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Abstract—We present a bang-bang phase-locked loop (PLL)
generator that encapsulates design methodologies for its circuit
blocks and the complete PLL system. The generator is fully au-
tomated and parameterized, producing the layout and schematic
based on process characterization and top-level specifications.
Three 14GHz PLLs are instantiated in TSMC 16nm, GF 14nm
and Intel 22nm technologies, demonstrating the process portabil-
ity. The rapid generation time of less than four days enables fast
PLL design and technology porting. The PLL design fabricated in
TSMC 16nm shows RMS jitter of 565.4fs and power of 6.64mW
from a 0.9V supply.

Index Terms—phase-locked loop, Berkeley Analog Generator,
phase noise, jitter, voltage-controlled oscillator

I. INTRODUCTION

As new process technologies are developed, analog and
mixed-signal (AMS) circuit design becomes increasingly com-
plex and time-consuming. The design rule explosion at ad-
vanced technology nodes and increased sensitivity to routing
parasitics with smaller feature sizes require repetitive design
iterations. Additionally, reliability issues such as electromi-
gration and dynamic voltage drop further lengthen the AMS
circuit design cycle.

To address these concerns, the Berkeley Analog Generator
(BAG) framework [1] was introduced, to enable fast AMS
circuit designs using executable generators. The generators,
built within a Python-based framework, can produce DRC-
and LVS-clean schematics and layouts alongside verification
test benches with parameterized specification files. In addition,
the framework allows designers to codify their design proce-
dure into design scripts, which enables schematic and layout
generation, extraction, simulation, and resizing procedures
into automatic design iteration loops, drastically reducing the
design and validation time.

With the BAG framework, [2] and [3] demonstrate circuit
design methodologies based on machine learning by converg-
ing circuit parameters to particular design specifications in a
large design space using hundreds to thousands of simulations.
While this procedure works effectively, the long convergence
time limits both the size of the circuit and the number of design
parameters. For this reason, the state-of-art ML-based design
methodologies mainly focus on small-scale circuits, such as

an operational amplifier and a simplified wireline receiver
frontend. In designing large AMS circuits or systems, a
traditional top-down or bottom-up design methodology is still
preferred. By leveraging the experience of circuit designers,
the number of iterations and the run time of the design script
are drastically reduced.

In this paper, we propose a phase-locked loop (PLL) gener-
ator developed based on BAG using top-down and bottom-
up approaches. The proposed PLL generator automatically
produces a top-level schematic and layout of a PLL whose
circuit parameters satisfy a target performance specification.
The proposed generator is process-portable and proven in
three different technology nodes from three different foundries.
The total generation time took less than four days, showing
that the proposed PLL generator enables fast PLL circuit
design and technology portability. The simulated and measured
performance of the generated PLL is comparable to one that
is manually designed.

The rest of this paper is organized as follows. Section II
briefly introduces the BAG framework and employed PLL
architecture. Section III presents the schematic and layout
generation of the PLL, its top-level analysis, and detailed
design methodologies. Section IV summarizes the simulated
and measured results. Section V presents the conclusion.

Fig. 1. The hierarchy of Berkeley Analog Generator.

II. BACKGROUND

A. Berkeley Analog Generator

Fig. 1 shows BAG structure [1] split into three levels. In core
scripts, the generator framework provides interfaces between
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Python and commercial CAD tools (Virtuoso, Calibre, EMX,
etc.). It also provides various functions to draw or modify
layouts and schematics and utilizes a routing grid system with
a track manager to set wire widths and spacing. With process-
specific primitives and technology parameters, various layout
templates are designed to generate DRC-clean analog CMOS,
digital CMOS, resistor, MOM capacitor and inductor layouts.

By using generator templates and the track system, circuit
designers develop process-independent schematic and layout
generators and create DRC- and LVS-clean instances with
parameters and sizes specific to a particular technology. At the
top level, designers codify their design procedure into scripts
that can generate testbenches and alter design parameters to
meet the target performance specifications. With the frame-
work, designers can easily implement circuits and systems in
a different technology merely by updating the process-specific
primitives and parameters.

Fig. 2. Bang-bang PLL architecture.

Fig. 3. Voltage-controlled oscillator (VCO) schematic.

