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Abstract
In this contribution, we introduce some new theory for the classical GNSS ambiguity function (AF) method. We provide the
probability model by means of which the AF-estimator becomes a maximum likelihood estimator, and we provide a globally
convergent algorithm for computing the AF-estimate. The algorithm is constructed from combining the branch-and-bound
principle, with a special convex relaxation of the multimodal ambiguity function, to which the projected-gradient-descent
method is applied to obtain the required bounds. We also provide a systematic comparison between the AF-principle and
that of integer least-squares (ILS). From this comparison, the conclusion is reached that the two principles are fundamentally
different, although there are identified circumstances under which one can expect AF- and ILS-solutions to behave similarly.

Keywords GNSS · Ambiguity function (AF) method ·Maximum likelihood · Integer least-squares (ILS) · Branch-and-bound
(BB) · Convex relaxation · Projected-gradient-descent (PGD)

1 Introduction

The ambiguity function (AF) method is one of the earliest
methods for estimating baselines from integer ambiguous
GNSS carrier-phase data. The method was introduced and
popularized by Counselman and Gourevitch (1981) and
Remondi (1984, 1991), while its original idea of eliminat-
ing dependence on the ‘2π ’ ambiguities goes back to (Rogers
et al. 1978). In fact, it was this property of invariance that con-
tributed to the initial popularity of the method. It promised
the capability of determining precise baselines, without the
explicit need of having to resolve the values of integer carrier-
phase ambiguities.

Although the AF-method is one of the oldest meth-
ods, its statistical and numerical evolution did not keep
pace with the theoretical developments of other meth-
ods of mixed-integer inference (Teunissen 2003b, 2017;
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Hartman 2021). Currently, we have different classes of
mixed-integer estimators, with identified optimal estimators
within each class, together with numerically efficient com-
putational algorithms (Teunissen 1995). For instance, the
best integer-equivariant (BIE) estimator (Teunissen 2003a)
is minimum-mean-squared-error optimal in the largest class,
while the integer least-squares (ILS) estimator (Teunissen
1999) is best in maximizing the probability of correct inte-
ger estimation within the smaller integer-class.

As the maturity of the AF-method is not on par with the
current methods of mixed-integer estimation, it is the goal
of the present contribution to help fill in some of the theo-
retical gaps. In doing so, the two main innovations of this
contribution are: (1) the provision of a probability model by
means ofwhich theAF-solution is given a statistical basis and
(2) the provision of a global optimizer of the AF-likelihood
function, having finite termination with a guaranteed epsilon
tolerance.

This contribution is organized as follows: In Sect. 2, we
provide a brief review of the ambiguity function method,
together with examples of its use. Then, in Sect. 3 we draw
attention to the possible nonuniqueness of the AF-solution.
This is new, as this problem has not been addressed before in
theAF-method’s literature.We prove underwhich conditions
theAF-solution is nonunique and howone can verifywhether
or not this nonuniqueness is problematic for the application
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under consideration. In Sect. 4, we introduce our probabil-
ity model for the AF-method. It shows what distributional
assumptions need to be made in order for the AF-estimator
to become a maximum likelihood estimator. It therefore pro-
vides, for the first time, a statistical basis for the AF-method
of GNSS baseline determination. In doing so, we also gener-
alize the classical expression of the AF-estimator by showing
how a varying precision of the carrier-phase observables can
be incorporated into the estimation scheme.

In order to describe the characteristics of the ambiguity
objective function qualitatively, we provide its multivari-
ate gradient and Hessian in Sect. 5. Their analysis shows
that the ambiguity objective function is severely multimodal
and that, in the absence of very accurate baseline initializa-
tions, iterative gradient descent methods will not be able to
locate the sought for maximizer of the likelihood function.
A global optimization method is therefore asked for, which
we introduce in Sect. 6. The proposed approach is based
on a branch-and-bound algorithm, which exploits a specific
convex relaxation of the ambiguity function. The bounds are
computed using a projected-gradient-descent (PGD) iterative
method, which requires the convex lower bounding function
to be continuously differentiable. Each step of the algorithm
is described here, demonstrating how global optimality is
guaranteed in a finite time within a user-selected epsilon tol-
erance.

In Sect. 7, we compare the AF estimation principle with
that of integer least-squares (ILS). Although we exemplify
the various marked differences between the two principles,
we also show under which identified circumstances one can
expect AF- and ILS-solutions to be close.We do this bymak-
ing use of the primal-dual equivalence of mixed ILS theory
as introduced in (Teunissen and Massarweh 2024). The pre-
sented theory is supported by means of several examples in
which the workings and performance of the AF-method are
numerically and graphically illustrated. Finally, Sect. 8 con-
tains the summary and conclusions.

The following notation is used: E(.) and D(.) stand for
the expectation and dispersion operators, respectively, and
Np(μ, Q) denotes a p-dimensional, normally distributed
random vector, with mean (expectation) μ and variance
matrix (dispersion) Q. Rp and Zp denote the p-dimensional
spaces of real- and integer numbers, respectively. The Q-
weighted squared norm is denoted as ||.||2Q = (.)T Q−1(.),
and �x� denotes the rounding of x to the nearest integer. If
applied to a vector, the rounding is understood to apply to
each of its coordinates. ∪ and ∩ denote the union and inter-
section operators, and the vectorial inequality � denotes the
all componentwise inequality ≤. The gradient of a function
F(b) is denoted as ∂bF(b), and the central Chi-square dis-
tribution with p degrees of freedom is denoted as χ2(p, 0),
with χ2

δ (p, 0) being its δ-percentage critical value.

2 The AF-method: a brief review

The single-baseline, k-epochs, f -frequencies, and s-satellites
GNSS ambiguity function (AF) is generally defined as
(Mader 1992; Lachapelle et al. 1992; Leick et al. 2015):

AF(b) =
k∑

t=1

f∑

j=1

s∑

i=1

cos
[
2π
λ j

(φri
12, j (t) − ρri

12(t, b))
]

(1)

inwhichλ j is thewavelength of the j th frequency,φri
12, j (t) =

[φi
2, j (t)−φi

1, j (t)]−[φr
2, j (t)−φr

1, j (t)] the double-differenced
(DD) phase-observable, in units of range, on frequency j at
epoch t of receivers 1, 2 and satellites r , i , and ρri

12(t, b) is its
corresponding DD range, which depends on b, the unknown
baseline vector between receivers 1 and 2.

Note that AF(b) is invariant for any perturbations of
φri
12, j (t) that are integer multiples of the wavelength λ j .

Hence, it is invariant for integer cycle slips in the phase
data, as well as for the presence of the DD integer ambi-
guities ari12, j ∈ Z in the observation equations φri

12, j (t) =
λ j ari12, j +ρri

12(t, b)+εri12, j (t). This invariance has in fact been
the overarching motivation for introducing the AF-concept
(Counselman and Gourevitch 1981; Remondi 1984; Mader
1992; Hofmann-Wellenhof et al. 2008; Leick et al. 2015).
It promises namely of being able to resolve the unknown
baseline b, without the explicit need of having to resolve the
values of the integer ambiguities ari12, j . As AF(b) reaches

its maximum value when all DD phase errors εri12, j (t) are
identically zero, the chosen AF-approach for resolving the
unknown baseline is to aim for a solution that satisfies
b̌ = argmaxb AF(b). The usual approach for doing so is by
direct evaluation of the ambiguity function on the vertices of
a three-dimensional rectangular grid, centred at an approxi-
mate baseline solution. The vertex that provides the largest
function value is then selected as the solution sought (Rogers
et al. 1978; Remondi 1984; Hofmann-Wellenhof et al. 2008).
It will be clear that the numerical and statistical efficacy of
such approach depends on the chosen grid spacing, grid size,
and grid location.

Although the AF-principle, of working with an integer-
ambiguity invariant objective function that is maximized
when the errors are zero, forms the basis of all publica-
tions in the GNSS AF-literature, it is important to realize
that different authors applied the principle to different objec-
tive functions. As a consequence, different baseline results
will be obtained even when these authors would be using the
same original data. Some authors work on single-differenced
data, while others apply the principle to double-differenced
data, and some work directly with the cosine function, as
in (1), while other authors work with the complex phasor
function, being the analytical representation of a cosine func-
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tion. Remondi (1984, 1991), for instance, works with phasor
norms, as a result of which his ambiguity objective function
contains, in contrast to (1), both cosine and sine functions.
The same phasor norms are also used by Han and Rizos
(1996), but they use it on double-differenced data, instead
of on single-differenced data as is done in (Remondi 1984,
1991; Remondi and Hilla 1993; Hofmann-Wellenhof et al.
2008).

