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Computation of the hydrodynamic coefficients

of oscillating cylinders

by: Ir B. de Jong

Preface.

This report is a translation from Dutch of an earlier report [1], which
has been written by the author in order to prbvide formulas for added
mass and damping, which are used in computer programs for ship motions,

devised‘by members of the Shipbuilding Laboratory in Delft.

The intention of this report is to be a manual for those,who want to
acquaint themselves with. the hydrodynamic backgrounds of the methods,
vhich are used to determine the Hydrodynamic properties of ships

according to the strip method.

The reader is supposed to be familiar with the fundamentals of the
hydrodynamics and the infinitesimal surface wave theory. For a study of
these theories the reader is referred to [l], [3], [ﬁﬂ and [5].
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Introduction

“

The last few years much attention has been paid to the theoretical
approximation of the hydrodynamic coefficients of a ship in which great
advance has been made by the availability of computers. Since in general
a three-dimensional method leads to calculations which are too compli-
cated, the problem is considered two—dimensional by application of the
so-called strip method. In this case the ship is divided up into a
number of sections and of each section, which is supposed to have a
constant profile, the hydrodynamic properties are determined, assuming
that the disturbances in the fluid due to the motions of the sections
oﬁly propagate in the direction perpendicular to its axes. Therefore
application of the above mentioned method requires information about the
hydrodynamic properties of infinitely-long cylinders (or finite cylin-
ders contained between vertical walls at right angles to the axis) with
cross-sections, which are equal to those of the considered sections
of the ship.

Ursell [b], [7] made the first contribution to the solution of this
problem. He sonsigered the problem of a circular cy&inder, which
oscillates harmonjcally with small amplitude, while the mean position of
the axis cofncides with the mean surface of the fluid. Ursell starts
from the following assumptions:

1. the fluid is inviicid, incompressible and irrotational.

2. the oscillation is of such a nature that linearization is

allowed.
From 1. follows that the velocity potential § satisfies the equation

of Laplace A¥ = 0, while according to 2. the accessory boundary con-

ditions are linear. Consequently it follows from 1. and 2. that above

mentioned problem can be formulated as a linear potential problem.

Ursell found a solution by superimposing suitably chosen functions
such that each separate function satisfies the equation of Laplace and
the linearized free-surface condition, while a combination of these
functions satisfies the remaining boundary conditions.

Tasail [W], [g] generalized Ursell's method for more general cross-—
sections, the so?called Lewis-forms , which are characterized by three
parameters, Tasal applied a conformal transformation with which the
Lewis-form is mapped onto & sémi-¢ircle. Because of the restricted
number of parameters, the transformation formula's can be determined in

an ahalytical way.



Porter [1{]derived expressions for the hydrodynamic coefficients of
cylinders, which cannot be approximated with a Lewis-form in a satisfac-—
tory way and for which more complicated transformation formulas are re-
quired. Moreover he verified some results experimentally. A method
however to find the transformation formulas mapping an arbitrary cross=
section of a ship onto a semi-circle is not given by, him.

On the Shipbuilding Laboratory in Delft Smith [11] deviged a
computer-program of the iterative process of Fil'chakova [141 , With
which the transformation formula can be determined for every arbitrary

cross—section, which maps this cross=section onto a semi-circle. After

“this the hydrodynamic coefficients of this section can rather easily be

determined. It is noteworthy that strictly speaking this method can be
applied only if the cross-section intersects the fluid surface perpendi=~

cularly.

The English edition of this report has been supplemented with
another transformation method (see section 4.1.2.), which appears to

be very useful.

[
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1._Formulation of the Problem

In a fluid of infinite depth a cylinder is considered which is
oscillating one-dimensionally and harmonicélly with frequency o while the
mean position of its axis 1s assumed to lie in the free surface of
the undisturbed fluid (Fig. 1.1.). As possible ways of oscillation we
shall consider here heaving, swaying and rolling,

The x—axls is horizontal and coinciding with the free surface of
the fluid and perpendicular to the axis of the cylinder and the y-axis
is vertical, positive downwards and going through the mean position of

the axis of the cylinder.

Fig. 1.1,

Further we gssume the amplitude of the os¢illation being small with
respect to the diameter of the cylinder and the length of the waves,
generated by the oscillation, so that we may relate the value of all
physical quantities to the centre-position of the cylinder in the d
linearized apﬁroximation. Taking the cylinder very long with respect to
the breadth or enclosing the cylinder at both ends between two infinite-
ly long walls perpendicular to the axis of the cylinder, we dan neglect
the velocity components parallel to the axis of the cylinder and conse-
quently the motion is two-dimensional.

The determination of the motions of the fluid under influence of
the harmonic oscillation of the cylinder can be reduced to the solution
of a boundary-value problem from the linear potential-theory. Conse-
quently the velocity potential ®(x, y, t) is also a harmonic function

of the time.
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Therefore using complex notation we may write the potential in the

following form:
. igt g
o (x, y, tl=iPB(x, y) e 7 (1:1)

From this theactml potential is obtained by taking the real part of the
right-hand side. hthe fature for calculationsin which the time=-dependence
of the variables is not mentioned, we shall always work.with the time-
independent part @(x, y). ‘ B

The velocity potential should satisfy the equation of Laplace
everywhere. in the fluid: ’ |

Because .of (1.1) we may write (1.2) as:

o

2 2 : .
%*%EﬁO . » C(1.3)

0 : ’ (1.2)

If n=n (x,t) is the wave-height in consequence of the oscillation of
the cylinder, for the linearized case ([fj , ch 2, (2.1.14) ) for waves
which have small amplitudes in proportion to their length the following

°

relation holds:

%%'= - %%- (y = Q) (kinematic surface condition) : (1.4)

We see that in the linearized form this relation is referred to the mean
surface : y = 0.

Condition (1.4} is based on the hypothesis that any fluid particle
once being on a boundary surface, will remain on it ([{j, §1.4),

A second condition which ¢has to ;atisfy at the frée surface,
follows from Bernouilli's law: | a

30 . 1 {302, ;30,4 p ,

— —_ LA 4 . [ &2 + - .

2, 2{359 ' (ay)i}» 24 gn=c (1) | (1:5)
Since the pressure at the free surface is gonstant and an addition of

constant or time-dependent terms to ¢ has no influence upon the velocity

distribution (%% . %g) in the fluid, we can reduce (1.5) to:

%% +gn=0 (y=0) (dynamic surface condition) (1.6)

’

where we only retained the linear terms.



From the conditions (1.4) and (1.6) v can be eliminated. Differentia-

ting (1.6) with respect to t and substituting successively for %% the

righthand side of (1.4) and for ¢ the expression (1.1), we finally

obtain:

K@+ %%-= 0 (y=0) (linearized free surface condition) (1.7)
in which:
G2

K=—g—'

On basis of the earlier mentioned hypothesis with respect to fluid

particles on a boundary surface, we can derive, that the normal velocity
component of the cylinder at the hull due to the forced oscillation, is
equal to the corresponding velocity component of the fluid particles on

the cylinder, so:

9% . “10%
-0, (x,y)e
or:
P _ . . .
ro Un(x,y) (boundary condition on the cylinder) (1.8)

In this relation n refers to the normal outward direction to the surface
of the cylinder (Fig. 1.1). It should be noticed that, on account of the
linearizing of the problem, relation (1.8) is referred here to the mean
position of the cylinder again.

For physical reasons it is easy to see that the disturbances in the
fluid, as a result of the oscillation of the cylinder, decrease with in-

creasing depth. so that:

lim grad @ = O (1.9)
y > e .
Since the forced oscillation is harmonic, waves are exclited at the fluid

surface, which are composed of a standing-wave, rapidly decreasing in

amplitude with the distance from the cylinder, and a regular progressive
vave, which travels to infinity on both sides of the cylinder. The last-
named wave effects a radiation of energy, withdrawn from the motion of
the cylinder, whereby the fluid has a damping influence on the motion of
the cylinder. Thus:

o > C1e-Ky e1(--K.x + ot) forx > +

® > Cze-.Ky el(Kx + ot) " fop X o+ =

or.



' : 2. Integral—equation for the velocity potential; Green's functions,

Source potential

Using Green's theorem we derive in this chapter an integral
equation for the velocity potential for the case of a vertical oscilla-
ting cylinder. In addition much attention will be paid to the Green's
function and its physical meaning, '

We assume that the cylindef is carrying oit a vertical harmonic
oscillating motion. Consequently according to (1.11) the velocity

poteritial is a symmetric function:

B(x,y) = B(~x,y) (2.1)

. Fig. 2.1.

.
-

We apply Green's theorem, which in the two-dimensional case has the

following form: . |
//Mw - yag)alV'= 7{¢ %% - w%%)ds , (2.2)
'V' 8

V is an area enclosed by a contour S while n represents the outward
nornal to the contour S. ”

For the function @ we choose the veloeity potential in consequence
of the heaving totion of the cylinder. The function {y is chosen in such
a way that after substitution of ¥ into (2.2) the requirements with
respect to the uniqueness and existence of the solution for the resul-

ting integral equation are fulfilled. The function 1] should then have a

. source singularity in a point (a,b) in the area y> 0, outside the

cylinder. For { we ¢hoose a function of the form( [l3] ch. VI-3):
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¥ (x,y;5 a,b) = log\ﬁx - a)2+ (y - b)2+ v.{x,y; a,b) (2.3)

The first term on the righthand side is the potential of a source in the
point (a,b). The function b, is regular in the area y> 0, outside the
cylinder. We now choose the contour S in such a way that # and ¢ are
regular in the area’V/ enclosed by S. For these reagons S is composed of -
the lines IT and V along the free surfaée, the line IV along the contour
of the cylinder, a smgll circle IIT with radius 8 enclosing the point
(a,b) and a large circle I with radius r (fig. 2.1). ¢ and ¢ satisfy the
Laplace equation within this area so that the lefthand side of (2,2)

becomes zero and thus
(02 -y 2y 4 =0 | (2.4)
I+IT+ITT+IV+HV

We shall first determine the limit value of the integral along the small
circle II1, for the case & + 0. It is remarked that for small values of
& the expression (2.3) on the small circle III may be written as:

y = log § + ¢ ° (2.5)

Further. we may write on the small circle:

g%'= - é%- and ds = §d0,
so that:
/ 1
=-] -¢-a%(10g6+¢)+(1ogs+¢)§£’- 640
I1T r r 86‘

+

98 948

or:
+1
_/ A g
= {-'95(3 —~=} + (log & + wr) - 540
III '
=
oY

As y, and-7ﬁf are limited we obtain for § + 0:

R 26

111

Next we consider the integral along the lines II and IV.
We now choose wr in such a way that the line integral along the

free surface becomed zero:
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1.

II+V

°

This condition)is satisfied if the integramiof the above expression

vanishes:
o, -vd =0  (y=0)

With the aid of (1.7) we see that on account of the symmetry with

respect to @ and | of above expression, this relation is valid if:

Ky*y =0 (y=0) ' (2.7)

We further investigate which requirements y has to satisfy in order that

the line integral on the large circle vanishes for the limiti .-

r > o
2
lim
r o> o /{¢%'¢§%‘}rd0=? (2.8)

For r + « the potential @ has to satisfy the condition (1,10) on the
large circle. As the relation (2.8) is symmetrical with respect to ¢ and ¥
these functions have to be equal on the large circle; so the function Y

represents for | x| + » a regular progressive wave:

e C1e.Ky =~ 1Kx for x + + «
(2.9)
Py > C1e—Ky'%le for x >+ ~ =
Hence, if the function y, as given by (2.3.), satisfies the relations

(2.7.) and (2.9.) then (2.4.)results in the following integral equation
for @(x,y) 1 J[ o

S P v
#la,b) = 5- {¢ vl Bn} ds (2.10)

B

In this expression B represents the contour of the cylinder on which the
%%-is given. In the integrand of (2.10) the function ¢

is integrated over the contour of the cylinder. When we take now the

normal velocity

point (a,b) on the contour of the cylinder, we obtain, after application
of the same procedure (in which the small cirele III changes into a

semi-circle on B), the integral equation:

¢(a,b)=%f{¢-§%-w%%}ds (2.11)
B ¢




TIn this expression both f(a,b) and @ in the integrand refer to values of

@ on the cylinder B. With the aid of (2.11) we first determine now the
value of @ on the contour B and after that with theoaid of (2.10) we are
able to determine the value of @ in an arbitrary point of the fluid. The
function ¢, being chosen in such a way that the line integrals along I,
IT and V vanish while moreover the requirements with respect to the
existence and the uniqueness of the solution of (2.10) are satisfied, is
called a Green's function.

Our last task is the determination of ‘the function wr(x,y; a,b) in
(2.3). We substitute (2,3) into (2.7):

K, + ¢, =- gilog { (x = a)2+ bz} Al o d§2’+ =z (y=0)
y

o
8

We search for a solution of this differential equation in the form:
1 ,
ve(x,y5 asb) = = 5 log { (x = a)%+ (y + b)2}+ v1(x,y; a,b)

The first term on the righthand side represents a sink in the imagepoint
(a, =b) of (a,b) with respect to the free surface. Then the function yl
has to satisfy the relation:

Kl 4yl = B (v=0) (2.12)

Apart from a factor 2 the righthand side of (2.12) is exactly the

Laplace transformation of cos p(x - a), hence (2.12) can be written as:
[ 3

Kyl + ¢; =2 Jf e—pbcos p(x - a)dp (y=0) . . (2.13)
Q

Consider the integral:

[+

J[ e_pbcos p(x - a)dp (2.14)

[e)

We consider p as a complex variable: p = a + iB. As the integral has
only a singularity for p = -~, we may change the path of integration,
which leads along the real axis in the above mentioned case, into an

arbitrary line L between the origin (0,0) and (»,0) (Fig. 2.2).



13.

Fig. 2.2.

. One of the elementary properties of Green's functions is their
- symmetry with respect to the points (x,y) and (a,b),([y%]Chp. IX-3),
which means that the function remains the same if we interchange (x,y)

and (a,b). Consequently we substitute into (2.13) for ¢! the expression:

pH(x,y; a,b) =2 J/;(p,K)e-p(y+b) cos p(x = a)dp (2.15)
L

a The function P(p,K) has to be determined in such a way that (2.13) is.
satisfied. Substitution of (2.15) into (2.13) yields:

-2 j/;.P(p,K)e-pb cos p{x - a)dp + 2 j/; P(p,K)e'_pb cos p.
L L

o

(x - a)ap = 2 j/;—pb cog p(x = a)dp (y=0)
L

= a
L J

which may be written as:

/{ (K = p)P(p,K) qi e P® cos p(x - a)dp = 0

L
we find:

P(p.K) = &= 5 (2.16)
and: 0

pl(x,y; a,b) = 2 /%ﬁ:—;b—) cos p(x - a)dp (2.17)

G



1k,

T121e integrand of (2.17.) has a pole of the first order in p = K
(K =-§— , real). We may choose the contour L in two ways now: over the

singularity p = k, e.g. L,or underneath it,e.g. L, (fig. 2.2.). As the residue

of the integrand is not equal to zero, the values1of the integral for these
two contours will be different. So the function w1 and as a consequence
also the function y are not uniquely determined. It appears that this
uniqueness is caused by condition (2.9.): ¥ has to represent a regular
progressive wave at infinite distance from the cylinder.

We now proceed to study the behaviour of P successively for the
. As we remain on the same side of the pole we are

1 into M, and L into M, (Fig. 2.3.).

contours L and L1

allowed to change the contour L

Fig. 2.3.

(x-8)+(y-0)°"
(x-2)%+(y+b)°

the behaviour ofylfor |x|+ = on the contours M1 and M2 remains to be studied.

We shall show now that wl represents regular progressive waves for the contour

For |x| + ®» the function : log \V/ vanishes, Consequently only

M, when |x| increases to infinity. Making the transformations x' = x - a and

y' =y + b and skipping after that again the indices we obtain for (2.17.)

for the contour M.:

p)
] f -py') _ipx' __-ipx' /—p(y-lx /-p y+1x
V'm = M S {e te j = (2.18.)

2 p) K - p dp M, “x-p ¢ M2 K -p

The first integral gives:

/ K=¢ K+e 0
-p( y—lx -o(y-ix) ~(o+iB) (y-ix) —a(y-ix)
< dp + s

M, ———— dp = ——de o + do.
2 K-p K-a K-p ; K- o
o “———jr-—'—‘ K-g *® Vv K+e Y——v—
-5 12 I3

We denote the first, second and third integral of the right-hand side respectively

by I1, 12 and I3. Partial integrating of I1 gives:
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. . o =K-¢ K=¢
oaly - ix)

ooy = ix)
157 (K - a)(y -'ix) /' (K-a ey - 1x)

It is easy to see that I. + 0 for | x | + =. In the same way it can be

proved that 13 + 0 for |1x | + «, PFurther because of B>0 the integral 12
vanishes for | x | + «. It likewise can be proved that for the second
integral on the right=hand side of (2.18) the integrations along the
real axis over (0, K~e¢) and (K+e,~)become zero, whereas on account of

the theorem of residues the integration along the semicircle (K-g,K+e)

yields:
+ . K+e
%{6 e‘P(y+lx) rp(y+1x) )
— . dp = ‘———:f—*—dp + 2711 (residue p = K).
Kmg KT Kee KD
W/ N

After substitution of p = o + 1B into the left~hand side we see that
(since B assumes only negative values) this integral vanishes for

| X | + o, For the residue in p = K we find:

o~P(y+ix) i}

lim _ _ ~K(y+ix)
P > K.(p K) K-rp ¢
80:
K#+e .
e Ptix) ap = on i e K(y+ix)
K-p 3
K=-¢
N
and:
lim / - =K(y+ix)
| x | o K -5 dp 21 i e (2.19)

Consequently ﬁland for this reason also Y répresents for,|x|+ ® g regular pro~

gresgive wave if the path of integration.L.in,expréssion(2.17)has the .shape of M.

In the same way it can be proved that y gives a regular incoming
wave for | x | + « if L has the shape of M.
Therefore in order to make ¢ satisfy condition (2.9), the integration in

(2.17) is carried out along the path M_. The Green's function ¥ which has to be

2‘
substituted into the integral equations (2.10) and (2.11)- has now an unique

representation (We divide by a factor 2):

- o~p(y+b)
¥(x,y; a,b) = _103\/%§:§%;$%§:g%2 '—*——E;—cos P(xaa)dp (2.20)
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So. summing up.aboye results, we constructed a function § with the following
properties:
(i) ay=0
(ii) the linearized free~surface condition (2.T)
(iii) for | x | + =, ¢ represents a regular progressive wave (2.21)

(2.9)

In chapter 3 we shallﬂsolVe_abQVe_mentioqu boundary-value problem by taking for
roB.linear: combination of potgqﬁial4fungtioqg,uggg;gidthgﬁe_qpmg9nents is the
potential functionh of a ﬁource,in;the,Qnigin_(aﬁpgq));yhicpdsgtipfigs in
addition the)conditions, (2.21.). For, this reason we ghall consider here the
potential. function of such a source more precisely. Setting a=b=o in (2.20.)

and calling the potential now ¢, we obtain:

) I o PY
= K -=p ©°s px dp (r.22)
0—’:\-.
K

In literature (2.22) is mostly given in another form, which can be
derived form (2.22) by applying theorems of the complex function theory.
We shall give this derivation here:

If we split up the integral (2.22) into two integrals I, and I, it

gives:
[ Y cos px o Py +ipx &~PY ~ipx
K - ‘ “———ﬂK p+ —dK P (2.23)
K-y___\,_____J K— —_—
I1 12

It appears that the calculation gives different results for x>0 and x<O.
We shall consider here the case x>0. For x<0 the reasoning proceeds in °

an analogous way.

4 Fig. 2.4,
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For the calculation of I1 we close the contour M with the arc of a
circle CB and the positive imaginary axis IB so that application of

Cauchy's theorem leads to:

w . .
e—pyfipx 1im 2 e-Reley +iRelex Reie y e—iBy —efx
— dp + 5 - ide + - idBR= 0
K-p R+ w K-Re K-iB
et N o [
This is easily reduced to:
i
2 N
~-py+ipx lim -(Rycos0+Rxsin®) -~ i(Rysin®- Rxcos®) .
e e 10.
—dp+R+w Re™ 7140 +
K-p : K - RcosO® - iRsin0
..__f.\._. o )
0
e—iBy*-—Bx
- 3idB = O (2.2h.)
K-iB
The first integral in this expression is a principal value integral.
We notice that on CB: cos 0> 0, sin® > 0 and x>0, y>0. So the third
integral vanishes for R + = , Consequently (2.24.) may be deduced to:
. o .
e—Py+1Px o~1BY —Bx
I——— dp +/—'-—id6 =0 (2.25.)
K-p K-iB
—_— ey
For the calculation of I, we close the contour with the arc of a circle

2
C0 and the negative imaginary axis. As in this case the path of inte-

gration encloses the pole p=K with residue

o~PY —ipx

1im (p-K) = _e—Ky —1Kx
p~*K K-p
We find by applying the theorem of residues:
~py —1pX . —Reley -—iRelex i0
e : lim 2 e ) .Re .
/—‘-—dp+R+wf = ide +
K-p K-Re
- o
, -iBy + Bx . .
¥ [ & T jap = -omi(eeY KXy o opg Ry —ikx
K-iB

In a similar way as in (2.24.) the second integral in this relation vanishes
so that after evaluation of the first integral the above mentioned form

results into: °
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-py.+ ipx -i3y+3x .

e as e . =Ky =1Kx

4/[ kK-p P° * J oK -1ip 1dg = 2mi e (2.26)
—Ny
From (2.23}, (2,25) and (2.26) follows:
/ cos;gxl
K-p
£ -iBy =Bx [w iBy - Bx .
= € e s . ~Ky -iKx

) —'K—_.—B"_Ldﬁ + ] K + 1B (=1)aBf+ i e (2.27)

(2.27) may further be reduced to:

/ e~'pycosp>{i
P

.._..ﬁ\_’K‘_P

-Ky —iKx (x>0)

- /e-Bx(KsinBy - Rcosgy) ag + mi e

K2 + g2

In the same way it can be proved that for x<0 the integral on the right-

hand side of above expression has to be replaced by:

-Ky + iKx (x<0)

dg + mi e

/ Bx (KsnnBj - BcOSBY)
KZ + B

Consequently the potential @ of a source in the origin satisfying the

free=surface condition and the radiation condition is given by:

5 = e-qu (Ksingy = @cosg y) -Ky - LKK|
ey ag + mi e Y

(2.28)

0
Tn this report we will use the following definition for the source

potential:
&b a4 Aot L gb .
g = e Re{_1¢ e }- no{¢c cosgt + ¢Bs1nct} .
where b is the wave height at an infinite distance from the cylinder.

