwo)dy . ) =5 (5. 0))
= (¥5, &%) — (fuluo)g;, ¢}) -
Multiplying this on both sides by =+ sign(cg) gives
ol 165117 = £ sign(co) (¥, ¢5) F sign(co) (fuluo)ds, ¢5) (3.170)
< |eo| |6 117> F sign(co) (v, @) = Fsign(co) (fu(uo)d;, ¢}). (3.171)

We can estimate both sides of this equality by Cauchy-Schwarz. For estimating the right
hand side we again use || fu(u0)®; ;2 < || fu(uo)| L [|#5]l; 2 as seen in multiple proofs before.
This gives

lcol 161172 F sign(co) (¥5, &) > leol 1951172 — 1451 2 105]] 2, (3.172)
Fsign(co) (fu(uo)dj, &) < | fuluo)ll e 5112 16122 (3.173)

If we apply both of these estimates to (3.171) we obtain
lcol 1951172 — 11l 22 1651122 < Il Fu(to) | oo 165 22 1611 22, (3.174)

which after dividing by [|¢}| is equivalent to

lcol 195112 = l1hjll 2 < Nl fuluo)ll oo 165l 2

/ (3.175)
> |col |95l < 1 fuluo)ll oo 050l L2 + 1951l L2 -

Now squaring both sides of the inequality and thereafter applying the well known inequality
(x +y)? < 222 + 2y? gives

N5l < (1 Fuluo)lpoe sl g2 + 511 2)°

(3.176)
< 2| fulwo)l|7 572 +2 105172 -
We will need this inequality later in the proof. We define
1.
a= imm{fu(l),fu(—l)}. (3.177)
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Then by (A1) we notice that a > 0. Now we take a positive constant m satisfying

a= mln {fuluo(x))}. (3.178)

<>

This is possible because f, (uo(x)) converges to f,(£1) as + — +oo and is taking values
smaller then 1 min {f, (1), f.(—1)} for certain values of . In particular there exist values of
x such that f,(uo(x)) = 0, which follows from wug(x) taking values in (=1, 1) in combination
with (Al). Using Lemma 1(i), Lemma 4(iv) and the fact that f,(uo(x)) > — || fu(uo)||
for all x € R, we obtain

(5, 65) = (L 505, b5)
= (£cod; — Ac; 5 + fuluo)dj + 605, ¢5)
= tco (@], ¢5) — (Ac, b5, &5) + (fuluo)dj, ¢5) + 0 (b5, ¢5)

= — (A, b5, 05) + (fuluo)dy, d5) + 6 [|di ]
fu u0)¢] ) ¢J>

/fu uo(z))¢; (v) dv

- /|  uluo@)ei) @ / Fu(o0(2))62(x) de

lz|<m

(3.179)

> min {fulw(@)} [ G@)de = lfulw)~ [ oo

212 || >m || <m

=aQa 2£C X — 235 X — w U 0o 21’ X
- (/R@()d /|w<m¢ﬂ”d> M uluo)ll /M@()d

= allés 12 — (@t | fuluo) o) / () de

lz|<m

We now make another estimate using Cauchy-Schwarz and the inequality —zy > — %m2 — %y2,
which follows from the well known inequality 2 + y? > 2zy. We find

alléjlizz = (W55 ¢5) = allglze = 195l sl

2 1
—allgi ~ (75 Wil ) (Vallosl
2 1 2 _a 2
S Y P X
a 2 1 2
=5 I19illze = o 1¥illz2 -

(3.180)

We’ll combine the two previous derived inequalities by rewriting (3.179) and applying (3.180)
to this rewritten inequality. This gives

(@ o)l ) [ @zl (6 0)
z|sm (3.181)

a 1 2
> 20512 — 5 Iyl
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If we now multiply (3.176) by e EaTd) Ve get
2 2 2
a || fu(uo)l[p 19572 a7 - acp || #5117 (3.182)
20| a0z + 3 20 fuluo)llze + 3 2(2 0 uluo)lzn +3)
So we have
IS alfu)lie gl alvl s
202 fu(uo)lle +€B) 20 fuluo)lie + 2 20 fuluo)lli + €3
Adding this to (3.181) gives
(@t I u(el,) [ #wa>aQ— GO )wu2
u Lo j = JNL2
|z|<m ’ 2 ||fu(u0)||ioo + 0(2)/2
2
acy /2
+ 2 1651172 (3.184)
2(21| fuluo)ll +cf)
1 a 2
o s 14ll72 -
<2a 2 fuluo)lF + ) e
Furthermore, we notice that
2 2 2
a (1 o)z ) _a (nfu(uo)um +/2- ||fu<uo>|m)
2 ||fu(u0)||ioo +c§/2 2 ”fu(uO)H%OO +C(2)/2 (3.185)

ack

202 fu(wo)lie + )

To simplify inequality (3.184) we introduce the positive constants C3 and Cy. These are
defined as

2
Cy = 2% , 3.186
"7 Nl + B) (@t )l o) 150
1 a 1
C, = — . 3.187
4 (az*MUAwnzm+%><a+wamwm@> (3157

We are now able to rewrite (3.184) in a nice way. We first divide inequality (3.184) by
(a+ || fu(uo)l ;. ) and afterwards insert the just defined constants Cs and Cy where possible.
After executing these operations we find

[ ez 0 (10l +165152) ~ Culls

= C3|;ll5: — Ca 1951132
= C5 — Cy |93 -

(3.188)