In this contribution, we will use, as in (1), a ‘sum of
cosines’ as our basis for constructing the ambiguity-invariant
objective function. This is consistent with the original formu-
lation of Rogers et al. (1978), but more importantly, it will
allow us to formulate a probabilistic model for the ambiguity
function method.

3 On the nonuniqueness of the AF-solution

As mentioned earlier, the attractiveness of the AF-method
is the integer-ambiguity invariance of its objective function.
This invariance, however, holds for any integer perturbations
of its argument and thus also for those that may be generated
by changes in the baseline. If such case happens, one cannot
expect the baseline solution of the AF-method to be unique.

To study the possible nonuniqueness of the AF-solution,
wefirst introduce a useful compact notation for the ambiguity
function. Let εφ = [εφ1, . . . , εφm ]T be an m-vector with its
entries expressed in cycles, and let em = [1, . . . , 1]T be the
m-vector of ones. Then, we introduce for the AF-function
the compact notation

AF = eTm cos[2π(εφ)] :=
m∑

i=1

cos[2π(εφi )] (2)

Thus, cos[2π(εφ)] is the vector that consists of the compo-
nentwise cosine values of 2πεφi . As the general system of
GNSS, carrier-phase observation equations can be written in
vector–matrix cycle-form as:

φ = Aφa + Bφb + εφ, a ∈ Z
n, b ∈ R

p, Aφ ∈ Z
m×n (3)

the to-be-maximized objective function of the AF-method
follows upon substitution of εφ = φ − Aφa − Bφb into (2)
as

AF(b) = eTm cos[2π(φ − Bφb)] (4)

Note that this formulation generalizes that of (1) in the sense
that φ need now not be restricted to a DD-form and that b
need not be restricted to a single baseline. As (4) applies to
any carrier-phase system of the form (3), it holds in principle
for undifferenced data and networks as well.

Also note, due to the property of the cosine function, that
the ambiguity-part Aφa ∈ Z

m of system (3) disappeared
from the objective function AF(b). This is also the principal
attractiveness of the method as it implies that no explicit
‘integer-ambiguity resolution’ is required when maximizing
(4).

We now show, however, what this ‘invariance’ does to the
uniqueness of the AF-maximizer.

Theorem 1 (Nonuniqueness ofAF-solution): Letm×(n+p)
design matrix [Aφ, Bφ] (cf. 3) be of full column rank and
let Z = [Z1, Z2], Z1 ∈ Z

m×(m−p), Z2 ∈ Z
m×p, be an

admissible ambiguity transformation (i.e. Z and Z−1 have
integer entries), satisfying B⊥T

φ [Z1, Z2] = [L, 0], where B⊥
φ

is a basis matrix of the null space of BT
φ . Then, the ambiguity

function (4) satisfies

AF(b + B+
φ Z2 z̃2) = AF(b), ∀z̃2 ∈ Z

p (5)

in which B+
φ is a left-inverse of Bφ (i.e. B+

φ Bφ = Ip). �

Proof From B⊥T
φ [Z1, Z2] = [L, 0], it follows that Z2 is an

integer basis matrix of the range space of Bφ , i.e. Z2 = BφX
for some invertible p × p matrix X = B+

φ Z2. Therefore,

using the projector property BφB
+
φ Z2 = Z2,

AF(b) = eTm cos[2π(φ − Bφb)]
= eTm cos[2π(φ − Bφb − Z2 z̃2)]
= eTm cos[2π(φ − Bφ(b + Xz̃2))]
= eTm cos[2π(φ − Bφ(b + B+

φ Z2 z̃2))]
= AF(b + B+

φ Z2 z̃2)

(6)

��
The important consequence of this result is that the AF-
solutionmaynot be unique even if the designmatrix [Aφ, Bφ]
(cf. 3) is of full column rank. Thus, even if the phase-only
systemof observation equations produces a unique float solu-
tion, with corresponding integer least-squares (ILS) solution,
the solution produced by the AF-method may not be unique.
This possible lackof baseline uniqueness is here identified for
thefirst time as it is not part of the deliberations in the classical
AF-literature (Counselman and Gourevitch 1981; Remondi
1984; Mader 1992; Hofmann-Wellenhof et al. 2008; Leick
et al. 2015).

The condition under which the above lack of uniqueness
occurs is when an admissible integer matrix Z = [Z1, Z2]
can be constructed such that B⊥T [Z1, Z2] = [L, 0]. This is
always possible when the entries of matrix B⊥ are rational,
see Theorem2 in (Teunissen andKhodabandeh 2022), which
happens, for instance, with the geometry-free GNSS model.
We hereby note, however, that even if the actual entries of
B⊥ are not rational, in the context of numerical computing
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they could be, which then still introduces numerically the
above-mentioned lack of uniqueness.

Whether or not the above-identified lack of uniqueness
is problematic from a practical point of view may depend
on how large the smallest perturbation B+Z2 z̃2 will be.
If the smallest such perturbation is sufficiently large, then
a local maximizer b̌ of AF(b) could still be acceptable,
since the next nearest maximizer will then be far away.
The smallest distance between the local maximizers is given
by Dmin = minz∈Zp\{0} ||B+

φ Z2z||Q in which Q is a user-

chosen positive-definite matrix, e.g. Q = (BT
φ Bφ)−1. Note

that this minimization can be computed efficiently with the
LAMBDAmethod (Teunissen 1995;Massarweh et al. 2025).

4 A probability model for the ambiguity
functionmethod

In this section, we will develop our probability model for
the ambiguity function method. The starting idea is to find a
probability density function (PDF) that has the solution of the
ambiguity function method, b̌ = argmaxb eTm cos[2π(φ −
Bφb)] (cf. 4), as itsmaximum likelihood estimate. In doing so,
we ignore for themoment that the solutionmaybenonunique.
We have

b̌ = argmax
b

eTm cos[2π(φ − Bφb)]
(a)= argmax

b
exp{eTm cos[2π(φ − Bφb)]}

(b)= argmax
b

exp{eTm cos[z − z̄]}, z = 2πφ, z̄ = 2πBφb

(c)= argmax
b

exp{eTm cos[z−z̄]}∫
Ω exp{eTm cos[z−z̄]}dz , Ω = [−π,+π ]m

(d)= argmax
b

m∏
i=1

exp{cos[zi−z̄i ]}∫ +π
−π exp{cos[zi−z̄i ]}dzi , zi = cTi z, z̄i = cTi z̄

(e)= argmax
b

m∏
i=1

f (zi |z̄i , 1)
with f (x |μ, κ) = exp{κ cos[x−μ]}∫ +π

−π exp{κ cos[x−μ]}dx
(7)

This result can be explained as follows. By taking the expo-
nential exp in step (a), we obtain a nonnegative objective
functionwhich has the samemaximizer as the original objec-
tive function. In step (b), we simplify the argument by setting
z = 2πφ and z̄ = 2πBφb. In step (c), we normalize the
objective function such that it now can be interpreted as being
a PDF. As function of z, it integrates to 1 over Ω , and as
function of b, it still has b̌ as its maximizer. It is thus the
multivariate PDF of the random vector z, having z̄ = 2πBφb
as its parameter vector. As the PDF is symmetric about z̄,
z̄ = 2πBφb is also the mean of z. In step (d), we applied
the property that the exponential of a sum can be written as a
product of exponentials. As a result, the multivariate PDF is

written as anm-product of univariate PDFs. Here, ci denotes
the canonical unit vector having its only nonzero entry of 1 as
its i th entry; Step (e) follows by recognizing that allm PDFs
are the same, except for their means z̄i , i = 1, . . . ,m. Here
we also recognize that the PDFs f (zi |z̄i , 1), i = 1, . . . ,m,
are all special cases of the well-known circular normal dis-
tribution CN (μ, κ), having f (x |μ, κ) as its PDF (Gumbel
et al. 1953). The circular normal distribution CN (μ, κ),
with mean μ and concentration parameter κ , is also known
as the von Mises distribution. Its denominator is given as
2π I0(κ) = ∫ +π

−π
exp{κ cos[x − μ]}dx , where I0(κ) is the

modified Bessel function of the first kind of order 0.
The above has shown that the solution b̌ of the ambigu-
ity function method can now be interpreted as being the
maximum of the likelihood function of 2πφ, if the m ran-
dom variables 2πφi , i = 1, . . . ,m, are independent and
distributed as 2πφi ∼ CN (2πcTi Bφb, 1). Noting that this
probabilistic result is obtained with circular normal distri-
butions having unity concentration parameters, our above
derivation now also shows how to introduce a weighting
scheme into the ambiguity functionmethod. If we replace the
sum of cosines, eTm cos[2π(φ − Bφb)], by the weighted sum
wT cos[2π(φ−Bφb)],w = [w1, . . . , wm]T , a similar deriva-
tion as above shows, with zi = 2πcTi φ and z̄i = 2πcTi Bφb,
that

argmax
b

wT cos[2π(φ − Bφb)] = argmax
b

m∏

i=1

f (zi |z̄i , wi )

(8)

This shows how the classical objective function (4) needs to
be changed in order to incorporate a varying precision of the
GNSS carrier-phasemeasurements, thus allowing to include,
for instance, frequency and/or elevation dependency in the
precision description.
We are now in the position to summarize the above findings in
a theorem. In order to do so, we will include the pseudorange
data, and work, instead of with the phase-only system (3),
with the extended partitioned system
[
p
φ

]
=

[
0 Bp
Aφ Bφ

] [
a
b

]
+

[
εp
εφ

]
, a ∈ Z

n, b ∈ R
p, Aφ ∈ Z

m×n

(9)

in which the pseudoranges in p are expressed in units of
range, while the carrier-phases in φ are still expressed in
cycles.

