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Provable Privacy Advantages of Decentralized
Federated Learning via Distributed Optimization

Wenrui Yu , Qiongxiu Li , Member, IEEE, Milan Lopuhaä-Zwakenberg ,
Mads Græsbøll Christensen , Senior Member, IEEE,

and Richard Heusdens , Senior Member, IEEE

Abstract—Federated learning (FL) emerged as a paradigm
designed to improve data privacy by enabling data to reside
at its source, thus embedding privacy as a core considera-
tion in FL architectures, whether centralized or decentralized.
Contrasting with recent findings by Pasquini et al., which
suggest that decentralized FL does not empirically offer any
additional privacy or security benefits over centralized mod-
els, our study provides compelling evidence to the contrary.
We demonstrate that decentralized FL, when deploying dis-
tributed optimization, provides enhanced privacy protection -
both theoretically and empirically - compared to centralized
approaches. The challenge of quantifying privacy loss through
iterative processes has traditionally constrained the theoretical
exploration of FL protocols. We overcome this by conducting a
pioneering in-depth information-theoretical privacy analysis for
both frameworks. Our analysis, considering both eavesdropping
and passive adversary models, successfully establishes bounds on
privacy leakage. In particular, we show information theoretically
that the privacy loss in decentralized FL is upper bounded by
the loss in centralized FL. Compared to the centralized case
where local gradients of individual participants are directly
revealed, a key distinction of optimization-based decentralized
FL is that the relevant information includes differences of local
gradients over successive iterations and the aggregated sum of
different nodes’ gradients over the network. This information
complicates the adversary’s attempt to infer private data. To
bridge our theoretical insights with practical applications, we
present detailed case studies involving logistic regression and deep
neural networks. These examples demonstrate that while privacy
leakage remains comparable in simpler models, complex models
like deep neural networks exhibit lower privacy risks under
decentralized FL. Extensive numerical tests further validate that
decentralized FL is more resistant to privacy attacks, aligning
with our theoretical findings.

Index Terms—Federated learning, privacy preservation, infor-
mation theory, distribution optimization, ADMM, PDMM.
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I. INTRODUCTION

FEDERATED Learning (FL) enables collaborative model
training across multiple participants/nodes/clients without

directly sharing each node’s raw data [1]. FL can operate on
either a centralized/star topology or a decentralized topology,
as shown in Figure 1 [2]. The prevalent centralized topology
requires a central server that interacts with each and every node
individually. The main procedure of a centralized FL protocol
typically unfolds in three steps: 1) Nodes train local models
based on their own private dataset and transmit model updates,
such as gradients, to the server; 2) The server aggregates the
local models to a global model and redistributes to the nodes;
3) Nodes update the local models based on the global model
and send the model updates back to the server. The process is
iteratively repeated until convergence. However, a centralized
server is not always feasible due to its high communication
demands and the need for universal trust from all nodes. In
addition, it poses a risk of a single point of failure, making
the network vulnerable to targeted attacks. As an alternative,
decentralized FL circumvents these issues by facilitating direct
data exchanges between (locally) connected nodes, thereby
eliminating the need for a central server for model aggregation.

Decentralized FL protocols, also known as peer-to-peer
learning protocols, fall into two main categories. The first
involves average-consensus-based protocols. With these proto-
cols, instead of sending model parameters to a central server,
nodes collaborate together to perform model aggregation nodes
in a distributed manner. The aggregation is typically done by
partially averaging the local updates within a node’s neighbor-
hood. Examples of these protocols are the empirical methods
where the aggregation is done using average consensus tech-
niques such as gossiping SGD [3], D-PSGD [4], and variations
thereof [5], [6]. The second category comprises protocols
that are based on distributed optimization, referred to as
optimization-based decentralized FL. These (iterative) meth-
ods directly formulate the underlying problem as a constrained
optimization problem and employ distributed solvers like
ADMM [7], [8], [9] or PDMM [10], [11], [12] to solve them.
The constraints are formulated in such a way that, upon con-
vergence, the learned models at all nodes are identical. Hence,
there is no explicit separation between updating local models
and the update of the global model, i.e., the three steps in
centralized FL mentioned before are executed simultaneously.

Despite not directly sharing private data with servers or
nodes, FL is shown vulnerable to privacy attacks as the
exchanged information, such as gradients or weights, still
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Fig. 1. Two topologies in federated learning.

poses a risk for privacy leakage. Existing work on privacy
leakage predominantly focuses on the centralized case. A
notable example is the gradient inversion attack [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], an iterative method
for finding input data that produce a gradient similar to the
gradient generated by the private data. Such attacks are based
on the assumption that similar gradients are produced by
similar data samples.

In exploring the privacy aspects of centralized versus decen-
tralized FL, many works claim that the decentralized FL is
more privacy-preserving than centralized FL without any pri-
vacy argument [23], [24], [25]. The main idea is that sensitive
information, such as private data, model weights, and user
states, can no longer be observed or controlled through a single
server. However, recent empirical findings challenge such a
claim, particularly for average-consensus-based decentralized
FL protocols. It is shown in [26] that these protocols may
not inherently offer better privacy protections over centralized
FL, and might even increase susceptibility to privacy breaches.
For instance, it has been shown that an arbitrary colluding
client could potentially obtain the same amount of information
as a central server in centralized FL when inverting input
private data via gradients. In contrast, the privacy implications
of optimization-based decentralized FL protocols have, to the
best of our knowledge, been rarely investigated. This research
gap is partly due to the fact that analytically tracking the
privacy leakage in distributed algorithms, particularly over
multiple iterations, is very challenging. The main difficulty
lies in distinguishing and comprehending how information is
correlated between these iterations.

A. Paper Contribution

In this paper, we take the first step to perform a theoretical
privacy analysis of both centralized and decentralized FL
frameworks by analyzing the information flow within the
network. Our key contributions are summarized below:

• Analytical privacy bounds of decentralized FL: We con-
duct an information-theoretical privacy analysis of both
centralized and decentralized FL protocols, using mutual
information as a key metric. To the best of our knowledge,
this is the first information-theoretical privacy analysis in
this context. Notably, we derive two privacy bounds for
the optimization-based decentralized FL and show that its
privacy loss is upper bounded by the loss of centralized
FL (Theorem 1 in Section V). We further exemplify the
derived privacy gap through two applications, including
logistic regression and Deep Neural Networks (DNNs).

• Empirical validation through privacy attacks: For DNN
applications, we show that in the case of optimization-
based decentralized FL, gradient inversion attacks can
be applied to reconstruct the original input data, but
the reconstruction performance is degraded compared to
centralized FL due to the limited amount of informa-
tion available to the adversary. A similar trend is also
observed when evaluated using membership inference
attacks. Overall, decentralized FL employing distributed
optimization is shown to be less vulnerable to privacy
attacks compared to centralized FL, consistent with our
theoretical findings. This finding challenges the previous
belief that decentralized FL offers no privacy advantages
compared to centralized FL [26] (see Section VIII-E for
a detailed explanation).

B. Outline and Notation

The paper is organized as follows. Section II reviews nec-
essary fundamentals, and Section III introduces the involved
metrics for quantifying privacy. Section IV introduces the
optimization-based decentralized FL protocol. Section V ana-
lyzes the privacy of both centralized and decentralized FL
protocols and states the main result. Section VI analyzes
logistic regression example. Section VII, VIII analyze the
application of DNNs. Conclusions are given in Section IX.

We use bold lowercase letters to denote vectors x and bold
uppercase letters for matrices X. Calligraphic letters X denotes
sets. The ith entry of a vector x is denoted xi. The superscript
(·)ᵀ denotes matrix transposition. I is used to denote the
identity matrix of appropriate dimensions. 0 and 1 are the
all-zero and all-one vectors. ∇ denotes the gradient. The value
of the variable x at iteration t is denoted as x(t). We use ‖ · ‖
to indicate the `2-norm and ran(·) and ker(·) to denote the
range and kernel of their argument, respectively. For the sake
of notational simplicity, we represent random variables using
capital letters, regardless of whether its outcome is a scalar,
a vector, or a matrix. M(x, i) := 1{(·, x) ∈ D} is the indicator
variable showing whether x is in the dataset D.

