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Abstract

Dimensionality reduction techniques, such as
t-SNE, are widely used to visualize high-
dimensional data and have a crucial role in
practical tasks such as biological data explo-
ration [7], anomaly detection [4], or clustering
large datasets. However, they are highly depen-
dent on hyperparameters or sampling strate-
gies. This paper investigates whether the struc-
tural similarity between sampled and full em-
beddings can be measured using Procrustes
analysis by comparing the structural similarity
of the embeddings. This work provides a repro-
ducible framework that quantifies the difference
between visualizations produced by sampling t-
SNE. These insights provide users a medium
to create visualizations with t-SNE without ex-
haustive experimentation (for example, creat-
ing all visualizations), making t-SNE more ac-
cessible and reliable.

1 Introduction

High-dimensional data is becoming increasingly common
in many fields, such as finance, cybersecurity, or even life
sciences, where each data point can have thousands of
attributes. Understanding such data can be challeng-
ing but rewarding, which is exactly why visualization
plays a key role in unfolding properties that can be hard
to notice otherwise. t-Distributed Stochastic Neighbor
Embedding (t-SNE) is a popular algorithm for project-
ing high-dimensional data into two or three dimensions
for visualization. It is frequently used for clustering large
datasets and for anomaly detection in real-world appli-
cations such as credit card fraud and network intrusion
detection [7], as well as for exploring biological data like
single-cell RNA sequencing [4].

High-dimensional data is difficult to interpret and vi-
sualize due to its complexity and limited human per-
ception. Dimensionality reduction techniques, such as t-
SNE, have become increasingly popular tools for produc-
ing qualitative interpretations of 2D or 3D embeddings of
such data. However, t-SNE remains a computationally
expensive algorithm, especially for large datasets.

Previous work has highlighted the sensitivity of t-SNE
to hyperparameters such as perplexity and the choice
of initialization [10]. Skrodzki et al. [8] proposed a
sampling-based approach, revealing a linear relationship
between the perplexity hyperparameter and the sam-
pling ratio. Additionally, methods such as FIt-SNE [6]
have accelerated t-SNE for large datasets, enabling ex-
perimentation with various sampling strategies. While
accelerated implementations like FIt-SNE and better ini-
tializations via PCA have significantly improved the run-
time of t-SNE on large datasets, they do not directly
address the challenges introduced by scale, particularly
when full data cannot be stored or processed due to
memory or latency constraints. The sample-based t-
SNE offers a different approach, instead of generating

embeddings from the full data, you use a subset of the
dataset. Despite its practical relevance, the structural
reliability of embeddings generated from sampled data
remains under-explored in the literature.

This paper includes a quantitative way of perplexity
selection without needing to exhaustively explore all con-
figuration pairs.

The primary research questions we address are:

e How does the structure of sample-based t-SNE em-
beddings change across different sampling propor-
tions and perplexity ratios?

e Can we quantitatively measure the similarity be-
tween such embeddings using alignment techniques
like Procrustes analysis?

Our contributions are as follows:

e We propose a systematic setup for comparing t-SNE
embeddings across three different datasets, varying
both the sampling proportion and perplexity, in-
spired by the work of Skrodzki et al. and their
findings.

e We introduce a grid-based comparative framework
using Procrustes analysis to assess structural simi-
larity across embeddings.

e We provide both qualitative (side-by-side plots) and
quantitative (Procrustes disparity values) assess-
ments of embedding stability.

e We briefly discuss an alternative distance metric,
namely Wasserstein distance, and its potential ad-
vantages in future work.