Comparing this expression with (2.28) we find for the non-dimensional
guantities ¢s and ¢c:

p = ne—Kycost

c
(2.29)
Ky "BM
¢s = me Vsinkp - m (BcosBy - K sinBy) 4B
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Remark

It appears that the integral in (2.29) converges very slowly when it is
calculated in a numerical way. Portex*[}o page 1h8] has given the

following power series expansion, whichi atfords good results:
o "Bx ) Ky o Ky .
gz + gz (KsinBy - BeosBy) a8 = e”{Q cos Kx + '8 sin Kx [ - e ~sin Kx
[¢]

where
B /1 © .n n/2
— . 2 o 2 K §x2 + 122'
aQ.'TY"'ln[K(x +'y2) ]+n21 FEEE CoSs ny,

n'!n sin nx,
- n=1
y = 0,5772156649...,.: Euler‘'s constant, and
X
= arc tan —
X . 'y
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/‘ 3. Determination of the velocity potential for a heaving circular

i cylinder according to Urseil; added mass_and damping

In the previous chapter we saw that the potential can be determined
by solving the integral equation (2.11). In general however it appears
that this leads to rather complicagted numericsal calculations. Urselll:b]
has developed a method of solution, which eonsists of superposition of
potential functions, which all satisfy the equation of Laplace and the
free surface condition. The solution is composed of the source potential
(2.28) and a linear combination of multipole potentials which are

represented by:

N

_ 2m|cos 2m 0 K cos (2m-1)0 _
¢2m_a { an A r2m-1' } m= 1,2,3,..... (3.1)

where (r,0) are the polar coordinates:
x =r sin 0, y=r cos 0 (3.2)

while a represents the radius of the circular cylinder (Fig. 3.1).

ﬁl.\

/-k , . Fig. 3.1. ‘
Bince the cylinder is carrying out a vertical oscillation, the corres-
ponding velocdity potential is a symmetric function with respect to the
y~axis (see (1.11)). Consequently it suffices to restrict our future
considerationsto the range 0$e$gu The time dependent poténtial ¢

"is expressed by:

¢ = %%‘ 8, (Kr;0)cos ot + ¢S (Kr3;0) sin ot +

- 2m § cos 2m 0 K cos (2m=1)0 ‘
" E - ~ .
cos °tm_1 Poy(Ka)a { om " Pmed _on-1 }* (3.3)

% o |

) < 2m } cos 2m @ K_cos (2m=1)0

. + sin UtZ q_2m(Ka)a { 2m + 2m=1 2 ém—‘l ) }
m=1 r r

according to (2.29) and (3.1), ‘while:
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¢c (kr,0) = ne_Krcosecos(Krsine)
e-Br sin0®
¢s (kr,0) = - jliafer;r-{Bcos (Brcose)-Ksin(Brcose)} ag (3.4)

Q

. =Krcoso
ne

+ sin(KrsinO).

It is easy to verify that the multipole potentials ¢2m satisfy the free-
surface condition. In chapter 2 we showed that the source potential
%%u{¢c cos ot + ¢s sin ot} is determined in such a way that the free-
surface condition is satisfied. Furthermore we showed there that this
potential represents for| X 1 +.®% g regular progressive wave. As the
multipole-potentials vanish for r » = the total potential ¢, represented
by (3.3), satisfies the radiation condition (1.11). It still remains to
determine the coefficients Pon and qzﬁ in such a way that the boundary
condition is satisfied. For the case of a circular cylinder the boun-
dary condition (1.8) at the cylinder is reduced to:

%%'cos 0= g% Q - (3.5)
The Cauchy-Riemann conditions which relate the velocity potential & and

the conjugate stream function ¥ have in polar coordinates the form:

3 _ _ 1 8
or r 9
(3.6)
129 _ aY¥
r 2 or
Substituting ¢ in (3.6) ylelds us for the stream function:
- Eb .
vo= ¥, (Kr,0)cos ot + wS(Kr,O)s1n ot +
S 2m( sin 2m @ K sin (2m-1)0
. m{ s m sin (2m- .
+ cos otZ1-p2m(Ka)a { ’I"2m + p— rzm_1 ’ } + (3.7)
. S om{ sin 2m © K sin (2m=-1)0
+ sin ot;::qzm(Ka)a { ‘2m + 2m=-1 2m=-1 }
r r
where:
wc(Kr;G) = we_Krcosesin(KrsinO)
o BT sin@ A (3.8)
‘ps(Kr;e) = ] KT 5T {Bsin (Brcos®) + Kcos (Brc0s6)} dg -
0 ‘
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{" - ﬁe_Krcosecos(KrsinO) .
-

Using (3.6) the boundary condition gt the cylinder (3.5) may be written

as:

Y _ _
i %%cos ) (r=a)

o=

Integrating with respect to © we obtain:

¥ = —-g %% sin 0 + ¢ (t) (r=a)

By substituting © = 0 the integration constant c(t) is found to be zero.

We assume that the ordinate of the axis of the cylinder is given by:

¥ = 1 cos (ot +g) . (3.9)
@ Consequently the streamfunction at the cylinder has to satisfy:
¥ = loa sin (ot + €) sin © (r=a) - . (3.10)

From (3.7) and (3.10) we find:

lbc(K_a;O)cos ot + wS(Ka;O) sin ot +

[~
cos thpzm(Ka) { sin 2mo + 21;3‘1 sin (2m-1)0}+ ) (3.11)
sin ot > q, (Ka) { sin 20 + Soow sin (2m—1)0}=’ l—%‘-& sin (ot+e).sing
7 ;
As (3.11) holds for the range 0~<,G)$% we find by substituting 6 = —g— in
this expression: ’
@
3 ) m=1
.o LI Ka(=1)
wc(Ka,z)cosct + xpS(Ka, )sinot + cosctz1, pzm(Ka) prrecanslh
(3.12)
-] m=1
. ‘Ka(=1) _ lamK .
+ 51nth1q2m(Ka) o~ = = sin (ot + ¢)

With this relation we eliminate the factor lgnK sin (ot + €) from (3.11).

It is easily seen that in the resulting form the coefficients Pon

and q,_ have to satisfy the relations:
2m )

wG(Ka;O)—lD.c(Ka ,-g-) 8ino =Z1 pam(Ka)fzm(Ka;O)’

® (3.13)
_ | wS(Ka;O)—‘bS(Ka;g) sin® =Z1 4y (Ka)f, (Ka;0)
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where:

fzm(Ka;e) = -~ | sin2mo + {sin(2m—1)0—sinesin %{2m—1)ﬂ}

Ka
2m—1
In (3.13) the left~hand side is expanded in a series of functions
fzm(Ka;e), where m = 142434.... In practical applications we take of
course only a finite number N, of terms, where N determines the
accuracy of one approximation. The coefficients Pop and Uom for example
can now be determined with the least—-squares approximation method.
From Bernoulli's law (1.5) we derive that the hydrodynamic

pressure in a point of the liquid in linearized form is given by:
P = —p — . (301)“‘)

Consequently the hydrodynamic force per unit-length on the cylinder is:

¥

22%95 (Mocosot - Nosinot) (3.15)

1

2 99
P= g ja:g*_E‘ cos0do
r=a

_a
2"

where:

o (-1)" g, (Ka)
¢S(Ka;0)cosed0 + Im2 - 1 + g Kaqe(Ka)
] 1.

Gooy

=
o
[
O

| | o (<)% 'p, (ka)
N0 p (Ka;0)cos0do +2§_ e e Kapz(Ka).

c

0
N

A long cylinder which is completely submerged in an ideal infinite
fluid experiences a hydrodynamic force-M# per unit-~length which is equal
to the product of the relative acceleration ¥ and the displaced volume
of fluid M per unit ¢ylinder length.

The situation remains the same if we remove the fluid and add to the
cylinder per unit-length a mass M. For this reason M is called the added
mass of the cylinder. If the cylinder is moving in a fluid with a free
surface then the force is no longer in phase with the accelera~
tion. We resolve this force into a component in phase with the accelera- .
tion,which does not dissipate any energy,and a component in phase with
theUVelocity3 which has the same character as a frictional force and
which i1s responsible for the dissipation of energy in the form of out-
ward-going waves. The acceleration component of the hydrodynamic force
ig determined by the added mass and the velocity component by the
damping of the cylinder.
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‘ We shall calculate now these two quantities. From (3.9) it follows for
i

the velocity of the cylinder:

ay . _ .
ot = ~ losin (ot + €),
combining this with (3.12) we find:

ay _ _ ob_ .
at — {Acos ot + Bsin ct} (3.16)

where;

Rd m=
AKa) = ¢ (KasD) +F S Ko oo ()
1

= c 5 2m-1 P2m
(3.17)
o m—1
@ B(ka) = v (kal) +Z UKo o (ko)

The acceleration of the cylinder is given by:
d?%y _ bo? .
Fre datd {As:mct Beosot } | (3.18)

The force in phase with the acceleration follows from. (3.15) and (3.18):

208 ba MB + NOA
- 22 B2 {A sinot - B cosct} (3.19)

The force in phase with the welocity is found from (3.15) and (3.16):

2pa bg MoA " NoB '
. YR {A cosgt + B swct} (3.20)

°

{

4

-

.
!

P2
q
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/’.\‘ The validity  of the formulas (3.19) and (3.20) is easily seen from
i the vector-diagram in Fig. 3.2.
We assume that the hydrodynamic force, the velocity and the

acceleration are respectively given by:

P = p,cosct + pasinot
v = v,cosct + vasinct
a = a,cosot + a sinot. ’

17 2

The velocity and the acceleration have a phase difference of 90 degrees.
~ The component of P in phase with the acceleration is expressed by:
_ (B.a) _ (pyay + ppay)
Pa 7 Tal \V,
@

In vector notation this component is represented by:

a p.,a, + p.a a
1 e 2 (a,cosot + a.sinot)

Pa.lgl' =r _‘_—_a12 . a22 1 o)

It is easy to check now that in this way expression (3.19) is derived
from (3.15) and (3.18). The derivation of the expression for the force
component in phase with the velocity is similar. !

The added mass of the cylinder per unit length is defined as:the negative

value of the ratio between (3.19) and (3.18):

' MOB + N A
m (Ka) = 2pa? —KQ—:fgg— . (3.21)

<i!D MOB + N A
The dlmen51onless expression —Kzf;—ﬁz— is defined as the added mass

coefflclent.

The d;;p;ngﬁcoefflclent of the cyllnder per unit length is deflned

as the negative value of the ratio between (3.20) and (3.16):

\ MA - N_B
N (Ka) = 2pa’c FE?—;—gf* | (3.22)
From (3.7) and (3.17) it follows that on the cylinder for @ = % the
stream function can be written as:
y = B2 {A.cosct + B sinot } (r=a; 0=X)
T 2
, Comparing this with.the expression which results from (3.10) when we set
® @ = L, it follows that the ratio: vave emplitude 8t _infinity

25
equal to:

amplitude of the forced oscillation —°
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- _ mKa (3.23)

VAZ + B2

Finally we observe that the work dene by the cylinder in one c¢ycle, must

o

be equal to the energy radiated by the regular progressive wave during
the same time, which is twice the energy of one wavelength of the

regular progressive wave:

°*‘~xq|§

- 2,2 1
P%%.dt—?bg 1,

Substituting the expressions (3.9) and (3.15) we find the relation:

_'"2 . L
MOA NDB =5 . ‘ h (3.2 )

" Consequently the damping coefficient can be simplified to:

' 2nem2
N (Ka) = %%—j—"Bz : ) (3.25)
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H. Heaving'of a ‘cylinder with an arbitrary cross—section

In this chapter we will discuds in which way Ursell's method can be
modified for the calculation of the added mass and damping of an arbitrary
cylinder. The essential point in this process is the mapping of a semi-
circle onto the cross section § of the cylinder (Fig. 4.1.1) by means of a
conformal transformation, i.e. we determine such a system of curvilinear
coordinates that one of the coordinate-lines coincides with the contour of

the cross—section.

4.1.. Curvilinear coordinates and conformal transformations

Fig. 4.1.1.

o

We take the origin of a rectangular coordinate system at the mean
position of the axis Sf the cross—Section in the free-surface of the
fluid. The x-axis is taken horizontally and the y-axis vertically in
downward direction. This plane is often called the physical plane and is
denoted here by the z-plane. The plane of the semi-circle or reference
plane is here called the g=plane. In the g-piane we assume a polar-coordi-

nate system (r,0) with origin in the centre of the circle.With a conformal map-
ping of the z-plane onto the g-plane every point (r,8) in the r-plane corres-
ponds with a point (x,y) of the z-plane. Consequently there exist relations
between the variables x,y and r,6 of the form:

x = f(r,0)

y = g(r,0) (4.1.1)

The corresponding inverse reélations are written as:

r=7 (%y) (h.1.2.)

0 =g (x,y)
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We now require that the conformal transformation maps the cross=
section S onto the semi-circle. If the circle has a radius r = a then S

is given by:

x = f(a,0) . (4.1.3)

g(a,0)

b1

y

Now we also conceive as coordinates in the z-plane the variables r and O.
S0 along the contour S only the variable @ changes in value while r = a
remaing constant. The conformal transformation brings about a coordinate
transformation (4.1.2) of rectangular coordinates (x,y) into curvilinear
coordinates (r,0) in such a way that one of the coordinate-lines (in
this case r = a) coincides with the cross-section. The coordinate-lines
r = constant and © = constant represent two sets of curves in the z-
plane which are mapped in the ¢=plane as the lines r = constant and 0 =
constant, which represent there circles with the origin as centre and
straight lines through the origin (Fig: 4.1.1). We know from the theory
of conformal transformations that right angles at the intersection
points of lines correspond with right angles at the intersection points
of the transforms of these lines. Consequently the coordinate lines r =
constant and © = constant intersect each othef also ﬁerpendicularly in
the z-plane. The important consequence of thisuis that differentiation
along the cross-section with line-coordinate s corresponds with diffe-

rentiation to 0:

|
e

2

a0

and differentiation along the normal n with differentiation to r:
RN
on or

In the future we shall see that the place-dependence of many physical
quantities like for example the streamfunction § and the potential ¢ is

expressed by curvilinear coordinates r and O.

Using a conformal transformation, we determine the relations (k.1.1.), which

satisfy the conditions (L4.1.3.) on the contour S.
We map the region.outside the unit circle |§l> 1, represented in polar _
. i . .
coordinates by ¢ = re ¢ onto theé region outside the closed éurve S of the

complex z-plane, where z = x + iy. The region outside S is supposed to be

simply connected (Fig. k.1.2.).
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' We determine a transformation in the form of a series with a finite

number of terms:

m-2 m-2
z2 = Z Cn 0 o= Z (An + i Bn)r_n(cos ny -i sin ny) (L.1.4.)
n=-1 n=-1

Equating the real and imaginary parts of this equation, we obtain:

m-2
-n .
= +
x Z r (An cos ny Bn sin ny)
n=-1 (4.1.5.)
m-2
_n .
= - +
y z r An cos ny Bn sin n\f)
_ n=~1
L_-ﬁ
As we are only interested in cylinders which are symmetrical with respect
to the x- and y-axis €in fact we only consider the region y>0 of the
cross-section; consequently we can imagine the cross-section to be
symuetrical with respect to the x~axis), (4.1.5.) can be reduced to:
m-2 .
-2n-1
X = Z- r A2n+1cos(2n+1)\9
n=-1 - (4.1.6.)
m=2
_ -2n-1 .
y = Z r A2n+151n(2n+1)lp
n=-1
We notice that in this case the rectangular coordinate-axes £ and n of the
5‘5 t-plane are transformed into the coordinate-axes x and y of the z-plane and

since the circle intersects the horizontal axis perpendicularly, the cross-
section of this cylinder intersects the x-axis perpendicularly. Consequently
this transformation is restricted to cross-sections which intersect the

x-axis perpendicularly.

Comparing Fig. 4.1.1. and Fig. 4.1.2., we see thatlp = g—- 0. Bubstituting
this for \pinto (.1.6.) we obtain:
m-2 A, .. sin(2n+1)0
x=A .r sin 0 + 2: (—1)n 2nt1
=1 r2n+1
n=0 (bh.1.7.)
m-2

A cos(2n+1)0

n  2n+1 B
A_1r cos O + Z (-1) r2n+1 ., .

q
n

n=0
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These are just the transformation formulas used by Porter [10]. Porter makes
use of a slightly different notation. For reasons of simplicity we will

adopt here this notation; (4.1.7.) then becomes:

N
a
_ . n 2n+l1 .
X =a {r sin © + EE (-1) —Spt1 51n(2n+1)e}
r
n=0
N a (k.1.8.)
_ n+1 2n+1
y = a {r cos O + z (-1) ot cos(2n+1)®}
n=0

Finally we remark that for the case of a circular cylinder the coefficients
81585585y aTE all zero. The coefficient a represents then the ratio of the
radii of the circles in the z-plane and the {-plane. For that reason a

is called the scale factor of the transformation.

Fig. k.1.2,

4.1.1. Iransformation method of Fil'chakova [11].

This method is closely related to Melentiev's method, described by
Kantorovich and Krylov [15]. The method is derived for cylinders with an
arbitrary shape. Consequently we have to start from the relation (4.1.k4.).
For the determination of the coefficients Cn we choose 2 m points at the unit
circle r = 1, which are dividing the circle in equal parts, thus the polar

angle of every point always differs AY=% with those of his two adjacent points.

Next we divide these points into two systems of points: an even system(f2k= gﬁﬂ
and an odd systemlfzk_1 = Lg&ﬁllﬂ s kK= 1,2, ...,m.

The images Zop = oy + i Yo rgspectlvely z

2k-1 " *2k-1 T * Yokt (k= 1,2...n)
of these points on the cross-section S are called nodal points. The

coordinates of these points are given by:

m-2
Xop = EE (Ancos ny,, + B sin nqék)
n=-1
s (4.1.9a.)
Yo = jg; (—An51n ny, + B cos nqbk)‘
n=-1




m-2
Xy g™ 2 (Ancos ngy ., * B sin nsozk_1)
n=-1
m=2 .
y2k--1=‘2 ] (Ancos nfoy * Bn51n n‘fEk)
n=-1
Bo we have an even sytem of nodal points {x

system (x2k-1’y2k—1

ok *Y 2k
),k = 1,2, ,.., m,which are the image-points of the

} and an odd

points (1, ?2}{) respectively (1, ?2k—1) at the unit circle.

31.

(h.1.9b.)

Making use of the properties of orthogonality for trigonometric

functions of discrete equally spaced arguments (here: —2-1:-:- ), we can invert

(%.1.9) in a ;imple way with respect to the coefficients An and Bn' For

the even system these relations of orthogonality are:

m m
E sin j?ngin ng,, = :>: cos ijkcqs nq?zk =
k=1 k=1 ‘

m
E sin j(fekcos ng, =0
k=1

0

no s

sqj#na

(k.1.10.)

We multiply first the equations (4.1.9) by cos jSéEk and sin js&zk respec-

tively and after that we take the sum with respect to k. Combining this

with the relations (4.1.10) this affords:

m-2

m ‘ m
z (x5, 008 J@y = ¥py8in i, ) = z An(Z cos Jf,ycos ng, *
k=1

n==1 k=1

m m-2 m

+ E sin j72k5in n?zk) + E Bn(Zc'os iy sin ng,, -
k=1

k=1 n=—1
m

- E sin j?zkcos mPEk) =m Aj
k=1

In an analogous manner we multiply (4.1.9a) respectively by sin 'j?Ek and

cos je?Zk, which results in the following relations:
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(+m) _ 1 | I L
Aj == (xzkcos J?ek Yy 5in Jfbk)
k=1

(h.1.11)

_1 . L
i - mZ (X810 Jpy + Ypic0s @)
k=1

J= =1, 0, 1, eeuy m=2
The index (+m) has been added to Aj and Bj in order to indicate that
these coefficients are determined on the basis of the even nodal points.

Starting from (4.1.9b) we can determine in an analogous way a

relation between Aj and Bj and the odd nodal points. In this case the

_index (-m) is added to Aj and Bj:

m
(=m) 1 } _ ..
Aj m (%5108 3oy = Yop—q3in o)
k=1 ‘
m

1 o ,
= mz (g gmin 3@y g ¥ Vg qc0s P y)
=t

(s (4.1.12)
B:-
J

J=-1,0,1, ..., m=2

If the nodal points are known we can determine the coefficients by means

of the expressions (4.1.11)and (4.1.12)where A = A(+m) = A(—m)
g, = p{*m) - p{m)

dJd J dJd
known.

and

. However the locations of the nodal points are un-

We shall devise now an iteration process, ‘based on the property

+ - . -
_that A( ) M) ong B§ ) Bg m)
(h.1. 8) there exists a relation between the even and odd nodal points.

(=m)

. 80 on account of (L.1.7) and

One possibility to determine this relation is to eliminate A ™ and
Br(;m) from (4.1.9a) and (4.1.12)
m=2
= _Z_ (+m) (~m) . _
Xy = (An cos ng, + B "~ 'sin nqbv) =
n=-1
1 [ . . ~ .
"'nl{ E X5y E cos n(qbk—1—95v)*y2k~1 E sin n(?bk_1—gév)
k=1 n=-1 n==1 )
m=2
Yo, © (-A -m) sin n (-m cos ng@. ) =
2v $ou .,
=1

m=2 e m=2
1

"3 Z oK~ 1Z sin n(?2k41_72v)+y2k-1z cos n(fp~%,)

k=1 == i n=-1

1}



‘. In the ’osaxrm way“wé obtain by eliminating Aiﬂn) and Bffm) from (4.1.9b)by
means of (L.1.11):
m m-2 ‘ m—-2
Xou-1 = i Z *aK Z 008 n(@a~Fry-1) ysz sin n{gy = %,-1)
k=1  ‘n==1 n=—1
m~2 m-2
Yoy-1 =3 E *2K Z sin n(@p= %) ysz cos n(?zk“fzvﬂ)}
n=-1 n=-1
We define the following new quantities:
“ m=2 . m-2
él(j-lz 2V E:TZ sin nlpoy. 1=%,)5 Y£1(<m 2v-1" %Z sin @y ~foy-1)s
(.l | n=-1 ( n=-:1 c ‘
( m=-2 - n—p - (k.1a3)
Y giﬁ?),zv B %Z c0s 1@y 1"Fpy)s Ygi(mgv—f %Z cos n(gp=$p,-1)3

n=-1

33.

n==-1

Then we obtain the following recurrence formulas of the iteration

process:
(n) L) II(m)  _ (n)  I(m)
Xoy=1~ %2 Yok,2v-1 " Yok Yox,2y-1
k=1 :
(h.1.14)
m
(n) _ Ln)  I(m) (n) II{m)
yzv— %ok Yor,2v-1 ¥ Yok Yok,2v-1
k=1 .
@ :
m
MCLIDE (n) _II(m) (n) _I(m)
*ov - 2k-—1Y2k-1 2y Yok-1Y2k-1,2v
=1 :
(4.1.15)
m
y(n+1)_ (n) I(m) (n) II(m)
2v *ok-1Y2k=1,2v ¥ Yox-1Y2k=1,2¢
=1

The iteration process is carried out in the following manner:

For some m = 4,8,16... we select on the basis of a graphical con-

sideration an estimation for the zeroth approx1mat10n to the m even
points (x(g), yéﬁ)), k=1,2,....m. Kantorov;ch/and Krylov describe in
’ chapter V §7 []S] various methods to obtain a suitable estimstion for

the locations of the nodal points.
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By means of (4.1.14) we calculate the accessory odd points which in
general will not lie on 8. After that we carry these points to the con—
tour for example along the line which connects this point with the

origin and thus obtain the zeroth approximation for the odd nodal
(0) (0)
2k=1? Y2k-1
acgessory even points, carry them to the contour and in this way get the

(1) (1)
ok * Yok
We repeat this process until a subsequent approximation coincides with

points (% ). With these points we calculate with (4.1.11) the

first approximetion for the even nodal pdints (x ), ete.
sufficient accuracy with the previous one. In order to increase the '
accuracy of the transformation we have to take a larger value for m, for
example 2m, ' taking the even and odd nodal points of the previous
iteration as an estimation for the m even nodal points of the new
iteration, after which we repeat the itefation process as we described
above. In this way we can determine the locations of the nodal points
more accurately. r

5o the transformation—equations:

m=2

X = E (Anf:os nep+ Bn31n nso) ( .
n=-=1 ° . .

m=2 | ‘ (4.1.16)
y = Z (—Ancos ng + aninsf)

n=-—1

are completely determined now.