II. PRELIMINARIES

This section reviews the necessary fundamentals for the
remainder of the paper.

A. Centralized FL

Without loss of generality, we focus on classification prob-
lems involving n nodes, each with its local dataset {(xik, `ik) :
k = 1, . . . , ni}, where xik ∈ R

v represents an input sample, `ik ∈

R is the associated label and ni is the number of input samples.
The dimension v of the data samples is application-dependent.
Collecting the xiks and `iks, we define xi = (xᵀi1, . . . , x

ᵀ
ini

)ᵀ and
`i = (`i1, . . . , `ini )

ᵀ. Let fi(wi, (xi, `i)) denote the cost function
of node i where wi ∈ R

u is the model weight to be learned from
the input dataset (xi, `i), whose dimension, again, depends on
the application. In the remainder of the paper we will omit the
(xi, `i) dependency for notational convenience when it is clear
from the context and simply write fi(wi). A typical centralized
FL protocol works as follows:
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1) Initialization: at iteration t = 0, the central server
randomly initializes the weights w(0)

i for each node.
2) Local model training: at each iteration t, each user i

first receives the model updates from the server and then
computes its local gradient, denoted as ∇ fi(w(t)

i ), using
its local data xi.

3) Model aggregation: the server collects these local gra-
dients and performs aggregation to update the global
model. The aggregation is often done by weighted
averaging and typically uniform weights are applied, i.e.,
1
n

Pn
i=1 ∇ fi(w(t)

i ). Subsequently, each node i then updates
its own model weight by

w(t+1)
i = w(t)

i −
µ

n

nP
i=1
∇ fi(w(t)

i ), (1)

where µ is a constant controlling the convergence rate.
The last two steps are repeated until the global model
converges or until a predetermined stopping criterion is
reached.

This algorithm is often referred to as the FedAvg [1].

B. Decentralized FL
Decentralized FL works for cases where a trusted central-

ized server is not available. In such cases, it works on a
so-called distributed network which is often modeled as an
undirected graph: G = (V , E), with V = {1, 2, . . . , n} represent-
ing the node set and E ⊆ V×V representing the edge set. Ni =

{ j | (i, j) ∈ E} denotes the set of neighboring nodes of node i.
In this decentralized setup, each node i can only communicate
with its neighboring nodes j ∈ Ni, facilitating peer-to-peer
communication without any centralized coordination.

1) Average Consensus-Based Approaches: The model
aggregation step requires all nodes’ local gradients. Many
decentralized FL protocols work by deploying distributed
average consensus algorithms to compute the average of local
gradients, i.e., computing 1

n

Pn
i=1 ∇ fi(w(t)

i ) in Eq. (1) with-
out any centralized coordination. Example average consensus
algorithms are gossip [27] and linear iterations [28], which
allow peer-to-peer communication over distributed networks.

The common decentralized FL often works similarly to the
FedAvg algorithm, except for the step of model aggregation.
For instance, D-PSGD [4], [29] uses gossip averaging with
neighbors to implement the aggregation, i.e.,

w(t+1)
i = w(t)

i −
µ

di

P
j∈Ni

∇ f j(w(t)
j ), (2)

where di = |Ni| is the degree of node i.
2) Distributed Optimization-Based Approaches: The goal

of optimization-based decentralized FL is to collaboratively
learn a global model, given the local datasets {(xi, `i) : i ∈ V},
without any centralized coordination. The underlying problem
can be posed as a constrained optimization problem given by

min˚
wi : i∈V

	P
i∈V

fi(wi),

subject to∀(i, j) ∈ E : Bi| jwi + B j|iw j = 0, (3)

where Bi| j and Bi| j define linear edge constraints. To ensure
all nodes share the same model at convergence (consensus

constraints) we have Bi| j = −B j|i = ±I. In the following, we
will use the convention that Bi| j = I if i < j and Bi| j = −I.

In what follows we will refer to centralized FL as CFL.
While decentralized FL encompasses both average consensus-
based and distributed optimization-based approaches (recall
Section II-B), for simplicity, we will use the abbreviation DFL
to specifically refer to the optimization-based decentralized FL
as it is our main focus. We will differentiate between the two
methods in contexts where such distinction is necessary to
avoid confusion.

3) Distributed Optimizers: Given the optimization problem
Eq. (3), many distributed optimizers, notably ADMM [30]
and PDMM [10], [11] have been proposed. From a monotone
operator theory perspective [11], [31], ADMM can be seen
as a 1

2 -averaged version of PDMM, allowing both to be
analyzed within the same theoretical framework. Due to the
averaging, ADMM is generally slower than PDMM, assuming
it converges. Both ADMM and PDMM solve the optimization
problem Eq. (3) iteratively, with the update equations for node
i given by:

w(t)
i = arg min

wi

 
fi(wi) +

P
j∈Ni

z(t)ᵀ
i| j Bi| jwi +

ρdi

2
w2

i

!
, (4)

∀ j ∈ Ni : z(t+1)
j|i = (1 − θ)z(t)

j|i + θ
�
z(t)

i| j + 2ρBi| jw(t)
i

�
, (5)

where ρ is a constant controlling the rate of convergence. The
parameter θ ∈ (0, 1] controls the operator averaging with θ = 1

2
(Peaceman-Rachford splitting) yielding ADMM and θ = 1
(Douglas-Rachford splitting) leading to PDMM. z is called
auxiliary variable having entries indicated by zi| j and z j|i, held
by node i and j, respectively, related to edge (i, j) ∈ E . Eq. (4)
updates the local variables (weights) wi, whereas Eq. (5)
represents the exchange of data in the network through the
auxiliary variables z j|i.

C. Threat Models
We consider two types of adversary models: the eaves-

dropping and the passive (also known as honest-but-curious)
adversary model. While eavesdropping can typically be
addressed through channel encryption [32], it remains a per-
tinent concern in our context. This relevance stems from the
nature of iterative algorithms, where communication channels
are utilized repeatedly, continuously encrypting each and every
message incurs high communication overhead. Therefore,
in our framework, we assume that network communication
generally occurs over non-secure channels, except for the
initial network setup phase, details of which will be discussed
later (see Section IV). The passive adversary consists of a
number of colluding nodes, referred to as corrupt nodes, which
comply with the algorithm instructions but utilize the received
information to infer the private input data of the other so-
called honest nodes. Consequently, the adversary has access to
the following information: (a) all information gathered by the
corrupt nodes, and (b) all messages transmitted over unsecured
(i.e., non-encrypted) channels.

III. PRIVACY EVALUATION

When quantifying privacy, there are mainly two types
of metrics: 1) empirical evaluation which assesses the
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susceptibility of the protocol against established privacy
attacks, and 2) information-theoretical metrics which offer a
robust theoretical framework independent of empirical attacks.
In this paper, we first evaluate privacy via an information-
theoretical metric and then deploy empirical attacks to validate
our theoretical results.

A. Information-Theoretical Privacy Metric

Among the information-theoretical metrics, popular ones
include for example 1) ε-differential privacy [33], [34] which
guarantees that the posterior guess of the adversary relating to
the private data is only slightly better (quantified by ε) than
the prior guess; 2) mutual information [35] which quantifies
statistically how much information about the private data
is revealed given the adversary’s knowledge. In this paper,
we choose mutual information as the information-theoretical
privacy metric. The main reasons are the following. Mutual
information has been proven effective in measuring privacy
losses in distributed settings [36], and has been applied
in various applications [37], [38], [39], [40], [41], [42],
[43]. Secondly, mutual information is intrinsically linked to
ε-differential privacy (see [44] for more details) and is more
feasible to realize in practice [45], [46].

1) Fundamentals of Mutual Information: Given two (dis-
crete) random variables X and Y, the mutual information
I(X; Y) between X and Y is defined as

I(X; Y) = H(X) − H(X|Y), (6)

where H(X) represents the Shannon entropy of X and H(X|Y)
is the conditional Shannon entropy, assuming they exist.1 It
follows that I(X; Y) = 0 when X and Y are independent,
indicating that Y carries no information about X. Conversely,
I(X; Y) is maximal when Y and X share a one-to-one corre-
spondence.