B. Bang-Bang PLL

Bang-bang loops are widely used in wireline communi-
cation system components such as clock and data recovery
(CDR) circuits [4], [5] and PLLs [6], [7]. The phase detector
(PD) translates the input phase difference into a binary output,
which simplifies integration with a digital or hybrid loop filter
(LF). Compared to an analog filter, the required areas scale

Fig. 4. The hierarchy of the PLL design.

with technology node without performance degradation. A
time-to-digital converter (TDC) can be also used for PDs in
the digital domain, increasing the complexity of the circuit im-
plementation. Since it is widely used in low-jitter applications,
a bang-bang PLL is selected for this evaluation.

Fig. 2 shows the proposed bang-bang PLL architecture,
which is based on a hybrid loop architecture containing a
digital frequency loop and an analog phase loop. The digital
frequency loop includes a frequency detector (FD), a bang-
bang PD and an integrator as digital frequency loop filter. The
FD detects the frequency error by comparing the number of
counted clock cycles from the reference clock to the divider
ratio. The bang-bang PD is a single flip-flop (FF), which
generates phase early and late information by sampling the
reference clock by the divider output. The FD and PD outputs
are combined with programmable gain to drive the digital loop
filter to generate control signals for frequency locking. The
digital blocks are developed with Chisel ([8]) and elaborated
to Verilog for digital synthesis.

The analog block contains a clock divider and an LC
voltage-controlled oscillator (VCO), as well as peripher-
als such as a capacitor digital-to-analog converter (DAC)
driver, voltage DACs, and a proportional path buffer driv-
ing different frequency knobs of the VCO. Fig. 3 shows a
schematic diagram of the VCO, which includes a current
mirror, NMOS/PMOS cross-coupled pairs, a capacitor DAC
(CapDAC) and three varactors. One of the varactors is driven
by a proportional buffer for phase control, with programmable
gain Kp to tune the PLL loop bandwidth. The frequency
control includes an N -bit CapDAC and two other varactors
driven by N1-bit and N2-bit DACs. For the CapDAC and
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Fig. 5. Schematic and layout generation flow example with the analog generator.

varactors, the capacitor and corresponding frequency changes
are labeled in Fig. 3. The analog blocks are implemented with
the BAG, to create process-portable PLL instances.

III. PLL GENERATOR AND DESIGN METHODOLOGIES

To generate the PLL, the parameterized schematic and
layout generators are initially implemented to create subblock
instances from bottom to top. Then, the block-level design
scripts create block instances to meet block-level specifications
from system models. Finally, the generated block instances are
combined to produce a top-level instance that satisfies all PLL
specifications.

The design methodologies for the PLL generator are clas-
sified into three types. The direct-sizing method adjusts the
block size simply from fanout analysis or pre-defined inter-
faces. This method is suitable for top-level and non-critical
blocks, including CapDAC buffer, divider, proportional path
buffer and voltage DAC of the PLL. The design method
based on look-up tables is used for single devices or low-
level circuits such as cross-coupled pairs, inductors, MOM
capacitors, and CapDAC switches. The iteration loop method
is used for critical blocks, which are power-consuming and
determine the performance of the whole PLL system.

A. Schematic and Layout Generation

The process-portable circuit generator requires that the
design instances, produced from the schematic and layout
generators, are DRC- and LVS-clean in different technologies.
Fig. 4 shows the hierarchy of the PLL design using the
XBase layout engine, including TemplateBase, AnalogBase,
DigitalBase, ResBase, CapBase and InductorBase. It is notable
that all layout generators are inherited from TemplateBase and
merged within.

As shown in Fig. 5, the layout generator first retrieves the
layout parameters, and sizes the design to generate the layout
for each block in Fig. 4, where the new template() function

Fig. 6. VCO layout with (a) 4-bit CapDAC, 1-turn inductor with radius of
20µm and (b) 3-bit CapDAC, 2-turn inductor with radius of 40µm.

creates a lower-level instance in the Cadence library and the
add instance() function instantiates the instance in current
layout. The schematic generator gets the schematic parameters
from the layout generator and sizes the schematic template
with design() functions to generate the schematic instance.
LVS and extraction are run on the views of the instance to
generate the extracted netlist for post-layout simulation. Fig.
6 shows two VCO layouts with the 4-bit CapDAC, 1-turn
inductor with radius of 20µm and the 3-bit CapDAC, 2-turn
inductor with radius of 40µm, respectively, demonstrating the
flexibility and effectiveness of the layout generator.