2 Background
2.1 t-SNE dimensionality reduction

To understand the methods section and the root of the t-
SNE sampling issue, first, it is necessary to cover impor-
tant concepts that lay the groundwork for understand-
ing the approach. T-SNE is an algorithm that converts
high-dimensional data points to low-dimensional embed-
dings. It does this by converting pairwise distances in
the original space into conditional probabilities, where
the probability p;; reflects how likely point z; is to be
a neighbor of point z;.
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Moreover, t-SNE uses a hyperparameter called per-
plexity, which controls the bandwidths o; of the Gaus-
sian kernels used to compute high-dimensional similar-
ities. While perplexity does not directly determine the
number of neighbors, it provides a smooth measure of
the effective neighborhood size, which refers to the num-
ber of data points that significantly influence the posi-
tion of a given point in the low-dimensional embedding.
In efficient implementations of t-SNE, perplexity is also

(1)

bj)i =



used to sparsify the similarity matrix P, limiting com-
putations to the most relevant neighbors for each point.
This parameter ultimately decides how the clusters are
formed, for example, lower perplexities will emphasize on
the local structure, while a higher perplexity will allow
creating broader clusters.

Perplexity(P;) = 27(")  where (2)
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Here, H(P;) is the Shannon entropy of the conditional
distribution over neighbors of point x;. The bandwidth
o; is chosen via binary search so that the resulting per-
plexity matches the user-defined value.

Moreover, to construct a low-dimensional embedding,
t-SNE minimizes the Kullback-Leibler (KL) divergence
between the pairwise similarity distribution of points
in the high-dimensional space and that in the low-
dimensional embedding. This cost function penalizes
cases where similar points in high-dimensional space are
placed far apart in the embedding (for example, when
the low-dimensional similarity ¢;; is much smaller than
the original p;;). Conversely, placing points which are
not similar too close together (when ¢;; > p;;) incurs a
smaller penalty [9].
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While t-SNE is a powerful tool for visualization, it
is computationally expensive, which leads us to using
sampling-based techniques to reduce runtime and mem-
ory requirements by embedding only a subset of the data.
This is a result of the iterative optimization process,
which leads to a runtime complexity of O(n?). and typ-
ically requires several hundred steps of gradient descent,
further adding to its computational burden.
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Where C is the cost function (KL divergence) and y;
is the position of the i-th point in the low-dimensional
space [9]. Sampling offers a possible workaround for the
high computational cost of t-SNE by reducing the num-
ber of points involved in the process. However, this in-
troduces challenges: the sampled data may not capture
the full structure of the dataset, and it is unclear whether
a perplexity chosen on the sample generalizes well to the
full set [8].

2.2 Procrustes Analysis

Another important aspect that has to be covered is the
Procrustes analysis, which is an important tool for the
content of this paper as it is our quantitative evalua-
tion metric. What Procrustes analysis does is compare
two sets of corresponding points by finding the optimal
transformation, which includes translation, scaling, and
rotation [3, p. 134]. Ultimately, creating the Procrustes
disparity, which measures the residual difference as an
error value, if the error is low, then the structure of the
embeddings is similar.

Let x; and y; denote the 2D coordinates of the i-th
data point in two aligned t-SNE embeddings being com-
pared (a reference and a target embedding). We define
the Procrustes disparity as:

D= |z —wll’ =X - Y|} (7)
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Here, D is the sum of squared differences between the
transformed matrices after optimal scaling, rotation, and
translation. Specifically, X and Y are the aligned ma-
trices containing the 2D coordinates of the same subset
of n data points, sampled from two different t-SNE em-
beddings. X corresponds to the reference embedding,
while Y corresponds to the embedding being aligned.
The Procrustes analysis computes the optimal transla-
tion, rotation, and scaling to best align Y to X. The
Frobenius norm || X — Y||% then quantifies the residual
sum of squared differences between the aligned embed-
dings, yielding the final disparity value, and ||-||  denotes
the Frobenius norm, which computes the sum of squared
differences over all coordinates.

This tool is incredibly powerful for t-SNE because in
t-SNE, the absolute positions in the embedding space do
not reflect the properties of the points; therefore, trans-
formations such as orientation or scale should not affect
the membership of points These transformations do not
convey any intrinsic properties of the individual data
points, meaning they do not affect the original data val-
ues, such as class labels, input features or neighborhood
structure, these remain unchanged by geometric trans-
formations such as rotation, scaling or translation. In
short, they do affect the global geometry of the embed-
ding, but not the local relationships of t-SNE embed-
dings.