Denote Vh and Vc as the set of honest and corrupt nodes,
respectively. Let O denote the set of information obtained by
the adversary. Hence, the privacy loss, measured by the mutual
information between the private data xi of honest node i ∈ Vh

and the knowledge available to the adversary, is given by

I(Xi;O). (7)

In the following, we use OCFL and ODFL to denote the sets of
information that adversaries can obtain in the CFL and DFL
scenarios, respectively.

B. Empirical Evaluation via Privacy Attacks

To complement our theoretical analysis, we incorporate
empirical privacy attacks to validate our findings. In machine
learning, based on the nature of the disclosed private data,
privacy breaches typically fall into three types: membership
inference [47], [48], [49], the property inference [48], [50]
and the input reconstruction attack [51], [52], [53], [54], where
the revealed information is membership (whether a particular
data sample belongs to the training dataset or not), properties
of the input such as age and gender, and the input training

1In cases of continuous random variables we substitute both entropies by
the differential entropy, thus I(X; Y) = h(X) − h(X|Y).

data itself, respectively. Given that Eq. (7) measures how
much information about the input training data is revealed,
we align our empirical evaluation by mainly focusing on input
reconstruction attacks. In FL, the gradient inversion attack has
been extensively studied for its effectiveness in reconstructing
input samples.

1) Gradient Inversion Attack: The gradient inversion attack
typically works by iteratively refining an estimate of the private
input data to align with the observed gradients generated by
such data. For each node’s local dataset (xi, `i), the goal of
the adversary is to recover the input data (xi, `i) based on the
observed gradient. A typical setup is given by [13]:

(x′∗i , `
′∗
i ) = arg min

x′i ,`
′
i



∇ fi(wi, (x′i , `
′
i)) − ∇ fi(wi, (xi, `i))



2
, (8)

and many variants thereof are proposed [14], [15], [16], [17],
[18], [19], [20], [21], [22]. To evaluate the quality of recon-
structed inputs, we use the widely adopted structural similarity
index measure (SSIM) [55] to measure the similarity between
the reconstructed images and true inputs. The SSIM index
ranges from −1 to 1, where ±1 signifies perfect resemblance
and 0 indicates no correlation.

Analytical Label Recovery via Local Gradient: While it
appears that both the input data xi and its label `i in Eq. (8)
require reconstruction through optimization, existing work
normally assumes that the label is already known. This is
because the label can often be analytically inferred from the
shared gradients [14], [49]. The main reason is as follows.
Consider a classification task where the neural network has L
layers and is trained with cross-entropy loss. Assume ni = 1 for
simplicity (one data sample at each node). Let y = (y1, . . . , yC)
denote the outputs (logits), where yi is the score (confidence)
predicted for the ith class. With this, the cross-entropy loss
over one-hot labels is given by

fi(wi) = − log

 
ey`iP

j ey j

!
= log

�P
j ey j

�
− y`i , (9)

where log(·) denotes the natural logarithm. Let wi,L,c denote the
weights in the output layer L corresponding to output yc. The
gradient of fi(wi) with respect to wi,L,c can then be expressed
as [14]:

∇′ fi(wi,L,c) ,
∂ fi(wi)
∂wi,L,c

=
∂ fi(wi)
∂yc

∂yc

∂wi,L,c
= gcaL−1, (10)

where aL−1 is the activation at layer L−1 and gc is the gradient
of the cross entropy Eq. (9) with respect to logit c:

gc =
eycP

j ey j
− δc,`i , (11)

where δc,`i is the Kronecker-delta, defined as δc,`i = 1 when
c = `i and δc,`i = 0 otherwise. Consequently, gc < 0
for c = `i and gc > 0 otherwise. Since the activation
aL−1 is independent of the class index c, the ground-truth
label `i can be inferred from the shared gradients since
∇′ᵀ fi(wi,L,`i )∇

′ fi(wi,L,c) = g`i gc‖aL−1‖
2 < 0 for c , `i and

positive only for c = `i. When dealing with ni > 1, recovering
labels becomes more challenging, yet feasible approaches are
available. One example approach shown in [49] leverages the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 27,2025 at 15:25:32 UTC from IEEE Xplore.  Restrictions apply. 



826 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

fact that the gradient magnitude is proportional to the label
frequency in untrained models. Hence, in the centralized FL
case, label information can often be deduced from the shared
gradients thus improving both the efficiency and accuracy of
the reconstructed input x′∗i when compared to the real private
input xi [14]. While for the decentralized FL protocol, we will
show that the label information cannot be analytically com-
puted for certain cases, thereby inevitably decreasing both the
efficiency and reconstruction quality (see details in Remark 4).

2) Membership Inference Attack: The goal of membership
inference attacks is to determine whether a specific data
sample is part of the training set of a particular model. We
deployed the gradient-based membership inference attacks
proposed in [56] which are tailored for FL and have demon-
strated superior performance compared to prior approaches
such as the so-called loss-based [57] and modified entropy-
based approaches [58]. The gradient-based approach uses
cosine similarity between model updates and instance gradi-
ents, expressed as follows:

M
�
x′, i

�
=
P
l′∈R

1
˚
cosim

�
∇fi(wi, (x′, l′)),∇fi(wi, (xi, `i))

�
≥ γ

	
.

The latter one uses the indicator shown as

M
�
x′, i

�
= 1

˚
‖∇ fi (wi, (xi, `i))‖22

−






∇ fi (wi, (xi, `i)) −
X
l∈R

∇ fi (wi, (xi, `i))







2

2

> 0

9=; .
The corresponding results are presented in Section VIII-C
and VIII-D.

IV. DFL USING DISTRIBUTED OPTIMIZERS

This section introduces distributed solvers considered in this
work, explains pivotal convergence properties relevant to sub-
sequent privacy analyses, and gives details of the decentralized
protocol using distributed optimization techniques.

A. Differential A/PDMM

The optimality condition for Eq. (4) is given by2

0 = ∇ fi(w(t)
i ) +

P
j∈Ni

Bi| jz
(t)
i| j + ρdiw(t)

i . (12)

Given that the adversary can eavesdrop all communication
channels, by inspection of Eq. (12), transmitting the aux-
iliary variables z j|i would expose the gradient ∇ fi(w(t)

i ), as
weight w(t)

i can be determined from Eq. (5). Encrypting z(t)
j|i

at every iteration would address this, albeit at prohibitive
computational expenses. To circumvent this, only initial values
z(0)

j|i are securely transmitted and ∆z(t+1)
j|i = z(t+1)

j|i − z(t)
j|i being

unencrypted in subsequent iterations [59], [60]. Consequently,
upon receiving ∆z(t+1)

j|i , z(t+1)
j|i is reconstructed as

z(t+1)
j|i = z(t)

j|i + ∆z(t+1)
j|i =

t+1P
τ=1

∆z(τ)
j|i + z(0)

j|i . (13)

2Note that ADMM can also be applied to non-differentiable problems where
the optimality condition can be expressed in terms of subdifferentials: 0 ∈
∂ fi(w(t)

i ) +
P

j∈Ni
Bi| jz

(t)
i| j + ρdiw(t)

i .

Let tmax denote the maximum number of iteration and denote
T = {0, 1, . . . , tmax}. Hence, eavesdropping only uncovers˚

∆z(t+1)
j|i : (i, j) ∈ E , t ∈ T

	
, (14)

and z(t+1)
j|i remains undisclosed unless z(0)

j|i is known.

B. DFL Using Differential A/PDMM

ADMM is guaranteed to converge to the optimal solution for
arbitrary convex, closed and proper (CCP) objective functions
fi, whereas PDMM will converge in the case of differentiable
and strongly convex functions [11]. Recently, it has been
shown that these solvers are also effective when applied
to non-convex problems like training DNNs [12]. Note that
for complex non-linear applications such as training DNNs,
although exact solutions of Eq. (4) are usually unavailable,
convergence analysis of approximated solutions has been
extensively investigated. For instance, it is shown in [12]
that PDMM, using quadratic approximations, achieves good
performance for non-convex tasks such as training DNNs.
Moreover, convergence guarantees with quantized variable
transmissions are investigated in [61].