%.1.2. Alternative method for the determination of the transformation

coefficients.

We shall now consider another .method which has been developed by
"Rescona Engineering" in Amstelveen (Holland) in cooperation with W.E. Smith.
From the analytical point of view this method is much more simple than the
one discussed in the preceding section. Applications of this method proved
that it is very useful. |
This method is expounded here for cylinders, which are symmetrical with
respect to the x- and y-axis. This is a case which is usually encountered in

naval architecture. ?

- o

RZ2RN
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0

We start form the equations (4:1. g ) where we put r = 1:

N
. n .
a.{31n 0 + :E: (=1) 8, 4q SiD (2n+1)0}
n=0

) N
_ - n+1
= a {cos o + E (-1) 8y 41 €08 (2n+1)0§
n=0 : .

These equations describe the relation between the variable 6 on the

"
]

(4.1.17)

e
\

unit—circle in the g-plane and the variables x and y along the given

contour in the z-plane.

We substitute in (4.1.17) the expressions:

n r
sin (2n+1)0 =Z (—1)r(—g—;%)! ﬂ {(2n+1)2 - (21{-1)2} sin2r+10
r=0

k=1
cos (2n+1)o = %(Ecose)an+1 +
n 2r=1
+ 1 Z (-1)" 22l H (2n-k+1)| (2cos)?R72r*!
r=1 k=r+1
This yields: . |
} N 2kt 1
== sin O + Y, sin O
2 Z i
k=0 (4.1.18)
N Okt 1
L= cos 0+ ¢, cos ©O
a 2,, k

where the coefficients bk and c, are linear combinations of CTRLEPEREE
fofe1 : :

We now choose on the right half of the cross=section in the z-plane
a sequence of m points, such that the first point coincides with the
point (x=0,y=T) while the last point coincides with (x=Be,y=0). T and B,
represent respectively the draft and the half beam of the cross=~section
(Fig. L4.1.1). The points of this sequence, which we represent by (xi,y;),
where 1 = 1,2,....,m, originate from points on the unit circle in the z-
plane represénted by (1,0i). Consequently with the points (0,T) and
(Bg,0) in the z-plane correspond the points (1,0) and (1,%) in the g~
plane. Substituting these values for (xi,yi) ang 0; in (4.1.18), we

obtain the following system of equations:
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N
X
—= = s1ln 0. - ? b 51n2k+19, 0
k 1 .
=0 N
i= 2,354 .,m
y N (4.1.19)
= - cos 0. - c c052k+10. =0
a 1 k 1
k=0

i=1,2,..,,m1

In this way we obtain a system of 2m-2 equatidns with the following N+m

unknown variables:

Sy 31, a3, ce oy a2N+1

‘and .

02, 63,

..f\. L) em_,]

In order to make the number cf equations equal to the number of unknown

variables the relation

m=0N+2 : (4.1.20)
between the number of points m, chosen along the cross—section, and the
number of terms N, we want to consider in the series expansion (4.1.17),
has to be satisfied.

The set of equations (4.1.19) are solved by the Newton Raphson .
Method [1(3] |

Representing the left-hand terms of (4.1.19) by: F

F. = F. (xi,ei,a,a1,a3,..... ) and

1 1 28oN+1

G.
1

hi|

G, (yi,ei,a,a],a3,.....,a2N+1) respectively,.

ve obtain the following set of iteration equations:

‘ 5 aFJi N ; aFy P ai»“g ;
ha” e +2 Byt 38 . Y80 357 T F
- 2Kk+1 1
k=0 .
i=2,3,...,m (4.o1.21)
5 acg N P acg 5 aG‘i’ 5
———— i T o T .
he” 5% +z basye 9811 4oy N 3
k=0 i=1,2, «i.,m=1
i , . oo v 3 J S L I J -
In these equations Aa® = a a¥s Bah 1 Z 854 T 85, 8nd AGY =

i+ j . . . .
Og 1. Gg represent the corrections which are to be added to the j=th

iterates aJ, a? and Og in order to obtain the (j+1)-th iterates of

‘ 2K+ 1
these variables.
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aFg aFg aFg : acg
The numerical values of the constants e’ 38 —? 30.° Fi and 75;3
2k+1 1
aGg acg .
5;————’ 30, ° Gg are obtained by substitutipg the j=th iterates in the
2k+1 1 .

corresponding functions for the varilables Oi,a,a1,a3,...,a2N+1.

4.2. Calculption of added mass and damping ﬁél

Completely similar to the method Ursell used for circular cylinders,
the velocity potential for the case of an arbitrary cross=section is also
composed of a source potential and a linear combination of multipole
potentials. For the source potentiél we take again expression (2.28),
vwhich satisfies the surface condition and the radiation eondition. To
satisfy the boundary condition on the cylinder we superimpose a suitably
chosen linear combination of multipoie potentials, whereby each multipole
potential satisfies the surface condition and vanishes for | x | » =.

The multipole potential is defined by:

¢ - cos2mp cos(2m-1)g Z (=1)P (2n+1)a2n+1co§(2m+2n+1)e

<+
2m 2m (2m- 2m 1 (2m+2n+1)r2m 2nt+1

m= 1,2,3,.....  (4.2.1)

We remark that Pom vanishes vor r + «., In order to prove that Con satis=
fies the free-surface condition, we transform this relation first by
means of (4.1. &) from rectangular coordinates (x,y) into curvilinear
coordinates (r 9)

As 36 =0 for 6 = + %’(the O-1lines intersect the x-axis perpendi-

cularly), the free surface condition.

K¢+ ¢y =0 (y=0)
can be written as;
.- P _ I
K¢ + (91)‘ 56 = © (_9 = + 2) (4.2.2)

From (4.1.8 ) it follows:

&y _ Bon+1

G0 = Tadr sin 0 +

sin(2n+1) 0

=
iy =
o
‘ —
=
+
no /:
S
+
-~ %+
n
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In curvilinear coordinates the free-surface condition ¢btains the form:

Ka r-E(2+1 2n+1¢1 —g-g=o 0=

“ont (L.2.3)

|+
o=

n=0

Substitation of (4.2.1) into (4.2.3) shows that Porn satisfies the free-
surface condition. So the velocity potential which is the solution of

the boundary value problem c¢an be written as:

(¢c +Z} pEm?Zm)cosct + (¢S +Z qzm?zm)Simt} (Lh.2.4)

m=1 m=1

[

where ¢c and ¢S are defined in accordance with (2.29):

¢c = nquy cos Kx

- -Bx -
0 = ne ™ gsin Kkx - f (B;“nyKsmﬁy) ag (4.2.5)

0
By means of the Cauchy~Riemann relations (3.6) we calculate the con-
Jjugate stream—function:

5%, (‘p +Z p2m¢2m)cosct +(P +Z Aoy ¥op)sinot (k.2.6)

where: -

P = ne—Ky sin Kx !

= oKy (BsmbKGOSByl
Y, = —me " cos Kx + Jr )
0
_
- 51n2m0 + K sin§2m—1}0 . ‘ (_1)n (2n+1)a2n+1
Yom =~ _2m a 2m-1 omtontl
(2m~1)r
n=0
sin{2m+2n+1)0
2mt2n+1 ‘ (k.2.7)
r
It remains to determine the coefficients Pom and Uy in such a

way that the boundary condition on the cylinder is satisfied. The
reasoning proceeds analogous’ to the corresponding calculation in

chapter 3. The boundary condition on the c¢ylinder has the form:

99 d; ‘
- a%'cos o (4.2.8)

a is the angle between the positive normal on the cross-section and the

positive y~axis (Fig. 4.2.1).
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Fig. 4.2.1

It is further easily seen that at the cylinder surface:

cosa = 2% =

9s on
sino = = %%' (4.2.9)
8% _ _ ¥ _ _ oY
on 9s rac

So the boundary condition at the cylinder (r=1) can also be written as:

av
as

90X

S

22

After integration this leads to:

¥ (r=1,0) = = &L x(r=1,0) + c(t) (4.2.10)

Substitution of =0 (x=0) yields for the integration constant:c(t)=0,

SO
¥ (r=1,0) = - %%x(rﬂ,e) (h.2.11)

Substitution of 0 = g-gives;

y (1,127—) = —%‘tlB., (4.2.12)

By = x(1,£0 is the half beam of the cross—-section (Fig. L4.1.1).

Eliminate g%-from (4.2.11) and (4.2.12) to obtain:

¥ (1,0) =ﬁ—;—’e—)w(1,—’l) (4.2.13)
0 2

Substituting (4.2.6) in this expression and equating successively the

coefficients of cos ot and sin ot,we see that the coefficients Pom and

P, have to satisfy the relations:



Lo.

N

( ‘ " 0 H | 10 @
e | o(1:0) + 2 Bygtoy(iy0) = X0l { wc(1,—g-)+gp2mw2m(1,g-)»}
9 _x(1,0) | L
¢S(1,e) 4-25: q?mw2m(1’e) " B l"'5(1’2)"- B q2m¢2m(1,£~)
m=1 m=1 2
or: ) o
_ x(1,0) oD
o (b.2.14)
, _ x(1,0) LTy
Vs (1,0) = 5=ty (1,3) -% Ul 15€)
n where:
_ ) ~y _ x(1,0) my o ~ %)

{ ] om( 10 = T35 Uy (153) =y (1,0)

The equations (L4.2.14) have the same structure as (3.13). The coeffi-

cients Pom and 4y, May be calculated in a corresponding way.
The velocity potential ¢ at the contour of the cylinder (r=1) is written
as: '

% (1,0) = %% (M sin ot + N cos ot) . (4.2.15)

where:

M(1,0) = g_(1,0) +Z o (1,0)
m=1 ]

N(1,0) = ¢ (1,0) +Z Pon®om (1:0)
: , : m=1

We calculate the preséure along the contour according to (3.14):

p(1,0) = = Q%E (M cos ot = N sin ot) h (b.2.16)
We define:

dy _ _gb_ ,_ e - :

at = moBe (=A cos ot - B sin ot) : : (4.2.17)
hence:

dz,‘__g;n_ . _ ) .

EI¥ = B, (A sin ot - B cos ot)‘ ‘ (4.2.18)

j:) See the remark at the end of this section.

°
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- where according to (4.2.12):
o

k=3
|

3 n
- 11'c(1’2) +; Pam“"zm“"z'.)

- (4.2.19)
B = ws(u%) +% qamw&n(u%)

We can resolve the pressure into a component in phase with the velocity
and a component in phase with the acceleration, This is done in &

similar way as in chapter 3.

p(1,0) = E%E%%% (A sin ot - B cos ot) - Bﬁb—%‘f%%— (A cos ot + B sin ot)
- ; or:
Q p(1,0) = pBy %—%ﬁ‘-y + pB, %‘Q}g@ oy (4.2.20)
Thé total vertical force on the cylinder per unit lerigth becomes:
F =-2 / p{1,0) cosads (h.2.21)
8(0<0<%)

From (4.2.9) and (4.1.8 ) it follows that at the contour of the cylinder:

cosads = X ds = dx =
08

N
= a{cos 0 + E (‘-1)n(2n+1)a2n+1cos(2n+1)0 do=a W(0)a®  (4.2.22)
\ n=0
| O where the function betweenparentheses is denoted by W(0)
| - ., Substitution of 0 = g- and r = 1 into the first equation of (4.1. 8)
produces: ’ )
N
B',,=a,1+5a2n_’_1 |
n=0 ‘ N
Introducing the constant G, defined by G = {1 + Z a2n+1}, this

reduced to: n=0
Bo ‘
G (4.2.23)

g =

consequently (4.2.21) becomes:

ul
2

F =-2 B, f p(1,9)m('}e—)‘d0.
0

p S
") Substitutionh of (L4.2.16) into this equation leads to:



~
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F =_§g%?§g (Nosiﬂot - Mocosot) (k.2.24)
1where: g
M = Jf M{1,0) (o) de
o d G
% (4.2.25)
_ W(G)
N, = 5[ N(1,0) 5 4o

o

We resolve the vertical force into a component in phase with the

acceleration and a component in phase with the velocity:

poabp,  MoBH A

F s-SREe AZ;p2: (A sinot - B cosot) -
M A-N B

: 2Pg%B? §2+B§ (-A cosot - B sinot).

With the aid of (L4.2.17) and (4.2.8) the above mentioned expression

becomes;

M_B+N_A M A-NB
F =-20Ba” —5p7 ¥ - 2QB‘°2 A 4B oy (4.2.26)

b

Defining the added mass m" and the damping N' by representing the force -

according to F = -m"y - N'&, we find:

MOB+NOA
n o .2 .
m 2pB, syl (bh.2.27)
S0 in non-dimensional form we obtain for the coefficient of added mass:
M0B+NOA :
i (4.2.28)

The damping of the cylinder per unit length becomes:

, M_A-N_B ,
N = 2pBo20 “AZAB2 ‘ (4.2.29)

By equatidg the dissipated energy to the work done by the cylinder, we

obtain a relation which is identical to (3.24):
Ay B = 4 )
M,A-NB = & | 3 (4.2.30
Bo (4.2.29) can be written as:

1 B2—2
N = 9—§z§%z (4.2.31)
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Analogous to (3.23) we find for the ratio of the wave amplitude at
infinite distance from the cylinder and the amplitude of the forced

osc¢illation:

"\K/-?’_—l; | (4.2.32)
A4 + B

Remark: Instead of eliminating %%-from (4.2.11) and (4.2.12) which

finally leads to the set of equations (4.2.14) for Py, and q, , we can

also substitute expression (4.2.17) for %%'into (4.2.11) and after
that équate ° ’ the coefficients of cos ot and sin ot.

Successively we then obtain:
¥ (1,0) = E2 (A cosot + B sinot).x(1,0) (k.2.33)
o ']

this becomes: ' 7 .

o]

. o o
wc(1,e) +mz=\ sz“’zm“'e) = ;5']—3-; X (1,0).4

v (1,0) >3 Qo¥on(1:0) = 52 x (1,0).B
m=1 '

maBy
or: -
l’l’c“"’e) =Z p2mf2m
m=0
ool .
lps(]’e) =Z Cl2mf2m
m=0
where:
= £8P
o ToB, x (1,0)
fon =~ ¢2m(1,e) s m#o
and:
p0 = A, qo = B.

The calculation of A and B according to (4.2.19) is ‘dropped now.
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4.3. Added mass and damping of a cylinder with a "Lewis-form"

bl

We will consider a special case now of the theory discussed in 4.2,

where we take in the transformation formulas (h.1.8') for N the value 2.

In this case the tranformed shape is often a reasonable approximation of

a crpss—section of a ship. This kind of sections have frequently been

used by Lewis and Grim jn their calculations and are known as "Lewis-

forms".

Fig. ha3.1.

Tasal made an extensive study of this case in [QJ. For the sake of

simplicity we shall adopt the notation which he uses: instead of the

polar coordinate r the variable a is introduced which is related with r

by: r = e*. So the unit circle in the g—plane corresponds with =0 and

in the z-plane the coordinate line a=0 coincides with the contour of the

section. In Tasai's notation the transformation formulas (L.1.8)

(4.3.1)

become:
X = ¢%in 0 + a.e %sin 0~ a e_3asin 30
M 1 3
ﬁ-= e®cos 0 - a1e_acos 0+ a3e*3“cos 30

At the contour of the, section where a=0, the following relations hold:

(4.3.2) -

X

o ._ s

m (1+a1)51n9 asin 30
Yo - ' 7
i (1—a1)cose + ajcos 30
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expression for the coefficients-a

Q
°

b5.

According to (%4.2.23) for the scale factor of the transformation

which is denoted here by M we find:

Bo

1+a1+a3

M=

As parameters for the cross-section we take:

= B = S
H, =7 and 0 = 5B, T

(4.3.3)

S is the area of the section, T the draught and By the half beam. On

account of the restricted number of terms in the transformation

equations it is possible to find in an analytic way an explicit

1 3

iteration process which may require much computer time; we find:

- e - . 2
H0 1 c, +\/¢2 7 hc1c3

(a

o
it

i — +1); a_ =
1 H0+1 3 1

+ (1 - B9y

(o)
i

20
;= (3+°7)

H -1
_ 20y 0 2, 2

H -1
o (1 220y JTo 2 _
3 (1 T {(H0+1) 1}'

o
it

2]
I

and a.. In this way we avoid the

(4.3.4)

From (4.2.1) it follows that in this case the multipole-potentials Pon

obtain the following shape:

-2ma ¢ 0 e-(2m—1)a
Pom = © cos 2mo + 1+a1+a3 S~ cos (2m~1) gta
3a,
.23 _~(em+3)a
. cos€2m+1)e Smt3 © cos(2m+3)0
m= 1,2,3....
where:
0-2

EO = KoB-o = "—g_ Bo.

For the conjugate streamfunction we obtain from (4.2.7):

it

1

2m+1

e‘(2m+1)a

(4.3.5)
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£ -(em=1)a \ -(2m+1)a
_ _=2mg . (o] e . - e
¢2m e s1n2m@ + 1+a1+a3'[ — sin(2m 1)e+a.1 o
3a ‘ : '
.sin{2m+1)0 - 2m21 e (2m+3)a sin(2m+3)?} (4.3.6)

m= 1,2,3,¢¢..

So the total potential respectively streamfunction obtains the shapes
(4.2.4) and (4,2.6) where we substitute for @5, 8nd §, the expressions
(4.3.5) and (4.3.6). For the calculation of the coefficients Pop, 20d a4,
we proceed in a similar way as for the general case in section 4.2:

The boundary condition at the contour of the cylinder results in

condition (4.2.11) which has to be satisfied by the streamfunctiony :

" ¥(a=0,0) = - %% x(d=o,e) h ' (4.3.7)

Now we eliminate £1-I’by means of (4.2.12) and after that we equate

dt .
successively the coefficients of cos ot and sin 6t which results in the

two expressions (4.2.14), which here obtain the following shape:

sin0+a1sin9—a3sin39

)- ' .
3 1+a1+a3

wc‘(a‘=0,0 3 £,0808

= Z P2mf2m'

m=1

» sin0+a1sin0—a3sin30 .
‘J)SV(G':OsG ; Eosa-' ,a3)— " 17""8. +a3 ‘ps,(‘Fo’e:_g—;Eo’aﬂ ,8.3) =

1

where:

£ . . ,
. . o sin(2m-1)0© sin(2m+1)0 _
fop= | sin2md + 1+a1+'a3{ 2m=1 T8 o

. , RS
) 3a351n(2m+3)0 . Eo( 1) R a, ) 3a3
om+3 ( +a ta, »Jom=-1  2m+1  2m+3) °
.(s1inod + a1sin0 - a3sin§0) . (4.3.9)

The added fiass and damping are calculated according to (4.2.27) respec-
tively (4.2.29).
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In accordance with (4,2.25) and (4.2.10) the quantities M, N, A

and B obtain the form:

i
2 cose+a1cose—3a3cos36 1
M = j( ¢ (0,03a.,a,,E ) - — - de + — ,
o] 2 S 12730 1+a1+a3 1+a11+a3
(=]
Qa, &,

T+a
—1yn1 1 3 _ _
ézi (=07 gy Gy + g) (1+a,*ay) t(1+a,ma85)0,7a5q, ) -

n
2
cose+a1cose-3a3cos36 1
N = / ¢° (0,63a 28,6 ) a6 + — .
o 2 c 1773%7% 1+a1+a3 1+a1+a3

[+

Z m=1 1+a1 9a3 "go
— (=07 vy (=7 * ) ¥ (T+a +ag) t(1+a, ~a 85)py"a4p) } -

oo

13 a 3a
- ™ E m-1 "o 1 - 3
A. wc(0329a13a3:£o)+ = pgm(go)( ]—) 1+al+a3{ 2m~i. 2m+l '2m+3

oo

€o (12 3ay

I =1
B=V (0, — g Z -1)" - - e —
s(0s 538,500 + — Qo (5,0(-1) T¥a +a, - 2m-1 2wl 2m¥3
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5. Swaying and rolling,

In this chapter we calculate the hydrodynamic coefficients
for a cylinder which is carrying out a forced harmonic swaying
or rolling motion. In addition we shall pay attention to the coupled
motion between rolling and swaying. According to (1.11)the velocity
potential which is a solution of this boundary value problem has
to be an asymmetric function. Consequently the source potential
(2.28) and the multipole potentials which are used for solving the
symmetric problem are no longer useble here. Consequently the first
thing we have to do in this chapter is to derive the potentials which
will replace the source potential and the multipole potentials
respectively. After that we proceed to the calculation of the hydro-

dynamic coefficients,

5.1, Potential of a dipole in the origin; asymmetric multipole potentials.

For physical reasons it is easy to see that a dipole produces a
flow field which is asymmetric with respect to a line through the

dipole perpendicular to the direction of its axis.

Fig. 5.1,1.
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We know that the potential in a point (x,y) due to the presence of a
dipole in a point (a,b) with moment M is given by the formula E3]:
_-M(El.al) 'M(Etﬂl) ) ~M(x-a)

¢ R = = = (Sellll)
dip iri Ef (x-—a)2+(y—b)2

n, is the unit vector in the direction of the axis, r the vector which

connects (a,b) with (x,y),

We assume a dipole of strength %ﬁ in the point (a,b) and a dipole of

equal strength in the point (a,-b). Both dipoles have their axis in the

negative x-direction. The potentials of these dipoles are represented by:

1 (x-a)
@.. (a,b) = 5= —~——r
dip 2K (x—a)2+(y—b)2
(5.1.2.)
1 (x-a)
@.. (a,"b)= S rewwrv
dip™? 2K (x—a)2+(y+b)2
We now consider the potential:
@ = ¢dip(a,b) + ¢dip(a,~b) + ¢r (5,1,3,)

¢r is a regular function, which we determine in such a way that ¢
satisfies the free-surface condition K¢+¢y = 0, Substituting @ in

this relation, we obtain for ¢r the condition:

o

Kp +@8 = - (X"g) 5 = - /e'Pbsin(x—a)p dp (b>0) (5.1.4,)
) (x-a)“+b
. (o]
gince
. X—a
(x-a)2+b2

is the Laplace transform of sin(x-a)p.

In an analogous manner as for the source potential in chapter 2

we find for ¢r the expression:

-p(y+b) . _
o, = - / e K_PS”‘ p(x-a) dp (5.1.5.)
M2
[V oy SN
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Here also the uniqueness of the regular function ¢r is furnished by the
condition that for the limit case |x|—e @, has to represent ttro cegular
outgoing progressive wave (1.10). For this reason the contour —l— is
excluded (Fig. 2.3.). So finally we obtain for the potential of a dipole

in the origin (a=b=0) the expression:

-py
¢ = x / Si“d (5.1.5.)