Here we used that [|¢;]|,;, = 1, which we assumed at the start of the proof. Recall that
¢; — ¢ in L} (R). From the definition of convergence in L? (R), see Definition A2, it

loc loc
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follows that letting j — oo on both sides of the inequality gives

/ I< ¢*(z)dx > C3 — Cy jgr& ;115 - (3.189)

Because §|(¢, ¢§)| is nonnegative, it follows from (3.158) that lim;_,q ||1/)j||2L2 < AE(6)2.
If we apply this, we get that

/M $*(x)dr > Cs — Cah* (5). (3.190)

From (3.168) it follows that ||¢||2Hg < C2A*(6)%. We can connect this to the inequality
above. We find

CEAG = 0l = [oll3: = [ Pwydo> [ dPlayde=Com C*G2 (3101
R |z|<m

Rewriting this gives
(C3 4+ Cy) A*(5)* > C4

Cy (3.192)
= AE(6)2 > .
(9" 2 022 +Cy
1/2
Now defining C%) = (%) gives that A% (8) > Cio concluding the proof. O
2

Remark. For this proof to make sense it is important that ¢y # 0, which has been proven
in Lemma 2. Because in the case that co = 0 we would only have shown that A*(§) > 0,
since in that case C3 = 0. But this result immediately follows from the definition of A*(§)
and clearly is too weak to advance in proving Theorem 2.

With this theorem we managed to use the knowledge from the continuous case and connect
this to the discrete case. Now we are ready to prove Proposition 1 as stated on page 22.

3.3 Proof of Proposition 1

Proof. Let 6 > 0 be arbitrary. From Lemma 9 we know there exists a positive constant C
not depending on ¢ such that A*(§) > C%) By the definition of A*(4) there has to exist
a positive constant £o(8) such that for all ¢ € (0,£0(5)) we have A*(g,d) > Cio Now we
consider the operator L'Eiﬁ for e € (0,e0(9)).

Before showing £F; is a homeomorphism from H'(R) to L?(R), we will first prove that we
have a homeomorphism when Ef’ s maps from H'(R) to its image Ei s(HY(R)). Surjectivity
is easily given, since we let Ef’ s map to its image. Furthermore, since Lemma 8(7) implies
that Ef s is bounded, it follows from Theorem A5 that Ef’ s is continuous.

For injectivity we show that ker(ﬁié) = {0}. We first take ¢ € H*(R) with [|¢[| ;. = 1.
Assuming /J: 5@ = 0 then gives A*(e,6) = 0. This is impossible because we observed earlier
that A*(e,d) > C%) So we must have L’i@ # 0 in the case of ||¢[|;: = 1. Now we can go
to the general case taking ¢ € H'(R) with ||¢||;1 = A > 0. Using the linearity of ﬁei,é we
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get £i6¢ Ei (A¢) Aﬁsié( ). Since ||A||H1 = 1, we have Esi(;( ) # 0 and thus also
5qb # 0. So we indeed have ker(ﬁs 5) = {0} and thus £* 5 is injective.

To show that the inverse of £+ P is also continuous we use Theorem A5. It tells us the inverse
of £i 5 is continuous if there exists a constant K > 0 such that

sup |27y = K. (3.193)
YeLE (HL(R)), |9l 2 <1 i
So our goal is to find a constant K > 0 such that this holds. First we let ¢ € E:(S (HY(R))
and assume 0 < ||| ;. < 1. For better readability we denote ¢ = (E:(;)’lip, from which we
can derive ¢ = Eféqﬁ. Since ”W”Hl = 1, we have, by the definition of A*(e, ), that
) H

A¥ed) < ’Lfiw(ﬁs #5 (ot 98)
Az ) H (3.194)
P2 v, ég )|
= ol i+ g 6098
Dividing by A*(e,§) and multiplying by ||¢|| ;1 gives
L +
6l < g5 (Iolle + 510 65)1). (3.195)
Now applying the inequality A*(e,d) > C%) we obtain
1
6l < Co (Il + 5 (6 6 ) (3.196)

which is one of the results in Proposition 1 indicated by (3.2). From this we can also derive
(3.3), because after assuming ¢ L ¢ it immediately follows that

1Pl < Coll¥ll 2 - (3.197)
After this little detour we now get back to showing that (3.193) holds for some K > 0. We
apply the inequality |[4]| ;. < 1, Lemma 6(7) and Cauchy-Schwarz to (3.196). This gives

1
J6lls < Co (1l + 5 1ol Il

1
< - .
fi+1)

So we have found that ||(£§5)*1¢||H1 = ||¢]| 1 is bounded above by a constant when as-
suming 1 € Eié(Hl(R)) and 9|2 < 1. So it follows that there has to exist a constant
K > 0 such that (3.193) holds. Thus we can conclude that the inverse of Ejf 5 Is continuous.

(3.198)

So we have now shown that the operator L;E s mapping functions from H'(R) to its image
ﬁf s(H'(R)) satisfies all the properties of a homeomorphism. We are done if we can show
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that E:(S(H1 (R)) = L%*(R). We claim that this is the case and we’ll prove it by contradic-
tion.

So we first assume £ ;(H'(R)) # L*(R). We have just shown that H'(R) and £ ;(H'(R))
are homeomorphic. Because H!(R) is complete, it follows from Theorem A9 that E: s(HY(R))
is complete as well. Lemma 8(%) tells us that Lié(Hl(R)) C L*(R). So we can use Theo-
rem A10 to conclude that Eiﬁ(Hl(]R)) must be closed in L(R).