3 Related Work

The visualization of high-dimensional data through t-
SNE [9] has been widely adopted due to its ability to
capture local structures. However, the behavior of t-SNE
is highly sensitive to its hyperparameters, most notably,
perplexity [10]. This has motivated research into better
understanding and tuning perplexity values to improve
embedding quality and reliability.

A key challenge with t-SNE is that there is no princi-
pled way to select perplexity for a given dataset. Belkina



et al. [2] proposed the opt-SNE method, which automat-
ically selects perplexity and other parameters using op-
timization criteria that reflect embedding quality.

Heuristics Used in opt-SNE [2]

e Early exaggeration stop (EE) is determined dy-
namically using the iteration at which the rela-
tive Kullback-Leibler divergence change (KLDRC)
reaches its local maximum:
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EE is stopped at the next iteration after
max(KLDRCO).

e Gradient descent learning rate 7 is initialized
based on dataset size n and early exaggeration fac-
tor a:

U:a (9)

e t-SNE termination is triggered when the rela-
tive improvement in KLD per iteration falls below

a threshold:
KLDy
5000

(KLDN,1 — KLDN) < (10)

Their work shows that poor perplexity choices can lead
to misleading or distorted embeddings. However, their
method assumes access to the full dataset and does not
investigate any sampling strategies.

Skrodzki et al. [8] address this issue directly by propos-
ing a linear relationship between dataset size and opti-
mal perplexity, grounded in both empirical evaluation
and theoretical intuition. They argue that smaller sam-
ples require proportionally smaller perplexity values to
preserve structural integrity. While their insights inform
the perplexity-sampling trade-off, they do not evaluate
how this relationship plays out in embedding stability or
pairwise embedding similarity.

To tackle the scalability of t-SNE, Linderman et al.
[6] introduced FIt-SNE, a fast interpolation-based ap-
proximation of the t-SNE algorithm. FIt-SNE enables
the generation of embeddings on large datasets and has
become the de facto tool for modern large-scale t-SNE
visualizations. Its efficiency makes it suitable for sys-
tematic experimentation across various parameter set-
tings. However, while FIt-SNE accelerates full-dataset
embeddings, it does not eliminate the computational
burden entirely, especially when comparing many con-
figurations, working with extremely large datasets, or
operating under memory or latency constraints.

Our work extends these efforts by combining sampling-
based perplexity selection with embedding comparison
using Procrustes analysis. We provide a systematic
framework for evaluating embedding similarity across
parameter configurations, helping to clarify how robust
t-SNE is to changes in sample size and perplexity.

4 Methods

4.1 Dataset and Preprocessing

We use the MNIST dataset, consisting of 70,000 images
of handwritten digits from 0 to 9. Every picture is a
vector with 784 dimensions. Additionally, the data is
normalised to fall within the [0, 1] range before dimen-
sionality reduction. Moreover, we also use the C. el-
egans gene expression dataset, which consists of 8,970
cells and 39 gene expression features. Ultimately, the
FMNIST dataset was used to further reinforce our find-
ings, a dataset similar to MNIST, but harder to classify.

4.2 Dimensionality Reduction via
Sample-Based t-SNE

To investigate the effect of subsampling and perplexity
scaling on t-SNE embeddings, we apply a sample-based
version of t-SNE where a subset of the full dataset is se-
lected for embedding, and a modified perplexity is chosen
proportional to the subset size. Our method is closely
aligned with the experiment conducted by Skrodzki et
al. [8]. We define the chosen sampling proportions and
perplexity ratios for each dataset as follows:

e Sample proportions (all datasets): {0.1, 0.4,
0.7, 1.0}

e Perplexity ratios (MNIST and FMNIST):
{0.00014, 0.00100, 0.00300, 0.02057}

e Perplexity ratios (C.
0.00134, 0.00379, 0.01171}

These specific values were selected to balance qual-
ity and interpretability while keeping the total num-
ber of embeddings manageable. The sampling propor-
tions range from downsampling (10%) to full dataset use
(100%), allowing us to study the effects of sample size
across a wide spectrum. The perplexity ratios were de-
rived from values shown to work well in prior work [8],
scaled according to the dataset size.