K(x2 + y2)

.._m_,

which is constructed in such a way that it satisfies the free surface
condition, represents for leﬂ> = a regular outgoing progressive wave

(1.10) and is an asymmetric function.

In an analogous manner as ¢ in (2.22) we can reduce thre ~rrond term of
(5.1.6.) to: = _
- e+ BX{KcosB +B8sinfy} ~Ky ¥ iK% >
g =7 Al Yl ag + me™Y X0  (5.1.7.)
r 2 .2 =
A K™ +8

In this chapter we will use for the dipole potential ﬁaip, which
satisfies both the free-surface condition and the radiation condition,

the expression defined by:

8,

i = ﬁg Re {_i(bemt} = % { B_cosot + ¢Ssin0t} (5.1.8.)

Comparing this with (5.1.6.) and (5.1.7.), we obtain:

¢c = -ﬂe_Kysinkx
‘o

¢S - ine_Kycost T Kcossy +B§in@y T Bx s + ‘ ; 5 x 30
B + K K(x“+y“)

The conjugate streamfunction ¢dip of Qdip is given by:

= g%-{¢ccos ot + WYgsinot}

¢dip T

where:

ﬂe—Kycost

1
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8

b= e Ysinky - e "Bl Bc“gy"“znsy dg - —L—nr  (5.1.9.)
2.2
K™ + B K(x“+y“)

o

Finally we define the asymmetric multipole potentials

N .
sin(2m+1)8 sin2mo (“1)n32n+l(2n+l)81n(2n+2m+2)6
?2m= 2mt+1 tKa om +§ — IO (5.1.10)
r 2mr =0 (2m+2n+2)r
m= 1,2,3,....

Substituting (5.1.10) in (4.2.3.) we see thai:gzm satisfies the free

surface condition. The conjugate streamfunction ¢2m of ?2m is:

N n
 cos(2mt1)6 cosomb » (-1) a2n+l(2n+l)cos(2m+2n+2)6
‘p Z ————————— ~ Ka — - — - (S.l-ll-)
2m 2m 2m 2m+2n+2
r 2mr prs (2m+2n+2)r
m=1,2,3,...

Completely analogous to the problem of the heaving cylinder we determine a
solution of the boundary value problem, where the cylinder is making a
swaying- or rolling motion.

The velocity potential is composed of the dipole potential (5.1.8.) and

a linear combination of multipole potentials (5.1.10.):

[eo] o

b .
= 5L-{¢c + § Porfon § COSOt + 4E+. ? UpnPom ¢ Sinot (5.1.12.)
Ta

m=1 m=1

For the conjugate streamfunction we find:

b
7= & ¢+E E :
o c P2m¢2m cosot + ¢S+ QpmPon fSinot (5.1.13.)

m=1 m=1

5,2, Added mass and damping for swaying; added moment of inertia and_damping

e

for rolling produced by the swaying motion.

The boundary condition at the cylinder becomes in this case (Fig. 4.2,1,):

¢ _ dx _. (5.2.1.)
-531 - ar sina
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®
With (4.2.9.) this can be written as:
af _dx d
9s dt ds (5.2,2.)
After integration this leads to:
dx
P(r=1,8) = 3¢y (r=1,6) + C(t) (5.2.3.)
Substitution of 6 = % gives: C(t) = ¢ (1,%) .
Consequently:
d
$(1,0) - §(1, ) = §F y(1,8) (5.2.4.)

Analogous to the procedure we followed in reducing (4.2.11,) to
dx

(4.2.13,) we can now eliminate I7 - The other method which we discussed
in the remark at the end of section 4.,2. is to substitute into the
above mentioned form the expression %% =~ x0 sin(ot +y)

(assuming that x is given by x = xacos(ct +y», so that an expression
is obtained similar to (4.2.33,).

Here we apply the first method.

Substitution of 6= 0 into (5.2.4,) gives:

_ dx

Sl (5,2.5.)

$(1,0) - §(1, g)

Eliminating %% from (5,2.4,) and (5.2.5,) leads to:

ol - 0. 4 - s - 3

Next,we substitute (5.1.13.) in this expression and equate successively
the coefficients of cosot and sinot.

This produces:
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oo

T (1,0) T\ _ .
swc(l’e) - wc(1’§°§ - X—TA— {wc(l’o) —¢c(1,—0} h AEE? P2mf2m

m=1

(5,2.6,)

oo

T (1,8) T _
50)8(1’6) - ws(l’f } - z"—’I?'-“-{lps (1,0) -ws(l’—f)}- Z q2mf2m

m=1
where:

£, = l%.a.‘i){%m(l,o) - me(l,g—)}w {me(l,e) - me(l,g-)}

(5.2.6,) represents a set of equations from which Pom and 4, can be

calculated in the usual way.

Analogous to (4.2,17.) we define:

dz _ gb _ .

E-_E = m{ Acosot BSan't} (5-2v7v)
so that:

d2x b

~w3== £ Asinot - Bcecosot

dt T

where according to (5.1.13,) and (5.2.5.):

o

- m m
m=1

- m m
B -ws(l,-) - U)S(l,o) +Z Qom {me(l,E) - me(l,o)}»
m=1

(5.2.8,)

Entirely equivalent to (4,2.15,) we define for the potential along the

cylinder:

§(1,8) = gb (Msinot + N cosot) (5.2.9,)
o

Then we find for the pressure along the cylinder:



p(1,8) = - Q%E (Mcosot - Nsinot)

where on account of (5.1.12,);

o

M(1,6) = ¢S(l,6) 1-225 q2m95m(l,6)
m=1

N(1,0) = @_(1,0) +Z Do P (159)
m=1

Analogous to (4,2,20.) we find from (5,2,7,) and (5,2.10,);

MB+NA .. MA-NB .

p(l,e) :pTw——X’f pT Ox
A%+82 A24p2

The total horizontal hydrodynamic force becomes:

FS = - { p(1,8) - p(l,—eisinads

L
s(0<6< 5)

From (4,2,9,), (4,1, 8) and (4.2.23,) it follows:

54,

(5.,2,10.)

(5,2,11,)

(5.2.12,)

. .0 _ _ s n . -
sinads = Eg-ds =~dy ——a.{ sind + E (-1) a2n+l(2n+l)51n(2n+l)6}d6-

n=0
Bo
g 0
5 vV (6) do
where the function between parentheses 1s denoted by v(o).
As the pressure is asymmetric in 6 (5,2,12.) becomes:

L
7
Fg =-2B, / p(1,6) y_é_fjl de
(o]

Substitution of (5,2.11 ) gives:

M B+N A M A-NOB
A" + B A + B

Fg ==2pT Bo ox

(5.2,13.)

(5.2.14%.)




(
|

55,

where:
ul
2
N, = / N(l,e)!-(ﬁ)de
K G
ul
Moo= 2 M(l,e)!—(—-g-)—de
o f
d G

When we define the relation between the swaying force and the added mass

MS and damping NS for the swaying motion by

F = -M%-Nx
S = S

we find for the added mass per unit length:

~

M B+NOA
M_ =2 pT B 5 (5.2,15.)
A" + B
and for the damping per unit length:
MOA-NéB
NS = 2 pT By '*:'2"1'*"—'2— g (5.2,16.)
A" + B

From fig. 4.2.1. we see that on account of the asymmetry of p(1,6) in 6
the moment on the cylinder produced by the swaying motion (clockwise is

positive) 1is expressed by:

MRS =2 j/ {p81na.y - pcosa.x} ds

T
S(0<e< ?2')
Combining this with (4.2.9.) yields:
r
2
Moo = =2 & 4 %X)de (5.2.17,
RS VAR ARA T )
o

Substitution of (5.2.10 ) gives:

_ By 2pgb

MRS = -_-;Tr—-w—-{ “XR Sant + YR COSO’t} . (5.2.18')

where:




@
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r

1 2 o0X -B_X

=  werm—— e (=Y
X =73 J[ N(1,0)(xg5 + y 5g)de
By

o
I

1 2 oX EZ

o .
o

We resolve the moment into a component in phase with the acceleration and

a component in phase with the velocity according to:

=¥

_ d™x dx
Mps = Tpg (- o2 ) + Npg(gp) (5,2.19.)

NRS and IRS represent the damping and added moment of inertia for the
rolling motion produced by swaying,

From (5.2.7.) and (5.2,18.) it follows:

2 BY_+AX Lo 2
M = 'QQgp?°H }S R (A sinot -~ B cosot) - E—EEER—
RS 2 2
m A" + B m
AY_-BX
. -?;i—-%; (~A cosot - B singt)
A" + B
) 5 BYR+AXR . 7 AYR—BXR .
= - 2p TBe 5 2X'-200TB° 5 X
A" + B A" + B
hence:
BY +AXR
Igg = 2pTBo Y
(5.2,20.)
AYR-BXR
NRS = 2poTB, 5 2
A + B

For the ratio of the wave amplitude at infinite distance from the cylinder

and the amplitude of the forced oscillation we obtain:

m KT
a ;A +B

xlo‘
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2
Between the coefficients M , N , A and B, the relation M A-N B = L I
o] o] o o] 2 PR,
is valid.
We derive now expressions [9] for the above mentioned quantities
MS, NS and IRS’ NRS for the special case of a Lewis-form.
The multipole potential obtains the form:
-2mo,
QP (a,8) =]e (2m+1)a sin(2m+1)6 + ko = sin2mo +
2m 1+a1+a3 2m
~(2m+2)a 3a
a,e . 3 ~(2m+4)oa _,
+ —%Eﬁi————v- sin(2m+2)p + T © sin(2m+4)o (5,2.21,)
m=1,2,.,...
The streamfunction becomes:
3 -2ma
- "(2m+1)(1 o e
¢2m(a,9) =| e cos(2m+1)0 1+a1+a3 o cos2mb +
e~ 2m2a 333 _(2mtt)a
+ =g cos(2m+2)0 -~ H==m e cos(2m+l )0 (5.2,22,)
m=1,2,,..
while (5.2.4.) has the form:
= - w .
[UJc(a— 0,6) - g(“— 0,-5)] cosot + [¢S(o,e) - ¢s(o’%)] sino t +
o
Eo cos2mé a1cos(2m+2)6 3a_cos(2mt+h)o
cosct; P -cos(2m+1)6 - + 3
~—, m 1+a, ta, 2m 2m+2 2mtl

+ w
(0™ el 3ag
" ttata (;; omto | omth )| + sinot/ g, | -cos(emti)e -
- ,;

1 73 m=1
) go cos2md . a1cos(2m+2)6 3a3cos(2m+h)6} Eo(—1)m+1
1+a1+a3 2m 2m+2 2m+lh 1+a1+a3
1 a 3a
1
= - 3 )1 = (&5 %% M (1-a1)cose +a cos36}
2m 2m+2  2mt+h gn 3

(5.2.23.)
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We now eliminate %% in the usual way.

However here, in accordance with the method followed by Tasai in his
publication (see remark at the end of §4,2,), we shall substitute an
expression for %% with the structure of (5.2,7.).

We define:

X = xacos(ot +v)

then:

CuICu
24 B
i

N osin(ot +v) (5.2,24,)

The righthand side of (5,2,23,) can now be written as:

on, dx
— - ! = ‘ . 5.2,25,
(EE) T M| (1 al)cose+ aSCOS36} h(e) (pocosct + qosinct) ( )

where:
{(l-al)cose+a3c0836}
h(g) = (5.,2.26.)
l+al+a3
X TX
P. = - — g siny 3 g = - -2 g _cosy )
2
o b o o b o

After equating in (5,2.25.) successively the coefficients of cosot and

sinot, we obtain a system of linear equations for the coefficients

p2m and q2m:
L = R
wc(o,e) - wc(o, —2-) = Z f2m(e)p2m
m=0
Ty _
lps(o’e) - lps(o’ '2-) - : i::Zm(e) 2 om
m=0

where:
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fo(e) = h(®)

5]
Eo { cos2m6 alcos(2m+2)

f2m(e) = cos(2m+1)0+ 1+a1+a3 2m * 2m+2

T Tra +a Tn " 7mt2 T Pmeb (5.2.28.)

3a_cos(2m+4)0 £ (—1)m+1 1 a 3a
3 + o 1 3
173

m= 1,2.00..
The values for the coefficients Pom and dom can now be determined

in the usual way.

From (5.2.25.) it follows:

- = . o ino
it 0B, { po cosdt + d, sinot }

Hence: (5.2.29.)
d2x b
-5 = - qo cosot - 12 sinot }
dt TRy
According to (5.,2.14%.) we obtain for the hydrodynamic force in the
x-direction:
F=2 pEo(%E){;Nosinot + Mocosot}' (5.2.30)
where:
r
2 (1—a1)sin6 +3a3sin36 3a3 .
No=—J°¢(0,e) o - —=— .= p, -
+ +
2 1+a1 a3 1+a1 a3
o
£ (-1)m] 1 a 3a
- Doy T 5 5. T 1 > .~ > 5 (1-a,) +
oM (1+a +a.) bme-1 (2m+2)°-1 (2mth)C-1
m=1 173
a 3a
+3a -1 + 1 + 3
3 2 2 2
km~-9 (2mt2)°~9 (emt+h )“-9



M0 is obtained by replacing in the above mentioned form ¢c by ¢S
and p2m by Qo From (5.2.29,) and (5.2.30.) we can derive added

mass and damping in the usual way:

M. = 2 pB 2 No‘Po+Moqo
S ° 2
Py +qo
M -N q
NS = 290502 _EEEPHELP
2 2
P, ta,

Substitution of (5.2.10,) and (%.3.2.) into (5.2.17.), where in the
‘ expression for M(1,0) and N(1,8) we have to substitute for ffzm the
~ expression (5.2.21.), yields the rolling moment produced by the

swaying motion:

RS v

2
M = 4PBo_gb { XRsinat - YRcosGt }

where:

X - ¢c(o,e)

O\ [

(1+a1+a3)

+

5 { a1(1+a3)51n26 ~2a_sinko

) m+1
ﬁ‘ Trb:o(a1p2-a3ph) . z p2m(—1)

2
8(1+a1+a3) — :

YR is obtained by replacing in above expression

(1+a_ +a )2 (2m+1)2-h

¢c by ¢S and

60,

(5.2,31.)

(5.2.32,)

Pom by Qo The added moment of inertia and the damping moment for the

rolling motion produced by swaying now follow from(5.2.29.),

(5.2.32.) and (5.2.19.):
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RS ~ 2+ 2
BT
(5.2.33.)
N a4 B°3‘pOYR~— qOXR
RS 2
B, +q

5.3. Added moment of inertia and damping for rolling; added mass and

damping for swaying produced by the rolling motion.

When the cylinder is carrying out an harmonic rolling motion about the
origin, represented by J = Oacos(ot + v), then the boundary condition at

the cylinder has the form (Fig. 5,3.1,):

B - g ging- g Y R
o R Sl ? R dt ds (5-3010)
Fig. 5.3.1.

As can be seen from Fig. 5.3.1. 9’is the angle between the tangent on the
contour and the velocity along the surface,q the rolling angle (positive
in clockwise direction) and R is the distance between the origin and a
point on the surface.

Combining (5.3.1.) with (4.2.9.) yields:
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-, = gg L{%(xz(l,e) + y2(l,9))} (5.3.2.)

s ds

After integration this is reduced to:
51,0) = -3ED {x2(1,6)+ y2(l,9)} + e(t) (5.3.3.)

Substitution of 8= % gives:

av

2
B

c(t) = §(1,5) + A

So we obtain for the streamfunction the expression:

B(1,0) - §(1,3) = -3 %%{;3(1,9) + y2(1,0) - E,QS (5.3.4,)

For a change we shall not eliminate %? but we substitute for this

vantity §2-= -J_osin (ot + y) (see remark at the end of section 4.2.).
4 dt a

Consequently:
7(1,6) - @(1,%0 = %Jacsin(ct + Y){.x2(l,6) + y2(l,6) -Boz}
or:

g%{ ¢(1,8) - @(l,g)i' = g% %JaO'{x2(1,6)+y2(lge) - B°2§ . sin(ot + y)

(5.3.5.)
The righthandside of the above mentioned form is written as:
g(9) (pocosct + q081nct)
where:
2 2 2
g(e) = X{1,00ty"(1,0)-Bo"
2
Bo
ﬂaaKBo2
B, = —— sin y (5.3.6,)
2b
'IT'JaKEOQ
9, cos Y
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Substituting (5.1.13.) into (5.3.5.) and equating successively the

coefficients of cosdt and sinot, we obtain a set of linear equations for

Pon and Qo

oo

m
¢C(1,e) —¢C(1,-) = E szfzmce)
m=0
- (5.3.7,)
v (1,8) ~y_(1,5) =Z Qo fon(®)
m=0

where:

, 2 2 2
4. £ o= glo) = X (1,8)+y°(1,0)-Bg
o B02

- T[_
f2m - ¢2m(1’5) w2m(1’e)

m#0

From (5.3.6.,) it follows:

2 Tl'aaKBo 2

2
b, ta -

2b

wave amplitude :at infinity
oscillation amplitude of the cylinder

So for the ratio: is found:

'ITKBQZ

b -

Va =~ — = (5.3.8.)
\/ 2 2
NB *q

The hydrodynamic moment becomes:
m

—_—

2
= OX o oY
MR 2 /' p(xae + yae)de
o
which can be reduced to:

2
_=2 pgbBe . _
MR = ___.__*_.{ stlnct YRCOSGt} (5.3.9.)

m
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where XR and YR are defined in the same way as in 5.2. for the swaying

motion. By means of (5.3.6.) we can write %% = -Jacsin (ot + v) as:

aJ

dt

|

3a0 (sinot cosy + cosot siny)

22§~§ (-q sinot ~ p cosot)
) o
m0Bo

The acceleration becomes: (5.3.10.)

a _ ong

d't2 TTBo

- + 1
5 ( g cosot PBSIHOt)

We now resolve MR into a component in phase with the velocity and a
component in phase with the acceleration. From (5,3.9,) and (5.3.10.)

it follows:

__20gbBo> 'R% TRXR
2

Mp 5 (—qocosct + Igsinct) -
. " B 9% (5.3.11.)
2 -qg X, +tp. Y
2pgbBo q; R 02R (-qosinot - p,cosat)
Ul P +
o)
By means of (5.3,10.) we may write (5.3,11.) as:
Yoq +p X, - pY ~qX_ -
M, =-pEy R BR Y por, o5 q‘; Ry (5.3.12.)
B T B %

By defining the hydrodynamic moment by M_ = -I J - N, ¥ we find for the
. . R R R
added moment of inertia:
b poXR-H{Rqo
2+ 2
B "%

IR = pBe

and for the damping:

b I)oYR_quR
» 2
B Yy

where XR and YR are defined analogous to the similar constants in (5.2.18.).

NR = poB,

However, for the coefficients Pon and Aoy which are found in the expressions
for M and N, we substitute the values, which satisfy the set of equations

(5.3.7.).
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The swaying force produced by the rolling motion is calculated with:

F = -2

SR p sinoads

O opa

Substituting (5.2.13.) we obtain:
U

2
Fop = 2. [ p(1,0)v(0) .o
p G

(5.3,14.)

(5.3,15,)

Next, we substitute for the pressure p expression (5.2.10.) where for
the coefficients Pon and Ao in the expressions for M and N the values

are subsfituted, which satisfy the set of equations (5.3.7.).

F._ = Z2Bopgb (M cosot - N sinot)
SR . o o)

where:

M(1,0) O 40 and N_ =

G

=
o
"
o“\mﬂd

By means of (5.3.10.) the expression (5,3.16.) is written as:

_ 3 MoatNop, 3 3 Moo, N

FSR = —pBo ——r———— Y, - pBO 0  rerror————
2.2 2.2
p; ta, By *a,

2
_ asy avy
sk = Msr (‘dtz )+ Ngp (o)

F

i
2

j[ N(1,0)

[o}

v(8)

G

The swaying force produced by the rolling motion is defined by:

(5.3.16,)

(5.3.17.)

(5.3,18,)

Comparing (5.3.17.) and (5.3.18.) we obtain the added mass and damping for

swaying produced by the rolling motion:

M +Np
M - pBaa 0% oPo

SR 2 2
Po *o,
Nep = oB SG.Mopo—Noqo
P Fo B —rrgr—5~
P, *a,

(5,3.19.)
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Finally by equating the radiated energy with the work done by the

cylinder, we obtain:

2
™
poYR - quR T8

Tasai has carried out these calculations for a Lewis-form [i].
His results can be derived from the above mentioned formulas by

substituting for sz and me respectively (5.2,21,) and (5.2.22.).

66,

(5,3.,20.)
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" VOORWOORD

‘Dit rapport is een vertaling van een reeds eerder door de auteur
in de nederlandse taal geschreven rapport [1] dat tot doel had.
formules voor de toegevoegde massa en de demping te geven,
welke gebruikt konden worden in computerprogramma’s voor
het berekenen: van scheepsbewegingen, zoals die ontwikkeld:
werden door medewerkers van het Laboratorium voor' Scheeps-
bouwkunde van de Technische Hogeschool te Delft. De ver-
taling kwam tot stand met de medewerking van de -heer. W..
Beukelman van het Laboratorium.

Het rapport is bedoeld als handleiding voor diegenen die zich-
op de hoogte willen stellen van de hydrodynamische achter-
gronden van de methoden die gehanteerd worden om volgens.
de strip- methode hydrodynamische eigenschappen van schepen
te bepalen.

Verondersteld wordt -dat de lezer bekend is' met de grond-
slagen van de hydrodynamica en de theorie van de infinitesimale
. .oppervlaktegolven. Voor het bestuderen van deze theorieén
wordt de lezer verwezen naar de referenties [2], [3], [4] en [5].

HET NEDERLANDS: SCHEEPSSTUDIECENTR UM TNO

PREFACE

This report is a translation-from Dutch of an: earlier report-[1],
written ‘by ‘the author in order to provide formulas for added
mass and damping, which are; used in computer programs for
the calculation of ship motions, devised by members. of the
‘Shipbuilding Laboratory of the Delft University of Technology.
The. translation' was prepared with the assistance of Mr. W.
Beukélman-of the Laboratory..