Now Theorem A6 implies there exists a nontrivial ¢ € L?(R) being orthogonal to E: s(HY(R)).
So by Lemma 8 (i) we have 0 = (Eiégb, P) = (¢, LT 59) for all ¢ € H(R)NCE®(R). Writing
this out we find

0= (o, /:2:,5¢> = (¢, Feo)' — Ay + fuuo)y + 6¢)

/ (3.199)
= Feo (b, ¥') + (P, —AcY + fu(uo)y + 5¢).

Using integration by parts it can be found, in the same way as in the proof of Lemma 8 (i3),
that (¢, ¥') = — (¢, ). After applying this, we do some rewriting to find

, 1
(6 9) = (6, = (Bt~ fulwo) —69)). (3.200)

So we know the weak derivative of v, see Definition A4, and we will denote it as 1,,. Hence
we have 1, = ==— (A — fu(up)w — 5v). In the proof of Lemma 8(ii) we showed that

+co

[ fu(uo)ll 2 < 1l fu(uo)ll oo 1]l 12 and that A2 < 5 Ypsg larl 9]l > Using these
we find that

1
[Wulle = = 186 = fuluo)o = 01
1

S (1Al 2 + [ fuluo) ]l 2 + 169 L2) (3.200)
1 4
S Te <€2 ;OI%I + [ fuluo) |l 1o +5> 1Yl 2 -

Notice that >, |ox| < co by (A2). Since we also have that ¢ € L*(R), it follows that
w2 < oo and thus ¢, € L*(R). A more formal definition for H'(R) states that a
function f lies in H'(R) if both f and its weak derivative lie in L?(R). Because this is the
case for 9, we can conclude that ¢ € H'(R) and therefore Esi#;@[} € L*(R).

Now we take ¢ € L2(R) arbitrary. Since H'(R) N C§°(R) is dense in L2(R), there exists a
sequence {(,}o in H'(R) N C§°(R) such that ¢, — ¢ as n — oo. Using this together with
the earlier obtained fact that (¢, LT ;4) = 0 for all ¢ € H'(R) N C5°(R), we find that

(¢, £T50) = lim (Gu, LT;0) = lim 0=0. (3.202)

This tells us that LT 59 is orthogonal to every function in L*(R). Since LT ;4 € L*(R), it
must be that £ 54/ = 0. From the injectivity of L¥; it follows that ¢ = 0. So ¢ is indeed
trivial and we have a contradiction. Thus we must have L’: s(H'(R)) = L*(R). We can now
conclude that £ is a homeomorphism from H'(R) to L*(R). O
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3.4 Proof of Theorem 2

Before proving Theorem 2 we do some last preparations. During these preparations we
want to find bounds for some norms involving operator R(c, ¢), where R(c, ¢) is as in
(2.33). These bounds will turn out to be very helpful when proving Theorem 2. To obtain
these, a handful of lemmas is treated. But first we introduce a few things.

We define
Xy ={ocH'R)| ¢l <n}. (3.203)

For every ¢ € X,;, we choose ¢, = c.(¢) such that R(c., ¢) L ¢y . So we have
(Rlce,d), @) = colug+d', dg) —ce{ug + ¢, &)
+<A€u0 - U’/O/’ ¢6> + 6<¢7 ¢a> - <N(u07¢) ) ¢a> =0.
After rewriting this we find that

_ (Acuo —ug, ¢g ) + (¢, by ) — (N(uo, 8), ¢g)
ce(¢) = co + = : (3.205)

Furthermore we let ¢ be defined as 6 = % <u6 , Do > Writing this out gives

(3.204)

6‘:

x = >0.  (3.206)

o -\ _ [ué(x)]Q e—Co® fR [U6($)]2 =0T
v /R 2@ M 5], (o e )

So & is a positive constant. Using Cauchy-Schwarz and Lemma 6 (i) we obtain

8", b))l < ¢ llp2 lldg L2 <@l < for every ¢ € X, (3.207)

We use this and from now on require n < . It follows that

(ug+ ¢, g ) = (ug, oo ) + (', ¢g) =26+ (¢, ¢g) >26 —n > for every ¢ € X,,.
(3.208)
This property of 6 will be helpful when deriving some of the estimates in the following
lemmas.

Lemma 10. Let N(ug, ¢) be defined as in (2.34) and require n < &. Then there exists a
positive constant M such that

IN(uo, ¢)| < Mn|¢| and |N(ug,p1) — N(ug, p2)| < Mn|p1 — ¢2 (3.209)
pointwise for all ¢, ¢1, P2 € X,,.

Proof. We let ¢, ¢1,¢2 € X, arbitrary and we require 7 < . From Theorem A7 it follows
that there exists a positive constant a such that ||¢[|,« < a @]l g1, (|01l < alldi]l
and [|¢2]| e < @ d2] 1. These inequalities will be used quite frequently in this proof.
Furthermore we can, without loss of generality, assume that a > 2. This will turn out to be

quite helpful.