This results in 4 x 4 = 16 embedding configurations.
While a higher axis (5x 5, 6 x 6) could offer more ground
to the analysis, it would exponentially increase the num-
ber of comparisons and visualization, complicating both
the analysis (i.e, computational costs) and the presenta-
tion of our findings (i.e, observing trends). Each config-
uration produces a 2D embedding using standard t-SNE
(FIt-SNE), initialized with PCA [5].

We use this method to better understand overall
trends, rows represent increasing sampling proportions
from 0.1 to 1.0, while columns represent increasing per-
plexity ratios. Figure 1 shows a clear pattern: embed-
dings with low sampling and low perplexity (top-left)
tend to visualize poor structure, often forming dense,
uninformative clusters. In contrast, embeddings with
higher sampling and moderate perplexity (middle and
bottom rows, center columns) show well-separated and
stable clusters. This suggests a sweet spot where per-
plexity scales reasonably with the available data, yield-
ing embeddings that capture both local and global struc-
tures effectively.

elegans):  {0.00033,



4.3 Embedding Comparison Setup
We compare the 16 embeddings to one another across:
e Rows: fixed sample proportion, varying perplexity
ratio

e Columns: fixed perplexity ratio, varying sample
proportion

sample prop: 0.1
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Grid of t-SNE embeddings across differ-
ent sampling proportions (rows) and perplexity ratios
(columns) from the MNIST dataset.

Figure 1:

In total, we perform 48 comparisons across our 4 x 4
embedding grid: 24 row-wise (fixed sample, varying per-
plexity) and 24 column-wise (fixed perplexity, varying
sample size). This structure allows us to isolate results
and analyze how changes in one parameter affect embed-
ding structure while holding the other constant. Each
pair is compared by aligning only the points sampled
in common, enabled by our nested sampling strategy in
which smaller samples are subsets of larger ones. To
compute the Procrustes disparity between two t-SNE
embeddings, we first extract the set of data point indices
that are shared between the two samples. We then ex-
tract the corresponding 2D coordinates resulting in two
matrices of equal size representing the common points.
These are aligned using Procrustes analysis, which com-
putes the optimal translation, rotation, and scaling. The
resulting Procrustes disparity, a single value, helps us
quantify the structural difference between the aligned
embeddings.

5 Experiments and Results

5.1 Comparison Strategy
Comparisons were grouped as:

¢ Row-wise comparisons: fixed sample proportion,
varying perplexity ratio.

e Column-wise comparisons: fixed perplexity ra-
tio, varying sample proportion.

Each pair was aligned based on the intersection of sam-
pled indices to ensure a fair comparison.

5.2 Evaluation

We use the Procrustes disparity as our quantitative eval-
uation metric. For each comparison, we store the dis-
parity value, number of shared points, and associated
plots. Moreover, throughout this section, we will dis-
cuss the quantitative and qualitative evaluation of our
results, finishing with a brief discussion about Wasser-
stein distance as an alternative metric.

Qualitative Evaluation

To illustrate how sampling proportion and perplex-
ity interact, we walk through a representative row-
wise comparison from our experimental grid. Con-
sider the embeddings generated for 10% of the dataset
using two different perplexity ratios: 0.00014 and
0.02057 (i.e., configurations sampling100-perp0014 and
sampling100-perp2057).

Row 0: 0p1_0p00014 vs Op1l_0p02057 | Disparity: 0.4379

Before Alignment After Procrustes

100 e . Reference | 0.06
- Target
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(a) Row-wise comparison:  samplinglO-perp0014 vs
sampling10-perp2057 (Disparity: 0.4379)

Col 0: 0p7_0p00014 vs 1p0_0p00014 | Disparity: 0.0451

Before Alignment After Procrustes

100 0.006
0.004
0.002
0.000

~0.002

~0.004

-100 - Reference | -0.006
. Target

«  Reference (scaled)

" . Aligned Target
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(b) Column-wise comparison: sampling70-perp0014 vs
sampling100-perp0014 (Disparity: 0.0451)

Figure 2: Two example comparisons showing structural
similarity across parameter configurations drawn from
the embedding grid in Figure 1. Top: a high-disparity
row-wise case (varying perplexity). Bottom: a low-
disparity column-wise case (varying sample size).