The intention .of the report is to be a manual for those who
want to acquaint. themselves with the hydrodynamic back-
.grounds of the methods used to determine the hydrodynamic:
properties of ships .according to the strip' method. )

The reader is supposed to be familiar with the fundamentals
of ‘hydrodynamics and the infinitesimal surface wave theory.
For:a study of these theories the reader is reférred to references.
2], 3], [4] and [5]. ‘ :

THE NETHERLANDS:SHIP RESEARCH CENTRE TNO
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LIST OF THE PRINCIPAL SYMBOLS

Radius of semi-circle (eq. 4.1)

Transformation coefficients

Acceleration of motion

Wave height (amplitude) at infinite distance (eq. 4.3)
Acceleration of gravity

Added mass of circular cylinder per unit length
Added mass of arbitrarily shaped cylinder per unit length
Normal to surface of cylinder (Fig. 5.1.1)

Pressure at point of cylinder surface

also:.complex variable p = a+iff

Coefficient (egs: 6.2.26, 6.3.6)

‘Coefficient (egs. 6.2.26, 6.3.6)

Radius (section 4)

also: polar coordinate (radius) (sections 5 and :6)

Line coordinate (Fig. 5.1.1) '

Time

Coordinates

Coeflicients (eqgs. 4.17,:5.2.19, 6.2.8)

Half breadth of cylinder :

Total vertical force per unit length. on cylinder

Added moment of inertia per unit length

Added moment of .inertia per unit dength for the: rolling motion produced by swaying
Wave number w?/g

Coefficient (egs. 4.15; 5:2.25)

Path -of integration (Fig. 3.3)

Added mass per unit length for swaying

Added mass per unit length for the swaying motion produced by rolling
Coefficient (egs. 4.15, 5.2.25) -

Damping coefficient of cylinder per unit length (eq. 4.22)

Damping per unit length for rolling .
Damping per unit length for the rolling motion produced by swaying
Damping per unit length for swaying

Damping per unit length for the swaying motion produced by rolling
Draught

Velocity of fluid particles on cylinder

Normal component of this velocity

Angle (between normal to contour and y-axis)

also: variable in r = €* (section 5.3)

height of wave caused by -oscillation.

Rolling angle

Polar coordinate (argument)

Coefficient ((eq. 5.3.5)

Specific mass of fluid

Time independent part of @

Polar coordinate (argument)
Multipole potential

Time independent part of ¥
Conjugate stream function of ¢,,,
Two dimensional Laplace operator
Velocity potential

Stream function conjugate to ®
Circular frequency




COMPUTATION OF THE HYDRODYNAMIC COEFFICIENTS
OF OSCILLATING CYLINDERS *

by
Dr. Ir. B. DE JONG

Summary

After an explanation of the basic principles of the strip theory, the formulation, as a linear potential problem for an infinitely long
cylinder is shown. Using Green’s theorem, an integral equation for the velocity potential is derived for the case of a vertically
oscillating cylinder.

To solve this equation for a circular cylinder, Ursell’s methiod of superimposing potential functions; all satisfying the equation of
Laplace and the free surface condition, is used.

The concepts of added mass and damping are introduced and defined and their calculation is:shown. for the circular cylindrical shape.
For the compiitation of ‘added mass and damping for the vertical (heaving) motion of arbitrarily shaped: cylinders, ‘Ursell’s method
is modified, applyingiconformal transformation: For this purpose two transformation methods are described. Also Tasai’s modifica-
tion of Ursell’s method, applying Lewis-forms is reproduced. In the last chapter expressions are derived for-the hydrodynamic coeffi-
cients, viz. added mass, added moment of inertia and damping, of a cylinder carrying out ‘a forced harmonic swaying or rolling
motion, also including the coupling between these two motions, Contrary to the case of heaving, the skew-symmetric approach has

to be applied here.

1 Introduction

The last few years much attention has been paid to
the theoretical approximation of the hydrodyriamic
coefficients of a ship in which great advance has been
made by the availability of computers. Since in general
a three-dimensional method leads to calculations
which are too complicated, the problem is considered
as a two-dimensional one by the application of the
so-called strip method. In this case the ship is divided
into a number of sections and of each section, which
is supposed to have a constant profile, the hydro-
dynamic properties are determined, assuming that the
disturbances in the fliid due to the motions of the
sections-only propagate intoithe direction perpendicular
to its axes. Therefore, application of the above-
mentioned method requires information about the
hydrodynamic properties of infinitely-long cylinders,
(or finite cylinders contained between vertical walls at
right angles to the axis), with cross sections which are
equal to those of the considered sections of the ship.
Ursell [6], [7] made the first contribution to the
solution of this problem. He considered the problem
of a circular cylinder which oscillates harmonically
with small amplitude, while the mean position of the
axis coincides with the mean surface of the fluid.
Ursell starts from the following assumptions:
I. the fluid isinviscid, incompressiblé and irrotational.
2. the oscillation is of such a nature that linearization
is allowed.
From 1. it follows that the velocity potential @ satisfies

the equation of Laplace 4® =0, while according to 2.

* Report no. 174A of the Shipbuilding Laboratory, Delft Uni-
versity of Technology.

the accessory boundary conditions are linear. Conse-
quently, it follows from 1. and 2. that the above-
mentioned problem can be formulated as a linear
potential problem.

Ursell found a solution by superimposing suitably
chosen functions such that each separate function
satisfies the equation of Laplace and the linearized
free-surface condition, while a combination of these
functions satisfies the remaining boundary conditions.

Tasai [8], [9] generalized Ursell’s method for more
general cross sections, the so-called Lewis forms, which
are characterized by three parameters. Tasai applied
a conformal transformation with which the Lewis
form is mapped onto a semi-circle. Because of the
restricted number of parameters, the transformation
formulas can be determined in an analytical way.

Porter [10] derived expressions for the hydrodynamic
coeflicients of cylinders which cannot be approximated
with Lewis forms in a satisfactory way and for which
more complicated transformation formulas are re-
quired. Moreover, he verified some results experiment-
ally. A method, however, to find the transformation
formulas, mapping an arbitrary cross section of a
ship onto a semi-circle, is not given by him.

In the Shipbuilding Laboratory at Delft, Smith [11]
devised a computer program of the iterative process
of Fil’chakova, [12], by which the transformation
formula can be determined for every arbitrary cross
section which maps this cross section onto a semi-
circle. After this the hydrodynamic coefficients of this
section can be determined rather easily. It is note-
worthy that strictly speaking this method can be

applied only if the cross section intersects the fluid

surface perpendicularly.,



The English edition of this report has béen supple-
mented with another transformation method, (see
section 5.1.2), which appears. to be very useful.

2 Formulation of the problem

In a fluid of infinite depth a cylinder is considered
which is oscillating one-dimensionally and harmonical-
ly with frequency @ while the mean position of its
axis is assumed to lie in the free surface of the un-
disturbed fluid (Fig. 2.1). As possible ways of oscilla-
tion we shall consider heaving, swaying and rolling
here.

The x-axis is horizontal, coinciding with the free
surface of the fluid and perpendicular to the axis of
the cylinder and the y-axis is vertical, positive in
downward direction and going through the: mean
position of the axis of the-cylinder.

:—-—'T](X,t)>0
W =X

7T

” - Lm(xt)=0

Fig. 2.1

Further, we assume the amplitude- of -the oscillation
being small with respect to the diameter of the cylinder
and the length of the waves, generated by the oscilla-
tion, so that, in the linearized approximation, the
values of all physical quantities can be referred to the
mean position of the cylinders. Taking the cylinder
very long with respect to-the breadth or enclosing the
cylinder at both ends between two infinitely long walls
perpendicular to the axis of the cylinder, we-can neglect
the velocity components parallel to the axis of the
cylinder and consequently the motion is two-dimen-
sional.

The determination of the motions of the fluid under
influence of the harmonic oscillation of the cylinder
can be reduced to the solution of :a boundary-value
problem from the linear potential theory. Consequent-
ly, the velocity potential ®(x, y, t) is also a harmonic
function of the time.

Therefore, using complex notation, we may write
the potential in the following form

B(x,y, 1) = —id(x, y)e'™ Q.1

From this the actual potential is obtained by taking

"the real part of the right-hand side expression. In

future calculations where the time dependence of the
variables is not involved, we shall always work with
the timeaindependenf part ¢(x, y).

The velocity potential has to satisfy the-equation .of
Laplace everywhere in the fluid:

2 2 g
do 7o _,

re 22)
ox*  ay? @2)

Because of equation (2:1), we may write equation (2.2)
as

’¢

ox?

"¢

2

oy 2.3)
If n =n(x, t) is the wave height in consequence of the
oscillation of the cylinder, then for the linearized case
([5], Ch. 2, equation (2.1.14)) for waves which havé
small amplitudes in proportion to their length the
following relation holds

on . 0@ C N ‘ ..
3 ay’ (y =0) (kinematic surface condition).

(2.4)

We observe- that in the linearized form this relation is
referred to the mean surface of the fluid: y =0.
Condition (2.4) is based on the hypothesis that any
fluid particle, once being on a boundary -surface, will
remain on it, ([5], section 1.4)..
A second condition which @ has to .satisfy at the
free surface follows from Bernouilli’s law.:

od 1 {fod\* [0\ ., p e
i) *(3) im0

Since the pressure at the free surface is constant and
an addition of constant or time-dependent terms to
& has no influence upon the velocity distribution
(0¢/0x, 0¢/dy) in the fluid, we can reduce (2.5) to

(2.5)-

0P -
a +gn=0,

= (2.6)

(y=0)

(dyhamic surface condition)

where we only retained the linear terms.

From the conditions (2:4) and (2.6) # can be elimi-
nated. Differentiating (2.6) with respect to ¢ and sub-
stituting successively for dn/dt the righthand side of
(2.4) and for & the expression (2.1), we finally obtain

ké+% o, Q2.7

'@— (y=0

(linearized free surface condition)




in which

w
K= —g— represents the wave number

On basis of the earlier mentioned hypothesis with
respect to fluid particles on a boundary surface, we can
derive that the normal velocity component at the hull
of the cylinder, due to the forced oscillation, is equal
to the corresponding velocity component of the fluid
particles on the cylinder, so

a¢ . iwt

= = —iUx, e

or

0

n = U @8)

(boundary condition on the cylinder)

In this relation n refers to the normal outward direc-
tion to the surface of the cylinder, (figure 2.1). It
should be noticed that, on account -of linearizing the
problem, relation (2.8) is here also referred to the mean
position of the cylinder.

For physical reasons'it is easy to see that the distur-
bances in the fluid, as a result of the oscillation of the
cylinder, decrease with increasing depth so that

N

lim grad¢ =0

y=>oo

29

Since the forced oscillation is harmonic, waves are
excited at the- fluid surface; which are composed of a
standing wave, rapidly decreasing in amplitude with
the distance from the cylinder and aregular progressive
wave, which travels to infinity on both sides of the
cylinder. The last-named wave effects a radiation of

energy, withdrawn from the motion of the cylinder,

in which the fluid- has: a damping influence on the
motion of the cylinder. Thus

& —».C, eMelKTrN a5 x4 oo

d - Ce KrKxten 49 x5 —w

or

¢ N Cle—K}’—iK,\j as x_)+‘w

¢ — Cpe” KyHikx as x——ow (2.10)

(For an analytical derivation of this. condition see
section 6.7 of [5]). .

Resuming we are faced with the problem now of
determining a potential ¢ which is a solution of the
Laplace equation A¢ =0 everywhere in the fluid and
which in addition satisfies the following boundary

* conditions

(i) the linearized free-surface condition (2.7)
(i) the boundary condition on the cylinder (2.8)
(iii) if y >0, every disturbance vanishes in the fluid,
2.9)
(@iv) the radiation condition (2.10), .
(v) for heaving the potential has to be symmetrical:

¢(x,}’) = ¢(—x’y)
and for rolling and swaying skew-symmetric:

b(x,y) = —$(—x,9) @.11)

For physical reasons condition (v) is easy to see. We
further remark that conditon (iv) implicates condition
(iii) on account of (2.10).

Up to now we have not defined the form of the
function U,(x,y), the normal velocity component of
the forced oscillation of the cylinder. It is clear that
U,(x, y) both depends on the mode of oscillation of
the cylinder, thus heaving, swaying or rolling and on
the shape of its cross section. '

In the next chapters we shall solve the above-
mentioned problem for the three modes of oscillation,
mentioned above, while the shape of the cylinder may
be taken arbitrarily.

3 Integral equation for the velocity potential;

Green’s fiinctions; Source potential

Using Green’s theorem, we derive an integral equation
for the velocity potential for the case of a vertically
oscillating cylinder, in this chapter. In addition, much
attention will be paid to the Green’s function and its
physical meaning. ‘ ,

We assume that the cylinder is carrying out a vertical
harmonic oscillating motion. Consequently, according
to (2.11), the velocity potential is a-symmetric function

d(x,y) = $(—x,y) (€RY
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We apply Green’s theorem, which in the two-dimen-
sional case has the following form

ffoas—vapav =§(+5% - 1P e

V is an area enclosed by a contour S while n represents
the outward normal to the contour S.

For the function ¢ we choose the velocity potential
in consequence of the heaving motion of the cylinder.
The function ¥ is chosen in such a way that after
substitution of ¢ into (3.2) the requirements -with
respect to the uniqueness and existence of the solution
for the resulting integral equation are fulfilled.

It appears that the function ¥ must have a source
singularity in a point (a, b) in the region y > 0, out-
side the cylinder. For ¢ we choose a function of the
form, ([13] Ch. VI-3):

=logV(x—a)* +(y—b)*+¥,(x, y; 4, b)
3.3

Y(x,y;a,b)

The first term on the righthand side is the potential of
a source in the point (a, b). The function ¥, is regular
in the region y >0, outside the cylinder. We now
choose the. contour .S in such a way that ¢ and y are
regular in the region ¥ enclosed by S. For these reasons
S is composed of the lines II and V along the free
surface, the line IV along the contour of the cylinder,
a small circle III with radius & enclosing the point
(@, b) and a large circle I with radius r(Fig. 3.1). ¢ and
¥ satisfy the Laplace equation within this region so,
that the lefthand side of (3.2) becomes zero and thus.

3:4)

We shall first determine the limit value of the integral
along the small circle I, for the case 6 —-0. It is
observed that for small values of & the expression (3.3)
on the small circle III may 'be written as:

¥ =logd+y, (3.5)

Further, we may write on the small circle:

and ds=6d6,

[=-1 {—¢%(log.a+-/z,)+moga+-/z,)g—‘§}ade

= T{—qﬁ( + ll/'>+(log6+lllr)a?}6d0

11 -n

As ¥, and 0y,/05 are bounded we obtain for 6 —0

j —2nd(a, b) - (3.6)

Next, we consider the integral along the lines Il and V.
We choose ¥, in such a way that the line integral along
the free surface equals zero:

o _ 08 4= _
1.£v{¢6y 6y}dx 0 ©=0

This condition is satisfied if the integrand of the above
expression vanishes:
®,—¥p,=0 (y=0)

With the aid of (2.7) we see that on account of the
symmetry with respect to'¢ and ¢ of above-mentioned

expression, this relation is valid if

Kg+y; =0  (y=0) @7
We further investigate what requirements ¥ has to
satisfy .in order that the line integral on the large circle

vanishes for the limit r > o0

lim +‘}/2{ . 6¢} rdf =0

Fow —f2 a"

(3.8)

When r —» oo the potential ¢ has to satisfy the condi-

tion (2.10) on the large circle. As the relation (3.8) is

symmetric with respect to ¢ and ¥ these functions
have to be equal on the large circle; so the function y
has to represent a regular progressive wave if |x} - o0:

Yo Ce ™ a5 x>+

Yo Ce” KT a5 xo—0 39
Hence, if the function ¥, as-given by (3.3), satisfies the
relations (3.7) and (3.9) then (3.4) results in the follow-
ing integral equation for ¢(x, y)

0
.“{tﬁﬁ— 5,} s

In this expression- B represents the contour of the
cylinder on which the normal velocity d¢/dn is given.
In the integrand of (3.10) the function ¢ is integrated
over the contour of the cylinder. When ‘we take now
the point (a, b) on the contour of the cylinder, we

é(a,b) = (3.10)




.obtain, after application' of the same procedure (in

which the small circle III changes into a semi-circle on.

B), the integral equation

¢'(a,b)=%£{¢%’ - %‘i}.ds (3.11).
In this expression both ¢(a, b).and ¢ in the integrand
refer to values of ¢ on the cylinder B. With the aid of
equation (3.11) we determine first the value of ¢ on
the contour B after which by using (3.10) we are able
to determine the value of ¢ in anarbitrary point of the
fluid. The function-y, being chosen in such a way that
the line integrals along I, II and V vanish while,
moreover, the requirements. with respect to the exist-
ence and the uniqueness of .the solution of (3.10) are
satisfied, is called a Green’s function.

It femains to determine the function ¥,(x, y; a, b)
in (3.3). We substitute (3.3) into (3.7):

| K . b
Ky, +y,, = — Elog {(x—a)*+b } + —a)y b

=0

We search for a solution of this differential equation
in the form

¥(x,y;a,b) = —3log{(x—a)* +(y + b)*} +
+¥'(x,y;a,b)

The first term -on the righthand side represents a sink
in the imagepoint (a, —b) of (a, b) with respect to the
free surface. Then the function ' has to satisfy the
relation:

2b

Ky +4, = (x—a)? +b?

y=0 (3.12)

Apart from a factor 2 the righthand side of (3.12) is
exactly the Laplace transformation of cos p(x—a),
hence (3.12) can be written as

Ky'+y, =2 e Pcospix—a)dp (y=0) (3.13)
: _
Consider the integral

o

g e " cos p(x—a)dp (3.14).

We consider p as a complex variable: p = a+if. As

the -integral has only a singularity for p= —o0, we.

may change the path of integration, which is along the

real axis in-the above-mentioned: case, into-an arbitrary
line L between the origin (0, 0) and the point (o0, 0)
at infinity (Fig. 3.2). - :

B‘Im

(»,0)
= Re

“(<».0) |

Fl‘g’. 3.2

One of the- elementary properties. -of Green’s func-
tions is their symmetry with respect to the points (x, y)
and (a, b), ([14] Ch. IX-3), which means that the
function remains the same if we interchange (x, y)
and (a, b). Consequently we substitute into (3.13) for
Y' the expression

Y'(x,y;a,b) =2 [ P(p,K)e "**Pcos p(x—a) dp
L (3.15)

The function P(p, K) has to be determined in such a
way that (3.13) is satisfied. Substitution of (3.15) ‘into

(3.13) yields

~2J pP(p, K)e™ " cos p(x—a) dp+
L

42 KP(p,K)e " cosp-(x—a)dp =
L

=2[e Pcosp(x—a)dp (y =0)
. :

which may be written as

J {(K—p)P(p, K)—1} e~ " cos p(x—a)dp =0
L

We find
1 .
P(p,K) = K-p (3.16)
and
PIRRLCAL)
Y'(x,y;a,b)=2f R=p cos p(x—a)dp 3.17
L K- .

The integrand of (3.17) has a pole of the first order in

p =K, (K= w?/g is real). We may choose the contour
L in two ways: either over the singularity p =K, e.g.
L, or underneath it, e.g. L, (Fig. 3.2). As the residue
of the integrand is not equal to zero, the values of the
integral for these two .contours will be different. So

1
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the function ! and as a consequence also the function
¥ are not uniquely determined. It appears that this
uniqueness is achieved by condition ((3:9): ¥ has to
represent a regular progressive wave at infinite distance
from the cylinder.

We now proceed to study the behaviour of
successively for the contours L and L,. As we remain
on the same side of the pole we are allowed to change
the contour L, into M, and L into M,, (Fig. 3.3).

B I‘Im ®

K_€:! i K+€, M1

i '

(=
Q

= Re

gyLm
|

» KLE} TK+E M
‘ : M2
- J}’(‘ _ = Re

Fig. 3.3

When /| x| -0 the function

(x—a)’+(y—b)

log
(x—a)+(y+b)?

vanishes. Consequently, ‘it suffices to study only the
‘behaviour of /! on the contours M and .M, if [x| = c0.
We shall show that ' represents. regular progressive
waves for the contour M, when |x| increases to
infinity. Making the transformations x"'=x—a and
y' = y+b and skipping the indices after that again, we
obtain for (3.17) for the contour M,

e—py'{elpx’+e—ipx’}

L = d =
S S
—p(y—ix) e—p(yﬂx) )
= [ ———dp+  ———d 3.18
P A b Sra S
The first integral gives
e-ﬂ(y—ix) K—e e—a(y—lx)
 ——dp = ——da+
IR erat Al B S
[
I,
K+e,e—(a+iﬂ)(y—ix)' ) e—u(y—ix5
+ } — dp+ | - da
Kj;e K-p P Kie K—ua
N —— —————
I, I,

We denote: the first, second and third integral of the

. K+e e—p(y+ix)

right-hand side respectively by /,, I, and I5. Integrating
1, by parts, we obtain

e—a(y—lx) a=K—¢ K—& e-—u(y.—-l'x)

L=-—o—— | 4+ | ————da’
(K—a)(y—ix) a=0 o (K—a)*(y—ix)

It is easy to see that /, — 0 as x| - co. In the same way
it can be proved that I; -0 as x| —»co. Further, since
B > 0 the integral I, vanishes as |x| —o0o. Tt likewise
can be proved that for the sécond integral on the right-
hand side of (3.18) the integrations along the real axis
over (0, K—e¢) and (K+¢g, o0) become zero, whereas
on account of the theorem of residues the integration
along the semicircle (K—¢, K+¢) yields

+ —_
K o p(y+ix)

K-p

+ -
K, & e p(y+ix)

dp= | £ dp+
p'K—e K—P P

K-¢
+ 27i (residue p = K).

After substitution of p =« +if into the left-hand side
we see that this integral vanishes when |x| — 00 since
B assumes only negative values. For the residue in
p =K we find

l‘ ( ),e_-P(-V'Hx) — K(y+ix)
m p—K —_— = —e *
p=K K_P

SO

‘ —Kpo = znie—'K(y+lx)
K—¢ -
and »
. e P cos px CK(y+1
lim | ——"—dp = 2mie™"*"™ (3.19)
l|x|—'ooMz -

Consequently, if |x] =00, ' and for this reason also
¥ represents a regular outgoing wave if the path of
integration L in expression (3.17) has the shape of M.
In the same way it can be proved that  gives a regular
incoming wave when |x| — oo if L has the shape of M.
Therefore, in order to make i satisfy condition (3.9),
the integration in (3.17) is carried out along the path
M,. The Green’s function.y which has to be substituted
into the integral equations (3.10) and (3.11) has now a
unique representation. Dividing by a factor 2, we have

(x—a)* +(y—b)*
(x—a)*+(y+b)*

e~ p(y+b) -
cos p(x —a)dp

Y(x,y;a,b) = %log

+]
M;

(3.20)




So summing up. above results, we constructed a func-
tion Y with the following properties

(@) 4y =0
(ii) the linearized free-surface condition (3.7)
(iii) if |x] — oo, Y represents a regular progressive wave

(3.9) (3.21)

In chapter 4 we shall solve above-mentioned boundary
value problem by taking for ¢ a linear combination
of potential functions, One- of these components is the
potential function of a source in the origin (@ = b =0),
which satisfies, in addition, the conditions (3.21). For
this reason we shall considerhere the potential function
of such a source more precisely.- Setting a=5=0 in
(3:20) and calling the potential now ¢, we obtain

py

¢ = IK cos.px dp. (3:22)

M

In literature (3.22) is mostly given in another form,
which can be derived from (3.22) by applying theorems
of the complex function theory. We shall give this
derivation here:

If we split up the mtegral (3.22) into ‘two integrals
I and L, this ylelds

e Péos px »e—py+lpx e~ Py-ipx }

————dp=14<] dp+ | —=——d

:L R—p 9P z{] x—p Pt I%=, g
. M M

I, I, (3.23)

It appears that the calculation gives. different results
for x >0 and x < 0. We shall consider here the case
x > 0. For x <0 the reasoning proceedsin an analogous
way.