Before we estimate the nonlinear term N(ug, ¢), we first rewrite f(ug + ¢) pointwise using
Taylor’s theorem. It tells us that

flug + @) = fuo) + fuluo)p + %fuu(tﬁé2 with ¢ lying between ug and ¢. (3.210)
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So |t| can be estimated by |t| < |ug|+ |¢|. Theorem 1 implies that ||ugl|; . < 1. This allows
us to further bound [¢|. We get

] < Juo| + 18] < lluoll o + 8l < 1+alléln <1+an<itas.  (3:211)

We define M = SUD|s|<1+43a5 | fuu(8)] and set M = aM. Notice that | fuu(t)] < M. We are
now ready to estimate N(ug, ¢). Using (3.210) we find that

IN(uo, 8)| = £ o +6) ~ Fot0) ~ fulwo)d] = 5 | fua(6?] < | fu(1)67]
< 1 fuu 1161l 161 < @1 £ua ] 16111 6] < N 0] = Mg

It remains to estimate the distance between two nonlinear terms. Using Taylor’s theorem
we can write that

(3.212)

fulug + ¢2) = fuluo) + fuu(t2)d2 pointwise with to lying between ug and ¢o.  (3.213)

We also rewrite f(ug + ¢1) pointwise using Taylor’s theorem. It states that there exists a
constant t; lying between ug + ¢ and ¢1 — ¢o such that

fluo + ¢1) = f(uo + ¢2) + fuluo + ¢2)(d1 — ¢2) + %fuu(tl)((ybl — $2)2. (3.214)

Replacing f,(ug + ¢2) by (3.213) gives

fluo + ¢1) = f(uo + ¢2) + (fu(uo) + fuu(t2)d2)(d1 — ¢2) + %fuu(tl)(qsl — $2)?. (3.215)

We estimate the difference of the nonlinear terms by replacing f(ug + ¢1) with (3.215). This
gives

IN(uo, ¢1) — N(uo, ¢2)| = | f(uo + ¢1) — fuo) = fuluo)dr — f(uo + ¢2) + f(uo) + fu(uo)d2|
= fuult2)b2(61 — 02) + 3 Fu01) 91— 62)°]
< uult2) 1021161 — B2l + 3 fuu(t2) 11 — 6

(3.216)

This bound is not the one we are after and thus we want to bound it even further. Since
|t2| can be bounded in the same way as |¢| in (3.211), it follows that |fu.(t2)] < M. |t1| can
be estimated in a similar way. We have

1] < uo + g2 + |¢1 — G2 <1+ [d1] +2|¢2| <1+ 1]l + 2|2l o (3.217)

<1+alléill g +2a|palln <1+ 3an <1+ 3a6. '

So we also have |fy.(t1)] < M. As estimated many times before in this proof we have
|¢1] < n and |p2| < n. Using these we can bound |¢; — ¢2|2. We get

61 — @2|* = [(d1 — h2)?| = |67 — Pr1db2 + &5 — P12

< o7 — d102| + |03 — P1d2| = [d1]|d1 — Pa| + |P2|d2 — d1] < 2n|d1 — al.
(3.218)
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Combining all these observations we can further bound (3.216). We also use the assumption
a > 2 that was made in the beginning of the proof. We find that

IN(ug, é1) — N(uo, ¢2)| < Mu|dy — do| + Moy — ¢2| < aMn|dy — do| = Mn|¢1 — ¢s
(3.219)

concluding the proof. O

Corollary 2. Let N(ug, ¢) be defined as in (2.34) and require n < 6. Then there exists a
positive constant M such that

IN(uo, ®)|l 2 < Mn® and |N(uo,d2) — N(ug, ¢1)|l2 < Mn|dp1 — dollzn (3.220)

for all ¢, 91,02 € X,,.

Proof. Let M be the positive constant from Lemma 10 and let ¢, ¢1, ¢2 € X, be arbitrary.
Both results follow almost immediately from Lemma 10. It implies that

1/2
IN(uo, & ||L2—(/ IN(uo, 6) d:c)

s (3.221)
< ([ arrpowras) = amlol,s < i
R
and that
1/2
[N (uo, p2) — N(uo, ¢1)ll 2 = (/ IN (g, ¢p2) — N(ug, ¢1)|* dSC)
1/2
< ([ 310 - ato) a (3.222)
R
= Mn|é1 — b2l 12
< Mn |1 — 2|l g -
O

Lemma 11. Let c.(¢) be defined as in (3.205) and require n < &. Then there exists a
positive constant M such that the inequalities

e2(6) ol < 5 (IAeto — o + (5 + M) (3.223)

and

2
lce(¢1) — ce(92)] < ||o1 — D2l 53 (HAauo — w2+ (6 +n)(+ Mn)) (3.224)

hold for all ¢, 1, P2 € X,,.
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Proof. Let M be the positive constant from Lemma 10 and let ¢, ¢1, ¢2 € X, be arbitrary.

From (3.208) and Lemma 6(%) it follows that

le=(¢) — co| = ‘(AEUO —uy, ¢5><;; iii;/ ¢i>>— (N(uo, @), ¢5>‘
0 s> Yo
1
1
< 2 (1820 = wll e 165 122 + 819112 10 L2 + [N (o, )2 15 22
1
<3 (HAauo —uf|| 2 + 0n + | N(uo, ¢)||L2),

Using the estimate of | N(ug, ¢)||; - from Corollary 2 we find that

1
cc(9) = col < 5 (I1Acuo = ufl 2 + (0 + M)n).

(3.225)

(3.226)

The first part of the proof is now completed. So we can start with the second part, in which
we estimate the difference between c.(¢1) and c.(¢2). For readability reasons we introduce

D(9) as
D(9) = (Acuo — ul, &) +6(6, d5) — (N(uo, ), 6).

Rewriting the difference between c.(¢1) and c.(¢2) as one fraction gives

| Dy Dy

o)== |~ T e

(v + 6, 63YD(81) ~ (b + 81, 65)D(0)
(v + G 00100 + . 00)

Now it follows from (3.208) that

ee(d1) — ce(92)| <

6-2
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1
|(ug + ¢, 60 )D(¢1) — (ug + 61, ¢g)D(¢2)] .