Details of DFL using differential A/PDMM solvers are
summarized in Algorithm 1. Note that at the initialization it
requires that each node randomly initialize z(0)

i| j from indepen-
dent distributions having variance σ2

Z and sends it to neighbor
j ∈ Ni via secure channels, also referred to as the subspace
perturbation technique [60], [62]. The core concept involves
introducing noise into the auxiliary variable z to obscure
private data from potential exposure, while the convergence
of w is not affected. To explain this idea, consider Eq. (5) in
a compact form:

z(t+1) = (1 − θ)z(t) + θ
�
Pz(t) + 2cPCw(t)� , (15)

where C = [B>+, B
>
− ]> and B+ and B− contains the positive

and negative entries of B, respectively. Additionally, P is
a permutation matrix that interchanges the upper half rows
and lower half rows of the matrix it multiplies, leading to
PC = [B>− , B

>
+]>. Denote Ψ = ran(C)+ran(PC), its orthogonal

complement is denoted by Ψ⊥ = ker(C>)∩ker((PC)>). Let ΠΨ

represent the orthogonal projection. We can then decompose
z into components within Ψ and Ψ⊥ as z(t) = z(t)

Ψ + z(t)
Ψ⊥ . Note

that the component z(t)
Ψ⊥ is not null, requiring that the number

of edges should be no smaller than the number of nodes. This
condition is, however, not met in CFL with a star topology.
Thus even though we deploy ADMM or PDMM for CFL, it
would not give any privacy benefit.

It has been proven in [59] that

z(t)
Ψ⊥ =

1
2

�
z(0)
Ψ⊥ + Pz(0)

Ψ⊥

�
+

1
2

(1 − 2θ)t
�

z(0)
Ψ⊥ − Pz(0)

Ψ⊥

�
.

Thus, for a given graph structure and θ, z(t)
Ψ⊥ depends solely on

the initialization of the auxiliary variable z(0). Consequently, if
z(0)

i| j is not known by the adversary, so does z(t)
i| j for subsequent

iterations. This is key that privacy advantages can be provided
when compared to centralized FL (in Remark 1 we will ana-
lyze the privacy loss for CFL when applying a similar trick).
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Algorithm 1 Decentralized FL via A/PDMM

Each node i randomly initializes z(0)
i| j from independent

distributions having variance σ2
Z and sends to neighbor

j ∈ Ni via secure channels.
for t = 0, 1, . . . do

for each node i ∈ V in parallel do
w(t)

i =

arg min
wi

( fi
�
wi
�
+
P
j∈Ni

z(t)>
i| j Bi| jwi +

ρdi

2
w2

i )

for each j ∈ Ni do
z(t+1)

j|i = (1 − θ)z(t)
j|i + θ

�
z(t)

i| j + 2ρBi| jw(t)
i

�
∆z(t+1)

j|i = z(t+1)
j|i − z(t)

j|i
end for

end for
for each i ∈ V , j ∈ Ni do

Node j ← Nodei(∆z(t+1)
j|i )

end for
for each i ∈ V , j ∈ Ni do

z(t+1)
j|i = z(t)

j|i + ∆z(t+1)
j|i

end for
end for

V. PRIVACY ANALYSIS

In this section, we conduct the comparative analysis of
privacy loss in both CFL and DFL protocols, specifically
focusing on the FedAvg algorithm and the decentralized
approach introduced in Algorithm 1. For simplicity, we will
primarily consider the case θ = 1, i.e., PDMM, but the results
can be readily extended to arbitrary θ ∈ (0, 1].

A. Privacy Loss of CFL

In CFL, the transmitted messages include the initial model
weights w(0)

j , and the local gradients ∇ f j(w(t)
j ) at all iterations

t ∈ T of all nodes j ∈ V . Hence, by inspection of Eq. (1), we
conclude that knowledge of local gradients and initial weights
w(0)

j is sufficient to compute all updated model weights w(t)
j

at every t ∈ T . Hence, the eavesdropping adversary has the
following knowledge

{∇ f j(w(t)
j ),w(t)

j } j∈V ,t∈T . (16)

The passive adversary, on the other hand, has the following
knowledge

{x j,w(t)
j ,∇ f j(w(t)

j )} j∈Vc,t∈T . (17)

Combining both sets, the privacy loss, quantified by the mutual
information between the private data xi and the knowledge
available to the adversary (as in Eq. (7)), is given by

I(Xi;OCFL)

= I(Xi; {X j} j∈Vc , {∇ f j(W
(t)
j ),W (t)

j } j∈V ,t∈T ). (18)

Remark 1: We could securely transmit the initialized model
weights w(0)

j in CFL, analogous to the initial auxiliary variable
z(0)

j|i in DFL. However, such secure transmission would not
reduce the privacy loss in Eq. (18). The main reason is
that at convergence all local models will be identical, i.e.,
w(tmax)

j = w(tmax)
k for ( j, k) ∈ E . Thus, as long as there is one

corrupt node, the passive adversary has knowledge of all
w(tmax)

j s. By inspecting Eq. (1) we can see that the difference
w(t+1)

j − w(t)
j at every iteration is known, and thus w(0)

j for all
j ∈ V .

B. Privacy Loss of DFL

By inspection of Algorithm 1, the eavesdropping adversary
can intercept all messages transmitted along non-secure chan-
nels, thus having access to:

{∆z(t+1)
j|k }( j,k)∈E ,t∈T . (19)

For any edge in the network, the transmitted information will
be known by the passive adversary as long as one end node
is corrupt. Accordingly, we define Eh = {( j, k) ∈ Vh × Vh},
Ec = E \Eh as the set of honest and corrupt edges, respectively.
Given that the passive adversary can collect all information
obtained by the corrupt nodes, by inspecting Algorithm 1 it
thus has the knowledge of {x j} j∈Vc ∪ {z

(0)
j|k ,∆z(t+1)

j|k }( j,k)∈Ec,t∈T .
Combining this with the eavesdropping knowledge in Eq. (19)
we conclude that the adversary has the following knowledge:

{x j} j∈Vc ∪ {z
(0)
j|k }( j,k)∈Ec ∪ {∆z(t+1)

j|k }( j,k)∈E ,t∈T .

The information loss of an honest node i ∈ Vh’s private data
is thus given by

I(Xi;ODFL)

= I(Xi; {X j} j∈Vc , {Z
(0)
j|k }( j,k)∈Ec , {∆Z(t+1)

j|k }( j,k)∈E ,t∈T ), (20)

We first give some initial results on the information that can
be deduced by the adversary.

Proposition 1: Let Gh = (Vh, Eh) be the subgraph of G
after eliminating all corrupt nodes. Let Gh,1, . . . ,Gh,kh denote
the components of Gh and let Vh,k be the vertex set of Gh,k.
Without loss of generality, assume the honest nodes i belong
to the first honest component, i.e., i ∈ Vh,1. The adversary has
the following knowledge about node i ∈ Vh,1:

i) Noisy local gradients:

∀t ∈ T : ∇ fi(w(t)
i ) +

P
k∈Ni,h

Bi|kz(0)
i|k (21)

ii) Difference of local gradients:

∀t ∈ T : ∇ fi(w(t+1)
i ) − ∇ fi(w(t)

i ), (22)

iii) The aggregated sum of local gradients in honest com-
ponent Gh,1:

∀t ∈ T :
X
j∈Vh,1

∇ f j(w(t)
j ). (23)

Proof: See Appendix A. �

By inspecting Eq. (23), the sum of gradients reveals less
information than the local gradient itself in contrast to the CFL
case. We now proceed to present the main result of this paper.
In particular, we will show that the information loss of DFL is
dependent on the variance of initialized z(0), i.e., σ2

Z . Notably,
in the special case where σ2

Z = 0, all local gradients will
be exposed similar to the case of centralized FL. In contrast,
when σ2

Z approaches infinity, the term Eq. (21) contains
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no information about the private data or the local gradient,
theoretically leading to I(Xi;∇ fi(W

(t)
i ) +

P
k∈Ni,h

Bi|kZ(0)
i|k ) = 0.