By now assuming the pseudorange observables to be nor-
mally distributed and independent of the circular normal
distributed carrier-phase observables, we obtain a complete
probabilistic model for the ambiguity function method and
one that also eliminates the lack of uniqueness discussed in
the previous section. We have the following result.
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Theorem 2 (AF-ML estimator) Let p ∼ Nm(Bpb, Qpp),
with rankBp = p, Q pp > 0, be independent of 2πφ ∼∏m

i=1 CN (2πcTi Bφb, wi ). Then, the likelihood function of b
is given as:

L(b) =
exp{− 1

2 ||p − Bpb||2Qpp
}

|2πQpp|1/2
exp{wT cos[2π(φ − Bφb)]}∏m

i=1 2π I0(wi )

(10)

and its maximizer as

b̌AF = arg max
b∈Rp

(
− 1

2 ||p − Bpb||2Qpp
+ wT cos[2π(φ − Bφb)]

)

(11)

��
This result shows how the solution of the ambiguity function
method can be interpreted as a maximum likelihood (ML)
estimator, through which it also automatically inherits all
the known properties of ML-estimators. Hence, by means of
the above-identified probabilistic model, one can now apply
known likelihood estimation and testing results.

Note, bymakinguseof the trigonometric identity cos 2x =
1 − 2 sin2 x , that we may write the maximization problem
(11) also as a minimization problem,

b̌AF = arg min
b∈Rp

(
||p − Bpb||2Qpp

+ 4wT sin2[π(φ − Bφb)]
)

(12)

If we assume Bp to be of full column rank, we may use the
orthogonal decomposition ||p− Bpb||2Qpp

= ||P⊥
Bp

p||2Qpp
+

||b̂ − b||2Qb̂b̂
, with P⊥

Bp
= Im − BpB+

p , b̂ = B+
p p, B+

p =
Qb̂b̂ B

T
p Q

−1
pp , Qb̂b̂ = (BT

p Q
−1
pp Bp)

−1 and write (12) also as

b̌AF = arg min
b∈Rp

(
||b̂ − b||2Qb̂b̂

+ 4wT sin2[π(φ − Bφb)]
)

(13)

This formulation shows how the quadratic term on the right-
hand side, and therefore the inclusion of pseudorange data
through b̂, acts as a regularizer on the phase-based part of
the objective function. It is through this pseudorange-based
regularization that the earlier mentioned nonuniqueness of
the classical ambiguity function (4) is eliminated. Note in
this regard that although a full rank of (9) guarantees unique-
ness of the float LS-solution, that this not necessarily implies
uniqueness of b̌AF. This is only the case if also Bp is of full
rank. With single-differenced data for instance, Bp will be
rank defect as the phase clock cannot be determined from
code data alone. In that case, the integerness of the phase-
clock coefficients implies that the phase clock can only be
AF-determined up to an integer multiple of the wavelength.
To be able to work with (11) (or 13), we still need to show
how the weighting vector w can be chosen. For this, we rely
on the properties of the circular normal distribution and the

fact thatGNSS carrier-phasemeasurements are ultra-precise.
The circular normal distribution CN (μ, κ) is a symmetric
unimodular distribution having its mode at μ. The param-
eter κ drives its peakedness or concentration. For κ → 0,
the circular normal distribution converges to the uniform
distribution, while for κ → ∞, it converges to the point
distribution δ(x − μ). As for large, but finite values of κ , the
normal distributionN (μ, σ 2 = 1

κ
) provides a good approx-

imation to CN (μ, κ) (Gumbel et al. 1953), we will use the
precision of the carrier-phase observables to set the entry val-
ues of the weight vector w. For example, if σi denotes the
phase standard deviation when expressed in units of range,
i.e. σi = σλiφi with λi the wavelength, then the variance of
2πφi can be taken as the reciprocal value of the correspond-

ing concentration parameter, i.e.
4π2σ 2

i
λ2i

= 1
wi
.

Example 1 (Geometry-freemodel)Consider the single-epoch,
multi-frequency, double-differenced (DD)geometry-freemodel

E
[
p
φ

]
=

[
0 e f

I f Λ−1
f e f

] [
a
ρ

]
(14)

with p ∈ R
f the DD pseudorange vector expressed in units

of range, φ ∈ R
f the DD carrier-phase vector expressed

in cycles, e f = (1, . . . , 1)T the f -vector of ones, Λ f =
diag(λ1, . . . , λ f ) the diagonal matrix of f wavelengths, a ∈
Z

f the DD integer-ambiguity vector and ρ ∈ R the scalar
DD range. Then, with D(p) = σ 2

p I f , the two parts of the
objective function of (13) work out as:

||b̂ − b||2Qb̂b̂
:=

(
ρ̂−ρ

σp/
√

f

)2
, ρ̂ = 1

f

∑ f
i=1 pi

4wT sin2[π(φ − Bφb)] := 4
∑ f

i=1 wi sin2[π(φ̃i−ρ)
λi

]
wi := λ2i

4π2σ 2
φ̃i

(15)

with σ 2
φ̃i

being the variance of φ̃i = λiφi . ��

5 Multimodal ambiguity function and its
optimality domain

In this section, we describe and illustrate some of the defining
characteristics of the ambiguity function. In order to do so,
we work from now on, for convenience sake, instead of with
the objective function (11), with that of (12), i.e.

F(b) = ||p − Bpb||2Qpp
+ 4wT sin2[π(φ − Bφb)] (16)

Hence, since F(b) = 2wT em − 2AF(b), the maximum like-
lihood solution of the AF-method is then computed, not as a
maximizer, but as the minimizer of F(b).
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5.1 Minimization by iterative gradient descent

As F(b) is a smooth function (in fact, it is a C∞ function,
having continuous derivatives of all orders), one may think
of applying methods of iterative gradient descent to obtain
its minimum. Such methods adhere to the following scheme
(Teunissen 1990; Nocedal and Wright 2006):

bk+1 = bk − tk Q(bk)∂bF(bk), k = 0, 1, . . . (17)

in which tk > 0 is a to-be-chosen step size and Q(bk) > 0
is a to-be-chosen positive-definite matrix. The iteration is
started by an externally provided initial approximation b0 of
the minimizer.

Through the choice of Q(bk), one can choose the direc-
tion of descent, and through the choice of tk , one can enforce
that F(bk+1) ≤ F(bk). For computing the stepsize tk in
each iteration, different line-search strategies exist, from
simple to advanced (Nesterov 2018). One of the simplest
starts with tk = 1, followed by halving it, tk ← tk/2, until
F(bk − tk Q(bk)∂bF(bk)) < F(bk). The simplest choice
for Q(bk) would be to choose it as an identity matrix,
Q(bk) = Ik . As the resulting direction −∂bF(bk) points in
the direction of steepest descent of F(b) at bk , this method
is known as the steepest descent method. It has a local lin-
ear rate of convergence, but the iterations have the potential
to zigzag when the contours of F(b) are elongated at the
minimizer. This is avoided when Q(bk) is chosen as the
inverse-Hessian of F(b), Q(bk) = [∂2bbF(bk)]−1. This gives
Newton’s method, which is known to have a local quadratic
convergence. Contrary to the steepest descent method, New-
ton’s method does not need a line-search strategy to enforce
local convergence. That is, when the Hessian is positive-
definite, the method has a guaranteed convergence for points
sufficiently close to the solution. This is a consequence of the
method being based on a linear approximation of the vanish-
ing gradient of F(b) at the minimizer: 0 = ∂bF(b̌AF) ≈
∂bF(bk) + ∂2bbF(bk)(b̌AF − bk).