(3.227)

(3.228)

(3.229)



Now we take |(uf + ¢, ¢ )D(¢1) — (uf + ¢} , ¢ )D(¢2)| and write it out in a handy form
such that we can estimate it. We compute

— [{ub, 63) + (81, 63)] [(Bero — uf , 67) + 862, 65) = (N(uo,62) , 67)] |

=[(uh, 05 (3061~ b2, 65) + (N(uo, 62) — N(uo, 6n) , 65))
(Do — i 63)(0% — 61 65)
+3((0h, 63) (61, 63) = (91, 67) (62, ¢5))
(0 63) (N0, @1) , 65) + (@1, 95 )(N(uo,62)., 5]

< |tuh, 95) (8461 — 62, 65) + (N(uo, 62) — N(uo, 61) . 7)) |
+ (Ao —ug, d9 )¢ — 61, 60)]
+ |5 (4t 65401, 60) = (94, 63)(02. 60))|

+ |<¢/1 ) ¢5><N(an¢2)a ¢5> - <¢/2 ) ¢5><N(U07¢1) ) ¢5>| .
(3.230)

We want to bound this further. This will be done by treating each term in absolute value
separately. Lemma 6(7), implying that ||@, ||z2 = 1, will be used a lot of times in this part
of the proof.

To estimate the first term we use the estimate of ||N(ug, ¢2) — N(ug, ¢1)]|;> from Corol-
lary 2. Furthermore we recall the definition of &, which implies (ug, ¢y ) = 26. We find
that

[, 65 (3061 = b2 65) + (N(un, 62) ~ N(uo. 1) , 65))|

<0 |{ug, 9| [(¢1 — b2, ¢9)| + [(ug, 65| [(N(uo, ¢2) — N(uo, 1), ¢ )|
<266 [[¢1 — @2 12 |90 122 + 26 [N (uo, ¢2) — N(uo, 1)l 12 |¢o [l 22
< 206 ||p1 — G2l g1 + 26 M [ ¢1 — P2l
=26 |1 — b2l g1 (6 + Mn).
The first term has been estimated, so we move on to the second term. We estimate
[(Acuo —ug , dg )¢5 — 1+ 65| < [Acuo — ugllz2 ég |22 (195 — ¢l 2 llég Il 22
< [[Acuo = ugll 2 l[d2 = dull (3.232)
< 2|[Acuo — ugll 2 lld2 — dull -

(3.231)

In the final step the expression is doubled. This isn’t necessarily needed, but it will turn
out that it fits in very nicely with the estimations of the other terms. Now we estimate the
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third term. This gives

5(40h. 63) (61, 63) — (81, 63)(62, 67) )|

= 0|(6h, 93)(61, 67) — (65 67) (62, 67) + (0, 67) (02, 67) = (91, 7 ) (o2, 07|
= 6|(¢h, 6 ) (61— 62, 93) + (02, 673)(65 — o, 60|

< 3](0%, 05 ) (01 — b2, 05)| + 3 |2, 05)(05 — 81, 65))|

< (110012 165 122 191 = Gall 2 195 1122 + 6l 2 195 1122 194 = G5l 2 195 1122 )

< 6(I6ll s 61 = Ball s + 1621 llén = Gl )

=26 g2l 1 |61 — B2l g

<20m |1 — P2l g1 -
(3.233)

Only the final term is yet to be estimated. For this we use the estimates from Corollary 2.
We find that

(64 67) (N (0, 62) , 65) = (6%, 7 )(N(uo,61), 5)]

= |(@1 65)(N(uo.é2) , 65) = (9}, 63)(N(uo, 61) . 7)
(6 67N (o, é1) , 65) = (6%, 65 )(N(uo,61), ¢5)]
— |(01, 63) (N(uo,62) ~ N(uo, 1), 6) + (4 = 6%, 65)(N(uo, 62, 5|
< (61 69 ) (N(uo, é2) = N(uo, 1), é5)| + [(¢1 = 85 85 ) (N(uo, é2), 65)]
< 1164112 195 122 IN(uo, 62) = N(uo, 1)l 2 165 122 + 1165 = 652 65 |12 N (uo, 62 2 65 |

<61l Mnllér — bl + llér — G2ll o Mn?

<2Mn? |1 — ol gy -
(3.234)

We have found an estimation for each of the four terms. Thus we are now able to further
bound the expression we were left with at (3.230). Using the four estimations we find that

(up+65 . 93)D(1) — (uhy+ 61, 67)D(00)

<2 H¢1 - ¢2HH1 (5 + M77) +2[|Acup — u3||L2 |2 — ¢1||H1
+20m |61 — dall g1+ 2M0? (| ¢1 — ball (3.235)

=261 — dall i (| Actio = w2 + & (5 + M) + bm + My?)

=261 = 9l (180 = uf 2 + (& +m) (6 + M) ).
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So it now follows from (3.229) that

e=(61) = e=(62)] < 161 = Ball s g (I1Bctwo — o + 6+ ) 5+ M) (3:236)

completing the proof. O

Lemma 12. Let R(c, ¢) be defined as in (2.33) and let c.(¢) be as in (3.205). Furthermore
require 1 < 6. Then there exists a positive constant M such that the inequalities

IRe0): Dse < (5 ubles )+ 1) (18ctn =~ e+ 6+ 2 ) (3.287)

and

[R(ce(1), ¢1) = R (ce(92), B2l 2

9 , X ) X (3.238)
< N6 = 02l =5 (180 = w2 + (& + m)(@+ M) ) (b2 + 1+ 5/2)

hold for all ¢, $1, P2 € X,,.