These embeddings are visualized in Figure 2a.
Before alignment, the higher-perplexity embed-
ding, samplinglO-perp2057, appears more globally
organized, while the lower-perplexity embedding,
sampling10-perp0014, shows tighter but more unin-
formative close clusters. After Procrustes alignment,
some geometric similarity emerges, but local structural
differences persist. The resulting Procrustes disparity
of 0.4379 quantifies this mismatch, highlighting how
sensitive t-SNE can be to perplexity even when sampling
is held constant.

In contrast, Figure 2b shows a column-wise compar-
ison between embeddings sampling70-perp0014 and
sampling100-perp0014, which differ in sampling pro-
portion but use the same perplexity ratio. These embed-
dings align remarkably well after transformation, yield-
ing a much smaller disparity of 0.0451, suggesting that
with low perplexity, t-SNE embeddings are relatively sta-
ble across sample sizes when the structure is sufficiently
preserved.

Quantitative Evaluation

We present our findings from conducting several exper-
iments. For each configuration of sampling proportion
and perplexity, we ran the embedding three times using
different random seeds, 42, 100, and 12. This allows us to
account for variability introduced by sampling and pro-
vides a more robust comparison across configurations.
In each case, the sampled points are different, but the
sample size and perplexity remain the same. By aver-
aging the resulting Procrustes disparities, we reduce the
impact of outliers and gain a better understanding of the
general structural behavior for each setting.

Firstly, we will discuss what we learned after applying
the Procrustes analysis metric. Using this metric, we
were able to quantitatively evaluate the difference be-
tween two different embeddings, and find out how sim-
ilar by looking at a number instead of relying on visual
comparison.

A high disparity would imply there’s a bigger dif-
ference in how the clusters are formed compared to a
smaller disparity. As can be seen in Figures 2a and
2b, we present two comparisons of different embeddings.
One is column-wise, while the other is row-wise.

Figure 2 illustrates two such comparisons. The left
subplot shows a row-wise comparison where only the per-
plexity varies, with a relatively high disparity of 0.4379.
This reflects a considerable difference in how clusters are
formed, especially in the outer regions of the embedding.
On the right, we see a column-wise comparison in which
the sampling proportion varies but the perplexity is held
constant. Here, the disparity is much lower (0.0451), in-
dicating that increasing the sample size does not signifi-
cantly change the global structure of the embedding, sug-
gesting robustness to sampling when perplexity is scaled
appropriately.

Furthermore, after conducting the experiments, we an-
alyzed the structural differences between t-SNE embed-
dings using Procrustes disparity more generally. The

average disparities across multiple runs on the MNIST
dataset are presented in Tables 1 and 2, which corre-
spond to column-wise and row-wise comparisons, respec-
tively. While our main analysis focuses on MNIST, fur-
ther supporting evidence from FMNIST and C. elegans
confirms the observed trends (i.e, column-wise vs row-
wise analysis). These additional results are included in
Appendix B. From these results, we observe that em-
beddings tend to be more stable when perplexity is held
constant and sampling proportions vary, compared to
the reverse scenario. This can be seen by observing the
heatmap, where a darker color hints at a higher dispar-
ity. In general, embeddings as the sampling increases
show stability when the perplexity stays the same, while
as perplexity increases, the disparity shows greater dif-
ference between embeddings of the same sampling size.
These findings are especially insightful since they provide
a confirmation of how embeddings behave structurally at
different sampling and perplexity levels. Moreover, they
offer a principled way to guide perplexity selection with-
out exhaustively evaluating all configuration pairs.

One notable finding is that embeddings generated at
the lowest sampling proportion (10%) consistently show
the highest Procrustes disparity when compared to em-
beddings at any other sampling level. This can be seen
by analyzing Table 1, which shows an obvious increase
in disparity when comparisons were made against the
10% sampling column-wise.

This suggests that a sampling rate this low leads to
structurally different embeddings, even when using ap-
propriately scaled perplexity values. We hypothesize
that this effect is due to the dataset being severely
undersampled, which limits the representativeness of
the global structure and introduces sparsity that affects
neighborhood probability estimation. By repeating the
experiment with different random seeds (12 and 100) and
datasets (C. elegans and FMNIST), we confirmed that
our observations were not specific to one sampling in-
stance, reinforcing the robustness of our findings.