More specifically, we have the following privacy bounds.
Theorem 1 (Privacy bounds of DFL): We have

I(Xi;OCFL)
(a)
≥ I(Xi;ODFL)

= I
�
Xi; {X j} j∈Vc , {Z

(0)
j|k }( j,k)∈Ec , {W

(t)
j } j∈V ,t∈T ,

{∇ f j(W
(t)
j )} j∈Vc,t∈T , {Z

(0)
j|k − Z(0)

k| j }( j,k)∈Eh ,(
∇ f j(W

(t)
j ) +

P
k∈N j,h

B j|kZ(0)
j|k

)
j∈Vh,t∈T

�
(24)

(b)
≥ I

�
Xi; {X j} j∈Vc , {W

(t)
j } j∈V ,t∈T , {∇ f j(W

(t)
j )} j∈Vc,t∈T ,

{∇ f j(W
(t+1)
j ) − ∇ f j(W

(t)
j )} j∈Vh,t∈T ,( P

j∈Vh,l

∇ f j(W
(t)
j )

)
1≤l≤kh,t∈T

�
, (25)

where we have equality in (a) if σ2
Z = 0, and equality in (b)

if σ2
Z → ∞.

Proof: See Appendix B. �
Hence, by inspecting the lower bound we can see

that except for the knowledge of the corrupt nodes,
i.e.,{x j} j∈Vc , {w

(t)
j } j∈Vc,t∈T , { f j(w(t)

j )} j∈Vc,t∈T , the revealed infor-
mation includes the model weights of all honest nodes
{w(t)

j } j∈Vh,t∈T , gradient differences of each honest node over
successive iterations {∇ f j(w(t+1)

j )−∇ f j(w(t)
j )} j∈Vh,t∈T (note that

∪1≤l≤khVh,l = Vh), and the sum of local gradients of the honest
nodes {

P
j∈Vh,l
∇ f j(w(t)

j )}1≤l≤kh,t∈T in each component.
Regarding the feasibility of the lower bound, we have the

following remark.
Remark 2: It might seem impractical that the lower bound in

Theorem 1 requires that the variance σ2
Z approaches infinity.

For practical applications, however, like DNNs, a relatively
small variance is already sufficient to make the leaked infor-
mation in the noisy gradients negligible compared to gradient
differences Eq. (22) and the gradient sum Eq. (23) (we will
verify this claim in Section VII-C).

C. Privacy Gap Between CFL and DFL

Theorem 1 shows that the privacy loss in DFL is either
less than or equal to that in CFL. This naturally leads to
key questions: under what circumstances does this equality or
inequality hold? To analyze the privacy gap we have the fol-
lowing result, showing that the privacy gap between DFL and
CFL is dependent on how much more information about the
private data Xi can the local gradients reveal given the knowl-
edge of DFL, e.g., gradient differences and the gradient sum.

Corollary 1: Privacy gap between CFL and DFL If the
lower bound Eq. (25) is achieved, for an honest node i ∈ Vh’s
private data, the privacy gap between CFL and DFL is given
by

I(Xi;OCFL) − I(Xi;ODFL)

= I
�
Xi; {∇ f j(W

(t)
j )} j∈Vh,t∈T |{X j} j∈Vc , {W

(t)
j } j∈V ,t∈T ,

{∇ f j(W
(t+1)
j ) − ∇ f j(W

(t)
j )} j∈Vh,t∈T ,

( P
j∈Vh,l

∇ f j(W
(t)
j )

)
1≤l≤kh,t∈T

�
(26)

Proof: See Appendix D. �
Remark 3: The privacy gap, as defined in Eq. (26),

depends on the number of corrupt nodes and narrows
notably in the extreme case where only one honest node
remains. By inspecting Eq. (26), we can see that the pri-
vacy gap is intrinsically linked to the sum of gradients
from honest nodes within each honest component, specifically,
{
P

j∈Vh,l
∇ f j(W

(t)
j )}1≤l≤kh,t∈T . As the number of honest nodes

diminishes, the specificity of information conveyed by indi-
vidual node gradients increases, consequently reducing the
privacy gap. In the most extreme scenario, where only one
node is honest, i.e., Vh = {i}, the privacy gap reduces to zero
since Eq. (26) = I

�
Xi; {∇ fi(W

(t)
i )}t∈T |{∇ fi(W

(t)
i )}t∈T

�
= 0.

In the following sections, we delve into two distinct cases
to further investigate the privacy gap. First, we examine a
straightforward logistic regression example, where it’s possible
to analytically calculate the privacy loss. In this instance, we
find no discernible privacy gap. Next, we shift our focus to
a more conventional application within FL: DNNs. Through
extensive empirical analysis, we observe a notable privacy
gap between CFL and DFL. This gap highlights DFL’s
reduced susceptibility to privacy attacks when compared to
CFL. The code for this project is available on GitHub at
https://github.com/Wenrui-Yu/DFL-and-Privacy

VI. LOGISTIC REGRESSION

Logistic regression is widely adopted in various applications
and serves as a fundamental building block for complex
applications. We will first give analytical derivations and then
demonstrate numerical results.

A. Theoretical Analysis

Consider a logistic model with model parameters wi ∈ R
v

(weights) and bi ∈ R (bias) where each node has a local dataset
{(xik, `ik) : k = 1, . . . , ni}, where xik ∈ R

v is an input sample,
`ik ∈ {0, 1} is the associated label. In addition, let yik = wT

i xik+
bi denote the output of the model given the input xik. Note that
the bias term can be included in the weight vector. Here we
explicitly separate the bias from the true network weights as it
will lead to more insight into how to reconstruct the input data
from the observed gradient information. Correspondingly, zi| j

is also separated into zw,i| j and zb,i| j. With this, the loss (log-
likelihood) function has the form

fi(wi, bi) = −
niP

k=1

�
`ik log

1
1 + e−yik

+ (1 − `ik) log
e−yik

1 + e−yik

�
. (27)

With this, Eq. (22) becomes

∂ fi
∂wi

(t+1)

−
∂ fi
∂wi

(t)

=
niP

k=1

�
1

1 + e−y(t+1)
ik

−
1

1 + e−y(t)
ik

�
xik

= −
P
j∈Ni

Bi| j∆z(t)
w,i| j + ρdi

�
w(t)

i − w(t+1)
i

�
, (28)
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Fig. 2. Privacy comparisons of centralized and decentralized logistic regres-
sion. (a) Training loss and (b) Reconstruction error of input data as a function
of iteration number (t) using CFL (blue color) and DFL (red color).

and

∂ fi
∂bi

(t+1)

−
∂ fi
∂bi

(t)

=
niP

k=1

�
1

1 + e−y(t+1)
ik

−
1

1 + e−y(t)
ik

�
= −

P
j∈Ni

Bi| j∆z(t)
b,i| j + ρdi

�
b(t)

i − b(t+1)
i

�
, (29)

where all terms in the RHS are known by the adversary as the
differences of the local model w(t+1)

i − w(t)
i can be determined

from ∆z(t+1)
j|i − ∆z(t)

i| j by considering two successive z updates
of Eq. (5). As a special case where ni = 1, Eq. (28) is just a
scaled version of xik where the scaling is given by Eq. (29).
Hence, with gradient difference, we can analytically compute
xik as

xik =
−
P

j∈Ni
Bi| j∆z(t)

w,i| j + ρdi
�
w(t)

i − w(t+1)
i

�
−
P

j∈Ni
Bi| j∆z(t)

b,i| j + ρdi
�
b(t)

i − b(t+1)
i

� .
Hence, in this case, one gradient difference at an arbitrary
iteration is sufficient to reveal all information about the private
data, i.e., I(Xi;∇ f j(W

(t+1)
j ) − ∇ f j(W

(t)
j )) = I(Xi; Xi) which is

maximum. Thus, there is no privacy gap between CFL and
DFL, i.e., Eq. (26) = 0. For the case of ni > 1, the input xik

can also be reconstructed by searching for solutions that fit for
given observations, i.e., Eq. (28) and Eq.(29) across iterations.