To apply the above iterative descent methods to (16) and
verify whether or not a minimizer is obtained, the gradient
and Hessian of F(b) are needed. They are given as follows.

Lemma 1 (Ambiguity function gradient and Hessian): The
gradient and Hessian of the objective function F(b) = ||p−
Bpb||2Qpp

+ 4wT sin2[π(φ − Bφb)] are given as

∂bF(b) = −2
(
BT
p Q

−1
pp (p − Bpb) + BT

φ ϕ
)

∂2bbF(b) = 2
(
BT
p Q

−1
pp Bp + BT

φ DBφ

)
,

(18)

with

ϕ =
m∑
i=1

(2πwi sin[2πcTi [φ − Bφb)])ci
D = diag(d1(b), . . . , dm(b))
di (b) = 4π2wi cos[2πcTi (φ − Bφb)]

and where ci is the i th canonical unit vector. �

Note, due to the presence of the diagonal matrix D, that the
Hessian matrix (cf. 18) of the ambiguity function is not nec-
essarily positive-definite. Hence, it may not be invertible, or,
when it is, itmaynot provide a descent direction. To avoid this
from happening, one may think of regularizing the Hessian
as ∂2bbF(b) − 2BT

φ DBφ , when ∂2bbF(b) fails to be positive-
definite. The so-obtained regularized iteration can then again
be interpreted as an iterative descent method, but now corre-
sponding with the choice Q(bk) = [2(BT

p Q
−1
pp Bp)]−1. Note

that, with tk = 1, this iteration boils down to

bk+1 = (BT
p Q

−1
pp Bp)

−1[BT
p Q

−1
pp p + BT

φ ϕ] (19)

which can be seen to be the fixed point iteration of the system
∂bF(b) = 0.

5.2 On themultimodality of the ambiguity function

Although the above descent methods converge to aminimum
of F(b), it depends on the initial approximation b0 whether
the minimum is a local or a global minimum of F(b). One
can have some confidence in having computed the global
minimum, if b0 would already be close enough to the global
minimizer b̌AF. To see whether or not one can reasonably
expect this to be the case, we take the ambiguity function
of the single-frequency geometry-free model as an example.
For the single-frequency case, the geometry-free ambiguity
function follows from (15) as:

F(ρ) = (p−ρ)2

σ 2
p

+ 4w sin2
(

π
λ
[φ̃ − ρ]

)
, w = λ2

4π2σ 2
φ̃

(20)

thus having first and second derivatives

dρF(ρ) = 2
σ 2

φ̃

[
ε(ρ − p) − λ

2π sin
(
2π
λ

[φ̃ − ρ]
)]

d2ρρF(ρ) = 2
σ 2

φ̃

[
ε + cos

(
2π
λ

[φ̃ − ρ]
)] (21)

with ε being the phase-code variance ratio ε = σ 2
φ̃
/σ 2

p . This

shows that all those points where the straight line y = ε(ρ −
p) intersects the sine-function y = λ

2π sin( 2π
λ

(φ̃ − ρ)), are
points for which dρF(ρ) = 0. These are therefore the points
where the local minima and maxima of the function F(ρ)

are located. Note that their number increases, when ε gets
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smaller, i.e. when the descending straight line y = ε(ρ − p)
gets less tilted.

From the second derivative, we learn that of these points,
only those are minima for which cos( 2π

λ
(φ̃ − ρ)) > −ε

holds. This shows, since cos x ≥ −1 for all x ∈ R, that
d2ρρF(ρ) > 0 for all ρ ∈ R, if ε > 1. Hence, this is the
condition for which F(ρ) is convex. Thus, if ε > 1, then
F(ρ) has only a single minimum. As ε equals the phase-
code variance ratio, this would require the precision of the
pseudorange (code) observables to be better than that of the
phase observables, which clearly is not the case with GNSS.

In fact, in case of GNSS it is the reciprocal value of ε

that is large, i.e. the phase-code variance ratio is very small,
ε ≈ 10−4. This implies that the almost horizontal line y =
ε(ρ − p) will have a large number of intersections with y =
λ
2π sin( 2π

λ
(φ̃ − ρ)). Hence, in the typical GNSS case, there

will be a large number of minima and maxima from which
one would then need to select the global minimum. The ρ-
values for the minima will have to satisfy cos( 2π

λ
(φ̃ −ρ)) >

−ε ≈ 0. If we define the small value δε as satisfying ε +
cos( 12π + 2πδε) = 0, then d2ρρF(ρ) > 0 for all DD range
values satisfying

ρ/λ ∈ φ + z + (− 1
4 − δε,+ 1

4 + δε

)
,∀z ∈ Z (22)

Thus, of all the solutions satisfying dρF(ρ) = 0, those ρ/λ

that lie in one of the integer translated intervals (22) will be
local minima and thus candidates for a global minimum.

To see how this set of ‘integer translated intervals’ general-
izes to themultidimensional case, we need to study the region
for which the p × p Hessian matrix ∂2bbF(b) is positive-
definite. We have the following result.

Lemma 2 (On the ambiguity function’s convexity)LetΩPD =
{b ∈ R

p|∂2bbF(b) > 0} be the region in which the ambiguity
function is convex and define the convex polytope

Ω◦
PD(z) = {b ∈ R

p| l(z) � Bφb � r(z)}, z ∈ Z
n (23)

with l(z) = (φ − δε − 1
4em)+ z, r(z) = (φ + δε + 1

4em)+ z.
Then,

Ω◦
PD = ∪

z∈Zm
Ω◦

PD(z) ⊂ ΩPD (24)

for δε = 0, while if Bφ = Λ−1Bp, with Λ the diagonal
wavelength matrix, and Qpp is diagonal, relation (24) even
holds with the entries of δε = (δε1 , . . . , δεm )T satisfying εi +
cos( 12π + 2πδεi ) = 0, εi = σ 2

φ̃i
/σ 2

pi = λ2i /(4π
2wiσ

2
pi ), i =

1, . . . ,m. If then also Bp is invertible, we haveΩ◦
PD = ΩPD.

�

Proof Relation (24), for δε = 0, follows from the fact
that D > 0 (cf. 18) implies 2(BT

p Q
−1
pp Bp + BT

φ DBφ) =

∂2bbF(b) > 0. Similarly, if Bφ = Λ−1Bp, then Q−1
pp +

Λ−1DΛ−1 > 0 implies 2(BT
p Q

−1
pp Bp + BT

φ DBφ) =
∂2bbF(b) > 0, which gives (24) for the given δε when Qpp is
diagonal. If also Bp is invertible, then Q−1

pp +Λ−1DΛ−1 > 0

is equivalent to 2(BT
p Q

−1
pp Bp + BT

φ DBφ) = ∂2bbF(b) > 0,
which gives the equality Ω◦

PD = ΩPD. ��
This result shows how the region overwhich the ambiguity

function is convex can be inscribed by a set of translated
convex polytopes. This set is thus not guaranteed to contain
the global minimizer. This is only true in the special case
when Bp is invertible.

It will be clear from the above that for the typical
GNSS case, i.e. when the phase-code variance ratio is small,
the ambiguity function will show many local minima and
maxima and thus exhibit a pronounced multimodal vari-
ability. This is illustrated in Fig. 1 for the single-frequency,
geometry-free model and in Fig. 2 for the dual-frequency,
geometry-free model.