While most comparisons show consistent Procrustes
disparities across seeds, the maximum standard devia-
tion observed for MNIST was 0.0761. This happened un-
der conditions of low sampling and low perplexity, where
greater embedding variability is expected. In contrast,
most stable configurations showed standard deviations
below 0.02. On average, the standard deviation across
all comparisons was 0.015, indicating a high level of con-
sistency in the embedding generation process.

Alternative Metric: Wasserstein Distance

To complement our analysis of embedding similarity us-
ing Procrustes disparity, we computed the Wasserstein
distance (Earth Mover’s Distance) between pairs of 2D
embeddings on MNIST using seed 42. Unlike Procrustes,
which relies on pointwise alignment and rigid transfor-
mations, Wasserstein distance quantifies the minimal
cost of transforming one point distribution into another.
This makes it especially suitable for capturing global
structural differences, such as spread or density shifts,



Sampling Perp. 0.00014

Perp. 0.00100

Perp. 0.00300 Perp. 0.02057

Level 40% 0%  100% | 40%  70%  100% | 40%  70%  100% | 40%  70%  100%

10% 0.0922 [70:10281] 0.0680 0.0679  0.0629
40% - 0.0680  0.0604 | 0.0646  0.0775 | -~ 0.0456  0.0428 | - 0.0159  0.0134
70% - - 0.0287 | - - 0.0279 | - - 0.0222 | - - 0.0086

Table 1: Column-wise average Procrustes disparities between sampling levels at various perplexity ratios (MNIST,
averaged across seeds). Cell color intensity reflects structural dissimilarity.

Perplexity Sampling 10% Sampling 40% Sampling 70% Sampling 100%
Ratio 0.00100 0.00300 0.02057 | 0.00100 0.00300 0.02057 | 0.00100 0.00300 0.02057 | 0.00100 0.00300 0.02057
0.00014 0.0969 0.0835

0.00100 0.0882 - 0.0765

0.00300 — 0.0888 - -

Table 2: Similar to Table 1, this shows row-wise average Procrustes disparities between perplexity settings at fixed
sampling levels (MNIST, averaged across seeds). Cell color intensity reflects structural dissimilarity.

that are not necessarily aligned geometrically.

The idea of using Wasserstein distance to evaluate em-
bedding quality was inspired by the recent work of Bach-
mann et al. [1], who introduced Wasserstein t-SNE as a
generative approach to constructing embeddings based
on optimal transport. While their focus was on embed-
ding construction, we believe it may also be valuable for
comparing existing embeddings.

The results, summarized in Table 7 and 8 from Ap-
pendix B, show trends consistent with the Procrustes-
based analysis: structural dissimilarity increases with
lower sampling proportions and lower perplexity values.
Furthermore, it supports our finding that structural sim-
ilarity is better preserved along columns, compared to
rows. While the absolute magnitudes differ, the rela-
tive relationships between configurations are preserved.
This suggests that Wasserstein distance may be a useful
alternative tool in assessing embedding stability.

6 Responsible Research

This research focuses on the visualization and quantita-
tive comparison of embeddings created by t-SNE using
publicly available data (MNIST, C. elegans), open TSNE,
and the sampling t-SNE. As such, it does not involve hu-
man subjects, personal data, or other ethically sensitive
content.

All experiments are fully reproducible. The full exper-
imental pipeline, including embedding generation, sam-
pling proportions, and Procrustes-based comparisons,
was applied independently to MNIST, C. elegans, and
FMNIST. We use fixed random seeds (42, 100, 12) dur-
ing sampling and rely on deterministic variants of t-SNE
(FIt-SNE, from openTSNE) to ensure consistent results.
The code used for aligning embeddings with Procrustes
analysis and visualizing the outcomes is modular and
publicly shareable. Our comparisons are based on well-
defined procedures, including intersecting sampled in-
dices and using standard mathematical metrics. How-

ever, the sampling t-SNE [8], which was used to generate
embeddings, is not publicly available.