B. PLL Top-Level Analysis

The block generators get block-level specifications from
the system-level model. In this design example, the VCO
generator within the PLL generator requires the phase noise
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and frequency tuning range of the CapDAC and the fine,
integral and proportional varactors.

VCO phase noise is high-pass filtered by the loop filter
and decreases with a higher loop bandwidth (proportional to
Kp∆fprop). On the other hand, the limit cycle jitter from the
loop latency and frequency step of the bang-bang PD increases
when Kp∆fprop rises. Similar to the analysis in [6] and
[7], the optimal Kp∆fprop can be found, which determines
∆fprop if Kp is assumed. The VCO is also required to cover
the frequency range under process, voltage and temperature
(PVT) variations. The maximum and minimum frequency are
restricted by fmax − fmin = αf0, where α is the frequency
range ratio and f0 is the center frequency. The frequency
overlaps between CapDAC and fine varactor settings, as well
as fine varactor and integral varactor settings, guarantee con-
tinuous frequency tuning. Finally, to avoid jitter contribution
from the frequency control loop, the frequency resolution of
the integral varactor is required to be much higher than that
of the proportional varactor. These conditions are listed as
constraints in the optimizations of the VCO design.

C. Inductor Generator

When running block-level generators, device-level gener-
ators are required to provide the optimal devices for given
specifications. For example, the device-level generators for the
MOS transistors, inductors, MOM capacitors, and CapDAC
switches in the VCO are based on the look-up table design
method. These device generators follow a similar optimization
approach except for their input parameters and performance
specifications. In the following, the inductor generator is used
as an example to show the development of a device-level
generator.

Fig. 7. Inductor feasibility check example (for given width and space).

One particular issue in inductor generation is the potential
for DRC errors in inductor layouts with certain parameters.
For instance, when the radius of an inductor with multiple
turns is too small, the layout is unfeasible because of some of
the required paths are too short to meet DRC rules. To address
this problem, a feasibility function is defined

Feasibility(n, r, w, s) =

{
1 if DRC clean

0 if DRC unclean
(1)

where n is number of turns, r is radius, w is metal width and s
is metal spacing. This function supports computations such as
interpolation of the four variables and optimization for Q or

area. When this function value is smaller than 1, the inductor
is considered infeasible (Fig. 7).

Fig. 8. Inductor generation flow.

As shown in Fig. 8, the inductor generator includes three
parts. The first part is sweeping inductors of different sizes.
Starting from the inductor schematic and layout generator,
four parameters including radius, number of turns, metal width
and space are swept. The generated layouts are sent to EMX
for electromagnetic (EM) simulation and the inductance and
quality factor (Q) are calculated based on the S-parameter
results. The feasibility value is also included by checking
the inductor layout. In the second step, inductor query, an
interpolation method is performed across the whole look-up
table, to produce the inductor, Q and feasibility functions.
With these functions, the inductance and Q are estimated to
within an error of 1%, as shown in Table I. Finally, with
the query functions, a search algorithm is implemented based
on the look-up table for maximum Q or minimum size. The
search result is used as a initial value for the openMDAO [9]
optimization algorithm to further optimize the result. After an
optimized inductor is generated, the S-parameter and model
files are extracted by EM simulation for higher-level circuit
simulations.

Fig. 9. VCO tank model.

D. VCO Design Procedure

Fig. 9 depicts a single-ended model of the VCO tank. It can
be modeled as an inductor L, a capacitor DAC, a fine-tuning
varactor Cfine, a routing parasitic capacitor Cpar, a load
capacitance CL, a explicit capacitor Cexp, an integral-tuning
varactor Cint and a proportional path varactor Cprop, while
RL, Rfine, Rint and Rprop are the parasitic resistances of
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TABLE I
INDUCTANCE AND Q-FACTOR COMPARISON FROM INDUCTOR QUERY FUNCTION AND EM SIMULATION AT 14GHZ

# turn radius width space EM Sim Calculation Relative Error
(µm) (µm) (µm) Inductance (nH) Q Inductance (nH) Q Inductance Q

1 2 62 4.5 2.5 0.894 11.56 0.891 11.60 0.34% 0.34%
2 1 62 4.5 2.5 0.324 9.27 0.322 9.28 0.62% 0.11%
3 3 62 4.2 2.5 1.78 10.76 1.77 10.70 0.56% 0.56%
4 2 75 7 3.3 1.02 12.62 1.02 12.64 0% 0.16%

the inductor and the fine, integral, and proportional varactors.
The Capacitor DAC is split into N units with a capacitor and
switch of Nsw fingers. Fig. 10 shows the VCO design flow as
three steps. The design flow starts by generating an inductor
with the maximum Q factor for a given initial inductance value
estimated from an initial phase noise factor.