For the calculation of I; we close the contour M,
with the arc of a circle Cy and the positive- imaginary
axis Ig. Application of Cauchy’s theofem leads to

e~'py+lpx /2 —Re'ﬂ‘yﬁke"’x_R i0
J dp4 lim | —— idO+
M: K—p =~ R-w 0 K—R¢'
e—lﬂy Bx
+j e idf=0

This is easily reduced to

—py+ipx
———dp+
Jz K_‘P P
n/2 e—(Ryc050+Rx‘sin @) —I(Ry sin 8 — Rx.cos §) 3
* ngloo g K—~RcosO0—iRsin@ ReidO+
e-lﬂy Bx |
gm0 (3.24)

We notice that on Cy: cos 8 >.0, sin §> 0 and x>0,
y>0. So the third integral vanishes when R—o0.
Consequently, (3.24) may ‘be reduced to

—py+ipx —lﬁy Bx

J:K dp+jK ﬂtdﬂ 0

M

(3.25)

For the calculation of 7, we close the contour with the
arc of a circle Cy and the negative imaginary axis: As
in this case the path of mtegratlon -encloses the pole
p = K with residue

e P ipx
lim (p— K) = —e Ky-ikKx
p—K —D

we find by applying the theorem of residues

—py—ipx -n/2 —Re"’y—-iRe'*’&é-‘R 10
§° dp+ lim | 2 ——idf+
M, K—=p R>w 0 K—Ré'

0 —lﬂy+ﬂx

2mie” Ky~ IKx

I

tdﬂ— —2mi(—e Ky o

Analogous to the corresponding integral in (3.24) the
second’ integral in this. relation vanishes also. After
evaluation of the first integral the above mentioned
form results into

—pytipx 0 —ipy+px Ko1K
: i dB = Ve Ky=iKx
bi[ K=p dp+ __L K—‘iﬂ' idf = 2nie (3.26)

From (3.23); (3.25) and (3.26) it -follows

13
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e Pcospx
j_—_

, - dp =
me-lﬂy Bx lﬁy Bx —Ky—iKx
=%{j K—if idf+ jr K+iF —i)d’ﬂ}+m'e Y
{0 )i
(3.27)
(3.27) may further be reduced to
e P.cos px
[ d —
m —-Bx,
_ j (KSlnﬂy ﬂcosﬂ}’) dﬂ+me Ky—iKx (x >0)
0

K2+ﬂ2

In the same way it can be proved that for x <0 the

integral on the righthand side of above expression

has to be replaced by

—Ky+iKx

'}’ SK sin By — B.cos:By)
| :

Ko+ dp +mie

(x<0)

Consequently, the potential ¢. of a source in the origin

satisfying the free-surface .condition and the radiation,

condition is given by

¢ =“Te—ﬁ|x|'(K5mﬂy ﬂcosﬂy)dﬂ+me Ky—iK|x[i
h) K2+ﬂ2
(3.28)

In this report we- will use the following definition for
the source potential

_ 95 po i igeteny = 9P ¢ i
b= o Re{—ide }_'nw {¢.cos wt+ ¢, sinwt}

where b is.the wave height at an infinite distance from

the cylinder.

Comparing this expression with (3.28) we find for the
non-dimensional quantities ¢, and ¢,
¢, = me X cos Kx

o _-Blx|

e
Kysin K|x| — j
ﬂz

¢y =me” (Bcos By —Ksin By) dp

(3.29)

Remark

It appears that the ‘integral in (3.29) converges very
slowly when it is calculated in a numerical way:
Porter [10 page 148] has given the following power
series expansion, which affords good results

© —px

; e’ . Ry —
.g g (Ksin By —Bcos By)df =

= e % {Qcos Kx+ S sin Kx} —me~ Xsin Kx

where

K"(x*+ yHm?

Q = y+In[K(x* +y»)] + Z o —cosny,

K4y

—X+Z v

y =0,5772156649 ..... .:

sin iy,
Euler’s constant, and

L= arctanx
'y

4 Determination of the velocity potential for a
‘heaving circular cylinder according to Ursell;
added mass and damping

In the previous chapter we saw that the potential can
be determined by solving the integral equation (3.11).
In geheral, however, it appears. that this leads to
rather complicated numerical calculations:

Ursell [6] has developed a method of solution which

consists of superposition of potential functions which

all satisfy the equation of Laplace and the frée surface

condition: The solution-is composed .of the source

potential (3.28) and .a linear combination of multipole
potentials which are represented by

_ g {cos 2m0 + K cos(2m— 1)0}

P2m r2m 2m—1 r_2m—tl.

m=1,2,3,... 4.1
where (r, 8) are the polar coordinates
x =rsind, y=rcosd 4.2)

while a represents the radius of the circular cylinder
(figure 4.1).

X




Since: the cylinder carries out a vertical -oscillation,
the corresponding velocity potential is a symmetric
function with réspect to the y-axis; (see (2.11)). Con-
sequently, it suffices to restrict our future considera-
tions to the range 0 <0< n/2. According to (3.29)
and (4.1) the timé-dependent potential @ is expressed
by

Z:’ [(I)c(Kr 0) cos wt+¢(Kr; 0)sin wt +

. i ' 2
+ cosat ¥ py(Kaya?™ {%’iﬂ +
m=1 r-

K cos(2m—1)8)}
— +
2in—-1 g™t

: d " cos2m0
+smwtm§=:] q.(Ka)a® {T

K cos(2m— 1)0}] @3)

2m—1 ol
in which

P(Kr,0) = ne” Kr°*?cos(Krsin 6)

@ —ﬁrsm 0

P 0) = - 15 o KX+ p?

{Bcos(Brcos 8)—K sin(Brcos )} df +
+7e” Xro®sin (Krsin 6) 4.4

It is easy to wverify that the multipole potentials ¢,,
satisfy the free-surface condition. In chapter 3 we
showed that the source potential gb/nw {¢, cos wt+
¢, sin wt} is determined in such a way that the free-
surface condition is satisfied. Furthermore, we showed

there that this potential represents a regular progressive

wave when |x| = 0. As the multipole-potentials vanish
if #—o00, the total potential @, represented by (4.3),
satisfies the radiation condition (2.11). 1t still remains
to determine the coefficients p,,, and ¢,,, in such a way
that the boundary condition on the cylinder surface is
satisfied. For the case of a circular cylinder the bound-
ary condition (2.8) on the cylinder is reduced to

dy o9

== (4.5)
ar cosf 3 4.5)
The Cauchy-Rieménn conditions which relate the
velocity potential & and the conjugate stream function
¥ have in polar coordinates the form

100 _o¥

r 60 = or (4.6)

Substituting @ in (4.6) and performing the integration
yields for the stream function

- %I::pc(Kr», 0)cos wt+ Y (Kr, 0) sin wt +

® m |'sin2m0
+cosa)tEl:sz(Ka)a2 { 2m

r

+

K sin(2m—1)0}
m1 (T
2m—1 r

sm §8in2mé
+ sin thqz,,,(K )a { o

K sin(2m‘— 1oy}
4+ , 4.7
2m—1 g2t }] @D
where
Y(Kr;0) = me™ ¥ ®sin(Kr sin6)
@ e—ﬁr sin 0 -
1 (Kr;0) = | ——— {Bsin(Brcosl)+ -
Y ) £K2+B2{B B )
+ K cos(Brcos 6)} dB—me ™ Kr==Ccos (Kr s’inﬂ)‘ (4.-8)

Using '(4.6), the boundary condition on the cylinder
(4.5) may be written as

Loy dy

“ag " gt (=9

Integrating with respect to 6, we obtain

dy . :
= —aas1n0+c(t) (r=a)

By substituting 6 =0 the integration constant c(f) is
found to be zero.

We assume that the ordinate of the axis of the
cylinder is given by

y =lcos(wt+¢)

Consequently the streamfunction on the cylinder has
to satisfy.:
¥ = loasin(wt+€)-sind  (r =.q) (4.10)

From (4.7) and (4.10) we find

49)

15
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Y (Ka;0)coswt+(Ka;0)sinwt+

> )
+ coswt )’ p,,(Ka) {sin 2mé +
1

+ sin thqz,,,(Ka) {sm 2mb +3 sm Qm— 1)0}

lanK
b

sin(wt +¢)-sin@ 4.11)

As (4.11) holds for the range 0 <6 < =n/2, we find 'by
substituting 6 = 7/2 in this expression

lltc(Ka ;g)'cos wt +llts*<Ka ; 7g)sin wt+

K m—1
+ cos wtz ps(Ka) Li)l—
m—1

+ sin thqz,,,(K a) Ka(— 1)1 = laZK sin (@t +¢)

(4.12)

With this relation we eliminate the factor lanK/b sin
(wt+¢) from (4.11). By equating in the resulting form
the coefficients of cos wt and sin wt, it is easy to see
that the coefficients p,, and ¢5, have to-satisfy ithe
relations

VdKa;0)—V. (Ka;g) sin@ = ﬁézm(Ka)fzm(Ka;e)

V.(Ka;0)—, (Ka : ’5‘) 0 = Y 2u(Ka)n(Ka;0)

(4.13)
where

fon(Ka;0)= — [sin 2m +

+

2m—

In (4:13) the left-hand side represents-an expansion in
a series of functions f,,(Ka; 6), where m = 1,2,3,...

Of course, in practical applications only a finite
number of terms, N, is taken, the accuracy of the
approximation being improved by increasing the
value of N. :

The coefficients p,,, and ¢,,, can now be detérmined
with, for -example, the least-squares approximation

method.

From Bernoulli’s law (2.5) we derive that the hydro-
dynamic pressure in a point of the liquid in linearized
form is given by :

od

p=-03 4.14)

Ka . :
ST sin(2m— 1)0} +

R {sin(2m—1)0—sin Osin }(2m— l)n}] |

Consequently the hydrodynamic force per unit-length
on the cylinder is

.%,,

P-= Q —.!;"a.%?rlac()S odo —
Zsztbg (M.coswt— Ngsin wr) (4.15)
where
" © (= )" 'g2u(Ka)
M, = _f o (Ka;Pcos0do+ 27"'
[¢] m _1
+3inKagq,(Ka)
i 2 (=1)"" 'pyu(Ka)
No= | ¢[Ka;0)cosbdo+ Z——';
0 ) m2—

+inKap,(Ka)

It is a well-kknown fact that a long cylinder which is
completely submerged in an ideal infinite fluid expe-
riences:a hydrodynamic force M¥ per unit-length which
is equal to the product of the relative acceleration #
and: the displaced volume. of fluid M per unit cylinder
length. The situation remains the same if we-remove
the fluid and add per unit-length a2 mass M to the
cylinder. For this reason M is called the added mass-of
the cylinder. If the cylinder moves in a fluid with a '
free surface then the forceis no longer in phase with
the acceleration. We. dissolve. this -force into a com-
ponent in phase with the acceleration, which .does not
dissipate any energy, and -a compornent in phase with
the velocity, which has the same character as a fric-
tional force and which is responsible for the dissipa-
tion of energy in the form of outward-going waves.
The acceleration component of the hydrodynamic force
is determined by the added mass and by the velocity
component by the damping of the cylinder.

We: shall calculate these two quantities now.

From (4.9) we find for the velocity of the cylinder

dy

_—a = —lwsin(wt+¢€)

Combining this with (4.12), we find

%} — n—K{A coswt+ Bsin ot} (4.16)
where
A(Ka) =, < ) + Z y & 1)... lKa ;m(Ka)

: (4.17)

B(Ka)=np,< ) Z( l)m K“ d2n(Ka)




f

The acceleration of the cylinder is given by

2 2
d ;V _ b {A'sin wt— Bcoswt}
dt*  wakK ‘

(4.18)
The force in phase with the acceleration is found from
(4.15) and (4.18):

_ 20abg MyB+ NoA
m A%+ B?

{Asinwt—Bcoswt} (4.19)

The force in phase with the velocity is found from
(4.15) and (4.16):

20abg MyA—NyB
4 A%+ B?

{Acosw + Bsinwt} (4.20)

sin ot

———&=: COS Wt

Fig. 4.2

The validity of the formulas (4.19) and (4.20) is easy
to see from: the vector-diagram in ﬁgure‘4.2.'

We assume that the hydrodynamic force, the velocity
and the acceleration are respectively given by

P = p, cos wt+ p,sinwt

v

vy cos wt+ v, sinwt

a = a, coswt+aysinot

The velocity -and the acceleration have a phasé difé

ference of 90 degrees. The component of P in phase

with the acceleration is expressed by

Ps = V(E"Q) -='(Plav1'+ P2a3)
' lal Vaital

In vector notation this componeént is .répresénted' by

a _ P1a; 4 paa,

2

5 (a, cos wt + a, sinwt)
la| ai+aj

Do

It is easy to check now that in this way expression
(4.19) has been derived from (4.15). and (4.18). The
derivation of the expression for the force component
in phase with the velocity is similar.

The added mass of the cylinder per unit length is

defined as the negative value-of the ratio between (4.19)

and (4.18): :
2 MoB+ NoA.

m'(Ka) = 2¢a
(Ka) = 2¢ 1B

@21)

The dimensionless expression (MoB+NoA)/(A?+ B?)

is defined as the added mass coefficient.

The damping coefficient of the cylinder per unit
length is defined as the negative value of the ratio
between (4.20) and (4:16):

MyA—NyB

N'(Ka) = 20a°w AL
(Ka) L1 B

(4.22)

From (4.7) and (4.17) it follows that for 0 =7/2 the
stream function on the cylinder can be written as

Y= g_b_ {Atcos‘wt-'i-Bxsin‘wt}j (r =a;0= E)
nw : 2

Comparing this with the expression which results from
(4.10) when we set 0=m=/2, it follows that the ratio

wave-amplitude at infinity
amplitude of the forced oscillation

is;equal to
b__mkKa 423

Finally we observe that the work done by the cylinder
in one cycle must be equal to the energy radiated by
the regular progressive wave during the same time,

‘which is twice the energy of one wavelength of the

regular progressive wave:
2n/w. d
y 2 2T
P dr = ob2g? L.
g dt w?
Substituting the expressions (4.9) and (4:15) we find
the relation

2
T

‘MoA—NoB =3

(4.24)

Consequently the damping coefficient can be simplified
-to .

ea’wn®
A2+B2

N'(Ka) = (4.25)
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5 Heaving of a cylinder. with an' arbitrary cross
section _

In this chapter we will discuss in which way Ursell’s
methiod can be modified for the calculation of the.
added mass and damping of an arbitrary cylinder. The
essential point in this process is the mapping of a
semi-circlé onto the cross séction S of the cylinder
(figure 5.1.1) by means of a .conformal transformation,

i.e., we determine such a system of curvilinear coordi-

nates that one of the coordinate-lines coincides with

the contour of the cross section.

5.1 Cvurvilinear coordindtes. and confor’r‘nal
transformations

We. take the origin of a rectangular coordinate system
at the mean position of the axis of the cross section in

- the free surface of the fluid. The x-axis is taken hori-

zontally and the y-axis vertically in downward direc-

tion. This plane-is often called the physical plane and
is denoted here by the z-plane. The plane of the:semi-

circle or reference plane is here called the {-plane. In

 (-B,.0)

| Z-ptane -('80,0') :

the {-plane we assume a polar coordinate system:(r, 9)
having its origin in the centre of the circle. With a

conformal mapping of the z-plane onto the {-plane -

every point (r, §) in the {-plane corresponds with.a
point (x,y) of the z-plane. Consequently, relations
exist between the variables .x, y and r; 8 of the form

x = f(r,0)
y =g(r, 0 (5.1.1)
The corresponding inverse relati()né are written as.

r =f(_x’ J’)
b= g(x,y) (5:1.2)

We now require that the conformal transformation
maps the cross section S onto the semi-circle. If the

circle has-a radius r =a then S is given by

x=f(a, 0

y = g(a, 6) (5:1.3)

v

/.

X x.y)
r is constant.\

9 is constant.

“\ r is
\constant.

o is
constant.

Fig. 5.1.1




Now we also conceive the variables r and @ as co-
ordinates in the z-plane. So along the contour S only
the variable ‘0 changes in value while r =a remains
constant.

The conformal transformation brings about a co-
ordinate transformation (5.1.2) of rectangular co-
ordinates (x, y) into curvilinear coordinates (r, ) in
such a way that one of the coordinate lines (in this
case r=a) coincides with the cross section. The co-
ordinate lines r = constant and 8 = constant represent
two sets of curves in the z-plane which are mapped in
the {-plane as the lines r = constant and 6 = constant,
which represent circles there with the origin as centre
and straight lines through the origin (figure 5.1.1). We
know from the theory of .conformal transformations
that right angles at the intersection points of lines
correspond with right angles at the intersection points
of the transforms of these lines. Consequently the co-
ordinate lines r =constant and 0 = constant intersect
each other also perpendicularly in the z-plane. The
important consequence of this is that differentiation
along: the cross section with line-coordinate s corres-
ponds with differentiation with respect to 6

~ | —

Sl
SRS

and differentiation along the hormal n with differentia-
tion with respect to r:

0 0

on or

In future we shall see that the place dependence of
many physical quantities just as, e.g., the streamfiinc-
tion ¥ and the potential ¢ is expressed by curvilinear
coordinates r and 0.

Using a conformal transformation, we determine the
relations (5.1.1), which satisfy the conditions (5.1.3).on
the contour 5. We map the region outside the unit
circle || > 1, represented in polar coordinates by { =
re*® onto the region outside the closed curve S of the
complex z-plane, where z = x+iy. The fegion outside
S is supposed to be simply connected, (figure 5.1.2).

We determine a transformation in the form of a
series with a finite number of terms

m=-—2

_Z (A,~+ iB,)r"(cosne —isin ne)
’ (5.1.4)

m—2
z= Y Cl "=

n=-—1

Equating the real and imaginary parts of this equation,
we obtain

m—2 )
x= Y r"(A,cosne+B,sinne)
n=-1
m—2
y= Y, r "(—A,sinng+B,cosng) (5.1.5)
n=-—1

As we are only interested in cylinders which .are
symmetric with respect to the x- and y-axis (in fact
we only consider the region y > 0 of the cross-section;
consequently we can imagine the cross section to be
symmetric with respect to the x-axis), (5.1.5) can be
reduced to

m-2
x= Y r 4, cos@n+l)e

n=-1

m-—2

y= Y r 24, . sin(2n+1)e

n=-1

(5.1.6)

We notice that in this case the rectangular coordinate
axes ¢ and 5 of the {-plane are transformed into the
coordinate axes x and y of the z-plane and since the
circle intersects the horizontal axis perpendicularly,
the cross section of this cylinder intersects the x-axis
perpendicularly. Consequently, this transformation is
restricted to cross sections which intersect the x-axis
perpendicularly. '

Comparing figure 5.1.1 and figure 5.1.2, we see that
¢ = n/2—0. Substituting this for ¢ into (5.1.6) we
obtain

m-2 A. in (204 1)
x=A_,rsinf+ Y (—1)"'42"+l s12nm(jn +1)0 .1.7)

n=0 r i

mz 4 @n+1)8
y=A_;rcosf + ZO(—I)" 2"“:(2):51'1_*- )

These are just the transfor;mation.formulas used by
Porter [10]. Porter makes use of .a slightly different
notation. For reasons of simplicity we will adopt here
this notation, (5.1.7) then becomes

. .
x=a {r sin@+ Y (—1) B2nt1 sinz(2n+1)0}
0

e r2n+l

. N .
y=a {rcos() + Y (-p*! EMcos(2n+1)0}
: n=90

r—in+l

(5.1.8)

Finally, we remark that for the case of a circular
cylinder the coefficients a,, a,, a,, ... are all zero.
Then the coefficient a represénts the ratio of the radii
of the-circles in the z-plane and the C-pfane. For that
reason a is called the scale factor of the transforma-
tion.
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5.1.1 Transformation method of
Fil’chakova [12]

This method is closely related to Melentiev’s method,

described by Kantorovich and Krylov [15]. The method
is detived. for cylinders with an arbitrary shape. Con-
sequently, we have to start from the relation (5.1.4):
For the determination of the coefficients C, we choose
2m points at the unit circle r =1 which divide the
circle in equal parts, thus the polar angle of every
point always differs 4¢ =n/m with those of his two
adjacent points. Next, we divide these points into two
systems of points: an even system ¢,, = 2kn/m and
an-odd system

2k—1)n
Pax—1 =%, k= 1,2,...,m.

The images z,;= X, + iV, Tespectively zy,_; = X554

+iyy—, k=1, 2, ..., m) of these points on the cross-
section .S .are' called nodal points. The coordinates of
these points are given by

m—2 '
Xp= 3, (A,cosn@y +B,sintg,,)
n=-1 .
m—2 )
ya= Y, (=A,sinn@y+B,cosngy) (5.1.92)
m—2 .
Xok—1 = Z (A,cosn@yy— 1+ B,sinney,_y)
n=-1

m—2
Yu-1= D, (—A,sinngs;_,+B,cosngy_ )
n=-1 (5.1.9p)

So we have an even system of nodal points (X, y.i)
and an odd system (X,;_;,YVak-1); kK=1,2, ..:,m,
which are the image-points. of the points (I, @)
respectively (1, ¢,;._,) at the unit circle. Making use
of the properties of orthogonality for trigonometric
functions of discrete equally. spaced arguments (here:
2n/m), we: can invert (5.1.9) in a simple way with res-

pect to the coefficients 4; and B,. For the even system
these relations of orthogonality are

o . e . ' 0, j#n
Y sin sinng, = ) cosjp,cosng,, = s
kgx JP2x Pax k;l JPax P2k . {m/2, j=n
Y sinj@,cosng,, =0 _ (5.1.10)
k=1

We multiply first the equations (5.1.9a) by cos j@,,
and sin jg,,, respectively, and after that we take the
sum with respect to k. Combining this. with the rela-
tions.(5.1.10) affords

kz (%25€08 jP 2 — Y2k SINJjP o)) =
=1

m—2 m
=3 An<2 COS j 24 COSNP 5+
k=1

n=-—1
m—2

+ Z sin jgy sin "‘P2k> + Y B, (Z COSj (P SIN NP, —
k=1 ' 1 k=1

m
— sinj,, COs‘n(p2k> =mA;
k=1 '

In an analogous manner we muitiply (5.1.9a) respéc-
tively by sin jo,, and cos j@,,. :
The following results are obtained

(+n) _
A7 =

3|~

Z (X24€0SjP2k— Y2k sinj(ka)
k=1

,,,' 1 2 - .
BS'* ) = _nT Y (X 24 5INJP 25+ ¥ 21 €OS jP34) (5.1.11)
o k=1
j=—1,0,1,..,m=2

The index (+m) has been added to 4; and B; in order
toindicate that these coefficients are determined on the
basis of the even nodal points.

Starting from (5.1.9b) we can determine in an analo-
.gous way a relation between A; and B; and the odd
nodal points. In this case the index (—m) is added to
A;and B;:

—m 1 & . C
~A5' )= Z (X2k—1 €08 a5 — 1= Yar—15INjQos— 1)

m =i
(—m) 1 < s e . -.
B, "™ = Ekz:l (X2k—18INj@ax— 1+ Y251 COSjP2s—1)
j==1,0,1,...,m—2 (5.1.12)

If the nodal points are known we can detérmine the
coefficients by means of the expressions (5.1.11) and
(5.1.12) where A;=A{"™ =A{"™ and B;=B{'"™ =
B{™™. However, the locations of the nodal points are
unknown.