By making both the source code and processed out-
puts (CSV files and plots) available, we support trans-
parency, reproducibility, and further extension by other
researchers. The methodology can be applied to different
datasets or dimensionality reduction techniques without
ethical restrictions.

This report made use of an LLM to support the writing
process and plotting. The tool was used as follows:

e We consulted the model for feedback with phras-
ing, LaTeX formatting, figure captions, and flow of
written sections.

e Used to debug and refactor plotting code (e.g. mat-
plotlib formatting)

e All prompts used to modify report content are listed
in the appendix.

e No Al-generated text has been added without being
modified and reviewed.

The prompts used can be found in Appendix A.

7 Conclusions and Future Work

In this work, we investigated how the measurement of
structural similarity between different embeddings can
be used as a way of predicting a suitable perplexity.
Specifically, we focused on a sample-based version of t-
SNE, where subsets of the MNIST dataset, C. elegans,
and FMNIST were embedded using perplexity values
scaled relative to the subset size. Our central research
questions were: (1) how does the embedding structure
change with different sampling and perplexity configu-
rations, and (2) to what extent can these changes be
quantified using Procrustes analysis?

We conducted a 4 x 4 grid of t-SNE embeddings
and systematically compared them pairwise across rows
(fixed sampling proportion, varying perplexity) and



columns (fixed perplexity, varying sampling). By align-
ing embeddings using Procrustes analysis and reporting
the resulting disparity values, we provided a quantifiable
measure of structural similarity across 48 comparisons.
This revealed that certain regions of the parameter space
are more stable than others, particularly at higher sam-
ple proportions and moderate perplexities.

One important design choice in our approach is the
use of shared sampling indices when comparing embed-
dings. This ensures that Procrustes alignment operates
on consistent point sets across different configurations.
While this practice has been used in prior work (e.g.,
Skrodzki et al. [8]), we explicitly adopt and apply it to
create a reproducible framework for grid-based analysis
of sample-based t-SNE behavior. This enables a consis-
tent basis for comparison even when the total embedded
datasets differ. The visualizations generated also allow
for qualitative inspection of structural differences that
may not be captured purely by disparity values.

However, several open questions remain. Procrustes
analysis relies on Euclidean distance and assumes rigid
alignment with scaling, translation, and rotation. This
may not fully capture non-linear distortions or differ-
ences in distributional structure. To address this, we
additionally explored the use of the Wasserstein dis-
tance, which compares entire point distributions without
requiring one-to-one alignment. Although this metric
yielded lower values overall-reflecting its leniency toward
global shifts, it still preserved the same qualitative trends
observed with Procrustes (i.e, larger differences appeared
under low sampling and low perplexity). This suggests
that Wasserstein distance could serve as a promising tool
for embedding comparison, especially in scenarios where
point correspondence cannot be guaranteed. A deeper
theoretical and empirical investigation of such distribu-
tional metrics remains an important direction for future
work.

Future research may also explore:

e Applying this framework to other datasets to po-
tentially find new relationships.

e Further explore the use of Wasserstein distance as a
complementary (or alternative) metric for compar-
ing embeddings, including its theoretical properties
and practical advantages.

In summary, this work contributes a reproducible
pipeline to study how sampling and perplexity affect t-
SNE embeddings and offers both visual and numerical
tools to compare their outcomes. Moreover, it also pro-
vides a way of predicting a suitable perplexity without
the need for exhaustive evaluation of all configuration
pairs. This paper lays a foundation for more principled
evaluation of dimensionality reduction techniques under
resource-constrained scenarios.
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A Appendix: LLM Prompts

This research project utilized large language models (LLMs) to support the writing and formatting processes. The tool
was used to improve clarity, automate repetitive scripting tasks, and ensure consistency in presentation. Specifically,
the list of used prompts includes:

e "Help me phrase this Procrustes analysis result as a LaTeX formula."

e "Plot Procrustes disparity averages from a CSV using matplotlib."

e "Make this paragraph more concise and academic in tone."

e "Generate heatmap tables in LaTeX from column-wise and row-wise comparisons."
e "How do I format large tables in Overleaf without breaking the layout?"