Proof. Let M be the positive constant from Lemma 10 and let ¢, ¢1, ¢2 € X, be arbitrary.
Since ¢g — c.(¢) is just a constant we have that

[R(ce(9), D)l 12 = ll(co — (@) (ug + @) + (Acuo — ug) + ¢ 4+ N(uo, ¢)| 12
[ug + @'l > + 1Acuo — ugll > + 0 18]l 2 + IN(uo, @)l

<lco —ce(9)
< feo = co(@)] (Ipll e + 1611) + 1Acto = s + 8 16l = + Nt )

(3.239)
We can bound this further using Lemma 11 and Corollary 2. We get
1 1 i
IR(e(6), 8l 2 < = (10 =l 2 + (3 + M) (Il = + 16l 1)
+ [ Acuo — ugll 2 + 6 16]l 1 + Mn?
1
< = (I1aauo = ufll e + 6+ Mn)n) (Jlupl = +n) (3.240)

+1Acuo — gl 2 + (6 + Mn)n
1
= (1cuo = s + @+ ) (3uplss + 2} +1)

So the first of the two inequalities has now been proved. It remains to show that the second
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inequality holds as well. We get
[R(ce(1), ¢1) — Rlce(d2), d2)ll 2

= ||(co — c(¢1)) (uh + &) + Acug — ug + 51 — N(ug, ¢1)
— (co — ce(2)) (ug + ¢h) — (Acuo — ug) — 62 + N(ug, ¢2) ||,

= [[(c=(62) = c=(én)yug + (co = c=(¢1))} (3.241)
— (co — ce(¢2))dy + 0(d1 — ¢2)+N(uo, ¢2) — N(ug, ¢1)||

< lec(@2) = c=(d1)] lupll g2 + [I(co — c=(d1)) @) — (co — c=(¢2)) 3l

+ 6161 — @2l 2 + [N (uo, d2) — N(uo, ¢1)]| 2 -

The term ||(co — c(¢1))P} — (co — c(¢2))P5]| 12 is the most difficult to estimate. Therefore
we will first estimate it seperately. We find that

I(co = ce(é1))dy — (co — c(¢2)) bl 2
= [l(co = c(¢1))dh — (co — ce(2))ds + (co — co (1)) — (co — c= (1)) Pl .-
= [l(co — c=(¢1))(d1 — #5) + (ce(d2) — ce(1)) B2l -
< lco = ce(@1)l 161 — dall 2 + lce(d2) — ce(dn)| |05l 2
< leo = ce(d1)] |01 — D2l g1 + lee(B2) — c(d1)| |2l
< leo = ce(@)l |91 — a2l g1 + |ce(d2) — ce(d1)]n.

Furthermore we have that ¢ |[¢1 — ¢2||;2 < 0 [|¢1 — @2/ 1. So now bounding (3.241) further
gives

(3.242)

)
)

[R(ce(1), ¢1) — Rlce(¢2), d2)ll 2

< le=(p2) — co(d1)] ([ubll 2 +n) + lco — c=(61)] |61 — Pl (3.243)
+ 0 ||p1 — G2 g1 + |IN(uo, ¢2) — N(ug, ¢1)| 12 -

Now we apply the inequalities from Lemma 11 and Corollary 2 to this expression. It follows
that

[R(ce(91),d1) — Rlce(d2), d2)l 12
2 " A i
< llér = dallin =5 (180 = w2 + (@ + ) (3 + M) ) (Il = + )
1
+ 1161 = ball 2 = (1180 = w2 + (6 + M)
+ 1161 = @2l g1 (6 + Mn) (3.244)
2 " A li
= llé1 = dall s = (I18cu0 = w2 + (@& +m) (3 + M) ) (Il = + )

1 , R
+ ”d’l - ¢2||H1 E(HAEUO - U6||L2 + (U+77)(5+M77)>

2 . N
= o1 = b2l s =5 (180 =l 2 + (& +m) (6 + ) ) (Il 2+ + 3/2).
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O
Consequence 1. Since ||R(c:(¢), )| 2 is bounded, it follows that R(cc(¢),$) € L*(R).

We have acquired enough information about the operators Lsi 5@ and R(c, ¢) to be able to
prove Theorem 2, see page 22, which is the main goal of this thesis.

Proof of Theorem 2

Proof. We start by letting 0 and 7 be small positive constants. The exact values will be
determined later, but we already require n < . Furthermore we require ¢ < £¢(9), where
go(+) is the function as defined in Proposition 1. We define T : X,, C H*(R) — H*(R) by

T¢ = (L5)7 R(c=(), ). (3.245)

Consequence 1 states that R(c:(¢),¢) € L*(R) for any ¢ € X,. Since (5:75)_1 maps
function from L*(R) to H'(R), it is clear that T indeed maps functions from X, to H'(R).
The goal is to show that this mapping T has got a fixed point. If this is the case, it is not
too hard to show that equation (2.16) has a solution. We can show that T has a fixed point
by using Theorem A8, known as Banach’s Fixed Point Theorem. We are allowed to use
this theorem if T satisfies two properties. The first one is that T has to be a mapping to

itself, so from X,, to X,,. The second one is that T has to be a contraction mapping, see
Definition A5.

We will proceed as follows. First we find bounds for || T¢|| g1 and ||T¢1—Thso| 1. Thereafter
we determine the values of § and 7. This will be done in such a way that both required
properties for T follow.