B. Convergence Behavior

To validate the theory presented above, we consider a
toy example of a random geometric graph of n = 60 nodes
randomly distributed in the unit cube having a communication
radius r =

p
2 log n/n to ensure connectivity with high

probability [63]. Detailed settings can be found in the
Appendix E. In Figure 2(a) we demonstrate the convergence
performances of both centralized and decentralized protocols,
i.e., the loss Eq. (27), averaged over all nodes, as a function
of the iteration t. We can see that both methods have a similar
convergence rate.

C. Privacy Gap Between CFL and DFL

To evaluate the performance of input reconstruction, we
define the reconstruction error as the average Euclidean dis-
tance between the reconstructed samples, denoted as x̂ik, and
the original data samples xik given by 1

n

Pn
i=1 ‖x̂ik − xik‖2.

The corresponding errors are plotted as a function of iteration
number in Figure 2(b). We can see that, the reconstruction

Fig. 3. (a) Averaged SSIM of reconstructed inputs by inverting noisy
gradients, gradient differences, and the gradient sum (blue lines) and test
accuracy (red line) for different variances of initialized auxiliary variable z(0):
σ2

Z = 0, 10−8, 10−7, 2.5 × 10−7, 10−6, 10−5, 2.5 × 10−5 and 10−4. (b) Sample
examples of reconstructed inputs for each case.

Fig. 4. Performance of reconstructed inputs via inverting gradients (CFL)
and gradient differences (DFL) in terms of iterations t: (a) Averaged SSIM
(solid lines) of all reconstructed inputs along with the corresponding standard
derivation (shadows), (b) sample examples of reconstructed inputs at iteration
number t = 1, 100, . . . , 900.

error of DFL, using gradient differences, has the same level of
error as the CFL case across all iterations. Hence, we conclude
that for the logistic regression example, there is no privacy gap
between CFL and DFL, i.e., Eq. (26) = 0, aligning with our
theoretical result.

VII. DEEP NEURAL NETWORKS I: CONVERGENCE AND
GRADIENT INVERSION ATTACKS

For DNNs, it is challenging to give an analytical analysis
like the above logistic regression example. We resort to empiri-
cal assessments of privacy leakage through privacy attacks. As
we shall see, the empirical evaluation results are consistent
with our theoretical claims.

A. Convergence Behavior

To test the performance of the introduced DFL protocol,
we make comparison between the training process of CFL
and DFL. The detailed settings and results are shown in
Appendix E. Notably, the performance of the decentralized
protocol closely aligns with that of the centralized approach.
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Fig. 5. Performance comparisons of CFL and DFL via inverting inputs from gradient differences: (a) Samples images of ground truth and reconstructed inputs,
(b) SSIM comparisons of all reconstructed inputs for different batch size ni = 1, 2, 4, 8 using two datasets MNIST (top) and CIFAR-10 (bottom), respectively.

This aligns with previous research findings [12], which sug-
gests that decentralized protocols perform comparably to
centralized ones, particularly in scenarios with independently
and identically distributed data. The subsequent section will
focus on evaluating their privacy via gradient inversion attack
and membership inference attack, highlighting the privacy
advantages inherent in DFL.

B. Gradient Inversion Attack in DFL

Gradient inversion attacks, which aim to reconstruct data
from gradients, are applied here to assess vulnerabilities in
the model. Recall that in Proposition 1 we identified three
types of information directly related to the honest node’s
local gradient: noisy gradients Eq. (21), gradient differences
Eq. (22), and the gradient sum Eq. (23). Similar to the
traditional gradient inversion attack described in Eq. (8), inputs
can be inverted from them as well. As an example with the
gradient sum Eq. (23) the corresponding optimization problem
can be formulated as

{(x′∗i , `
′∗
i )}i∈Vh = arg min

x′i ,`
′
i



 P
i∈Vh,1

∇ fi(w(t)
i , (x′i , `

′
i))

−
P

i∈Vh,1

∇ fi(w(t)
i , (xi, `i))



2
, (30)

Although the gradient inversion attack in the decentralized
case looks similar to the traditional centralized case, there are
some important differences, in particular with respect to label
recovery and fidelity of reconstructed inputs, discussed in the
following remarks.

Remark 4: Analytical label recovery is no longer applicable
given gradient differences Eq. (22). With gradient differences,
Eq. (10) explained in Section III-B.1 becomes

∇ f (w(t)
i,L,c) − ∇ f (w(t+1)

i,L,c ) = g(t)
c a(t)

L−1 − g(t+1)
c a(t+1)

L−1

=

0@ ey(t)
cP

j ey(t)
j

− δc,`i

1A a(t)
L−1 −

0@ ey(t+1)
cP

j ey(t+1)
j

− δc,`i

1A a(t+1)
L−1 .

Hence, if c , `i, then both g(t)
c < 0 and g(t+1)

c < 0 so that we
cannot use the sign information of gc to recover the correct
label. Therefore, the adversary needs to consider all labels to
find out the best fit, which inevitably increases the computation
overhead and degrades the fidelity of the reconstructed inputs
(see Section VIII-A.1 for numerical validations).

Remark 5: Bigger component size |Vh,1| in the gradient sum
Eq. (23) will make it more challenging to invert inputs. This
is due to the fact that Eq. (23) is related to all data samples
of all honest nodes in Vh,1, thus inverting input from Eq. (30)
is analogous to increase the batchsize or the total number
of data samples in Eq. (8) of the centralized case. It has
been empirically shown in many works [13], [15], [16] that
increasing batchsize will degrade the fidelity of reconstructed
inputs severely. We will validate this result in Section VIII-A.2.

C. Optimum Attack Strategy

To test the performance of gradient inversion attack, we
consider a random geometric graph with n = 50 nodes. Each
node randomly selects ni data samples from the corresponding
dataset and uses a two-layer multilayer perceptron (MLP)
to train the local model. For simplicity, in the following
experiments, we set ni = 2, unless otherwise specified. We use
the approach proposed in DLG [13] to conduct the gradient
inversion attack (see Appendix F for results of using the cosine
similarity-based approach proposed in [15]).

1) Noisy Gradients vs. Gradient Differences vs. The Gra-
dient Sum: As highlighted in Remark 2, the noisy gradient
term vanishes in the lower bound Eq. (25) if the variance
σ2

Z → ∞. This raises an important question: in practice how
large should σ2

Z be to ensure that the effectiveness of recon-
structing inputs from noisy gradients is inferior to that of other
variables, namely gradient differences and the gradient sum.
To investigate this, Figure 3(a) presents a comparative analysis
of input reconstruction performances using noisy gradients,
gradient differences, and the gradient sum (considering two
honest nodes in the component, i.e., |Vh,1| = 2), along with
the test accuracies of learn models for different choices using
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Fig. 6. Performance comparisons of CFL and DFL via inverting inputs from the gradient sum: (a) Sample images of ground truth and reconstructed inputs,
(b) SSIM of all reconstructed samples for three different sizes of honest component |Vh,1 | = 2, 4, 8 using two datasets MNIST (top) and CIFAR-10 (bottom),
respectively. Wherein the red box indicates that the corresponding samples are from the same component.

Fig. 7. Membership inference attack results comparisons of CFL and DFL
with gradient sum using the gradient-based approach [56].

the MNIST dataset. The results indicate that, without loss of
test performance, the effectiveness of inverting inputs from
noisy gradient degrades very fast as σ2

Z increases, performing
worse than inverting inputs using gradient differences and the
gradient sum even at a very low variance of σ2

Z = 10−5. This
is further illustrated in plot (b) where the ground truth digit
8 can hardly be recognized when inverting noisy gradient for
variance σ2

Z ≥ 10−5. This suggests that in practical scenarios,
a small variance σ2

Z is sufficient to ensure the lower bound
is attached. As a consequence, in what follows we will
evaluate the reconstruction performances via inverting gradient
differences and the gradient sum for the case of DFL.