To ensure no false information was given, all results were analyzed and if needed, computed manually (i.e, values
from the table).

B Appendix: Supporting Tables

C. elegans

Column-wise Procrustes Disparities

Sampling Perp. 0.00033 Perp. 0.00134 Perp. 0.00379 Perp. 0.01171

Level 40% 70% 100% 40% 70% 100% 40% 70% 100% 40% 70% 100%
10% 0.0440 0.0287 0.0296
40% 0.0451 0.0426 0.0229 0.0198 - 0.0228 0.0230
70% - 0.0220 - 0.0118 - - 0.0058

Table 3: Column-wise average Procrustes disparities at fixed perplexity levels (C. elegans, averaged across seeds).
Cell color intensity reflects structural dissimilarity.

Row-wise Procrustes Disparities

Perplexity Sampling 10% Sampling 40% Sampling 70% Sampling 100%
Level 0.00134 0.00379 0.01171 0.00134 0.00379 0.01171 0.00134 0.00379 0.01171 0.00134 0.00379 0.01171

0.00033 0.0778
0.00134 - - - -
0.00379 - - - - - - - -

Table 4: Row-wise average Procrustes disparities at fixed sampling levels (C. elegans, averaged across seeds). Cell
color intensity reflects structural dissimilarity.

FMNIST

Column-wise Procrustes Disparities

Sampling Perp. 0.00014 Perp. 0.00100 Perp. 0.00300 Perp. 0.02057

Level 40% 70% 100% 40% 70% 100% 40% 70% 100% 40% 70% 100%
10% 0.0891 0.0844 0.0869 0.0875 0.0617 0.0602 0.0305 0.0291 0.0281
40% 0.0375 0.0356 0.0391 0.0453 0.0295 0.0289 0.0220 0.0211
70% - - 0.0190 - - 0.0206 - - 0.0146 - - 0.0115

Table 5: Column-wise average Procrustes disparities at fixed perplexity levels (FMNIST, averaged across seeds).

Row-wise Procrustes Disparities



Perplexity Sampling 10% Sampling 40% Sampling 70% Sampling 100%

Level 0.00100  0.00300  0.02057 | 0.00100  0.00300  0.02057 | 0.00100  0.00300  0.02057 | 0.00100  0.00300  0.02057
0.00014 0.0542  0.0837 0.0362 ~ 0.0725 [WNOWZ46W| 0.0276 = 0.0725  0.1209
0.00100 - 0.0404  0.0911 - 0.0333  0.0867 - 0.0313  0.0816
0.00500 : - : _ ouss | oot

Table 6: Row-wise average Procrustes disparities at fixed sampling levels (FMNIST, averaged across seeds).

Wasserstein Distance Comparisons

To look beyond Procrustes analysis, we computed Wasserstein distances between embedding configurations. These
results are included below for reference. Cell color reflects the intensity of structural shift.

Column-wise Wasserstein

Sampling Perp. 0.00014 Perp. 0.00100 Perp. 0.00300 Perp. 0.02057
Level 40% 70% 100% 40% 70% 100% 40% 70% 100% 40% 70% 100%
10% 8.6339 2.4767 3.2776 3.4097 3.4700 2.4120 2.3228 1.9767 2.0635 2.6605
40% - 2.1612 3.6408 - 2.3613 2.3336 - 2.8263 2.6825 - 0.7096 1.4056
70% - - 1.5723 — — 2.2411 - — 0.7221 - - 0.7903
100% - - - - - - - - - - - -

Table 7: Column-wise Wasserstein distances grouped by perplexity (MNIST, seed 42).

Row-wise Wasserstein

Perplexity Sample 10% Sample 40% Sample 70% Sample 100%
Level 0.00100  0.00300 0.02057 0.00100 0.00300 0.02057 0.00100 0.00300 0.02057 0.00100 0.00300 0.02057

0.00014 8.1136

0.00100 -

0.00300 - -

0.02057 - - -

Table 8: Row-wise Wasserstein distances grouped by sampling level (MNIST, seed 42).
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