Due to the multimodality of F(b) and the difficulty of
knowing a priori whether our initial approximation b0 resides
in the same convexity region as the global minimizer, it will
generally not be possible to solve for b̌AF by using one of the
iterative gradient descentmethods from the start. Fortunately,
we do know how we can provide a convex bound to the
region in which the search for the global minimizer can be
conducted. We have the following result:

Lemma 3 (Optimality domain) Let b̂ = argminb∈Rp ||p −
Bpb||2Qpp

. Then

b̌AF = arg min
b∈Rp

F(b) ∈ Ω, with

Ω = {b ∈ R
p| ||p − Bpb||2Qpp

≤ F(b̂)} (25)

�
Proof Clearly, b̌AF ∈ ΩF = {b ∈ R

p| F(b) ≤ F(b0)} for
any b0 ∈ R

p and thus also for b0 = b̂. Then, the result
follows by recognizing that ||p − Bpb||2Qpp

≤ F(b) for all
b ∈ R

p. ��
Geometrically, the regionΩ of (25) captures all those b ∈ R

p

of which the vectors Bpb have a weighted squared distance
to p that is not greater than F(b̂). With Bp being of full
column rank and by using the orthogonal decomposition
||p − Bpb||2Qpp

= ||P⊥
Bp

p||2Qpp
+ ||b̂ − b||2Qb̂b̂

, in which

Qb̂b̂ = (BT
p Q

−1
pp Bp)

−1, the region can also be written in
ellipsoidal form,

Ω = {b ∈ R
p| ||b̂ − b||2Qb̂b̂

≤ r2} (26)

with r2 = F(b̂)−||P⊥
Bp

p||2Qpp
. Note, since b̂ ∼ Np(b, Qb̂b̂),

that Ω would become a confidence region with confidence
level 1 − α, if r2 would be chosen as r2 = χ2

α(p, 0).
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Fig. 1 The L1 single-frequency, geometry-free ambiguity function
F(ρ) = F1(ρ)+F2(ρ) (cf. 20) is illustrated for different standard devi-
ation values of the code and phase data. As the parabolic term F1(ρ)

(in blue) rapidly increases for larger values ε = σ 2
φ̃
/σ 2

p , the ambigu-

ity function F(ρ) becomes strictly convex for ε > 1 (note: Δρ is the
difference between the variable ρ and the range model value)

Fig. 2 The L1-L2 dual-frequency, geometry-free ambiguity function
F(ρ) = F1(ρ) + F2(ρ) is illustrated for different standard deviation
values of the code and phase data as presented in Fig. 1. The term F2(ρ)

is a sum of two sine squared functions, illustrated individually in the
plots (red curves), each one having different amplitudes and periods

6 Global minimization of the ambiguity
function

In this section, we present our proposed method for finding
the global minimizer b̌AF of the ambiguity function F(b).
The method is based on that of Teunissen and Massarweh
(2024), be it that a different convex relaxing lower bounding
function needs to be constructed. We therefore first provide
a brief review of the characteristic components of the algo-
rithm, followed by our construction of the required convex
relaxation of the ambiguity function.

6.1 Branch-and-bound-basedminimization

As b̌AF ∈ Ω (cf. 26), we can reformulate our original
minimization problem minb∈Rp F(b) as the minimization

of F(b) over a bounded convex region, minb∈Ω F(b). This
can be further simplified if we replace Ω by the ellipsoid-
circumscribing box C = {b ∈ R

p| |bα − b̂α| ≤ rσb̂α
, α =

1, . . . , p} ⊃ Ω . Hence, this brings our task to solving

b̌AF = arg min
b∈C⊂Rp

F(b) (27)

The challenge in solving (27) is due to the multimodality of
the ambiguity function. It is not convex, and it has amultitude
of localminimaoverC. As this challenge is similar to the ones
of dual mixed-integer least-squares computations, the same
algorithmic components will be used as in the method of
Teunissen and Massarweh (2024), i.e. a branch-and-bound-
driven minimization, for which the required lower bounds
are constructed from projected-gradient-descent solutions of
a convex relaxed objective function.
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Fig. 3 An illustrative example for p = 1, showing the branch-and-
bound iterations for computing the global minimum of the ambiguity
function (in black). In the first iteration, the interval [−2,+2] is defined
as search domain for the global optimum, where Δb refers to the initial

value. The convex lower bound is represented by dashed lines for each
interval, where at each iteration the most promising one (in red colour)
is halved, thus further isolating the global optimum

Branch and Bound (BB)
The branch-and-bound algorithms (Lawler and Wood 1966;
Balakrishnan et al. 1991) represent a general approach to the
globalminimization solution of nonconvex problems. In fact,
they ensure a provable upper and lower bound of the global
minimum is maintained, thus providing a predefined accu-
racy for the computed solution, see Guida (2015). The BB
algorithms involve partitioning a problem into subproblems
(branching) and solving these subproblems to the optimal
level, using bounds to eliminate the need to consider subop-
timal solutions (bounding). Different mechanizations exist
to implement BB solutions; nonetheless, we focus here on
a simple approach where we start at the first level with an
initial box C ⊂ R

p, and then, we proceed by an iterative
halving of the boxes.

Hence, we can compute lower L1 = L(C) and upperU1 =
U (C) bounds, here being global and local at the same time,
such that

L1 = L(C) ≤ F(b̌AF) ≤ U1 = U (C) (28)

and the algorithm terminates ifU1 − L1 ≤ ε (note: here the
user-defined stop-criterion ε should not be confused with the

phase-code variance ratio). If U1 − L1 > ε, then we move
to the second level where C is partitioned in two boxes, i.e.
C = B1∪B2, and for each new partition i = 1, 2 we compute
both lower L(Bi ) and upperU (Bi ) bounds. Notice that these
are generally local bounds, whereas we can then construct
the new global lower and upper bounds as follows

min(L(B1), L(B2)) ≤ F(b̌AF) ≤ min(U (B1),U (B2)) (29)

with L2 = min(L(B1), L(B2)) and U2 = min(U (B1),

U (B2)). As both B1 and B2 are ‘smaller’ than C (i.e. they are
its partition), one can generally expect the local bounds for
Bi to get sharper in subsequent BB-iterations and the differ-
ence between upper and lower bounds to converge uniformly
to zero, see Balakrishnan et al. (1991).

The algorithm terminates if U2 − L2 < ε, otherwise we
keep partitioning one of the two boxes, thus ending up with
three boxes. For each one, we compute again local lower and
upper bounds. Then, we update the global bounds, i.e. taken
as minimum over local bounds found for the partitions of C.
The value of local bounds determines which box between B1

and B2 is split, i.e. the one with the smallest value, so this is
equivalent to the global lower bound.
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Table 1 Overview of different cases and conditions for the definition of convex lower-bound terms gi,L

Case Condition Function Plot

zU = 0 [li , ui ] ∈ [
0, 1

4

]
gi,L = sin2(πxi ) Figure4a

[li , ui ] ∈ [ 3
4 , 1

]

[li , ui ] ∈ [ 1
4 , 3

4

]
gi,L = sin2(πli ) + (xi − li )

sin2(πui )−sin2(πli )
ui−li

Figure4b

li ∈ [
0, 1

4

]
, ui ∈ [ 1

4 , 1
]

gi,L = funL(li , ui , xi ) Figure4c

li ∈ [
0, 3

4

]
, ui ∈ [ 3

4 , 1
]

gi,L = funU(li , ui , xi ) Figure4d

zU > 0 xi < 1 gi,L =
{
funU(li , 1, xi ), li < 3

4
sin2(πxi ), otherwise

xi ∈ [1, zU ] gi,L = 0 Figure5

xi > zU gi,L =
{
funL(0, ui − zU , xi − zU ), ui > zU + 1

4
sin2(πxi ), otherwise

After k iterations, we end up with a partitioning of the
form C = ∪k

i=1Bi , where the global lower and upper bounds
are such that

Lk ≤ min
b∈C

F(b) ≤ Uk (30)

where Lk = mini=1,...,k L(Bi ) is nondecreasing, whileUk =
mini=1,...,k U (Bi ) replaces Uk−1 only if Uk < Uk−1, thus
assuring that the global upper bound is nonincreasing (i.e.
possibly speeding up the BB algorithm). Partitioning ter-
minates if the difference of these bounds is small enough,
Uk − Lk ≤ ε.

With reference to Lemma 3 (cf. 25), we note that the above
procedure can be aided by applying box-shrinking, i.e. any
b∗ that has a function value F(b∗) smaller than the previously
used can be used to shrink the set Ω .

Lower and Upper Bounds
For any box partition B, we shall compute lower and upper
bounds of minb∈B F(b), where the local lower bound L(B)

is certainly the most challenging one to compute. In fact,
the standard gradient-based methods unfortunately cannot
ensure global convergence, given that F(b) is not necessarily
convex.

However,we canfindadifferentiable convex lower bound-
ing function FL(b) ≤ F(b),∀b ∈ B, whose minimizer is
easily found as

L(B) = min
b∈B

FL(b) ≤ min
b∈B

F(b) (31)

where B = {b ∈ R
p| bL � b � bU }. We refer to Sect. 6.2

for more details on the FL(b) construction.

The local upper bounds U (B) are trivial, given that any
b∗ ∈ B can in principle be used, i.e.

U (B) = F(b∗) ≥ min
b∈B

F(b) (32)

where the ‘centre of gravity’ of the box, i.e. b∗ = 1
2 (bL +bU )

for box B bounded as bL � b � bU , represents one simple
choice.