Let us first find a bound for | T¢|g: with ¢ € X, arbitrary. Since R(c.,¢) L ¢, ,
Proposition 1 implies that we have

1Tl = [|(£25) 7 Recol0),8)| < CoIR(eo(6), )2 (3.246)

We can further bound this using Lemma 12. This gives

1
ITol < Co (il 40 +1) (Idcuo = uflls + G+ Maa). 3247)

We now introduce £ = max{1,26}. Then E > 24, from which it also follows that
C%iE > 2Cy > Cy. Remember we also did require n < 6. So we can estimate

1 CoE (2 .
Co (il + 0} +1) < 8 (2luila + 0} 41). 2s8)

We will denote the constant on the right hand side by A. So

CoE

A= 5 <§{||u6||L2 +6}+ 1> : (3.249)
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This constant does not depend on §, 7 or €. This will be an important detail when deter-
mining the values of § and 7. Now we apply (3.248) to (3.247). We find

1Tl < A(Aauo et (Ot Mn)n). (3.250)

Later in the proof it will turn out that this bound is precisely the one we need. Now we
move on and try to find a bound for || T¢y — Tos||g: where we let ¢1, ¢2 € X, arbitrary.
Note that (E: s) "' is linear since it’s an inverse of a linear bijective mapping. We use this
and again apply Proposition 1 to find that

ITé1 = Toall s = [[(£2) 7 Ricalon), 1) = (£25) 7 R(ce(@2) 2)|

Hl

= (€207 (Rica(01), 1) = Ric(62), 62) (3.251)
S CO ||R(CE(¢1)7 qSl) - R(CE(d)Q)a ¢2)||L2 .

Now it follows from Lemma 12 and the definition of £ that

[Té1— Tl g

”

2 R A
< Collér = dall s = (180 = wgl = + @&+ m)(3 + Mn)) (Il + 1+ 6/2)

< Co llér = ball = (1 ct0 = ufll = +26(5 + M) ) (Ilupllss + & + &/2)

2C0F A A

< llé1 = dll i1 —5— (I18tu0 = w2 + 0+ M) (b2 + 6 + 6/2)
CoE 2 .

= llé1 = dall o= - = (bl 2 + & +6/2) (| dcuo = uf | 2 +0 + M)

E /2 X
= [l¢1 = ol T(g{”%”m +6)+ 1) (||A€uo — .+ 0+ Mn)

= A(l18cu0 = g 2 + 8+ M) 61 = 62l -
(3.252)

We have now also got a bound for || T¢; — T¢sl| g1, which means we are ready to determine
6 and 1. We choose
1

62@

.1
and 7 = min {0’, 4]\4/1} (3.253)

From Theorem 1 it follows that wg(z) satisfies the conditions of Lemma 4(i). So we have
that
lgiﬁ)l |Acug — ugll 2 = 0. (3.254)

Therefore we can choose a small positive constant €* < g¢(d) such that

min{1,
swp | Acuo — ] » < oAb

(3.255)
e€(0,e*) 4A

Keep in mind that A doesn’t depend on §, i or €. From now on we assume ¢ € (0,&*).
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Using the bound above and the given values to § and n we can further bound (3.250). We
estimate

1Tl < A(uAauo e Ot Mn)n)

no, !
< —_— — _—
=4 <4A g T Momin {U’ 4MA}> (3.256)

Hence T¢ € X,,. So we can conclude that T is a mapping to itself, namely from X, to X,,.
We still have to show that T is a contraction. We again use (3.253) and (3.255), but now
to further bound (3.252). We estimate

ITé1 = Toal s < Cs (Ao = ul o + 6+ M) |61 = éall

min{1,n} 1 1
< sl et 0 2 B _— — .
<G ( 1c, T ag, TMwmin {“’ AMC; }) 161 = 621l

(3.257)

1 1 1
=Cs (405 T T 405) 61 = é2ll.x

3
=1 |1 — b2l g1 -

So we see that T is indeed a contraction mapping. Thus we can use Theorem A8, which
states that T must have a unique fixed point. So there exists a ¢. € X, such that T¢, = ¢..
Hence (E;(;)_lR(cg((éE), ¢e) = ¢ by the definition of T. Now we let /“:,6 operate on both
sides of this equation to obtain

R(Ce (d)s)a Pe) = ‘6:5 Pe- (3.258)

Now it follows from Lemma 3 that u. = ug + ¢. must satisfy ccul — Aue + f(u:) =0,
where we use the shorthand notation ¢. = c.(¢:). So (ce,us) is a solution to equation
(2.16). Since we have let ¢ € (0,&*) arbitrarily, there exist such a solution pair (c.,u.) for
every € € (0,e*). Uniqueness follows from the uniqueness of the fixed point ¢..

It is only left to show that lim. o(ce, ue) = (co,up). If we let € | 0, then the left hand side
of (3.255) will become very small. So this means we can pick 1 very small without violating
(3.255). Thus if we let € | 0, we can let | 0 as well. Since ¢. € X,,, ¢. has to converge to
0. So limg o ue = up + limg o ¢ = up.

We can use this reasoning again to derive that c¢. converges to ¢q if we let € | 0. From the
definition of c.(¢), see (3.205), it follows that

<A€u0 - uga ¢6> + 6<¢6 ) ¢a> - <N(u07¢5) ) ¢a>
(ug + oL, &g )

ce =ce(pe) = co + (3.259)
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We'll show that all of the terms in the numerator converge to 0 as e | 0. Lemma 4(i) tells
us that Acug —uf converges to 0 in L2-norm as we let € | 0. So applying Theorem A4 gives
that lim. jo(Asup —ug , ¢g) = 0.