Fig. 10. Automatic VCO design flow.

In step one, Cprop, Cint and Cexp are modeled as a fixed
capacitor C ′

exp. Based on the initial inductance, the VCO
generator decides the fine tuning varactor capacitance, the
CapDAC unit capacitance C and the capacitor switch Nsw

(Fig. 9) by maximizing the resonant tank Q factor with
frequency range constraints, as shown in Equations 1 of
Fig. 10. However, the size of the cross-coupled pair and its
parasitic capacitance are still undetermined when running the
searching algorithm, and the frequency drops after taking it
into consideration. To address this problem, when the cross-
coupled pair is sized, its parasitic capacitance is returned to

the searching algorithm until the size of the cross-coupled pair
converges to a stable value.

Similarly, the routing parasitics were initially neglected,
causing a frequency gap between calculation and simulation.
This parasitic capacitance is included in Cpar and updated
by equation (2) after each simulation and sent back to the
search algorithm until the frequency converges to the design
specifications.

Cpar,new = Cpar,old +
1

4π2L
(

1

f2sim
− 1

f2cal
) (2)

Another search algorithm designs the integral and pro-
portional varactors, by maximizing tank quality factor with
frequency overlap and resolution constraints, as shown in
Equations 2 of Fig. 10. From Equations 3 of Fig. 10, once
output amplitude V0 and center frequency f0 are determined,
the reduction in inductance L causes a increase of total
capacitance C and bias current Ib, as well as an improvement
in phase noise. Therefore, after checking the phase noise result
from post-layout simulation, the loop iterates with decreasing
inductance until the phase noise specification is satisfied.

Fig. 11. Generated PLL layouts at (a) GF 14nm and (b) Intel 22nm
technologies.

Fig. 12. Chip micrograph of the PLL in TSMC 16nm.
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IV. RESULTS

The PLL generator is tested in three CMOS FinFET tech-
nologies, TSMC 16nm, GF 14nm and Intel 22nm. The design
time to generate a full layout is less than four days, including
less than 20 minutes for schematic and layout generation,
12-37 hours for VCO generation and one day for adding
dummy fill and I/O pads with electrostatic discharge (ESD)
protection. The time differences of VCO generation are mainly
caused by the extraction and simulation procedures in different
technologies. The specifications and parameters are shown in
Table II. Fig. 11 shows the PLL layouts in GF 14nm and
Intel 22nm technologies. The core areas of the two layouts are
0.043mm2 and 0.048mm2. Fig. 12 shows the PLL micrograph
of TSMC16nm process, with the core area being 0.042mm2.
Fig. 13 shows the measured phase noise of PLL; the integrated
jitter is 565.4fs in the 1KHz to 100MHz frequency range with
a power of 6.64mW from a 0.9V supply.

Fig. 13. Measured PLL phase noise at 14GHz in TSMC 16nm.

TABLE II
TOP-LEVEL SPECIFICATIONS FOR PLL GENERATOR

Center frequency f0 14 GHz
Total RMS Jitter Jtot 600 fs

Frequency range ratio α 20%
Overlap ratio δ 20%
CapDAC bits 4

Fine DAC bits 8
Integral DAC bits 7

Proportional gain Kp 0.15
Proportional frequency step ∆fprop 33 MHz

Figure 14 shows the simulated phase noise and frequencies
with different CapDAC settings of the generated VCO in three
different processes under specifications of -100dBc/Hz phase
noise at 1MHz offset and 20% range of the 14GHz center
frequency. From the results, the three designs meet the target
design specifications, validating the effectiveness of the VCO
design scripts and demonstrating their process portability.

V. CONCLUSION

A complete process-portable LC PLL generator is developed
and with instances generated in multiple technology nodes.
The layout and schematics instances are DRC- and LVS-clean.
Three different kinds of design methodologies are introduced

Fig. 14. Simulated VCO performance in three different technologies: (a)
Phase noise and (b) frequency range with CapDAC control.

and used to generate the PLL instance meeting design specs
automatically. The measurement results of the fabricated 16nm
chip demonstrate the performance is comparable to a manually
designed circuit, meeting the specifications for high-speed
wireline links.
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