Another good choice would be to take b∗ as the minimizer
of the lower bounding function, b∗ = argminb∈B FL(b)
(cf. 31), the idea being that if FL(b) approximates F(b) well
in B, then FL(b∗) should not differ too much from F(b∗). A
third option is to exploit the smoothness of the AF-function
and compute b∗ as a local minimizer of F(b) over B, thereby
using, for instance, the projected-gradient-descent method
(see below). This local minimizer becomes then automati-
cally the global minimizer over B, once the branching has
reached the stage that F(b) is truely convex over B.
Projected Gradient Descent (PGD)
As our constructed lower bounding convex function FL(b)
is only continuously differentiable, we use the PGD-method
to solve for the lower bound (31). The algorithmic steps for
doing so are as follows (Bertsekas 1999; Nocedal andWright
2006):

1. Initialize: Start with a feasible solution, b0 ∈ B and then
loop for k = 0, . . . until the stop criterium ||bk+1−bk || ≤
δPGD is satisfied, given a user-selected small threshold
δPGD � 1.

2. PGD step: Compute stepsize tk > 0 and projected gradi-
ent descent

bk+1 = PB(bk − tk∂bFL(bk)) (33)
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Fig. 4 Illustration of the different convex lower-bound terms gi,L (top)
and their derivatives g′

i,L (bottom) for the case zU = 0 in Table 1. We
consider {l = 0.05, u = 0.20} and {l = 0.75, u = 0.90} in the first col-

umn, {l = 0.30, u = 0.60} in the second column, {l = 0.05, u = 0.45}
in the third column, and {l = 0.40, u = 0.95} in the fourth column

such that FL(bk+1) ≤ FL(bk), where

PB(y) = argmin
b∈B

||y − b||2 (34)

As B is a box, the orthogonal projection PB : Rp → B can
be computed very efficiently. We have for α = 1, . . . , p,

PB(y)α =
⎧
⎨

⎩

bα,L if yα ≤ bα,L

yα if bα,L ≤ yα ≤ bα,U

bα,U if bα,U ≤ yα

(35)

in which bα,L , yα , and bα,U denote the α-coordinates of
bL , y, and bU , respectively.

Example 2 (BBheight-determination) Fig. 3, first panel, shows,
over an initial interval [−2,+2] metres, the ambiguity func-
tion (16) of an L1 single-frequency,DD short-baselinemodel
for which only the height difference is assumed unknown,
i.e. p = 1. The true, simulated, height difference is 30.0cm,
while the AF-minimizer is found to be 30.3cm, using a pseu-
dorange (code) and phase measurement precision of 20cm
and 2mm, respectively (note: Δb is shown with respect to
initial value).

In the first iteration, the initial search interval [−2,+2] is
taken and the convex lower bounding function (red dashed
line) is evaluated. This interval represents our initial box
C ∈ R

p for p = 1, which is therefore split in two for the sec-
ond iteration. For both intervals, we compute the respective

Fig. 5 Illustration of the convex lower-bound term gi,L given the case
zU > 0 described in Table 1, along with the associated derivative terms
g′
i,L , where we consider for this example a particular interval {l =

0.3, u = 3.2}
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convex lower bounding functions (blue and red dashed lines)
and their minimum value, i.e. convex lower bound (CLB).
The one with lowest CLB value is taken as most promising
interval, heremarked in red colour. For the upper bound com-
putations, we simply consider the centre of current intervals,
i.e. b∗ = (bL + bU )/2, and compute F(b∗). As the intervals
get shorter, the difference between upper and lower local
bounds get smaller as well.

The process is repeated, and with further iterations the
global minimum is isolated in smaller intervals where the
difference between F(b) and FL(b) also gets smaller, until
convergence. Note that in the last iteration, we have isolated
the global minimum in an interval where the ambiguity func-
tion is convex and iterative gradient descent could have been
adopted, see Sect. 5.1. ��

6.2 Convex relaxation of the ambiguity function

We now determine our differentiable convex lower bounding
(CLB) function of:

F(b) = ||p − Bpb||2Qpp
+ 4wT sin2[π(φ − Bφb)]

= ||p − Bpb||2Qpp
+ 4

m∑

i=1

wi sin
2[πcTi (φ − Bφb)]

︸ ︷︷ ︸
G(b)

(36)

As the first term on the right-hand side is already convex, we
concentrate on finding a convex relaxation of the second term
G(b). We thus aim to find a differentiable convex function
GL : B → R, such that

GL(b) ≤ G(b), ∀b ∈ B (37)

so that we obtain the convex lower bounding (CLB) function

FL(b) = ||p − Bpb||2Qpp
+ GL(b) ≤ F(b), ∀b ∈ B (38)

with its gradient given by

∂bFL(b) = −2BT
p Q

−1
pp (p − Bpb) + ∂bGL(b) (39)

Given that G(b) is a summation of scalar terms,

G(b) = 4
m∑

i=1

wi gi (xi (b)), gi (xi (b)) = sin2(πxi (b)) (40)

where xi (b) = cTi (φ − Bφb) ∈ R, we may seek a CLB
function of similar structure,

GL(b) = 4
m∑

i=1

wi gi,L(xi (b)) (41)

such that gi,L(xi (b)) ≤ gi (xi (b)),∀b ∈ B, thus satisfying
(37). The box constraint implies that also xi (b) is bounded
in an interval [li , ui ] for which gi,L is required to be convex.
These intervals can be found based on the projection-lemma
described in Teunissen and Massarweh (2024).

At this point, we provide the definition of gi,L for xi ∈
[li , ui ], and different cases should be distinguished as sum-
marized in Table 1. Notice that we define zL = �li� and
zU = �ui�, where �·� refers to the floor function. Hence, we
subtract zL from the aforementioned quantities, so they are
re-defined as xi := xi − zL , li := li − zL , ui := ui − zL ,
and zU := zU − zL . Thus, we always have li ∈ [0, 1] with
ui ∈ (li , 1) if zU = 0 or ui > 1 if zU > 0. These two cases
are separated in Table 1 and are, respectively, illustrated in
Figs. 4 and5.

When constructing these CLB terms, we make use of two
auxiliary functions ‘funL’ and ‘funU’ that are defined as:

Auxiliary Function #1:

funL(l, u, x) =
⎧
⎪⎨

⎪⎩

sin2(πl) + (x − l) sin
2(πu)−sin2(πl)

u−l , l ≥ xT
sin2(πx), l < xT , x ≤ xT
sin2(πxT ) + π(x − xT ) sin(2πxT ), l < xT , x > xT

(42)

where xT ∈ [0, 1
4 ] is obtained from

sin2(πu) = sin2(πxT ) + π(u − xT ) sin(2πxT ) (43)

Auxiliary Function #2:

funU(l, u, x) =
⎧
⎪⎨

⎪⎩

sin2(πl) + (x − l) sin
2(πu)−sin2(πl)

u−l , u ≤ xT
sin2(πx), u > xT , x ≥ xT
sin2(πxT ) + π(x − xT ) sin(2πxT ), u > xT , x < xT

(44)

where xT ∈ [ 3
4 , 1

]
is obtained from

sin2(πl) = sin2(πxT ) + π(l − xT ) sin(2πxT ) (45)

At the same time, the derivative in b ∈ R
p of each CLB

term gi,L follows as

∂bgi,L(xi (b)) = g′
i,L(xi )∂bxi (b) = −g′

i,L(xi )B
T
φ ci (46)

given xi ∈ [li , ui ], while g′
i,L(xi ) = ∂xi gi,L(xi ) can be easily

computed based on the elementary expressions provided in
Table 1 and has been illustrated for the two cases zU = 0 and
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Fig. 6 A branch-and-bound iteration towards the global minimum of the ambiguity function F(b) (cf. 16) for an L1 single-frequency, DD short-
baseline model with the horizontal position coordinates assumed unknown, where at each iteration the most promising box (in red colour) is halved

zU > 0, respectively, in Figs. 4 and5. The gradient ∂bGL(b)
is ultimately computed as:

∂bGL(b) = −4
m∑

i=1

wi g
′
i,L(xi )B

T
φ ci (47)

and ∂bFL(b)will resemble the expression shown in (18), after
substituting π sin(2πxi ) with g′

i,L(xi ) since we are consid-
ering now the convex lower bound of F(b).