Recall that letting € | 0 allows us to let n | 0. Then Lemma 10 implies that

i < li 2 =1 2=0. .
limn [[N(uo, ¢e)ll > < lim My®” = lim Myy” =0 (3.260)

So N(ug, ¢-) converges to 0 in L?norm and we can again apply Theorem A4. This gives
that lim. o (N(uo, ¢¢), ¢g ) = 0.

Since ¢. converges to 0 as ¢ | 0 it follows that lim. o d(¢c, ¢, ) = 0. Combining these
observations we find that

E\fgcs(ﬁba) — o+ 151}})1 <A6UO - uf)/a ¢5> + 6<¢E7 ¢6> — <N(u07 ¢6) ) ¢5> — ¢o. (3261)

(ug + 0L, g )

Thus indeed lim.o(ce, ue) = (co, uo), which concludes the proof. O
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4 Conclusion

In this thesis we have shown that discretized partial differential equation (2.16) has a so-
lution. The equation depends on the value of € and thus we get different solutions when
we vary the discretization step size. So if we regard a real process in nature that can be
described by (2.16), then the space we work in can really impact the behaviour of such a
process. But what is still unclear, is how big this impact is. It would be very interesting to
examine what the impact of choosing the discretization step size has on the solution. One
could also wonder for what values of the discretization step this model is suitable.

Furthermore, we have only looked into travelling waves, so waves with a nonzero wave speed.
But what if the wave speed is equal to zero? Can we then still find a solution to our prob-
lem? We could also replace the infinite sum we used to approach the second order spatial
derivative with some other approximation, for example in the form of an integral. Does
the equation then still have solutions? And if it has solutions, how does it differ from the
solution to the equation in this report?

Thus we see that this study can still be extended in various ways and perhaps improved.
But the proof shown in this study could be helpful in future research regarding this subject.
An example is when the second order spatial derivative is replaced by a convolution kernel
such as

0? o
sezt@t) = [ K@l od.

This research can also be helpful when considering the discretized Allen-Cahn equation in
more than one dimension. So there are plenty of opportunities for further research.
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Appendix

Definition Al. Let H be a Hilbert space and let {¢; };’;0 be a sequence in H. Then we say
@; converges weakly to ¢ in H if

(Gj )y = (¢, V) as j— oo, forallyp € H.

Definition A2. Let {@-};io be a sequence in L*(R). Then we say @; converges to ¢ in
L? (R) if for every compact set K C R

loc

[ @-02 =0

Definition A3. Let X and Y be normed vector spaces and let T : X — Y be a mapping.
Then T is called a homeomorphism if it is a bijective and continuous linear mapping that
has an inverse mapping which is continuous. If such a mapping exists, we call X and Y
homeomorphic.

Definition A4. Let ¢ € L?(R). We say that 1, € L*(R) is the weak derivative of 1 if

(@, ) == (0, Yu)
for all ¢ € C§°(R).
Definition A5. Let X be a subset of a normed vector space. Then T : X — X is called a
contraction mapping if there exists some constant a with 0 < a < 1 such that
[Tz =Tyl < oz -y
forallz,y e X.
Theorem A1 ([9, Theorem 5.73]). Let {4,/ =°° be a sequence in either L*(R), H'(R) or

| j=o bea:
H*(R). If {¢;}/=5" is a bounded sequence, then {1;}1_(" has a subsequence that weakly

converges in the corresponding function space.

Theorem A2. Let {w]}iigo be a bounded sequence in H'(R). Then {w]}gigo has a sub-

sequence that converges in L7, (R).

Theorem A3 ([9, Exercise 5.29]). Let H be a Hilbert space. Assume that 1; — v weakly
in H as j — oo. Then

ST
I < limint ],

Theorem A4. Let H be a Hilbert space. Assume {; 520 s a bounded sequence in H.
Furthermore assume ¢; — ¢ weakly in H and y; — v in H-norm as j — co. Then

(s i)y = (b )y asj— oo

Proof. Let {¢; }J‘?’;O be a bounded sequence in H that converges weakly to ¢ in H as j — oc.
Let {1;}52, be a sequence in H that converges to ¢ in H-norm as j — oo. Then
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and
Jim (65, %5 — ¥)al < Jim igll g v — ol = 0.
So limj_yee (b , ¥j — )i = 0 and it follows that
Jim (¢, ¥5)m = lim (65, Y} + (65, v =) = (9, V).

O

Theorem A5 (]9, Lemma 4.1]). Let X and Y be normed vector spaces and let T : X —Y
be a linear mapping. Then the following are equivalent:

(i) T is continuous.
(i) T is continuous in 0.

(iii) There exists a constant K > 0 such that

sup ||Tz| = K.
zeX, ||lz||<1

(iv) There exists a constant K > 0 such that

ITz|| < K ||z|| for all x € X.

Theorem A6 ([9, Exercise 3.19]). Let Y be a closed linear subspace of a Hilbert space H.
IfY # H, then Y+ # {0}.

Theorem A7 ([3, Theorem 8.8]). There exists a constant a > 0 such that

16w < aligllys  for all ¢ € H'(R).

Theorem A8 ([4, Theorem 7.13]). Let X be a complete metric space, and let T : X — X
be a contraction mapping, see Definition A5. Then T has a unique fized point xq in X (i.e.
TJ?O = $0).

Theorem A9 ([9, Lemma 4.38(c)]). Let X, Y be normed linear spaces that are homeomor-
phic, see Definition A3. Then X is complete if and only if Y is complete.

Theorem A10 ([4, Theorem 7.9]). Let M be a complete metric space and let A be a subset
of M. Then A is complete if and only if A is closed in M
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