We shall devise now an iteration process, based on
the property that A{*™ =A4{"™ and B{*™ =B{™™.
So on account of (5.1.7) and (5.1.8) a relation exists
between the even and odd nodal points. One-possibility
to determine this relation is to eliminate 4{™™ and
B{™™ from (5.1.9a) and (5.1.12):

Y. (A ™ cos ng,, + B ™ sinng,,) =

n=-1

m—2

1
——{Z ka 1 Z COS"((Dzk 1—@2)—

m—2
= Y2k-1 Z -sin n(@ - 1 (Dzv)}

m=-—1

m—2
= ¥ (=4 ™sinng,,+BY”

n=-1

™cos.ng,,) =
m-—2

1
——{Z Xik—1. Z sin n(@y— 1 —@2y) —

m-2
— Yak-1 Z cosn(@ax—1 (Dzv)}

In the same way we obtain by eliminating A{*™ and
B{*™ from (5.1.9b) by means of (5.1.11)

1 _
X2y- 1——{2 X2k Z CoS (P2 —P2y—1)—

k=1 n=-1

m—2
= Yax Z sinn(@,,— (Dzv 1)}

1 m—2
Yav- 1——{2 X . Z SInn(@y— @3y 1)+

m—2
=+ Yo Z cosn(Pax— @z, 1)}

We define the following new quantities

1 m—2
}’zk 12v__ Z Sinn(@ - 1 —02); ’
n=-—1
, 1
Yz(rn':'%v—1='— m"(q’zrc Pav—1)}
m,=—i
m—2
7
}’vzk(ini,z;-—— Z cosn(@ak— 1 —P2);
n=-—1
T1(m), 1 "2

Y2k, 2v— 1‘; Z cos K@z — @2, —4) (5.1.13)

Then we obtain the following recurrence formulas of
the iteration process:

), I I(m) (), I(m)
x(z”v) 1= Z x(z”k}’zk';v 17 Yz"k}’zkmzv 1
), I ). I1(m)
Y= Z x(z"k}’zkmz)v 1+y(z';¢72k(';v 1 (5.1.14)
+1 1I(m
(” )= Z x(z”k) 1}’zk( 1,2v y(Z';c) ﬂzk 1,29
+1 ) 1 ) IH(m 1
¥ = Z XS0 7D 1, 2t VIRV 1,2v (5.1.15)

The iteration process is carried out in the following
manner: For some m=4, 8, 16, ... we select on the

basis of a graphical' consideration an estimation for .

the zeroth approximation for the m even points (x5,
¥ k=1,2, ..., m. (Kantorovich and Krylov de-
scribe in Chapter V, §7, [15], various'methods to obtain
a suitable estimation for the locations of the nodal
points.) By means of (5.1.14) we calculate the accessory
odd points which in general will not lic on S. After
that, we carry these points to the contour, e.g., along
the line which connects this point with the origin and
thus obtain the zeroth approximation for the odd
nodal points (x52_;, ¥5%-,): With these points we
calculate with (5.1.15) the accessory even points, carry
them to the contour and in this way obtain the first

approximation for the even nodal points (x5}, y$3),

_etc. We repeat this process until' a subsequent approxi-

mation coincides with sufficient accuracy with the
previous one. In order to increase the accuracy of the

transformation we have to take a larger value for m,,
for example 2m; taking the even and odd nodal points

of the previous iteration as -an estimation for the m

even nodal points of the new- iteration, after which we
repeat the iteration process as we described above.

In this way we can determine the locations of the nodal
points more accurately. So the transformation equa-
tions

m—2
Y. (A,cosng+ B,sinng)
n=-—1
m=2
y= 3 (—A,sinng+B,cos ) (5.1.16)
n=-1

are completely determined now.

5.1.2 Alternative method for the
determination of the transformation
coef’fici‘ents

We shall now consider another method which has been
developed in 1966 by “Rescona Engineering” in Am-
stelveen (Holland) in cooperation with W. E. Smith.
From the analytical point of view this method is much

21
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simpler than the one discussed in the preceding section.
Applications of this method proved that it is very
useful.

This method is expounded here for cylinders' wh‘i‘ch
are symmetrical with respect to the x- and y-axis. This
is a case which is usually encountered in naval archi-
tecture.

We start from the equations (5.1.8) where we put
r=1:

N
Xx=a {sin@ + Y, (—1D)"ag,4,sin2n+ 1)0}
n=0 (5117

. N .
y=a {cos0+ Y (=" 'ag,4, cos2n+ 1)0}
n=0

These equations describe the relation between the

variable 6 on the unit-circle in the {-plane and the

variables x and y along thé giver:contour in the z-plane.
We substitute in (5.1.17) the expressions '

sin(2n+1)0 = Zo( 1y (22::11)'

I:H {2n+ 1)? _(2k_-1)2}] sin2r+1p
2 ,
cos(2n+1)0= %-(2'0096)2_”*‘1 +

2r—1
2n+1|: I @n- k+1)](20080)2" 2r+l

+%Z( 1)

=r+1

This yields

X N
o= sin@ + Y b, sin®**'0

K=o
v/

% =cosf+ Y, c,cos?*+19 (5.1.18)
K=o .

where the coefficients b, and ¢; are linear combinations

of ay, as, ..., Ayt

N 2n+1

nz (_1) +k 2n+1(2k+1)|

[ﬁ {<2n+n)2~—<zs—n2}]

s=1

N - 2n+1
__q\2n—k+1 2k

D (T

2n—2k—1 ) ! -

[ T (2n—s+1):|,+(—1)"“02,‘“22"

s=n—=k+1 :

On the right half of the. cross section in the z-plane
we now choose a sequence of m points, such that the

first point coincides with the point (x =0, y = T')- while
the last point coincides with (x = By, y =0). T and B,
represent ;espectively the draft and the half beam of
the cross section (figure 5.1.1). The points of this:
sequence, which we represent by (x;, y;), where i=1,
2, ..., m, originate from points on.the unit circle in the
¢-plane represented by (1, 8,). Consequently with the
points (0, T) and (By; 0) in the z-plane correspond the
points (1, 0). and (I, 7/2) in the {-plane. Substituting
these values for (x;, y;) and 8; in (5.1.18), we obtain
the following system of equations

N
B _sin,— ¥ bysin®**'0,=0 i=2,3,..,m"
a k=0
v u
j—cos’@i— Y cicos*Tg =0 i=1,2,...,m—-1
K=0
(5.1.19)

In this way we obtain a system of 2m—2 equations
with the following N4 m unknown variables

a,al, 43, . "'02N+ i

and
62,:63', ey om_ i

In order to make the number of equations equal to
the-number of unknown' variables the relation - '
m= N+2 (5.1.20)
between the number of points m, chosen along the
cross section, and the number of terms &V, we want to
consider in the series expansion (5.1.17), has to be
satisfied.

The set of equations (5.1.19) are solved by the
Newton Raphson Method [16]:

Representing the left-hand terms of (5.1.19) by

Fy=F(x;0;,0a,a,,a3,...,a;5+y)

and

G,= G.-(_y;,ﬂb a,ay,a3, -, AN+ 1)

respectively, we obtain the following set of iteration
equations '

JoF & oF! aFf

j _Fi
A aa +k§0Aa2k+la Ao, ao l’wl

i=213,...m




0G] X 0G| ;0G]
j i_
da 2t Z Aa2k+la . 4 A0 2,
i=1,2,..,m-1 (5.1.21)
In these equations Aa’ =a’*'—a’,Aa), ., =al;} —

alisy and A0i=0/*1—¢]
{ in order to obtain the (j+ 1)-th iterates of these
variables.

The numerical values of the constants

oF] oF] oF) Fl aG{

9G] oG] _,
0a’ day,,, 00, and Gi

da aazk+ v agi

are obtained by substituting the j-th iterates in the
corresponding functions for the variables 0,, a, a,, a;,

o ANty

It appears that the sections.of a conventionally framed
ship can be approximated in a reasoriable manner with
a Lewis-form. Consequently, it is adequate to use for
the zeroth iterates of the coefficients a, a; and a, the
Lewis-values which are given in section 5.3. It is
observed that the scale factor is there denoted by M.
The remaining coefficients as, a,, ... are all set equal
to zero.

However, for a ship with unconventional sectional
shapes, e.g. bulb sections, the Lewis-approximation is
not satisfactory anymore. Consequently, we may
expect that the Lewis coefficients are rather bad star-
ting values for the iteration process. A suitable proce-
dure for such a ship is to start the transformation

process with thie midship sections. These sections are

in general rather well approximated by Lewis-forms
and; therefore, the Lewis-coefficients are suitable
starting values. Next, the transformation is carried out
for the neighbouring forebody section, while the
coefficients of the midship section are used as zeroth
iterate for the coefficients of this section, etc.

After having determined the coefficients for the

forebody sections, we proceed in a simular manner for-

the afterbody sections:

Finally, with regard to the starting values of the
variables 0;, equidistant values appear to be adequate
in most cases. :

5.2 Calculation of adéed mdss and damping [10]

Completely similar to the method Ursell used for
circular cylinders, the velocity potential for the case of
an arbitrary cross section is also composed of a source
potential and a linear combination of multipole
potentials. For the source potential we take expression
(3.28) again; which satisfies the surface condition and

represent the corrections.
which are to be added to the j-th iterates a’, a}, ., and
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the radiation condition. To satisfy the boundary
condition on the cylinder we superimpose a suitably
chosen linear combination of multipole potentials.
Each multipole potential satisfies the surface condition
and vanishes when |x| —oo. The multipole potential
is defined by

2m

: o
cos2m0+Ka{cos( m=1)0

r2m @m—1r?m~!
4 Z( 1),,(2n+1)a2,,+1cos(2m+2n-{-1)9}
n= Cm+2n+1)p2mt 2+l
m=1,23,.. G621y

We remark that ¢,,, vanishes for r — co.
In order to prove that ¢,,, satisfies the free-surface

-condition, we transform this relation first by means

of (5.1.8) from rectangular coordinates (%, y) into
curvilinear coordinates’ (r, 8). As 0x/60=0 for 0=
+7/2, (the O-lines intersect the x-axis perpendicularly),
the free surface condition

K¢+¢,=0 (y=0)

can be written as

Kb +——%_y (9=i§)

(5"
06) .

From (5.1.8) it follows

(5.2.2)

dy _ —a {'rs‘in@ +
o -

(=D""'2n+ Das, .y

r2n+l

+Z

mi@n +'1)0}
whence for 0 = +=/2

dy 1 }
—=TFasr— 2n+ay,,  ——
a0 + { "Zo( +1) 2n+1 T

In curvilinear coordinates the free-surface condition
obtains the form

Ka {" Y <2n.+1)“"’"“}¢¢ %_0 o-1

r2n+l

D
@
[ S|

(5.2.3)

Substitution of (5.2.1) into (5.2.3) shows that ¢,,
satisfies the free-surface condition. Thus the velocity
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. .//2m =

+ Y (-1

potential which is the solution of the boundary value
problem can be written as

gb {<¢c+ Z p2m(p2m) cos:wt+

7!60

+ <¢s + 21 q‘2m(p2m) sinmt}

(5.2.4)

where 7¢c and ¢, are defined in accordance with (3.29):.

¢, =me *cos Kx

j e”"(Bcos By—Ksin By) | dp

¢, = ne"" sin Kx —
: 0 B*+K?

(5:2.5)

By means of the Cauchy-Riemann relations (4.6) we

calculate the conjugate stream-function

Y= %‘ {('//c + mgl sz'//-z,,.) coswt+

+ <.//s + i q2m.//2m)-Si'n'wt} (526)
m=1 .
where

Y, =me ’sin Kx

e ?*(Bsin By + K cos By) ap
ﬂ2+K2
sin2m#@ + Ka { sm:(2m— 16
@m—1)r"!

i, = —me ¥ cos Kx + j

2"

N w2n+1as, . sin(2m+2n+1)8

2m+2n+1

} (521
n=0 2m+2n+1 r ;

It remains to determine the coefficients p,;,, and g,,, in
such a way that the boiindary condition on the.cylinder
is satisfied. The reasoning proceeds analogous to the
corresponding calculation in chapter 4. The boundary
condition -on the cylinder has the form

(5.2.8)

=X

Fig. 5.2.1

« is the angle between the positive normal on the cross
section and the positive y-axis, (figure 5.2.1)..
Tt is further easy to see that at the cylinder surface

_0x_0y
cosa—-a—' 'a—n
s oy .
sina = — =+ | _(5.2.9)
0P _G_Yi_ _ ov
on  0s  roo

So the boundary condition at the cylindeér, (r = 1), can
also be written as

After integration this leads to
Yir=10=—— x(r =1,0)+c(t) (5.2.10).

Substitution -of 8 =0, (x = 0), shows that the integra-
tion constant c¢(¢) has zero value, so :

(5.2.11)

W(r=1,0) = ——x(r—l 9)
Substitution of 8 = /2 gives

n\_ dy : ‘
w (1, 5) = -5, (5.2.12)

By =x(1, nf2) is the half béam of the cross section
(figure 5.1.1). Eliminate dy/dt from (5.2.11) and (5.2.12)

to obtain
x(1,0) . [, ®Y.
B, y (1,5)

¥(1,0) = (5.2.13)

Substituting (5.2:6) in this expression and equating

successively the coefficients of cos wt and sin wf, we

see that the coefficients p,,, and g,,, have to satisfy the

relations

l/lc(l, 0) + ;l p2m'//'2m(1! 0) =

4000 (13)+ & ot (15)

.//5(1! 6) + zl qzmlllz,,;(l, 6) =

_ 1.0 {,,,( )+ Zqzm'/'m( 38




Oor:

w0 - 22y, ( ,’5‘) 3 Panfanl)

bt - 250y, ( ,’5‘) L Gunfanlt,0) (5214
where ;.

fun1.0) = 2520, (‘1,’5‘)- V. 0)
" (See the remark at the end of this sectiof)

The equations (5.2.14) have the same structure as
(4.13). The coefficients p,,, and g¢,,, may be calculated
in a corresponding way.

‘The veloclty potential @ on the contour’ of the cylin-
- der, (¥ = 1), is written as. ‘

(,5..2.'15')

o(1,0) = z—Z(M sinwt+ N cos wt)
where

M(1,0) = $,(1:0) + ¥ dzup2n(L,0)°
N(1,0) = ¢.1,0) + Z Pam®2m(1,6)

m=1

We calculate the pressure along the contour accordmg
to (4.14)

p(1,0) = — —Q%E(M cosiwt —N sin wt) (5.2.16)

We define

dy  gb

A = nwB, ( — Aicos ot — Bsinwt).

hence

5
% = g—b(A siniwt—Bcoswt)
t

(5.2.18

where according to. (5.2.12)

[, 7\, < o/ 7

A = wc‘(lii)_i_ ,,,Z-_;l p2m'¢2m‘('1p§)
O - | T
B=y, (1: i) + mgl 42m¢;m#(}~,.§),

We can resolve the.pressure into-a component in phase
with the velocity and a compeonent in phase with the
acceleration. This is done in a similar way as in
chapter 4.

(5.2.19)

(5247

p(1,0) = ogb M(A smlwt—Bcos wt)—
’ n A4+ B?
- @ MB;NA'(A cos.wt+ Bsinwt)
n A2+ 2
or
MB4+NA_  MA+NB -
1,6) = 0B~ 4By~ "y (5.2.20)
p(1,0) QoA+B2y QOA2+Bz'l Y

The total vertical force on the: cyllnder per unit length:
becomes

F= =2 p(1,0)cosa ds

S(0<8<m/2)

(5.2.21)

From (5:2:9): and (5.1. 8) it follows that at the contour
of the cylinder

cosads = a—'x,ds =dx =
ds

=a {cosﬂ + Z (=1)'Qnr+1az,+q cos(2n+1)0} do.=

aW(6)do (5.2.22)

where the function between parentheses:is denoted by

W(0). Substitution of 8 =7/2 and r=1 into the first
equation of (5.1.8) produces :

N i
Bo=a{ + Z a2n+l}

Introducing the constant G, defined by
N
G =-{1 + "Z:O azv,,H} —
this reduces to
. (5:2.23)
Consequently (5.2.21) becomes
F= —2B, ! nfz 1;(1 ) ——+ W(B)
Substitution of (5.2.16) into this equatiop' leads to
F=—

2 (Ngsinwt— M, cos wt)

209bB
L“;— (5.2.24)

where



26

M, = "fz M@, 02 W(e) d6
No = "fz N(1,6) 2 W(e) (5.2.25)

We resolve the vertical force into a component in
phase with the acceleration and a component in phase
with the velocity

F=—
T A*+B?

(Asinwt— Bcoswt)—

20gbBy, MyA— N B
n A*+B?

(— Acos wt—Bsinwt)

With the aid of (5.2.17) and (5.2.18) the above-men-
tioned expression becomes

M 1 A
Fe 2 B2—°€+N2°Ay 2 B?,—M",f N;’B
A*+B A*+ B
(5.2.26)

Defining the added mass m'’ ‘and the damping N’ by

representing: the force according to F= —m"j—N'y,

we find -

m' =2 BZM (5.227)
A*+B?

So in non-dimensional form we obtain for the: coeffi-

cient of added mass

MyB+NyA
—9~ 1% 5.2.28
A%y B? ( 8)

The damping of the cylinder per unit length becomes

MoA—NoB

N' = 2¢Bw
OO

(5.2.29)
By -equating the dissipated energy to the work done by

the cylinder, we obtain a relation which is identical to
4.24)

2

M,A—N,B="

! ©(5.2.30)

So (5.2.29) can be written as
,_ oBion®
A*+B?
Analogous to (4.23) we find for the ratio between the
wave -amplitude at infinite distance from the cylinder
and the amplitude of the forced oscillation
KByn

JAE+B?

(5.2.31)

Remark

Instead of eliminating dy/df from (5.2.11) and (5.2.12)
which finally leads to the set of equations (5.2.14) for
Pam and ¢,,,, we can also substitute expression (5.2.17)
for dy/dt into, (5.2.11) and after that equate the coeffi-
cients of coswt and sin wf. Successively, we then
obtain

w(1,0) = %(4 coswt+Bsinwf)-x(1,0)  (5.2.33)

this becomes

V(1,6) + z Panian1,0) = 22 2,0 4
¥,(1,6) + 2 Ganhan(1,0) = TE-x(1,0)°B
or -
'//c(l‘s 0) = i;o‘pszzm
50 = . danfom
where
__gb
fo— wBo x(l,())-
f2m = '_"/lz_m(lsg)s m #0
and
Po=A, qgo=B

The calculation of 4 and B according to (5.2.19) is
dropped now.

~.
5.3 Added mass and damping of a cylinder with a
. “Lewis-form”
We will consider a special case now -of the theory

discussed in section 5.2, where we take in the trans-
formation formulas (5.1.8) for N the value 2. In this

‘case the transformed shape is often a reasonable

approximation of a cross section of a ship. This kind
of sections has frequently been used by Lewis and
Grim in their calculations and are known as “‘Lewis-
forms”.

Tasai made an extensive study of this case in [8].
For the sake of simplicity we shall adopt the notation
which he uses: instead of the polar coordinate r the
variable « is introduced which is related with r by:
r=-¢" So the unit circle in' the {-plane corresponds
with ¢ = 0.and in the z-plane the coordinate line o:=-0'




Y Fig. 5.3.1

coincides with the contour of the section. In Tasai’s
notation the transformation formulas .(5.1.8) become

x ) s g
U= e*sinf +a,e” *sin f—ae” **sin 30

Y = e*cosf— aje *cosf+aze ¥ cos 30 (5.3.1)

M
‘On the contour of the section where ¢ =0, the follow-
ing relations hold

‘% = (1+4a,)sini0— a4 sin 30

% = (1—a,)cos 0+ aycos 30 (5.3.2)
According to (5.2.23), we find for the scale factor of
the transformation which is denoted here by M

M=_ Bo
1+a,+a,

As parameters for the cross section we take

s

B
HO = 'To' and o =m (5.3.3)

S is the area of the secfion, T the draught and B, the
half beam. On ‘account of the restricted number of
terms in the transformation equations it is' possible to
find an explicit expression for the coefficients a, and
a, in an analytic way. In this way we avoid the iteration
process which may require much -¢Gomputer time; we
find

HO_I
(a +,1
7%t

a, =
o+
4y ZC1H3E Vo-2¢, (5.3.4)
N CI
where

40\ (. 4o\[Ho—1\?
o= (%) (- ) )

Yo =0,0) = — (;—i,,x(a'='0, 0).
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From (5.2.1) it follows that in this case the multipole-
potentials ¢,,, obtain the following shape

—2ma EO ’e~(2m_l)a
Pom=2¢ COS2m0+1+a-l+a3,{ Im—1
e—(2m+l)a
cos(2m—1)0+alm—-cos(2m+1)0—

3a,

mlige—(2m+,3)ac0-S (2m + 3)0}

m=1,2,3.... (5.3.5)

where

2
W
So=K-B, =—g—B'o

For the conjugate streamfunction we obtain from
(5.2.7) '

Yam =€ 2™ sin2mé +

éo {e’—(lm,— Da

1 + a, + aj; 2m-—1
e—(2m+ 1)a
sSin (2m - 1)9+a1 T—}-l Sm'(2m + 1)0— |
2&%[“"‘”)“ sin(2m+ 3)0} m=123..
mt (5.3.6)

So the total potential or streamfunction respectively
obtains the shapes (5.2.4) and (5.2.6) where we substi-
tute for @,;; and r,,, the expressions-(5.3.5).and (5.3.6).
For the calculation of the coefficients p,,, and ¢,,, we
proceed in a similar way as for the general case in
section 5.2.

We saw that the boundary condition on the contour

of the cylinder results in condition (5.2.11) which has

to be satisfied by the streamfunction ¥':
(537

Next, we eliminate dy/dt by means of (5.2.12) and
after that we equate successively the coefficients of
cos wt and sin:w! which results in the two expressions
(5.2.14), which obtain the following shape here

sin 0+ a sin.@ — a4sin 36

Yol =0,0;&p,ay,a;3) — 1+a;+a;

"kc'(a =0,0 = g; éo"al’ a3> = ;l P2mf2m




sinf+a, sinf—aysin 30
l4a,4+a;

lps(a =0’6; 60’ ay, a3) -

'lps (a = 0’ 0= g‘;‘éo’ ay, a3) = .il‘q2mf2m (538)

where

| . _ [
Jom = —[sin 2mf 4+ — 20 {Slll(Zm ne

1+a,+a3} 2m—1
. sin(2m+1)0 3a,sin(2m +3)0)
YU om1 2m+3

Eo(—1)" { 1 e 3%}.
(14a,+d;)* 2m—1 2m+1 2m+3

(sinf+a, sinf—aysin 30)],

The added mass and damping are calculated accordmg
to (5.2.27) and (5.2.29) respectively.