Example 3 (BB position determination) In analogy with
example 2, this example illustrates the BB-iterations towards
the global minimum of the ambiguity function F(b) (cf.
16) in case of an L1 single-frequency, DD short-baseline
model for which only the horizontal position coordinates
are assumed unknown. The panels of Fig. 6 show the con-
tourlines of F(b), togetherwith the per iteration-step increas-
ing box-densification. Shown are the results for iterations #1,
#7, #22, #25, together with a zoom-in of the last two itera-
tion steps, #25 and #26. The red box is every time the most
promising box to be split. It is the boxwith lowest CLBvalue,
computed from the convex lower bounding functions that we
introduced in Sect. 6.2. ��

7 The AF- and LS-principle compared

The fact that the ambiguity objective function (16) has
a ‘sum-of-squares’ structure and that the approximation
sin2(x) ≈ x2 holds for small x , has led some authors to
link the AF-principle to that of least-squares, e.g. (Rogers
et al. 1978; Lachapelle et al. 1992; Leick et al. 2015), with
some even stating that the two are ’fundamentally equiva-
lent’. Although we show in this section that this statement
is incorrect, we also show under which identified circum-
stances one can expect AF- and ILS-solutions to have similar
behaviour.

7.1 A least-squares relation

To make a strict comparison between the AF- and ILS-
objective functions possible, we rely on the primal-dual
equivalence of mixed ILS theory as introduced in (Teunissen
and Massarweh 2024). We therefore first summarize the for
current purposes relevant material in the following theorem
(see Sect. 4 of (ibid)).

123



   28 Page 14 of 18 P. J. G. Teunissen, L. Massarweh

Fig. 7 Contourlines zoom-in of the dual-ILS function D◦(b) (left)
and ambiguity function F(b) (right) for the single-epoch model of
example 3. The colourbar scale of D◦(b) is half that of F(b). The
float solution b̂ is shown as a magenta asterisk and the AF-solution

b̌AF = argminb F(b) as a red circle. The ten black diamonds show
the locations of 10 out of the 40 smallest local minima of D◦(b),
with diamond #1 showing the location of the ILS-solution b̌◦ =
argminb D◦(b) = b̂◦(ǎ◦), with ǎ◦ = arg min

a∈Zn
||â − a||2Q◦

ââ

Theorem 3 (Primal-Dual mixed ILS): Let the dispersion of
the float ambiguity and baseline estimators, â ∈ R

n and
b̂ ∈ R

p, be given as

D
[
â
b̂

]
=

[
Qââ Qâb̂
Qb̂â Qb̂b̂

]
(48)

and define the baseline objective function as

D◦(b) = ||b̂ − b||2Qb̂b̂
+ ||â(b) − ǎ◦(b)||2Q◦

â(b)â(b)
(49)

with â(b) = â−Qâb̂Q
−1
b̂b̂

(b̂−b), ǎ◦(b) = argminz∈Zn ||â(b)−
z||2Q◦

â(b)â(b)
and Q◦

â(b)â(b) being an approximation of the actual

baseline-conditioned ambiguity variance matrix Qâ(b)â(b) =
Qââ − Qâb̂Q

−1
b̂b̂

Qb̂â . Then, the minimizer of D◦(b),

b̌◦ = arg min
b∈Rp

D◦(b) (50)

is the solution of the mixed ILS problem

ǎ◦
b̌◦

}
= arg min

a∈Zn ,b∈Rp

(
||â − a||2Q◦

ââ
+ ||b̂◦(a) − b||2Q◦

b̂(a)b̂(a)

)

where

Q◦
ââ = Q◦

â(b)â(b) + Qâb̂Q
−1
b̂b̂

Qâb̂

b̂◦(a) = b̂ − Qb̂â Q
◦−1
ââ (â − a)

Q◦
b̂(a)b̂(a)

= Qb̂b̂ − Qb̂â Q
◦−1
ââ Qâb̂

�

Proof See Section 4 of (Teunissen and Massarweh 2024). ��
From the above theorem, two important conclusions can be
drawn. First, if Q◦

â(b)â(b) is chosen to be equal to Qâ(b)â(b),

then also Q◦
ââ = Qââ and b̂

◦(a) = b̂(a), fromwhich follows

that b̌◦ = argminb∈Rp D◦(b) will be identical to

b̌ = b̂(ǎ) with ǎ = arg min
a∈Zn

||â − a||2Qââ
(51)

Thus, with the choice Q◦
â(b)â(b) = Qâ(b)â(b), the baseline

solution b̌◦ = argminb∈Rp D◦(b) is identical to the ILS-
baseline estimator b̌, as a consequence of which it will also
share its statistical optimality properties such as having a
maximum ambiguity success rate (Teunissen 1999).

The second conclusion that can be drawn from the above
theorem is that even if Q◦

â(b)â(b) �= Qâ(b)â(b), the minimizer

b̌◦ = argminb∈Rp D◦(b) is still an ILS-baseline estimator,
namely

b̌◦ = b̂◦(ǎ◦) with ǎ◦ = arg min
a∈Zn

||â − a||2Q◦
ââ

(52)

but now one which uses an incorrect ambiguity-weighting
through Q◦

ââ and an incorrect baseline-mapping through

b̂◦(a); compare (51) with (52). Hence, (52) will not have the
optimality properties of (51). Using the statistical and distri-
butional properties of ǎ◦ and b̌◦ as given in (Teunissen and
Massarweh 2024), one can study by how much these proper-
ties differ from those of the optimal estimators in (51). As the
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above makes clear, this departure from optimality is driven
by the difference between Q◦

â(b)â(b) and Qâ(b)â(b). In (ibid),

we discussed some cases for which the estimators b̌◦ and
b̌ performed similarly due to their small difference between
Q◦

â(b)â(b) and Qâ(b)â(b).
For our current AF-analysis, the relevance of Theorem 3

lies now in the fact that with a special choice for Q◦
â(b)â(b),

the ILS-baseline producing objective function D◦(b) can be
given a structure that closely resembles that of the ambiguity
objective function F(b). For the ambiguity objective function
(16), we have, with wi = 1

4π2σ 2
φi

,

F(b) = ||b̂ − b||2Qb̂b̂
+

m∑

i=1

sin2
(
πcTi (φ−Bφb)

)

π2σ 2
φi

(53)

A very similar structure is obtained forD◦(b) if Q◦
â(b)â(b) =

diag(σ 2
â1(b)

, . . . , σ 2
ân(b)

). With this choice, we have ǎ◦ =
arg min

a∈Zn
||â − a||2Q◦

ââ
= (�â1(b)�, . . . , �ân(b)�)T , and there-

foreD◦(b) = ||b̂− b||2Qb̂b̂
+∑n

i=1
1

σ 2
âi (b)

(
âi (b) − �âi (b)�

)2,

which can be worked out as

D◦(b) = ||b̂ − b||2Qb̂b̂
+

n∑
i=1

d2
(
cTi A+

φ (φ−Bφb)
)

σ 2
(A+

φ
φ)i

with
d(x) = (x − �x�)
A+

φ = (AT
φ Q

−1
φφ Aφ)−1AT

φ Q
−1
φφ

σ 2
(A+

φ φ)i
= cTi (AT

φ Q
−1
φφ Aφ)−1ci

(54)

The two expressions, (53) and (54), look very similar, but
with the following marked differences,

1. The functions used in the two sums are sin2(πx)
π2 in (53)

and (x − �x�)2 in (54).
2. The arguments used in the two functions are cTi (φ−Bφb)

in (53) and cTi A+
φ (φ−Bφb) in (54),while normalizedwith

the variances σ 2
φi

in (53) and σ 2
(A+

φ φ)i
in (54).

3. Furthermore, as a consequence, the sum in (53) is over
m, the dimension of the phase vector φ, while the sum in
(54) is over n, the dimension of the ambiguity vector a.

In the absence of these differences, the two functions F(b)
and D◦(b) would be identical and the ambiguity function
determined baseline b̌AF = argminb∈Rp F(b) would be a
true ILS-baseline, albeit one determined from an incorrect
ambiguity variance matrix.

Note that the second of the above differences (and
implictly the third as well) is due to the fact that D◦(b) is
based on a conditional least-squares ambiguity estimation,
while this is not true for F(b). The ambiguity function F(b)

works namely directly on the phase data, and it thus there-
fore not exploit any time-constancy in the ambiguities if such
would be present. Hence, if we assume to work with DD
phase data in either a single-epoch model or a multi-epoch
model in which all ambiguities are disconnected in time, then
Aφ = Im , from which follows that the last two of the above
differences disappear, since then A+

φ = Im and m = n.
As immunity for cycle slips is considered one of the attrac-

tive features of the AF-method, we summarize the properties
for the case Aφ = Im separately in the following corollary.