2) Optimum Attack Iteration: Given that both CFL and
DFL protocols are iterative processes consisting of numerous
iterations, in principle the gradient inversion attack can deploy
all iterations’ information for inverting the input samples. To
identify the most effective attack strategy for such an attack,
we first explore which iteration yields the most effective results
for the gradient inversion attack. In Figure 4(a) we demonstrate
the attack performance, quantified by the averaged SSIM of
all reconstructed samples (illustrated by solid lines) along
with their standard derivation (shown as shadows) of CFL
and DFL using gradient differences as a function of iteration
number t using the MNIST dataset. We can see that the
SSIM of the centralized case consistently surpasses those
in the decentralized case throughout all iterations. Unlike
the centralized case where the reconstruction performance
remains relatively stable across iterations, the reconstruction

Fig. 8. Performance comparisons of CFL and DFL in terms of the portion
of corrupted nodes.

Fig. 9. Performance comparisons of CFL and DFL in terms of the portion
of corrupted nodes via membership inference attacks.

performances of the decentralized case degrade significantly
in later iterations. This trend aligns with the expectation that
gradient differences will approach zero at convergence thereby
containing very little information.

To visualize this phenomenon, Figure 4(b) displays illus-
trative examples of both cases at every 100 iterations. The
SSIM results are in agreement with these visual examples;
for instance, in the later iterations of the decentralized case,
the ground truth digit 9 can hardly be recognized. Hence, the
effectiveness of gradient inversion attacks is more pronounced
in the initial iterations. Note that for both CFL and DFL we
observe a slightly better performance at the early stage. This
might be due to the fact that at early iterations the local models
contain more information about the local datasets while at later
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Fig. 10. Training loss and test accuracy in terms of iteration number of both CFL and DFL for two datasets: (a) LeNet (MNIST); (b) LeNet (CIFAR-10);
(c) VGG-11 (CIFAR-10).

Fig. 11. Performance comparisons of CFL and DFL via a combination strategy using MNIST dataset: SSIM of all reconstructed samples of CFL and DFL
by combining gradient differences with the gradient sum for three different sizes of honest component |Vh,1 | = 2, 4, 8 ((a)-(c), respectively).

Fig. 12. Reconstructed inputs in CFL and DFL using cosine similarity based gradient inversion attack [15] with (a)VGG-11 and (b)AlexNet architecture and
three datasets (CIFAR-10, CIFAR-100 and tiny ImageNet). Label information in DFL is assumed to be known.

iterations the models are more fitted to the global dataset. For
this reason, for the forthcoming Figure 5 and 6, we will focus
on exploiting gradients from early iterations to execute the
gradient inversion attacks.

VIII. DEEP NEURAL NETWORKS II: PRIVACY GAP

We now evaluate the privacy gap between CFL and DFL
using different settings and privacy attacks.

A. Evaluating the Privacy Gap Between CFL and DFL
Using Gradient Inversion Attack

1) Inverting Gradient Differences Eq. (22): In Remark 4
we showed that using gradient differences labels cannot be
analytically computed, unlike in CFL. To assess the impacts
of this on the performance of input reconstructions, Figure 5(a)

showcases examples of reconstructed inputs for both the
MNIST and CIFAR-10 dataset for four different batch-sizes,
i.e., ni = 1, 2, 4, 8. Notable disparities exist in the reconstructed
samples of CFL and DFL cases. More specifically, compared
to the centralized case, reconstructing inputs via gradient
differences is less efficient and yields lower quality. The
inefficiency is due to the fact that the adversary needs to
iterate through all possible labels to identify the best fit.
Furthermore, the quality is compromised due to the inherently
reduced information in gradient differences compared to the
full gradients. To evaluate the quality of reconstructed inputs,
we chose the best-fit samples among iterated inputs for each
batch and computed their averaged SSIM. The comparison
results are presented in Figure 5(b), illustrating the quality of
reconstructed inputs of CFL are consistently better than that
in DFL for all batchsizes ni. This comparison underlines the
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Fig. 13. Performance comparisons of CFL and DFL via inverting inputs from gradient differences using cosine similarity based gradient inversion attack [15]:
(a) Samples images of ground truth and reconstructed inputs, (b) SSIM comparisons of all reconstructed inputs for different batch size ni = 1, 2, 4, 8, respectively.

Fig. 14. Performance comparisons of CFL and DFL via inverting inputs from gradient sums using cosine similarity based gradient inversion attack [15]:
(a) Samples images of ground truth and reconstructed inputs, (b) SSIM of all reconstructed samples for three different sizes of honest component |Vh,1 | = 2, 4, 8,
respectively.

inherent challenges in reconstructing high-quality inputs from
gradient differences in DFL.

2) Inverting the Gradient Sum Eq. (23): When inverting
inputs from the gradient sum, it is intuitive that the accuracy
of reconstructed inputs tends to diminish as the size of the
honest component |Vh,1| increases, analogous to the situation
of increasing batchsize. This relationship is clearly illustrated
in Figure 6 for the MNIST dataset, showing a direct correlation
between the size of the honest component and the precision
of the reconstructed inputs. It is important to note that while
obtaining label information becomes more challenging in DFL
(given the gradient sum), in this comparison we assume that
the label information is known a prior for both CFL and
DFL. However, even with this assumption, the reconstruction
performances of DFL are still notably inferior to that of CFL.

3) Combining Both Gradient Differences and the Gradi-
ent Sum: Since both gradient differences and the gradient

sum are available in DFL, one natural question to ask is
if combining them together will improve the attack perfor-
mances. We demonstrate the comparison results in Figure 11 in
Appendix F, showing the SSIM of reconstructed inputs of CFL
and DFL across varying iteration numbers for three different
sizes. The results suggest that combining gradient differences
and gradient sum does not amplify the reconstruction perfor-
mances. Still, the attack performances of CFL are in general
better than DFL, consistently across all iterations.

B. Evaluating Privacy Gap With Additional Gradient
Inversion Attacks, Model Architectures and Datasets

In addition to the MNIST and CIFAR-10 dataset and
MLP network, we further evaluated the privacy gap using
two additional datasets (CIFAR-100 and Tiny ImageNet),
two additional model architectures (VGG-11 and AlexNet),
and two additional gradient inversion attacks: the cosine
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Fig. 15. Reconstructed inputs of CIFAR-10 dataset in CFL and DFL via generative model-based gradient inversion attack [64] with (a)VGG-11 and (b)AlexNet.
Label information in DFL is assumed to be known.

similarity-based method proposed in [15] (see Figure 12,
Figure 13 and Figure 14) and the generative model-based
method proposed in [64] (see Figure 15). The results indicate
that the performance of DFL is generally lower than that
of CFL, which aligns with the findings using DLG [13], as
shown in Figure 5 and Figure 6. These results corroborate our
theoretical analysis and suggest that the gap between CFL and
DFL is consistent across different gradient inversion attacks,
datasets, and model architectures.

C. Evaluating Privacy Gap Using Membership Inference
Attacks

Apart from gradient inversion attacks, it is also interesting
to see if there is a privacy gap between CFL and DFL when
evaluated using membership inference attacks (MIAs). Recall
that MIAs aim to test whether specific data points were used in
training. The attack results and detailed experimental settings
are demonstrated in Figure 7. Similar to the case of using
gradient inversion attacks, we can see that CFL leaks more
membership information compared to DFL.

D. Privacy Gap Reduces With More Corrupt Nodes

We now validate the result presented in Remark 3. As shown
in Figure 8 when using MNIST datasets, the privacy gap
between CFL and DFL predictably narrows as the number of
corrupt nodes increases when using gradient inversion attacks.
Notably, in the case where there is only a single honest
node, the attack performance in DFL converges with that
of CFL, effectively closing the privacy gap. As for the case
of using membership inference attacks, we observe a similar
tendency (see Figure 9). Hence, these results are consistent
with our theoretical findings in Remark 3, thereby confirming
the validity of our analytical approach.

Overall, we conclude that compared to the CFL case, the
DFL protocol is less vulnerable to privacy attacks including
gradient inversion attacks and membership inference attacks.

E. Related Work

The recent work [26] highlights that prior comparisons
between the privacy implications of CFL and DFL either lack

empirical evidence or fail to comprehensively explore privacy
arguments. Consequently, [26] stands as the only direct and
relevant benchmark for our analysis, which contends that DFL
offers no privacy advantages over CFL. However, our study
provides a new perspective and challenges this conclusion.
We hypothesize that these discrepancies may be attributed to
the following factors:

1) Decentralization Techniques: The decentralization
techniques employed are significantly different. While
[26] utilizes average consensus-based decentralization
methods (refer to Section II-B.1), our study focuses on
distributed optimization techniques (see Section II-B.2).
The former approach separates local and global model
updates similar to CFL, whereas the latter integrates
these updates into a joint optimization process.