In accordance with (5.2.25) and (5.2.10) the quanti-
ties My, Ny, A and B obtain the form

M, =
nf2

= ‘([) ¢s(0’ 0; ay,d3, 60)

cos 0+a; cos0—3a,cos30 49+

| 1+a,4+ay

m [mzn (=0 gm (4:; a—ll * 43:19> *
«T_:tfl_}_—aa){(l'*'al a aa)‘lz a3q4}]

_ﬂj'2¢¢(0 b: al’aa’éo)cosefai(—::)::)+::3cos30 0+

+m [...2{(_ D" pam (4:; 1!1 " 4;19;3—9>+
4(1_}_+6+a)‘{(1+a1 ayds)p;— a3p4}]

A= lpc( 2,a1,a3,fo>+ Z sz(éo)( l)m !

3a3 :
T 2m+3
B= w.v (0’ g’ dy,d3, éo)l + gl q2m(é0)(_ 1)”"_ !

_ 3a'3'
2m+3

) j 1 a4
1+4a,+a; {12m—-1  2m+1

60 ' ‘,1 _ al
14a,+a; |2m—1 2m+1

(5.3.9)

6 Swaying and rolling

In this chapter we determine expressions for the hydro-
dynamic coefficients for a cylinder which carries -out
a forced harmonic swaying or rolling motion. In
addition we shall pay attention to the coupled motion
between rolling .and' swaying.

According to-(2.11) the velocity potential which is a

solution of this boundary value problem has to be a

skew-symmetric function. Consequently, the source
potential (3.28) and the multipole potentials which: are
used for solving the symmetric problem are no longer
usable here. Consequently, the first thing we have to do’
in this chapter is to derive the potentials which will
replace the source potential and the multipole poten-
tials respectively. After that we proceed to the calcula-
tion of the hydrodynamic coefficients.

6.1 Potential of a dipole in the origin, skew-symmetric
multipole potentials

For physical reasons it is easy to see that a -dipole

‘produces a flow field which is skew-symmetric with

respect to a line through the dipole perpendicular to
the direction of its axis.

- +fa,-b)-

We know that the potential in a point (x, y) due to
the presence of a dipole in a point.(a, b) with moment
M is given by the following formula [13]

—M(pyny) _ —Moni) _

Izl Irl?

_ —M(x—a) ‘
(x—a)’ +(y—b)*
(6.1.1)

¢dlp =

n, is the unit vector in the direction of the axis, r the.
vector which connects (a, b) with (x, y) (see figure
6.1.1). .
We assume: a dipole of strength 1K in the point

(a,b) and a dipole of equal strength in the point




(a, —b). Both dipoles have their axis in the negative

x-direction. The potentials of these dipoles are re-

presented by

(x—a)
Pai(,b) = 2 (—a)?+(y—b)
1 (x—a) '
. 6.1.2
¢d|p( ) 2K (x a)2+(y+b)2 | ( 1 )
We now consider the potential .
¢ = dbaip(a; b) + daip(a, —b) + ¢, (6.1.3)

¢, is a regular function, which we determine in such
a way that ¢ satisfies the free-surface condition

K¢+ ¢, =0. Substituting -¢ in this relation, we obtam

for ¢, the condition

Koot = = Co8 o T sinGc—apdp
L : (b>0) (6.1.4)
_xma

(x—a)"+ b

is the Laplace transform of sin (x —a)p.
In an analogous manner as for the source potential
- in chapter 3 we find for ¢, the expression

b= | e POtPsin p(x —a) dp
’ M3 E K—p

(6.1‘.5)

Here also the uniqueness of the regular function ¢, is
furnished by the condition that for the limit case
x| »c0 ¢, has to represent the regular outgoing
progressive wave (2.10). For this reason the contour
M is excluded, (figure 3.3). So, finally, for the poten-

tial of a dipole in the orlgm (a=5b=0) we obtam the
expression

x e P sin px

: : px 4

= —f 6.1.6
K(x*+y* um» K-p ( )

which has been constructed in such a way that it
satisfies the ‘free surface condition, represents the
regular outgoing progressive. wave (2.10) if |x| 500
and is a skew-symmetric function.

In an analogous manner as ¢ in (3.22) we can
reduce the second term of (6.1.6) to

¢ﬁx{Kcos‘,By+-,Bsinﬁy}d'B+ 1o KvEiKs
K*+p? -

+H
o8
N

20 (6.1.7)

In this chapter we will use for the dipole potential,
@4;,, Which satisfies both the free-surface condition

and the radiation condition, the expression defined by

_gb in
=— {¢.cos wt + ¢, sinwt}
(6.1.8)

b DR 1
Dyyp = %Re{—ld)e “

Comparing this with (6.1.6) and (6.1.7), we obtain

¢, = —me ®sin Kx
¢, = tme ¥ Y cos KxF ) Kcos,By+,Bsm,By Fx4p+
o B +K?
+ 4—;‘ 5 x20
K(x*+y%)

The conjugate streamfunction ¥y;, of @y, is given by
_gb Lo
Yiip = — {. cos wt +y,sin ot}

where

Y. =ne ®cos Kx '
lps - ne_K"Sin Kix| — j‘ e Flxl ﬂcosﬁy—Ksm,By dp—
0 K% +p*

y 6.1,
K2 479 (6.1.9)

Finally, we define the skew-symmetric multipole
potentials by

sin(2m +1)6 sin 2in
Tam T T A +Ra {Zmrz"' *
+ Z (—1)"az,+:12n+1) sm(2n+2m+2)0}
(2m+2n+2)r2m+2n+2 )
m=1,2,3,... (6.1.10)

Substituting (6.1.10) in (5.2.3), we see that ¢,,, satisfies
the free surface condition. The conjugate streamfunc-
tion ¥ ,,; of @,,, is

cos(2m+1)0 cos 2m@
Vom = — pamt1 — Ka { 2mr™ +
& (—1)"azn+ 1(2n+1) cos(2m+2n+-2)8
+ Z 2m+2n+2
(2m+2n+2)r mTan ,
m=1,23,... (6.1.11)

Completely analogous. to the problem of the heaving
cylinder we determine a solution of the boundary
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value problem, where the cylinder is making a swaying
or rolling motion. The velocity potential is. composed
of the dipole potential (6.1.8) and a linear combination
of multipole potentials (6.1.10):

gb |

= [{¢c + Z p2m‘P2m} coswi+

nw =

(6.1.12)

fort 5 ) v

m=1
For the conjugate streamfunction we find

Y= ﬂ[{l’lc + 21 pz,,,l//zm} coswt+

nw |

o 3 obdino]

(6.1.13)

6.2 Added mass and damping for swaying; added
moment of inertia and damping for rolling
produced by the swaying motion

The boundary condition. at the cyiinder becomes in
this case (see figure 5.2.1)

od  dx . -
W = —a—t Slnq (6.2.1)
With (5.2.9) this can be written as
oY .dxdy
75— dr ds (6.2.2)
'After integration this leads to
dx ,
Yir=1,0)= a y(r=1,0)+C(t) (6.2.3)
Substitution of 6 = /2 gives: C(t):= Yi(1, n/2).
Consequently
w(1,0)— ¥ if =4*.4,0) (6.2.4)
’ X ’2 - dt y ’ iy

Analogous to the procedure we followed in reducing
(5.2.11) to (5.2:13) we can eliminate dx/d¢. The other
method which we discussed in the remark at the end
of section 5.2 is to substitute into the above-mentioned
form the expression dx/d? = — x, sin (vt +7%), (assum-
ing x to be given by x = x, cos (wt+7)), so that an
expression is obtained similar to (5.2.33). We apply
the first method here.
Substitution of # =0 into (6.2.4) gives

W(1,0)— ¥ (1, g) - %—f T (6.2.5)

Eliminating dx/dt from (6.2.4) and (6.2.5) leads to

1 S AY _ 1 _ n
m {T(l,())— ' 4 (1,§>} = T{T(l’ 0)—Y¥ (1, 5)}

Next, we substitute (6.1.13) in this expression and
equate the coefficients of cos wt and sin wt successively.
This produces

{w;(l,w—wc(l,g)} 2.9 {wca 0- wc( )}

Zp2mf2m
n R y(l’g) € T _
uar.0- ws( 5)} ; {wscl,o)-qls,(l,,i)}_
= Zl 92mf2m (6.2.6)

where

Jam=

y(1 ) { Van(1,0) M( )}_
{'pZm(l’g)_'/jzm:(l,g)}

(6.2.6) represents a set of equations from which p;,
and g,,, can be calculated in the usual way. =
Analogous*to (5.2.17) we define

dx_ ——{ A’coswt—Bsmwt}

dt  nwT 6:2.7)

hence

d*x

e —{A smwt—Bcoswt}
t nT

where according to (6.1.13) and (6.2.5)
A= |//c<1,g) - '/lc(‘l"o)+
+ Z Pam l/I2m< )_ l/,/2m(1" 0)}

{
)
o

'/Is(l 0)+

bn(13) ¥t 0

(6.2.8)




Eiitirely equivalent to (5.2.15) we define for the poten-
tial along the cylinder

®(1,0) = %(M sin ot + N cos of) (6.2.9)

Then we find for the pressure along the cylinder-

p(1,0) = — Ejitﬁ(M cos wt— N sin ot) (6.2.10)

where on account of (6. 1.12)

M(1,6) = ¢,(1,6) + Z G2mP 21, 6)

NLO) = L0+ %, prub2nll,

‘Analogous to (5.2.—20) we: find from(6.2.7) and (6.2.10)

MB+NA -~ MA—NB x

Cp(1,80) = oT—— 2 5%+ oT 6.2.11
PLO = T e ¥ el (6210

The total horizontal hydrodynamic force becomes

Fo=— | {p(1,0)—p(1, —6)}sinads

‘S(0<8<n/2)

(6.2.12)
From (5.2.9), (5.1.8) and (5.2.23) it follows
sinads = — st = —dy= —a I—sin(z?+

os l .

+ Z (= 1)'agys 20 +1) sm(2n+1)0} do =20 V(())d()
" (6.2;13)

where the function between parentheses is denoted by
V(6). ‘

becomes
~f2
F,= —2B, j p(1,6)—— V({)) (6.2.14)
Substitution of (6.2.11) gives
F= —20rB,MoBN Ay ) 7 Mo=Nob
A*+B? A*+B

where

nf2
No = j N(1,0) —+ V({))

/2
M, = j M(1, 0) V({))

As the pressure is skew-symmetric in 0, (6.2.12)

When we define the relation between the swaying
force and the added mass M, and damping N, for the
swaying motion by

F,= —MxX—Nx

we find for the added mass per unit length

MoB+N,A

M, =20TB, T (6.2.15)
and for the damping per unit length
N,=2 TBOM (6.2.16)

A?+.B?

From figure 5.2.1 we see that on-account of the skew-
symmetry of p(l, f) in 6 the moment on the. cylinder
produced by the swaying motion, (clockwise is positive),
is expressed by

Mp=2 - {psina-y—pcosa-x}ds

S(0<8<r/2)

Combining this with (5.2.9) yields

. ®/2 a a ..
Mps= =2 j p |do - (6:2.17)
60
Substitution of (6.2.10) gives
Mgs = BOZng { =Xy sin wt+ Y cos ot} (6.2.18)
whereé

We resolve the moment into. .a component in phase
with the acceleration and a component in phase with
the velocity according to

d*x dx\ .
Mps=1 + Npg =
'RS RS( dtz) RS( dt)

Ngs and I represent the damping and added moment
of inertia for the rolling motion produced by swaying.
From: (6.2.7) and (6.2.18) it follows

(6.2.19)
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—20gbB) BYg+AX,

Moo = Asinwt— Bcoswt)—
RS n A2 B? ( )
R2 —
20gbBy AYx BXR(—Acoswt—Bsill'wt)=
- A%+ B?
= -2 TBZM -2 TBZM)&
A2 4+ B? A*+B
hence
zBYR+AXR
IRs— 29TB, W
AY,—BX
N = 200 TBzﬁ (6:2.20)

For the ratio between the wave amplitude at infinite
dlstance from the cylinder and the amplltude of the
forced oscillation we obtain

b -nKT
X, \/A2+Bz

" Between the coefficients Mg, Ny, A and B, the relation

: 2
a- T
MOA—NOB =5 F‘o

is valid.

We derive now expressions [9] for the above mentioned
quantities M,, N, and Is, Ngs for the special case of
a Lewis-form.

The multipole potential obtams the form

%o
1+a,+a,

- 27 -@2m+
{e 2ma . ae (2m+2)a

-‘(P2m(a’ 0) [ —(2m+1)a sin’ (2m+1)0 +

m sin 2mf + “omt2

sin(2m+2)0+

3a3 —-(2m+4)a_: ‘ - ,
toamiat sin (2m +4)0 | (6.2.21)

m=1,2,...

- The streamfunction becomes

1+a, +a‘3

{e—Zmu ale—(Z?'!"'z)ﬂ

Yam(, 0) = [e"“'“ D2 cos(2m+1)0 — Lo

S c0s2mb +—5 —5—

cos(2m + 2)0.'—

3a,

ey e_(—z."'“"” cos (2m +4)0}] (6.2.22)

m=1,2,...

while (6.2.4) has the form

[l//c(a =0,0)—y. (a =0, 2)] coswt + [l//s(O H—

'/’;( )] sinwt + cos wt Z pz,,,[—cos(2m+1)9—

o cos2mf  ajcos(2m+2)f
1+a,+ay| 2m 2m+2
3azcos@m+4)0) (="' (L a

2m+4 l+a,+a3 \2m 2m+2

3a; \] . . - |
- 4)]+smwtm§=lq2,,,[—cos(2m+ )o—

& cos2mb  a,cos(2m+2)0
l4a,+az ]| 2m 2m+2
3aycos2m+4)0]  E(—1)"' o a

2m+4 - 1+a,+a; 2m 2m+2°

3a; \|_ wﬁ dx
2m+4)]—(W)EM{(I—al)cos0+a3cos30}

(6.2.23)

We now eliminate dx/d¢ in the usual way.
However, in accordance with the method followed
by Tasai in his publication, (see remark at the end
of section 5.2), we shall here substitute an- expression
for dx/dt with the structure of (6.2.7).
We. define

x= xacds(wt+y)

then

d .
g = xm sin(wt+7)

= (6.2.24)

The righthand side of (6.2.23) can now be written as

( b) dxM{(l a,)cosB+aycos 30} =

=h(())(pocos:wt+-qosmwt) - (6.2.25)
where
Ho) = {a- al)cos0+a3cps30} (6.2.26)
I4+a;+a,
Xy , . RiXg
Po=— Eosiny; go = — b §ocosy

After equating in (6.2:25) the coefficients of cos wt
and sin wt successively, we obtam a_system of linear
equations for the coefficients p2m and ¢,,,




lp’c(o’ 0) _"lpc (0’ g) = DZO: fZM(-o)pZmy

40,0, (o,g) . in®am

where
150 = h©®)
é cos2mo:
fam(0) = cos(2m + 1)0 + T2, +a, { “Im +
aycos(2m+2)0  3azcos(2m+4)0 | 4+
2m+2 . 2m+-4 :
CEG=D™ f 1 ey 3ay
+ 1+a,+a; |2m 2m+2 2m+4
m=1,2,.. (6.2.28)

The values for the coefficients p,,, and g,,, can now be
determined in the usual way. -
From (6.2.25) it follows: '

dx _ gb

i 2By -{pocoswt+q,sin wt}

Hence

d%x

= % {do coswt — p, sinwir}

(6.2.29)
dtz Dy .

*According to (6.2.14) we obtain for the hydrodynamic
force in the x-direction

F= 2QBO< ) {—Ngysinwt+Mycoswt} (6.2.30)-

where
_ (1- 1)Sln0+3a3sm30 3
No= j ¢(0.6) 14+a,+a; do
3a ® n™ 1
D 1l
l+a,+a; 4 (1+a,4+as3)’
. { 1 - al - _ 3ai377‘ }('1—-(11)-[-
dam*—1 @2m+2’—1 (Q2n+4)?-1

| _1 ‘al 303 »
+ 30‘3 ) + - 2 + = 3 :
4m*=9  (2m+2)* -9  (2m+4)?—9.

M, is obtained by replacing ¢, by ¢, and p,,, by ¢;,,

inthe above-mentioned form. From:(6.2.29) and (6.2.30)

we can derive the added mass and dampmg in the
usual way:

. 0 d.9

Mg =2 BzNoPo+M0qo
¢ = —oro T T 040
Po+4s

N 20 BzMoPo Nogo
g = o0 .- 099

(6.2.31)
Po+ad :

Substitution of (6.2.10) and (5.3.2) into (6.2.17), where

in the expression for M(1, 8) and N(l, 8) we have to
substitute for ¢, the expression-(6:2:21), yields the
rolling. moment produced by the swaying motion:

, ‘
Mg = 49_‘;092 [X g sinot— Yy cos 1) (6.2.32)
where
~j2 .
Xpg= | _M_z {a,(1+a3)sin 20 —2aysin460}d0 +
-0 (I+ay+ay)
néo(aip;—asps)’ Pam(— ™!
8(1+a,+a3)®  m=1(l+a;+a;)?
{,2a1(1-|7a3) 4 8a, }
(2m+1)* -4 (2m+1)*—16,

Yy is obtained by replacing in above expression ¢, by
¢, and p,, by ¢, The added moment of inertia
and the damping moment for the rolling motion pro-
duced by swaying are now derived from (6.2.29),
(6.2.32) and (6.2.19):

lgs =4B3 PoXr+qoYr
Pot+4s
rs = 4B3 PoTR—do7R };" +‘;°X 2 (6.2.33)
(4] 4]

6.3 Added moment of inertia and damping for rolling,
added mass and damping for swaying produced
by the rolling motion

When the cylinder carries out a harmonic rolling
motion about the origin, represented by =9, cos
(wt+7), then the boundary condition on the cylinder
has the form (see figure 6.3:1)

d9 dR
=Ry 4 6.3.1)

o = RS
As can be seen from figure 6.3.1, ¢ is the angle be-
tween the tangent ‘on the contour and the velocity
along the surface, 9 the rolling angle, (positive in
clockwise direction), and R is the distance between
the origin and a point on the surface Combining
(6.3.1) with (5.2.9) yields

{l( x*(1,6)+ y*(1,0))} (6.3.2)
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I —
N\ do
. ‘ds s
j,a 9 _8n
"( Fig: 6.3.1

After integration this is reduced' to

¥(1,0) = —%,(?) {x*(1,0)+y*(1,0)} +C(r)  (6.3.3)

Substitution of 8 = m/2 gives

) =¥ ( 2) +4 (3?) B?

So we obtain for the streamfunction the e‘xpressior_l
T ds, , 2 2
T(l’a)— YiL, ) = _% d—t {x (1"0)+y (1’0)_30}
(6.3.4)
For a change we shall not eliminate d3/ds but we sub-

stitute for this quantity d9/ds =— 9, sin (wt+7) (see
remark at the end of section 5.2). Consequently

w(1,0)— T-(l, g) = 39, msin(wt+7) {x*(1,0) +
+y*(1,0)— B3}

or

% { W(1,0)— ¥ (1, g)} = %;9@{!,&(1', 9)+
+y*(1,0)— B¢}sin(wt +7).

The righthandside of the above mentioned form is
written ‘as

9(@)(po coswt + g, sinwt)

where

x*(1,0)4 y*(1,0)—B3
B%

9(0)=
_ n8,KB}
Do = 2b

n9,KB}
2b

sin'y

go = cosy (6.3.6)

(6.3.5)

Substituting (6.1.13) into (6.3.5) and equating succes-
sively the coefficients of cos wf and sin wt, we obtam
a set of linear equations for p,,, and g,,:

'ﬁé(ls 0) —'lﬁc(L,g) = Z:o PamS2m(0)

T

where
x*(1, )+ y*(1,6)— B}
fo =g(0) — ( ) yz( ) 4]
. By

X T
Jom= Wz‘m(l’ ’2‘> — ¥2m(1,0) m#0 .
From (6.3.6). it follows:

Po +‘I0 _Zb—_
So for the ratio
wave amplitude at infinity
.oscillation amplitude -of the cylinder
is found
2

b = _nKB, (6.3.8)
% 2Jpi+ql
The hydrodynamic moment becomes
‘ /2 ax 6y :
Mep=-2[p ( a6+ 7a0)%
which «can be reduced to

_ 2 _
Mg = M {X gsinwt— Yy cos wt} (6.3.9)

where X and Yg are defined in the same way as in 6.2
for the swaying motion. By means of (6.3.6) we can

- write d3/dt = — 8, w'sin (wt+7) as

(31—'3 = §,w(sin wtcosy +cos wt sin'y) =
2
_ 295 - (—qosin wt —p, cosr) (6.3.10)
an

The acceleration becomes

4’9 _2bg

o COSE+ Py sin wt)
dt Bo( 0 0




We now resolve My into a component in phase with

the velocity and a component in phase with the

acceleration. From (6.3.9) and (6.3.10) it follows

ngbBo Yrq, +P0XR

My = (—gocosmt+
n Po+qo
. , X Y,
4 posinot) — 209bB; —qoXr+PoYr
T Po+qo

(—go sinwt—p, coswt)
By imeans of (6.3.10) we may write (6.3.11) as

B4 Yrqo +‘P0XR 9— owB? bo Yp— quR9

Mg =
. , Po q P0+qo

6.3.12)

By defining the hydrodynamic moment by Mg =
—Ix8— Ng8 we find for the added moment of inertia

0B PoX g+ YRqO
Po+qo

and for the - damping

4. PoYrR—qoX R
Ng = cwB 2, 2
Pot4dq

where Xy and' Y are defined analogous to the similar
constants in (6.2.18). However, for the coefficients
Pim-and q,,, which are found in the expressions for
M and N, we substitute the values, which satisfy the
set of equations (6.3.7). -

The swaying force produced by the rolling motion
is given by

/2
Fsp=—2 | psinads (6.3.14)
0.
Substituting (6:2:13) we obtain
Fgg = —2B, j w (6.3.15)
4]

Next, we substitute for'thepressure p expression:(6.2.10)
where for the coefficients p,,, and q,,, in the expressions
for M and N the values.are substituted, which satisfy
the set of equations (6.3.7):

(Mg cosmt— N, sinwt)

@ (6.3.16)

(6.3.11).

M, = f M(1,6) =2 V(o) d¢ and
Ng = "f N(1,0) V(o)

By means of (6.3.10) the expression (6.3.16) is written

as

M0q0+N0P09 0Bl Mypo— Noqog
Po q Po+qo

Fep=— QBo
6.3.17)

The swaying force produced by the rolling motion is

defined by

d*9 'd9
Fsg=M 4 N 22
SR SR (dt ) SR!(dt)

Comparing (6.3.17) and (6.3.18) we obtain the added
mass. and damping for swaying produced by the
rolling motion:

(6.3.18)

Mg = Ba Mogo+ Nop,
Po+qo

Mypo—Noqo

(6.3.19)
Po+43

Nsr = ¢Bjw

Finally, by equating the radiated energy with the work
done by the cylinder, we :obtain

2
i
pOYR_qOXR =

; 6.3.20)

Tasai has carried out these calculations for a Lewis-

form [9]. His results can be derived from the above-

mentioned formulas, by substituting for ¢,,, and ¥,

respectively (6.2:21) and (6:2:22).
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