Corollary 1 (AF as ILS approximation) If Aφ = Im,

replacement of sin2 πx
π2 in (53) by (x − �x�)2 turns the

ambiguity function F(b) into D◦(b), the minimizer of
which is the ILS-baseline b̌◦ (cf. 52) with Q◦

â(b)â(b) =
diag(σ 2

â1(b)
, . . . , σ 2

ân(b)
). �

This result shows that the extend to which the AF-solution
b̌AF = argminb∈Rp F(b) can be considered an approximate
ILS-solution hinges on the approximation of (x − �x�)2 by
sin2 πx

π2 . Although themaxima of these two functions are quite
different, their minima are identical and their local behaviour
around these minima is also very similar. For x = z+δ, with
z ∈ Z and δ = small, we have namely sin2 πx

π2 ≈ δ2 = (x −
�x�)2. This shows that under the condition of Corollary 1,
one can indeed expect the minimizers of F(b) and D◦(b) to
be quite close. This is illustrated, for the model of example
3, in Fig. 7. To the left we have the contourlines of D◦(b)
and to the right those of F(b). Apart from their difference in
scale, the two contour plots show a very similar topography,
with their local minima at almost identical locations. The
ten black diamonds, for instance, show the locations of 10
out of the 40 smallest local minima of D◦(b), but they are
at the same time also very close to the corresponding local
minima of F(b). And this also holds true for their global
minimum, with the black diamond #1 identifying the ILS-
solution b̌◦ = argminb D◦(b) and the red circle identifying
b̌AF = argminb F(b).

As the strength of the underlying model is not in play
in the properties captured by Corollary 1, the close-to-ILS
behaviour of the AF-solution b̌AF will not change when vary-
ing the ambiguity success rate of the model. In Table 2, we
show the formal standard deviation (σUP) and the simulated
RMS values of b̂ (float), b̌◦ (ILS), and b̌AF, for three differ-
ent success-rates (SR) of the model used in example 2. The
success rates were reduced by reducing the number of satel-
lites from 8 via 6 to 5. These results show the consistency
between σUP and the float-RMSvalues and how theAF-RMS
values follow those of ILS. The RMS values of AF and ILS
get poorer for smaller success rates and for very small suc-
cess rates even poorer than the RMS of the float solution.
This shows just as for ILS; it is the ambiguity success rate
that plays a decisive role in the quality of the AF-solution.
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Table 2 Formal standard deviation (σUP) and simulated RMS values
of b̂ (float), b̌◦ (ILS), and b̌AF, for three different success rates (SR) of
the model used in Example 2

SR (%) σUP (cm) Float (cm) ILS (cm) AFM (cm)

99.99 101.9 101.8 1.0 1.1

86.84 194.7 194.5 113.6 113.9

45.06 418.1 418.0 372.5 372.9

For b̌◦ (cf. 52), matrix Q◦
â(b)â(b) was chosen as Q◦

â(b)â(b) =
diag(σ 2

â1(b)
, . . . , σ 2

ân (b)
)

Hence, although the ambiguity function is a function of b
only, the statistical and probabilistic quality of its minimizer
is still, like the ILS estimator of b, in a large part driven by
the ambiguity success rate of the model.

As an additional remark to our comparison of the two
objective functions (53) and (54), we note that the differ-
ence in their phase arguments can easily be eliminated by
re-defining the ambiguity function such that cTi (φ − Bφb)
and σ 2

φi
in (53) are replaced by cTi A+

φ (φ − Bφb) and σ 2
(A+

φ φ)i
,

respectively. This, however, would eliminate the immunity-
to-cycle-slip property of the ambiguity function.

7.2 What about differencing?

The above considerations have shown that the extend to
which the AF-solution can be expected to be close to the
statistically optimal ILS-solution b̌ depends on the differ-
ences listed for (51) and (52) and on how well Q◦

â(b)â(b)
approximates the actual ambiguity variancematrix Qâ(b)â(b).
However, in addition to this, there are also two other aspects
that one should keep in mind when comparing AF with ILS.
The first is their difference in solution-uniqueness as dis-
cussed in Sect. 3 and the second is their ability to handle data
transformations, like e.g. phase differencing.

In our review Sect. 2 we already alluded to the fact that the
AF baseline solution lacks invariance against different forms
of data differencing. To understand the essence of this bet-
ter, consider data differencing as a linear transformation and
then first recall the property which the least-squares princi-
ple has with respect to invertible linear transformations of the
data. In case of least squares, the parameter solution remains
invariant provided the weighting accommodates the effect of
the data transformation. Such accommodation, however, is
not generally available with the AF-method. Thew-vector in
(11) can take care of variations in precision, but not accom-
modate any correlations that a linear transformation of the
data may introduce.

Anotherway of describing this difference between the two
principles is to consider the PDF transformation rule for the
normal distribution and the circular normal distribution. The

normal distribution is closed under linear transformations.
That is, a linear transformation of a normally distributed ran-
dom vector is again normally distributed. Such is, however,
not the case with the circular normal distribution. A linear
combination of circular normally distributed random vari-
ables is not circular normally distributed anymore.

This lack of being closed under linear transformations
implies that one has to be careful when formulating the
carrier-phase part of the AF-likelihood function. Under the
assumption that the considered carrier-phase observables are
circular normally distributed, usage of (11), as maximum
likelihood estimator, requires the carrier-phase observables
to be independent. This implies, in the context of GNSS,
that only undifferenced (UD) or (between-receiver) single-
differenced (SD) carrier-phase observables would qualify as
potential entries of them-vector φ. Double-differenced (DD)
carrier-phase observables, being correlated amongst them-
selves, would then not qualify in principle.

But the usage of the AF-method with DD carrier-phase
observables is of course not forbidden. As our numerical
examples have shown, their AF-results can become quite
close to the ILS-solutions and similarly to the SD-based AF-
results, as a consequence of the typically high precision of
theGNSS phase-observables.What one should keep inmind,
however, is that the solution would then not be invariant for
the in principle arbitraryway inwhichDDobservables can be
defined. Hence, from the same UD data set, one would then
obtain differentAF solutionswhen using different definitions
of the DD observables. Although these solution differences
can be small, it is important that this lack of invariance is
understood when applying the AF-method.

8 Summary and conclusions

In this contribution, we introduced new theory for the ambi-
guity function method. Its two main components are (1)
the provision of a probability model by means of which
the AF-estimator can be identified as a maximum likeli-
hood estimator and (2) the provision of a global optimizer
of the AF-likelihood function, having finite termination with
a guaranteed epsilon tolerance.

It was shown that for the AF-estimator to be a maxi-
mum likelihood estimator, the multivariate distribution of
the phase data must consist of independent circular normal
distributions. Although the suggestion of the circular normal
distribution for phase data is not new, see (Cai et al. 2007), our
linkage of the circular normal distribution to the ambiguity
function method and its requirement for the AF-estimator to
be a maximum likelihood estimator are new. In this context,
we also showed how the ambiguity function method can be
generalized so as to enable the inclusion of varying weights
for the phase data.
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Although the attractiveness of the ambiguity function
method is the integer-ambiguity invariance of its objective
function, we showed that this same invariancemay also cause
nonuniqueness in its solution.As this possible nonuniqueness
appears to be overlooked in the AF-literature, we determined
in Theorem 1 the explicit conditions that need to be satisfied
for such nonuniqueness to occur. This nonuniqueness is then
removed by code-regularization in Theorem 2.

To better understand the challenges of computing the
AF-solution, we first characterized the multimodality of the
ambiguity function, provided its gradient and Hessianmatrix
in Theorem 2 and determined a convex region in which
its minimizer is guaranteed to reside. As iterative gradi-
ent descent methods alone will not be able to ensure the
determination of the global minimizer of the multimodal
ambiguity function, we introduced our globally convergent
algorithm which is constructed from combining the branch-
and-bound principle, with a special convex relaxation of the
ambiguity function, to which the projected-gradient-descent
method is applied. Each of the method’s three constituents
was described, with special emphasis to the construction
of the required continuously differentiable, convex lower
bounding function of the multimodal ambiguity function.
Several examples were provided in which the workings
and performance of our AF-algorithm were numerically and
graphically illustrated.

Finally, a further comparison between the AF-principle
and that of ILS-estimation was made using the primal-dual
equivalence of mixed ILS theory as introduced in (Teunissen
and Massarweh 2024). Based on this equivalence, as sum-
marized in Theorem 3, it was shown that the differences
are driven by those listed for (51) and (52), as well as by
the impact of neglecting the correlation between the base-
line conditioned, float ambiguities. From this comparison,
as well as from the identified differences in nonuniqueness
and dependence on linear transformations, the conclusion is
reached that the two principles are fundamentally different,
although there are identified circumstances, as was shown,
under which one can expect AF- and ILS-solutions to behave
similarly.
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