2) Threat Models: [26] examines both passive and active
adversary models. In contrast, our study considers
eavesdropping and passive adversary models, offering
a different perspective on potential security risks.

3) Theoretical and Empirical Results: While [26] con-
fines its findings to empirical data, primarily evaluating
privacy risks through membership inference attacks, our
research provides a comprehensive analysis includes
both information-theoretical analysis and empirical vali-
dations. These validations encompass gradient inversion
attacks as well as membership inference attacks.

Given these significant methodological divergences, direct
comparisons between our findings and those of [26] are
inherently challenging. This highlights the necessity for more
detailed and extensive investigations. We advocate for contin-
ued research in this domain to unravel the complex dynamics
that contribute to these divergent outcomes and to deepen our
understanding of privacy mechanisms within FL frameworks.

IX. CONCLUSION

In this paper, we showed that DFL through distributed opti-
mization inherently provides privacy advantages compared to
CFL, particularly in complex settings like neural networks. We
conducted a detailed analysis of the information flow within
the network across various iterations, establishing both upper
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and lower bounds for the information loss. The bounds indicate
that privacy leakage in DFL is consistently less than or equal
to that in CFL. We further exemplified our results through
two standard applications: logistic regression and training a
DNN. In the case of simple logistic regression, we observed
that the privacy leakage in both CFL and DFL are identical.
However, in more complex scenarios like training DNNs, the
privacy loss as measured by the gradient inversion attack
is markedly higher in CFL than in DFL. As expected, the
privacy gap between CFL and DFL is more pronounced in the
presence of numerous honest nodes. Extensive experimental
results substantiated our findings.

APPENDIX A
PROOF OF PROPOSITION 1

With Eq. (13), the optimality condition Eq. (12) can be
expressed as ∀i ∈ Vh:
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Since all terms in the LHS of Eq. (31) are known by the
adversary, the noisy gradient (RHS of Eq. (31)) is known by
the adversary, proving claim i). As for Eq. (22), since the noise
term the RHS of Eq. (31) does not depend on t, the difference

∇ f (w(t+`)
i ) − ∇ f (w(t)

i ),

is known for any ` ≥ 1, hence proving claim ii). Moreover,
by summing up the RHS of Eq. (31) over all honest nodes in
Vh,1, we have
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The difference between two successive z updates of Eq. (5)

is given by
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i ). (33)

Hence, given the fact that at convergence we have w(tmax)
j =

w(tmax)
k for all ( j, k) ∈ E , the adversary has knowledge of all

w(t)
j , j ∈ V , t ∈ T . Moreover, again from Eq. (5), we have
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showing that knowing the ∆z(t+1)
i| j s is equivalent to knowing

the differences z(0)
i| j − z(0)

j|i for all (i, j) ∈ E .
Hence, the last term in the RHS of Eq. (32) is known to the

adversary, the sum of gradients is thus known which completes
the proof of claim iii).

APPENDIX B
PROOF OF THEOREM 1

We have
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where (a) follows from Eq. (33) and Eq. (34), and (b) follows
from Eq. (31); (c) follows from Eq. (31) and the fact that
all terms in (b) are sufficient to compute all terms in (c) and
vice versa. Hence, the proof of Eq. (24) is now complete.
Clearly, when σ2

Z = 0, the above (c) reduces to Eq. (18),
thereby showing that the privacy loss in DFL is upper bounded
by the loss of CFL.

Before proving the lower bound, we first present the fol-
lowing lemma necessary for the coming proof.

Lemma 1: Let X1, . . . Xn and R1, . . .Rn be independent
random variables, and let g(·) be an arbitrary function. If they
satisfy ∀i : I(Xi; g(Xi) + Ri) = 0. Then

∀i : I

 
Xi; g(X1) + R1, . . . , g(Xn) + Rn,

nP
j=1

R j

!
= I

 
Xi;

nP
j=1

g(X j)

!
.

Proof: See Appendix C. �
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where (a) uses the fact that σ2

Z → ∞, i.e., {Z(0)
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is asymptotically independent of all other terms; (b) uses
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Lemma 1 and the fact that for all honest components
Gh,1, . . . ,Gh,kh the last term in Eq. (32) is known: the gradient
of honest nodes can be seen as the term g(Xi)’s and Z(0)

j|k −Z(0)
k| j ’s

can be seen as noise Ri’s in Lemma 1. Hence, proof of lower
bound is complete.

APPENDIX C
PROOF OF LEMMA 1
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where (a) follows from the fact that the linear map in
Eq. (35) is bijective; by observing the linear map we note
that the difference of the k’th and (k + 1)’th rows in RHS of
Eq. (35) is g(Xk) + Rk. This difference is independent of all
Xis and the k’th row of Eq. (35), thus Xi →

Pn
j=1 g(X j) →Pn

j=2 g(X j)−R1 → . . .→ g(Xn)−
Pn−1

j=1 Ri →
Pn

j=1 R j forms a
Markov chain. Which establishes the second equality, thereby
completing the proof.

APPENDIX D
PROOF OF COROLLARY 1
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where (a) holds as I(Xi;OCFL) = I(Xi;OCFL,ODFL) since all
terms in Eq. (18) of CFL are sufficient to compute all terms
in Eq. (25) in DFL; (b) and (c) follow from the definition of
conditional mutual information; (d) holds as X j and W (t)
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APPENDIX E
CONVERGENCE BEHAVIOR

A. Setting of Logistic Regression

We assume each node i holds ni = 1 data sample xik ∈ R
2

and binary labels `i ∈ {0, 1}. For two labels, the input training
samples are randomly drawn from a unit variance Gaussian
distribution having mean µ0 = (−1,−1)ᵀ (`ik = 0) and mean
µ1 = (1, 1)ᵀ (`ik = 1), respectively. We utilize PDMM for the
decentralized protocol, i.e., θ = 1 in Algorithm 1, and the
convergence parameter ρ is set as 0.4. A single-step gradient
descent with learning rate µ = 0.1 is employed for updating
Eq. (4). With this, the bound Eq. (28) becomes
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and similar modification follows for Eq. (29). As for the
CFL protocol, the same learning rate is applied for a fair
comparison, i.e., µ in Eq. (1) is also set to 0.4.

B. Setting and Convergence Behavior of DNNs

To test the performance of the introduced DFL protocol,
we generated a random geometric graph with n = 10 nodes.
LeNet architecture [65] is used for training and two datasets,
the MNIST [66] and CIFAR-10 [67] datasets, are used for
evaluation. MNIST and CIFAR-10 contain 60,000 images of
size 28×28 and 50,000 images of size 32×32 from 10 classes,
respectively. We randomly split each dataset into 10 folds,
allocating each node one fold. For the decentralized protocol,
we also use PDMM with the convergence parameter ρ set
to 0.4. We use the quadratic approximation technique [12],
[68] to solve the sub-problems approximately with µ = 1

30 . For
the centralized protocol, the constant µ in Eq. (1) is also set
to µ = 1

30 . In addition, we also test VGG-11 [69] architecture
of CIFAR-10 dataset with n = 8 nodes, where we use inner
iteration to solve the sub-problems and set the inner learning
rate as 0.05. In Figure 10 we demonstrate the training loss (in
blue) and test accuracy (in red) for both protocols, applied on
MNIST and CIFAR-10 datasets, respectively.

APPENDIX F
SUPPLEMENTARY ATTACK RESULTS

Experimental Setting of Membership Inference Attack: Fol-
lowing similar settings in [56], we randomly select 4000
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samples in Purchase dataset [50] as the training sets and
distribute them to n = 10 nodes. For our experiments, we adopt
the fully connected neural network architecture proposed by
[56], comprising four perceptron layers: the first layer (FC1)
contains 512 neurons, followed by the second layer (FC2) with
256 neurons, the third layer (FC3) with 128 neurons, and the
final layer (FC4) with 100 neurons.
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